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Abstract

Chattopadhyay, Mande and Sherif [CMS18] recently exhibited a total Boolean function, the
sink function, that has polynomial approximate rank and polynomial randomized communica-
tion complexity. This gives an exponential separation between randomized communication com-
plexity and logarithm of the approximate rank, refuting the log-approximate-rank conjecture.
We show that even the quantum communication complexity of the sink function is polynomial,
thus also refuting the quantum log-approximate-rank conjecture.

Our lower bound is based on the fooling distribution method introduced by Rao and Sinha
[RS15] for the classical case and extended by Anshu, Touchette, Yao and Yu [ATYY17] for
the quantum case. We also give a new proof of the classical lower bound using the fooling
distribution method.

1 Introduction
Communication complexity [KN97, RY18] is a basic model of distributed computing where one
only cares about the resource of communication between the various distributed parties doing the
computation. This is a beautiful and fundamental computational model in its own right, and has
many applications to other areas, in particular for lower bounds. For concreteness consider the
two-player communication complexity of some Boolean function f : {0, 1}n × {0, 1}n → {0, 1}.
Here Alice receives input x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n, and they want to compute
f(x, y) with minimal communication between them.

Much research has gone into relating the (deterministic, randomized, nondeterministic, quan-
tum, . . . ) communication complexity of f to its combinatorial or algebraic properties. In particular,
we may consider the relation between the communication complexity and the rank (over the reals) of
the 2n×2n Boolean matrixMf whose entries are the values f(x, y). Mehlhorn and Schmidt [MS82]
showed that the log of this rank lower bounds the deterministic communication complexity of f ,
and Lovász and Saks [LS93] conjectured that this lower bound is polynomially tight; in other words,
that deterministic communication complexity is upper bounded by a polynomial in the logarithm
of the rank of Mf . This log-rank conjecture is one of the main open problems in communication
complexity and remains wide open. On the one hand, the best upper bound on deterministic com-
munication complexity in terms of rank is roughly the square root of the rank [Lov16, Lov14] (see
also [Rot14]). On the other hand, the biggest known gap between deterministic communication
complexity and log-rank is only quadratic [GPW15].
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One may similarly consider the relation between randomized communication complexity (say
with private coin flips, and error probability ≤ 1/3 on every input x, y) and log of the approx-
imate rank, which is the minimal rank among all matrices that approximate Mf entrywise up
to 1/3. The log of the approximate rank lower bounds randomized communication complexity
(even quantum communication complexity with unlimited prior entanglement [BW01]), and Lee
and Shraibman [LS09, Conjecture 42] conjectured that this lower bound is polynomially tight.
This is known as the log-approximate-rank conjecture. Until very recently, the biggest separation
known between randomized communication complexity and the log of approximate rank was a
fourth power [GJPW17]. But then, in an important breakthrough, Chattopadhyay, Mande and
Sherif [CMS18] devised a function that refutes this conjecture.1

Their function is as follows. Let n =
(t
2
)
. The function sink : {0, 1}n → {0, 1} is defined on the

edges of the complete graph on the vertex set [t].2 For each edge e ∈
([t]

2
)
, the corresponding input

bit ze assigns an orientation to the edge e (such an oriented complete graph is called a tournament).
The function sink(z) = 1 iff there is a vertex that is a sink (i.e., that has no outgoing edges). Note
that a tournament can have at most one sink, since the orientation of the edge between vertices v
and w eliminates one of them as a possible sink. The communication problem is defined by Alice
and Bob receiving the inputs x, y ∈ {0, 1}n and wanting to compute the function sink(x⊕ y) where
x ⊕ y is the bitwise parity. In other words, together they compute the sink function after putting
the label xe⊕ye on the edge e. With slight abuse of notation, we denote the 2n-bit communication
function by sink as well.

The approximate rank of the 2n × 2n Boolean matrix Msink associated to the sink problem is
only polynomial in n, which can be seen as follows. Consider vertex v ∈ [t], let N(v) denote the
set of edges incident on v and let xN(v) (and yN(v)) denote the projection of the input x (and y) to
the edges in N(v). Let zN(v) ∈ {0, 1}t−1 be the unique string of orientations that makes v the sink
of the graph. Note that v is a sink in the tournament x ⊕ y iff xN(v) = yN(v) ⊕ zN(v). The latter
problem corresponds to a (shifted) equality problem on strings of t − 1 bits, and it is well known
that this problem has a cheap randomized private-coin protocol that uses O(log t) = O(logn) bits
of communication, that outputs 1 with probability 1 if v is the sink in tournament x ⊕ y, and
outputs 1 with probability ∈ [0, 1/(3t)] if v is not a sink. This in turns implies the existence of a
2n × 2n matrix Mv of rank polynomial in n, whose (x, y)-entry is 1 if v is the sink in x ⊕ y, and
whose (x, y)-entry is ∈ [0, 1/(3t)] if v is not a sink. Thanks to the fact that at most one of the t
vertices is a sink, we can now get a good entry-wise approximation of Msink by just adding up all
theMv-matrices over all v ∈ [t]: the resulting matrix M̃ =

∑t
v=1Mv will have (x, y)-entry ∈ [0, 1/3]

whenever x⊕ y has no sink, and will have (x, y)-entry in [1, 4/3] whenever x⊕ y has a sink (if v is
the sink in x⊕ y, then Mv contributes 1 to the entry M̃xy, and the other Mw’s together contribute
at most 1/3). By subadditivity of rank, the rank of M̃ is at most the sum of the ranks of the Mv’s,
which is polynomial in n. Hence the log of the approximate rank of Msink is O(logn). In contrast,
Chattopadhyay et al. show that the randomized communication complexity of the sink function is
exponentially bigger:
Theorem 1.1 ([CMS18]). The 1/3-error randomized communication complexity of the function
sink on n =

(t
2
)
bits is Ω(t) = Ω(

√
n).

This lower bound is optimal even for deterministic protocols: by looking at one edge, Alice and
1Their function is a so-called XOR function, of the form f(x, y) = g(x ⊕ y) for some n-bit Boolean function g, and

thus even refutes the special case of the log-approximate-rank conjecture restricted to XOR functions. The special
case of the log-rank conjecture for such functions has received much attention recently [TWXZ13, Zha14, HHL16] (in
part thanks to the fact that the rank of Mf equals the Fourier sparsity of g), and remains open.

2We use t for the number of vertices in the graph instead of m as used in [CMS18].
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Bob can rule out one vertex from being a sink. Proceeding this way, they read t−1 edges until they
have eliminated all but one vertex v from being a sink. At this point, they look at the t− 1 edges
incident to v, and find out if v is a sink or not. This gives an O(t)-bit deterministic communication
protocol, since the parties exchange two bits per edge.

This separation refutes the log-approximate-rank conjecture, showing that randomized commu-
nication complexity is not always upper bounded by polylog of the approximate rank. However,
quantum communication complexity can be much smaller than randomized communication com-
plexity: polynomial gaps are known for some total functions [BCW98, AA05, ABBD+16] and
exponential gaps are known for some partial functions [Raz99, KR11]. Thus one might still enter-
tain the weaker conjecture that quantum communication complexity is upper bounded by polylog of
the approximate rank, and indeed Lee and Shraibman [LS09, Conjecture 57] made this conjecture
explicitly. Prior to this work, the biggest separation known between quantum communication com-
plexity and log of the approximate rank, was only quadratic [ABDG+17]. Indeed, one of the main
problems left open by Chattopadhyay et al. asks about the quantum communication complexity of
the sink function. If this is large then it would refute the quantum log-approximate-rank conjecture,
but if it is small then it would provide the first superpolynomial separation between quantum and
classical communication complexity for a total function. We answer their open question by proving
a polynomial lower bound on the quantum communication complexity of the sink function, thus
refuting the quantum log-approximate-rank conjecture:
Theorem 1.2. The 1/3-error quantum communication complexity of the function sink on n =

(t
2
)

bits is Ω(t1/3) = Ω(n1/6).
As Chattopadhyay et al. noted, the quantum communication complexity of the sink function is

polynomially smaller than the randomized complexity: using Grover’s algorithm [Gro96] to search
for a sink, combined with an efficient low-error equality protocol to test whether a specific vertex
is a sink, one gets an Õ(

√
t)-qubit protocol. We suspect that this upper bound is tight up to the

log-factor, and that our quantum lower bound should be improvable.

Independent Work. In independent and simultaneous work, Anshu, Boddu and Touchette
[ABT18] obtained the same Ω(t1/3) lower bound using a reduction to quantum information com-
plexity of the equality function, but our techniques to prove Theorem 1.2 are different, as we
describe below.

Proof Outline

Our approach to proving Theorem 1.2 is to first give an alternate and arguably simpler proof of
Theorem 1.1 using the fooling distribution method (and other tools) introduced by Rao and the
first author in [RS15], and then we show that the same approach can be used to give a (weaker)
quantum lower bound using tools from a paper by Anshu, Touchette, Yao and Yu [ATYY17], which
generalized some of the techniques used in [RS15] to the quantum setting. Our proofs are relatively
straightforward and short given the tools in these papers. Below we give a high-level outline.

