Electronic Colloquium on Computational Complexity, Report No. 205 (2018)

New Constructions with Quadratic Separation
between Sensitivity and Block Sensitivity *

Siddhesh Chaubalf Anna Gal¥

Abstract

Nisan and Szegedy [15] conjectured that block sensitivity is at
most polynomial in sensitivity for any Boolean function. There is a
huge gap between the best known upper bound on block sensitivity
in terms of sensitivity - which is exponential, and the best known
separating examples - which give only a quadratic separation between
block sensitivity and sensitivity.

In this paper we give various new constructions of families of
Boolean functions that exhibit quadratic separation between sensitiv-
ity and block sensitivity. Some of our constructions match the current
largest separation between sensitivity and block sensitivity by Ambai-
nis and Sun [5]. Our constructions have several novel aspects. We use
more general function compositions instead of just OR-composition,
and give constructions based on algebraic operations. In addition,
we give the first direct constructions of families of Boolean functions
that have both 0-block sensitivity and 1-block sensitivity quadratically
larger than sensitivity.

1 Introduction

The Sensitivity Conjecture posed by Nisan and Szegedy [15] is one of the
most intriguing, yet elusive problems in computational complexity theory.

*A preliminary version of this paper is published in the Proceedings of FSTTCS 2018.

TUniversity of Texas at Austin, Email: siddhesh@cs.utexas.edu

YUniversity of Texas at Austin, Email: panni@cs.utexas.edu, Part of this work was
done while visiting the Simons Institute for the Theory of Computing in Berkeley.

ISSN 1433-8092

The sensitivity s(f) of a Boolean function f is the maximum over all in-
puts x of the number of coordinate positions ¢ such that changing the value
of the i-th bit of x changes the value of the function. The block sensitiv-
ity bs(f) of a Boolean function f is the maximum over all inputs x of the
number of disjoint blocks of bits such that changing the value of all bits of
x in any given block changes the value of the function. (See Section 2 for
more formal definitions.) Sensitivity was introduced by Cook, Dwork and
Reischuk [8] as a measure to prove lower bounds on the parallel complexity
of Boolean functions in the CREW PRAM model. Nisan [14] defined the
more general block sensitivity measure, and showed that the CREW PRAM
complexity of any Boolean function f is characterized by its block sensi-
tivity up to constant factors as ©(logbs(f)). Nisan also showed that several
other complexity measures, including certificate complexity and decision tree
depth are polynomially related to block sensitivity. Nisan and Szegedy [15]
showed that the degree of real polynomials representing a Boolean function
f is also polynomially related to its block sensitivity. These relations ex-
tend to approximate representation by real polynomials and to randomized
and quantum decision tree depth. Thus, a number of important complex-
ity measures are polynomially related to block sensitivity. See [6, 11] for a
survey.

However, it remains open to fully understand the relationship between
sensitivity and block sensitivity. Of course for any Boolean function f, s(f) <
bs(f). Nisan and Szegedy [15] conjectured that block sensitivity is at most
polynomial in sensitivity for any Boolean function f. They even raised the
possibility that bs(f) = O(s(f)?). This possibility is still not ruled out - the
best separation so far remains quadratic. The current best upper bound on
block sensitivity in terms of sensitivity by Ambainis et al. [2, 4] is exponential:

bs(f) < ()21 (More precisely, bs(f) < max{201(s(f) — 1), s(f)}
[4].) This improves the earlier upper bounds of Kenyon and Kutin and Simon
(13, 17].

The first example of a function with quadratic separation between its sen-
sitivity and block sensitivity was given by Rubinstein [16] who constructed
a function f with bs(f) = %s(f)2. Other constructions with quadratic sepa-
ration were given in [20, 7, 10, 5]. The largest separation so far is achieved
by the construction of Ambainis and Sun [5] who gave a function f with
bs(f) = Zs(f)? — L(p)

Improving the constant % in the separation would be interesting, since a
function f with bs(f) > cs(f)? for a constant ¢ > 1 would imply a construc-

2

tion with superquadratic separation by iterated composition of the function
713

In order to better understand the relationship between sensitivity and
block sensitivity, the one-sided versions of the measures 0-sensitivity so(f),
1-sensitivity s1(f), 0-block sensitivity bso(f) and 1-block sensitivity bsi(f)
have also been extensively studied. These measures are obtained by re-
stricting attention to inputs z € f~(0) for defining O-sensitivity and 0-
block sensitivity and to inputs z € f~!(1) for defining 1-sensitivity and
1-block sensitivity, respectively. (See Section 2 for formal definitions.) Then

s(f) = max{so(f), s1(f)} and bs(f) = max{bso(f), bs1(f)}.

Ambainis and Prusis [3] (improving the constant in a result of Kenyon
and Kutin [13]) proved that bso(f) < 2so(f)Ci(f) where Cy(f) denotes the
1-certificate complexity of f. See Section 2 for the definition of certificate
complexity. On the other hand, Nisan [14] proved that C(f) < bs1(f)so(f).
The analogous statements also hold for upper bounding bs; and Cy, respec-
tively. Combining these results implies that in order to obtain much stronger
separation between sensitivity and block sensitivity it is necessary to con-
struct functions f such that both bsy(f) and bs;(f) are significantly larger
than s(f).

Avishay Tal [19] pointed out to us, that one can get such examples by
the following trick. Let g be any function with bs(g) = Q(s(g)?), then tak-
ing f(z,y) = g(z) V ~g(y) will give min{bso(f),bs:1(f)} = Q(s(f)?). Notice
however that in this example the function f cannot give a significantly larger
separation between its block sensitivity and sensitivity than what was al-
ready achieved by the function g. Thus, limitations on the separation that
follow from properties of the function ¢ will be inherited by the function
f. By direct constructions, the largest simultaneous separation has been
min{bso(f),bs1(f)} = Q(s(f)°¢23) in [1]. On the other hand, all previous
direct constructions with quadratic separation between bs(f) and s(f) had

min{bso(f), bs1(f)} = O(s(f)).

1.1 Our Results

In this paper we give various new constructions of families of Boolean func-
tions that exhibit quadratic separation between sensitivity and block sensi-
tivity. Our constructions have several novel aspects.

