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Abstract

The canonical problem that gives an exponential separation between deterministic and
randomized communication complexity in the classical two-party communication model is
‘Equality’. In this work, we show that even allowing access to an ‘Equality’ oracle, deterministic
protocols remain exponentially weaker than randomized ones. More precisely, we exhibit a total
function on n bits with randomized one-sided communication complexity O(log n), but such that
every deterministic protocol with access to ‘Equality’ oracle needs Ω(n/ log n) cost to compute it.

1 Introduction

A deterministic communication protocol in Yao’s two-party model is a strategy for a collaborative
game between two parties, Alice and Bob, each of whom receives an input and whose task is to
compute a function while communicating as little as possible.

It has been known since the origins of communication complexity that randomized protocols,
where the parties are given access to a source of randomness and are allowed to make errors with
small probability, are strictly more powerful than deterministic protocols. The classic example is
the Equality function over n-bit strings, which has a randomized protocol with O(log n) bits of
communication, while every deterministic protocol requires at least n+ 1 bits [Yao79].

An efficient protocol for Equality is obtained by using a fingerprinting technique: use the
randomness source to obtain a fingerprint of the strings to be compared of length O(log n), exchange
the fingerprints, and answer whether the fingerprints are equal.

A few more examples of functions where randomness is helpful are the ‘Greater-Than’ func-
tion [Nis93], the sparse set disjointness problem [HW07], and the Hamming distance problem with
a small threshold [Yao03]. In all cases the fingerprinting technique is enough to efficiently solve the
problems. Is fingerprinting all there is to randomized protocols?

To state this question in a formal way we consider a model of communication where the parties
are given access to an oracle that solves the Equality problem and are charged a cost of one bit each
time the parties call the oracle. The set of functions that can be computed by some protocol in this
model of cost polylog n bits, is called PEQ. The set of functions that have randomized protocols of
cost polylog n is called BPP. We overload notation to use PEQ and BPP to refer to both the class of
functions and the corresponding communication models respectively. The question then is whether
every function that has a randomized protocol with c bits of communication, also has a PEQ protocol
with poly(c, log n) bits of communication and oracle calls. In other words, is PEQ = BPP?
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The PEQ model was first considered in [BFS86]. The knowledge about it until our work (for total
functions, see discussion below) can be summarized as follows:

P ( PEQ ⊆ BPP.

PEQ is also strictly weaker than the PNP model, since EQ calls can be simulated with an NP oracle but
PEQ cannot efficiently solve the coNP-complete set-disjointness problem. It also is worth mentioning
that giving access to an Equality oracle is equivalent to giving access to a Greater-Than oracle up to a
logarithmic factor, and that the latter model of communication was introduced by Krajíček [Kra98]
as real communication.

Partial functions. There are many examples in the literature of partial functions that separate PEQ

from BPP. One such example is the gap Hamming distance problem with a large gap. Concretely,
the problem is to distinguish between pairs of input strings whose Hamming distance is less than a
1/3-fraction and more than a 2/3-fraction. This can be solved with a randomized protocol with O(1)
bits, that samples a position in the strings uniformly at random and answers whether the strings are
the same at that position. On the other hand, this problem has cost Ω(n) in the PNP model [PSS14],
and hence in the PEQ model too.

A different example follows from the simulation theorem of [BEGJ00], made explicit in [dRNV16],
to lift a (partial) function that exhibits an exponential gap between deterministic and randomized
query complexity, say promised majority. To be more precise, we consider the majority function of n
bits with the promise that the fraction of zeros is either less than 1/3 or more than 2/3, which can be
computed with a randomized decision tree by querying the input at a constant number of randomly
sampled points, but requires linearly many queries to be solved by a deterministic decision tree. If
we compose this function with the indexing gadget with pointers of size O(log n) then we have a
randomized protocol of cost O(log n) that evaluates a constant number of instances of the gadget,
while the simulation theorem tells us that it requires real communication Ω(n log n).

Total functions. The question about separation between PEQ and BPP for total functions requires
a different approach. If one uses the same approach as before, namely, lifting theorems, then a
quadratic separation follows for example from the pointer chasing function [ABB+17] composed
with indexing. However, this is where the lifting from query complexity approach seems to end,
since deterministic and randomized query complexity are known to be polynomially related for
total functions [Nis91]. Our main result is a non-lifted total function, which exhibits exponential
separation between PEQ and randomized communication.