Let us look at the classical case first. To prove a lower bound on the randomized communication
complexity, it suffices to give a distribution on the inputs that is hard for deterministic protocols.
Let p0(X,Y ) denote the uniform distribution on 0-inputs to sink and p1(X,Y ) denote the uniform
distribution on 1-inputs to sink. Our hard distribution for deterministic protocols will be the
distribution which samples from p0(X,Y ) with probability 1

2 and from p1(X,Y ) with probability 1
2 .

Note that the messages of any low-error protocol look very different under these two distributions:
p0(M) and p1(M) have statistical distance close to 1, where pb(M) denotes the distribution induced
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on the messages under pb(X,Y ) for b ∈ {0, 1}.
To show that this is a hard distribution for deterministic protocols, we show that there is another

distribution u(X,Y ) such that for any protocol with communication at most εt, the induced message
distribution u(M) ≈ p0(M) as well as u(M) ≈ p1(M), where ≈ denotes closeness in statistical
distance. This in turn implies that p0(M) ≈ p1(M) for small-communication protocols, giving us
a lower bound on communication. Such a distribution u(X,Y ) is called a fooling distribution.

The fooling distribution u(X,Y ) for sink will just be the uniform distribution on {0, 1}n+n.
Note that under the uniform distribution u(X,Y ), the function sink takes value 0 with probability
1−2−Ω(t), and since p0(X,Y ) = u(X,Y |sink = 0), the input distributions p0(X,Y ) and u(X,Y ) are
already very close in statistical distance, and so are the corresponding distributions on the messages.
The interesting part is to argue that the message distribution p1(M) ≈ u(M) even though the
respective input distributions p1(X,Y ) and u(X,Y ) are actually very far apart. For this purpose,
let us first note that the distribution p1(X,Y ) can be generated from u(X,Y ) by first picking a
uniformly random vertex v as the sink and conditioning on the event that XN(v) = YN(v) ⊕ zN(v)
(recall that N(v) is the set of edges incident on v, XN(v) and YN(v) are projections of X and Y
to the edges in N(v), and zN(v) is the unique string that encodes the orientation of the edges for
which vertex v is the sink).

To argue that p1(M) ≈ u(M), first one can use Shearer’s inequality (see Lemma 2.7) to conclude
that under the distribution u(X,Y ), the messages M reveal only a small amount of information
about XN(v) and YN(v) for a random vertex v. In particular, since an edge appears in N(v)
with probability 2/t for a random v, one would expect M to reveal at most (2/t) · |M | ≤ ε
bits of information about XN(v) and YN(v) each (this is also the reason for working with the
fooling distribution: since all the inputs are independent of each other, one may use Shearer’s
inequality). Now to relate the fooling distribution u(X,Y ) to the input distribution p1(X,Y ) we
need to condition on the event XN(v) = YN(v) ⊕ zN(v). A lemma from [RS15] (see Lemma 3.3 in
Section 3) exactly captures this situation and says that conditioning on such a collision event, when
the messages reveal little information about the colliding variables, does not change the distribution
of the messages too much, so we can conclude that p1(M) ≈ u(M).

The proof for the quantum case proceeds more or less analogously. It is still true that the
output of a low-error quantum protocol must look very different under distributions supported
only on 0-inputs and 1-inputs respectively. We show that u(X,Y ) is still a fooling distribution
for small-communication quantum protocols. As in the classical case, it is easy to argue using
a quantum version of Shearer’s inequality (see Lemma 2.24) that small-communication quantum
protocols do not reveal too much information about XN(v) and YN(v) for a random vertex v under
the fooling distribution u(X,Y ). To condition on the collision event XN(v) = YN(v)⊕ zN(v), we use
a lemma from [ATYY17] (see Lemma 4.2 in Section 4) which allows us to argue that for a typical
vertex v, conditioning on the collision event does not change the output too much. So, it must be
the case that for a small-communication quantum protocol, the output on an input distribution
where v is the sink (for a typical v) must be close to the output when the input distribution is
p0(X,Y ). This implies that small-communication quantum protocols for the sink function must
have large error.

Organization. We introduce preliminaries on information theory, quantum information theory
and communication complexity in the next section (Section 2). Section 3 contains the proof de-
scribed above for the classical case. The quantum lower bound is given in Section 4.
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2 Preliminaries

2.1 Classical Probability Theory

Probability Spaces and Variables

Throughout this paper, log denotes the logarithm taken in base two. We use [k] to denote the set
{1, 2, . . . , k} and [k]<n to denote the set of all strings of length less than n over the alphabet [k],
including the empty string. The notation |z| denotes the length of the string z.

Random variables are denoted by capital letters (e.g. A) and values they attain are denoted by
lower-case letters (e.g. a). Events in a probability space will be denoted by calligraphic letters (e.g.
E). Given a = (a1, a2, . . . , an), we write a≤i to denote a1, . . . , ai. We define a<i similarly. We write
aS to denote the projection of a to the coordinates specified in the set S ⊆ [n].

Given a probability space p and a random variable A in the underlying sample space, we use the
notation p(A) to denote the probability distribution of the variable A in the probability space p.
We will often consider multiple probability spaces with the same underlying sample space, so for
example p(A) and q(A) will denote the distribution of the random variable A under the probability
spaces p and q, respectively, with the underlying sample space of p and q being the same. We write
p(A|b) to denote the distribution of A conditioned on the event B = b. We write p(a) to denote
the number Pp[A = a] and p(a|b) to denote the number Pp[A = a|B = b]. Given a distribution
p(A,B,C,D), we write p(A,B,C) to denote the marginal distribution on the variables A,B,C. We
often write p(AB) instead of p(A,B) for conciseness of notation. Similarly, p(a, b, c) will denote the
probability according to the marginal distribution p(A,B,C) and we will often write it as p(abc)
for conciseness.

If W is an event, we write p(W) to denote its probability according to p. For two events W
and W ′, the probability of their intersection W ∩W ′ is denoted by p(W,W ′) . Given a probability
space p and a random variable A, when we write A ∈ W for an event W we only consider events
in the space of values taken by the variable A.

Given a fixed value c, we denote by Ep(b|c) [g(a, b, c)] :=
∑
b p(b|c) · g(a, b, c), the expected value

of the function g(a, b, c) under the distribution p(B|c). If the probability space p is clear from the
context, then we will just write Eb|c [g(a, b, c)] to denote the expectation. For a Boolean function
h(a, b) and a probability distribution p(A,B), we use 1[h(a, b) = 0] to denote the indicator function
for the event h(a, b) = 0, and we write p(h = 0) := Ep(ab)[1[h(a, b) = 0]] as the probability that h
is 0 under inputs drawn from p.

We write A−M−B as a shorthand to say that the random variables A,M and B form aMarkov
chain, or in other words, that A and B are independent given M : p(amb) = p(m) · p(a|m) · p(b|m)
for every a, b,m.

To illustrate the notation, consider the following example. Let A ∈ {0, 1}2 be a uniformly
distributed random variable in a probability space p. Then, p(A) is the uniform distribution on
{0, 1}2, and if a = (0, 0) then p(a) = 1/4. Let A1 and A2 denote the first and second bits of A,
then if B = A1 +A2 mod 2, then when b = 1, p(A|b) is the uniform distribution on {(0, 1), (1, 0)}.
If a = (1, 0) and b = 1, then p(a|b) = 1/2 and p(a, b) = 1/4. If E is the event that A1 = B, then
p(E) = 1/2. Let q(A) = p(A|E), then q(A) is the uniform distribution on {(0, 0), (1, 0)} and q(A2)
is the distribution over the sample space {0, 1} which takes the value 0 with probability 1.

Statistical Distance

For two distributions p(A), q(A), the statistical (or total variation) distance ‖p(A)− q(A)‖tv be-
tween them is defined to be ‖p(A)− q(A)‖tv = maxQ (p(A ∈ Q)− q(A ∈ Q)) where Q ranges over
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all events. The following propositions are easy to prove.
Proposition 2.1. ‖p(A)− q(A)‖tv = 1

2
∑
a |p(a)− q(a)| =

∑
a:p(a)>q(a)(p(a)− q(a)).

We say p(A) and q(A) are ε-close if |p(A)− q(A)| ≤ ε and we write it as p(A) ε≈ q(A).
Proposition 2.2. If p(AB), q(AB) are such that p(A) = q(A), then

‖p(B)− q(B)‖tv = E
p(a)

[‖p(B|a)− q(B|a)‖tv] .

Lemma 2.3. If E is an event such that p(E) = 1− δ, then ‖p(A|E)− p(A)‖tv = δ.

Proof. Note that for any a /∈ E , p(a|E) = 0 and for a ∈ E , using Bayes’ rule, we get that

p(a|E) = p(a, E)
p(E) = p(a)

p(E) = p(a)
1− δ . (1)

By Proposition 2.1, we have that

‖p(A|E)− p(A)‖tv = 1
2
∑
a∈E
|p(a|E)− p(a)|+ 1

2
∑
a/∈E
|p(a|E)− p(a)| = 1

2
∑
a∈E
|p(a|E)− p(a)|+ δ

2

(1)= 1
2
∑
a∈E

(
p(a)
1− δ − p(a)

)
+ δ

2 = 1
2 ·

δ

1− δ · p(E) + δ

2 = δ,

where the second inequality follows from (1).

