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Abstract. Private Simultaneous Message (PSM) protocols were intro-
duced by Feige, Kilian and Naor (STOC ’'94) as a minimal non-interactive
model for information-theoretic three-party secure computation. While
it is known that every function f : {0,1}* x {0,1}* — {0,1} admits a
PSM protocol with exponential communication of 2¢/2 (Beimel et al.,
TCC ’14), the best known (non-explicit) lower-bound is 3k — O(1) bits.
To prove this lower-bound, FKN identified a set of simple requirements,
showed that any function that satisfies these requirements is subject to
the 3k — O(1) lower-bound, and proved that a random function is likely
to satisfy the requirements.

We revisit the FKN lower-bound and prove the following results:

(Counterexample) We construct a function that satisfies the FKN
requirements but has a PSM protocol with communication of 2k + O(1)
bits, revealing a gap in the FKN proof.

(PSM lower-bounds) We show that, by imposing additional require-
ments, the FKN argument can be fixed leading to a 3k — O(log k) lower-
bound for a random function. We also get a similar lower-bound for
a function that can be computed by a polynomial-size circuit (or even
polynomial-time Turing machine under standard complexity-theoretic
assumptions). This yields the first non-trivial lower-bound for an explicit
Boolean function partially resolving an open problem of Data, Prab-
hakaran and Prabhakaran (Crypto ’14, IEEE Information Theory ’16).
We further extend these results to the setting of imperfect PSM protocols
which may have small correctness or privacy error.

(CDS lower-bounds) We show that the original FKN argument applies
(as is) to some weak form of PSM protocols which are strongly related to
the setting of Conditional Disclosure of Secrets (CDS). This connection
yields a simple combinatorial criterion for establishing linear 2(k)-bit
CDS lower-bounds. As a corollary, we settle the complexity of the Inner
Product predicate resolving an open problem of Gay, Kerenidis, and Wee
(Crypto ’15).

* This is the full version of a paper appearing in EUROCRYPT 2018. This work was
done while the second author was at ETH Zurich and the third author was at Tel
Aviv University.

ISSN 1433-8092



1 Introduction

Information theoretic cryptography studies the problem of secure communication
and computation in the presence of computationally unbounded adversaries. Un-
like the case of computational cryptography whose full understanding is closely
tied to basic open problems in computational complexity, information theoretic
solutions depend “only” on non-computational (typically combinatorial or alge-
braic) objects. One may therefore hope to gain a full understanding of the power
and limitations of information theoretic primitives. Indeed, Shannon’s famous
treatment of perfectly secure symmetric encryption [30] provides an archetypi-
cal example for such a study.

Unfortunately, for most primitives, the picture is far from being complete.
This is especially true for the problem of secure function evaluation (SFE) [33],
in which a set of parties P, ..., P, wish to jointly evaluate a function f over
their inputs while keeping those inputs private. Seminal completeness results
show that any function can be securely evaluated with information theoretic
security [10,13] (or computational security [33,19]) under various adversarial
settings. However, the communication complexity of these solutions is tied to
the computational complezity of the function (i.e., its circuit size), and it is un-
known whether this relation is inherent. For instance, as noted by Beaver, Micali,
and Rogaway [8] three decades ago, we cannot even rule out the possibility that
any function can be securely computed by a constant number of parties with
communication that is polynomial in the input length, even in the simple set-
ting where the adversary passively corrupts a single party. More generally, the
communication complexity of securely computing a function (possibly via an
inefficient protocol) is wide open, even in the most basic models.

1.1 A Minimal Model for Secure Computation

In light of the above, it makes sense to study the limitation of information
theoretic secure computation in its simplest form. In [16] Feige, Kilian and Naor
(hereinafter referred to as FKN) presented such a “Minimal Model for Secure
Computation”. In this model, Alice and Bob hold private inputs, = and y, and
they wish to let Charlie learn the value of f(z,y) without leaking any additional
information. The communication pattern is minimal. Alice and Bob each send to
Charlie a single message, a and b respectively, which depends on the party’s input
and on a random string r which is shared between Alice and Bob but is hidden
from Charlie. Given (a,b) Charlie should be able to recover f(z,y) without
learning additional information. The parties are assumed to be computationally
unbounded, and the goal is to minimize the communication complexity of the
protocol (i.e., the total number of bits sent by Alice and Bob). Following [23],
we refer to such a protocol as a private simultaneous message protocol (PSM).

Definition 1 (Private Simultaneous Messages). A private simultaneous
message (PSM) protocol I = (IIa, g, g) for a function f: X xY — Z is a
triple of functions Iy : X xR - A, IIg : Y xR — B, and g : A x B — Z that
satisfy the following two properties.
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Fig. 1. Schematic of a PSM protocol.

— (0-Correctness) The protocol has correctness error of 6 if for every (x,y) €
X x Y it holds that

I;r [f(:z:,y) 7& g(HA(x,r),HB(y,r))] <9

r<R

— (e-Privacy) The protocol has privacy error of € if for every pair of inputs
(z,y) € X x Y and (2',y’) € X x Y for which f(x,y) = f(«',y’) the random
variables

(ITa(z,7),dp(y,r)) and (Ia(x',r),daly’,7), (1)

induced by a uniform choice of 1 < R, are e-close in statistical distance.

We mainly consider perfect protocols which enjoy both perfect correctness (6 =
0) and perfect privacy (e = 0). We define the communication complexity of the
protocol to be log | A| + log|B].

The correctness and privacy conditions assert that, for every pair of inputs (z, y)
and (2/,y’), the transcript distributions are either close to each other when
f(z,y) = f(a',y'), or far apart when f(z,y) # f(2',y’). Hence, the joint compu-
tation of Alice and Bob, C,.(z,y) = (ITa(x,7), [I5(y,r)), can be also viewed as a
“randomized encoding” [24, 5] (or “garbled version”) of the function f(z,y) that
has the property of being 2-decomposable into an x-part and a y-part. Being es-
sentially non-interactive, such protocols (and their multiparty variants [23]) have
found various applications in cryptography (cf. [22,2]). Moreover, it was shown
in [9,6] that PSM is the strongest model among several other non-interactive
models for secret-sharing and zero-knowledge proofs.

FKN showed that any function f : {0,1}* x {0,1}* — {0,1} admits a PSM
protocol [16]. The best known communication complexity is polynomial for log-
space computable functions [16] and O(2¥/2) for general functions [9]. While it
seems likely that some functions require super-polynomial communication, the
best known lower-bound, due to the original FKN paper, only shows that a
random function requires 3k — O(1) bits of communication. This lower-bound is



somewhat weak but still non-trivial since an insecure solution (in which Alice
and Bob just send their inputs to Charlie) costs 2k bits of communication.
The question of improving this lower-bound is an intriguing open problem. In
this paper, we aim for a more modest goal. Inspired by the general theory of
communication complexity, we ask:

How does the PSM complexity of a function f relate to its combinatorial
properties? Is there a “simple” condition that guarantees a non-trivial
lower-bound on the PSM complexity?

We believe that such a step is necessary towards proving stronger lower-bounds.
Additionally, as we will see, this question leads to several interesting insights for
related information-theoretic tasks.

1.2 Revisiting the FKN lower-bound

Our starting point is the original proof of the 3k lower-bound from [16]. In
order to prove a lower-bound FKN relax the privacy condition by requiring
that Charlie will not be able to recover the last bit of Alice’s input. Formally,
let us denote by Z the string obtained by flipping the last bit of . Then, the
privacy condition (Eq. 1) is relaxed to hold only over sibling inputs (z,y) and
(Z,y) for which f(x,y) = f(Z,y). We refer to this relaxation as weak privacy.
Since (standard) privacy implies weak privacy, it suffices to lower-bound the
communication complexity of weakly private PSM protocols.

To prove a lower-bound for random functions, FKN (implicitly) identify
three conditions which hold for most functions and show that if a function
f o {0,1}* x {0,1}* — {0,1} satisfies these conditions then any weak PSM
for f has communication complexity of at least 3k — O(1). The FKN conditions
are:

1. The function f is mon-degenerate, namely, for every = # x’ there exists y
for which f(z,y) # f(2’,y) and similarly, for every y # ¢’ there exists x for
which f(z,y) # f(x,/)-

2. The function is useful in the sense that for at least 2+ — o(1) of the inputs
(z,y) it holds that f(z,y) = f(Z,y) where Z denotes the string z with its
last bit flipped. (An input (x,y) for which the equation holds is referred to
as being useful.*)

3. We say that (z1,...,%m) X (y1,...,Yn) is a complement similar rectangle of
fif f(xs,yj) = f(Zi,y;) for every 1 <i <m and 1 < j < n. Then, f has no
complement similar rectangle of size mn larger than M = 2**!. Equivalently,
the function f'(z,y) = f(x,y) — f(Z,y), which can be viewed as a partial
derivative of f with respect to its last coordinate, has no 0-monochromatic
rectangle of size M.

We observe that the above conditions are, in fact, insufficient to prove a non-
trivial lower-bound. As a starting point, we note that the inner-product function

4 In the FKN terminology such an input (z,%) is referred to as being dangerous.



has low PSM complexity and has no large monochromatic rectangles. While the
inner-product function cannot be used directly as a counterexample (since it
has huge complement similar rectangles), we can construct a related function
f such that: (1) the derivative f’ is (a variant of) the inner product function
and so f’ has no large monochromatic rectangles; and (2) by applying some
local preprocessing on Alice’s input, the computation of f(z,y) reduces to the
computation of the inner product function. Altogether, we prove the following
theorem (see Section 3).

Theorem 1 (FKN counterexample). There exists a function f : {0,1}* x
{0,1}* — {0, 1} that satisfies the FKN conditions but has a (standard) PSM of
communication complexity of 2k + O(1).

Let us take a closer look at the proof of the FKN lower-bound to see where
the gap is. The FKN proof boils down to showing that the set S, of all possible
transcripts (a,b) sent by Alice and Bob under a random string r, has relatively
small intersection with the set S, of all possible transcripts (a,b) sent by Alice
and Bob under a different random string r’. Such a collision, ¢ = (a,b) € S, N
Sy, is counted as a trivial collision if the inputs (x,y) that generate ¢ under
r are the same as the inputs (z/,y’) that generate ¢ under r’. Otherwise, the
collision is counted as non-trivial. The argument mistakenly assumes that all
non-trivial collisions are due to sibling inputs, i.e., (',y') = (Z,y). In other
words, it is implicitly assumed that the transcript (a,b) fully reveals all the
information about (z,y) except for the last input of . (In addition to the value
of f(x,y) which is revealed due to the correctness property.) More formally, a
weakly private fully revealing PSM IT = (Il 4,I1p, g) for a function f : {0,1}* x
{0,1}* — {0,1} is a perfect PSM for the function f’ : {0,1}* x {0,1}* —
{0,135~ x {0, 1}* x {0,1} that takes (z,y) and outputs (z[1 : k —1],y, f(z,v)),
where z[1 : k — 1] is the (k — 1)-prefix of z. (See also Definition 4.)

