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Abstract

The canonical problem that gives an exponential separation between deterministic and
randomized communication complexity in the classical two-party communication model is
‘Equality’. In this work we show that even allowing access to an ‘Equality’ oracle, deterministic
protocols remain exponentially weaker than randomized ones. More precisely, we exhibit a total
function on n bits with randomized one-sided communication complexity O(log n), but such that
every deterministic protocol with access to ‘Equality’ oracle needs Ω(n) cost to compute it.

Additionally we exhibit a natural and strict infinite hierarchy within BPP, starting with the
class PEQ at its bottom.

1 Introduction

A deterministic communication protocol in Yao’s two-party model is a strategy for a collaborative
game between two parties, Alice and Bob, each of whom receives an input and whose task is to
compute a function while communicating as little as possible.

It has been known since the origins of communication complexity that randomized protocols,
where the parties are given access to a source of randomness and are allowed to make errors with
small probability, are strictly more powerful than deterministic protocols. The classic example is
the Equality function over n-bit strings, which has a randomized protocol with O(log n) bits of
communication, while every deterministic protocol requires at least n+ 1 bits [Yao79].

An efficient protocol for Equality is obtained by using a fingerprinting technique: use the
randomness source to obtain a fingerprint of the strings to be compared of length O(log n), exchange
the fingerprints, and answer whether the fingerprints are equal.

A few more examples of functions where randomness is helpful are the ‘Greater-Than’ func-
tion [Nis93], the sparse set disjointness problem [HW07], and the Hamming distance problem with
a small threshold [Yao03]. In all cases the fingerprinting technique is enough to efficiently solve the
problems. Is fingerprinting all there is to randomized protocols?

To state this question in a formal way we consider a model of communication where the parties
are given access to an oracle that solves the Equality problem and are charged a cost of one bit each
time the parties call the oracle. The set of functions that can be computed by some protocol in this
model with cost polylog n bits is called PEQ. The set of functions that have randomized protocols of
cost polylog n is called BPP. We overload notation and use PEQ and BPP to refer to both the class of
functions and the corresponding communication models respectively. The question then is whether
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every function that has a randomized protocol with c bits of communication, also has a PEQ protocol
with poly(c, log n) bits of communication and oracle calls. In other words, is PEQ = BPP?

The PEQ model was first considered in [BFS86]. The knowledge about it until our work (for total
functions, see discussion below) can be summarized as follows:

P ( PEQ ⊆ BPP.

PEQ is also strictly weaker than the PNP model, since EQ calls can be simulated with an NP oracle but
PEQ cannot efficiently solve the coNP-complete set disjointness problem. It also is worth mentioning
that giving access to an Equality oracle is equivalent to giving access to a Greater-Than oracle up to
a logarithmic factor. The latter model was introduced as real communication by Krajíček [Kra98],
with a connection to proof complexity in mind, and later found further applications in the same
area [BEGJ00, BFI+18].

Partial functions. There are many examples in the literature of partial functions that separate PEQ

from BPP. One such example is the gap Hamming distance problem with a large gap. Concretely,
the problem is to distinguish between pairs of input strings whose Hamming distance is less than a
1/3-fraction and more than a 2/3-fraction. This can be solved with a randomized protocol with O(1)
bits that samples a position in the strings uniformly at random and answers whether the strings are
the same at that position. On the other hand, this problem has cost Ω(n) in the PNP model [PSS14],
and hence in the PEQ model too.

A different example follows from the simulation theorem of [BEGJ00], made explicit in [dRNV16],
and it is to lift a (partial) function that exhibits an exponential gap between deterministic and
randomized query complexity, say promised majority. To be more precise, we consider the majority
function of n bits with the promise that the fraction of zeros is either less than 1/3 or more than 2/3,
which can be computed with a randomized decision tree by querying the input at a constant number
of randomly sampled points, but requires linearly many queries to be solved by a deterministic
decision tree. If we compose this function with the indexing gadget with pointers of size O(log n)
then we have a randomized protocol of cost O(log n) that evaluates a constant number of instances
of the gadget, while the simulation theorem tells us that it requires real communication Ω(n log n).

Total functions. The question about a separation between PEQ and BPP for total functions requires
a different approach. If one uses the same means as before, namely lifting theorems, then a quadratic
separation follows for example from the pointer chasing function [ABB+17] composed with indexing.
However, this is where the lifting from query complexity approach seems to end, since deterministic
and randomized query complexity are known to be polynomially related for total functions [Nis91].
Our main result is a non-lifted total function, which exhibits an exponential separation between PEQ

and randomized communication.