Divergence and Mutual Information

The divergence between distributions p(A) and q(A) is defined to be

D (p(A) || q(A)) =
∑
a

p(a) log p(a)
q(a) .

In a probability space p, the mutual information between A,B conditioned on C is defined as

Ip (A : B|C) = E
p(bc)

[D (p(A|bc) || p(A|c))]

= E
p(ac)

[D (p(B|ac) || p(B|c))] =
∑
a,b,c

p(abc) log p(a|bc)
p(a|c) .

Basic Information Theory Facts

The proofs of the following basic facts can be found in the book by Cover and Thomas [CT06]. In
the following, p and q are probability spaces (over the same sample space), and A,B and C are
random variables on the underlying sample space.
Proposition 2.4. D (p(A) || q(A)) ≥ 0.
Proposition 2.5. If A ∈ {0, 1}`, then Ip (A : B) ≤ `.
Proposition 2.6 (Pinsker’s Inequality).

‖p(A)− q(A)‖2tv ≤
ln 2
2 ·D (p(A) || q(A)) ≤ D (p(A) || q(A)) .

Lemma 2.7 (Shearer’s Inequality [GKR16]). Let A = (A1, . . . , An) where the Ai’s are mutually
independent. Let M be another random variable and S ⊆ [n] be a random set independent of A
and M , such that p(i ∈ S) ≤ µ for every i ∈ [n]. Then, we have

Ip (AS : M |S) ≤ µ · Ip (A : M) .
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2.2 Classical Communication Complexity

The communication complexity of a protocol is the maximum number of bits that may be exchanged
by the protocol. Communication protocols may use shared randomness and henceforth we will
refer to such protocols as randomized protocols. We say a randomized protocol computing a
Boolean function f(x, y) has error δ, if for every input, the protocol outputs the correct answer
with probability at least 1− δ, where the probability is over the shared randomness.

We briefly describe some basic properties of communication protocols that we need. For more
details see the textbooks [KN97] or [RY18]. For a deterministic protocol π, let π(x, y) denote the
messages of the protocol on inputs x, y. For any transcript m of the protocol, define the events:

Sm = {x | ∃y such that π(x, y) = m}, Tm = {y | ∃x such that π(x, y) = m}.

We then have:
Proposition 2.8 (Messages Correspond to Rectangles). If m is a transcript and x, y are inputs
to a deterministic protocol π, then, π(x, y) = m ⇐⇒ x ∈ Sm ∧ y ∈ Tm.

Proposition 2.8 implies:
Proposition 2.9 (Markov Property of Protocols). Let X and Y be random inputs to a deterministic
protocol and letM denote the messages of this protocol. If X and Y are independent then X−M−Y .

Lemma 2.10 (Errors and Statistical Distance). Let h(x, y) be a boolean function and p(X,Y ) be
a distribution such that p(h = 0) = p(h = 1) = 1

2 . If π is a deterministic protocol with messages M
that computes h with error δ on the distribution p(XY ), then |p(M |h = 0)− p(M |h = 1)| ≥ 1− 2δ.

Proof. Since |p(M |h = 0) − p(M |h = 1)| = maxQ(p(M ∈ Q|h = 0) − p(M ∈ Q|h = 1)) it suffices
to exhibit an event Q such that p(M ∈ Q|h = 0) − p(M ∈ Q|h = 1) = 1 − 2δ. Let M0 denote
the event that the protocol outputs a zero. Then, since p(h = 0) = p(h = 1) = 1

2 , writing the
probability of success in terms ofM0, we have

1−δ = p(M ∈M0|h = 0)
2 + 1− p(M ∈M0|h = 1)

2 = 1
2 + p(M ∈M0|h = 0)− p(M ∈M0|h = 1)

2 .

On rearranging, the above gives us that p(M ∈M0|h = 0)−p(M ∈M0|h = 1) = 1−2δ and hence
the statistical distance must be at least 1− 2δ.

2.3 Quantum Information Theory

Here we briefly state the facts we need from quantum information theory. For details, see the
textbooks [Wil13] or [Wat18].

Quantum States and Measurements

Overloading the notation, we use capital letters A,B, etc. to represent registers and use HA,HB,
etc. to denote the associated Hilbert spaces. As before, given registers A = A1, . . . , An and a
set S ⊆ [n], we will use AS to denote the sequence of registers {Ai}i∈S . For any register A,
|A| = dlog(dimHA)e denotes the number of qubits in A. Given a Hilbert space HA, we use {|a〉A}
to denote a canonical orthonormal basis, and if A is a single-qubit register we use {|0〉A, |1〉A} to
denote the computational basis for the Hilbert space HA. We write UA to denote a unitary acting
on the Hilbert space HA corresponding to a register A.

A density operator on HA is a linear operator from HA to HA that is positive semi-definite and
has a unit trace. The set of all density operators on a Hilbert space HA will be denoted by D(HA).
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Since a linear operator on a finite-dimensional Hilbert space can be described equivalently with a
matrix representation, we will use these notions interchangeably.

A (quantum) state ρA on a register A is a density operator on HA. A state ρA is called pure
if it has rank 1. For a unit vector |ψ〉A ∈ HA (viewed as a column vector), we denote by 〈ψ|A
its adjoint (a row vector), and by ψA the corresponding state |ψ〉〈ψ|A, but we will also sometimes
use the vector |ψ〉A to refer to the corresponding pure state. A classical distribution p(A) can be
viewed as the diagonal state

∑
a p(a)|a〉〈a|A and vice versa, so we will refer to any diagonal state

as a classical state.
We use ρA⊗σB to denote the tensor product of ρA and σB on the Hilbert space HA⊗HB. We

adopt the convention of omitting Identity operators from a tensor product: instead of UR ⊗ IA or
〈r|R ⊗ IA, we write UR or 〈r|R since the subscripts will convey the necessary information.

A state ρXA is called a classical-quantum state with X being the classical register if it is of the
form ρXA =

∑
x p(x)|x〉〈x|X ⊗ ρxA where p(X) is a classical probability distribution and ρxA is a

state on the register A.
Given a linear operator MAB on HA ⊗HB, the partial trace of MAB over A is defined as

TrA(MAB) =
∑
a

〈a|AMAB|a〉A.

The partial trace operation is linear: TrA(MAB +M ′AB) = TrA(MAB) + TrA(M ′AB) and satisfies
the following identities: TrA(MA ⊗MB) = TrA(MA)MB and TrA(UBMAB) = UBTrA(MAB).

With the above, we can define the notion of a marginal or reduced state: for a bipartite state
ρAB, the marginal state ρB on the register B is defined as ρB := TrA(ρAB). Note that if we have a
classical quantum state ρXA, then the marginal state ρX is a classical state.

Given a state ρA we can always consider it as a marginal of a pure state ρEA = |ρEA〉〈ρEA|EA on
a larger system. Such a state |ρEA〉EA is called a purification of ρA. We will adopt the convention
of using the same Greek letters to denote the purification: if we say that |ρEA〉EA is a purification
with reference register E, then it is a purification of the state ρA, that is, ρA = TrE(|ρEA〉〈ρEA|EA).
Given a classical state ρX =

∑
x p(x)|x〉〈x|X , we define

∑
x

√
p(x)|x〉X |x〉X to be its canonical

purification.
A positive operator valued measurement (POVM) is a collection {Λi}i of linear operators acting

on a Hilbert spaceHA such that for each i, the operator Λi is positive semi-definite, and
∑
i Λi = IA.

The probability that the outcome of applying a POVM on a quantum state ρA ∈ D(H) is j is given
by Tr(ΛjρA). Given a single-qubit register A, we will specifically be interested in measurement
in the computational basis, which corresponds to the POVM {|0〉〈0|A, |1〉〈1|A}. Given a state
ρA ∈ D(HA), the probability that the measurement outcome is the bit b ∈ {0, 1} is Tr(|b〉〈b|AρA).

We say that UXA is a unitary with X as a control register if UXA =
∑
x |x〉〈x|X ⊗ UxA for some

UxA’s. Also, note that in this case U †XA is a unitary controlled by X as well.

Distance Measures

Recall that the trace norm ‖M‖1 of a matrix M is defined as ‖M‖1 = Tr
√
M †M . Equivalently,

‖M‖1 is the sum of the singular values ofM . Then, the trace distance between two quantum states
ρA and σA is defined as ‖ρA − σA‖1. We say two states ρA and σA are ε-close in trace norm if
‖ρA − σA‖1 ≤ ε, and write this as ρA

ε≈ σA.
The fidelity between two quantum states is defined as F (ρA, σA) =

∥∥√ρA√σA∥∥1 (note that
some papers define fidelity as the square of our definition). If ρA and σA are pure states, then
their fidelity is just the absolute value of the inner product of the corresponding vectors. The
Hellinger distance between the states is h (ρA, σA) =

√
1− F (ρA, σA) =

√
1−

∥∥√ρA√σA∥∥1. If
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ψA = |ψ〉〈ψ|A is a pure state, for brevity we will sometimes write h (|ψ〉A, |σ〉A) (or F (|ψ〉A, |σ〉A))
to mean h (ψA, σA) (or F (ψA, σA)). The Hellinger distance is a metric and in particular satisfies
the triangle inequality: h (ρA, σA) ≤ h (ρA, ψA) + h (ψA, σA).

