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Abstract

In the conditional disclosure of secrets (CDS) problem (Gertner et al., J. Comput. Syst. Sci.,
2000) Alice and Bob, who hold n-bit inputs x and y respectively, wish to release a common secret
z to Carol (who knows both x and y) if and only if the input (x, y) satisfies some predefined
predicate f . Alice and Bob are allowed to send a single message to Carol which may depend
on their inputs and some shared randomness, and the goal is to minimize the communication
complexity while providing information-theoretic security.

Despite the growing interest in this model, very few lower-bounds are known. In this paper,
we relate the CDS complexity of a predicate f to its communication complexity under various
communication games. For several basic predicates our results yield tight, or almost tight, lower-
bounds of Ω(n) or Ω(n1−ε), providing an exponential improvement over previous logarithmic
lower-bounds.

We also define new communication complexity classes that correspond to different variants of
the CDS model and study the relations between them and their complements. Notably, we show
that allowing for imperfect correctness can significantly reduce communication – a seemingly
new phenomenon in the context of information-theoretic cryptography. Finally, our results show
that proving explicit super-logarithmic lower-bounds for imperfect CDS protocols is a necessary
step towards proving explicit lower-bounds against the class AM, or even AM∩ co-AM – a well
known open problem in the theory of communication complexity. Thus imperfect CDS forms
a new minimal class which is placed just beyond the boundaries of the “civilized” part of the
communication complexity world for which explicit lower-bounds are known.
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1 Introduction

Understanding the communication complexity of information-theoretically secure protocols is a
fundamental research problem. Despite much effort, we have very little understanding of the
communication complexity of even simple cryptographic tasks, and for most models, there are ex-
ponentially large gaps between the best known upper-bounds and the best known lower-bounds.
In an attempt to simplify the problem, one may try to focus on the most basic settings with a
minimal non-trivial number of players (say two or three) and the simplest possible communica-
tion pattern (e.g., single message protocols). Different cryptographic tasks have been studied in
this minimal setting, including secure computation [FKN94], and non-interactive zero-knowledge
proofs [GPW15]. In this paper we will focus on what seems to be the simplest task in this model:
Conditional Disclosure of Secrets (CDS) [GIKM00].1

Conditional Disclosure of Secrets. Consider a pair of computationally unbounded parties,
Alice and Bob, each holding an input, x ∈ X and y ∈ Y respectively, to some public predicate
f : X × Y → {0, 1}. Alice and Bob also hold a joint secret z (say a single bit) and have access to

a joint source of randomness r
R← R. The parties wish to disclose the secret z to a third party,

Carol, if and only if the predicate f(x, y) evaluates to 1. To this end, Alice and Bob should each
send a single message a = a(x, z; r) and b = b(y, z; r) to Carol. Based on the transcript (a, b) and
the inputs (x, y), Carol should be able to recover the secret z if and only if f(x, y) = 1. (Note that
Carol is assumed to know x and y.) That is, we require two properties:

� Correctness: There exists a deterministic decoder algorithm Dec that recovers z from (x, y, a, b)
with high probability whenever x, y is a 1-input (i.e., f(x, y) = 1);

� Privacy : For every fixed 0-input (x, y) (for which the predicate evaluates to 0), regardless of
the value of the secret z, the joint distribution of the transcript (a, b), induced by a choice
of the shared randomness, is statistically close (up to some small deviation error) to some
canonical distribution Sim(x, y).

The main complexity measure of CDS protocols is their communication complexity which is taken
to be the total bit-length of the messages a and b. (See Figure 1 for a schematic view and Section 4
for formal definitions.)

Alice(x, z; r) Bob(y, z; r)

Carol(x, y)

a b

Figure 1: Schematic of a CDS protocol.

1While we do not wish to define the notions from [FKN94] and [GPW15], let us just mention that the complexity
of a function in these two models upper-bounds the complexity in the CDS model [GIKM00, AR16]. In this sense,
CDS may be considered as being simpler.
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Apart from being a natural basic notion, CDS has turned out to be a useful primitive with vari-
ous applications in the context of private information retrieval (PIR) [GIKM00], secure multiparty
computation [AIR01, IKP10], secret sharing schemes [BD91, CSGV93, SS97, LVW17b, BKN18,
AA18, LV18], and attribute-based encryption [Att14, Wee14]. Correspondingly, the communica-
tion complexity of CDS was extensively studied in the last few years.

Upper bounds. On the positive side, it is known that the CDS complexity of a predicate f
is at most linear in the formula complexity of f [GIKM00]. This result was extended to other
(presumably stronger) computational models such as (arithmetic) branching programs [IW14], and
(arithmetic) span programs [AR16]. The latter paper also shows that the CDS complexity of f is
at most linear in the complexity of any zero-information Arthur Merlin (ZAM) protocol for f . (The
ZAM model, introduced by [GPW15], adds a zero-knowledge property to the standard AM commu-
nication complexity model.)2 In a recent breakthrough, Liu, Vaikuntanathan and Wee [LVW17a]
showed that the CDS complexity of any predicate f : {0, 1}n × {0, 1}n → {0, 1} over n-bit inputs

is at most 2Õ(
√
n), improving over the exponential upper-bound of O(2n/2) from [BIKK14]. Ap-

plebaum et al. [AARV17] showed that when the secret is very long (exponential in the size of the
domain of the predicate) the overhead per each bit of z can be reduced to O(n); a constant-rate
solution (in which the total communication is O(|z|)) was recently given in [AA18].

The quest for lower bounds. On the lower-bound front much less is known. While we have
tight lower bounds for restricted forms of CDS (e.g., when the computations are restricted to linear
functions [GKW15, BFMP17, BP18]), only few, relatively weak, lower-bounds are known for general
CDS. It is important to note that an insecure solution to the problem has a communication cost
of 1 bit! (Let Alice send the secret in the clear regardless of her input.) Hence, any super-constant
lower-bound is, in a sense, non-trivial. Indeed, unlike the case of standard communication games
for which communication lower-bounds are based on the correctness properties of the protocol, the
challenge here is to somehow capture the additional cost of privacy.

The first super-constant lower-bound was proved by Gay et al [GKW15].

Theorem 1 ([GKW15]). For every predicate f : X × Y → {0, 1},

CDS(f) ≥ Ω(log(RA→B(f) + RB→A(f))),

where RA→B(f) denotes the one-way randomized communication complexity of f , and CDS(f)
denotes the minimal communication complexity of a CDS protocol for f with privacy and correctness
error of 0.1.3

For n-bits predicates, Theorem 1 leads, at best, to a logarithmic lower-bound of Ω(log n).
Applebaum et al [AARV17] showed that this bound is essentially tight: There are (partial) functions
whose randomized communication complexity is exponentially larger than their CDS complexity.
They also proved a linear n-bit lower-bound for a random (non-explicit) n-bit predicate f : {0, 1}n×
{0, 1}n → {0, 1}. An explicit version of this result was proved by [AHMS18].

2The theorem of [AR16] actually relates the communication and randomness complexity of CDS for f to the
randomness and communication complexity of a ZAM protocol for the complement of f . However, using our results
in this paper, specifically Lemma 1, one can conclude that the CDS communication of f is at most linear in the ZAM
communication of f .

3The theorem was originally proved for perfect CDS, however, the proof generalizes to the imperfect case
(see [AARV17]).
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Theorem 2 ([AHMS18]). For every non-degenerate predicate4 f : X × Y → {0, 1} whose largest
0-monochromatic rectangle is of size at most L,

pCDS(f) ≥ log
|f−1(0)|

L
− log

|X × Y|
|f−1(0)|

− 1 = 2 log |f−1(0)| − log |X | − log |Y| − logL− 1,

where pCDS(f) denotes the minimal communication complexity of a CDS protocol for f with perfect privacy
and perfect correctness.

The theorem is effective for predicates whose communication matrix is rich in zeroes, and at
the same time avoids large zero-monochromatic rectangles. In particular, for mod-2 inner product
over n-bit inputs, we get a tight lower-bound of n−O(1) and for Set-Intersection a lower-bound of
Ω(n). Unfortunately, the theorem is not robust to errors, leaving the imperfect CDS complexity of
these predicates wide open. Moreover, for many basic predicates the theorem does not even give
logarithmic bounds either due to the lack of many zeroes (e.g., the Not-Equal predicate) or due to
the existence of huge zero-rectangles (e.g., the Greater-Than predicate).

This paper. Theorems 1 and 2 provide a very partial picture, and fall short of proving meaningful
and robust lower-bounds for many basic predicates, such as Not-equal, Greater-Than, Intersection,
and Index.5 We believe that a full understanding of these simple cases is necessary for the more am-
bitious goal of proving stronger lower bounds. Our goal in this paper is to remedy the situation by
providing new lower-bound techniques. Specifically, we enrich our lower-bound toolbox by relating
the CDS complexity of a function to its communication complexity under various communication
games. Our results provide simple, yet effective, ways to leverage privacy to construct communica-
tion protocols. They lead to new lower-bounds for perfect and imperfect CDS protocols, and allow
us to establish new results regarding the relations between different variants of the CDS model.