All previous constructions - with the exception of Chakraborty’s functions
7] - were of the form f = OR,,0g; that is f : {0,1}™* — {0, 1} was obtained

3

by composing the m-bit OR function with an appropriately chosen inner
function g on k bits. Chakraborty [7] did not use function composition at all.
As for the choice of the inner function, Gopalan, Servedio, Tal and Wigderson
[10] defined the inner function g based on codewords of a Hamming code. All
other constructions (including Chakraborty [7]) used the presence of certain
patterns in the input = to set the function value g(x) to 1.

We observe that other function compositions instead of OR-composition
can also yield quadratic separations. We define new functions, that could
be used as inner or outer functions, based on algebraic criterions related to
multiplication in finite fields or polynomial multiplication. We give two ver-
sions of our “building block” functions based on finite field multiplication,
denoted grp and ¢jp, and two functions g, and Gpoly based on polynomial
multiplication. Using OR-composition, gppr yields constant }l, 9rr and gpoly
give constant % in quadratic separations, while g7, gives constant %, match-
ing the current largest separation between sensitivity and block sensitivity
by Ambainis and Sun [5].

We present a general framework based on certificates that captures most
previous constructions, and also highlights their limitations. We also give a
general condition for achieving quadratic separations with the % constant for
functions defined by families of certificates. The function by Ambainis and
Sun [5] fits into this framework.

In addition, we provide the first direct constructions of families of Boolean
functions f with min{bso(f),bs1(f)} = Q(s(f)?). Our simultaneous quadratic
separation of both 0-block sensitivity and 1-block sensitivity from sensitiv-
ity is based on a more refined study of the effects of function composition
on these measures. We also present sufficient conditions for achieving such
simultaneous separations and give several examples of functions satisfying
these conditions.

2 Preliminaries

Let f: {0,1}" — {0, 1} be a Boolean function. For z € {0,1}" and i € [n] we
denote by ' the input obtained by flipping the i-th bit of . More generally,
for S C [n] we denote by z° the input obtained by flipping the bits of z in
all coordinates in the subset S.

Definition 1. Sensitivity The sensitivity s(f,x) of a Boolean function f
on input x is the number of coordinates i € [n] such that f(z) # f(z').

4

The 0-sensitivity and 1-sensitivity of f are defined as so(f) = max{s(f,z) :
f(z) =0} and s;(f) = max{s(f,x) : f(x) = 1}, respectively. The sensitivity
of f is defined as s(f) = max{s(f,z) :x € {0,1}"} = max{so(f),s1(f)}.

Definition 2. Block Sensitivity The block sensitivity bs(f,x) of a Boolean
function f on input x is the maximum number of pairwise disjoint subsets
Si,..., Sk of [n] such that for each i € [k] f(x) # f(x°%). The 0-block sen-
sitwity and 1-block sensitivity of f are defined as bso(f) = max{bs(f,x) :
f(z) = 0} and bsi(f) = max{bs(f,xz) : f(x) = 1}, respectively. The
block sensitivity of f is defined as bs(f) = max{bs(f,z) : x € {0,1}"} =
max{bso(f), bs1(f)}-

It is convenient to refer to coordinates i € [n] such that f(z) # f(x%) as
sensitive bits for f on x. Similarly, a subset S C [n] is called a sensitive block

for f on x if f(z) # f(2%).

Definition 3. Partial assignment Given an integer n > 0, a partial assign-
ment « is a function «a: [n] — {0,1,%}. A partial assignment « corresponds
naturally to a setting of n variables (1, xa, ... z,) to {0,1,x} where z; is set
to a(i). The variables set to x are called unassigned or free, and we say that
the variables set to 0 or 1 are fized.

We say that x € {0,1}" agrees with « if x; = a(i) for alli such that a(i) # *.
The size of a partial assignment « is defined as the number of fized variables
of a.

Definition 4. Certificate For a function f: {0,1}" — {0,1} and input
x € {0,1}" a partial assignment « is a certificate of f on x if x agrees with
a and any input y agreeing with « satisfies f(y) = f(x).

The size of a certificate o is defined as the size of the partial assignment .

Definition 5. Certificate Complexity The certificate complezity C(f,x)
of a Boolean function f on input x is the size of the smallest certificate of
f on x. The O-certificate complexity and 1-certificate complexity of f are
defined as Co(f) = max{C(f,z) : f(z) = 0} and C\(f) = max{C(f,x) :
f(x) = 1}, respectively. The certificate complezity of f is defined as C(f) =
max{C(f,z):x € {0,1}"} = max{Cy(f),Ci(f)}.

The above measures and their relationship to other complexity measures
have been extensively studied. See [6, 11] for a survey. Here we only mention
a result by Nisan [14] relating these measures to each other.

5

Theorem 1. [14] For any Boolean function f we have
s(f) < bs(f) < C(f) -

Moreover, for z € {0,1} we have

s:(f) < bs.(f) < C(f) .

Definition 6. Function defined by a set of partial assignments Let
C ={m,...1} be a set of partial assignments where ;: [n] — {0, 1, x}.
Then C' naturally defines a function go: {0,1}" — {0,1} as

go(x) =1 if and only if x agrees with some partial assignment ~; € C.

Definition 7. Distances The distance between two inputs x,y € {0,1}" is
defined as the number of bits in which they differ.

The distance between an input x € {0,1}" and a partial assignment a: [n] —
{0,1, %} is defined as the minimum distance between x and any input y agree-
ing with .

The distance between two partial assignments a, f: [n] — {0,1,%} is defined
as the minimum distance between any input x agreeing with o and any tnput
y agreeing with (.

Definition 8. Function Composition For Boolean functions f : {0, 1}™ —
{0,1} and g : {0,1}F — {0, 1} the function fog: {0,1}™ — {0,1} is defined
on z € {0,1}™ as

f Og(Z) = f(g(zb .. 'Zk)ag<zk+17 .- 'aZQk)a v ag(z(mfl)kJrla .- 7ka))

Properties of function composition were formally studied with respect to
sensitivity and block sensitivity (as well as other related measures) by Tal
and Gilmer et al. [18, 9]. We note the following two properties, relevant for
us.

Lemma 1. [18, 9] For any Boolean functions f and g we have s(f o g) <
s(f)s(g)-

Definition 9. [18] For z € {0,1} we say that f : {0,1}* — {0,1} is in
z-good form, if
(1) f(z") = z and (2) bs(f) = bs(f,2")

Lemma 2. [18] If both f and g are in 0-good form, or if both f and g are
in 1-good form, then bs(f o g) > bs(f)bs(g).