We show that the original FKN argument holds if one considers fully-revealing
PSM protocols. (See Theorem 8 for a slightly stronger version.)

Theorem 2 (LB’s against weakly private fully revealing PSM). Let f :
{0,1}*F x {0,1}* — {0,1} be a non-degenerate function. Let M be an upper-
bound on size of the largest complement similar rectangle of f and let U be
a lower-bound on the number of useful inputs of f. Then, any weakly-private
fully-revealing PSM for f has communication complezity of at least 2logU —
log M —O(1). In particular, for all but o(1) fraction of the functions f : {0, 1}* x
{0,1}* — {0, 1}, we get a lower-bound of 3k — O(1).

A lower-bound of ¢ bits against fully-revealing weakly-private PSM easily
yields a lower-bound of ¢ — 2k 4 1 bits for PSM. (Since a standard PSM can be
turned into a fully-revealing weakly-private PSM by letting Alice/Bob append
z[1: k — 1] and y to their messages.) Unfortunately, this loss (of 2k bits) makes
the 3k bit lower-bound useless. Moreover, Theorem 1 shows that this loss is
unavoidable. Put differently, fully-revealing weakly-private PSM may be more



expensive than standard PSM. Nevertheless, as we will see in Section 1.4, lower-
bounds for fully-revealing weakly-private PSM have useful implications for other
models.

1.3 Fixing the PSM lower-bound

We show that the FKN argument can be fixed by posing stronger requirements
on f. Roughly speaking, instead of limiting the size of complement similar rect-
angles, we limit the size of any pair of similar rectangles by a parameter M. That
is, if the restriction of f to the ordered rectangle R = (z1,...,Zm) X (Y1,--.,Ye¢)
is equal to the restriction of f to the ordered rectangle R’ = (xf,...,z},) X
(y1,--.,yp) and the rectangles are disjoint in the sense that either z; # x} for
every i, or y; # y; for every j, then the size m¢ of R should be at most M. (See
Section 2 for a formal definition.)

Theorem 3 (perfect-PSM LB’s). Let X, Y be sets of size at least 3, and let
f: X xY —={0,1} be a non-degenerate function for which any pair of disjoint
similar rectangles (R, R') satisfies |R| < M. Then, any perfect PSM for f has
communication of at least 2(log |X| + log |V|) — log M — 2.

The theorem is proved by a distributional version of the FKN argument which
also implies Theorem 2. (See Section 4.) As a corollary, we recover the original
lower-bound claimed by FKN.

Corollary 1. For a 1 — o(1) fraction of the functions f : {0,1}* x {0,1}* —
{0,1} any perfect PSM protocol for f requires 3k — 2logk — O(1) bits of total
communication.’

Proof. 1t is not hard to verify that 1 — o(1) fraction of all functions are non-
degenerate. In Section 6 we further show that, for 1 — o(1) of the functions, any
pair of disjoint similar rectangles (R, R') satisfies |R| < k2 -2*. The proof follows
from Theorem 3. O

By partially de-randomizing the proof, we show that the above lower-bound
applies to a function that is computable by a family of polynomial-size cir-
cuits, or, under standard complexity-theoretic assumptions, by a polynomial-
time Turing machine. This resolves an open question of Data, Prabhakaran and
Prabhakaran [15] who proved a similar lower-bound for an explicit non-boolean
function f: {0, 1}* x {0,1}¥ — {0,1}*~1. Prior to our work, we could not even
rule out the (absurd!) possibility that all efficiently computable functions admit
a perfect PSM with communication of 2k + o(k).

Theorem 4. There exists a sequence of polynomial-size circuits

F={fr:{0,1}* x {0,1}* — {0,1}}

5 The constant 2 can be replaced by any constant larger than 1.



such that any perfect PSM for fi has communication complezity of at least 3k —
O(log k) bits. Moreover, assuming the existence of a hitting-set generator against
co-nondeterministic uniform algorithms, f is computable by a polynomial-time
Turing machine.5

Remark 1 (On the hitting-set generator assumption). The exact definition of
a hitting-set generator against co-nondeterministic uniform algorithms is post-
poned to Section 6. For now, let us just say that the existence of such a generator
follows from standard Nissan-Wigderson type complexity-theoretic assumptions.
In particular, it suffices to assume that the class E of functions computable in
20(n)_deterministic time contains a function that has no sub-exponential non-
deterministic circuits [28], or, more liberally, that some function in E has no
sub-exponential time Arthur-Merlin protocol [21]. (See also the discussion in [7].)

Lower-bounds for imperfect PSM’s. We extend Theorem 3 to handle imperfect
PSM protocols by strengthening the non-degeneracy condition and the non self-
similarity condition. This can be used to prove an imperfect version of Corollary 1
showing that, for almost all functions, an imperfect PSM with correctness error
6 and privacy error € must communicate at least

min {3k — 2log(k), 2k + log(1/¢), 2k + log(1/8)} — O(1)

bits. An analogous extension of Theorem 4, yields a similar bound for an explicit
function. (See Section 5.)

1.4 Applications to Conditional Disclosure of Secrets

We move on to the closely related model of Conditional Disclosure of Secrets
(CDS) [18]. In the CDS model, Alice holds an input x and Bob holds an input
y, and, in addition, Alice holds a secret bit s. The referee, Charlie, holds both
x and y, but does not know the secret s. Similarly to the PSM case, Alice and
Bob use shared randomness to compute the messages a and b that are sent to
Charlie. The CDS requires that Charlie can recover s from (a,b) if and only if
the predicate f(z,y) evaluates to one.”

Definition 2 (Conditional Disclosure of Secrets). A conditional disclosure
of secrets (CDS) protocol I = (I 4, I1, g) for a predicate f : XxY — {0,1} and
domain S of secrets is a triple of functions [Ty : X xSXR — A, IIg : YXxR — B
and g: X x Y x Ax B — S that satisfy the following two properties:

5 Tt is worth mentioning that the proof of Theorem 4 strongly relies on the explicit
combinatorial condition given in Theorem 3 (and we do not know how to obtain it
directly from Corollary 1). This illustrates again the importance of relating PSM
complexity to other more explicit properties of functions.

" Usually, it is assumed that both Alice and Bob hold the secret s. It is not hard
to see that this variant and our variant (in which only Alice knows the secret) are
equivalent up to at most 1-bit of additional communication.



1. (Perfect Correctness) For every (x,y) that satisfies f and any secret s € S
we have that:

Pr [g(z,y, Ha(z,s,7), Hp(y,r)) # s] = 0.

7'&72

2. (Perfect Privacy) For every input (z,y) that does not satisfy f and any pair
of secrets s,s' € S the distributions

(J?,y,HA($78,T),HB(y,T)) and ('r7y,HA(x7S/aT)7HB(yaT)),

induced by r ER are identically distributed.

The communication complexity of the CDS protocol is (log|A| + log|Bl|) and
its randomness complexity is log |R|. By default, we assume that the protocol
supports single-bit secrets (S = {0,1}).8

Intuitively, CDS is weaker than PSM since it either releases s or keeps it
private but it cannot manipulate the secret data.® Still, this notion has found
useful applications in various contexts such as information-theoretically private
information retrieval (PIR) protocols [14], priced oblivious transfer protocols [1],
secret sharing schemes for graph-based access structures (cf. [11,12,31]), and
attribute-based encryption [20, 29].

The communication complezity of CDS. In light of the above, it is interesting
to understand the communication complexity of CDS. Protocols with commu-
nication of O(t) were constructed for t-size Boolean formula by [18] and were
extended to t-size (arithmetic) branching programs by [25] and to t-size (arith-
metic) span programs by [6]. Until recently, the CDS complexity of a general
predicate f : {0,1}* x {0,1}* — {0,1} was no better than its PSM complexity,
i.e., O(2¥/2) [9]. This was improved to 20(V¥1oek) by Tju, Vaikuntanathan and
Wee [27]. Moreover, Applebaum et al. [4] showed that, for very long secrets, the
amortized complexity of CDS can be reduced to O(log k) bits per bit of secret.
Very recently, the amortized cost was further reduced to O(1) establishing the
existence of general CDS with constant rate [3].

Lower-bounds for the communication complexity of CDS were first estab-
lished by Gay, Kerenidis, and Wee [17]. Their main result shows that the CDS
communication of a predicate f is at least logarithmic in its randomized one-way
communication complexity, and leads to an §2(log k) lower-bound for several ex-
plicit functions. Applebaum et al. [4] observed that weakly private PSM reduces
to CDS. This observation together with the 3k-bit FKN lower-bound for weakly

8 One may consider imperfect variants of CDS. In this paper we restrict our attention
to the (more common) setting of perfect CDS.

9 This is analogous to the relation between Functional Encryption and Attribute Based
Encryption. Indeed, CDS can be viewed as an information-theoretic one-time variant
of Attribute Based Encryption.



private PSM has lead to a CDS lower-bound of k—o(k) bits for some non-explicit
predicate. (The reduction loses about 2k bits.)

In this paper, we further exploit the connection between CDS and PSM
by observing that CDS protocols for a predicate h(x,y) give rise to weakly
private fully revealing PSM for the function f((z o s),y) = h(z,y) A s, where
o denotes concatenation. By using our lower-bounds for weakly private fully
revealing PSM’s we get the following theorem. (See Section 7 for a proof.)

Theorem 5. Let h : X x Y — {0,1} be a predicate. Suppose that M upper-
bounds the size of the largest 0-monochromatic rectangle of h and that for every
x € X, the residual function h(z,-) is not the constant zero function. Then, the
communication complexity of any perfect CDS for h is at least

2log |f~1(0)| —log M —log |X| —log |V| — 1,
where |f~1(0)| denotes the number of inputs (x,y) that are mapped to zero.

Unlike the non-explicit lower-bound of [4], the above theorem provides a simple
and clean sufficient condition for proving non-trivial CDS lower-bounds. For
example, we can easily show that a random function has at least linear CDS
complexity.

Corollary 2. For all but a o(1) fraction of the predicates h : {0,1}* x {0, 1}* —
{0,1}, any perfect CDS for h has communication of at least k — 4 — o(1).