Definition 1.1. The integer inner product problem IIPm,t(x , y) is defined as follows. The inputs are
integer vectors x , y ∈ [−M , M]t where M = 2m. The output is 1 if 〈x , y〉 = 0, where the inner
product is computed over the integers.

Note that the input size of IIPm,t is n= (m+ 1)t. We consider it for large m and t = O(1).

Theorem 1.2 (Main theorem, informal). For any t ≥ 6, the total function IIP on n bits can be computed
with O(log n) bits of randomized communication but requires Ω(n/ log n) cost to be solved by PEQ

protocols.

2 Preliminaries

We assume knowledge with standard definitions in communication complexity, such as in [KN97].
The only somewhat non-standard definition we need is that of protocols with access to an oracle.
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If A is a communication problem, then the parties involved in a PA protocol communicate via an
oracle for A. This is, every message is a pair of inputs for the function A, and the output A(x , y) is
visible to both parties. We assume that A is nontrivial in the sense that it can simulate sending one-bit
messages from each party to the other one. The cost of such a protocol is the number of bits the
oracle outputs, and PA( f ) is the minimum over all protocols. In particular, PEQ is a protocol with
oracle access to the equality oracle, and PGT is a protocol with oracle access to the greather-than
oracle, both of which are nontrivial.

3 A Lower Bound Technique for PEQ

The goal of this section is to develop a lower bound technique for PEQ. It will be convenient to
consider instead the model of PGT, where the players have oracle access to a greater-than oracle.
Note that as an EQ oracle can be simulated by two calls to a GT oracle, the latter model is stronger.

Given a matrix M we denote by |M | the number of elements in M . We say that M is monotone if
Mi1, j1 ≤ Mi2, j2 for all pairs of entries such that i1 ≤ i2 and j1 ≤ j2.

Lemma 3.1. A monotone matrix M can be partitioned into four rectangles R1, R2, R3, R4, such that
R1, R2 are monochromatic and |R1|+ |R2| ≥ |R3|+ |R4|.

Proof. Let a and b be the dimensions of the matrix M and assume without loss of generality that
a ≥ b. Let a1 be the maximal number such that Ma1,b1

= 0, with b1 = da1 b/ac. Then the rectangle
R1 = [1, a1] × [1, b1] is 0-monochromatic, while the rectangle R2 = [a1 + 1, a] × [b1 + 1, b] is
1-monochromatic. We define R3 = [1, a1]× [b1 + 1, b] and R4 = [a1 + 1, a]× [1, b1]. To complete
the proof let a2 = a− a1 and b2 = b− b2, and observe that if a1 > a2 then b1 ≥ b2, while if a1 < a2

then b1 ≤ b2. Therefore by the rearrangement inequality

|R1|+ |R2|= a1 b1 + a2 b2 ≥ a1 b2 + a2 b1 = |R3|+ |R4| .

If R is a set of rectangles Ri = Ai × Bi , we denote the perimeter of R by p(R) =
∑

Ri∈R|Ai|+ |Bi|.

Lemma 3.2. Assume that f is an n-bit function which has a PGT protocol with cost c. Then there exists
a partition R of f into monochromatic rectangles with perimeter p(R)≤ 2n+1(2n)c .

Proof. Let p(M) be the minimum perimeter over all partitions of a matrix M into monochromatic
rectangles. Let p(a, b) be the maximum of p(M) over all monotone matrices M of size a× b. We prove
by induction over a and b that p(a, b)≤ (a+ b) log(ab). Consider a monotone matrix M of size a× b.
Apply Lemma 3.1 to partition the matrix into 4 rectangles, two monochromatic rectangles of size
a1× b1 and a2× b2, and two other rectangles of size a2× b1 and a1× b2, with a1+a2 = a, b1+ b2 = b,
and a1 b2 + a2 b1 ≤ ab/2. We then apply the induction hypothesis to each non-monochromatic
rectangle, while noting that for the monochromatic rectangles, their perimeter is the sum of their
dimensions:

p(M)≤ (a1 + b1) + (a2 + b2) + p(a1, b2) + p(a2, b1)

≤ (a1 + b1) + (a2 + b2) + (a1 + b2) log(a2 b1) + (a2 + b1) log(a1 b2)

≤ (a+ b) + (a+ b) log(ab/2)

= (a+ b) log(ab) .

