
Quantum Log-Approximate-Rank Conjecture is also False

Anurag Anshu ∗ Naresh Goud Boddu† Dave Touchette‡

Abstract

In a recent breakthrough result, Chattopadhyay, Mande and Sherif [ECCC TR18-17] showed
an exponential separation between the log approximate rank and randomized communication
complexity of a total function f , hence refuting the log approximate rank conjecture of Lee and
Shraibman [2009]. We provide an alternate proof of their randomized communication complexity
lower bound using the information complexity approach. Using the intuition developed there,
we derive a polynomially-related quantum communication complexity lower bound using the
quantum information complexity approach, thus providing an exponential separation between
the log approximate rank and quantum communication complexity of f . Previously, the best
known separation between these two measures was (almost) quadratic, due to Anshu, Ben-David,
Garg, Jain, Kothari and Lee [CCC, 2017]. This settles one of the main question left open by
Chattopadhyay, Mande and Sherif, and refutes the quantum log approximate rank conjecture
of Lee and Shraibman [2009]. Along the way, we develop a Shearer-type protocol embedding
for product input distributions that might be of independent interest.

∗Institute for Quantum Computing and Department of Combinatorics and Optimization, University of Waterloo,
and Perimeter Institute for Theoretical Physics, aanshu@uwaterloo.ca
†Center for Quantum Technologies, National University of Singapore, e0169905@u.nus.edu
‡Institute for Quantum Computing and Department of Combinatorics and Optimization, University of Waterloo,

and Perimeter Institute for Theoretical Physics, touchette.dave@gmail.com

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 201 (2018)



1 Introduction

Communication complexity concerns itself with characterizing the minimum number of bits that
distributed parties need to exchange in order to accomplish a given task (such as computing a
function F ). Over the years, it has established striking connections with various areas of complexity
theory and information theory, providing tools for solving central problems in such domains. Since
it is in general hard to pin down precisely the communication cost of a task, various lower bound
methods have been developed over the years. One such method is the logarithm of the rank of the
matrix MF that encodes the values the function F takes on various inputs. More precisely, this
matrix is defined as MF (x, y) = F (x, y). The following well known conjecture posits that this lower
bound is polynomially tight for the deterministic communication complexity of F .

Conjecture 1 (Log-Rank Conjecture, [LS88]). There exists a universal constant α such that the
deterministic communication complexity of every total Boolean function F is O(logα(rk(MF ))).

See Ref. [CMS18] and reference therein for more details about this and the other conjectures
discussed in this work. A natural randomized analogue of Conjecture 1 is the following, comparing
randomized communication complexity to the logarithm of the approximate rank rather than actual
rank of MF . (See Section 2.1 for definitions.)

Conjecture 2 (Log-Approximate-Rank Conjecture, [LS09]). There exists a universal constant α
such that the randomized communication complexity (with error 1

3) of every total Boolean function
F is O(logα(rk1/3(MF ))).

In a recent breakthrough work [CMS18], Chattopadhyay, Mande and Sherif establish that Con-
jecture 2 is false by exhibiting a function with an exponential separation between the randomized
communication complexity (with constant error) and Log-Approximate-Rank. Their function is a
composition of the 2-bit Xor function and a function that they call Sink. The work [CMS18] asked
if their function had implications for the following quantum version of Conjecture 2.

Conjecture 3 (Quantum Log-Approximate-Rank Conjecture, [LS09]). There exists a universal
constant α, such that the quantum communication complexity of every total Boolean function F is
O(logα(rk1/3(MF ))).

Here we prove that Conjecture 3 is false as well. Before proceeding to the statement of our
main result, we define the Sink function.

Definition 4 (Sink [CMS18]). Sink function is defined on a complete directed graph of m vertices,
using

(
m
2

)
variables zi,j , i < j ∈ [m], in the following way. Let zi,j = 1 if there is a directed edge

from vertex vi to vj and zi,j = 0 if there is a directed edge from vertex vj to vi. The function Sink
computes whether or not there is a sink in the graph. In other words, Sink(z) = 1 iff ∃i ∈ [m] such
that all edges adjacent to vi are incoming.

The function of interest for communication complexity is Sink◦Xor⊗(m2 ), where each Xor takes as
input one bit from Alice and one from Bob. For simplicity of notation, we will denote this function
as Sink ◦ Xor. Our main theorem is as follows, which lower bounds the quantum information
complexity (QIC) of Sink ◦ Xor.

Theorem 5. Any t-round entanglement assisted protocol for Sink◦Xor achieving error 1/5 satisfies

QIC(Π, µ⊗(m2 )) ∈ Ω(m
t2

), with µ being the uniform distribution on 1+1 bits 1.

1A random variable on a+ b bits takes values over a bits on Alice’s side and b bits on Bob’s side.
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The desired lower bound on entanglement assisted quantum communication complexity (Q∗1
3

)

of Sink ◦ Xor follows by optimizing max(t,m/t2) over the number of round t.

Corollary 6. It holds that Q∗1/3(Sink ◦ Xor) ∈ Ω(m1/3).

Hence, combining with the following upper bound on the log-approximate-rank due to Ref. [CMS18],
the Sink ◦ Xor function witnesses an exponential separation between log-approximate-rank and
quantum communication, and refutes the quantum log-approximate-rank conjecture of Lee and
Shraibman [LS09].

Theorem 7 ( [CMS18]). It holds that

1. log rk1/3(MSink◦Xor) ≤ 4 logm+ o(logm)

2. log rk+
1/3(MSink◦Xor) = O(log2m).

In a subsequent version of [CMS18], Chattopadhyay et. al. improved the upper bound on
log rk+

1/3(MSink◦Xor) to O(logm).

1.1 Independent work

Sinha and de Wolf [SdW18] used the fooling distribution method, in independent and simultaneous
work, to obtain the same Ω(m1/3) lower bound on the quantum communication complexity of
Sink ◦ Xor. This differs from our techniques which we describe below.

1.2 Proof overview

At a high-level, our argument follows the well-established information complexity approach [KNTZ07,
CSWY01, BJKS04, JRS03a, BBCR10]. We view a given function f as some composition of many
instances of a simpler component function g, and argue through a direct sum property a reduction
from g to f . This is achieved by embedding inputs to g into inputs to f , where the remaining
inputs to f are sampled from some suitable distribution in order to achieve the desired direct sum
property. Following this, we show a lower bound on the information complexity for g.