Proof. Let h : {0,1}* x {0,1}* — {0,1} be a randomly chosen predicate. Let
K =2Fandlete = 1/\/[? There are exactly 252K = 22K rectangles. Therefore,
by a union-bound, the probability of having a 0-monochromatic rectangle of size
M =2K(1+ €) is at most

92K 9-M _ 9-2¢K _ 9-2(VK)

Also, since h has K? inputs, the probability of having less than (3 — ¢) - K2
unsatisfying inputs is, by a Chernoff bound, 2—R(EK?) = 9-Q(K), Finally, by
the union bound, the probability that there exists € X for which h(z,-) is
the all-zero function is at most K - 27X It follows, by Theorem 5, that with
probability of 1 — 2*9(‘/?), the function h has a CDS complexity of at least

k—4—o(1). O

We can also get lower-bounds for explicit functions. For example, Gay et
al. [17] studied the CDS complexity of the binary inner product function h(x,y) =
(x,y). They proved an upper-bound of k 4+ 1 bits and a lower-bound of §2(log k)
bits, and asked as an open question whether a lower-bound of (k) can be es-
tablished. (The question was open even for the special case of linear CDS for
which [17] proved an 2(v/k) lower-bound). By plugging the inner-product pred-
icate into Theorem 5, we conclude:

Corollary 3. Any perfect CDS for the inner product predicate hy, : {0,1}F x
{0,1}* — {0, 1} requires at least k — 3 — o(1) bits of communication.



Proof. 1t suffices to prove the lower bound for the restriction of inner-product in
which z # 0™. It is well known (cf. [26]) that the largest monochromatic rectangle
is of size M = 2%, and the number of “zero” inputs is exactly § = 22k=1 —2k=1,
Hence, Theorem 5 yields a lower-bound of k — 3 — o(1). O

This lower-bound matches the k& + 1 upper-bound up to a constant additive
difference (of 4 bits). It also implies that in any ABE scheme for the inner-
product function which is based on the dual system methodology [32] either the
ciphertext or the secret-key must be of length 2(k). (See [17] for discussion.)

Organization. Following some preliminaries (Section 2), we present the counter
example for the FKN lower-bound (Section 3). We then analyze the communi-
cation complexity of perfect PSM (Section 4) and imperfect PSM (Section 5).
Based on these results, we obtain PSM lower-bounds for random and explicit
functions (Section 6), as well as CDS lower-bounds (Section 7).
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2 Preliminaries

For a string (or a vector) x of length n, and indices 1 < i < j < n, we let x[i]
denote the i-th entry of x, and let x[i : j] denote the string (x[i], z[i+1] ..., z[j]).
By convention, all logarithms are taken base 2.

Rectangles. Let X C {0,1}* and Y C {0,1}* be some finite domains. (Typically,
the set of all binary strings of some specified length.) An (ordered) rectangle of
size m x n over X x ) is a pair p = (x,y), where x = (21,...,Z;) € X™ and
Y = (y1,---,yn) C V" satisfy x; # z; and y; # y; for all i # j. We say that (z,y)
belongs to p if # = z; and y = y; for some i, j (or by abuse of notation we simply
write z € x and y € y). The size of an (m x n)-rectangle p is mn, and its density
with respect to some probability distribution p over X x Y, is erxﬂey w(z,y).
Let p = (x,y) and p’ = (x',y’) be a pair of (m x n)-rectangles. We say that p
and p’ are z-disjoint (resp., y-disjoint) if x; # a} for all i € {1,...,m} (resp.,
if y; # yj for all j € {1,...,n}). We say that p and p’ are disjoint if they are
either z-disjoint or y-disjoint.

As an example, consider the three (2 x 3)-rectangles p; = ((1,2),(5,6,7)),
po = ((2,1),(6,{"),4))7 and p3 = ((1,3),(7,5,6)). Among those, p; and p3 are
y-disjoint but not z-disjoint, py and ps3 are z-disjoint but not y-disjoint, and
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p1 and po are both z-disjoint and y-disjoint. Therefore, each of these pairs is
considered to be disjoint.

If f: X XY — Zis a function and p a rectangle of size m x n, we let f|,
be the matrix M of size m x n whose entry M;; is f(x;,y;). A rectangle p is
0-monochromatic (resp., 1-monochromatic) if fi, is the all-zero matrix (resp.,
all-one matrix). A rectangle p is similar to a rectangle p’ (with respect to f)
if fi,) = fip- A rectangle (x = (21,...,%m),y) is complement similar if it is
similar to the rectangle ((Z1,...,Zm),y), where Z denotes the string = with its
last bit flipped.

Probabilistic notation. We will use calligraphic letters A, B, ..., to denote finite
sets. Lower case letters denote values from these sets, i.e., z € X. Upper case
letters usually denote random variables (unless the meaning is clear from the
context).

Given two random variables A and B over the same set A, we use |A— B]| to
denote their statistical distance ||[A—B|| = £ > . 4| Pr[A = a] —Pr[B = a]|. The
min-entropy of A, denoted by H..(A), is minus the logarithm of the probability
of the most likely value of A, i.e., —log max,e 4 Pr[A = q].

3 A Counterexample to the FKN lower-bound

Let To, T; be a pair of (k— 1) x (k — 1) non-singular matrices (over the binary
field F = GF[2]) with the property that T = T + T; is also non-singular. (The
existence of such matrices is guaranteed via a simple probabilistic argument.'?)
Define the mapping L : F*¥ — F* by

x> (Typ - 2[1: k —1]) o x[k],

where o denotes concatenation. That is, if the last entry of z is zero then L
applies T to the & — 1 prefix o’ = z[1 : k — 1] and extends the resulting k — 1
vector by an additional 0 entry, and if z[k] = 1 then the prefix z’ is sent to Ty2’
and the vector is extended by an additional 1 entry. Note that L is a bijection
(since Tp, T; are non-singular). The function f : F¥ x F¥ — F is defined by

(z,y) = (L(z),y),

where (-, ) denotes the inner-product function over F.
In Section 3.1, we will prove that f satisfies the FKN conditions (described
in Section 1.2).

10 When k — 1 is even, there is a simple deterministic construction: Take Tg (resp., T1)
to be the upper triangular matrix (resp., lower triangular matrix) whose entries on
and above main diagonal (resp., on and below the diagonal) are ones and all other
entries are zero. It is not hard to verify that both matrices are non-singular. Also
T = Ty + T: has a zero diagonal and ones in all other entries and so T has full
rank if k — 1 is even. The same construction can be used when k& — 1 is odd, at the
expense of obtaining a matrix T with an almost full rank that has only minor affect
on the parameter M obtained in Lemma 1.
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Lemma 1. The function f is (1) non-degenerate, (2) useful, and (8) its largest
complement similar rectangle is of size at most M = 2F+1,

Recall that f is non-degenerate if for every distinct x # ' (resp., y # y') the
residual functions f(z,-) and f(z',-) (resp., f(,4') and f(-,7')) are distinct.
It is useful if Pr, ,[f(z,y) = f(Z,y)] > 3, where Z denotes the string = with
its last entry flipped. Also, a rectangle R = (x,y) is complement similar if
flz,y) = f(Z,y) for every x € x,y € y.

In Section 3.2 we will show that f admits a PSM with communication com-
plexity of 2k + O(1).

Lemma 2. The function f has a PSM protocol with communication complexity
of 2k + 2.

Theorem 1 follows from Lemma 1 and Lemma 2.

3.1 f satisfies the FKN properties (Proof of Lemma 1)

(1) f is non-degenerate. Fix x1 # 29 € F¥ and observe that L(z1) # L(w2) (since
L is a bijection). Therefore there exists y for which f(z1,y) = (L(z1),y) #
(L(z2),y) = f(z2,y). (In fact this holds for half of y’s). Similarly, for every
Y1 # ¥y there exists v € F¥ for which (v,y1) # (v,92), and since L is a bijection
we can take z = L™1(v) and get that f(x,y1) = (v,y1) # (v,92) = f(z,2).

(2) f is useful. Choose z’ & FF-1 and Y & F* and observe that f@'o0,y) =
f(z' o1,y) if and only if

(T2’ y[1: k= 1]) +yx = 0,

which happens with probability %

(3) The largest complement similar rectangle is of size at most 251 Fix some
rectangle R = (x,y), where X = (71,...,7,,) € (F*)™ and 'y = (y1,...,9n) €
(F¥)". We show that if R is complement similar then mn < 2 -2k, Since R is
complement similar for every z € x,y € y it holds

f(z,y) = f(z,y),
which by definition of f implies that
(T2' o 1,y) =0,

where 2’ is the (k — 1) prefix of z. Let d be the dimension of the linear subspace
spanned by the vectors in x, and so m < 2¢. Since T has full rank, the dimension
of the subspace V spanned by {(Tz[l:k—1]o1):x € x} is at least d — 1. (We
may lose 1 in the dimension due to the removal of the last entry of the vectors
x € x.) Noting that every y € y is orthogonal to V, we conclude that the
dimension of the subspace spanned by y is at most k — (d — 1). It follows that
n < 28=(@=1) and so mn < 2 - 2k, O

12



3.2 PSM for f (Proof of Lemma 2)

Note that f can be expressed as applying the inner product to v and y where
v can be locally computed based on x. Hence it suffices to construct a PSM
for the inner-product function and let Alice compute v and apply the inner-
product protocol to v. (This reduction is a special instance of the so-called
substitution lemma of randomize encoding, cf. [22,2].) Lemma 2 now follows
from the following lemma.

Lemma 3. The inner product function hgy : F* x F* — F has a PSM protocol
with communication complexity of 2k + 2.

A proof of the lemma appears!! in [27, Corollary 3]. For the sake of self-
containment we describe here an alternative proof.

Proof. We show a PSM IT = (Il4,Ilg,g) with communication 2k under the
promise that the inputs of Alice and Bob, z,y, are both not equal to the all
zero vector. To get a PSM for the general case, let Alice and Bob locally extend
their inputs z,y to k + 1-long inputs 2’ = z o1 and 3y = y o 1. Then run the
protocol IT and at the end let Charlie flip the outcome. It is easy to verify that
the reduction preserves correctness and privacy. Since the inputs are longer by
a single bit the communication becomes 2(k + 1) as promised.

We move on to describe the protocol IT. The common randomness consists
of a random invertible matrix R € FF**. Given non-zero = € F¥, Alice outputs
a = Ra where z is viewed as a column vector. Bob, who holds y € F*, outputs
b=y R~!. Charlie outputs ba.

Prefect correctness is immediate: (y"R™!) - (Rz) = y’x, as required. To
prove perfect privacy, we use the following claim.

Claim 6. Let x,y € F* be non-zero vectors and denote their inner-product by
z. Then, there exists an invertible matriz M € F**% for which Me, = = and
vIM™! = 4T where e; is the i-th unit vector, and v, is taken to be ey if z = 1
and ey if z=0.

Proof. Let us first rewrite the condition v/ M~! = yT as vT = yTM. Let V C F*
be the linear subspace of all vectors that are orthogonal to y. Note that the
dimension of V' is k — 1. We distinguish between two cases based on the value of
z.