Next, assume that we have a matrix M with a partition R into monochromatic rectangles
Ri = Ai × Bi with perimeter p(R). Assume that we obtain a matrix M ′ by instantiating a GT oracle
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call in each rectangle. We will show that there exists a partition R′ of M ′ into monochromatic
rectangles such that

p(R′)≤ 2n · p(R).

For each rectangle Ri in M ′, first sort the rows in increasing order and the columns in decreasing
order so that Ri becomes monotone. Then by the previous bound for monotone matrices:

p(R′)≤
∑

Ri∈R
p(|Ai|, |Bi|)≤

∑

Ri∈R
(|Ai|+ |Bi|) log|Ri| ≤ 2n

∑

Ri∈R
|Ai|+ |Bi|= 2n · p(R) .

To conclude the proof, let M be a matrix obtained by c iterative calls to the GT oracle. Let
M0, . . . , Mc denote the intermediate matrices, where Mi is the matrix obtained after the first i
calls. Then M0 is a monochromatic matrix of size 2n × 2n and M = Mc. Thus p(M0) = 2n+1 and
p(Mi)≤ 2n · p(Mi−1) for i = 1, . . . , c. We conclude that p(M)≤ 2n+1 · (2n)c as claimed.

The next lemma gives an easy to verify condition under which Lemma 3.2 can be applied.

Lemma 3.3. Let f be an n-bit function with a corresponding 2n×2n communication matrix M . Assume
that:

1. The number of entries i, j with Mi, j = 1 is α22n.

2. For any 1-monochromatic rectangle R in M it holds that |R| ≤ β22n.

Then the communication complexity of f in PEQ is Ω
�

log(α/
p
β)

log n

�

.

Proof. Let R be a partition of f −1(1) into rectangles Ri = Ai × Bi which minimizes
∑

|Ai| + |Bi|.
Observe that

∑

Ri∈R
|Ai|+ |Bi| ≥ 2

∑

Ri∈R

Æ

|Ai||Bi| . (1)

Let x i = |Ai||Bi|/22n denote the relative area of each rectangle Ri . Then the followingminimization
problem lower bounds the right hand side of (1):

2n+1 · min
∑

i x i=α,0≤x i≤β

∑

i

p

x i .

The minimum of a concave function over a convex polytope is attained at a vertex, in this case
any point with bα/βc coordinates equal to β , one coordinate equal to α−bα/βcβ , and the rest equal
to 0. Hence

∑

Ri∈R
|Ai|+ |Bi| ≥ 2n+1bα/βc

Æ

β .

If f has a PEQ protocol with cost c, then it has a PGT protocol with cost 2c, and hence by Lemma 3.2

∑

Ri∈R
|Ai|+ |Bi| ≤ 2n+1(2n)2c .

Rearranging these gives c ≥ Ω(log(α/
p

β)/ log n) as claimed.
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4 Separation

We demonstrate the separation by considering the inner product function over the integers. We recall
the definition from the introduction.

Definition 4.1. The integer inner product problem IIPm,t(x , y) is defined as follows. The inputs
are integer vectors x , y ∈ [−M , M]t where M = 2m. The output is 1 if 〈x , y〉 = 0, where the inner
product is computed over the integers.

Note that the input size of IIPm,t is n= (m+ 1)t. We consider it for large m and t = O(1).

Lemma 4.2. There is a coRP protocol for IIPm,t of cost O(t log m).

Proof. Consider the following protocol: sample a uniformly random prime q among the first
4m + 2 log t primes, compute 〈x , y〉 (mod q) by having Alice send t integers x i (mod q) to Bob,
and accept if and only if 〈x , y〉 = 0 (mod q). The protocol uses O(t log q) = O(t log m) bits of
communication.

The protocol is always correct on 1-inputs. To see that it is correct on 0-inputs with probability
at least 1/2 we observe that the probability of failure is the probability of picking a prime q that
divides 〈x , y〉. Since the number 〈x , y〉 is bounded by tM2 in absolute value, it is divisible by at most
log(tM2) = 2m+ log t primes, and since we have 4m+ 2 log t primes to choose from, the probability
of failure is at most 1/2.

Lemma 4.3. If t is even then Prx ,y[IIPm,t(x , y) = 1] = Ω(1/tM2).