In the present context, Sink◦Xor is a composition of many instances of the Equality function, in
a way that the input bits are shared across the instances. In Ref. [CMS18], the authors use Shearer’s
lemma to handle such overlap between the inputs across the instances and derive a corruption lower
bound. For the reduction from Sink◦Xor to Equality, we also wish to use a Shearer-type inequality.
We further argue that a lower bound on information complexity of Equality (for protocols that
make small error in the worst case) under uniform distribution implies a lower bound on information
complexity of Sink◦Xor. But it is not clear, a priori, that Equality should have high information cost
under that distribution, as this function has trivial communication complexity under the uniform
distribution. It turns out that the cut-and-paste argument of Anshu, Belovs, Ben-David, Göös,
Jain, Kothari, Lee and Santha [ABB+16] yields a constant lower bound on information complexity
of good protocols for Equality, even under the uniform distribution.

Broadly, our quantum lower bound proceeds along lines similar to above. The quantum
cut-and-paste argument of Anshu, Ben-David, Garg, Jain, Kothari and Lee [ABDG+17] in the
quantum setting yields a round dependent lower bound on the quantum information complexity
(QIC) [KNTZ07, JRS03b, JN14, Tou15, KLLGR16] of good protocols for Equality, even under the
uniform distribution. But the quantum version of the embedding argument requires new methods.
In the classical setting, using classical information cost IC, as soon as we have Alice and Bob
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privately sample the remaining inputs, the Shearer-type embedding follows almost directly from a
Shearer like inequality for information [GKR15]. In the quantum setting, we would similarly like
to use a Shearer-type inequality for quantum information [ATYY17]. However, it is not imme-
diately clear how to make the protocol embedding work for quantum information cost QIC. We
instead settle on an alternate notion of quantum information cost (variants of which have appeared
before [JRS05, JN14, LT17, ATYY17]) that works well only for product input distributions. The
argument then goes through by carefully using this notion, and it is equivalent to QIC up to a
round-dependent factor. What we get is a Shearer-type embedding protocol for product input dis-
tributions that allows some specific pre-processing of the inputs. We provide such a general version
in Section 4.1 in the quantum setting, while we give a more direct proof in the classical setting.

Hence, overall we get a round dependent lower bound on the quantum information complexity of
Sink ◦Xor, and the round independent lower bound on quantum communication complexity follows
by optimizing over the number of rounds in any good protocol.

2 Preliminaries and notation

For integer n ≥ 1, let [n] represent the set {1, 2, ..., n}. Let X and Y be finite sets and k be a
natural number. Let X k be the set X × ... × X , the cross product of X , k times. Let µ be a
probability distribution on X . Let µ(x) represent the probability of x ∈ X according to µ. We
write X ∼ µ to denote that the random variable X is distributed according to µ. We use the same
symbol to represent a random variable and its distribution whenever it is clear from the context.
The expectation value of function f on X is defined as Ex←X [f(x)] =

∑
x∈X Pr(X = x)f(x) where

x← X means that x is drawn according to the distribution of X. We say X and Y are independent
iff for each x ∈ X , y ∈ Y : Pr(XY = xy) = Pr(X = x) ·Pr(Y = y). For joint random variables XY ,
Y x will denote the distribution of Y |X = x.

We now introduce some quantum information theoretic notation. We assume the reader is
familiar with standard concepts in quantum computing [NC00, Wil12, Wat18].

Let H be a finite-dimensional complex Euclidean space, i.e., Cn for some positive integer n with
the usual complex inner product 〈·, ·〉, which is defined as 〈u, v〉 =

∑n
i=1 u

∗
i vi. We will also refer to

H as an Hilbert space. We will usually denote vectors in H using bra-ket notation, e.g., |ψ〉 ∈ H.
The `1 norm (also called the trace norm) of an operator X on H is ‖X‖1 := Tr(

√
X†X), which

is also equal to (vector) `1 norm of the vector of singular values of X. A quantum state (or a density
matrix or simply a state) ρ is a positive semidefinite matrix on H with Tr(ρ) = 1. The state ρ is
said to be a pure state if its rank is 1, or equivalently if Tr(ρ2) = 1, and otherwise it is called a
mixed state. Let |ψ〉 be a unit vector on H, that is 〈ψ|ψ〉 = 1. With some abuse of notation, we
use ψ to represent the vector |ψ〉 and also the density matrix |ψ〉〈ψ|, associated with |ψ〉. Given
a quantum state ρ on H, the support of ρ, denoted supp(ρ), is the subspace of H spanned by all
eigenvectors of ρ with nonzero eigenvalues.

A quantum register A is associated with some Hilbert space HA. Define |A| := log dim(HA).
Let L(A) represent the set of all linear operators on HA. We denote by D(A) the set of density
matrices on the Hilbert space HA. We use subscripts (or superscripts according to whichever is
convenient) to denote the space to which a state belongs, e.g, ρ with subscript A indicates ρA ∈ HA.
If two registers A and B are associated with the same Hilbert space, we represent this relation by
A ≡ B. For two registers A and B, we denote the combined register as AB, which is associated
with Hilbert space HA ⊗ HB. For two quantum states ρ ∈ D(A) and σ ∈ D(B), ρ ⊗ σ ∈ D(AB)
represents the tensor product (or Kronecker product) of ρ and σ. The identity operator on HA is
denoted IA.
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Let ρAB ∈ D(AB). We define the partial trace with respect to A of ρAB as

ρB := TrA(ρAB) :=
∑
i

(〈i| ⊗ IB)ρAB(|i〉 ⊗ IB),

where {|i〉}i is an orthonormal basis for the Hilbert space HA. The state ρB ∈ D(B) is referred to
as a reduced density matrix or a marginal state. Unless otherwise stated, a missing register from
subscript in a state will represent partial trace over that register. Given ρA ∈ D(A), a purification
of ρA is a pure state ρAB ∈ D(AB) such that TrB(ρAB) = ρA. Any quantum state has a purification
using a register B with |B| ≤ |A|. The purification of a state, even for a fixed B, is not unique as
any unitary applied on register B alone does not change ρA.

An important class of states that we will consider are the classical quantum states. They are of
the form ρAB =

∑
a µ(a) |a〉〈a|A ⊗ ρaB, where µ is a probability distribution. In this case, ρA can

be viewed as a probability distribution and we shall continue to use the notations that we have
introduced for probability distribution, for example, Ea←A to denote the average

∑
a µ(a).