Suppose that z = 0, that is, x € V and v, = ej. Then set the first column of
M to be x and choose the next k — 2 columns Mo, ..., Mjy_; so that together
with = they form a basis for V. Let the last column M}y be some vector outside
V. Observe that the columns are linearly independent and so M is invertible.
Also, it is not hard to verify that Me; = z and that y"M = eg.

Next, consider the case where z = 1, that is, x ¢ V and v, = e;. Then, take

M; = x and let the other columns Mo, ..., M} to be some basis for V. Since
x is non-zero the columns of M are linearly independent. Also, Me; = x and
yTM = ef. The claim follows. ad

11 We thank the anonymous reviewer for pointing this out.
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We can now prove perfect privacy. Fix some non-zero z,y € FF and let
z = (x,y). We show that the joint distribution of the messages (A, B) depends
only on z. In particular, (4, B) is distributed identically to (Rey, v R™!) where
R a random invertible matrix. Indeed, letting M be the matrix guaranteed in
Claim 6 we can write

(Rz,y"R™") = (R(Mey), (v MR,

Noting that T = RM is also a random invertible matrix (since the the set
of invertible matrices forms a group) we conclude that the RHS is identically
distributed to Tey,vI T~1, as claimed. a

Remark 2. Overall the PSM for f has the following form: Alice sends a = R -
(L(z) o 1) and Bob sends b = (y 0 1)"R ™! where R € F:+1Dx(k+1) ig 3 random
invertible matrix. The privacy proof shows that if the input (z,y) is mapped
to (a,b) for some R then for every (z/,y’) for which f(x,y) = f(2',y’), there
exists R’ under which the input (2/,y’) is mapped to (a, b) as well. Hence, there
are collisions between non-sibling inputs. As explained in the introduction, this
makes the FKN lower-bound inapplicable.

4 Lower bound for perfect PSM protocols

In this Section we will prove a lower bound for perfect PSM protocols.

Definition 3. For a function f : X xY — Z and distribution p over the domain
X x Y with marginals pa and pp, define

o(p) = max min(u(F), p(Ra)),

where the mazimum ranges over all pairs of similar disjoint rectangles (Ry, Ra).
We also define

B(u) = min Pr{(X,Y) # (X", Y") | f(X,Y) = f(X",Y') = z],

where (X,Y) and (X', Y") represent two independent samples from p, and min-
imum is taken over all z’s in the support of f(X,Y). Finally, we say that f is
non-degenerate with respect to p if for every x # x' in the support of pa there
exists some y € Y for which f(xz,y) # f(2',y), and similarly for every y # vy in
the support of up there exists some x € X for which f(x,y) # f(z,y').

In Section 4.1, we prove the following key lemma.

Lemma 4. Let f : X x Y — Z. Then the communication complexity of any
perfect PSM protocol is at least

mas 10g(1/a(1)) + Hao(s) — log(1/B(s)) — 1

where the mazimum is taken over all (not necessarily product) distribution p
under which f is non-degenerate.
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The lower-bound is meaningful as long as [ is not too small. Intuitively, this
makes sure that the privacy requirement (which holds only over inputs on which
the function agrees) is not trivial to achieve under pu.

For the special case of a Boolean function f, we can use the uniform distri-
bution over X x ) and prove Theorem 3 from the introduction (restated here
for the convenience of the reader).

Theorem 7 (Thm 3 restated). Let X', be sets of size at least 3. Let f :
X xY — {0,1} be a non-degenerate function for which any pair of disjoint
similar rectangles (R, R') satisfies |R| < M. Then, any perfect PSM for f has
communication of at least 2(log |X| + log |V|) — log M — 2.

Proof. By the key lemma (Lemma 4), it suffices to show that, for the uniform
distribution p, we have

a(n) < M/(X|Y),  Heoln) = log|X] +log|V],  and 5(s) > 1/2.

The first two inequalities are immediate. The third inequality follows by noting
that for every possible outcome z € {0,1},

Pr[(X,Y) # (X, Y) | f(X,)Y)=f(X",Y)=2] = 1—i > 1—# >1/2,
N, |X]—1
where N, is the number of preimages of z under f. The inequality N, > |X|—1
follows by observing that if N, < |X| — 2, then there must be a pair z # 2’ for
which the restricted functions f(z,-) and f(2/,-) are both equal to 1 — z. This
contradicts the non-degeneracy of f. ad

We note that the additive constant 2 in the theorem statement can be replaced
by 1+ o0 (1) when the size of the domain X x ) grows with k.

Weakly private fully revealing PSM. We can also derive a lower-bound on
the communication complexity of weakly private fully revealing PSM. We begin
with a formal definition.

Definition 4 (Weakly Private Fully Revealing PSM). A weakly private
fully revealing PSM IT = (I1, I, g) for a function f : {0,1}F1x{0,1}*2 — Z is
a perfect PSM for the function f': {0, 1}%1 x {0,1}%2 — {0,1}"171x {0, 1}*F2 x 2
that takes (x,y) and outputs (x[1 : ki — 1],y, f(x,y)), where z[1 : ky — 1] is the
(k1 — 1)-prefiz of x.

In the following, we say that f is weakly non-degenerate if for every x there
exists y such that f(z,y) # f(Z,y). Recall that an input (z,y) is useful if
f(z,y) = f(z,y). We prove the following (stronger) version of Theorem 2 from
the introduction.

Theorem 8. Let f : {0,1}%1 x {0,1}*2 — {0,1} be a weakly non-degenerate
function. Let M be an upper-bound on the size of the largest complement similar
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rectangle of f and let U be a lower-bound on the number of useful inputs of f.
Then, any weakly-private fully-revealing PSM for f has communication complex-
ity of at least 2log U —log M —2. In particular, for all but an o(1) fraction of the
predicates f: {0,1}* x {0,1}* — {0,1} we get a lower-bound of 3k — 4 — o(1).

Proof. Let f’ be the function defined in Definition 4 based on f. We will prove
a lower-bound on the communication complexity of any perfect PSM for f’. Let
1 be the uniform distribution over the set of useful inputs. Since f is weakly
non-degenerate the function f’ is non-degenerate under u. The first part of the
theorem follows from Lemma 4 by noting that

alp) < M/U, Blu) =1/2, and Hoo(p) > logU.

Indeed, the bound on « follows by noting that the complement similar rectangles
are the only similar disjoint rectangles, and the bound on 3 follows by noting
that every z in the support of f/(u) has exactly two preimages for which p assigns
equal weights.

To prove the second (“in particular”) part observe that, for a random function
f, each pair of inputs (z,y) and (Z,y) gets the same f-value with probability %
independently of other inputs. Hence, with all but o(1) probability, a fraction of
%—0(1) of all 225=1 of the pairs is mapped to the same value, and so there will be
22k=1(1 — o(1)) useful inputs. (Since each successful pair contributes two useful
inputs.) Also, each M-size rectangle R is complement similar with probability
2~M By taking a union bound over all 22" rectangles, we conclude that f has
an M = 2FF1(1 4 o(1))-size complement similar rectangle with probability at
most 22" M = o(1). We conclude that, all but an o(1) fraction of the functions,
do not have weakly-private fully-revealing PSM with complexity smaller than
3k —4—o0(1). O

A direct combinatorial proof of this theorem (based on the FKN argument)
appears in Appendix A.

4.1 Proof of the Key Lemma (Lemma 4)

Fix some function f: X x Y — Z and let II = (Il14,Ilp,g) be a perfect PSM
protocol for f. Let u denote some distribution over the domain X' x ) and assume
that f is non-degenerate with respect to pu.

We will use a probabilistic version of the FKN proof. In particular, consider
two independent executions of II on inputs that are sampled independently
from p. We let X, Y and R (resp., X', Y’ and R’) denote the random variables
that represent the inputs of Alice and Bob and their shared randomness in the
first execution (resp., second execution), and let A and B (resp., A’ and B’)
denote the random variables that represent the messages sent by Alice and Bob
in the first execution (resp., second execution). Thus, we can for example write
Pr[(A,B) = (A", B’) A X # X'] to denote the probability that the messages in
the two executions match while the two inputs for Alice are different.
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To simplify notation somewhat, we define the following events:

=(A=A)A(B=DB)
(X X)NY =Y7)
= (X £X)V(Y £Y') = 2O
= f ( V)= f(XY')
(The notation P is chosen to indicate equivalence/inequivalence of Protocol mes-

sage and Z to indicate equivalence/inequivalence of the Inputs.) Our lower-bound
follows from the following claims.

Claim 9. The communication complexity of IT is at least log(1/ Pr[ZF) AP(=)])—
log(1/8).

Proof. We upper-bound the collision probability Pr[(A, B) = (A4’, B’)] of two
random executions by showing that

Pr[Z(#) A PE)]
B E—

Because the collision probability of two independent instances of a random
variable is at least the inverse of the alphabet size, the alphabet of A and B
must have size at least 8/ Pr[Z(7) A P(5)]. Thus, in total the protocol requires

Pr[P)] < (2)

log(1/Pr[IF) A PE)]) —log(1/8)
bits of communication.
We move on to prove (2). That is, we show that Pr[Z(*) A P(5)] is at least

B Pr[P(:)]. First, by perfect correctness P=) happens only when F(=) happens,
hence

Pr[ZF) AP = Pr[TF) AP A FO] = e[ A PE) | F]Pr[F).
Denoting by F=* the event f(X,Y) = f(X',Y’) = z, the RHS equals to

> Pr[® APE | F=A Pr[F, (3)

where the sum ranges over all z’s in the support Z of f(X,Y). Below we argue
that, by perfect privacy, for every z € Z, the conditional random variables
[Z(#) | F=#] and [P(=) | F=2] are statistically independent. Hence, (3) equals to
> Pr[z?) | FEE P[P | P ] > Z BPr[PE) | F=| Pr[F~7]
=8 Pr[P(_)],

(recall that 8 = min, Pr[Z(#) | F=2]), and we established (2).
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It remains to show that, for every z € Z, the conditional random vari-
ables [Z(F) | F=2] and [P(5) | F=2] are statistically independent. To see this,
note that by privacy, for every fixing of (X,Y, X', Y”) to (z,y,2’,y’) for which
f(z,y) = f(a',y') = z, the distribution of the random variables [(A, B, A’, B") |
X =2,Y =y, X' =2/,Y = ¢/] remains the same regardless of the values of
(z,y,2’,y'). Hence, conditioning on F(=2), the random variable (A, B, A, B') is
independent of (X,Y, X’,Y"), which implies that [Z() | F=*] and [P(=) | F=7]
are statistically independent. This completes the proof of Claim 9. a

Claim 10. For any pair of strings r and v/,
Pr[PENIH|R =1 R =+'] < 2a(p)2 =W,
Proof. We see that
Pr[PONIHR=r AR =r| <Pr[PEONX#X)R=r AR =1
+Pr[PEAY AY)R=rAR =1].