Definition 1.1. The integer inner product problem IIPm,t(x , y) is defined as follows. The inputs are
integer vectors x , y ∈ [−M , M]t where M = 2m. The output is 1 if 〈x , y〉 = 0, where the inner
product is computed over the integers.

We denote by IIPt the family of functions IIPm,t with fixed t = O(1) and growing m. Note that
the input size of IIPm,t is n= (m+ 1)t.

Theorem 1.2 (Main theorem, informal). For any t ≥ 6, the total function IIPt on n bits can be computed
with O(log n) bits of randomized communication but requires Ω(n) cost to be solved by PEQ protocols.

Once we settled that EQ is not enough to simulate BPP because PEQ cannot efficiently solve IIP,
the next natural candidate for an oracle A such that PA = BPP becomes IIP itself. However, we also
show that for any fixed t, IIPt is not enough to simulate BPP, and in fact the complexity classes
defined by IIP oracles form a strict infinite hierarchy.
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Theorem 1.3. There is an infinite sequence (t i)i∈N such that

P ( PEQ ( PIIPt1 ( · · · ( PIIPti ( PIIPti+1 ( · · · ⊂ BPP .

2 Preliminaries

We assume familiarity with standard definitions in communication complexity, such as in [KN97].
The only somewhat non-standard definition we need is that of protocols with access to an oracle.

If A is a communication problem, then the parties involved in a PA protocol communicate via an
oracle for A. This is, every message is a pair of inputs for the function A, and the output A(x , y) is
visible to both parties. We assume that A is nontrivial in the sense that it can simulate sending one-bit
messages from each party to the other one. The cost of such a protocol is the number of bits the
oracle outputs, and PA( f ) is the minimum over all protocols. In particular, PEQ is a protocol with
oracle access to the Equality oracle, and PGT is a protocol with oracle access to the Greater-Than
oracle, both of which are nontrivial.

Usually the cost of an oracle call is defined with an additional term logarithmic in the size of its
inputs, since otherwise we could solve any function with a single call to a strong oracle such as set
disjointness. The kind of oracles we consider are weak enough that we do not need any limits on the
input size to prove lower bounds, hence we omit the additional term for simplicity.

In fact, in our analysis, after a call to the oracle we immediately partition the set of inputs
compatible with the answer into a set of rectangles. This makes it convenient to work with a stronger
model where all the possible sets of answers are partitioned beforehand, and the oracle tells the
players not only the answer to their query, but also which rectangle in the partition their input belongs
to, at no extra cost.

Formally, we identify an oracle A with the smallest family of matrices MA closed under removing,
duplicating, and permuting rows or columns that contains all the communication matrices of A, one
for each possible input length. To each matrix M ∈MA we associate a monochromatic rectangle
partition R(M). In general, there may be many such choices; a good choice will be crucial for our
lower bound technique. The only requirement is that this partition is to monochromatic rectangles,
and hence a refinement of the answer given by the oracle.

Every node in the protocol tree corresponds to a rectangle R of compatible inputs, is labelled with
a matrix M ∈MA of the same dimensions as R, and has one child for each rectangle R′ ∈ R(M).
Upon reaching a node R the players move to the child R′ that contains their input. Analogous to how
one bit of deterministic communication induces a refined partition of the input matrix where each
rectangle is split into two, one call to an oracle induces a refined partition where each rectangle is
replaced by the partition R(M) associated to a matrix M ∈MA of the same size.

3 A Lower Bound Technique for P with Oracle Access

The goal of this section is to develop a lower bound technique for PEQ, and more generally for P with
oracle access. The key property of EQ that we exploit is that, no matter how it is transformed by
an oracle call, we can always partition the matrix of EQ into few rectangles so that a large area is
monochromatic. More generally, if we denote the number of elements in a matrix M by |M |, we
define the property as follows.

Definition 3.1. A family of matrices M has ε-monochromatic rectangles if every matrix M ∈M
contains a monochromatic rectangle of size at least ε|M |.

We obtain our lower bounds by estimating the following complexity measure.
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Definition 3.2. If R is a set of rectangles, we denote the η-area of R by pη(R) =
∑

Ri∈R|Ri|η. The
η-area of a matrix is the minimum of pη(R) over all monochromatic partitions R of M .