2 Our Contribution

2.1 Perfectly-correct CDS and coNP Games

Our first theorem relates the complexity of any perfectly-correct CDS protocol for f to the non-
deterministic communication complexity of f ’s complement.

Theorem 3. For every predicate f : X × Y → {0, 1},

pcCDS(f) ≥ Ω(coNP(f))−O(log(n)),

where n denotes the total input length of f , and pcCDS(f) denotes the minimal communication
complexity of a CDS protocol for f with perfect correctness and privacy error of 0.1.

Proof idea. To prove the theorem, we first show that the coNP complexity is upper-bounded
by the randomness complexity of the CDS, and then prove that one can always assume that the
randomness complexity is comparable to the communication complexity via a new sparsification
lemma (similar to that of Newman [New91]; see Section 4.2). The first part relies on the following

4A predicate is non-degenerate if for every fixing of x ∈ X the residual function f(x, ·) is not the constant zero
function.

5Apart of being basic examples, these predicates are motivated by some of the applications of CDS.
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simple observation: In order to convince Alice and Bob that f(x, y) evaluates to zero it suffices
to prove that the joint distribution of the CDS messages for zero-secret, (a(x, z = 0; r), b(y, z =
0; r)), induced by a random choice of r, and the joint distribution of the messages for one-secret
(a(x, z = 1; r), b(y, z = 1; r)), are not disjoint. A prover can prove this statement by sending
to Alice and Bob a pair of strings r0 and r1 for which (a(x, z = 0; r0), b(y, z = 0; r0)) equals to
(a(x, z = 1; r1), b(y, z = 1; r1)). (See Section 5.)

Despite its simplicity, this theorem is quite powerful. In particular, ignoring the constants
in the Omega-notation and the logarithmic loss, the bound provided by Theorem 3 subsumes the
lower-bound of Theorem 2 from [AHMS18]. Indeed, the latter lower-bound is at most the logarithm
of the ratio between the zero-mass of f and its largest zero-monochromatic rectangle – a quantity
that cannot be larger than the non-deterministic communication complexity of the complement of
f (i.e., coNP(f)). Moreover, our new theorem can be applied to predicates that have only few
zero entries or to predicates with huge zero-rectangles, for which Theorem 2 becomes meaningless.
For example, by plugging-in classical coNP lower-bounds, we settle the complexity of the not-equal
predicate with respect to perfectly correct CDS protocols.

Corollary 1. Let NEQn : {0, 1}n×{0, 1}n → {0, 1} denote the not-equal predicate which evaluates
to 1 if and only if x 6= y. Then,

pcCDS(NEQn) ≥ Ω(n).

Similar tight linear lower-bounds can be obtained for the pcCDS complexity of the Greater-
Than predicate, the Set-Intersection predicate, and the Inner-Product predicate. Previously, we
had no super-logarithmic lower bounds that tolerate privacy error. (As already mentioned, for
Greater-Than and NEQn, we did not have such bounds even for perfect CDS protocols.)

pcCDS is not closed under complement. Interestingly, the equality function EQn has a very
succinct perfect CDS protocol: Use the shared randomness to sample a pair-wise independent hash
function h : {0, 1}n → {0, 1}, and let Alice output h(x) and Bob output h(y)⊕ z. The protocol has
a minimal communication complexity of 2 and randomness complexity of O(n). (The latter can
be reduced to O(log n) by using an almost pair-wise independent hash function and settling for a
constant privacy error.) This yields a strong separation between the complexity of a predicate and
its complement with respect to perfectly-correct perfectly-private CDS protocols (pCDS).

Corollary 2. pCDS(EQn) = 2 whereas pCDS(NEQn) ≥ pcCDS(NEQn) ≥ Ω(n). In particular, the
classes pCDS and pcCDS are not closed under complement.6

Transformations from CDS protocols for f to its complement were studied in [AARV17]. The
resulting protocols either introduce a privacy error or suffer from a communication overhead that
grows polynomially with the randomness complexity of the original protocol. The NEQn example
shows that at least one of these losses is inherent.

The benefit of decoding errors. The results of [AARV17] (together with our randomness
sparsification lemma) show that imperfect CDS is closed under complement. This general result
leads to a polylogarithmic CDS protocol for NEQn with imperfect privacy and imperfect correctness,

6We follow the standard communication complexity terminology and write pCDS to denote the class of predicates
that admit a pCDS protocol whose complexity is polylogarithmic in the input length. A similar convention will be
used throughout the paper for all other variants of the CDS model.

5



providing a surprising separation between general imperfect CDS protocols and ones which have
perfect correctness. In fact, it is not hard to directly design a CDS protocol for NEQn with constant
communication, perfect privacy, and constant correctness error. (See Appendix A for a more general
statement.) This leads to the following stronger separation.

Corollary 3. There is an n-bit predicate f for which pcCDS(f) = Ω(n) and ppCDS(f) = O(1),
where ppCDS(f) denotes the minimal communication complexity of a CDS protocol for f with
perfect privacy and correctness error of 0.1. In particular,

ppCDS 6⊆ pcCDS.

As pointed to us by Hoteck Wee, Corollary 3 provides a rare example for an information-theoretic
secure protocol that can significantly benefit from a small correctness error. This phenomena seems
new in the context of information-theoretic secure cryptography, and is worth further exploration.7

2.2 Perfectly-Private CDS and PP Games

Our next goal is to lower-bound the complexity of CDS protocols with correctness errors. We begin
with the case of perfectly private protocols.

Theorem 4. For every predicate f : X × Y → {0, 1},

ppCDS(f) ≥ Ω(PP(f))−O(log(n)),

where n denotes the total input length of f , and ppCDS(f) denotes the minimal communication
complexity of a CDS protocol for f with perfect privacy and correctness error of 0.1.

The complexity measure PP(f) essentially corresponds to the sum of the communication com-
plexity and number of private random bits used by a communication protocol that computes f
correctly with probability more than 1/2, where shared randomness is not allowed. (See Defini-
tion 3 for a formal definition.) The discrepancy method implies that the PP complexity of the
mod-2 inner-product predicate IPn is Ω(n) (cf. [KN97]) and so we get the following.

Corollary 4. Let IPn : {0, 1}n×{0, 1}n → {0, 1} denote the inner-product predicate on n-bit inputs.
Then,

ppCDS(IPn) ≥ Ω(n).

This is the first linear lower-bound on CDS with imperfect correctness. (Previous arguments
fail to achieve such a result even for a non-explicit predicate.)

Proof idea. In order to prove Theorem 4, we turn a ppCDS protocol into a PP protocol. Loosely
speaking, the idea is to construct a randomized protocol that accepts the input (x, y) based on
collisions between random CDS transcripts that correspond to a zero-secret and random CDS
transcripts that correspond to a one-secret. This idea, which was employed in the query setting
by [BCH+17], leads to the desired result. (See Section 6.)

7Compare this, for example, to Shannon’s classical lower-bound for perfectly-secure one-time symmetric encryp-
tion [Sha49] in which a constant decryption error has a minor effect on the key/ciphertext length [Dod12].
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2.3 Imperfect CDS, Interactive Proofs, and Zero Knowledge

We move on to the most general case of imperfect CDS protocols with both constant privacy error
and correctness error. We show that the complexity of such protocols is at least polynomial in the
AM communication complexity of f . (The latter class is the communication complexity analogue
of Arthur-Merlin proofs; see Definition 5.)

Theorem 5. There exists some universal constant c > 0, such that for any Boolean function f it
holds that

CDS(f) ≥ AM(f)c − polylog(n),

where n denotes the total input length of f , and CDS(f) denotes the minimal communication
complexity of a CDS protocol for f with correctness and privacy errors of 0.1.

Since (imperfect) CDS is closed under complement (by [AARV17, Theorem 2] and Lemma 1),
it holds that CDS(f̄) ≤ poly(CDS(f)), and so we conclude the following.

Corollary 5. There exists some universal constant c > 0, such that for any Boolean function f it
holds that

CDS(f) ≥ max(AM(f), coAM(f))c − polylog(n),

where n denotes the total input length of f .

Explicit CDS lower-bounds? Corollary 5 can be used to show that the CDS complexity of
most n-bit predicates must be at least polynomial in n, even when the protocol is imperfect.
Unfortunately, it falls short of providing explicit lower-bounds; Finding an explicit function outside
AM ∩ coAM is a central open problem in the theory of communication complexity. In fact, AM ∩
coAM forms a minimal class for which no explicit lower-bounds are known [GPW18]. Corollary 5
places CDS as a weaker (and perhaps more accessible) target for explicit lower-bounds.

Proof idea. To prove Theorem 5 we show that a CDS protocol can be transformed into a
constant-round private-coins interactive-proof. Then, we note that, just like in the computa-
tional setting, such interactive proofs can be converted to an AM protocol with polynomial over-
head [Bab85, GS89].8 The first step is obtained by imitating the standard interactive proof of
Graph Nonisomorphism [GMW91]. Indeed, the AM protocol constructed in Theorem 5 turns out
to satisfy a statistical zero-knowledge property; That is, the view of Alice and Bob can be simulated
via a low complexity 2-party randomized protocol. (See Section 8 for details.)