Due to symmetry it suffices to bound the first summand by a(p)?’Hx(“).

Say that x collides with o' if IT4(x,r) = IL4(2’, ). Restricting our attention
to 2’s in the support of p4, we claim that every x can collide with at most a
single 2’. Indeed, if this is not the case, then IT4(z,7) = Iz (a',r") = ITa(z", 7).
The second equality implies that when the randomness is 7/, for every y, the
messages (a,b) communicated under (2/,y) are equal to the ones communicated
under (z”,y). By perfect correctness, this implies that f(2’,y) = f(z”,y) for
every y, contradicting the non-degeneracy of f under u. Analogously, let us say
that y collides with y’ if ITp(y,r) = ITp(y’,r"). The same reasoning shows that
every y in the support of pp can collide with at most a single ¥’ in the support
of UB-

Let x = (21,...,2m) and X' = (2),...,2).) be a complete list of entries for
which z; collides with « and z; # 2 and pa(z;), pa(z;) > 0. Analogously let
v = (y1,...,yn) and y' = (¥,...,y.,) be a complete list for which y; collides
with y, and pp(y;), us(y;) > 0. (Note that we do not require y; # y}.) Since
collisions are unique (as explained above), the tuples x,x’,y,y’ are uniquely
determined up to permutation.

By definition, the tuples (x,y,z’,y') with = # 2/, and (a,b) = (d’,¥’) are
exactly those of the form (z;,y;,2},y}) for some i and j.

Now, consider the two a-disjoint rectangles p = (x,y) and p’ = (x,y’) and
assume, without loss of generality, that p(p) < u(p’). Since Alice and Bob both
send the same messages with randomness r on inputs (z;,y;) as they send with
randomness 1’ on inputs z},y, we see that it must be that f(z;,y;) = f(=},v})
if the protocol is correct. Therefore, fi,) = fi,1], and so u(p) < a(u).

To complete the argument, note that P(=) A (X # X') can only happen
if we pick (X,Y) = (w;,y;) and (X', Y’) = (2},y}) for some 4,j. The event
that there exists ¢, j for which (X,Y) = (z;,y;) has probability at most a(u).
The event that (X',Y") = («},y}) for the same (4,j) has probability at most
max, , p(z,y) = 2~ He (), O
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Claim 10 implies that

Pr[PE) ANTH) = " Pr[PE) ATH|R=r, R =+|Pr[R=1R =]

ror!

<Y 20(u2 =M PR =r R =1']

< 20(p) 2~ Hoo W)

Combined with Claim 9, this yields Lemma 4. a

5 Lower bounds for imperfect PSM protocols

In this section we prove a lower-bound on the communication complexity of
imperfect PSM protocols. For this, we will have to strengthen the requirements
from the function f.

Definition 5. Let f: X x Y — Z.

— We call f somewhat regular if for every possible image z € Z the number of
preimages f~1(z) is at least 0.9% and at most 1.1 |X||Z'|‘y‘.

— We call f strongly non-degenerate if for any x # a' we have |{y|f(z,y)
£ 9)}] < 0.9Y| and for any y # ' we have |{zl f(z.y) = F(z.9))]
0.91.x].

— A pair of ordered m xn rectangles p = (x,y) and p' = (x',y’) in which either
x; # af for all i € [m], ory; # vy, for all i € [n] are called approximately
similar if for 0.99 of the pairs (i, j) we have f(z;,y;) = f(3,9}).

<

(All the constants in the above definition are somewhat arbitrary and other
constants may be chosen.)
In Section 5.1 we prove the following theorem:

Theorem 11. Let f : XxY — Z be a somewhat-regular, strongly non-degenerate
function whose largest approzimately similar pair of rectangles is of size at most
M. Then, any PSM for f with privacy error of € and correctness error of § < ﬁ,

requires at least

log | X| +log || — log (ﬁ) :
log |X| + log |V| — log M,
log(1/e),

log(1/0) — log ( k=)

log |X| + log | V| + min —-c (4

bits of communication, where ¢ is some universal constant (that does not depend
on f) and Pr[F&)] = Pr[f(X,Y) = f(X',Y")] when (X,Y) and (X',Y") are
picked independently and uniformly at random from X x Y.
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In the special case of a Boolean function f, it holds that Pr[F(=)] = Pr[f(X,Y) =
f(X',Y")] > 1/2, and the communication lower-bound simplifies to

log |X| 4 log |Y| 4+ min {log |X| + log | Y| — log M, log(1/€),log(1/6)} — ¢

where c is some universal constant. In Section 6, we will use Theorem 11 to prove
imperfect PSM lower-bounds for random functions and for efficiently computable
functions.

5.1 Proof of Theorem 11

In the following, all random variables are defined as in Section 4 where p is
simply the uniform distribution over X x ). In order to analyze protocols that
are not perfectly private or perfectly correct, we first study the mistakes the
protocol does in a few more details. Fix a PSM protocol IT = (I14, g, g) for
f with correctness error of 6 < 1/100 and privacy error of e. We let 8(z,r) be
the probability that f(X,Y) # g(A, B) conditioned on (X, R) = (z,r), and (by
abuse of notation) define B(y,r) analogously. That is,

5(.%,7") = Pr[f(Xv Y) # g(Av B)|(Xv R) = (CC,T)],

Bly, ) = Pr[f(X,Y) # g(A, B)(Y; R) = (y,1)]

We then consider the event
Hs = (ﬂ(X, R) < 55) A (,B(X’,R’) < 55) A (,B(Y, R) < 55) A (5(Y’,R’) < 55) .
Intuitively, Hs occurs if what the players see is unlikely to produce an error.
Claim 12. Pr[Hs] > L.
Proof. We compute

Pr[-Hs] < 2Pr[B(X,R) > 55 V 5(Y, R) > 50]

< 2Pr[B(X,R) > 50] + 2Pr[B(Y, R) > 54,

where we used the union bound. Because

Pr(f(X,Y) # g(A, B)] = Pr[B(X, R) > 50] - Pr[f(X.,Y) # g(A, B)|B(X, R) > 54]
> Pr[8(X, R) > 50] - 55,

and similarly for Pr[3(Y, R) > 50], we get Pr[-#;] < 4P XHZgAB] <4

Our main goal is to derive an upper-bound on the conditional probability Pr[P(=)|#;].
Since the event Hs represents a restriction of the alphabets X', ), R, the con-
ditional collision probability Pr[P(=)|H,] is indicative of only a subset of the
alphabet A x B. That is,

1
pr[P=) > .
I‘[P |H5] = |A % B|
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Therefore, an upper-bound on the conditional probability Pr[P(=)|#,] translates
into a lower-bound on the communication complexity.
Now,

Pr[P) A Hs) = Pr[PE) AZE) A Hs] + Pr[PE) AZF) AH;) .

We upper-bound each of the two summands. In Section 5.3 we show that

_ _ 1 1.5 1
Pr[PE) AZE) A Hs) < ( : ( + 605) + e) .6
| V< ) \erer ©)
In Section 5.4 we prove that
52 M
Pr[PE) AZF) A Hs §max{6,}, 6
: ] BINIMETEE ©)

where ¢ is a universal constant. We conclude that

_ LU S : 1)
P (=) < : .
[P A Hs) < Xy " R PIEE] PAEE] A

Since Pr[H;] > 1, we get:

Pr(P) 1) < 2 ~max{ 1 J M }

XV X[V PrFE] PrFO] X[V
Thus,
|Ax B| > %
Pr[P5)[H;]
=)
> 21191+ 2 (min {2y pafre, L, O 2
which proves Theorem 11. a

5.2 A useful fact

The proofs of Equations (5) and (6) both exploit the non-degeneracy of f via
the following simple fact.

Fact 13. Suppose that f is strongly non-degenerate and that (Ila,Ilp,g) is a
PSM for f. Suppose that there is a set x C X of at least k distinct inputs whose
A-message collide under some string r, that is, Ha(xz,r) = ITa(2',r) for any
z,x’ € x. Then, for at least k — 1 of the inputs x € x’s, the protocol conditioned
on 1 errs for at least 1/20 fraction of the y’s, i.e.,

Pr [g(Ma(x,7), Ip(y,r)) # f(x,y)] > 1/20.

$
y<y
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An analogues fact holds for collisions over the B-messages.

Proof. Assume, towards a contradiction, that there is a pair of distinct inputs
x # 2’ € x, for which

]Zr [g(HA(:CaT)7HB(yaT)) 7é f(l’,y)} < 1/203
y<=y

and
Pr [g(I1a(',7), Tp(y,r)) # f(z',y)] < 1/20,

$
y<y
since ITy(x,r) = Ha(2',r), we conclude that f(x,y) and f(2',y) disagree on
less than 0.1-fraction of the y’s, which contradicts the fact that f is strongly
non-degenerate. ad

5.3 Proof of Eq. (5)
Eq. (5) follows by combining the following two claims.

Claim 14. Suppose that f is somewhat regular and that (I1a, Ilg,g) is a PSM
for f with privacy error of €. Then,

1
Pr[PE) AT A H;) < 15 Pr[PO|FE)] 4+ ¢).
[ 1< gy (L5PHPEIF) +¢)
Proof. First,

Pr[P) AT A ) < Pr[ZE) A PO
= Pr[ZO) Pr[P) | O]

1

= ——Pr[PO) | 7] (7)

Eeing

To establish the claim it suffices to show that
Pr[P=) | )] < e+ 1.5 (Pr[P(:) | ]—'(:)]) . 8)

By Bayes’ rule, we can rewrite (8) as

> p(zy)qlz,y) < e+ 15 (Zp’(%y)q’(w,y)> : (9)

T,y T,y

where
pla,y) :=Pr[PS) | I (X,Y) = (z,9)], qlz,y) :=Pr[(X,Y) = (x,y) | T,
and

P (z,y) =Pr[PE | FO(X,Y) = (,9)], d(z,y) =Pr[(X,Y) = (z,y) | FFL
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In the remainder of the proof, we establish (9), by relating, for every (x,y), the
value of p(x,y) to p/(z.y) and the value of q(z,y) to ¢'(x,y).

First, observe that conditioning on Z(=) does not affect the distribution of
(X,Y), hence

V(z,y) o qlz,y) = Prl(X,Y) = (z,9)] = 1/N, (10)
where N = |X| - |Y|. Also, letting N, denote the number of preimages of z € Z
under f, it holds that

. _ Ny 0.9(N/|2]) 09
Y(z,y): ¢ (x,y) = S > ZIL1EN?/IZE ~ (L1 (11)

where the inequality follows from the fact that f is somewhat regular. (Recall
that “somewhat regularity” just means that, for every z, N, € [0.9%, 1.1%].)