A quantum super-operator (or a quantum channel or a quantum operation) E : A → B is a
completely positive and trace preserving (CPTP) linear map (mapping states from D(A) to states
in D(B)). The identity operator in Hilbert space HA (and associated register A) is denoted IA. A

unitary operator UA : HA → HA is such that U†AUA = UAU†A = IA. The set of all unitary operations
on register A is denoted by U(A).

A 2-outcome quantum measurement is defined by a collection {M, I −M}, where 0 � M � I
is a positive semidefinite operator, where A � B means B − A is positive semidefinite. Given a
quantum state ρ, the probability of getting outcome corresponding to M is Tr(ρM) and getting
outcome corresponding to I−M is 1− Tr(ρM).

2.0.1 Distance measures for quantum states

We now define the distance measures we use and some properties of these measures. Before defining
the distance measures, we introduce the concept of fidelity between two states, which is not a
distance measure but a similarity measure. Note that all the notions introduced below also apply
to classical random variables, when viewed as diagonal quantum states in some basis.

Definition 8 (Fidelity). Let ρA, σA ∈ D(A) be quantum states. The fidelity between ρ and σ is
defined as

F(ρA, σA) := ‖√ρA
√
σA‖1 .

For two pure states |ψ〉 and |φ〉, we have F(|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|. We now introduce the two
distance measures we use.

Definition 9 (Distance measures). Let ρA, σA ∈ D(A) be quantum states. We define the following
distance measures between these states.

Trace distance: ∆(ρA, σA) :=
1

2
‖ρA − σA‖1

Bures metric: B(ρA, σA) :=
√

1− F(ρA, σA).

Note that for any two quantum states ρA and σA, these distance measures lie in [0, 1]. The
distance measures are 0 if and only if the states are equal, and the distance measures are 1 if and
only if the states have orthogonal support, i.e., if ρAσA = 0.

Conveniently, these measures are closely related.
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Fact 10. For all quantum states ρA, σA ∈ D(A), we have

B2(ρA, σA) ≤ ∆(ρA, σA) ≤
√

2 · B(ρA, σA).

Proof. The Fuchs-van de Graaf inequalities [FvdG99, Wat18] state that

1− F(ρA, σA) ≤ ∆(ρA, σA) ≤
√

1− F2(ρA, σA).

Our fact follows from this and the relation 1− F2(ρA, σA) ≤ 2− 2F(ρA, σA).

We now review some properties of the Bures metric.

Fact 11 (Facts about Bures metric).

Fact 11.A (Triangle inequality [Bur69]). The following triangle inequality and a weak triangle
inequality hold for the Bures metric and the square of the Bures metric.

1. B(ρA, σA) ≤ B(ρA, τA) + B(τA, σA).

2. B2(ρ1
A, ρ

t+1
A ) ≤ t ·

∑t
i=1 B2(ρiA, ρ

i+1
A ).

Fact 11.B (Averaging over classical registers). For classical-quantum states θXB, θ
′
XB with θX =

θ′X , we have
B2(θXB, θ

′
XB) = Ex←X [B2(θxB, θ

′x
B )].

Finally, an important property of both these distance measures is monotonicity under quantum
operations [Lin75, BCF+96].

Fact 12 (Monotonicity under quantum operations). For quantum states ρA, σA ∈ D(A), and a
quantum operation E(·) : L(A)→ L(B), it holds that

∆(E(ρA), E(σA)) ≤ ∆(ρA, σA) and B(E(ρA), E(σA)) ≤ B(ρA, σA),

with equality if E is unitary. In particular, for bipartite states ρAB, σAB ∈ D(AB), it holds that

∆(ρAB, σAB) ≥ ∆(ρA, σA) and B(ρAB, σAB) ≥ B(ρA, σA).

2.0.2 Mutual information

We start with the following fundamental information theoretic quantities. We refer the reader to
the excellent sources for quantum information theory [Wil12, Wat18] for further study.

Definition 13. Let ρA ∈ D(A) be a quantum state. We then define the following.

von Neumann entropy: H(ρA) := −Tr(ρA log ρA).

We now define mutual information and conditional mutual information.

Definition 14 (Mutual information). Let ρABC ∈ D(ABC) be a quantum state. We define the
following measures.

Mutual information: I(A : B)ρ := H(ρA) + H(ρB)−H(ρAB) .

Conditional mutual information: I(A : B | C)ρ := I(A : BC)ρ − I(A : C)ρ.

We will need the following basic properties.
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Fact 15 (Properties of I). Let ρABC ∈ D(ABC) be a quantum state. We have the following.

Fact 15.A (Nonnegativity).

I(A : B)ρ ≥ 0 and I(A : B | C)ρ ≥ 0.

If ρAB = ρA ⊗ ρB is a product state, then

I(A : B) = 0.

Fact 15.B (Chain rule). I(A : BC)ρ = I(A : C)ρ + I(A : B | C)ρ = I(A : B)ρ + I(A : C | B)ρ.

Fact 15.C (Monotonicity). For a quantum operation E(·) : L(A)→ L(B), I(A : E(B)) ≤ I(A : B)
with equality when E is unitary. In particular I(A : BC)ρ ≥ I(A : B)ρ.

Fact 15.D (Averaging over conditioning register). For classical-quantum state (register X is clas-
sical) ρXAB:

I(A : B|X)ρ = Ex←XI(A : B)ρx .

The following lemma, known as the Average Encoding Theorem [KNTZ07], formalizes the
intuition that if a classical and a quantum registers are weakly correlated, then they are nearly
independent.

Lemma 16. For any ρXA =
∑

x pX(x) · |x〉〈x|X ⊗ ρxA with a classical system X and states ρxA,∑
x

pX(x) · B2(ρxA, ρA) ≤ I(X :A)ρ . (1)

The following Shearer-type inequality for quantum information was shown in Ref. [ATYY17].
Classical variants appeared in [GKR15, RS15].

Lemma 17. Consider registers U1, U2, . . . Um, V and define U := U1U2 . . . Um. Consider a quantum
state ΨUV such that ΨU1U2...Um = ΨU1⊗ΨU2⊗ . . .⊗ΨUm. Let S =

{
i1, . . . , i|S|

}
⊆ [m] be a random

set picked independently of ΨUV satisfying Pr[i ∈ S] ≤ 1
k for all i and US := Ui1Ui2 . . . Ui|S|. Then

it holds that

I(US : V | S)Ψ ≤
I(U : V )Ψ

k
,

2.1 Classical communication complexity

Let f : X × Y → {0, 1} be a total function (that is, its value is defined on every input) and
ε ∈ (0, 1). In a two-party communication task, Alice is given an input x ∈ X , Bob is given y ∈ Y
and the task is to compute f(x, y) by exchanging as few bits as possible. The parties are allowed to
possess pre-shared randomness (R) and private randomness (RA, RB). Without loss of generality,
we can assume that Alice communicates first and also gives the final output. The communication
cost of a protocol Π, denoted by CC(Π), is the maximum number of bits the parties have to
communicate over all possible inputs and values of the shared and private randomness. Let Rε(f)
represent the two-party randomized communication complexity of f with worst case error ε, i.e.,
the communication of the best two-party randomized protocol for f with error at most ε over any
input (x, y). Worst-case error of the protocol Π over the inputs is denoted by err(Π).