The trace distance and Hellinger distance are both invariant under applying unitaries and
decrease under taking marginals:
Proposition 2.11. Given unitaries UA and VA, it holds that∥∥∥UA(ρA − σA)V †A

∥∥∥
1

= ‖ρA − σA‖1 and h
(
UAρAV

†
A, UAσAV

†
A

)
= h (ρA, σA) .

Proposition 2.12. ‖ρA − σA‖1 ≤ ‖ρAB − σAB‖1 and h (ρA, σA) ≤ h (ρAB, σAB) .

The Hellinger and trace distance are related in the following way:
Proposition 2.13. For quantum states ρA and σA, it holds that

h (ρA, σA)2 ≤ 1
2 ‖ρA − σA‖1 ≤

√
2 h (ρA, σA) .

The trace distance normalized by 2 is the largest probability difference a POVM could produce
between the two states, which is the quantum generalization of total variation distance:
Proposition 2.14. For states ρA and σA in D(HA), it holds that

1
2 ‖ρA − σA‖1 = max

Λ
Tr(Λ(ρA − σA)),

where Λ ranges over all positive semi-definite operators over HA that have eigenvalues at most one.
Proposition 2.15 (Uhlmann’s Theorem). Let |ρ〉EA and |σ〉EA be pure states. Then, we have

F (ρA, σA) = max
UE

F (UE |ρ〉EA, |σ〉EA), or equivalently,

h (ρA, σA) = min
UE

h (UE |ρ〉EA, |σ〉EA) ,

where UE ranges over all unitaries acting on the register E.

The unitary UE which minimizes the Hellinger distance in Uhlmann’s theorem is the one for
which √ρE

√
σEUE is positive semidefinite (such a unitary is always guaranteed to exist) but we

will only need the following simple case:
Proposition 2.16. Let p(X,Y ) and q(X,Y ) be distributions such that p(X) = q(X). Then for the
quantum states |ρ〉XXY Y =

∑
xy

√
p(x, y)|xxyy〉XXY Y and |σ〉XXY Y =

∑
xy

√
q(x, y)|xxyy〉XXY Y ,

there exists a unitary WXY Y with X as a control register such that WXY Y |ρ〉XXY Y = |σ〉XXY Y .

The above is a special case of Uhlmann’s Theorem as ρX = σX but one can explicitly take
WXY Y =

∑
x |x〉〈x|X ⊗UxY Y where Ux

Y Y
is any unitary that maps the vector

∑
y

√
p(x, y)|yy〉Y Y to∑

y

√
q(x, y)|yy〉Y Y .

Quantum Divergence and Mutual Information

The divergence (or relative entropy) between two quantum states ρA, σA ∈ D(HA) is defined as

D (ρA || σA) = Tr(ρA log ρA)− Tr(ρA log σA).

9



Note that the divergence between two states ρA and σA is always non-negative, and equal to zero
iff ρA = σA. The quantum mutual information of the bipartite state ρAB is defined as

Iρ (A : B) = D (ρAB || ρA ⊗ ρB) . (2)

For a tripartite quantum state ρABC ∈ D(HA ⊗HB ⊗HC), the conditional quantum mutual infor-
mation is defined as Iρ (A : B|C) = Iρ (A : BC)−Iρ (A : C). For empty C, this equals the definition
of mutual information in (2).

It follows from the non-negativity of divergence that quantum mutual information is also non-
negative, but it turns out that conditional mutual information is non-negative as well:
Proposition 2.17 (Strong subadditivity). Iρ (A : B|C) ≥ 0.
Proposition 2.18 (Chain Rule). Iρ (A : BC) = Iρ (A : C) + Iρ (A : B|C) .
Proposition 2.19. Iρ (A : B|C) ≤ 2 min{|A|, |B|}.
Proposition 2.20. If ρAB = ρA ⊗ ρB, then Iρ (A : B) = 0.

Basic Lemmas about Divergence and Mutual Information

Below ρABC , σABC ∈ D(HA ⊗HB ⊗HC) and UB is a unitary acting on B.
Proposition 2.21 (Pinsker’s inequality). 1

8 ‖ρA − σA‖
2
1 ≤ h (ρA, σA)2 ≤ D (ρA || σA) .

The proposition below says that mutual information does not change under local operations:
Proposition 2.22. If σABC = UB ρABC U †B, then Iσ (A : BC) = Iρ (A : BC) .

Furthermore, (2) combined with Pinsker’s inequality, gives us

Proposition 2.23. Let ρAB ∈ D(HA ⊗HB), then h (ρAB, ρA ⊗ ρB) ≤
√

Iρ (A : B).

Define Iρ (AS : B|S) := ES [Iρ (AS : B)], then we have the following quantum version of Shearer’s
inequality from [ATYY17]:
Lemma 2.24 (Quantum Shearer’s Lemma [ATYY17]). Let A = A1, . . . , Am and B be registers.
Let ρ ∈ D(HA ⊗HB) be a state such that ρA = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAm. Let S ⊆ [m] be a random
set independent of ρAB such that P[i ∈ S] ≤ µ for every i ∈ [m]. Then, we have

Iρ (AS : B|S) ≤ µ · Iρ (A : B) .

2.4 Quantum Communication Complexity

We consider quantum protocols where Alice and Bob are allowed to exchange qubits and they share
some pure entangled state in the beginning, for instance a number of EPR-pairs that they are not
charged for. Any lower bound in this model also translates to a lower bound in other models of
quantum communication (Yao’s model [Yao93] with qubit communication without prior entangle-
ment or the Cleve-Buhrman model [CB97] with classical communication and prior entanglement).

The total state of a quantum protocol consists of: Alice and Bob’s input registers X and Y ,
Alice’s private register A, the communication channel C, and Bob’s private register B. We assume
that initially Alice and Bob share some pure entangled state ψA′B′ where A′ and B′ are part of
Alice’s and Bob’s private registers A and B respectively, while the rest of the qubits in their private
workspaces are initially zero (|0〉). The channel is also initially zero. Before the start of the protocol
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Alice and Bob copy their inputs from the input registers to their private workspaces. Let |ψ〉AB
denote the state of registers A and B at the start. This includes the initial entangled state on A′
and B′, a bunch of zero qubits and copy of their inputs x and y.

Given an input distribution p(X,Y ) on the inputs, the starting state of the protocol is then

ρ
(0)
XY ABC =

∑
xy

p(xy)|xy〉〈xy|XY ⊗ |ψ〉〈ψ|AB ⊗ |0〉〈0|C .

Note that the marginal state ρ(0)
XY is a classical state but not necessarily pure if X and Y are

not independent. To make the above state a pure state, we will add purifying registers X and Y
and consider the canonical purification of ρ(0)

XY which is the pure state

|ρ(0)〉XXY Y =
∑
xy

√
p(xy)|xxyy〉XXY Y .

With the above purifying registers, the initial global state of the protocol is the pure state

|ρ(0)〉XXY Y ABC = |ρ(0)〉XXY Y ⊗ |ψ〉AB ⊗ |0〉C .

At each step of the protocol, either Alice or Bob applies a unitary to a subset of the registers.
We will assume that they alternate: on odd rounds Alice acts and on even rounds Bob acts. We
will also assume that the channel consists of one qubit. These assumptions can be made without
loss of generality as they only affect the communication by a constant factor.

In an odd round r, Alice applies a fixed unitary transformation U
(r)
XAC =

∑
x |x〉〈x|X ⊗ U

(r),x
AC

to her private register and the channel. This corresponds to her private computation as well as to
putting a one-qubit message on the channel. Note that the unitary uses the input register only as
a control and does not change its contents. In an even round, Bob proceeds similarly. Hence the
content of the input registers X and Y as well as the corresponding purifying registers X and Y
remain unchanged throughout the protocol.

We assume that in the last round of the protocol Bob talks. The final state of an `-round
protocol (for even `) on input distribution p(X,Y ) is the following pure state:

|ρ(`)〉XXY Y ABC = U
(`)
Y BCU

(`−1)
XAC · · ·U

(1)
XAC |ρ

(0)〉XXY Y ABC .

For technical reasons it will be convenient to assume that at the end of the protocol, the
channel contains the answer. A measurement of the channel qubit in the computational basis
then determines the output bit of the protocol. We say that the protocol computes f(x, y) on a
distribution p(X,Y ) if the probability of error on the input distribution p(X,Y ) is at most ε. Note
that we may consider the run of the protocol on a fixed input x, y by taking the initial distribution
p(X,Y ) such that p(x, y) = 1. We say that the protocol computes f(x, y) with error ε if for every
input x, y the probability of error is at most ε.

For notational convenience, throughout this work we will sometimes write ρ(r) instead of
ρ

(r)
XXY Y ABC

to denote the global state of the protocol on all the registers after round r. When
referring to the marginal states, however, we will always write the corresponding registers.