By combining Equations (10),(11), we get that

1.1)2
V(z,y): q(z,y) < (o 9) q(z,y) < 1.5¢'(z,y). (12)
We will later use privacy to show that
V(z,y): plz,y) <p'(a,y) +e (13)

By combining Equations (12), and (13), we get

> p(,y)gle,y) < @' (@, y) + e)qlz,y)
= Zp/(za y)‘](x7 y) +€ Zp/(xv y)

<15 (Zp’(ﬂc,y)d(m,y)> +e

and (9) follows.
It remains to prove (13). Since the event P(=) is a function of (A, B, A, B'),
the difference |p(z,y) — p’(x,y)| is upper-bounded by the statistical distance

H ((AvaACB’) [(X,)Y) = (x,y),ﬂ:))
_ ((A,B,A’,B’) |(X,Y) = (x,y%f(:))”. "

We show that, for every (z,y), (14) is at most €. In fact, we prove a stronger
statement: for every (z,y) and (2/,y’) for which f(z,y) = f(2’,y’), the random

variable
(A, B, A, B") | (X,Y) = (z,y),(X"Y') = (z,y)]

is e-close in statistical distance to

[(AvB7A/’B/) | (X7 Y) = (x,y), (X/le) = (xlvyl)]'
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Indeed, in both cases the (A, B)-part is statistically independent of (A’, B), and
therefore the statistical distance is just the statistical distance between

(A, B) | (X.Y') = (z,y)] and [(A",B') | (X" Y')=(a",y/)]
which is at most € by e-privacy. This completes the proof of the claim. O

By Claim 14, in order to prove Eq. (5) it suffices to prove the following claim.

Claim 15. Suppose f is strongly non-degenerate and (Il 4, Il g, g) is a PSM with
correctness error of 6. Then,

(=) =) L (] )
Pr[PT|FT] < PrFO] (|X|y| + 609 | .
Proof. We define k(r,a) := |[{z|Ila(z,r) = a}| and k(r,b) := [{y|p(y,r) = b},
the number of inputs to the respective part of a protocol that map to a, respec-
tively to b, for a fixed randomness 7.

We first bound Pr[P(=)]. Fix randomness r, 7', and z,y, and let a = IT4(x, 1),
b= IIg(y,r). We see that

k(r',a)k(r’,b) .

PiPOR=rR =1, X=2,Y =y] =
X[V
We can write the RHS as

1 (k' a) — DIV (kG b) — DIX] | (R(a) — DY (R 5) —1)|X]
E4ing X[V [ X[[V[? X

Thus, by letting k(r, a,b) = max{(k(r,a) — 1)|V], (k(r,b) — 1)|X|}, we get

Pr[PO|R=r R =v', X =xz,Y =y
1 (k(r',a,0))* | k(' a,b) | k(' a,b)

< + + . (15)
XYL XPYR RN RN
Because f is strongly non-degenerate, we see that for any a, b, we have
Prf(X",Y") # g(A', B)|R' =]
1 (k(r,a)—1) 1 (k(',b)—1)
> v ) - VT )
= e { 20 X 20 ]
_ 1 (k(ra)—1)- Y 1 (k(',b) - 1)|X|}
B m‘“{m w200
1
— 7k ! b .

Indeed, if k(r',a) > 1, then by Fact 13, for at least k(r’,a) — 1 of the choices of
2’ that map to a, the protocol makes an error for at least % choices of y' (and
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similarly, for the symmetric case where k(r/,b) > 1). Multiplying both sides by
Pr[R’ = r'] and summing up the inequalities over all 7/, we get:
1

Pr[f(X',Y") # g(A', B")] > 0[] -

[k(R',a,b)].

Since the PSM is d-correct, the LHS is at most 0, and we get:

E(k(R',a,b))
206 > —— )
XY

Plugging this into (15), and taking expectations over r,r’, z,y, we conclude that

_ 1 206 206
Pr[P)] < s 4206 + 7 + o
X[V v x|

1
RN

Since Pr[P(=)|FE)] < Pr[P)]/ Pr[F5)], we get the claim. 0

< -+ 606

5.4 Proof of Eq. (6)

Claim 16. Suppose that f is a strongly non-degenerate function whose largest
approximately similar pair of rectangles is of size at most M, and assume that
(IIa, I, g) is a PSM protocol for f with correctness error of § < 1%. Then,
for any fized choice v and r' of the randomness, we have

52 M

Pr[PEANTH A5 |[R=r AR =1 <max{é }
[ | ] EIVIRETEE

where ¢ is some universal constant.

Proof. We see that Pr[P(5) AZ) A Hs|R=r AR =1'] is at most

Pr[PEAN(X £ X)AHs;|R=r AR =1]
+Pr[PEANY £AY)AHs|R=r AR =1].

Due to symmetry it suffices to bound the first summand.

As in the proof of the perfect case, we say that x and a’ are colliding (under
rand 1) if ITa(x,r) = I a(2',7"). We restrict our attention to inputs = and z’
for which (z,r) <54 and B(z’,r") < 5.

Claim. Suppose that B(x,r) < 55. Then = can collide with at most a single x’
for which B(x’,r") < 56.

Proof. If this is not the case, then there exist o’ # z” for which IT4(z,r) =
a2, r") = Ha(z”,r") and B2, "), B(z",7") < 54. By Fact 13, either (z',7’)
or B(z”,r") must be at least 55 which is larger than 50 for § < 1/100. Thus we
have reached a contradiction. O
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A similar conclusion for y,y’ € ), holds as well. That is, for every y € ) with
B(y,r) < 5d there exists at most a single ¥’ with B(y’,r’) < 56 for which a
collision ITg(y,r) = IIg(y’,r') occurs.

Let x = (21,...,2,) and X’ = (2),...,2),) be a complete list of colliding
elements for which all of the following hold for all i:

I a(xi,r) = I a(x), ") x; # T
B(wi,m) < 56, Bz, r") <55 .

Analogously, let y = (y1,...,ym) and y' = (yi,...,y,,) be a complete list of
colliding elements for which

HB(yhT) = HB(y;,'IJ), ﬁ(ylv’r) < 567 and ﬁ(y;,'fd/) < 59 .

(In the latter case, pairs (y;,y}) are allowed to be equal.) By definition, the
resulting rectangles p = (x,y) and p’ = (x/,y’) are z-disjoint. Note that Alice
and Bob both send the same messages with randomness r on inputs (z;,y;)
as they send with randomness r’ on inputs z7,y’, for any (4,j). Also, by the
above claim, the tuples x,x’,y,y’ are uniquely determined up to permutation.
We conclude that the event P(=) A (X # X') A Hs happens if and only if we
pick (X,Y) = (v, y;) from p and (X', Y") = (z}, y;) from p, for some (4, j). The

oy . . mn . 1
probability of this is ™ TR

If n <200-56 - |X| and m < 20056 - |Y|, then TxEfyE is at most %,
and we are done. Otherwise, either n > 200 - 56 - |X| or m > 200 - 56 - || holds.
We will show that in this case p and p’ are approximately similar rectangles and

o mn M
conclude that mn < M, giving us EIEINIE < EIEINIER

Claim. Suppose that n > 20058 -|X| or m > 200-50 - |Y|. Then the rectangles
p and p' are approximately similar.

Proof. Let us assume that m > 200 - 50 - |)|. (The other case is handled sym-
metrically). For every (i, ) € [n] x [m] it holds that

gr(l'iayj) = gr ($;7y3)7

where g, = g(Ila(x,r), Ip(y,r)). Hence, to prove that fi, agrees with fj, on
all but 1/100 of the inputs, it suffices to show that g, (resp., g,») disagrees with
f over at most 1/200-fraction of the entries of p (resp., p'). Indeed, for every
x; € X (resp., z; € x') the number of y’s for which the PSM errs over r (resp.,
over ') is at most 55|Y|. Overall, for each of the rectangles p and p’, the number
of decoding errors produced by the PSM (over r and r’ respectively) is bounded
above by n x 56|Y|. As a result, f disagrees with g, (resp., g,~) on at most
%‘;‘yl < 1/200 fraction of the inputs in p (resp., p'). The claim follows.

This completes the proof of Claim 16. O
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6 Imperfect PSM lower-bounds for random and explicit
functions

In this section we will show that most functions have non-trivial imperfect PSM
complexity, and establish the existence of an explicit function that admits a non-
trivial imperfect PSM lower-bound. Formally, in Section 6.1 we will prove the
following theorem (which strengthens Corollary 1 from the introduction).

Theorem 17. For a 1 — o(1) fraction of the functions f : {0,1}¥ x {0,1}¥ —
{0,1} any PSM protocol for f with privacy error of € and correctness error of 4,

0 < W%o’ requires at least

U(k,e,0) = min {3k — 2log(k), 2k + log(1/e€), 2k + log(1/0)} — ¢ (16)
bits of communication, where ¢ is some universal constant.

By de-randomizing the proof, we derive (in Section 6.2) the following theorem
(which strengthens Theorem 4 from the introduction).

Theorem 18. There exists a sequence of polynomial-size circuits

f={f:{0,1}* x {0,1}* — {0,1}}

such that any §-correct e-private PSM for fir has communication complexity
of at least U(k,€,0) bits (as defined in (16)). Moreover, assuming the existence
of a hitting-set generator against co-nondeterministic uniform algorithms, there
exists an explicit family f which is computable by a polynomial-time Turing
machine whose imperfect PSM communication complexity is at least £(k,e,d) —
O(logk).

The reader is advised to read the following subsections sequentially since the
proof of Theorem 18 builds over the proof of Theorem 17.

6.1 Lower bounds for random functions (Proof of Thm. 17)

We will need the following definition.

Definition 6 (good function). We say that a function f : {0,1}* x {0,1}F —
{0,1} is good if it satisfies the following conditions:

1. For every set S C {0,1}¥ x {0, 1}* of k2 consecutive pairs of strings (accord-

ing to some predefined order over {0,1}* x {0, 1}*), the function f, restricted
to the inputs in S, is somewhat regular (as per Definition 5). That is,

k2 k2
0.93§ Z f(x,y)gu?
(z,y)€S
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2. For every x # x' and every set y of k? consecutive strings (according to
some predefined order over {0,1}%), it holds that f(x,y) = f(a',y) for at
most 0.9-fraction of the elements y € y.

3. Similarly, for every y # y' and set x of k* consecutive strings (according to
some predefined order over {0,1}F), it holds that f(z,y) = f(x,y’) for at
most 0.9-fraction of x € x.

4. For every pair of k* x k? z-disjoint or y-disjoint rectangles R, R', it holds
that figr) disagrees with figy on at least 0.01 fraction of the entries.