CDS vs. SZK. Recall that, by definition, a CDS protocol yields a (distributed mapping) from the
input (x, y) and the secret z to a distribution Dz over the transcript (a, b) such that the distribu-
tions, D0 and D1, are either statistically-close or statistically-far depending on the value of f(x, y).
This resembles the Statistical Difference problem [SV03], which is known to be complete for the
computational complexity class SZK (consisting of problems that have interactive proofs that are
statistically zero-knowledge). One may therefore hope to prove that in the communication complex-
ity setting CDS complexity is characterized by SZK complexity. As already mentioned, Theorem 5

8This reduction has a polynomial dependency in the randomness. In order to avoid such an overhead in the final
statement, we prove a randomness sparsification lemma (Lemma 9) for constant-round interactive protocols. This
requires some care due to the use of private coins.
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actually shows that CDS ⊆ SZK, however, we do not know whether the reverse direction holds.
Roughly speaking, such a result faces two obstacles. Firstly, the completeness result from [SV03]
has an overhead that depends on the randomness complexity of the protocol, and we do not know
how to get rid of this dependency. (In particular, it is not clear how to prove a proper sparsification
lemma for SZK without sacrificing the zero-knowledge property.) Secondly, even if the randomness
complexity is small, we do not know how to obtain a CDS protocol without allowing some interac-
tion between Alice and Bob. Indeed, in Section 9, we show that SZK′ ⊆ CDS′ where the “prime”
version of SZK charges randomness towards the total complexity and the “prime” version of CDS
allows short interaction between Alice and Bob. The problem of proving that SZK ⊆ CDS (and
therefore SZK = CDS) remains as an interesting open problem.

The results described so far are summarised in Fig. 2, which shows the relationship between
perfect and imperfect CDS and various measures from communication complexity. In Table 1,
we list the current state of knowledge of the various CDS complexities of a number of commonly
studied predicates. (See Section 3.)

2.4 Asymmetry in CDS and One-Way Communication

We shift gears, and turn to study the communication tradeoffs between Alice’s and Bob’s messages.
Suppose that Alice’s message is restricted to a short string of length tA. Can we prove that
Bob’s message must be very long? We prove such tradeoffs based on the one-way randomized
communication complexity of f .

Theorem 6. In any perfectly correct 0.1-private CDS protocol for f in which Alice and Bob com-
municate tA and tB bits respectively and the total input length of the function is n, it holds that:

2tA(tA + tB + log n) ≥ Ω(RB→A(f)).

(In fact, the result holds even if one considers one-way randomized protocols that err only
over zero inputs. See Section 7.) Recall that Theorem 1 (which is from [GKW15]) shows that
the total communication complexity tA + tB is at least logarithmic in (RA→B(f) + RB→A(f)),
which is tight for some predicates [AARV17]. Theorem 6 provides a more accurate picture. If the
total communication complexity is dominated by tA, then one gets a logarithmic bound, similar to
Theorem 1; however, when tA is small (e.g., constant), we get a strong linear lower-bound of

tB = Ω(RB→A(f))−O(log n).

In fact, when RB→A(f) = Ω(n), for any constant α < 1 if tA ≤ α log n then

tB = Ω(n1−α).

Concretely, consider the Indexn predicate in which Bob holds an n-bit database x ∈ {0, 1}n and
Alice holds an index i ∈ [n] (encoded as a string of length log n) and the output is the i-th bit of
x. Since RB→A(Indexn) = Ω(n) [KNR99] we get:

Corollary 6. In any perfectly correct 0.1-private CDS protocol for Indexn in which Alice commu-
nicates at most α log n + O(1) bits for some constant 0 ≤ α < 1, the database owner, Bob, must
communicate at least Ω(n1−α) bits.

8



Similar results can be obtained for predicates like Greater-Than, Set-Disjointness and Set-
Intersection, based on classical lower-bounds for randomized one-way communication complexity
(cf. [MNSW98, KNR99]).

The Indexn predicate plays an important role in CDS constructions and applications. First, it
is complete for CDS in the sense that any n-bit predicate can be reduced to IndexN for N = 2n.
Indeed, the best known general CDS protocols were obtained by improving the pCDS complexity
of Index [LVW17a]. In addition, a CDS for the index function can be viewed as a one-time version
of the well-studied notion of Broadcast Encryption, and the lower-bound of Corollary 6 becomes
especially appealing under this framework. Details follow.

Broadcast Encryption [FN93]. Suppose that we have a single sender and n receivers. The
sender has a private encryption key r and each receiver i ∈ [n] has its own private decryption key
ki. All the keys were collectively generated and distributed in an offline phase. In an online phase,
the sender gets a message z together with a public list of authorized users y ⊆ [n], represented by
an n-bit characteristic vector. The sender should broadcast a ciphertext b = b(y, z; r) to all the
receivers (who also know y) so that an authorized receiver will be able to decrypt the ciphertext,
and an unauthorized (computationally unbounded) receiver will learn nothing about the message
z. The goal is to minimize the length of the ciphertext b, and the length of the keys ki.

Information-theoretic one-time secure Broadcast Encryption turns to be equivalent to the CDS
problem with respect to the Indexn predicate: Identify the ciphertext with Bob’s message b =
b(y, z; r) and the i-th key with Alice’s message a(i; r).9 The problem can be solved with n-bit
ciphertext and 1-bit keys, and with 1-bit ciphertext and n-bit keys. In fact, [GKW15] showed that
one can smoothly get any tradeoff as long as the product of the ciphertext length and the key
length is n. Corollary 6 shows that when the key-length is sub-logarithmic the ciphertext must be
almost linear, confirming a conjecture of Wee [Wee18].

Proof idea (of Theorem 6). The idea is to let Bob send to Alice a pair of random strings r0

and r1 that are mapped to the same Bob’s message b under the zero-secret and under the one-
secret respectively. Alice then uses the string rz and the secret z to compute a corresponding
message az, and accepts if the zero message a0 equals to the one message a1. Perfect correctness
guarantees that Alice will never err on 0-inputs. We further show that, when f(x, y) = 1, Alice
accepts with probability which is at least inverse-exponential in her message length (up to a loss
that is proportional to the privacy error of the protocol). See Section 7 for details.

3 Conclusion and Open Questions

In this paper we studied the relations between CDS protocols and standard communication com-
plexity games. We established new connections between CDS communication complexity (with
perfect and imperfect privacy and correctness) to well-known communication complexity measures
for non-deterministic protocols, randomized unbounded-error protocols, and one-way protocols.
This leads to new CDS bounds for various simple functions. These results are summarized in Fig. 2
and Table 1.

We end by listing the immediate interesting questions left open following our work.

9Here we assume that we have a CDS in which only Bob holds the secret. However, any CDS can be transformed
into this form with an additional communication cost of O(|z|) = O(1).
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1. Prove an explicit polynomial lower-bound on (imperfect) CDS complexity. (A natural candi-
date would be Inner-Product.)

2. Our current ppCDS lower-bounds are based on PP complexity, which corresponds to discrep-
ancy. Can we derive such bounds on weaker, easier-to-establish, properties? In particular, can
we prove non-trivial ppCDS lower-bounds for predicates that have low randomized bounded-
error communication complexity like Greater-Than?

3. Unlike all the other communication complexity measures considered here, CDS complexity is
not necessarily upper-bounded by the length of the inputs. But we have no super-linear (or
even linear with a large constant factor) lower-bounds for even perfect CDS protocols. Can
any of the existing lower-bound techniques from communication complexity be used to obtain
such bounds?

4. If not, can this difficulty be explained, perhaps by relating the problem of proving such lower
bounds for CDS to more well-studied problems that are still unsolved?

5. Following the paradigm of lifting query complexity lower bounds to the communication set-
ting, is there a natural query complexity measure that can be lifted to CDS complexity?

6. One simple predicate that has eluded all our bounds is Set-Disjointness, for which the best
(imperfect) CDS protocol we know has O(n) complexity, and the best lower bound we can
prove, even for perfect CDS, is Ω(log(n)). Are either of these tight?

Predicate pCDS pcCDS ppCDS CDS

Equality Θ(1) Θ(1) Θ(1) Θ(1)

Non-Equality Θ(n) Θ(n) Θ(1) Θ(1)

Inner-Product Θ(n) Θ(n) Θ(n) O(n) & Ω(log n)

Greater-Than Θ(n) Θ(n) O(n) & Ω(log n) O(n) & Ω(log n)

Set-Intersection Θ(n) Θ(n) O(n) & Ω(log n) O(n) & Ω(log n)

Set-Disjointness O(n) & Ω(log n) O(n) & Ω(log n) O(n) & Ω(log n) O(n) & Ω(log n)

Table 1: The CDS complexity of some simple functions. By definition, an upper-bound in the
leftmost column (pCDS) implies an upper-bound in all other columns, and a lower-bound in the
rightmost column (CDS) implies a lower-bound in all other columns. All the linear upper-bounds
for pCDS follow from the fact that all of these predicates can be computed by a linear-size formula.
The logarithmic lower-bounds for CDS follow from Theorem 1 (and the fact that the corresponding
predicates have linear randomized one-way communication complexity.) The linear lower-bounds
for pcCDS and ppCDS follow from Theorems 3 and 4 respectively.
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PPAMcoAM SZK

AM ∩ coAM

coNP CDS

pcCDS ppCDS

pCDSZAM

Figure 2: As is standard, we use the name of a complexity measure to also denote the class of
functions with polylog(n) complexity under the measure. For classes C1 and C2, a solid arrow
C1 → C2 indicates that C1 ⊆ C2, and a dashed arrow C1 99K C2 indicates that C1 6⊆ C2. Red
arrows indicate new results from this paper. Blue text indicates classes for which explicit bounds
are not known.
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4 Formal Setup and a Sparsification Lemma

For a finite set A we write a
R← A to denote a random variable which is sampled uniformly from

A. The statistical distance between two discrete random variables, X and Y , denoted by ∆(X;Y )
is defined by ∆(X;Y ) := 1

2

∑
z |Pr[X = z]− Pr[Y = z]|. We will also use statistical distance for

probability distributions, where for a probability distribution D the value Pr[D = z] is defined to
be D(z).