Basic Properties of Quantum Protocols

In the following preliminary lemmas ρ(r)
XXY Y ABC

and σ
(r)
XXY Y ABC

are the states of a quantum
protocol after r rounds when it is run on input distributions p(XY ) and q(XY ) respectively.
Moreover, ` will denote the last round of the protocol. The following proposition is easily seen to
be true since the protocol applies the same sequence of unitaries on every input x, y:
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Proposition 2.25. There are pure states {|ψ(r),xy〉ABC}xy such that

|ρ(r)〉XXY Y ABC =
∑
xy

√
p(xy)|xxyy〉XXY Y ⊗ |ψ

(r),xy〉ABC

|σ(r)〉XXY Y ABC =
∑
xy

√
q(xy)|xxyy〉XXY Y ⊗ |ψ

(r),xy〉ABC

Note that after the first round the states |ψ(1),xy〉ABC only depend on x.
The above proposition implies that if p(X,Y ) is a product distribution on X and Y , and if in

a round r, Bob applies a unitary U (r)
Y BC , then the marginal states

ρ
(r)
XXY Y BC

= U
(r)
Y BCρ

(r−1)
XXY Y BC

(
U

(r)
Y BC

)†
and ρ(r)

XXY Y A
= ρ

(r−1)
XXY Y A

,

and a similar statement also holds when Alice acts.
The following lemma follows easily from Proposition 2.25:

Lemma 2.26. 1
2

∥∥∥ρ(r)
C − σ

(r)
C

∥∥∥
1
≤ ‖p(XY )− q(XY )‖tv.

Proof. Let δ = ‖p(XY )− q(XY )‖tv. Then using Proposition 2.25, we can write

1
2

∥∥∥ρ(r)
C − σ

(r)
C

∥∥∥
1

= 1
2

∥∥∥∥∥∑
xy

(p(xy)− q(xy))ψ(r),xy
C

∥∥∥∥∥
1

≤ 1
2
∑
xy

|p(xy)− q(xy)|
∥∥∥ψ(r),xy

C

∥∥∥
1
≤ δ,

where the second inequality is the triangle inequality and the last one follows from Proposition 2.1
and the fact that {ψ(r),xy

C }xy are density operators and have unit trace.

Using Proposition 2.14, the above also implies that if p(XY ) and q(XY ) are δ-close, then the
output distributions of the protocol for both cases are δ-close.
Lemma 2.27 (Errors and Trace Norm). Given a boolean function f(x, y), let p(X,Y ) be a dis-
tribution supported on its 0-inputs and q(X,Y ) be a distribution supported on its 1-inputs. If an
`-round quantum protocol computes f(x, y) with error δ, then 1

2

∥∥∥ρ(`)
C − σ

(`)
C

∥∥∥
1
≥ 1− 2δ.

Proof. Recall that the last bit of the channel contains the answer and since the output of a protocol
is given by a measurement of the channel qubit in the computational basis, the probabilities that the
output is 0 under ρC and σC are respectively given by Tr(|0〉〈0|CρC) ≥ 1−δ and Tr(|0〉〈0|CσC) ≤ δ.
Using Proposition 2.14, we have

1
2

∥∥∥ρ(`)
C − σ

(`)
C

∥∥∥
1
≥ Tr(|0〉〈0|C(ρC − σC)) ≥ (1− δ)− δ = 1− 2δ.

Quantum protocols have no notion of a transcript, but the following lemma still gives a bound
on how much information is revealed by a quantum protocol in terms of the communication.
Lemma 2.28 (Information Cost). Let p(XY ) be a product input distribution on X and Y . Then,
for any round r in the communication protocol, it holds that

Iρ(r)

(
X : Y Y BC

)
≤ 2r and Iρ(r)

(
Y : XXAC

)
≤ 2r.
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Proof. The proof is by induction on the number of rounds. We will only prove the first inequality
as the second one follows analogously. When r = 0, no messages have been exchanged and since
p(x, y) = p(x)p(y) for any x, y, it follows that the initial state is of the form ρ

(0)
XXY Y ABC

= ρ
(0)
XX
⊗

ρ
(0)
Y Y
⊗ ρ(0)

ABC . So, using Proposition 2.20, it follows that Iρ(0)

(
X : Y Y BC

)
= 0.

Now, let us assume that the statement holds for r − 1 rounds. When r is even, Bob applies
a unitary U

(r)
Y BC . Since p(XY ) is a product distribution on X and Y , from Proposition 2.25, it

follows that ρ(r)
XY Y BC

= U
(r)
Y BCρ

(r−1)
XY Y BC

(
U

(r)
Y BC

)†
. Hence, using Proposition 2.22, we have

Iρ(r)

(
X : Y Y BC

)
= Iρ(r−1)

(
X : Y Y BC

)
≤ 2(r − 1),

where the inequality follows from the inductive hypothesis.
When r is odd, Alice applies a unitary U (r)

XAC with X as control. Using chain rule, we can write

Iρ(r)

(
X : Y Y BC

)
= Iρ(r)

(
X : Y Y B

)
+ Iρ(r)

(
X : C|Y Y B

)
≤ Iρ(r)

(
X : Y Y B

)
+ 2 = Iρ(r−1)

(
X : Y Y B

)
+ 2

≤ Iρ(r−1)

(
X : Y Y BC

)
+ 2 ≤ 2(r − 1) + 2 = 2r,

where the first inequality follows from Proposition 2.19, the second equality follows since ρ(r)
XY Y B

=
ρ

(r−1)
XY Y B

as Alice applies a unitary UXAC with X as a control register, and the second inequality
follows from chain rule and non-negativity of conditional mutual information.

3 Classical Communication Lower Bound
In this section, we present a new proof of the classical communication lower bound that we will
later generalize to the quantum setting. We will prove that any randomized protocol for the sink
function that errs with probability at most 1/3 must communicate at least Ω(t) bits.

As is standard, to prove this we use a hard distribution p(XY ) on the inputs.

Hard Input Distribution p(X,Y ): Let p0(X,Y ) and p1(X,Y ) denote the uniform distribution
on sink−1(0) and sink−1(1) respectively. In the input distribution p(X,Y ), the input is sampled
from p0(X,Y ) with probability 1

2 and from p1(X,Y ) with probability 1
2 .

Since we have a distribution on the inputs, we may assume without loss of generality that
the randomized protocol is deterministic. We will prove a lower bound on the communication by
showing that if the length of the messages of the protocol is at most 1

2ε
3t, then the distribution of the

messages looks almost the same under the distributions p0(X,Y ) and p1(X,Y ): denoting by p0(M)
and p1(M) the induced distributions on the messages under p0(X,Y ) and p1(X,Y ), respectively,
we will show that p0(M) and p1(M) are 8ε-close in statistical distance. To show this, we use the
fooling distribution method from [RS15]. We will give another distribution u(X,Y ) such that the
induced distribution u(M) will be 4ε-close to each of p0(M) and p1(M). For the sink function, this
fooling distribution u(X,Y ) is the uniform distribution on {0, 1}n+n. More precisely, we prove:
Theorem 3.1. Let ε > 0 be a constant and t be large enough. Then, for any deterministic protocol
for the sink function with communication at most 1

2ε
3t, we have that p0(M) 4ε≈ u(M) 4ε≈ p1(M).
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Since the input distribution p(X,Y ) is balanced, using Lemma 2.10, the distributions p0(M)
and p1(M) must have statistical distance at least 1/3 if the protocol has error 1/3 on p(X,Y ). So,
it must be that 8ε ≥ 1/3, and hence ε ≥ 1/24, and the Ω(t) lower bound on the communication
(Theorem 1.1) follows.

Next, we prove Theorem 3.1. Before the proof, it will be helpful to keep in mind how the
distributions p1(X,Y ), p0(X,Y ) and u(X,Y ) are related. Note that by definition, p0(X,Y ) =
u(X,Y |sink = 0) and p1(X,Y ) = u(X,Y |sink = 1). Also, notice that the input distributions
p0(X,Y ) and u(X,Y ) are already very close in statistical distance:

Claim 3.2. p0(X,Y )
γ
≈ u(X,Y ) with γ = t2−(t−1) = o(1).

Proof. Note that under the uniform distribution u(XY ), the probability that the function sink takes
value 1 is exactly t2−(t−1), because for each vertex v, the event that v is the sink has probability
exactly 2−(t−1), and these events are disjoint for the t vertices. This means that

u(sink = 0) = 1− t2−(t−1).

Since p0(XY ) = u(XY |sink = 0), Lemma 2.3 implies ‖p0(XY )− u(XY )‖tv ≤ t2−(t−1) = γ.

Furthermore, recall that we can generate the distribution p1(X,Y ) from u(X,Y ) by conditioning
on a simple collision event: for any vertex v, denoting by N(v) the set of edges incident on v, the
distribution p1(X,Y ) can be generated from u(X,Y ) by first picking a uniformly random vertex
V ∈ [t] as the sink, and then conditioning on the event that XN(V ) = YN(V ) ⊕ zN(V ), where zN(v)
is the unique string that encodes the orientations of the edges in N(v) when vertex v is the sink.

To complete the proof, we use the following lemma from [RS15], which bounds the effect of
conditioning on a collision event (for completeness we include a proof in Appendix A).
Lemma 3.3 (Lemma 4.3 in [RS15]). Given a probability space q, if A,B ∈ [r] are uniform and
independent random variables, and A− C −B, then

q(C) ε≈ q(C|A = B), with ε = 2 3
√

Iq (C : A) + 2 3
√

Iq (C : B).