Definition 18 (XOR function). A function F : {0, 1}n×{0, 1}n → {0, 1} is called an XOR function
if there exists a function f : {0, 1}n → {0, 1} such that F (x1, ..., xn, y1, ..., yn) = f(x1⊕y1, ..., xn⊕yn)
for all x, y ∈ {0, 1}n. We denote F = f ◦XOR.
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Definition 19 (Rank). The rank of a matrix M , denoted by rk(M) is the minimum integer k for
which there exist k rank 1 matrices such that M =

∑k
i=1Mi.

Definition 20 (Non-negative Rank). The non-negative rank of a matrix M , denoted by rk+(M)
is the minimum integer k for which there exist k rank 1 matrices with non-negative entries such
that M =

∑k
i=1Mi.

Definition 21 (Approximate rank). Let ε ∈ [0, 1/2) and M be an |X | × |Y| matrix. The ε-
approximate rank of M is defined as

rkε(M) = min
M̃
{rk(M̃) : ∀x ∈ X , y ∈ Y, |M̃(x, y)−M(x, y)| ≤ ε}.

Definition 22 (Approximate non-negative rank). Let ε ∈ [0, 1/2) and M be an |X | × |Y| matrix.
The ε-approximate non-negative rank of M is defined as

rk+
ε (M) = min

M̃
{rk+(M̃) : ∀x ∈ X , y ∈ Y, |M̃(x, y)−M(x, y)| ≤ ε}.

Definition 23 (Distributional Information Complexity). Distributional information complexity of
a randomized protocol Π with respect to a distribution XY ∼ µ is defined as

IC(Π, µ) = I(X : Π|Y RRB) + I(Y : Π|XRRA).

Definition 24 (Max Distributional Information Complexity). Max-distributional information com-
plexity of a randomized protocol Π is defined as

IC(Π) = max
µ

IC(Π, µ).

Definition 25 (Information Complexity of a function). Information complexity of a function f is
defined as

IC(f) = inf
Π:err(Π)≤ε

IC(Π).

Note that since one bit of communication can hold at most one bit of information, for any
protocol Π and distribution µ we have IC(Π, µ) ≤ CC(Π). This implies that information complexity
of a function is a lower bound on the randomized communication complexity of a function.

Lemma 26 (Cut-and-paste lemma (Lemma 6.3 in [BJKS04])). Let (x, y) and (x′, y′) be two inputs
to a randomized protocol Π. Then

B(Π(x, y),Π(x′, y′)) = B(Π(x, y′),Π(x′, y)).

Fact 27 (Pythagorean property (Lemma 6.4 in [BJKS04])). Let (x, y) and (x′, y′) be two inputs
to a randomized protocol Π. Then

B2(Π(x, y′),Π(x′, y′)) + B2(Π(x, y),Π(x′, y)) ≤ 2B2(Π(x′, y′),Π(x, y)).
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2.2 Quantum communication complexity

In quantum communication complexity, two players wish to compute a classical function F : X ×
Y → {0, 1} for some finite sets X and Y. The inputs x ∈ X and y ∈ Y are given to two players
Alice and Bob, and the goal is to minimize the quantum communication between them required to
compute the function.

While the players have classical inputs, the players are allowed to exchange quantum messages.
Depending on whether or not we allow the players arbitrary shared entanglement, we get Q(F ),
bounded-error quantum communication complexity without shared entanglement and Q∗(F ), for
the same measure with shared entanglement. Obviously Q∗(F ) ≤ Q(F ). In this paper we will only
work with Q∗(F ), which makes our results stronger since we prove lower bounds in this work.

An entanglement assisted quantum communication protocol Π for a function is as follows. Alice
and Bob start with preshared entanglement |Θ0〉A0B0

. Upon receiving inputs (x, y), where Alice
gets x and Bob gets y, they exchange quantum messages. At the end of the protocol, Alice applies
a two outcome measurement on her qubits and correspondingly outputs 1 or 0. Let O(x, y) be the
random variable corresponding to the output produced by Alice in Π, given input (x, y).

Let µ be a distribution over dom(F ). Let inputs to Alice and Bob be given in registers X and
Y in the state

ρµ :=
∑
x,y

µ(x, y) |x〉〈x|X ⊗ |y〉〈y|Y . (2)

Let these registers be purified by RX and RY respectively, which are not accessible to either players.
Denote

|µ〉XRXY RY
:=
∑
x,y

√
µ(x, y) |xxyy〉XRXY RY

. (3)

Let Alice and Bob initially hold register A0, B0 with shared entanglement Θ0,A0B0 . Then the initial
state is

|Ψ0〉XY RXRY A0B0
:= |µ〉XY RXRY

|Θ0〉A0B0
. (4)

Alice applies a unitary U1 : XA0 → XA1C1 such that the unitary acts on A0 conditioned
on X. She sends C1 to Bob. Let B1 ≡ B0 be a relabeling of Bob’s register B0. He applies
U2 : Y C1B1 → Y C2B2 such that the unitary acts on C1B0 conditioned on Y . He sends C2 to
Alice. Players proceed in this fashion for t messages, for t even, until the end of the protocol. At
any round r, let the registers be ArCrBr, where Cr is the message register, Ar is Alice’s register
and Br is Bob’s register. If r is odd, then Br ≡ Br−1 and if r is even, then Ar ≡ Ar−1. On input
x, y, let the joint state in registers ArCrBr be Θx,y

r,ArCrBr
. Then the global state at round r is

|Ψr〉XY RXRY ArCrBr
:=
∑
x,y

√
µ(x, y) |xxyy〉XRXY RY

|Θx,y
r 〉ArCrBr

. (5)

We define the following quantities.

Worst-case error: err(Π) := max
(x,y)
{Pr[O(x, y) 6= F (x, y)]}.

Quantum CC of a protocol: QCC(Π) :=
∑
i

|Ci|.