Proof. Write x = (x ′,−x ′′) and y = (y ′, y ′′) where x ′, y ′, x ′′, y ′′ ∈ [−M , M]t/2, so that 〈x , y〉 =
〈x ′, y ′〉−〈x ′′, y ′′〉. The distribution of 〈x ′, y ′〉 and 〈x ′′, y ′′〉 are i.i.d and take at most O(tM2) possible
values. So the collision probability is Ω(1/tM2).

Lemma 4.4. For any rectangle R ⊆ IIP−1
m,t(1) we have |R| ≤ (4M)t .

Proof. Let A, B ⊂ [−M , M]t such that 〈x , y〉 = 0 for all x ∈ A, y ∈ B. Let p be a prime between
2M + 1 and 4M , and consider the problem modulo p. Note that we can injectively identify A, B with
subsets of Ft

p. Let V, W denote the linear subspaces of Ft
p spanned by A, B, respectively. Then V⊥W

and hence |V ||W | ≤ pt . This implies that |A||B| ≤ pt ≤ (4M)t .

Lemma 4.5. Any PEQ protocol for IIPm,t with even t ≥ 6 has cost Ω(n/ log n).

Proof. Apply Lemma 3.3 with α= Ω(1/tM2) as given by Lemma 4.3, and β = (4M)t/(2M + 1)2t ≤
1/M t as given by Lemma 4.4. We obtain

PEQ(IIPm,t) = Ω

�

log(α/
p

β)
log n

�

= Ω

�

log(M t/2−2/t)
log n

�

= Ω(tm/ log n) = Ω(n/ log n) .

A related example. We give a similar separation by the inner product function over polynomials.
Let F2[z] denote the ring of univariate polynomials over F2.

Definition 4.6. The polynomial inner product problem PIPm,t(x , y) is defined as follows. The inputs
x , y are t-tuples of polynomials in F2[z], each of degree at most m. The output is 1 if 〈x , y〉 = 0,
where the inner product is computed over F2[z].

Note that also here the input size is n= (m+ 1)t. Again we consider large m and t = O(1).
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Lemma 4.7. There is a coRP protocol for PIPm,t of cost O(t log m).

Proof. Consider the following protocol. Alice and Bob interpret their polynomials as polynomials
in Fq[z] with q = 2dlog me+2. They sample a uniformly random point z ∈ Fq and compute 〈x , y〉(z)
by having Alice send the result of evaluating each of her polynomials at z. The protocol uses
O(t log q) = O(t log m) bits of communication.

The protocol is always correct on 1-inputs. To see that it is correct on 0-inputs with probability at
least 1/2 we observe that the probability of failure is the probability of picking a root of 〈x , y〉. Since
the number of roots is at most 2m and we have q ≥ 4m points in Fq to choose from, the probability
of failure is at most 1/2.

Lemma 4.8. Any PEQ protocol for IIPm,t with even t ≥ 6 has cost Ω(n/ log n).

The proof is analogous to that of Lemma 4.5. We can use Lemma 4.3 unchanged, and we adapt
Lemma 4.4 by considering the inner product function over Fq with q = 2m.

5 Concluding Remarks

This work belongs to the general area of understanding the power of randomness in communication
complexity. We use this opportunity to remind the readers of a fascinating open problem, posed
explicitly by Göös, Pitassi and Watson [GPW18], which is whether BPP ⊂ PNP for total functions. It is
known that this containment is not true for partial functions. Göös et al. suggested, as a first step,
separating the class of total functions in BPP from an interesting subclass of PNP. In this work, we
took this step by providing the first (exponential) separation between BPP and PEQ, the latter being
one of the most natural subclasses of PNP . However, the original problem of separating BPP from PNP

remains open.
To state this in combinatorial terms, a function f has a PNP protocol of cost c if the following

holds. There exists a list of 2c rectangles Ri and values zi ∈ {0, 1}, such that f (x , y) = zi for the first
rectangle Ri in the list for which (x , y) ∈ Ri (We may assume that the last rectangle contains all
possible inputs, to make this model well defined). In particular, if BPP ⊂ PNP then there must exist a
monochromatic rectangle in f of density 2−O(c). Understanding this question seems to be pivotal
towards understanding the relation between BPP and PNP.

Problem 1. Let f be an n-bit total boolean function with a randomized protocol of cost c. Is it true that
f must contain a monochromatic rectangle R of size |R| ≥ 2−O(c)22n?
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