4.1 CDS Definitions

Definition 1 (CDS). Let f : X × Y → {0, 1} be a predicate. Let FA : X × Z × R → TA and
FB : Y × Z ×R → TB be deterministic encoding algorithms, where Z is the secret domain. Then,
the pair (FA,FB) is a CDS scheme for f with correctness error c and privacy error s if the function
F(x, y, z, r) = (FA(x, z, r),FB(y, z, r)) that corresponds to the joint computation of FA and FB on
a common z and r, satisfies the following properties:

1. (c-Correctness) There exists a deterministic algorithm Dec, called a decoder, such that for
every 1-input (x, y) of f and any secret z ∈ Z we have that:

Pr
r
R←R

[Dec(x, y,F(x, y, z, r)) 6= z] ≤ c

2. (s-Privacy) There exists a randomized simulator Sim such that for every 0-input (x, y) of f ,

every secret z ∈ Z, and uniformly chosen randomness r
R← R the following holds:

∆ (Sim(x, y) ; F(x, y, z, r)) ≤ s.

The communication complexity of the CDS protocol is (log |TA| + log |TB|) and its randomness
complexity is log |R|. If c and s are zeros, such a CDS scheme is called perfect.

Unless stated otherwise, we restrict our attention to the case of single-bit secrets, i.e., Z = {0, 1}.
By default, we let X = {0, 1}nA , Y = {0, 1}nB , R = {0, 1}ρ, TA = {0, 1}tA , and TB = {0, 1}tB for
positive integers nA, nB, s, ρ, tA, and tB. Further, we denote TA × TB by T ; that is, the joint
function F = (FA,FB) is of the form F : X × Y × Z × R → T , and by default T = {0, 1}t, where
t = (tA + tB).

We denote by CDS(f) the least communication complexity of any CDS protocol for f with
correctness and privacy errors at most 0.1 (with single-bit secrets). We further denote by pCDS,
pcCDS, and ppCDS the same for perfect, perfectly correct, and perfectly private CDS protocols
(where the unspecified error is at most 0.1). Our choice of the constant 0.1 is arbitrary up to the
requirement that (1− c)2 > s. Sometimes, we also denote c-correct s-private CDS by (c, s)−CDS.

All of our discussion, while stated here for total functions for simplicity, extends in a straightfor-
ward manner to partial functions. We refer the reader to the book by Kushilevitz and Nisan [KN97]
for the definitions of standard communication complexity measures that we use but do not define.

Remark 4.1 (CDS encoding). A function F : X × Y × Z ×R → T that satisfies c-correctness and
s-privacy properties defined above, is referred to as a CDS encoding. Using this terminology, our
notion of CDS scheme corresponds to a CDS encoding that can be decomposed into an x-part and
a y-part. This view allows us to separate the semantics of CDS from its syntax.
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4.2 Randomness Sparsification for CDS

Lemma 1. Suppose there is a CDS protocol for f with communication t and randomness ρ, and
with correctness error c and privacy error s. Then, for any ε > 0, there is a (c + ε, s + ε)-CDS
protocol for f with communication t and randomness

2t+ log t+ log n+ 2 log(1/ε),

where n = log |X × Y ×Z| is the total bit-length of the input and the secret. Further, if the former
protocol is perfectly correct, then so is the latter.10

This lemma is similar to the classic theorem of Newman for communication complexity [New91].
It can also be proved in the same manner as that theorem, by sub-sampling random strings (see,
for instance, [IK04, Lemma 1]). We describe the proof using the terminology of non-Boolean
PRGs [DI06]. This proof leads to efficient sparsification in some restricted cases (e.g., when the
CDS protocol is efficiently computable), and may therefore find future applications.

Definition 2 (non-Boolean PRG). Let D = {D} be a class of functions from R to T and let
ε > 0 be an error parameter. We say that G : L → R is a non-Boolean PRG with error ε against
D (in short (D, ε)-nbPRG) if for every D ∈ D, G ε-fools D, i.e., the statistical distance between
D(G(UL)) and D(UR) is at most ε, where UX stands for the uniform distribution over the finite
set X .

Claim 1. Let FA : X × Z ×R → T and FB : Y × Z ×R → T be a CDS protocol with correctness
error c and privacy error s for a function f . Let D be the class of functions from R to T obtained
by restricting the joint CDS computation F(x, y, z, ·) for all possible x ∈ X , y ∈ Y and secret
z ∈ Z. Let G : L → R be a (D, ε)-nbPRG. Then, the CDS protocol F′A : X × Z × L → T and
F′B : Y × Z × L → T defined via

F′A(x, z, r′) = FA(x, z,G(r′)) and F′B(y, z, r′) = FB(y, z,G(r′)),

computes f with correctness error of c + ε and privacy error of s + ε. Moreover, if the original
protocol is perfectly correct then so is the new protocol.

Proof. Denote by F and by F′ the joint computation of the original CDS and the new CDS, respec-
tively. For every x, y, z, it holds that the distributions

F(x, y, z, r) and F′(x, y, z, r′), where r
R← R, r′ R← R′,

are ε-close. Hence, the original simulator and the original decoder can be used for F′ with an error
larger by at most ε. To see that perfect correctness is preserved, observe that, for every x, y, z, the
support of F′(x, y, z, r′) is always a subset of the support of F(x, y, z, r).

The above claim can be used to reduce the randomness complexity of low-complexity CDS while
preserving computational efficiency by relying on a suitable family of nbPRGs. Notable examples
include the case where the CDS encoding functions have low algebraic degree (e.g., linear) or low

10A slightly better bound (with t instead of 2t + log t) can be achieved with more careful arguments, in particular
by using Sanov’s theorem to directly bound deviation in statistical distance rather than looking at the difference in
each probability. However, this only improves our bounds by constant factors.

13



computational complexity (e.g., polynomial-time computable). For both cases explicit construc-
tions of nbPRGs exist in the literature. In this paper efficiency is not a major concern and we
instantiate Claim 1 with a general-purpose inefficient nbPRG whose existence follows easily from
the probabilistic method.

Claim 2. For every ρ, t ∈ N, family D of functions from {0, 1}ρ to {0, 1}t, and ε > 0, a random
function G : {0, 1}` → {0, 1}ρ with ` = 2t + log t + log(log |D|) + 2 log(1/ε) is with probability at
least 2/3 a (D, ε)-nbPRG.

The claim follows from standard calculation and is given here for completeness.

Proof. Choose a random mapping G : {0, 1}` → {0, 1}ρ and let S be the image of G. We view S
as a set of L = 2` randomly chosen strings from {0, 1}ρ. We show that G is (D, ε)-nbPRG with
probability 2/3. Fix D ∈ D and v in the image of D, and let

pv = Pr[D(Uρ) = v] = |D−1(v)|/2ρ.

Let qv be the fraction of elements in S that hit the set D−1(v). By an additive Chernoff bound, the
probability that |qv − pv| > ε/2t is at most 2e−2ε2L/22t . Applying union-bound over all r’s, we get
that except with probability 2e−2ε2L/22t2t, the generator G ε-fools D. By applying another union-
bound over all D’s, we get that G fails to be (D, ε)-nbPRG with probability at most 2e−2ε2L/22t2t|D|
which is smaller than 1/3 for ` = 2t + log(log |D| + t) + 2 log(1/ε) ≤ 2t + log t + log(log |D|) +
2 log(1/ε).

Lemma 1 follows by combining Claims 1 and 2.

5 Bounding Perfectly Correct CDS by coNP Complexity

In this section we bound the communication complexity of perfectly correct CDS protocols in terms
of coNP Complexity. We need the following lemma.

Lemma 2. In any perfectly correct CDS protocol for f with s-privacy (for some s < 1/2) that has
randomness complexity ρ,

2ρ ≥ coNP(f)

Moreover if the CDS is also perfectly private, then ρ ≥ coNP(f).

Theorem 3, the bound on perfectly correct CDS protocols, follows from Lemma 2 and Lemma 1
(which allows us to bound ρ in terms of the CDS communication complexity t), by setting the error
ε in the latter to be a very small constant.