Quantum CC of F : Q∗ε(F ) := min
Π:err(Π)≤ε

QCC(Π).
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Our first fact links err(Π) with the distance ∆ between a pair of final states corresponding to
inputs with different outputs.

Fact 28 (Error vs. distance). Consider a non-constant function f , and let x, y and y′ be inputs
such that f(x, y) 6= f(x, y′). For any protocol Π with t rounds, it holds that

∆(Θx,y
t,AtCt

,Θx,y′

t,AtCt
) ≥ 1− 2err(Π).

In below, let A′r, B
′
r represent Alice and Bob’s registers after reception of the message Cr at

round r. That is, at even round r, A′r = ArCr, B
′
r = Br and at odd r, A′r = Ar, B

′
r = BrCr.

We will need the following version of the quantum-cut-and-paste lemma from [NT17] (also see
[JRS03b, JN14] for similar arguments). This is a special case of [NT17, Lemma 7] and we have
rephrased it using our notation.

Lemma 29 (Quantum cut-and-paste). Let Π be a quantum protocol with classical inputs and
consider distinct inputs u, u′ for Alice and v, v′ for Bob. Let |Ψ0,A0B0〉 be the initial shared state

between Alice and Bob. Also let
∣∣∣Ψu′′,v′′

k,A′kB
′
k

〉
be the shared state after round k of the protocol when

the inputs to Alice and Bob are (u′′, v′′) respectively. For k odd, let

hk = B
(

Ψu,v
k,B′k

,Ψu′,v
k,B′k

)
and for even k, let

hk = B
(

Ψu,v
k,A′k

,Ψu,v′

k,A′k

)
.

Then

B
(

Ψu′,v
r,A′r

,Ψu′,v′

r,A′r

)
≤ 2

r∑
k=1

hk.

As discussed in the introduction, approximate rank lower bounds bounded-error quantum com-
munication complexity with shared entanglement [LS08]:

Fact 30. For any two-party function F : X × Y → {0, 1} and ε ∈ [0, 1/3], we have Q∗ε(F ) =
Ω(log rkε(F ))−O(log log(|X | · |Y|)).

2.3 Quantum information complexity

Definition 31. Given a quantum protocol Π with classical inputs distributed as µ, the quantum
information cost is defined as

QIC(Π, µ) =
∑
i odd

I(RXRY :Ci |Y Bi) +
∑
i even

I(RXRY :Ci |XAi) . (6)

Definition 32. Given a quantum protocol Π with classical inputs distributed as µ, the cumulative
Holevo information cost is defined as

HQIC(Π, µ) =
∑
i odd

I(X :BiCi |Y ) +
∑
i even

I(Y :AiCi |X) .

9



Definition 33. Given a quantum protocol Π and a product distribution µ over the classical inputs,
the cumulative superposed-Holevo information cost is defined as

SQIC(Π, µ) :=
∑
i odd

I(X :Y RYBiCi)ρi +
∑
i even

I(Y :XRXAiCi)ρi .

Note that for product input distributions on XY and for each i,

I(X :BiCi|Y )ρi = I(X :Y BiCi)ρi ≤ I(X :Y RYBiCi)ρi , (7)

I(Y :AiCi|X)ρi = I(Y :XAiCi)ρi ≤ I(Y :XRXAiCi)ρi . (8)

Combining with other results in Ref. [LT17], we get the following for any t round protocol Π and
any product distribution µ:

2QCC(Π) ≥ QIC(Π, µ) (9)

≥ 1

t
SQIC(Π, µ) (10)

≥ 1

t
HQIC(Π, µ) (11)

≥ 1

2t
QIC(Π, µ). (12)

.

3 Lower bound on the information complexity of Sink ◦ Xor

3.1 Reducing Equality to Sink ◦ Xor

We define the Equality function as

EQ(x, y) =

{
1 if x = y,

0 otherwise.

Recall the Sink function from Definition 4. Following [CMS18] we use projections of the inputs in

our proof to analyze the input of the Sink function. Let w ∈ {0, 1}(
m
2 ). Let Evi be the set of m− 1

input coordinates that correspond to the edges incident to vi. We use the notation wvi to denote
the input projected to the coordinates in Evi . Note that wvi decides whether or not vi is a sink.
By zvi , we refer to the m− 1 bit string such that vi is a sink if and only if wvi = zvi . Sink can be
written as

Sink(w) = ∨mi=1EQ(wvi , zvi)

since only one of the vertex can be a sink in the complete directed graph. Our communication

function is Sink ◦Xor : {0, 1}(
m
2 )×{0, 1}(

m
2 ) → {0, 1}. Similar to Sink, Sink ◦Xor can be represented

as
Sink ◦ Xor(x, y) = ∨mi=1EQ(xvi , yvi ⊕ zvi).

Our first result is as follows.

Theorem 34. Suppose m ≥ 10. Let Π be a protocol for Sink ◦ Xor which makes a worst case
error of at most 1

4 . There exists a protocol Π′ for EQ that makes a worst case error of at most
1
4 + m−1

2m−2 ≤ 1
3 . Furthermore, it holds that

IC(Π′, ν) ≤ 2

m
IC(Π, µ),

where ν is the uniform distribution over inputs to EQ and µ is uniform over the inputs to Sink◦Xor.

10



Proof. We have

IC(Π, µ) = I(X : Π|Y RRB) + I(Y : Π|XRRA) = I(X : ΠY RRB) + I(Y : ΠXRRA),

where the information quantities are evaluated on µ and the associated Π. Let S be a random
variable which takes values in {Ev1 , Ev2 , . . . , Evm} with uniform probability. Let XEvi

(similarly
YEvi

) be the restriction of X (similarly Y ) to coordinates in Evi . Since each coordinate j appears

in exactly two sets in {Ev1 , Ev2 , . . . , Evm}, we have Pr[j ∈ S] = 2
m . Thus, from Lemma 17, we have

2

m
IC(Π, µ) ≥ Es[I(XS : YΠRRB|S = s) + I(YS : XΠRRA|S = s)] (13)

= Es[I(XS : Π|Y RRB, S = s) + I(YS : Π|XRRA, S = s)]. (14)

The protocol Π′ for EQ is now as follows, for inputs c, d ∈ {0, 1}m−1 (we use c, d as inputs here to
avoid confusion with x, y for Sink ◦ Xor).

• Alice and Bob take a sample s from S using shared randomness. Let i be such that Evi = s.