Observe that the η-area of a matrix M is bounded between |M |η, which is attained if and only if
the matrix is monochromatic, and |M |, which corresponds to partitioning the matrix into singletons.
In fact, partitioning into either rows or columns gives a better upper bound of 2|M |(1+η)/2 for any
matrix, and it can be shown that the matrix of inner product modulo 2 attains this bound up to a
constant factor.

The relative η-area of a matrix M is qη(M) = pη(M)/|M |η. Note that qη(M) ≥ 1 with equality
attained if and only if M is monochromatic. The relative η-area of a family of matrices is the
maximum relative η-area over all matrices in the family.

Lemma 3.3. If a family of matricesM is ε-monochromatic, then for anyη such that 1/(1−log2(1−ε))<
η < 1 there exists a constant ξ= ξ(ε,η) such that qη(M)≤ ξ.

Proof. We prove the lemma by induction over the size of the matrices in the family. This is clearly
true for 1 × 1 matrices; otherwise consider a matrix M ∈M of size r = |M |. By assumption M
contains a monochromatic rectangle R1 of size r1 ≥ εr, so we can partition M into R1 and two
non-monochromatic rectangles R2 and R3 of respective sizes r2 and r3. We then apply the induction
hypothesis to each non-monochromatic rectangle, while noting that the η-area of R1 is rη1 :

pη(M)≤ rη1 + pη(R2) + pη(R3)

≤ rη1 + ξrη2 + ξrη3

≤ (1+ 2ξ)
�

r1 + ξr2 + ξr3

1+ 2ξ

�η

= (1+ 2ξ)1−η (r1 + ξr2 + ξr3)
η

≤ (1+ 2ξ)1−η
�

ξ+ (1− ξ)ε
�η

rη .

We can write (1− ε) = (2+δ)1−1/η with δ > 0 by the assumption on η. Set α= (2+δ/2)1−1/η

so that α > (1− ε) and set ξ=max{2/δ,ε/(α− (1− ε))}. Then we can bound

1+ 2ξ= ξ(2+ 1/ξ)≤ ξ(2+δ/2) = ξα1/(1−1/η)

and
ξ+ (1− ξ)ε= ξ(1− ε+ ε/ξ)≤ ξα

so that
pη(M)≤ (1+ 2ξ)1−η

�

ξ+ (1− ξ)ε
�η

rη ≤ ξrη
�

α−ηαη
�

= ξrη .

For simplicity we can take η= 1− ε > 1/(1− log2(1− ε)) whenever 0< ε < 1/2.

Lemma 3.4. Assume that f is a function which has a PA protocol with cost c. Then the communication
matrix of f has relative η-area qη( f )≤ (qη(MA))c .

Proof. First we associate to each matrix M ∈MA a partition R(M) with relative η-area at most
q = qη(MA). Next, assume that we have a matrix M with a partitionR into monochromatic rectangles
with η-area pη(R). For each rectangle Ri ∈R choose a matrix Mi ∈MA of the same dimensions. We
obtain a matrix M ′ and a partition R′ by replacing each rectangle Ri by Mi, and by refining R by
R(Mi), respectively. We can bound the total η-area of R′ by

pη(R′) =
∑

Ri∈R
pη(R(Mi))≤

∑

Ri∈R
q · |Ri|η = q · pη(R) .
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As R,R′ are partitions of M , M ′ of the same dimensions, their relative η-areas satisfy

qη(M
′)≤ q · qη(M) .

To conclude the proof, let M be a matrix obtained by c iterative calls to the oracle. Let M0, . . . , Mc

denote the intermediate matrices, where Mi is the matrix obtained after the first i calls. Then M0

is a monochromatic matrix, M = Mc, and all matrices M0, . . . , Mc have the same dimensions. Thus
qη(M0) = 1 and qη(Mi)≤ q · qη(Mi−1) for i = 1, . . . , c. We conclude that qη(M)≤ qc as claimed.

The next lemma gives an easy to verify condition under which Lemma 3.4 can be applied.

Lemma 3.5. Fix 0 < η < 1. Let A be an oracle with constant relative η-area and let f be an n-bit
function with a corresponding 2n × 2n communication matrix M . Assume that:

1. The number of entries i, j with Mi, j = 1 is α22n.

2. For any 1-monochromatic rectangle R in M it holds that |R| ≤ β22n.

Then the communication complexity of f in PA is Ω(log(αβη−1)).

Proof. Let R be a partition of f −1(1) with minimum η-area. Let x i = |Ri|/22n denote the density of
each rectangle Ri . Then the following minimization problem lower bounds the η-area of R:

pη(R)≥ 22ηn · min
∑

i x i=α,0≤x i≤β

∑

i

xηi .