6

2.1 Previous Constructions with Quadratic Separation

All previous constructions that achieve quadratic separation between sensi-
tivity and block sensitivity - with the exception of Chakraborty’s functions
[7] - were based on the following “OR-composition Lemma” first used by
Rubinstein [16].

Lemma 3. [16] For any function g: {0,1}" — {0,1}, we have

e 50(OR, 0g) =n-s0(9) e 51(OR,09) = s1(9)
e bso(OR, 09g) =n-bsy(g) e bs1(OR, 0g) = bsi1(g)

The quadratic separations of [16, 20, 5, 10] are based on using this lemma
and considering functions of the form f = OR,, o g for appropriately chosen
inner functions g.

Next we briefly describe the previous constructions of functions with
quadratic separation.

1. Rubinstein’s function [16] Define g: {0,1}*™ — {0,1} as

g(z) =1iff xy; -1 = x9; = 1 for some j € [m] and z; = 0 for i # 25 — 1,27.
This gives so(g) = 1, s1(g) = bs1(g) = 2m, bso(g) = m.

Let f = ORy0g. Then so(f) = s1(f) = bsy(f) = 2m, bso(f) = 2m?, giving
bs(f) = L (/)2

2. Virza’s function [20] Define g: {0,1}*™*! — {0,1} as

g(z) = 1 iff one of the following holds:

1) 35 € [m] such that (x9j_1 = 29; =1) and (z; =0 Vi # 2j — 1,27).

2) (xome1 =1) and (x; =0V i #2m+1).

This gives so(g) = 1, s1(g) = bs1(g) =2m + 1, bso(g) = m + 1.

Let f = ORgmi1 09g. Then so(f) = si(f) = bsi(f) = 2m + 1, bso(f) =
(m +1)(2m + 1). Therefore, bs(f) = 3s(f)? + 35(f)-

3. Ambainis and Sun’s function [5] Define g: {0, 1}2@m+1) — {01} as

g(x) = 1iff 35 € [2m + 1] such that

1) Toj—1 = T25 = 1, and

2) For all 7 € [m], Xojy2i = X2j—2; = L2j—2—1 = 0.

Here, the index of z is taken modulo (2(2m+1)) i.e. we index x as if it were
laid around a circle.

This gives so(g) = 1, s1(g) = bs1(g) = 3m + 2, bso(g) = 2m + 1.

Let f = OR3pi209g. Then so(f) = si(f) = bsi(f) = 3m + 2, bso(f) =
(3m +2)(2m + 1). Therefore, bs(f) = 3s(f)* — 3s(f).

4. Function based on Hamming code by Gopalan, Servedio, Tal and Wigder-
son (Section 7 in [10])

Consider the Hamming code on m = 2" — 1 bits.

Define ¢g: {0,1}" — {0,1} as

g(x) = 1iff = is a codeword of the Hamming code on m bits.

This gives s9(g) = 1, s1(g) = bs1(g) = m, bso(g) = "5+

Let f = OR,, 0g. Then, so(f) = si(f) = bsi(f) = m, bso(f) = =2,
Thus bs(f) = 3s(f)? + 1s(f).

Finally, we describe a construction by Chakraborty that does not involve
function composition. He also constructed another function in [7], which is
similar to the one we describe.

5. Chakraborty’s function [7] For integers k,m such that 2 < k < m and
2k | m, the function gi: {0,1}"™ — {0,1} is defined as follows.

For ¢ = (zo,...%m-1), ge(x) = 1 iff 3 7 € {0,...m — 1} such that
Ti = Tip1(modm) = 1 and x; = 0 for all j € {i +2(mod m),...,i+k—1(
mod m)}.

Then, so(gi) = 22, s1(gk) = k, bso(gr) = 2 and bs1(gx) = k-

Therefore, setting k = v/2m gives s(g,/5,,) = V2m and bs(g,5,,) = 5. So
we have bs(g.5,) = 35(9,5m)%-

3 New Building Blocks for Quadratic Sepa-
ration

Here we define several new functions that we will use as inner or outer func-
tions in various function compositions to obtain quadratic separations.

3.1 A General Framework Based on Certificates

In this subsection we observe that several previous constructions fit into a
common framework, that also explains the limitations of these constructions.
Previously, Karthik and Tavenas [12] studied limitations of separations in a
certificate framework under some special conditions.

We start with two lemmas that are also helpful for analyzing our new
constructions presented in later subsections.

Lemma 4. Let C be a set of partial assignments with |C| > 2 and consider
the function gc defined by C.

1. If the distance between any two partial assignments vy;,v; € C fori # j
is at least 2 then s1(gc) = bs1(g9c) = Ci(gc).

2. If the distance between any two partial assignments y;,~y; € C fori # j
is at least 3 then so(gc) = 1.

Proof. We first note that since the distance between any two partial assign-
ments is at least 2, the set of partial assignments C' also forms a set of
1-certificates for go, such that every 1-input agrees with exactly one partial
assignment from C'.

To see that s1(gc) = bsi(gc) = Ci(gc), for any l-input = consider the
unique 7; € C agreeing with . The bits fixed by 7; form exactly the set
of sensitive bits for f on x, since any two partial assignments in C' are at
distance at least 2 from each other. Note also that C(f,z) is at most the
number of bits fixed by ;. Thus, the statement follows by Theorem 1.

When the pairwise distance between the partial assignments in C' is at
least 3, then so(gc) = 1 since for any O-input x, there is at most one certificate
v; € C such that z is at distance 1 from it.

O

Lemma 5. Let C be a set of partial assignments such that the function go
defined by C' is not constant. Then bso(gc) < |C]|.

Proof. Note that for a given function g there may be several different sets
C such that g = go. The statement of the lemma holds for any such set of
partial assignments C'.

The proof is based on the following claim.

Claim 1. Let f : {0,1}" — {0,1} be any non-constant Boolean function.
For x € f~Y0) let A and B be disjoint subsets of [n] such that f(z?) =
f(xP) = 1. Then there is no partial assignment « : [n] — {0,1, %} that is a
certificate of f on both x and z%.

Proof of Claim: Suppose that some partial assignment « : [n] — {0, 1, %} is
a certificate of f on both z# and z”. This means that both 24 and z” agree
with « in the bits fixed by . On the other hand, since f(x) = 0, x must
differ from « in at least one bit fixed by a. Since x4 agrees with «, the set
A must contain all the coordinates where and « disagree. Similarly, since
2B agrees with o, the set B also must contain all the coordinates where x
and « disagree. Therefore the sets A and B cannot be disjoint. [

To prove the lemma, let x be any O-input of go. Let By, ..., By be disjoint
sensitive blocks for gc on z. Note that for every i € [k], 2% must agree with
some partial assignment in C. By the above claim, for i # j, 2P and 2P
must agree with different partial assignments from C. Therefore, the number
of disjoint sensitive blocks is at most |C/. O

Next we give a sufficient condition for achieving quadratic separations
with constant %, and prove a lemma that we will use in some of our later
constructions in Subsection 3.3.