Proof of Theorem 3.1. Since ‖p0(XY )− u(XY )‖tv ≤ t2−(t−1) = o(1) from Claim 3.2, this already
implies that ‖p0(M)− u(M)‖tv = o(1) since M is a function of X,Y . So, we focus on bounding
‖p1(M)− u(M)‖tv. For this, let V ∈ [t] and let u(V ) be the uniform distribution on [t]. Recall
that

p1(XY ) = Eu(v)[u(XY |XN(v) = YN(v) ⊕ zN(v))].

We will show that under the fooling distribution u(XY ), the messages of the protocol contain little
information about XN(V ) and YN(V ). Lemma 3.3 and concavity will then complete the proof.

Note that for any fixed edge e, it holds that u(e ∈ N(V )) = 2
t . Since under u(XY ), the binary

random variables Xe (resp. Ye) and Xe′ (resp. Ye′) are mutually independent for any two edges e
and e′, applying Shearer’s inequality (Lemma 2.7), we get that

Iu
(
XN(V ) : M |V

)
≤ 2
t
· Iu (X : M) ≤ 2

t
· |M | ≤ ε3 and

Iu
(
YN(V ) : M |V

)
≤ 2
t
· Iu (Y : M) ≤ 2

t
· |M | ≤ ε3. (3)

Note that for any v, shifting YN(v) by a fixed string zN(v) does not change the mutual information
Iu
(
YN(v) : M

)
. Furthermore, since X and Y are independent X −M − Y holds. Hence, using
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Proposition 2.2 and Lemma 3.3 (with A = XN(v), B = YN(v) ⊕ zN(v), C = M), it holds that

‖p1(M)− u(M)‖tv =
∥∥∥Eu(v)[u(M |XN(v) = YN(v) ⊕ zN(v))]− u(M)

∥∥∥
tv

= Eu(v)
[∥∥∥ u(M |XN(v) = YN(v) ⊕ zN(v))− u(M)

∥∥∥
tv

]
≤ 2Eu(v)

3

√
Iu
(
XN(v) : M

)
+ 2Eu(v)

3

√
Iu
(
YN(v) : M

)
.

Further, using concavity of the cube root function over non-negative reals and (3), we get that

‖p1(M)− u(M)‖tv ≤ 2 3

√
Eu(v)Iu

(
XN(v) : M

)
+ 2 3

√
Eu(v)Iu

(
YN(v) : M

)
= 2 3

√
Iu
(
XN(V ) : M |V

)
+ 2 3

√
Iu
(
XN(V ) : M |V

) (3)
≤ 4ε.

This shows that for t large enough, ‖p0(M)− u(M)‖tv ≤ 4ε and ‖p1(M)− u(M)‖tv ≤ 4ε, conclud-
ing the proof.

4 Quantum Communication Lower Bound
The proof for the quantum case proceeds similarly to the classical case with some minor differences.
Let p0(XY ), and u(XY ) be as before: p0(XY ) is uniform on sink−1(0) and u(XY ) is the uniform
distribution. Fix an `-qubit protocol where per our convention ` is even as Bob sends the last
message. Let o(`) and µ(`) be the final pure states of the protocol on distributions p0(XY ) and
u(XY ), respectively. Let V ∈ [t], let u(V ) denote the uniform distribution on [t] and let ιv,(`)
denote the final pure state of the protocol when run on distribution u(XY |XN(v) = YN(v)⊕ zN(v)),
that is, when vertex v is the sink. Note that the distribution u(XY |XN(v) = YN(v) ⊕ zN(v)) is
supported on only the 1-inputs to the sink function. If the protocol computes the sink function
with error at most 1/3 on every input, then Lemma 2.27 implies

Eu(v)
[∥∥∥ιv,(`)C − o(`)

C

∥∥∥
1

]
≥ 2/3. (4)

We are going to argue that if ` � t1/3, then the distribution u(XY ) is also a fooling distribution
for quantum protocols. That is, it must be the case that both o(`)

C ≈ µ
(`)
C and, for a typical vertex v,

ι
v,(`)
C ≈ µ(`)

C (and hence ιv,(`)C ≈ o(`)
C for a typical v).

Theorem 4.1. Let ε > 0 be a constant and t be large enough. Then, for any quantum protocol for
the sink function with communication complexity at most ` = 1

8ε
2/3t1/3, we have that

Eu(v)
[∥∥∥ιv,(`)C − o(`)

C

∥∥∥
1

]
≤ ε.

Combining this theorem with (4) immediately implies the quantum communication lower bound
of Ω(t1/3) promised by Theorem 1.2.

First, o(`)
C ≈ µ

(`)
C is clear because p0(X,Y ) ≈ u(X,Y ) (see Lemma 2.26). To prove that ιv,(`)C ≈

µ
(`)
C for a typical v, we will use Lemma 3.6 from [ATYY17] (we state it a bit differently here to

make it easier for our application). This allows us to relate the fooling distribution with the input
distribution similar to the role of Lemma 3.3 in the proof for the classical case. The proof of this
lemma is an involved round-by-round induction; we include a proof in Appendix B for completeness.
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Lemma 4.2 (Lemma 3.6 in [ATYY17]). Let X = X1X2 and Y = Y1Y2 be random variables where
X,Y ∈ {0, 1}n. Let u′(XY ) be the uniform distribution on XY and let q(XY ) = u′(XY |X1 = Y1)
be another distribution. For every s ≤ r, let ρ(s) and σ(s) denote the state of a quantum protocol
after s rounds on distributions u′(XY ) and q(XY ) respectively. If for every s ≤ r, we have

Iρ(s)

(
X1 : Y Y BC

)
≤ εs for odd s, and Iρ(s)

(
Y1 : XXAC

)
≤ εs for even s,

then it holds that
∥∥∥σ(r)

X1Y1C
− σ(r)

X1Y1
⊗ ρ(r)

C

∥∥∥
1
≤ 4
√

2
∑r
s=1
√
εs.

Fix a vertex v ∈ [t]. Define εv,s = Iµ(s)

(
XN(v) : Y Y BC

)
for odd rounds s, and εv,s =

Iµ(s)

(
YN(v) : XXAC

)
for even rounds s. If these εv,s’s are mostly small, then ιv,(`)C ≈ µ(`)

C :

Lemma 4.3.
∥∥∥ιv,(`)C − µ(`)

C

∥∥∥
1
≤ 4
√

2
∑`
s=1
√
εv,s.

Proof. To apply Lemma 4.2, we will choose X1 = XN(v), X2 = XN(v)c and Y1 = YN(v)⊕zN(v), Y2 =
YN(v)c and u′(XY ) = u(XY ). Note that u′(XY ) is still the uniform distribution. Furthermore,
using Proposition 2.25, for every s, the state ρ(s) in Lemma 4.2 is the same as µ(s) after a suitable
relabeling. Hence, it follows that Iρ(s)

(
X1 : Y Y BC

)
= Iµ(s)

(
XN(v) : Y Y BC

)
= εv,s for odd s, and

Iρ(s)

(
Y1 : XXAC

)
= Iµ(s)

(
YN(v) : XXAC

)
= εv,s for even s.

Now, we apply Lemma 4.2. Since TrX1Y1

(
ι
v,(`)
X1Y1C

)
= ι

v,(`)
C and TrX1Y1

(
ιvX1Y1

⊗ µ(`)
C

)
= µ

(`)
C , we

get that
∥∥∥ιv,(`)C − µ(`)

C

∥∥∥
1
≤
∥∥∥ιv,(`)X1Y1C

− ιvX1Y1
⊗ µ(`)

C

∥∥∥
1
≤ 4
√

2
∑`
s=1
√
εv,s.

We move on to the proof of the theorem now.

Proof of Theorem 4.1. Recall that ‖p0(XY )− u(XY )‖tv ≤ t2−(t−1) = o(1) from Claim 3.2, and
using Lemma 2.26, this already implies that

∥∥∥o(`)
C − µ

(`)
C

∥∥∥
1

= o(1).

Let us turn to bounding Eu(v)
[∥∥∥ιv,(`)C − µ(`)

C

∥∥∥
1

]
. We first show that under the fooling distribution

u(XY ), the states of the quantum protocol contain little information aboutXN(V ) and YN(V ). Then,
applying Claim 4.3 and appealing to concavity will complete the proof similar to the classical case.