Claim 19. Any good f : {0,1}* x {0,1}* — {0,1} satisfies the conditions of
Theorem 11 with M = 2* - k%, and therefore any 6-correct e-private PSM for f,

0 < T%o’ requires communication of

U(k,€,6) = min {3k — 2log(k), 2k + log(1/€), 2k + log(1/d)} — ¢,
for some universal constant c.

Proof. Fix some good f. First, since f is somewhat regular on every block of
consecutive inputs (Condition (1)), it is also somewhat regular over the whole
domain. Next, Condition (2) guarantees that f(z,-) and f(z’,-) differ on 0.1
fraction of each k2 block of consecutive y’s, and therefore, overall, they must
differ on a 0.1 fraction of all possible y’s. Applying the same argument on the
y-axis (using condition (3)), we conclude that a good f must be strongly non-
degenerate.

Finally, we claim that a good f cannot have a pair of z-disjoint approximately
similar m x n rectangles R, R’ of size mn > 2% - k2. To see this, observe that the
latter condition implies that m,n are both larger than k2, and therefore, again
by an averaging argument, there must exists a pair of k2 x k? z-disjoint sub-
rectangles R, C Ro, R} C Ry which are also approximately similar. Applying
the same argument to y-disjoint rectangles we conclude that any good f satisfies
the conditions of Theorem 11. a

We say that a family of functions {f. : A — B}, . is t-wise independent
functions if for any t-tuple of distinct inputs (aq,...,a;) and for a uniformly

chosen z & Z, the joint distribution of (f.(a1),..., f.(a;)) is uniform over B.

Claim 20. Pick f: {0,1}F x {0,1}* — {0,1} uniformly at random among all
such functions. Then, with probability 1 — o(1), the resulting function is good.
Moreover, this holds even if f is chosen from a family of k*-wise independent
functions.

Proof. Choose f randomly from a family of k*-wise independent hash functions.
By a multiplicative Chernoff bound, the probability that f fails to be somewhat
regular over some fixed set S C {0, 1}* x {0, 1}* of size k2, is 29—k, (Indeed,
{f(z,9)} (s y)es 18 just a uniform sequence of k? random bits.) Since we consider

at most 22 /k? (consecutive) sets of inputs we can apply a union-bound and

conclude that condition (1) fails with probability at most 228~ 2(k*) = 9-2(k*)
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Next, we establish properties (2) and (3). Fix a pair of x # 2’ and a k?-
subset y C {0, 1}* of consecutive y’s. By a Chernoff bound, the probability that
f(z,y) = f(a',y) for more than 0.9 of y € y is at most 2-2(-*) There are
at most 22% pairs of x,2’, and at most 2* different sets y of consecutive y’s,
therefore by a union bound the probability that condition (2) does not hold is
93k9—2(k) — 9-Q(F) A similar argument, shows that (3) fails with a similar
probability.

We move on to prove there is no pair of approximately similar z-disjoint
rectangles of size exactly k? x k?. (Again, the case of y-disjoint rectangles is
treated similarly.)

Let m = k2. Fix two z-disjoint m x m-rectangles R = (x,y) and R’ = (x/,y’).
We want to give an upper bound on the probability that fir) agrees with fr/ on
0.99 of their entries. This event happens only if the entries of f satisfy all but 0.01
of the the m? equations f(x;,y;) = f(x},y}) for (i,5) € {1,...,m} x{1,...,m}.
The probability that any such equation is satisfied is %: since the rectangles
are z-disjoint the equation is non-trivial. We can further find a subset T of at
least m?/2 such equations such that each equation in the subset uses an entry
f(x,y) that is not used in any other equation. Let us fix some 0.01m? subset
S of equations that are allowed to be unsatisfied. After removing S from T,
we still have at least 0.49m? equations that are simultaneously satisfied with
probability of at most 27049™" There are at most 272(0-00m” sets S (where H,
is the binary entropy function), and at most 22™* choices for R and 22™* choices
for R’. Hence, by a union bound, the probability that (3) fails is at most

—0.49m>%+0.081m>2+4m>/? —2(m?
2 & < 29 )7

the claim follows. O

Theorem 17 follows from Claims 19 and 20. a

6.2 Explicit lower-bound (Proof of Thm. 18)

Our next goal is to obtain an explicit lower-bound. We begin by noting that good
functions (as per definition 6) can be identified by efficient co-nondeterministic
algorithms.

Definition 7. A co-nondeterministic algorithm M (z,v) is a Turing machine
that takes z as its primary input and v as a witness. For each z € {0,1}* we say
that M rejects z if there exist a witness v such that M(z,v) = 1, and say that
M accepts z otherwise.

Claim 21. There exists a co-nondeterministic algorithm M that given some s-
bit representation of a function f : {0,1}¥ x {0,1}* — {0,1} accepts f if and
only if f is good. The complezity of M is O(k*t) where t > k is an upper-bound
on the time complexity of evaluating f on a given point.
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Proof. 1t suffices to describe a polynomial-time verifiable witness for the failure
of each of the goodness conditions.

A failure of (1) is witnessed by a set S C {0,1}* x {0,1}* of k% consecutive
inputs. The verification process computes s = E(z,y)GS f(z,y) in time O(k?t +
k?*log k), and outputs 1 if s is not in [0.9k%/2,1.1k%/2].

If f is not good due to (2), then the witness is a pair  # 2’ and a k%-set y of
consecutive y’s. Since f can be efficiently evaluated we can verify that f(z,y) =
f(2',y) for more than 0.9-fraction of the 3’s in y in times O(k?*t + k%logk). A
violation of (3) is treated similarly.

If f is not good due to (4), then the witness is a pair of z-disjoint or y-disjoint
k? x k? rectangles R, R’ that are approximately similar. Again, we can verify the
validity of this witness in time O(k*t + k* log k), which simplifies to O(k*t) since
t>k. O

Let s(k) = poly(k) and let { f. : {0, 1}* x {0,1}* — {0, 1}}26{0’1}3 be a fam-
ily of k*-wise independent functions with an evaluator algorithm F which takes
an index z € {0,1}* and input (z,y) € {0,1}* x {0,1}* and outputs in time
t(k) the value of f.(x,y). (Such an F' can be based on k*-degree polynomials
over a field of size ©(k?*)). Claims 19 and 20 imply that for most choices of z,
the function f, has an imperfect PSM complexity of at least £(k,€,d). Since F
is efficiently computable, for every z there is a polynomial-size circuit that com-
putes f.. Hence, there exists a polynomial-size computable function for which
the ¢(k, €,9) lower-bound holds, and the first part of Theorem 18 follows.

To prove the second part, we use a properly chosen pseudorandom generator
(PRG) G : {0,1}90esk) 5 10,1}% to “derandomize” the family {f.}. That
is, we define the function g : {0,1}°0°8%) x {0,1}* x {0,1}* — {0,1} which
takes (w,x,y) and outputs f,(z,y) where z = G(w) € {0,1}°. Concretely, we
require G to “hit” the image of any co-nondeterministic algorithms of complexity
T = O(k*). Formally, this means that for every T-time co-nondeterministic
algorithm M it holds that if Pr.[M(z) = 1] > 1 then there exists a “seed” r for
which M (G(r)) = 1.

Taking M to be the algorithm from Claims 21, we conclude, by Claims 20
and 19, that for some seed w, the function fg(.,) has an imperfect PSM complex-
ity of at least £(k, €, d). Let us parse g as a two-party function, say by partitioning
w to two halves w4, wp and giving (z,w,4) to Alice, and y, wp to Bob. We con-
clude that g must have an imperfect PSM complexity of at least ¢(k, €, §). Since
the input length &’ of Alice and Bob becomes longer by an additional O(log k)
bits, the lower-bound becomes at least ¢(k’,¢,0) — O(logk’), as claimed. The
second part of Theorem 18 follows. ad

7 Lower-bounds for Conditional Disclosure of Secrets

In this section we derive CDS lower bounds. We begin with a reduction from
fully revealing weakly hiding PSM (Definition 4) to CDS.
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Claim 22. Let h : X x Y — {0,1} be a predicate. Define the function f :
X' xY — {0,1} where X' = X x{0,1} by f((x,s),y) = s Ah(x,y). If h has
a perfect CDS with communication complexity of ¢ then f has a weakly-private
fully-revealing PSM with complezity of ¢ + log |X| + log |V|.

Proof. Given a CDS protocol IT = (I14,Ilg,g) for h we construct a weakly-
private fully-revealing PSM for f as follows. Given an input (z,s), Alice sends
(x,a = II4(x,s,r)) where = plays the role of the Alice’s input in the CDS, s
plays the role of the secret, and r is a shared string uniformly sampled from R.
Bob takes his input y, and sends (y,b = IIg(y,r)). Charlie outputs h(z,y) A
g(,y,a,b).

It is not hard to verify that the protocol is perfectly correct and fully reveal-
ing. Indeed, a PSM decoding error happens only if g(z, y, a, b) fails to decode the
secret s (which happens with probability zero). To prove weak privacy observe
that if f agrees on a pair of inputs, ((z,0),y) and ((x,1),y), then h(z,y) must be

zero. By CDS privacy, for R & R the distribution (z,y, I A(xz,0,R), IIp(y, R))
is identical to the distribution (z,y, IT4(z,1, R), II5(y, R)), as required. O

Next, we show that the properties of f needed for applying Theorem 8, follow
from simple requirements on h. In the following, we say that x € X is a null
input if the residual function h(z,-) is the constant zero function.

Claim 23. Let h and f be as in Claim 22. Then

1. The size of the largest complement similar rectangle of [ equals to the size
of the largest 0-monochromatic rectangle of h.

2. The number U of useful inputs of f is exactly two times larger than the
number of inputs that are mapped by h to zero.

3. If h has no input = for which the residual function h(x,-) is the constant
zero function, then f is weakly non-degenerate.

Proof. The claim follows immediately by noting that for every (z,y) it holds
that f((z,1),y) = f((z,0),y) if and only if h(x,y) = 0. We proceed with a
formal argument.

1. Consider some complement similar rectangle R = (x’ X y) of f. For every
(x,b) € x' and y € y, it holds that

f((x,0),y) = f((z,1-0),y),

and therefore h(z,y) = 0 and R is a 0-monochromatic rectangle of h.

2. Every input (z,y) that does not satisfy h induces an unordered pair, ((z,1),y)
and ((z,0),y), of useful inputs for f. Therefore, the number of (ordered) use-
ful inputs of f is exactly 2|h=1(0)|.

3. Fix some (z,s) € X’ and assume, towards a contradiction, that for every y
it holds that f((x,s),y) = f((x,1— s),y). By the definition of f this means
that h(z,y) = 0 for every y, contradicting our assumption on h.

O
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Theorem 5 (restated here for convenience) now follows immediately from the
lower-bound on weakly-private fully revealing PSM (Theorem 8).