• They set xs = c and ys = d ⊕ zvi . Alice samples xs̄ uniformly at random from private
randomness and Bob samples ys̄ uniformly at random from private randomness. Here s̄ is the
complement of s. This specifies the input x, y for Sink ◦ Xor.

• They run the protocol Π and output accordingly.

Observe that xs and ys are distributed uniformly if c and d are. Thus,

IC(Π′, ν) = Es[I(XS : Π|YSRYS̄RB, S = s) + I(YS : Π|XSRXS̄RA, S = s)]

= Es[I(XS : Π|Y RRB, S = s) + I(YS : Π|XRRA, S = s)],

where the information quantities are evaluated on µ and the associated Π, and the desired infor-
mation bound follows by (13).

To bound the worst case error of Π′, we argue as follows. Fix some input c, d to Π′. If c = d,
then xs = ys ⊕ zvi which implies that error of Π′ on this input is same as the error of Π on the
corresponding x, y, hence at most err(Π). Now consider the case where c 6= d. The function
Sink ◦ Xor evaluates to 1 only if xEvj

= yEvj
⊕ zvj for some j ∈ [m]. Since, c 6= d, we conclude

that j (if it exists) cannot be equal to i. Moreover, the edge adjacent to i is already fixed by c, d,
and if it is not consistent with the corresponding value in zvi , then j is not a sink. Hence, similar
to the argument in [CMS18, Claim 5.6], the probability that j is a sink is at most 1

2m−2 , as all
m−1 edges must be incoming and the edge adjacent to i is already fixed. Hence by a union bound,
the probability for an x, y (that satisfy xvi = c, yvi = d ⊕ zvi , c 6= d) to form a 1 input at some
other coordinate j is at most m−1

2m−2 . This implies that err(Π′) ≤ err(Π) + m−1
2m−2 . This completes the

proof.

3.2 Lower bound on information complexity of Equality

To complete the argument, we use the following lemma (that uses a cut and paste argument)
implicit in [ABB+16] and obtain a lower bound on the information complexity of EQ. We repeat
its proof for completeness (and consistency with our notation).

Lemma 35. Let Π be a protocol for EQ that makes a worst case error of at most 1
3 . Then it holds

that IC(Π, ν) ≥ 1
432 , where ν is uniform over inputs to EQ.

11



Proof. Let RA and RB be private randomness of Alice and Bob (respectively) in the protocol and
R be the public randomness. We have

IC(Π, ν) = I(Y : Π|XRAR) + I(X : Π|Y RBR).

By the average-encoding theorem (Fact 16), it holds that

I(X : Π | Y RBR) = I(X : RRBΠ | Y )

≥ I(X : Π | Y )

≥ Ex,y←XY B2((Π)x,y,Πy).

Similarly,

I(Y : Π | XRAR) = I(Y : XRARΠ)

≥ I(Y : Π)

≥ Ey←Y B2((Π)y,Π).

Using the weak triangle inequality (Fact 11.A), the above two inequalities imply

Ex,y←XY B2((Π)x,y,Π) ≤ 2Ex,y←XY (B2((Π)x,y,Πy) + B2((Π)y,Π))

≤ 2(I(X : Π | Y RBR) + I(Y : Π | XRAR))

= 2 IC(Π, ν).

Since x, y are uniform, we can write the above relation as

Et←Y Ex←XB2((Π)x,x⊕t,Π) ≤ 2 IC(Π, ν).

Since Pr[t = 0] = 1
2m−1 , this implies that there exists an t 6= 0 such that

Ex←XB2((Π)x,x⊕t,Π) ≤ 3 IC(Π, ν).

An equivalent way to write the above inequality, by relabeling x→ x⊕ t, is

Ex←XB2((Π)x⊕t,x,Π) ≤ 3 IC(Π, ν).

By the weak triangle inequality (Fact 11.A), we conclude

Ex←XB2((Π)x⊕t,x,Πx,x⊕t) ≤ 12 IC(Π, ν).

The pythagorean property (Fact 27) now implies that

Ex←XB2((Π)x,x,Πx,x⊕t) ≤ 24 IC(Π, ν).

Thus, there exists some x for which B2((Π)x,x,Πx,x⊕t) ≤ 24 IC(Π, ν). Since Π makes an error of at
most 1

3 , we require (using relation between Bures metric and triangle inequality, Fact 10)

B2((Π)x,x,Πx,x⊕t) ≥ 1

2
∆2((Π)x,x,Πx,x⊕t) ≥ 1

18
.

Thus, IC(Π, ν) ≥ 1
432 , which completes the proof.

Theorem 34 and Lemma 35 jointly imply that IC(Π, µ) ≥ m
864 , for any protocol Π that makes

an error of at most 1
4 on Sink ◦ Xor. This establishes the desired lower bound.

12



4 Reducing Equality to Sink for quantum information

4.1 Shearer-type embedding

We begin by showing a general embedding result based on the Shearer-type lemma for quantum
information (Lemma 17). Consider a protocol Π acting on input registers X1, X2, . . . , Xm and
Y1, Y2, . . . Ym, with X1 ≡ X2 ≡ . . . ≡ Xm and Y1 ≡ Y2 ≡ . . . ≡ Ym. Define X = X1X2 . . . Xm,
Y = Y1Y2 . . . Ym. Consider a product input distribution µ = µ1⊗µ2 on XiYi. Consider t ∈ [m] and
let S = {i1, i2, . . . , it} ⊆ [m] be a random set of size t picked independently of the input on XY
and satisfying Pr[i ∈ S] ≤ 1

k for all i. Let XS = Xi1Xi2 . . . Xit , YS = Yi1Yi2 . . . Yit . We define the
following protocol ΠS acting on input AinBin, with Ain ≡ XS , Bin ≡ YS .

Protocol ΠS on input σAinBin

1. Alice privately sample Xi for each i 6∈ S as |µ1〉XiRXi
.

2. Bob privately sample Yi for each i 6∈ S as |µ2〉YiRYi
.

3. Alice embeds Ain into XS .

4. Bob embeds Bin into YS .

5. They run Π, and output Π’s output.

Lemma 36.

ΠS(σAinBin) = Π(σXSYS ⊗ (ρ⊗m−tµ )XS̄YS̄ ),

SQIC(ΠS , µ
⊗t) =

∑
i odd

I(XS :Y RYBiCi)ρi +
∑
i even

I(YS :XRXAiCi)ρi ,

with ρi the state in round i when Π is run on input distribution µ⊗m.

Proof. By the definition of protocol ΠS , the channel it implements is Π(σXSYS ⊗ (ρ⊗m−tµ )XS̄YS̄ ) (see
(2) in Section 2.2 for definition of ρµ) on input σAinBin .