Definition 10. For an odd integer m > 2, consider a set of partial assign-
ments C' = {y1,...vm}, with v;: 2m] — {0,1,%}. We say that the set of
partial assignments C' is good if it satisfies the following two properties:

(a) The distance between any two partial assignments v;,~v; € C fori # j is
at least 3

(b) Each partial assignment ~y; € C' has exactly two bits set to 1, 3(m — 1)
bits set to 0 and the remaining bits free.

We prove the following lemma for functions g defined by a good set of
partial assignments C'.

Lemma 6. For an odd integer m > 2, and any function gc: {0,1}*™ —
{0,1} defined by a good set of partial assignments C, we have

1. so(ge) =1

2. bso(ge) =m

10

3. 51(90) = bsl(gc) = C1(gc) — 3m2+1

Proof. Lemma 4 directly implies the first and third statements, and Lemma
5 implies that bsy(gc) < m. It remains to prove that bso(gc) > m.

Recall that any two certificates 7;,7; must be at a distance at least 3
from each other. But since each certificate only sets exactly 2 bits to 1, this
implies that the bits set to 1 by 7; must be disjoint from the bits set to 1 by
v;, for any v;,v; € C and @ # j.

Thus, for the O-input 0™, the pair of bits set to 1 by the certificate ~;
gives a sensitive block for every i € [m]. All these blocks are pairwise disjoint
and therefore bsy(gc) > m.

O

Using OR-composition (Lemma 3) yields the following.

Theorem 2. Consider any function gc: {0,1}*™ — {0,1} defined by a good
set of partial assignments C, for an odd integer m > 2. Then the function
f= OR% o gc has

2 1

bs(f) = gs(f)2 - gs(f)

We note that the inner function defined by Ambainis and Sun [5] can
be shown to fit into this framework. We will use Lemma 6 to analyze the
functions defined in subsection 3.3.

Next we observe that Lemma 6 and Theorem 2 can be further generalized
as follows. Recall that the size of a partial assignment is the number of
variables fixed by it (see Section 2).

Theorem 3. Let C be a set of partial assignments with |C| > 2 that satisfies
the following two properties:

(a) The distance between any two ~;,v; € C fori # j is at least 3

(b) The sets of bits set to 1 by the partial assignments in C are pairwise
disjoint.

Let ¢ denote the size of the largest partial assignment in C, and let m = |C|
denote the number of partial assignments in C. Then for the function gc
defined by the set of partial assignments C we have

1. so(gc) =1

2. bso(gc) =m

11

3. s1(gc) = bsi(gc) = Ci(gc) =1

Hence, the function f = OR; o gc has

m

bs(f) = s(f)
The proof of this theorem follows directly from Lemma 4, Lemma 5 and
the OR-composition Lemma (Lemma 3).
However, this approach has the following limitation.

Lemma 7. Let C be a set of partial assignments with |C| > 2 such that the
sets of bits set to 1 by the partial assignments in C' are pairwise disjoint.
Let ¢ denote the size of the largest partial assignment in C, and let m = |C|
denote the number of partial assignments in C. Let D denote the average
pairwise distance between the partial assignments in C'. Then

D
The proof of this Lemma is a straightforward generalization of an argu-
ment of Ambainis and Sun [5].

Proof. (Implicit in the proof of Theorem 2 in [5]) For 7; € C, let A; denote
the set of bits fixed to 0 by ~;, and let B; denote the set of bits fixed to 1 by 7;.
Then, for i # j the distance between v; and ~; is equal to |A; N B;|+|A;N B;]|.
Thus,

m(m — 1
i,jiit]
This implies that for some 1,
-1
S lAnB > D(mT)
JH#j
(m—1)

which in turn implies that |4;] > D5, since the sets B; are pairwise
disjoint. The statement of the lemma follows since ¢ > max; | A;]. O

Lemma 7 implies that using a construction satisfying the conditions of
Theorem 3 with average pairwise distance D cannot give a constant greater

than % in quadratic separations. The construction of Ambainis and Sun fits

12

into this framework and matches the bound of Lemma 7 with D = 3 yielding
the current best quadratic separation with constant 2/3. The constructions
of Rubinstein and Virza also fit into this framework and match the bound
of Lemma 7 with D = 4, yielding quadratic separations with constant 1/2.
Note that D > 3 is part of the conditions in Theorem 3, thus this framework
cannot give constants greater than 2/3 in quadratic separations.

3.2 Using Finite Field Multiplication

In this subsection, we give constructions of families of functions based on Fi-
nite Field Multiplication, which achieve quadratic separation between block
sensitivity and sensitivity. We will define two versions, gpp and g5 yielding
quadratic separations with constants %L and %, respectively.

Fix an irreducible polynomial p of degree m in Fy[z] and consider the
representation of the elements of Fom as univariate polynomials modulo p.
For a € {0,1}™, we interpret a = (aq,...amn,—1) as an element of Fym under
this representation.

Definition 11. Function based on Finite Field Multiplication

The function grp: {0,1}™ x {0,1}™ — {0, 1} is defined as follows:
grr(a,b) = 1if and only if a-b = ¢, where ¢ € Fom is the element represented
as (0,...,0,1) and multiplication is over the field Fom.

We prove the following lemma listing the values of sensitivity and block
sensitivity for the function grp.

Lemma 8. For the function grp: {0,1}™ x {0,1}™ — {0,1}, we have

e so(grr) <2 e s1(grpr) =2m
o m+12>bso(grr) >m e bsi1(grr) =2m
Proof.

® so(grr) <2
For any non-zero a € Fam, there exists a unique b € Fom such that
a-b=(0,...,0,1) i.e. grr(a,b) = 1. Therefore, for any input (a,b) €
9r(0), at most 1 bit j of a may be flipped to get a’ - b = (0,0...1)
i.e. a has at most 1 sensitive bit. Similarly, at most 1 bit of b may be
sensitive.