Theorem 24 (Theorem 5 restated). Let h: X x Y — {0,1} be a predicate.
Suppose that M upper-bounds the size of the largest 0-monochromatic rectangle
of h and that for every x € X, the residual function h(x,-) is not the constant
zero function. Then, the communication complexity of any perfect CDS for h is
at least

2log|f~1(0)| —log M —log |X'| —log [¥| — 1,

where | f~1(0)| denotes the number of inputs (z,y) that are mapped to zero.

Proof. Let h : X x Y — {0,1} be a predicate that satisfies the theorem re-
quirement. That is, M upper-bounds the size of the largest 0-monochromatic
rectangle of h, there at least .S inputs that are mapped to zero, and for every
x € X, the residual function h(z,-) is not the constant zero function.

Suppose that h has a perfect CDS with communication complexity of c.
By Claim 22, the function f (defined in the claim) has a weakly-private fully-
revealing PSM with complexity of at most

c+log |X| + log|Y|,
which, by Claim 23 and Theorem 8, is at least
2logU —logM — 2 =2log S —log M — 1.
It follows that
c¢>2logS —logM —1— (log|X| +log|Y|),
as required. 0

Ezample 1 (The index predicate). As a sanity check, consider the index predicate
fina : [k] x {0,1}¥ — {0,1} which given an index i € [k] and a string y € {0, 1}*
outputs y[i], the i-th bit of y. Clearly exactly half of all inputs are mapped to
0. Also, for every ¢ the residual function f(4,-) is not the constant zero. Finally,
every zero rectangle is of the form I x {y : y[i] = 0,Vi € I} where I C [k] . This
implies that the size of any such rectangle is exactly |I| -2k=IIl < 9k=1 Plugging
this into Theorem 24, we get a lower-bound of

2(k+logk—1)—(k—1)—k—logk —1>logk — 2.
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A Lower-bound for weakly-private fully-revealing

protocols

In this section we provide an alternative combinatorial proof to Theorem 8 by
following the outline of the original FKN argument. Recall that f is weakly
non-degenerate if for every x there exists y such that f(x,y) # f(Z,y).
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Let IT = (Il4,I1p,g) be a perfect PSM protocol for f whose shared ran-
domness is sampled uniformly from the set R. In the following we let C\.(z,y) =
(I a(x,r), Ip(x,r)) denote the function that for randomness r, maps the inputs
of Alice and Bob, z,y, to the messages (a, b). To prove Theorem 8 we show that
at least U?/(2M) different messages (a,b) are being sent in I1. In fact, we will
show that this happens even if we restrict our attention to some well chosen
(ordered) subset of random strings r = (r1,...,71). We will also restrict our
attention only to useful inputs (z,y) (for which f(z,y) = f(z,y)). That is, we
will prove that

| U {Cp(x,y) : (z,y) is useful} | > U?/(4M) (17)
rer
For a given r = (rq,...,ry) consider the following counting scheme.

1. Initialize S to be an empty set.
2. Fori=1,...,L do:
(a) For every useful (z,y): If ¢ = Cy, (z,y) does not appear in S add it to S.
Else, discard it and call it a collision.
3. Output |S].

Clearly, the output equals to the LHS of (17). The lower-bound will be es-
tablished by showing that there are not too many collisions. We begin by noting
that C, is injective for any r.

Claim 25. For every r, the function Cy.(-) is injective.

Proof. Suppose that C.(x,y) = C.(2',y") for some r. Since the protocol is
fully revealing it must hold that y = ¢ and 2’ € {z,z}. Assume, towards a

contradiction, that ' = Z, and let @ = I 4(z,7) = II4(Z,r). For any y, let
b(y) = IIp(y;r). Then, by perfect correctness, it holds that

f(.y) =g(a,by)) = f(z,y)
for every y. Contradicting the fact that f is weakly non-degenerate. ad

Suppose that (x,y) and (2,3y") collide over r and r’. That is, ¢ = C,.(x,y) =
Crr(2',y"). Then either the collision is trivial, i.e., (z,y) = (2',y’), or (x,y) #
(', y"). In the latter case, it must hold that 2’ = Z and y’ = y since the protocol
is fully revealing. Indeed, otherwise, the value of (z[1 : k — 1],y) cannot be
recovered from c. We refer to this type of collision as non-trivial.'?

While it easy to get some upper-bound on the amount of non-trivial collisions,
it is somewhat tricky to upper-bound the number of trivial collisions. For this

12 This is the point where the additional property of fully revealing is being used.
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reason, we treat the two cases asymmetrically. In particular, getting back to our
counting algorithm, consider a useful (z,y) which is excluded in the i-th step.
We refer to this exclusion as non-trivial if there exists some 7;,j < 4 for which
Cr,(z,y) = Cr,(Z,y). Otherwise, we refer to the exclusion as trivial. In the latter
case, ¢ = Cy,(x,y) appears in the image of C,, for (one or more) r;,j < i but
only as an image of (z,y).

The following claim relates the number of non-trivial collisions to the size of
the largest complement similar rectangle of f. (Recall that the latter is upper-
bounded by M.)

Claim 26. FEvery pair of distinct random string r # v’ has at most M non-
trivial collisions. Consequently, for every choice of v = (r1,...,7rL), the total
number of non-trivial exclusions in the above process is at most M L? /2.

Proof. Fix a pair of random strings r # r’ and consider all their non-trivial
collisions (z1,y1),- .., (z¢,yt). For every i, it holds that C,(z;,y;) = Cr (T4, yi)
and therefore IT4(x;,r) = [ 4(Z;,r') and I p(y;,r) = IIp(y;,r’'). It follows that
for every i, j, Cr(x;,y;) = Cr(Zi,y;), and so by perfect correctness the rectangle
R = {(x;,y;) : 1 <i,j <t} is complement similar. We conclude that r and 7’
can have at most M non-trivial collisions, which implies that the total number
of non-trivial collisions over r is at most Zf:_ll iM < ML?/2. O

The next claim handles trivial collisions by relating their number to the
number of non-trivial collisions.

Claim 27. For every 1 < L <|R|, there exists a sequence of L distinct strings
r = (ri,...,r) for which the total number of trivial exclusions in the above
process is upper-bounded by the number of non-trivial exclusions.

Proof. By induction on L. The case of L = 1 trivially holds. Fix some sequence
r=(ry,...,r—1) of length L — 1 for which the claim holds. We show that we
can always extend r by an additional string r ¢ r such that T'(r), the number
of trivial exclusions contributed by r, is upper-bounded by N(r), the number
of non-trivial exclusions contributed by r. For this aim, we will show that the
expectation, over a random r ¢ r, of 6(r) = N(r) — T'(r) is positive.

For every useful (x,y) and transcript ¢, let N, , () be an indicator that
takes the value 1 if C,.(x,y) = ¢ and there exists ' € r for which C,(Z,y) = ¢
Similarly, let Ty, () be an indicator that takes the value 1 if C,(z,y) = ¢ and
there exists ' € r for which C,/(x,y) = ¢ but there is no v/ € r for which
Cyr(2,y) = c. Note that N(r) =3>_,  Nyye(r)and T(r) =3, Toy.c(r). It
will be useful to “symmetrize” N(r) — T'(r) around = and Z and write it as

3 D (Neelr) = T el)) + (N olr) = T elr)

Z,Y,C

Hence, by the linearity of expectation, it suffices to show that for every z,y, c,

Erirgel(Nay.o(r) = Tey,e(r) + (Nay.e(r) = Tey,e(r))] = 0. (18)

We establish this via case analysis.
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1. ¢ is new. That is, for every ' € r, neither Cy(x,y) = ¢ nor C/ (Z,y) = c.
Then, for every 7, Ny y (1) = Ty y,e(1) = Nz y.c(r) = Tzy.c(r) = 0 and (18)
holds.

2. c already appears both under (x,y) and (Z,y). That is, there exists 7/, 7" € r
for which Cy(x,y) = Crr(Z,y) = c. Then, for every r ¢ r,

Npye(r) =Nzye(r) >0, and Tyyc(r) =Tzy0(r) =0,

where the inequality is strict when C,(z,y) = c¢. Eq. (18) follows.

3. ¢ already appears under (z,y) (i.e., I’ € r s.t. Crv(x,y) = ¢) but never
appeared under (Z,y) (i.e., Ar' € r s.t. Cr(Z,y) = ¢). In this case, we can
partition all the ¢ r to three types.

— (Bad) C\(z,y) = c. Inthis case, Ny y o(r) =Ty y.c(r) = —land Nz, (1) =
T ,y.c(r) =0 (since C,(Z,y) # ¢ due to injectivity).
— (Good) Cr(Z,y) = c. Inthis case Nz y (1) —Tz,y,c(r) = Land Ny, (1) =
Ty y.c(r) =0 (since Cr(x,y) # ¢ due to injectivity).
— (Neutral) Cy(z,y),Cr(Z,y) # c. In this case, Ny yo(r) = Tpye(r) =
Nz y.o(r) =Tz y.e(r) =0.
We argue that, outside r, there are more Good r’s than Bad r’s. Indeed, by
perfect privacy, the total number of Good r’s among all » € R is equal to
the total number of Bad r’s among all » € R. Since r contains at least one
Bad string but not a single Good string, the set R \ r contains more Good
strings than bad strings. Hence, (18) follows.

4. The last case is symmetric to the previous case (i.e., ¢ already appears under
(Z,y) but never appeared under (z,y)). This case is handled similarly to the
previous case.

This completes the proof of Claim 27. O

In order to complete the argument, we prove a lower-bound on the number
of random strings. Recall that U denotes the number of useful inputs.

Claim 28. The size of R is at least U/M.

Proof. Let U denote the set of all useful inputs. Fix some random string r € R.
We count the number of non-trivial collisions ¢ with r. That is,

L= |{(z,y,7") : (z,y) €U and C,.(z,y) = Crr (T,y)} |-

Since C, is injective (Claim 25), the set C..(U) consists of at least U transcripts.
By perfect privacy, each such transcript ¢ = C,.(z,y),(x,y) € U must be an
image of (Z,y) under some (different) C,. Hence, £ > U. On the other hand, by
Claim 26, each pair of distinct  # ' can have at most M non-trivial collisions,
and therefore ¢ < |R|M. The claim follows. O

We can now complete the proof. Let L = U/(2M) < |R|. Apply the counting
algorithm to a sequence r = (rq,...,r1) of L distinct strings which satisfies
Claim 27. Since C.. is injective for every r € r, Step 2a is performed LU times, out
of which there are at most M L?/2 non-trivial exclusions (Claim 27) and M L?/2
trivial exclusions (Claim 27). Hence, S contains at least LU — M L? = U?/(4M)
strings. The theorem follows. O
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