For the information cost when ΠS is run on input distribution µ⊗t, first notice that for a given
S, we can rewrite Y RY = YSRYSYS̄RYS̄ . After embedding AinBin into XSYS , the XSYS registers
correspond to the input of ΠS while RXS

RYS correspond to the purification of the input registers.
The XS̄RXS̄

and YS̄RYS̄ registers correspond to the part privately sampled according to µ = µ1⊗µ2

by Alice and Bob, respectively, in order to run Π. Hence, for a given S, the terms in SQIC look
like

I(XS : YSRYSYS̄RYS̄BiCi) = I(XS : Y RYBiCi),

I(YS : XSRXS
XS̄RXS̄

AiCi) = I(YS : XRXAiCi).

The result follows.

Let |φS〉SASB
be a quantum state shared between Alice and Bob and encoding the distribution

on S. Given S, let PSA and PSB be permutations (over the computational basis) acting on Ain and
Bin, respectively, and such that µ is invariant under their action, i.e.

(PSA ⊗ PSB)(ρ⊗tµ ) = ρ⊗tµ . (15)
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We define the following protocol Π̂ also acting on AinBin.

Protocol Π̂ on input σAinBin

1. Alice and Bob share |φS〉SASB
.

2. Conditioned on the value of S shared in |φS〉, Alice and Bob apply PSA and PSB to their
inputs, respectively.

3. Conditioned on value of S shared in |φS〉, Alice and Bob run ΠS , and output ΠS ’s output.

Lemma 37.

Π̂(σAinBin) = ES [ΠS ◦ (PSA ⊗ PSB)(σAinBin)],

SQIC(Π̂, µ⊗t) = ES SQIC(ΠS , µ
⊗t) ≤ SQIC(Π, µ⊗m)/k.

Proof. By the definition of protocol Π̂, the channel it implements is ES [ΠS ◦ (PSA ⊗ PSB)].

For the information cost, let ρ̂i be the state in round i when Π̂ is run on input distribution
µ⊗t. Similar comments in the proof of Lemma 36 hold regarding XY vs. XSYSXS̄YS̄ and the
corresponding R purification registers. Hence the terms for SQIC look like

I(XS : SBY RYBiCi)ρ̂i = I(XS : Y RYBiCi|S)ρ̂i (16)

= ESI(XS : Y RYBiCi)ρ̂Si
, (17)

where ρ̂Si is the state on registers other than SASB, conditioned on S. Let PSA,XS
, PSA,RXS

(simi-

larly PSB,YS , P
S
B,RYS

) be the operator PSA (similarly PSB) acting on the registers XS , RXS
(similarly

YS , RYS ) respectively. Then, for any S, Equation 15 implies that

(PSA,XS
⊗ PSB,YS )(PSA,RXS

⊗ PSB,RYS
)
∣∣µ⊗t〉

XSRXS
YSRYS

=
∣∣µ⊗t〉

XSRXS
YSRYS

. (18)

Recall that ρi is the state in round i when Π is run on input distribution µ⊗m. Thus

(PSA,RXS
⊗ PSB,RYS

)(ρ̂Si ) = ρi (19)

is independent of S, since the operations on the R registers commute with the operations in protocol
Π. By invariance of mutual information under local unitaries, we get

ESI(XS : Y RYBiCi)ρ̂Si
= ESI(XS : Y RYBiCi)ρi (20)

= I(XS : Y RYBiCi|S)ρi , (21)

in which we also used that S is picked independently of the input and thus stays independent of
ρi throughout. Similar results hold for the terms accounting for Alice’s information about Bob’s
input in SQIC. It follows that SQIC(Π̂, µ⊗t) = ES SQIC(ΠS , µ

⊗t).
To relate this to SQIC(Π, µ⊗m), we apply the Shearer type lemma for quantum information

(Lemma 17) to get

I(XS : Y RYBiCi|S)ρi ≤
1

k
I(X : Y RYBiCi)ρi ,

I(YS : XRXAiCi|S)ρi ≤
1

k
I(Y : XRXAiCi)ρi ,

and the result follows.
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4.2 From Sink ◦ Xor to EQ

We get the following theorem relating SQIC for Sink ◦ Xor and EQ.

Theorem 38. Fix a t round quantum communication protocol Π making worst-case error ε on
function Sink ◦Xor for inputs of size

(
m
2

)
bits. Then there exists a t round quantum communication

protocol ΠE making worst case error ε+ o(1) on EQ with inputs of size m− 1 bits and satisfying
the following for ν the uniform distribution on 1 + 1 bits :

SQIC(ΠE , ν
⊗m−1) ≤ 2

m
SQIC(Π, ν⊗(m2 )).

Proof. Recall the sets Evi , for i ∈ [m], as defined in Subsection 3.1. In the setting of the Shearer-
type embedding above (Lemma 37), pick S = Evi with probability 1/m for each i ∈ [m]. Let PSi

A

be the map that performs bit-wise addition ⊕zvi , and PSi
B is the identity. Notice that each pair

(k, l), for k < l, appears for exactly two choices of i: once for i = k, and once for i = l. Hence,
Pr[l ∈ S] ≤ 2/m for all l ∈ [m], and 2/m is the probability we use in the Shearer-type embedding.
By using ν the uniform distribution on 1 + 1 bits as the product distribution µ in the Shearer-type
embedding, the SQIC bound follows.

It is left to argue that the resulting protocol ΠE taken to be Π̂ of the embedding is good at
solving EQ. But this follows as in the classical embedding argument (see the proof of Theorem 34)
since the probability that Alice and Bob privately sampled inputs to Π on S̄ that already make
Sink ◦ Xor evaluate to 1 on S̄ is exponentially small in m, hence the additional error is o(1).

4.3 Quantum information cost of Equality function

We use the following lemma about the quantum information cost of the equality function EQ on
the uniform distribution, which was implicitly shown via a quantum cut and paste argument in
Ref. [ABDG+17].

Lemma 39. Fix a t round quantum communication protocol Π making worst-case error at most 1
3

on EQ. Let |Ψr〉XY RXRY ArCrBr
be the quantum state in r-th round, as defined in (5) in Section 2.2,

when Π is run on the uniform distribution µ⊗k on k + k bits. It holds that

HQIC(Π, µ⊗k) ≥ 1

40000t
.

The proof of our main result, Theorem 5, follows.