13

o Sl(gFF) =2m
Consider any input (a,b) € gz(1). Flipping any bit of a or b changes
the value of the product a - b. Therefore every bit of (a,b) is sensitive,
giving s1(grr) = 2m.

e m+12>bso(grr) >m
Consider the 0-input a = (0,...0),b = (0,...0).
For each j € {0,...m — 1}, we can flip the pair of bits (a;, by—1—;),
so that their product becomes ¢ = (0,...,0,1). This gives m disjoint
sensitive blocks.

To see that m + 1 > bsg(grr), note that since so(grp) < 2, on any
O-input there are at most two sensitive blocks of size 1, and all other
sensitive blocks must have size at least 2. Thus, bso(gpp) < 2+ 222 =
m + 1.

o bsi(grr) =2m
This follows since 2m > bs1(grr) > s1(grr) = 2m

]

The following theorem follows from Lemma 8 and the OR-composition
Lemma.

Theorem 4. The function f = OR,, o grr has

Lo
bs(f) > Zs(f)

We now modify the function gpp to improve the constant of separation
from }l to %

Definition 12. The function gpp: {0,1}™ x {0,1}™ — {0,1} is defined as
follows:
grp(a,b) =1 if and only if the following two conditions hold.

1. a-b=c, where ¢ € Fom is the element represented as (0,...,0,1) and
multiplication is over the field Fom

2. ao@al...®am_1:1

14

Lemma 9. For the function gpp: {0,1}™ x {0,1}™ — {0, 1}, we have

® so(gpp) =1 o 51(95p) =2m

hd bsO(QFF) =m hd bSl(Q;F) =2m

Proof. Note that Conditions 1 and 2 of Definition 12 both have to hold for

1 inputs, and at least one is violated for 0 inputs.

e so(gpp) =1

For a O-input (a,b) which satisfies condition 1, flipping any bit of a
or b changes the product a - b and condition 1 is no longer satisfied.

Therefore, such a 0-input has no sensitive bit.

For any 0-input (a,b) which leaves condition 1 unsatisfied, both a and
b can have at most one sensitive bit each as observed in the proof of

Lemma 8.

We further note that for any given 0-input (a,b), only one of a or b
can have a sensitive bit because condition 2 has to hold for 1-inputs.

Therefore, so(gfpr) = 1.

* s1(gpp) = 2m

Consider any 1-input (a, b). Flipping any bit of a or b changes the value
of the product a - b and condition 1 is no longer satisfied. Therefore

every bit of (a,b) is sensitive, giving s1(g5p) = 2m.

® bso(gpp) =m
Consider the 0-input a = (0,...0),b = (0,...0).

For each j € {0,...m — 1}, we can flip the pair of bits (a;, by—1—;), S0
that their product becomes ¢ = (0,0...1) to satisfy the first condition.
Since @’ has exactly one 1, the second condition is satisfied as well,
and ¢gpp(a?,b™"177) = 1. This gives m disjoint sensitive blocks and

therefore, bso(gjp) > m.

To see that bsy(gjr) < m, note that since so(g}r) = 1, on any 0-input
there is at most one sensitive block of size 1, and all other sensitive

blocks must have size at least 2. Thus, bso(gpp) < |1+ 22| = m.

o bsi(gpp) =2m
This follows since 2m > bs1(g5p) > s1(g5p) = 2m

15

Using Lemma 9 and the OR-composition Lemma gives the following the-
orem.

Theorem 5. The function f = ORyy, 0 gip has

bs() = (/)"
Remark 1. We could replace ¢ = (0,...,0,1) in the above definitions by
other field elements and still achieve quadratic separations. In fact using any
¢ € Fom, we would get sg < 2 and s1 = 2m for the inner function. However,
we need to choose ¢ carefully to guarantee that bsy of the inner function is
large enough.

3.3 Using Polynomial Multiplication

We now describe another family of functions similar in essence to the one
involving finite field multiplication, but easier to analyze. We will define two
versions, gpoy, and gy, vielding quadratic separations with constants % and

%, respectively.
Here we consider polynomials over the Integers. For a € {0,1}™, we
interpret the bits of a = (ag,...an,_1) as the coefficients of a univariate

polynomial p, that is p,(z) = ag + a1z + ... apm_12™ L

Definition 13. Function based on Polynomial Multiplication

Let m > 2 be an integer. The function gpey,: {0,1}™ x {0,1}™ — {0,1} is
defined as follows:

Gpoiy(a,b) = 1 if and only if p.(z) - pp(2) has a non-zero coefficient for 2™~
and has coefficient 0 for 27 for all j < m — 1.

1

It is convenient to use the following equivalent definition.

Definition 14 (Alternative definition).

Let m > 2 be an integer. Consider the set of partial assignments C' =
{v0,71 - Ym-1} where v;: {0,1,...,2m — 1} — {0, 1, %}, defined as follows.
For every i € {0,...m — 1},

1, if j=i
Yi(g) =40, ifj<i
*

o 1> 0>
, ifm > 5 >1 16

1, if j=2m—1—i
%) =<0, ifm<j<2m—1—i
*, ifj>2m—1—1

Now the function gpoy is the function defined by the set of partial assign-
ments C' i.e. go.

We now analyze this function for its sensitivity and block sensitivity.

Lemma 10. For gy, : {0,1}™ x {0,1}"™ — {0,1}, we have

® 50(Gpoty) = 2 ® 51(Gpory) =m +1
hd bSO(only) =m ° bsl(gpoly) =m+1
Proof.

® 51(Gpoty) = bs1(gpoty) = m + 1

First, we observe from the alternative definition of g,., that every 1-
input of gpy, agrees with a certificate 7; from the set C. Each v; € C
fixes m + 1 bits. Also, note that any two certificates of C' are at a
distance at least 2 from each other. Therefore, by Lemma 4 s1(gpoi) =

bsl(only) =C) (QPOZy) = (m + 1)'

® 50(Gpoiy) = 2

First we prove so(gpory) < 2.

Observe that if either a or b is an all 0 vector, then the sensitivity on
such input (a,b) is at most 1. Let (a,b) be any O-input of g, such
that neither a nor bis all 0. Let ¢ € {0,...m—1} be the smallest index
such that a; = 1 and j be the smallest index such that b; = 1. Then,
we have two cases.

Case 1: i+ 7 > m — 1. In this case, in the product p,(z) - py(z) the
coefficients are 0 for 27 for all j < m —1. Thus, the only bits which can
be flipped to change the value of g0, from 0 to 1 are a,,—1—; and by,—;_;.