Proof of Lemma 2. Let F = (FA,FB) be a perfectly correct CDS protocol for f with less than
1/2 privacy error that has randomness complexity ρ. The coNP witness, for any (x, y) such that
f(x, y) = 0, is a pair of randomness strings r0, r1 ∈ R such that F(x, y, 0, r0) = F(x, y, 1, r1). The
length of this witness is at most 2ρ.

Given a candidate witness (r0, r1), Alice accepts if FA(x, 0, r0) = FA(x, 1, r1), and Bob accepts
if FB(y, 0, r0) = FB(y, 1, r1). This way, there is no interaction necessary, and they both accept if
and only if F(x, y, 0, r0) = F(x, y, 1, r1).
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Such a witness (r0, r1) exists when f(x, y) = 0, as the distance between F(x, y, 0, r) and
F(x, y, 1, r) is at most 2s, which is less than 1, and so there has to be an intersection in the range
of F(x, y, 0, ·) and F(x, y, 1, ·). No such (r0, r1) exists when f(x, y) = 1 due to perfect correctness,
as in this case F(x, y, 0, ·) and F(x, y, 1, ·) have disjoint ranges. Thus, the coNP complexity of f is
at most 2ρ.

To prove the moreover part note that, in the case of perfect privacy, we have the additional
guarantee that for any r0 ∈ R, there is some r1 ∈ R such that F(x, y, 0, r0) = F(x, y, 1, r1). Thus,
we can replace the string r0 with some fixed canonical string (e.g., the all zero string) and reduce
the witness size to ρ by having just r1 as the witness.

6 Bounding Perfectly Private CDS by PP Complexiy

The PP complexity of f , denoted PP(f), corresponds to the sum of the communication complexity
and number of private random bits (represented by the log(1/α) term in the definition below) used
by a communication protocol that computes f correctly with probability more than 1/2. Note that
here we do not allow shared randomness.

Definition 3 (PP). A randomised communication protocol Π is a PP protocol for f if it computes
f correctly with probability more than 1/2. Suppose Π uses t bits of communication; let α be the
largest number such that min(x,y) Pr [Π(x, y) = f(x, y)] ≥ 1/2 + α. The cost of Π is (t+ log(1/α)),
and the PP complexity of f is the minimum cost of any such protocol for f .

Recall that Theorem 4 asserts that the complexity of a perfectly private CDS protocol is lower-
bounded by the PP communication complexity of f . The proof is based on the following lemma,
which is proven after the proof of the theorem below. For the purposes of this section, we define the
output Π(x, y) of an interactive communication protocol Π on input (x, y) to be 1 if both parties
output 1, and 0 otherwise – this is without loss of generality if there is no bound on the number
of rounds of communication allowed, as each party can communicate its decision to the other with
one additional bit.

Lemma 3. In any c-correct s-private CDS protocol for f that communicates at most t bits and has
randomness complexity ρ, for any η > 0 such that (2s2 + η) < (1− 2c)2/2t+1, it holds that

2(t+ ρ) + log(1/η) +O(1) ≥ PP(f).

Proof of Theorem 4. Given a perfectly private CDS protocol for f with correctness error 0.1, com-
munication t, we first apply Lemma 1 with approximation error ε = 0.01/2t/2 to get another CDS
protocol for f that has privacy error s = ε, correctness error c = (0.1 + ε), communication t, and
randomness complexity:

ρ = 2t+ log t+ log n+ 2 log(1/ε) ≤ 4t+ log(n) +O(1)

To this latter CDS protocol, we apply Lemma 3 with the gap η = 0.01/2t (noting that the condition
(2s2 + η) < (1− 2c)2/2t is indeed satisfied) to get:

PP(f) ≤ 2(t+ ρ) + log(1/η) +O(1)

≤ 2(t+ ρ) + t+O(1)

= 3t+ 2ρ+O(1)

≤ 11t+ 2 log n+O(1)
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This proves the theorem.

In order to prove Lemma 3, we need to construct an appropriate PP protocol for f from a given
CDS protocol. In order to do this, we make use of the following randomized protocol that accepts
with probability related to the L2 distance between distributions. This is adapted from a similar
protocol in the query setting from [BCH+17].

Lemma 4. There exists a two-party randomised protocol Π that, given black-box access to two two-
party protocols D0 and D1, has the following properties. Suppose that the protocol D0 (resp., D1)
uses ρ bits of private randomness and t bits of communication, and at the end of these protocols
one party obtains a sample from a probability distribution denoted, by abuse of notation, by D0

(resp., D1). Then, the protocol Π uses (2ρ + 2) bits of private randomness and (2t + 2) bits of
communication, and the protocol Π accepts (outputs 1) with probability 1/2 + ‖D0 −D1‖22/8.

Proof of Lemma 4. In the protocol we construct, Alice first picks two random bits and sends them
to Bob. These bits are used to decide upon one of the following subsequent tasks to perform. In
each case, Bob always accepts.

1. With probability 1/4, the parties sample a and b from D0. Alice accepts with probability 1
if a = b, and with probability 1/2 otherwise.

2. With probability 1/4, they do the same with D1.

3. With the remaining probability 1/2, they pick one sample a from D0 and one sample b from
D1. Alice rejects if a = b, and accepts with probability 1/2 otherwise.

The probability that Alice accepts is calculated as follows:

Pr [Alice accepts] =
1

4

∑
a

D0(a)2 +
∑
a6=b

D0(a)D0(b)

2

+
1

4

∑
a

D1(a)2 +
∑
a6=b

D1(a)D1(b)

2


+

1

2

∑
a6=b

D0(a)D1(b)

2


Rearranging the terms in the first two parentheses and adding and subtracting

∑
aD0(a)D1(a)/2

to the last, we have:

Pr [Alice accepts] =
1

4

∑
a

D0(a)2

2
+
∑
a,b

D0(a)D0(b)

2

+
1

4

∑
a

D1(a)2

2
+
∑
a,b

D1(a)D1(b)

2


+

1

2

∑
a,b

D0(a)D1(b)

2
−
∑
a

D0(a)D1(a)

2


=

1

4

(∑
a

D0(a)2

2
+

1

2

)
+

1

4

(∑
a

D1(a)2

2
+

1

2

)
+

1

2

(
1

2
−
∑
a

D0(a)D1(a)

2

)
=

1

2
+

1

8

∑
a

(
D0(a)2 +D1(a)2 − 2D0(a)D1(a)

)
=

1

2
+
‖D0 −D1‖22

8
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This proves the lemma.

We finish by proving Lemma 3.

Proof of Lemma 3. Given a c-correct s-private CDS protocol F = (FA,FB) for f , we wish to con-
stuct a PP protocol for f . We first construct a protool that,given input (x, y) and a bit b, samples
the distribution F(x, y, b, ·) with communication (t+ ρ). This sampling protocol is as follows:

1. Alice picks r
R← R and computes FA(x, b, r).

2. Alice sends r to Bob.
3. Bob computes FB(y, b, r) and sends it to Alice.

At the end of the above protocol, Alice has a sample from F(x, y, 0, ·) or F(x, y, 1, ·), according to
the input b – call these distributions Fx,y0 and Fx,y1 for convenience. In other words, for any (x, y),
the distributions Fx,y0 and Fx,y1 can be sampled by protocols with communication (t+ ρ).

Invoking Lemma 4, we then have a randomised protocol – call it Π – with communication
complexity 2(t + ρ) + 2 that, given input (x, y), accepts with probability 1/2 + ‖Fx,y0 − Fx,y1 ‖22/8.
We will now show that this probability is above or below a certain threshold depending on f(x, y).

By the relationships between the L1 and L2 norms, and noting that both distributions are
supported in a domain of size 2t, we have:

‖Fx,y0 − Fx,y1 ‖21
2t

≤ ‖Fx,y0 − Fx,y1 ‖
2
2 ≤ ‖F

x,y
0 − Fx,y1 ‖

2
1 (1)

If f(x, y) = 0, the privacy of the CDS protocol guarantees that:

‖Fx,y0 − Fx,y1 ‖1 = 2 ∆ (Fx,y0 ;Fx,y1 ) ≤ 2 (∆ (Sim(x, y);Fx,y0 ) + ∆ (Sim(x, y);Fx,y1 )) ≤ 4s (2)

where the first inequality follows from the triangle inequality for statistical distance.
Similarly, if f(x, y) = 1, the correctness of the CDS protocol guarantees that:

‖Fx,y0 − Fx,y1 ‖1 = 2 ∆ (Fx,y0 ;Fx,y1 )

≥ 2 (Pr [Dec(x, y,Fx,y1 ) = 1]− Pr [Dec(x, y,Fx,y0 ) = 1])

≥ 2(1− 2c) (3)

where the first inequality follows from the fact that the statistical distance is the greatest advantage
any algorithm could have in distinguishing between two distributions.

Putting together Eqs. (1) and (2), the protocol Π accepts with probability at most 1/2 + 2s2

(which we denote p0) if f(x, y) = 0. And if f(x, y) = 1, by Eqs. (1) and (3), it accepts with
probability at least 1/2 + (1− 2c)2/2t+1 (which we denote p1).