Proof of Theorem 5. Let Π be a t-round protocol for Sink ◦ Xor making worst-case error at most
1/5 on input graphs of size m, for m large enough. Then by Theorem 38 there exists a t-round
protocol ΠE for EQ making error at most 1/3 and with information cost satisfying

SQIC(Π, µ⊗(m2 )) ≥ m

2
SQIC(ΠE , µ

⊗m−1),

with µ the uniform distribution on 1 + 1 bits. Combining with Lemma 39 and (10), the following
chain of inequality gives the result:

2t

m
QIC(Π, µ⊗(m2 )) ≥ 2

m
SQIC(Π, µ⊗(m2 ))

≥ SQIC(ΠE , µ
⊗m−1)

≥ HQIC(ΠE , µ
⊗m−1)
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≥ 1

40000t
.

We add the proof of Lemma 39 for completeness.

Proof of Lemma 39. By averaging over the conditioning register and then applying the average
encoding theorem (Fact 15.D and Lemma 16), we conclude that

HQIC(Π, µ⊗k) :=
∑
r=odd

I(X : BrCr|Y )Ψr +
∑

r=even

I(Y : ArCr|X)Ψr

≥ Ex,y←µ

( ∑
r=odd

B
(

Ψx,y
r,BrCr

,Ψy
r,BrCr

)2
+
∑

r=even

B
(

Ψx,y
r,ArCr

,Ψx
r,ArCr

)2
)

≥ 1

t

(
Ex,y←µ

( ∑
r=odd

B
(

Ψx,y
r,BrCr

,Ψy
r,BrCr

)
+
∑

r=even

B
(

Ψx,y
r,ArCr

,Ψx
r,ArCr

)))2

. (22)

Let x1, x2, y2 be drawn uniformly from {0, 1}k and let y1 := x1. Observe that, taken separately,
(x1, y2), (x2, y1) and (x2, y2) are distributed uniformly. Thus, (22) ensures that√

tHQIC(Π, µ⊗k) ≥ Ex1,y2←µ

( ∑
r=odd

B
(

Ψx1,y2

r,BrCr
,Ψy2

r,BrCr

)
+
∑

r=even

B
(

Ψx1,y2

r,ArCr
,Ψx1

r,ArCr

))
,

√
tHQIC(Π, µ⊗k) ≥ Ex2,y1←µ

( ∑
r=odd

B
(

Ψx2,y1

r,BrCr
,Ψy1

r,BrCr

)
+
∑

r=even

B
(

Ψx2,y1

r,ArCr
,Ψx2

r,ArCr

))
,

√
tHQIC(Π, µ⊗k) ≥ Ex2,y2←µ

( ∑
r=odd

B
(

Ψx2,y2

r,BrCr
,Ψy2

r,BrCr

)
+
∑

r=even

B
(

Ψx2,y2

r,ArCr
,Ψx2

r,ArCr

))
.

Moreover, it holds that Pr (EQ(x1, y2) = 1) = Pr (EQ(x2, y1) = 1) = Pr (EQ(x2, y2) = 1) = 1
2k

.
Thus, by first conditioning (separately) on EQ(x1, y2) = EQ(x2, y1) = EQ(x2, y2) = 0 and then
applying Markov’s inequality, we find that there exists a choice of x1, x2, y2 satisfying the non-
equality conditions and such that

5
√
tHQIC(Π, µ⊗k) ≥

∑
r=odd

B
(

Ψx1,y2

r,BrCr
,Ψy2

r,BrCr

)
+
∑

r=even

B
(

Ψx1,y2

r,ArCr
,Ψx1

r,ArCr

)
,

5
√
tHQIC(Π, µ⊗k) ≥

∑
r=odd

B
(

Ψx2,y1

r,BrCr
,Ψy1

r,BrCr

)
+
∑

r=even

B
(

Ψx2,y1

r,ArCr
,Ψx2

r,ArCr

)
,

5
√
tHQIC(Π, µ⊗k) ≥

∑
r=odd

B
(

Ψx2,y2

r,BrCr
,Ψy2

r,BrCr

)
+
∑

r=even

B
(

Ψx2,y2

r,ArCr
,Ψx2

r,ArCr

)
. (23)

Applying the triangle inequality (Fact 11.A) to (23), we conclude that

10
√
tHQIC(Π, µ⊗k) ≥

∑
r=odd

B
(

Ψx1,y2

r,BrCr
,Ψx2,y2

r,BrCr

)
10
√
tHQIC(Π, µ⊗k) ≥

∑
r=even

B
(

Ψx2,y1

r,ArCr
,Ψx2,y2

r,ArCr

)
.
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Assume that t is even and Alice produces the output, we use the quantum cut-and-paste Lemma
(Lemma 29) to conclude that

B
(

Ψx1,y2

t,AtCt
,Ψx1,y1

t,AtCt

)
≤ 2(10

√
tHQIC(Π, µ⊗k) + 10

√
tHQIC(Π, µ⊗k))

= 40
√
tHQIC(Π, µ⊗k).

If HQIC(Π, µ⊗k) ≤ 1
40000t , we conclude that 40

√
tHQIC(Π, µ⊗k) ≤ 1

5 , and then

1− 2err(Π) ≤ ∆(Ψx1,y2

t,AtCt
,Ψx1,y1

t,AtCt
)

≤
√

2B(Ψx1,y2

t,AtCt
,Ψx1,y1

t,AtCt
)

≤
√

2/5

< 1/3,

which leads to contradiction with the fact that protocol Π makes an error of at most 1
3 . This

completes the proof.

5 Conclusion and open problems

Our main result exhibits that the function introduced in [CMS18] witnesses an exponential sepa-
ration between quantum communication complexity and log-approximate rank. A consequence of
our lower bound is that the randomized and quantum communication complexities of this func-
tion are polynomially related. Thus, the long-standing problem of finding a total function, that
provides an exponential separation between randomized communication complexity and quantum
communication complexity, remains open.

An interesting question that our techniques do not resolve is if we can show a round indepen-
dent exponential separation between log-approximate rank and QIC. We believe that it would
be surprising if the log-approximate rank and QIC were polynomially related. Known functions
witnessing exponential separation between QIC and QCC have a completely different structure
[GKR15, RS15, ATYY17].

Further, we would like to understand if the Shearer-type embedding can go beyond product
input distributions, and if it can be improved for QIC. Finally, it would be interesting if the
lower bound in Corollary 6 could be improved to Ω(m1/2), matching the achievable protocol using
distributed Grover search (up to logarithmic terms; see [CMS18, Conclusion]).
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