Note that for any fixed edge e, it holds that u(e ∈ N(V )) = 2
t , and also recall that under u(XY ),

the random variables Xe (resp. Ye) and Xe′ (resp. Ye′) are mutually independent for any two edges e
and e′. Therefore, using Proposition 2.25 the state µ(`)

X = ⊗
e
µ

(`)
Xe

(and similarly µ(`)
Y = ⊗

e
µ

(`)
Ye
). Hence,

applying the quantum version of Shearer’s inequality (Lemma 2.24) and using Proposition 2.19, for
every round s ≤ ` we get that

Iµ(s)

(
XN(V ) : Y Y BC|V

)
≤ 2
t
· Iµ(s)

(
X : Y Y BC

)
≤ 4`

t
and

Iµ(s)

(
YN(V ) : XXAC|V

)
≤ 2
t
· Iµ(s)

(
Y : XXAC

)
≤ 4`

t
. (5)
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Further using Lemma 4.3, concavity, and (5) we get

Eu(v)
[∥∥∥ιv,(`)C − µ(`)

C

∥∥∥
1

]
≤ 4
√

2 Eu(v)

[∑̀
s=1

√
εv,s

]

≤ 4
√

2
∑̀
s=1

√
Eu(v)[εv,s]

= 4
√

2
∑̀
s=1
s odd

√
Iµ(s)

(
XN(V ) : Y Y BC|V

)
+ 4
√

2
∑̀
s=1
s even

√
Iµ(s)

(
YN(V ) : XXAC|V

)

≤ 4
√

2 · `2

√
4`
t

+ 4
√

2 · `2

√
4`
t

=

√
128`3
t
≤ ε

2 .

Using the triangle inequality, we get that for large enough t, the following holds

Eu(v)
[∥∥∥ιv,(`)C − o(`)

C

∥∥∥
1

]
≤ Eu(v)

[∥∥∥ιv,(`)C − µ(`)
C

∥∥∥
1

]
+
∥∥∥o(`)
C − µ

(`)
C

∥∥∥
1
≤ ε

2 + o(1) ≤ ε.

5 Future Work
One obvious remaining open problem is to close the gap between the current lower bound of Ω(t1/3)
on the quantum communication complexity of the sink function, and the best known upper bound
of Õ(

√
t). We conjecture the upper bound is essentially tight. One way to improve our lower bound

would be to improve Lemma 4.3, maybe with a different distance measure.
The main question left open by this work, as well as by [CMS18, ABT18], is of course the

status of the (non-approximate) log-rank conjecture itself. The proof that the sink function has low
approximate rank crucially uses the fact that the identity matrix has low approximate rank (which
follows from the fact that the equality function has low randomized communication complexity).
In contrast, the actual (non-approximate) rank of the identity matrix is as large as its dimension.
Accordingly, it is not so clear what examples like the sink function suggest for the status of the
log-rank conjecture itself. We are not sure what to conjecture about that conjecture.
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A Proof of Lemma 3.3
Lemma 3.3 (Lemma 4.3 in [RS15]). Given a probability space q, if A,B ∈ [r] are uniform and
independent random variables, and A− C −B, then

q(C) ε≈ q(C|A = B), with ε = 2 3
√

Iq (C : A) + 2 3
√

Iq (C : B).

Proof. We assume Iq (C : A) , Iq (C : B) ≤ 1, since otherwise the lemma is trivially true. For brevity,
set

α3 = Iq (C : A) = E
q(c)

[D (q(A|c) || q(A))] and β3 = Iq (C : B) = E
q(c)

[D (q(B|c) || q(B))] .

Call c bad if D (q(A|c) || q(A)) ≥ α2 or D (q(B|c) || q(B)) ≥ β2, and good otherwise. By Markov’s
inequality, the probability that C is bad is at most α+β. To prove Lemma 3.3, we need the following
claim proved in [GKR16]. For completeness, we include the short proof after finishing the proof of
Lemma 3.3.
Claim A.1. Given independent random variables A∗, B∗ ∈ [r] in a probability space q, if A∗ is
γ1-close to uniform, and B∗ is γ2-close to uniform, then q(A∗ = B∗) ≥ 1− γ1 − γ2

r
.

When c is good, Pinsker’s inequality (Proposition 2.6) implies that conditioned on c, A is α-close
to uniform and B is β-close to uniform. Then, since A − C − B, using Claim A.1 (with A∗ = A
and B∗ = B in the probability space q conditioned on c) implies that q(A = B|c) ≥ 1−α−β

r . Since
q(A = B) = 1

r , we have that for a good c,

q(c|A = B) = q(c) · q(A = B|c)
q(A = B) ≥ (1− α− β) · q(c). (6)

For any event Q, (6) implies that
q(C ∈ Q)− q(C ∈ Q|A = B) ≤

∑
c∈Q,c bad

q(c) +
∑

c∈Q,c good
(q(c)− q(c|A = B))

≤ q(C is bad) +
∑
c

q(c)(α+ β)

≤ α+ β +
∑
c

q(c)(α+ β) ≤ 2α+ 2β,
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and since ‖q(C)− q(C|A = B)‖tv = maxQ(q(C ∈ Q)−q(C ∈ Q|A = B)) we get the required upper
bound on statistical distance.

Proof of Claim A.1. For each i, let q(A∗ = i) = 1
r + αi and q(B∗ = i) = 1

r + βi. Then,
∑
i αi =∑

i βi = 0, and αi, βi ≥ −1
r . Using these facts,

q(A∗ = B∗) =
∑
i

(1
r

+ αi

)(1
r

+ βi

)

= 1
r

+
∑
i αi
r

+
∑
i βi
r

+
∑
i

αiβi = 1
r

+
∑
i

αiβi.

To lower bound the above, we will only consider the negative terms in the summation:

q(A∗ = B∗) ≥ 1
r

+
∑

i:αi>0,βi<0
αiβi +

∑
i:αi<0,βi>0

αiβi ≥
1
r
− 1
r

∑
i:αi>0

αi −
1
r

∑
i:βi>0

βi.

From Proposition 2.1, it follows that
∑
i:αi>0 αi is the statistical distance γ1 between A∗ and

the uniform distribution on [r] and likewise for B∗. So we get

q(A∗ = B∗) ≥ 1− γ1 − γ2
r

.

B Proof of Lemma 4.2
Lemma 4.2 (Lemma 3.6 in [ATYY17]). Let X = X1X2 and Y = Y1Y2 be random variables where
X,Y ∈ {0, 1}n. Let u′(XY ) be the uniform distribution on XY and let q(XY ) = u′(XY |X1 = Y1)
be another distribution. For every s ≤ r, let ρ(s) and σ(s) denote the state of a quantum protocol
after s rounds on distributions u′(XY ) and q(XY ) respectively. If for every s ≤ r, we have

Iρ(s)

(
X1 : Y Y BC

)
≤ εs for odd s, and Iρ(s)

(
Y1 : XXAC

)
≤ εs for even s,

then it holds that
∥∥∥σ(r)

X1Y1C
− σ(r)

X1Y1
⊗ ρ(r)

C

∥∥∥
1
≤ 4
√

2
∑r
s=1
√
εs.

To simplify the notation in the proof, define R = X2X2Y2Y2AB, and X ′1 = X1X1, Y ′1 = Y1Y1,
X ′2 = X2X2 and Y ′2 = Y2Y2. Furthermore, we will use boldface letters to denote different classical
registers with the same dimensions, for example X′1 = X1X1 will denote an independent register of
the same dimension as X ′1. One should think of the boldface registers as a relabeling of the original
registers but they will be needed since we will consider states like |σ(r)〉X′1Y ′1 ⊗ |ρ

(r)〉X′1Y′1RC .
Also, note that if we have two unitaries UXA and VXB that both have a classical register X as

control, then UXA and VXB commute (recall our convention that we omit to write tensor product
with the identity operator on the remaining spaces).

Proof of Lemma 4.2. We will bound∥∥∥σ(r)
X1Y1C

− σ(r)
X1Y1

⊗ ρ(r)
C

∥∥∥
1
≤ 2
√

2 h
(
σ

(r)
X1Y1C

, σ
(r)
X1Y1

⊗ ρ(r)
C

)
(7)

= 2
√

2 min
Ũ

h
(
Ũ |σ(r)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 , |σ

(r)〉X′1Y ′1 ⊗ |ρ
(r)〉X′1Y′1RC

)
where the inequality used Proposition 2.13, and the equality follows from Uhlmann’s theorem
(Proposition 2.15) with Ũ ranging over all unitaries acting on X1Y 1X′1Y′1R. Notice that apart
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from X1Y 1R, we also need the boldface registers to make the state σ(r)
X1Y1

⊗ ρ(r)
C a pure state. Also,

note that |ρ(r)〉X′1Y ′1 and |σ(r)〉X′1Y ′1 remain the same throughout all rounds, so we will drop the
superscript r for these states.

To upper bound the right-hand side in (7), we will exhibit a unitary Ũ so that the Hellinger
distance is small. Let us first note that since u′(X1) = q(X1), using Proposition 2.16, there exists a
unitary WX1Y ′1

with X1 as a control register such that WX1Y ′1
|ρ〉X′1 |ρ〉Y ′1 = |σ〉X′1Y ′1 . Similarly, since

u′(Y1) = q(Y1) there exists a similar unitaryWX′1Y1 with Y1 as a control (we will use the same letter
to denote them since the subscripts will make the registers clear).

We first claim that
Claim B.1. There exist unitaries V (s)

X1X′1X
′
2A

for odd s, and V (s)
Y 1Y′1Y

′
2B

for even s with V (0)
Y 1Y′1Y

′
2B

=
IY 1Y′1Y

′
2B

, such that

h

(
V

(s)
X1X′1X

′
2A
WX1Y ′1

|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1 , |ρ
(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1

)
≤
√
εs for odd s, and

h

(
V

(s)
Y 1Y′1Y

′
2B
WX′1Y1 |ρ

(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 , |ρ
(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1

)
≤
√
εs for even s.