Finally, we recenter the probabilities of acceptance so that the protocol accepts with probability
more than 1/2 if f(x, y) = 1 and less than 1/2 if f(x, y) = 0. We make use of the fact that, by our
hypothesis, p0 + η < p1. The final protocol would ideally be as follows:

1. With probability 1/(p0 + p1), run protocol Π on the given input (x, y).
2. Otherwise, reject.

It may be verified that if f(x, y) = 1, the above protocol accepts with probability more than
1/2 + η/4 (nearly 1/2 + η/2, in fact), and if f(x, y) = 0 with probability less than 1/2− η/4.

However, doing something with probability exactly 1/(p0 + p1) would require (unless p0 and
p1 are well-behaved) a large, possibly unbounded, number of random bits. It is sufficient for our
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purposes, however, to approximate this probability up to an error somewhat smaller than η/4.
With (log(1/η) + O(1)) random bits, we can approximate it to, say, η/8, and the probabilities of
acceptance would still be bounded away from 1/2 by Ω(η).

Thus, this is a PP protocol for f with complexity at most (2(t + ρ) + log(1/η) + O(1)). This
proves the lemma.

7 Asymmetry in CDS and One-Way Communication

In this section, we show that the trade-offs that can be achieved between the communication of the
two parties in a CDS protocol is limited in certain ways by the one-way communication complexity
of the predicate involved.

Denote by RB→A(f) the one-way randomized communication complexity of f : X × Y →
{0, 1} where Bob (who gets inputs from Y) sends the message; RA→B(f) is defined similarly.
For concreteness, we do not allow shared randomness between Alice and Bob, though allowing this
would only affect our bounds by a factor of 2. We prove the following stronger version of Theorem 6
from the introduction.

Theorem 7. In any perfectly correct s-private CDS protocol for f in which Alice and Bob com-
municate tA and tB bits respectively and the total input length of the function is n, if s < 1/8 − ε
for some ε, it holds that:

2tA(tA + tB + log n+ log(1/ε))

(1− 8(s+ ε))2
≥ Ω(RB→A(f)).

In particular, in our default setting where the soundness error is at most 0.1, we have:

2tA(tA + tB + log n+O(1)) ≥ Ω(RB→A(f)).

Theorem 7 follows immediately from Lemma 1 from Section 4.2 and Lemma 5 below, which
proves a similar bound, but involves the randomness complexity of the CDS protocol.

Lemma 5. In any perfectly correct CDS protocol for f with s-privacy for some s < 1/8,

2tAρ/(1− 8s)2 ≥ Ω(RB→A(f))

Proof of Lemma 5. Given a CDS protocol (FA,FB), consider the following one-way communication
protocol:

1. Bob (who has input y) picks a random r ∈ R and computes b
R← FB(y, 0, r).

2. Bob samples random r′ ∈ R such that FB(y, 0, r) = FB(y, 1, r′) = b. If no such r′ exists, set
r′ = ⊥.

3. Bob sends (r, r′) to Alice.
4. Alice accepts if either r′ = ⊥ or FA(x, 0, r) 6= FA(x, 1, r′).

Note that Alice rejects if and only if F(x, y, 0, r) = F(x, y, 1, r′). Due to perfect correctness, if
f(x, y) = 1, such r and r′ do not exist, and so Alice always accepts. We show that if f(x, y) = 0,
Alice rejects with some noticeable probability.

Fix some (x, y) such that f(x, y) = 0. For convenience, let FA(x, 1,⊥) be ⊥. For σ ∈
{0, 1}, denote the random variable (FA(x, 0, r),FB(y, 0, r)) by (A,B) and the random variable
(FA(x, 1, r),FB(y, 1, r)) by (A′, B′). The above protocol can be rephrased as follows:
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1. Sample (a, b)
R← (A,B).

2. Sample a′ from A′ conditioned on B′ = b.
3. Accept if and only if a = a′.

For any b ∈ TB, denote by Ab the variable A conditioned on B being b. Similarly, denote by A′b
the variable A′ conditioned on B′ being b. The probability that Alice rejects can now be written
as follows: ∑

b∈TB

Pr [B = b] · Pr
a
R← Ab

a′
R← A′b

[
a = a′

]
(4)

In order to bound the second terms in the product above, we use the following bound on the
collision probability of two distributions in terms of their statistical distance, which we prove later
in this section.

Proposition 1. For any two distributions p and q over a domain of size m such that ∆ (p; q) = δ,

Pr
α
R←p,β R←q

[α = β] =
∑
i

piqi ≥ (1− δ)2/m.

Applying the above proposition to the two distributions Ab and A′b for each b, we see that the
probability that Alice rejects – the quantity in (4) – is bounded as:

Pr [Alice rejects] ≥
∑
b∈TB

Pr
r

[B = b] ·
(
1−∆

(
Ab;A

′
b

))2
/2tA (5)

Next we show that, with high probability over B, the quantity that the probability is multiplied with
in the above expression is not too small. For this, we make use of the following simple proposition.

Proposition 2. For any random variables (A,B) and (A′, B′) it holds that

E
b
R←B

[
∆
(
Ab;A

′
b

)]
≤ 2 ∆

(
(A,B); (A′, B′)

)
,

where Ab (resp., A′b) denotes the random variable A conditioned on B being b (resp., random
variable A′ conditioned on B′ being b).

Proof of Proposition 2. By the definition of statistical distance, the LHS equals to

∆
(
(AB, B); (A′B, B)

)
= ∆

(
(A,B); (A′B, B)

)
.

By some elementary manipulations, we can bound the above as:

∆
(
(A,B); (A′B, B)

)
≤ ∆

(
(A,B); (A′B′ , B

′)
)

+ ∆
(
B;B′

)
= ∆

(
(A,B); (A′, B′)

)
+ ∆

(
B;B′

)
≤ 2 ∆

(
(A,B); (A′, B′)

)
,

where the last relation is by the data processing inequality.
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In our setting, the s-privacy of the CDS protocol implies that ∆ ((A,B); (A′, B′)) ≤ 2s, and so,
by Proposition 2,

E
b
R←B

[
∆
(
Ab;A

′
b

)]
≤ 4s.

Applying Markov’s inequality, we get that

Pr
b
R←B

[(
1−∆

(
Ab;A

′
b

))2
< (1− 8s)2

]
= Pr

b
R←B

[
∆
(
Ab;A

′
b

)
> 8s

]
<

1

2
. (6)

Using the Eqs. (5) and (6), we can bound the rejection probability of Alice as:

Pr [Alice rejects] ≥
∑
b∈TB

Pr
r

[B = b] ·
(
1−∆

(
Ab;A

′
b

))2
/2tA ≥ 1

2
· (1− 8s)2

2tA

Thus, by repeating the above protocol Θ(2tA/(1−8s)2) times, we get a one-way communication
protocol for f that is correct with a large constant probability. The communication complexity of
the resulting protocol is Θ(2tAρ/(1− 8s)2).

Finally, we prove Proposition 1, which is a bound on collision probability of two distributions
in terms of their statistical distance.

Proof of Proposition 1. Given distributions p and q over a domain of size m such that ∆ (p; q) = δ,
we wish to bound their collision probability

∑
i piqi. For any i, let si = min(pi, qi). We immediately

have the following relationship: ∑
i

piqi ≥
∑
i

s2
i (7)

We next aim to relate the sum of s2
i to the self-collision probability of the distribution obtained by

normalizing the si’s. The self-collision probability of any distribution is always bounded below by
1/m due to the relationship between the L2 and L1 norms. This gives us the following:

∑
i

s2
i =

(∑
i

si

)2

·
∑
i

(
si∑
i si

)2

≥
(
∑

i si)
2

m
(8)

It is left to bound the above normalization factor. Let Ip denote the set of i’s where pi ≥ qi. We
can bound the sum of the si’s as follows:∑

i

si =
∑
i∈Ip

qi +
∑
i/∈Ip

pi

=
∑
i∈Ip

(qi − pi + pi) +
∑
i/∈Ip

pi

=
∑
i∈Ip

(qi − pi) +
∑
i

pi

= −δ + 1 (9)

where the last relation follows from the definition of statistical distance. Putting Eqs. (7) to (9)
together gives us the proposition.
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8 Imperfect CDS vs. Interactive Proofs

Recall that Theorem 5 shows that (imperfect) CDS complexity is at least polynomial in the AM
communication complexity of f . As mentioned in the introduction, the theorem is proved in two
steps. In Section 8.2 we show that a CDS protocol can be transformed into a constant-round
private-coins interactive-proof (that, in addition, achieves a zero-knowledge property). Then, in
Section 8.3, we note that, just like in the computational setting, such interactive proofs can be
converted to an AM protocol with polynomial overhead [Bab85, GS89]. The definitions of the
relevant communication complexity measures are given in Section 8.1.

8.1 Defining IP and AM and zero-knowledge classes

Communication complexity analogues of interactive proof systems [Bab85, GMR85, BM88] have
been considered in [Lok01, Kla11]. (This manner of defining communication classes based on
complexity classes is first seen in [BFS86].) Below we define these measures in a slightly non-
standard way in order to capture both the private-coins and public-coins setting in a unified way.

Both the models of IP and AM communication complexity involve three parties Alice, Bob,
and a prover (sometimes referred to as Merlin). Alice and Bob hold inputs x ∈ X and y ∈ Y,
respectively, for a function f : X × Y → {0, 1}. Merlin knows both x and y, and aims to prove
to Alice and Bob that f(x, y) = 1. We further assume that Alice and Bob have access to a
shared random string that is not visible to Merlin, and that Alice and Bob have no other source of
randomness.