17

Case 2: i+ j < m — 1. Now, the only way to flip a bit and possibly
change the value of g, to 1 is by flipping the bits a; or b;.

Next we argue that so(gpoy) > 2.

The following O-input (a, b) achieves so(gpoiy, (@, b)) = 2.
Let a1 =1,a;, =0Vi < (m—1).

Similarly, b,—1 =1, b, =0Vi < (m — 1).

Notice that (a,b) has 2 sensitive bits: ag and by.

o bso(gpoty) = m
Lemma 5 implies that bso(gpor,) < m.
It remains to prove that bso(gpoy) > m. Consider the O-input with
a; = b; = 0 for all i € {0,...m — 1}. We can flip the pair of bits
@i, b1 for ¢ € {0,...m — 1} so that the function changes value from
0 to 1. Therefore, bso(gpoy) > m.

O
Lemma 10 and the OR~composition Lemma imply the following theorem.

Theorem 6. Consider gpo,: {0,1}™ x {0,1}™ — {0,1} for any odd integer
m > 2.
Then the function f = ORmT-H O Gpoly has

We modify the above function to improve the constant of separation from
1,2
5 to 2.
2 Y3

Definition 15. Let m > 2 be an integer. The function g, : {0,1}™ X
{0,1}™ — {0,1}, is defined as
Grory(a;b) = 1 if and only if all the following conditions are met.

1. pa(2) - pp(2) has a non-zero coefficient for z™ 1 and has coefficient 0
for 27 for all j <m —1

2. If j 1is the smallest index such that a; =1, then
a; =0 for all i such that i > j and 1+ j is odd

18

3. If k 1s the smallest index such that by = 1, then
b; =0 for all i such that i >k and 1 + k is even

It is again helpful to consider an equivalent definition based on certificates.

Definition 16 (Alternative definition).

Let m > 2 be an integer. Consider the set of partial assignments C' =
{01 -+ - Va1 3y where 2 {0,1,...,2m — 1} — {0, 1, %} defined as follows.
For every i € {0,...m — 1},

1, if j=i
MOEE S
‘ 0, ifm—1>j>iandi+jis odd
* ifm—1>7>1and1+ j is even
1, if j=2m—1—1
=g FmEd<Eme e o
0, ifj>2m—1—iand (2m —1—1i)+j is even

*x, ifj>2m—1—1iand 2m—1—1)+j is odd

Now the function gy, is the function defined by the set of partial assignments
C’ 1.€. gor.

Lemma 11. Consider g, {0,1}™ x {0,1}™ — {0,1} for any odd integer
m > 2. Then

oly

® 50(Gpory) = 1 o si(Gpoy) = 5
b b80<g;oly) =m hd bsl<g;0ly) = 37712+1

Proof. It is clear from the alternative definition of gy, that it is defined by
a set of good partial assignments as introduced in definition 10. The result
then follows from Lemma 6. [

The following theorem follows from Lemma 11 and the OR-composition
Lemma.

Theorem 7. Consider gy, : {0,1}™ x {0,1}™ — {0,1} for any odd integer

m > 2.
Then the function f = OR# © Gyl has
2 1
bs() = 35 = 55(0)

19

Note that this bound matches the current best quadratic separation of
Ambainis and Sun [5].

4 Additional Properties of Function Compo-
sition

As we noted in Section 2, properties of function composition have been for-
mally studied by Tal and Gilmer et al. [18, 9] in the context of separating
sensitivity and block sensitivity. Here we take a closer look at the effect
of function composition on the measures 0-sensitivity, 1-sensitivity, 0-block
sensitivity and 1-block sensitivity. These properties provide the tools we
need to obtain quadratic separation of both 0-block sensitivity and 1-block
sensitivity from sensitivity.

First we define measures to quantify the number of sensitive bits for f on
x which are equal to 0 and those that are equal to 1 in z.

Definition 17. For a function f: {0,1}" — {0,1} and input x € {0,1}",
we define

o1(f,x) = {ilei =1 AND f(z) # f(z")}]

oo(f,x) = [{ilz; =0 AND f(z) # f(«')}].

We will use the following notation. We index the bits of the input y €

{07 1}mn to f cgasy = (y117y127 < Yims Y21, - - Yoms - - - Yndy - ynm)
We denote by y; the i-th group of m bits of y, that is y; = (yi1, Y2, - - - Yim)-

Lemma 12. For any functions f: {0,1}" — {0,1} and g: {0,1}™ — {0,1},
we have

so(fog)= zer?f?fo){%(f’ z)so(g) + o1(f, x)s1(g)}

s(fog)= max {ao(f.x)sule) +or(f.)si(a)}
Proof. We prove the first equation. The second equation has an analogous
proof.

First we prove so(fog) > I;lay(:){0’0<f, x)so(g)+o1(f,z)s1(g)}. Consider
zef~1(0

the input a € f~1(0) for which (oo(f,a)so(g) + o1(f,a)s1(g)) is maximized.
Note that sg(g), s1(g) don’t change for different choices of a € f~1(0). Now,

20

consider an input y € {0, 1}™" such that, a = (g(y1), ... 9(y»)) and for each
i € [n], if a; = g(y;) = 0, then s(g,y;) = so(g) and if a; = g(y;) = 1, then
s(g,y;) = s1(g). So if a; = 0, we choose as y; a O-input of g which achieves
the O-sensitivity of g, and similarly, if a; = 1, we choose as y; a 1-input of g
which achieves the 1-sensitivity of g.

Since a € f71(0), y must be a O-input of f o g. Therefore, we have

so(fog) > s(fog,y)>oo(f a)so(g) +o1(f, a)si(g)

Next we prove so(fog) < Ier?_al}EO){ao(f, x)so(g)+o1(f,z)s1(g)}. Consider
an input y € {0, 1}™" which achieves the 0-sensitivity of fogi.e. so(fog) =
s(fog,y). Let g(y1) = x1, g(y2) = x2 and so on, and let x = (21,25 ... 2,).
Consider the expression (oo(f,z)so(g) + o1(f,z)s1(g)). Now, if a bit y;; of y
is sensitive for f o g, then the bit z; = g(y;) must be a sensitive bit for f on
x.

Now, consider the set X of indices i € [n] constructed the following way: i
is included in Ay if and only if x; = ¢g(y;) = 0 and there is a bit y;; sensitive
for fogony.

Similarly, we define the set &) of indices i € [n] constructed the following
way: ¢ is included in &; if and only if z; = ¢g(y;) = 1 and there is a bit y;;
sensitive for f o g on y.