Below we will drop the registers when we are writing states over all the registers X ′1Y ′1RCX′1Y′1.
We will also drop the registers from the unitaries V (s) since their indices (whether odd or even)
will describe the corresponding registers they act on, unless we need to emphasize it.

Let us define

|θ(s)〉 = V (s)V (s−1)|σ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 and |λ(s)〉 = |ρ(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1 . (8)

Then, we will prove by induction that for every round s, the following holds:

Claim B.2. h
(
|θ(s)〉, |λ(s)〉

)
≤ δs where δs = √εs +√εs−1 + 2

∑s−2
i=1
√
εi.

For s = r, Claim B.2 implies that the unitary V (r)V (r−1) is a particular unitary acting on
X1Y 1X′1Y′1R for which the right-hand side in (7) is small, so taking Ũ to be V (r)V (r−1) in (7),∥∥∥σ(r)

X1Y1C
− σ(r)

X1Y1
⊗ ρ(r)

C

∥∥∥
1
≤ 2
√

2
(
√
εr +√εr−1 + 2

r−2∑
s=1

√
εs

)
≤ 4
√

2
(

r∑
s=1

√
εs

)
.

This completes the proof of Lemma 4.2 assuming the claims.

We next prove Claims B.1 and B.2 in order.

Proof of Claim B.1. We will only prove the first inequality as the second one is analogous. From
the assumption that Iρ(s)

(
X1 : Y Y BC

)
≤ εs it also follows that Iρ(s) (X1 : Y′1Y ′2BC) ≤ εs since we

are just relabeling the Y ′1 registers to Y′1 (recall Y ′1 = Y1Y 1). Using Proposition 2.23,

h
(
ρ

(s)
X1Y′1Y

′
2BC

, ρ
(s)
Y′1Y

′
2BC
⊗ ρX1

)
≤
√

Iρ(s) (X1 : Y′1Y ′2BC) ≤
√
εs.

Recalling that R = X2X2Y2Y2AB and using Uhlmann’s Theorem (Proposition 2.15), there exists
a unitary V (s)

X1X′1X
′
2A

such that

√
εs ≥ h

(
V

(s)
X1X′1X

′
2A
|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1 , |ρ

(s)〉X′1Y′1RC ⊗ |ρ〉X′1

)
= h

(
V

(s)
X1X′1X

′
2A
|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1 ⊗ |ρ〉Y ′1 , |ρ

(s)〉X′1Y′1RC ⊗ |ρ〉X′1 ⊗ |ρ〉Y ′1

)
= h

(
V

(s)
X1X′1X

′
2A
WX1Y ′1

|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1 , |ρ
(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1

)
,
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where in the last equality we multiplied both states by the unitaryWX1Y ′1
and used thatWX1Y ′1

|ρ〉X′1⊗
|ρ〉Y ′1 = |σ〉X′1Y ′1 as well as the fact that WX1Y ′1

and V (s)
X1X′1X

′
2A

commute (disjoint registers).

Proof of Claim B.2. Base case s = 1: Recall that V (0) is the identity. LetWX1Y ′1
be the unitary that

satisfies WX1Y ′1
|ρ〉X′1Y ′1 = |σ〉X′1Y ′1 as before. Then, since u′(X) = q(X) and q(Y1Y2) = q(Y1)q(Y2)

and q(Y2) = u′(Y2), it follows from Proposition 2.25 that WX1Y ′1
|ρ(1)〉X′1Y ′1RC = |σ(1)〉X′1Y ′1RC (recall

that R = X2X2Y2Y2AB). Using this and the fact that |ρ(1)〉X′1Y′1RC = |ρ(1)〉X′1RC ⊗ |ρ〉Y′1 and
|ρ〉X′1Y ′1 = |ρ〉X′1 ⊗ |ρ〉Y ′1 , we get

WX1Y ′1
|ρ(1)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1 = WX1Y ′1

|ρ(1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 = |σ(1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 . (9)

Furthermore, by the definition of |θ(1)〉 and |λ(1)〉 with equations (8) and (9) above, it follows
that

h
(
|θ(1)〉, |λ(1)〉

)
= h

(
V

(1)
X1X′1X

′
2A
WX1Y ′1

|ρ(1)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1 , |ρ
(1)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1

)
≤
√
ε1,

where we used (9) to show that |θ(1)〉 equals the first state in the middle expression and the in-
equality follows from Claim B.1. This proves the base case.

Induction: For the induction let us assume that s is even (since the case for odd s is similar)
and that h

(
|θ(s−1)〉, |λ(s−1)〉

)
≤ δs−1. Using the triangle inequality we bound

h
(
|θ(s)〉, |λ(s)〉

)
≤ h

(
|θ(s)〉, |ω(s)〉

)
+ h

(
|ω(s)〉, |π(s)〉

)
+ h

(
|π(s)〉, |λ(s)〉

)
, (10)

where

|ω(s)〉 = V (s)U
(s)
Y BC

(
V (s−2)

)†
|λ(s−1)〉, and |π(s)〉 = V (s)WX′1Y1 |ρ

(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 , (11)

with U (s)
Y BC being the protocol unitary with Y as control that Bob applies in round s. Note that

from the definition of the protocol we have that

|σ(s)〉X′1Y ′1RC = U
(s)
Y BC |σ

(s−1)〉X′1Y ′1RC . (12)

Let us consider the first term in (10). Since Hellinger distance is unitarily invariant, we multiply
both states with V (s−2)

(
U

(s)
Y BC

)†(
V (s)

)†
and using (8), (11) and (12), we get that

h
(
|θ(s)〉, |ω(s)〉

) (11)= h

(
V (s−2)

(
U

(s)
Y BC

)†(
V (s)

)†
|θ(s)〉, |λ(s−1)〉

)
= h

(
|θ(s−1)〉, |λ(s−1)〉

)
≤ δs−1,

where we used that the first state in the middle expression equals |θ(s−1)〉:

V (s−2)
(
U

(s)
Y BC

)†(
V (s)

)†
|θ(s)〉 (8)= V (s−2)

(
U

(s)
Y BC

)†
V (s−1)|σ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1

(12)= V (s−2)V (s−1)|σ(s−1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1

= V (s−1)V (s−2)|σ(s−1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1
(8)= |θ(s−1)〉,
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with the second equality using (12) and the fact that U (s)
Y BC and V (s−1)

X1X′1X
′
2A

commute, and the third

equality using that V (s−1)
X1X′1X

′
2A

and V (s−2)
Y 1Y′1Y

′
2B

commute.

To bound the second term, notice that by the definition of the protocol |ρ(s−1)〉X′1Y′1RC =
U

(s−1)
X1X2AC

|ρ(s−2)〉X′1Y′1RC (recall R = X2X2Y2Y2AB) and therefore using (11) and (8), it follows
that

|ω(s)〉 = V (s)U
(s)
Y BC(V (s−2))†U (s−1)

X′1X2AC
|ρ(s−2)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1 . (13)

Now multiplying both states by Z =
(
U

(s−1)
X1X2AC

)†
V (s−2)

(
U

(s)
Y BC

)†(
V (s)

)†
and again using unitary

invariance of Hellinger we get that

h
(
|ω(s)〉, |π(s)〉

)
= h

(
Z|ω(s)〉, Z|π(s)〉

)
(13)= h

(
|ρ(s−2)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1 , V

(s−2)|ρ(s−2)〉X′1Y ′1RC ⊗ |σ〉X′1Y′1

)
≤ √εs−2,

where the inequality follows from Claim B.1 and we simplified the second state Z|π(s)〉 using com-

mutativity of the pairs
{(

V
(s−2)
Y 1Y′1Y

′
2B

)†
,
(
U

(s−1)
X1X2AC

)†}
(disjoint registers),

{(
U

(s)
Y BC

)†
,WX′1Y1

}
(dis-

joint registers except for both being controlled on the shared register Y1), and
{(
U

(s−1)
X1X2AC

)†
,WX′1Y1

}
(disjoint registers) as follows:

Z|π(s)〉 =
(
U

(s−1)
X1X2AC

)†
V (s−2)

(
U

(s)
Y BC

)†(
V (s)

)†
|π(s)〉

(11)= V (s−2)
(
U

(s−1)
X1X2AC

)† (
U

(s)
Y BC

)†
WX′1Y1 |ρ

(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1

= V (s−2)
(
U

(s−1)
X1X2AC

)†
WX′1Y1

(
U

(s)
Y BC

)†
|ρ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1

= V (s−2)WX′1Y1

(
U

(s−1)
X1X2AC

)†
|ρ(s−1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 = V (s−2)WX′1Y1 |ρ

(s−2)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 .

To upper bound the third term of (10), by the definition of states |π(s)〉 and |λ(s)〉 (equations
(11) and (8)) and Claim B.1, we get

h
(
|π(s)〉, |λ(s)〉

)
= h

(
V (s)WX′1Y1 |ρ

(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 , |ρ
(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1

)
≤
√
εs.

Plugging the bounds for each of the terms back in (10), we get that

h
(
|θ(s)〉, |ω(s)〉

)
≤ δs−1 +√εs−2 +

√
εs =

√
εs +√εs−1 + 2

s−2∑
i=1

√
εi = δs.

23
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