The minimum of a concave function over a convex polytope is attained at a vertex, in this case
any point with bα/βc coordinates equal to β , one coordinate equal to α−bα/βcβ , and the rest equal
to 0. Hence

pη(R)≥ 22ηnbα/βcβη .

If f has a PA protocol with cost c, then by Lemma 3.4

pη(R)≤ 22ηn(qη(MA))
c = 22ηn+O(c) .

Rearranging these gives c ≥ Ω(log(αβη−1)) as claimed.

3.1 An Improved Bound for Equality

Coming back to the particular case of PEQ, it is not hard to prove that the MEQ family of matrices
has 1/9-monochromatic rectangles, and hence Lemma 3.5 applies to EQ with η= 8/9. While this is
already enough to separate PEQ and BPP, some of our applications require a tighter bound on η.

To obtain a better bound it is convenient to consider instead the model of PGT, where the players
have oracle access to a Greater-Than oracle. Note that as an EQ oracle can be simulated by two calls
to a GT oracle, the latter model is stronger.

We show that MGT has constant η-area for any η > 1/2. Every matrix M ∈MGT is monotone, in
the sense that it satisfies Mi1, j1 ≤ Mi2, j2 for all pairs of entries such that i1 ≤ i2 and j1 ≤ j2.

Lemma 3.6. A monotone matrix M can be partitioned into four rectangles R1, R2, R3, R4, such that
R1, R2 are monochromatic and |R1|+ |R2| ≥ |R3|+ |R4|.

5



Proof. Let a and b be the dimensions of the matrix M and assume without loss of generality that
a ≥ b. Let a1 be the maximal number such that Ma1,b1

= 0, with b1 = da1 b/ac. Then the rectangle
R1 = [1, a1] × [1, b1] is 0-monochromatic, while the rectangle R2 = [a1 + 1, a] × [b1 + 1, b] is
1-monochromatic. We define R3 = [1, a1]× [b1 + 1, b] and R4 = [a1 + 1, a]× [1, b1]. To complete
the proof let a2 = a− a1 and b2 = b− b2, and observe that if a1 > a2 then b1 ≥ b2, while if a1 < a2

then b1 ≤ b2. Therefore by the rearrangement inequality

|R1|+ |R2|= a1 b1 + a2 b2 ≥ a1 b2 + a2 b1 = |R3|+ |R4| .

We use this partition to prove a more refined version of Lemma 3.3.

Lemma 3.7. For any 1/2< η < 1 there exists a constant ξ= ξ(η) such that qη(MGT)≤ ξ.

Proof. The proof is analogous to that of Lemma 3.3, except that we use Lemma 3.6 to partition each
matrix into two monochromatic rectangles R1 and R2, and two non-monochromatic rectangles R3

and R4. We then get a bound

pη(M)≤ rη1 + rη2 + pη(R3) + pη(R4)

≤ rη1 + rη2 + ξrη3 + ξrη4

≤ (2+ 2ξ)
�

r1 + r2 + ξr3 + ξr4

2+ 2ξ

�η

≤ (2+ 2ξ)
� r1 + r2 + r3 + r4

4

�η

= ξrη

for ξ= 1/(22η−1 − 1).

It follows that Lemma 3.5 holds for both EQ and GT with 1/2< η < 1.

4 Separation

We demonstrate the separation by considering the inner product function over the integers. We recall
the definition from the introduction.

Definition 4.1. The integer inner product problem IIPm,t(x , y) is defined as follows. The inputs
are integer vectors x , y ∈ [−M , M]t where M = 2m. The output is 1 if 〈x , y〉 = 0, where the inner
product is computed over the integers.

We use n to denote the input length, where n= (m+ 1)t. We recall that we consider t = O(1)
and growing m.

Lemma 4.2. There is a coRP protocol for IIPm,t of cost O(t log m).

Proof. Consider the following protocol: sample a uniformly random prime q among the first
4m + 2 log t primes, compute 〈x , y〉 (mod q) by having Alice send t integers x i (mod q) to Bob,
and accept if and only if 〈x , y〉 = 0 (mod q). The protocol uses O(t log q) = O(t log m) bits of
communication.

The protocol is always correct on 1-inputs. To see that it is correct on 0-inputs with probability
at least 1/2 we observe that the probability of failure is the probability of picking a prime q that
divides 〈x , y〉. Since the number 〈x , y〉 is bounded by tM2 in absolute value, it is divisible by at most
log(tM2) = 2m+ log t primes, and since we have 4m+ 2 log t primes to choose from, the probability
of failure is at most 1/2.
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Lemma 4.3. If t is even then Prx ,y[IIPm,t(x , y) = 1] = Ω(1/tM2).