Definition 4 (IP). An IP protocol for a Boolean function f : X × Y → {0, 1} with k rounds
proceeds as follows. Each round begins with a two-party protocol between Alice and Bob after
which Alice sends a message to Merlin, who sends back a message to Alice. At the end of all k
rounds, Alice and Bob communicate and Alice decides whether to accept or reject. The protocol is
said to compute f with completeness error of ε and soundness error of δ if it satisfies the following
properties:

� Completeness: For all inputs (x, y) with f(x, y) = 1, the probability that there exists a
proof strategy for Merlin such that (x, y) is accepted is at least 1− ε.

� Soundness: For all inputs (x, y) with f(x, y) = 0, the probability that there exists a proof
strategy such that (x, y) is accepted is at most δ.

The cost of an IP-protocol is the maximum over all inputs of the total communication complexity of
the protocol. The IPk complexity of f , denoted IPk(f) is the smallest cost of a k-round IP-protocol
computing f with soundness and completeness error of ε = δ = 1/3. We use similar notation to
specify the number of rounds in the complexity measures defined below as well.

Definition 5 (AM). An IP protocol for a Boolean function f : X × Y → {0, 1} is a public-coin
protocol if all the messages from Alice to Merlin consist of public coins (that are shared with
Bob), and, eventually, all the shared coins are being sent to Merlin. This means that the only
communication between Alice and Bob takes place at the end, and the final acceptance decision
is a deterministic function of the transcript and the inputs x and y. A single round (i.e., 2-move)
public-coin protocol with soundness error of δ = 1/3 and perfect completeness (i.e., ε = 0) is
referred to as an AM protocol. The cost of an AM-protocol is the maximum over all inputs of the
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total communication complexity of the protocol. The AM complexity of f , denoted by AM(f), is
the smallest cost of an AM-protocol computing f .11

We move on to define zero-knowledge protocols. Our definition borrows from a similar one in
[BCH+17].

Definition 6 (SZK and SZK′). Let Π be a (k-round) IP protocol for a Boolean function f :
X ×Y → {0, 1}. We say that a randomized two-party public-coin protocol ΠS , involving parties SA
and SB, simulates Π with an error of η if for every pair of inputs (x, y) for which f(x, y) = 1 the
following holds. When ΠS is invoked with inputs x and y for the parties SA and SB, respectively,
the parties produce outputs V̂A and V̂B, respectively such that

∆
(

(VA, VB); (V̂A, V̂B)
)
≤ η,

where VA and VB are (jointly distributed) random variables that describe the view of Alice and
Bob when the protocol Π is invoked on x and y (and Merlin follows the honest strategy defined
in Π). Here, the view of a party consists of all messages sent and received by it, along with any
private or shared randomness that it sees.12

Let cM be the number of bits of communication between Merlin and Alice, cV that between Alice
and Bob, and cS that between SA and SB. The cost of such an SZK protocol is (cM +max(cV , cS)).
The SZK complexity of f , denoted SZK(f), is the smallest cost of an SZK protocol computing f
with simulation error at most 0.1.

Further, let ρV be the number of bits of randomness used by Alice and Bob, and ρS be that
used by SA and SB. The SZK′ cost of such an SZK protocol is (cM + max(cV , cS) + max(ρV , ρS)).
The SZK′ complexity of f , denoted SZK′(f), is the smallest SZK′ cost of an SZK protocol for f
with correctness, privacy and simulation errors all negligible in the input size.

8.2 CDS implies 1-round zero-knowledge interactive proof

Here, we show that a CDS protocol of a predicate f can be converted into a single-round (private-
coin) interactive proof protocol. Moreover, the protocol is also zero-knowledge.

Lemma 6. Suppose that the predicate f has a CDS with privacy and correctness error of ε that
supports secrets of length ` bits with communication complexity of t. Then, f has an IP1 protocol
with communication of `+ t completeness error of ε and soundness error of 2−` + ε. Moreover, the
protocol is zero-knowledge with simulation error of ε where the communication complexity of the
simulator is t.

Proof. The idea is to imitate the standard interactive proof of Graph Nonisomorphism [GMW91]
(or more generally for the Statistical Difference problem [SV03]). Given a CDS protocol (FA,FB)
for f , we construct an IP1 protocol for f as follows.

1. Alice and Bob pick a random secret message z ∈ {0, 1}` and a random r ∈ R using their
common randomness.

11In some references the AM complexity is defined as the minimal length of Merlin’s message. The difference
between the two variants does not affect our results since the complexity of our AM protocols is dominated anyway
by Merlin’s message.

12Our definition only deals with honest-verifier SZK protocols; the case of malicious verifiers demands study on its
own.
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2. Bob sends to Alice the value FB(y, z, r) and Alice delivers it to Merlin together with FA(x, z, r).
3. Merlin sends z′ to Alice.
4. Alice accepts if and only if z′ = z.

The completeness of this protocol follows from the correctness of the CDS protocol – if f(x, y) =
1, then (FA(x, b, r),FB(y, b, r)) reveals the message z, except with probability ε, and Merlin can
then guess it correctly.

Similarly, soundness follows from the privacy of the CDS protocol. If f(x, y) = 0 then the
success probability p of of Merlin is at most ε larger than the success probability p′ in a protocol in
which Alice and Bob’s messages are sampled by the CDS simulator. Since the simulator samples
these messages independently of the secret z, we conclude that p′ = 2−` and p ≤ ε+ 2−`.

Finally, the transcript of this protocol is simulated by running the Alice and Bob parts of
the protocol and setting Merlin’s response to always be z – if f(x, y) = 1, this is close to the
actual transcript by the completeness of the protocol (as in this case Merlin’s response, except with
probability ε, is indeed z).

In [AARV17, Theorem 5.1] it is shown that a standard CDS protocol (that supports a single bit
secret with correctness error and privacy error of 0.1) can be upgraded into a CDS that supports
Ω(k)-bit secrets with correctness error and privacy error of 2−k with only a multiplicative overhead
of O(k) in both communication and randomness complexity. By taking k to be a sufficiently large
constant, we get the following theorem.

Theorem 8. For any Boolean function f , CDS(f) ≥ Ω(IP1(f)). Moreover, CDS(f) ≥ Ω(SZK1(f)).

More generally, one can achieve an SZK1 protocol for f with correctness, soundness and simu-
lation errors of ε with complexity of O(CDS(f) log(1/ε)).

8.3 From IP1 to AM

We observe that, as in the computational setting, 2-round private-coins interactive proofs can be
converted to single round Arthur-Merlin protocols with polynomial communication overhead.

Theorem 9. For every predicate f , IP1(f) ≥ poly(AM(f), log n) where n is the length of the inputs
to f .

The proof follows by applying the following lemmas.

Lemma 7 (follows from [GS89]). Suppose f has a single-round private-coin IP with communication
and randomness complexity at most t and error of at most 1/3. Then, f also has a two-round
public-coin IP protocol with perfect completeness, soundness error of 1/3, and communication and
randomness complexity of at most poly(t).

Proof Sketch. Goldwasser and Sipser (GS) [GS89] proved that, in the computational setting, k-
round IP protocol Π can be converted into a (k+ 1)-round IP public-coin protocol Π′ with perfect
completeness. Let us focus on k = 1 and let us assume that Π has an error which is negligible in
t. (This can be guaranteed via standard amplification at the expense of increasing the randomness
and communication by a polynomial or even polylogarithmic factor). Since k = 1, the verifier in
Π is specified by a query generation algorithm, and by an acceptance predicate VΠ(w, r, a) that
given an input to the problem w = (x, y), private randomness r, and the prover’s answer a decides
whether to accept the proof. We note that, in this setting, the GS transformation has the following
properties:

23



1. The communication complexity of Π′ is polynomial in the communication and randomness of
Π.

2. In Π′ Arthur decides whether to accept the transcript by computing a conjunction of two
predicates. The first predicate depends only on the randomness and on Merlin’s messages
(but is independent of the input w = (x, y) to the language). The second predicate is simply
the acceptance predicate VΠ(w, r, a) of the verifier of Π, applied to the input w = (x, y) and
to a pair (r, a) that is being sent as part of Merlin’s message in Π′.

We can therefore apply the transformation in the communication complexity setting. In particular,
Alice’s final decision in Π′ is determined by locally computing C (based on Merlin’s messages and
the shared randomness) and by running with Bob the protocol for computing VΠ((x, y), r, a). The
communication complexity of this protocol is upper-bounded by the communication complexity of
Π.

It is not hard to verify that the round-reduction of Babai [Bab85] immediately applies to the
communication complexity setting.

Lemma 8 ([Bab85]). Suppose f has a two-round public-coin IP protocol with communication com-
plexity at most t. Then, AM(f) ≤ O(t log t).