Note that for every i € &), the bit x; is a 0-bit of z and f is sensitive to the
i-th bit on z. So |Xy| < oo(f,).

Similarly |X;| < o1(f, x).

Now,

s(fogy) = s(g.9)+ Y s(g,u))

1€Xy JjEX

< solg) +) silg)

1€Xo JEX1

< oo(f,7)so(g) + o1(f, z)s1(g)

Therefore,

so(fog)=s(fog,y) <oolf,x)s0(g) + o1(f v)s1(g)

Since x € f71(0), this concludes the proof.]

21

To simplify the equations of Lemma 12 (at the cost of being less precise),
we define

d Ug(f) = zer?*aly(:(]) UO(f? 'CE) hd J?(f) = :BGr?*al)g()) Jl(fa .T)
o o5(f) = [oo(f, z) e 0i(f) = o o1(f, x)

Finally, we define
oo(f) = max{ag(f), op(f)}
o1(f) = max{a{(f), o1 (f)}
We can now use Lemma 12 to get the following bounds.

Corollary 1. For any functions f: {0,1}* — {0,1} and ¢g: {0,1}™ — {0, 1}

so(fog) <ay(f)solg) +at(f)si(g)
s1(f 0 g) < o3(f)so(g) + o1 (f)s1(g)

Note that the equalities in Lemma 12 change to inequalities in Corollary
1, since the max of o¢(f, x) and o1(f, x) may be achieved on different inputs
among = € f1(0) (or among x € f~!(1), respectively).
We now state some simple observations for these measures.

Lemma 13. For any function f: {0,1}" — {0,1}, and any input x, we have
1. S(f7 J]) = UO(fu I) + Ol(fa 1:)

2. 09(f) < so(f) 5. o5(f) < s1(f)
3. a%(f) < so(f) 6. oi(f) < s1(f)
4. 00(f) +%(f) = so(f) 7. 05(f) +o1(f) = si(f)

The proof of Lemma 13 is straightforward from the definitions.

22

Now we present an observation about these measures for monotone func-
tions.

Lemma 14. For any monotone function f: {0,1}" — {0,1}, we have

o 0i(f)=0

The proof follows from the definition of monotone functions.
We now consider the effects of function composition on 0- block sensitivity
and 1-block sensitivity.

Lemma 15. For any functions f: {0,1}" — {0,1} and g: {0,1}™ — {0, 1},
we have
bso(f 0 g) 2 bso(f) - min{bso(g),bs1(9)}

bs1(f o g) > bsi(f) - min{bso(g),bs1(g)}

Proof. Consider x € {0,1}" such that f(z) =0 and bso(f) = bs(f, x).

Now, consider input y € {0,1}"™" such that, x = (g(y1),...9(y,)) and for
each i € [n], if x; = g(y;) = 0, then bs(g,y;) = bso(g) and if x; = g(y;) = 1,
then bs(g,y;) = bs1(g). So if x; = 0, we choose as y; a 0-input of g on which
its O-block sensitivity is achieved, and similarly, if x; = 1, we choose as y; a
1-input of g on which its 1-block sensitivity is achieved.

Now, we claim that bso(fog,y) > bso(f) min{bso(g),bs1(g)}. To see this, let
P1, P2, - - -, pr be the disjoint sensitive blocks for f on z where k = bs(f, z).
For each of these sensitive blocks, there are at least min{bsq(g), bs1(g)} dis-
joint blocks of y such that flipping any of them changes the value of f o g.
This gives at least bso(f) - min{bso(g),bs1(g)} disjoint sensitive blocks for
f o g on the input y, and the first equation follows.

The second equation can be proved in an analogous way. O]

We get a stronger form of Lemma 15 if f satisfies some additional condi-
tions.

Lemma 16. For any functions f: {0,1}" — {0,1} and g: {0,1}™ — {0,1}
if [satisfies (1) [(07) = 0, (2) bso(f) = bs(f,0%), then bso(f o g) > bsolf)
bso(9)

ar?d if f satisfies (1) f(1™) = 1, (2) bs1(f) = bs(f,1™), then bsi(f o g) >
bs1(f) - bsi(g)

23

Proof. Consider input y € {0,1}™" such that, 0™ = (g(v1),...9(y,)) and
bs(g,y;) = bso(g) for each i € [n].

Now, we claim that bs(fog,y) > bso(f)bso(g). To see this, let p1, p2, ..., pr
be the disjoint sensitive blocks for f on input 0", where k = bs(f,0™). For
each of these k = bs(f,0") sensitive blocks, there are bsy(g) disjoint blocks
of y that we can flip and change the value of f og.

This gives bso(f) - bso(g) disjoint sensitive blocks for f o g on the input y.
The second inequality can be proved analogously. O

Comparing the statement of Lemma 16 with Lemma 2 of Tal [18] we note
that in the context of 0-block sensitivity and 1-block sensitivity it is enough
to require an additional condition for the outer function. On the other hand
the condition on the inner function in Lemma 2 of Tal [18] is necessary as
illustrated by considering f = OR,, and g = AN D,,.

Note that the conditions we require are similar to, but slightly different
from Definition 9 by Tal [18] of being in z-good form. It follows from Defi-
nition 9, that if f is in z-good form, then bs(f) = bs.(f). Our conditions do
not require that bs(f) = bs.(f) for a specific z.

5 Quadratic Separation of both bsy(f) and bs;(f)
from s(f)

We obtain constructions of functions with quadratic separation of both 0-
block sensitivity and 1-block sensitivity from sensitivity by considering var-
ious compositions of our new building blocks as well as some of the inner
functions used in previous quadratic separations.

Theorem 8. Consider gyon,: {0,1}™ x {0,1}™ — {0,1}.
Let f:{0,1}*" — {0,1} be defined as f = Gpoty © Gpoly-
Then, we have

e 50(f)=2(m+1) e si1(f)=4m
o bso(f) > m? e bsi(f) >m(m+1)

Therefore, we have

min{bso(f), bs1(f)} = Q(s(f)?)

24

Proof. In this proof, we refer to gy, by g, and we use the notation bs,,,(f) =

min{bso(f),bs1(f)}.

We first prove the following claims about o-values for g.