Proof. Write x = (x ′,−x ′′) and y = (y ′, y ′′) where x ′, y ′, x ′′, y ′′ ∈ [−M , M]t/2, so that 〈x , y〉 =
〈x ′, y ′〉−〈x ′′, y ′′〉. The distribution of 〈x ′, y ′〉 and 〈x ′′, y ′′〉 are i.i.d. and take at most O(tM2) possible
values. So the collision probability is Ω(1/tM2).

Lemma 4.4. For any rectangle R ⊆ IIP−1
m,t(1) we have |R| ≤ (4M)t .

Proof. Let A, B ⊂ [−M , M]t such that 〈x , y〉 = 0 for all x ∈ A, y ∈ B. Let p be a prime between
2M + 1 and 4M , and consider the problem modulo p. Note that we can injectively identify A, B with
subsets of Ft

p. Let V, W denote the linear subspaces of Ft
p spanned by A, B, respectively. Then V⊥W

and hence |V ||W | ≤ pt . This implies that |A||B| ≤ pt ≤ (4M)t .

Lemma 4.5. Any PEQ protocol for IIPm,t with even t ≥ 6 has cost Ω(n).

Proof. Apply Lemma 3.5 with η = 1
2 +

1
100 , α = Ω(1/tM2) as given by Lemma 4.3, and β =

(4M)t/(2M + 1)2t ≤ 1/M t as given by Lemma 4.4. We obtain

PEQ(IIPm,t) = Ω(log(αβη−1)) = Ω(log(M t(1−η)−2/t)) = Ω(tm) = Ω(n) .

Theorem 1.2 follows immediately from Lemma 4.2 and Lemma 4.5.

A related example. We give a similar separation by the inner product function over polynomials.
Let F2[z] denote the ring of univariate polynomials over F2.

Definition 4.6. The polynomial inner product problem PIPm,t(x , y) is defined as follows. The inputs
x , y are t-tuples of polynomials in F2[z], each of degree at most m. The output is 1 if 〈x , y〉 = 0,
where the inner product is computed over F2[z].

Note that also here the input size is n= (m+ 1)t. Again we consider large m and t = O(1).

Lemma 4.7. There is a coRP protocol for PIPm,t of cost O(t log m).

Proof. Consider the following protocol. Alice and Bob interpret their polynomials as polynomials
in Fq[z] with q = 2dlog me+2. They sample a uniformly random point z ∈ Fq and compute 〈x , y〉(z)
by having Alice send the result of evaluating each of her polynomials at z. The protocol uses
O(t log q) = O(t log m) bits of communication.

The protocol is always correct on 1-inputs. To see that it is correct on 0-inputs with probability at
least 1/2 we observe that the probability of failure is the probability of picking a root of 〈x , y〉. Since
the number of roots is at most 2m and we have q ≥ 4m points in Fq to choose from, the probability
of failure is at most 1/2.

Lemma 4.8. Any PEQ protocol for PIPm,t with even t ≥ 6 has cost Ω(n).

The proof is analogous to that of Lemma 4.5. We can use Lemma 4.3 unchanged, and we adapt
Lemma 4.4 by considering the inner product function over Fq with q = 2m.
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Set disjointness. Babai et al. [BFS86] were the first who attempted to prove a strong lower bound
on the cost of any PEQ protocol solving DISJ, however their method only yielded lower bounds for
one-way protocols. The subsequent breakthrough tight bound of Ω(n) by Kalyanasundaram and
Schnitger [KS92] on the randomized complexity of DISJ yields an Ω(n/ log n) bound on the PEQ cost
of DISJ. Using the techniques developed here, we prove a simple tight lower bound of Ω(n) on the
cost of PEQ protocols for set disjointness that does not rely on lower bounds for BPP.

Lemma 4.9. Any PEQ protocol for DISJ has cost Ω(n).

Proof. Apply Lemma 3.5 with η= 1
2 +

1
100 , α= (3/4)

n, and β = 1/2n. We obtain

PEQ(DISJ) = Ω(log(αβη−1)) = Ω(log(2(log 3−2+0.49)n) = Ω(log(20.07n)) = Ω(n) .

5 Hierarchy

A generic way to obtain ε-monochromatic families is by extracting large rectangles from matrices of
small sign-rank. A real matrix M , each of whose entries are non-zero, is said to be sign represented
by another matrix A if each entry of A and M agree in sign. The sign-rank of M is the minimum r
such that there exists an A of rank r that sign represents it. A corollary of the following theorem
allows us to extract large rectangles from matrices of small sign-rank.

Theorem 5.1 ([APP+05]). Let U and V be finite multisets of vectors in Rd and let δ = 1/2d+1. Then
there are subsets U ′ ⊂ U and V ′ ⊂ V such that |U ′| ≥ δ|U |, |V ′| ≥ δ|V |, and either 〈u, v〉 ≥ 0 for all
u, v ∈ U ′ × V ′ or 〈u, v〉< 0 for all u, v ∈ U ′ × V ′.

Corollary 5.2. A boolean matrix of sign-rank d and size r contains a monochromatic rectangle of size
at least 1/22(d+1)r.

Proof. Let M be a matrix of size n×m and sign rank d, and let A and B be matrices of size n× d and
d ×m such that M = sign(AB). Apply Theorem 5.1 to the set of rows of A and the set of columns of
B.

Since sign-rank does not increase with respect to removing, duplicating, or permuting rows or
columns, in order to establish that IIPt is ε-monochromatic, it is sufficient to look at the sign-rank of
IIPt .

Lemma 5.3. The sign-rank of IIPm,t is at most t2 + 1.

Proof. IIPm,t(x , y) = sign(〈x , y〉2 − 1/2), which can be decomposed into a linear combination of t2

rank-one matrices of the form Mx ,y = 〈x i x j , yi y j〉 and the all-ones matrix.

We can now put all the pieces together and prove a lower bound for PIIPt .

Lemma 5.4. Any PIIPt protocol for IIPm,t ′ with even t ′ ≥ 23t2
has cost Ω(n).

Proof. Let ε= 1/22(t2+1) given by Corollary 5.2. Then MIIPt
is an ε-monochromatic family, therefore

we can apply Lemma 3.5 with η = 1 − ε. Choose t ′ to be the smallest even integer such that
(2 log t ′)/t ′ < (1−η). We can bound t ′ by

t ′ ≤
4

1−η
log

�

1
1−η

�

=
4
ε

log
�

1
ε

�

≤ 23t2
.
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Apply Lemma 3.5 with α = Ω(1/t ′M2) as given by Lemma 4.3, and β ≤ 1/M t ′ as given by
Lemma 4.4. We obtain

PIIPt (IIPm,t ′) = Ω(log(αβη−1)) = Ω
�

t ′m
�

−
2 log t ′

t ′
+ 1−η

��

= Ω(t ′m) = Ω(n) .

To prove Theorem 1.3 we consider the sequence of classes PIIPti where t1 = 6 and t i+1 = 23t2
i .

The inclusion PEQ ⊆ PIIPt1 follows from the observation that EQ(x , y) = IIP2((x , 1), (−1, y)), and
Lemma 4.5 shows that it is strict. The inclusions PIIPti ⊆ PIIPti+1 are immediate since we can solve
IIPm,t with a single call to IIPm,t ′ padding the additional coordinates with zeros, and we just proved
the non-inclusions in Lemma 5.4.

6 Concluding Remarks

This work belongs to the general area of understanding the power of randomness in communication
complexity. We use this opportunity to remind the readers of a fascinating open problem, posed
explicitly by Göös, Pitassi and Watson [GPW18], which is whether BPP ⊂ PNP for total functions. It is
known that this containment is not true for partial functions. Göös et al. suggested, as a first step,
separating the class of total functions in BPP from an interesting subclass of PNP. In this work, we
took this step by providing the first (exponential) separation between BPP and PEQ, the latter being
one of the most natural subclasses of PNP. However, the original problem of separating BPP from
PNP remains open.

To state this in combinatorial terms, a function f has a PNP protocol of cost c if the following
holds. There exists a list of 2c rectangles Ri and values zi ∈ {0, 1}, such that f (x , y) = zi for the first
rectangle Ri in the list for which (x , y) ∈ Ri (We may assume that the last rectangle contains all
possible inputs, to make this model well defined). In particular, if BPP ⊂ PNP then there must exist a
monochromatic rectangle in f of density 2−O(c) for c = polylog n. Understanding this question seems
to be pivotal towards understanding the relation between BPP and PNP.

Problem 1. Let f be an n-bit total boolean function with a randomized protocol of cost c. Is it true that
f must contain a monochromatic rectangle R of size |R| ≥ 2−O(c)22n?
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