Claim 2. For any input x € g~*(0) exactly one of the following must be true:
* 0o(g,z) = s(g, %) and 01(g,2) =0
hd O'1<g,1') = S(g,l‘) and 0-0(971‘) =0

Proof of Claim:

For any O-input x = (a,b) of g, (1) of Lemma 13 states that

UO(Q? ZL’) + Ul(ga {L‘) = S(g,ZL’).

As in the definition of gy, consider the polynomials p,(2),py(z). If the
lowest degree monomial of p,(z)py(z) with a non-zero coefficient is z* then,
we have 2 cases:

Case 1: t < m—1. In this case, no 0-bit of a or b can be sensitive. Therefore,
oo(g,z) =0 and o1(g,x) = s(g,).

Case 2: t > m—1. In this case, no 1-bit of a or b can be sensitive. Therefore,
o1(g,z) = 0 and o¢(g,x) = s(g,). |

Claim 3. For an input x € g~'(1),
e oo(g,x) =m—1 e 01(g,2) =2

Proof of Claim:

Recall the alternative definition based on certificates. Any 1-input z of g
belongs to a unique subcube given by a certificate v; € C'. Since the subcubes
corresponding to different certificates in C are disjoint and at distance at least
2 from each other, every bit of x that is fixed by ~; is sensitive.

Since each certificate fixes exactly 2 bits to 1 and (m — 1) bits to 0, we have
oo(g,x) = (m —1) and o1(g,x) = 2. |
We can now use Lemma 12 to compute the sensitivity of f:

so(f) = 251(g) = 2(m + 1),

si(fy=(m—=1)-242-(m+1)=4m

Since g(0*™) = 0 and bso(g) = bs(g,0?™), we can use Lemma 16 to get
bso(f) > bso(g)? = m?>.

We can use Lemma 15 to get

bsi(f) = bsi(g) - min{bso(g), bs1(9)} = m(m +1).

Therefore, we have bs(f) > % and bS,in(f) = Q(s(f)?). O

25

We prove the following general theorem.

Theorem 9. For functions f: {0,1}" — {0,1} and g: {0,1}" — {0, 1} such
that the following conditions hold:

1. o1(f) = c1, where ¢, is some fized constant

2. so(g) = ca, where ¢y is some fixed constant

3. bso(f),bs1(f),bs0(g),bs1(g) = 0(n)

We have,
min{bso(f o g),bs1(f o g)} = Qs(f o 9)?)

The proof is straightforward from Corollary 1 and Lemma 15.

This theorem allows us to use various compositions of our new building

blocks and some of the inner functions of previous constructions to obtain
other functions with both 0-block sensitivity and 1-block sensitivity quadrat-
ically larger than sensitivity.
In particular, let f,g be any two functions from the following list of func-
tions: Rubinstein’s inner function [16], Virza’s inner function [20], Ambainis
and Sun’s inner function [5], gpoly, Gpory- In addition, we can also let g be
grF, g, or the inner function of the function based on Hamming Code [10].
Then, bso(f o g) and bs;(f o g) are both quadratically larger than s(f o g).

Acknowledgments

We thank Avishay Tal for helpful remarks.

References

[1] Andris Ambainis. Polynomial degree vs. quantum query complexity. J.
Comput. Syst. Sci., 72(2):220-238, 2006.

[2] Andris Ambainis, Mohammad Bavarian, Yihan Gao, Jieming Mao, Xi-
aoming Sun, and Song Zuo. Tighter relations between sensitivity and
other complexity measures. In Proceedings of the 41st International Col-
loquium on Automata, Languages, and Programming (ICALP), pages
101-113, 2014.

26

3]

[10]

[11]

[12]

Andris Ambainis and Krisjanis Prusis. A tight lower bound on certificate
complexity in terms of block sensitivity and sensitivity. In Proceedings
of the 39th International Symposium on Mathematical Foundations of
Computer Science (MFCS), pages 33-44, 2014.

versus certificate complexity of boolean functions. In Proceedings of
the 11th International Computer Science Symposium in Russia (CSR),
pages 16-28, 2016.

Andris Ambainis and Xiaoming Sun. New separation between s(f) and
bs(f). Electronic Colloquium on Computational Complezity (ECCC),
18:116, 2011.

Harry Buhrman and Ronald De Wolf. Complexity measures and decision
tree complexity: a survey. Theoretical Computer Science, 288(1):21-43,
2002.

Sourav Chakraborty. On the sensitivity of cyclically-invariant boolean
functions. Discrete Mathematics € Theoretical Computer Science,
13(4):51-60, 2011.

Stephen A. Cook, Cynthia Dwork, and Riidiger Reischuk. Upper and
lower time bounds for parallel random access machines without simul-
taneous writes. SIAM J. Comput., 15(1):87-97, 1986.

Justin Gilmer, Michael Saks, and Srikanth Srinivasan. Composition
limits and separating examples for some boolean function complexity
measures. Combinatorica, 36(3):265-311, June 2016.

Parikshit Gopalan, Rocco A. Servedio, Avishay Tal, and Avi Wigder-
son. Degree and sensitivity: tails of two distributions. CoRR,
abs/1604.07432, 2016.

Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on
the sensitivity conjecture. Theory of Computing, Graduate Surveys, 4:1—
27, 2011.

Karthik C. S. and Sébastien Tavenas. On the sensitivity conjecture
for disjunctive normal forms. In 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,

27

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

FSTTCS 2016, December 13-15, 2016, Chennai, India, pages 15:1—
15:15, 2016.

Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and
I-block sensitivity of boolean functions. Inf. Comput., 189(1):43-53,
February 2004.

Noam Nisan. CREW PRAMs and decision trees. SIAM J. Comput.,
20(6):999-1007, 1991.

Noam Nisan and Mario Szegedy. On the degree of boolean functions as
real polynomials. Computational Complexity, 4(4):301-313, Dec 1994.

David Rubinstein. Sensitivity vs. block sensitivity of boolean functions.
Combinatorica, 15(2):297-299, June 1995.

Hans-Ulrich Simon. A tight w(loglog n)-bound on the time for parallel
RAM’s to compute nondegenerated boolean functions. Information and
Control, 55(1):102 — 107, 1982.

Avishay Tal. Properties and applications of boolean function compo-
sition. In Proceedings of Innovations in Theoretical Computer Science
Conference (ITCS), pages 441-454, 2013.

Avishay Tal. Personal communication, 2018.

Madars Virza. Sensitivity versus block sensitivity of boolean functions.
Information Processing Letters, 111(9):433 — 435, 2011.

28

ECCC
https://eccc.weizmann.ac.il

ISSN 1433-8092 1