Proof Sketch. Let t denote the communication complexity of the two-round public-coin IP protocol
Π. First, modify the protocol as follows. Alice begins by sending her first message q1 as in Π,
Merlin responds with the corresponding response a1 as in Π. In the second round, Alice sends
` = O(log t) fresh random copies ~q2 = (q1

2, . . . , q
`
2) of her second message in Π, and Merlin responds

with (a1
2, . . . , a

`
2). Finally, Alice and Bob accept if, for every i ∈ [`] the transcript (q1, a1, q

i
2, a

i
2)

is accepted by the original protocol. It is not hard to see that for no instances, conditioned on
most prefixes q1, the soundness error is 2−2t. Therefore, by a union-bound over all a1, with high
probability over q1, ~q2, every answer (a1,~a2) will be rejected. Hence, the protocol can be further
modified into a single round protcol in which Alice just sends (q1, ~q2) at the first move, gets back
an answer (a1,~a2), and accepts by running the acceptance protcol with Bob over all ` instances.
The lemma follows.

By combining Lemmas 7 and 8, we conclude a single-round interactive proof Π of f can be
converted into an AM protocol Π′ whose communication complexity is polynomial in the commu-
nication complexity and randomness complexity of Π. In order to prove Theorem 9, we prove that
the randomness complexity of such Π is not much larger than the communication complexity of Π.

Lemma 9. Suppose there is an IP1 protocol for f with communication t and randomness ρ. Then
there is an IP1 protocol for f with communication O(t) and randomness of O(t + log n), where
n = log |X × Y| is the total bit-length of the input.

Proof. As in the proof of the CDS sparsification lemma (Lemma 1), we will use a properly chosen
pseudorandom generator to partially derandomize the original protocol Π. Observe that the ran-
domness (shared by Alice and Bob) affects two different computations in Π: (1) the generation of
the query to the prover; and (2) the final reject/accept decision of Alice and Bob. Correspondingly,
we will have to carefully define the class of adversaries that should be fooled by the PRG. Details
follow.
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Let R denote the randomness space of Π, let Q denote the space of all possible messages
(“queries”) sent by Alice to the prover, and let Z denote the set of all possible answers from the
prover to Alice. For every fixing of input x, y, let qx,y(r) denote the mapping that takes a random
string r ∈ R (shared by Alice and Bob) and maps it to the message q ∈ T that is being sent by
Alice to the prover. For every fixed inputs x, y, the prover’s strategy can be defined as a mapping
px,y : Q → Z that maps a query q to an answer z. For every x, y and every possible prover
strategy p = px,y, let Ax,y,p be the mapping that takes randomness r ∈ R and outputs a bit b
that determines whether the interaction that corresponds to inputs x, y randomness r and prover’s
message z = p(qx,y(r)) is being accepted by Alice.

Let D be the set of adversaries Ax,y,p that correspond to all possible choices of x ∈ X , y ∈ Y
and p : Q → Z. Let G : L → R be a PRG that ε-fools the class D. (Note that in this case D is a
class of Boolean adversaries. ) Consider the modified protocol Π′ in which Alice and Bob share a

random seed s
R← L and invoke the protocol Π with shared randomness r′ = G(s).

We claim that the completeness error of Π′ is at most ε larger than the completeness error of
Π. Indeed, consider a yes instance x, y and assume that the prover in Π′ uses the same optimal
strategy p? used in Π over the inputs x, y. Then, the rejection probability in Π′ is

Pr
s
R←L

[Ax,y,p?(G(s)) = 0]

which is at most ε larger than the rejection probability in Π,

Pr
r
R←R

[Ax,y,p?(r) = 0] ≤ 1/3.

We move on to analyze the soundness error. Fix a no instance (x, y) and consider an arbitrary
strategy p = px,y for the “cheating” prover. Then, the rejection probability in Π′ is

Pr
s
R←L

[Ax,y,p(G(s)) = 0]

which is at most ε smaller than the rejection probability in Π,

Pr
r
R←R

[Ax,y,p(r) = 0] ≥ 2/3.

Note that the number of functions in D is 2|X |+|Y||Z||Q| and therefore log log |D| ≤ O(log n+ t))
where n denotes the total input length and t denotes the communication complexity. By Claim 1,
for ε = 0.01, there exists a PRG that ε-fools D with seed length of O(log n + t). This yields
a protocol Π′ with communication complexity of t, randomness complexity of O(log n + t), and
soundness and completeness error smaller than 0.4. (The latter can be reduced to 1/3 by repeating
the protocol in parallel a constant number of times. The total communication and randomness
complexity are increased by a constant factor.)

9 SZK and CDS

In this section, we further explore the relation between CDS complexity and SZK complexity. In
particular, in Section 9.1 we introduce an interactive variant of CDS, referred to as CDS′, and show
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(in Section 9.2) that the CDS′ complexity of a predicate is roughly the same, up to polynomial
factor, as its SZK′ complexity. (Recall that the latter notion is the communication complexity
analogue of statistical zero-knowledge protocols except that we measure both randomness and
communication; See Section 8.1.) The proof is based on communication-complexity analogues of
known completeness theorems for SZK protocols in the computational setting (as in [SV03]).

9.1 CDS with Interaction

Recall that standard CDS can be viewed as a non-interactive protocol for generating a CDS encoding
(as per Remark 4.1). Below, we consider a variant in which the CDS encoding is generated using
a two-party protocol. (Unlike the non-interactive setting, in this setting linear communication can
be achieved trivially and so only sub-linear protocols are meaningful.)

Definition 7 (CDS′). Let f : X × Y → {0, 1} be a predicate. A CDS′ protocol Π is a two-party
protocol between Alice and Bob where Alice holds an input x ∈ X , Bob holds an input y ∈ Y, and
both of them get a secret z ∈ Z and an access to common random string r. We assume that when
the protocol terminates both parties get the same output, denoted by Π(x, y, z; r). The random
variable Π(x, y, z), induced by a uniform choice of r, should satisfy the following requirements:

1. (c-Correctness) There exists a deterministic algorithm Dec, called a decoder, such that for
every 1-input (x, y) of f and any secret z ∈ Z we have that:

Pr[Dec(x, y,Π(x, y, z)) 6= z] ≤ c

2. (s-Privacy) There exists a simulator algorithm Sim such that for every 0-input (x, y) of f and
any secret z ∈ Z, the following holds:

∆ (Sim(x, y); Π(x, y, z)) ≤ s

The communication complexity of the CDS′ protocol is the maximum, over all (x, y, z), of the sum
of the length of the output |Π(x, y, z)| and the number of bits of communication between Alice and
Bob. Its randomness complexity is number of bits of shared randomness used. If c and s are zeros,
such a CDS′ scheme is called perfect.

We denote by CDS′(f) the least communication complexity of any CDS′ protocol for f with
correctness and privacy errors at most 0.1 (with single-bit secrets).

In a manner identical to that of Theorem 8, where it is shown that CDS(f) is lower-bounded
by Ω(IP1(f)) for any Boolean function f , it can be shown that CDS′(f) ≥ Ω(IP1(f)). Together
with Theorem 9, we now have the following.

Theorem 10. For every Boolean function f on n-bit inputs, CDS′(f) ≥ poly(AM(f), log n).

9.2 SZK′ and CDS′

Here, we show that the CDS′ complexity of any function f is roughly equivalent to its SZK′

complexity, upto being a small polynomial in it.

Theorem 11. For any Boolean function f on n-bit inputs,

SZK′(f)

polylog(n)
≤ CDS′(f) ≤ O(SZK′(f)6)
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Proof of Theorem 11. To show the lower bound, given a CDS′ protocol for f with communication t,
we need to construct an SZK′ protocol for f , where the communication and randomness complexities
are at most t polylog(n). To get such a bound on the randomness, we need the following analogue
of the sparsification lemma for CDS (Lemma 1) that follows from an identical proof.

Lemma 10. Suppose there is a CDS′ protocol for f with communication t and randomness ρ, and
with correctness error c and privacy error s. Then, for any ε > 0, there is a (c + ε, s + ε)-CDS′

protocol for f with communication t and randomness

2t+ log t+ log n+ 2 log(1/ε),

where n is the total bit-length of the input and the secret. Further, if the former protocol is perfectly
correct, then so is the latter.

We also note that the amplification procedure for CDS from [AARV17] extends immediately to
CDS′, giving the following lemma.

Lemma 11. Suppose there is a CDS′ protocol for f with communication t and randomness ρ,
and correctness and privacy errors at most 0.1. Then, for every integer k there exists a CDS′

protocol for f with privacy and correctness errors of 2−Ω(k), communication complexity O(kt), and
randomness complexity O(kρ).

Putting together the above two lemmas, the initial CDS′ protocol for f implies another protocol
with both randomness and communication complexities t · polylog(n), and privacy and correctness
errors negligible in n. The required SZK′ protocol now follows exactly as an SZK protocol does
from CDS in the proof of Lemma 6.

To show the upper bound, we show how to get a CDS′ protocol for a function f from any
SZK′ protocol for it. We do this by showing (in Lemma 12) that an analogue of the Statistical
Difference problem (which is complete for SZK in the computational setting) is, in an appropriate
sense, “complete” for SZK′ communication complexity. Below, for a two-party protocol Π, we
denote by Π(x, y) the (distribution of the) joint output of the parties in Π when given inputs x and
y respectively.

Lemma 12. Suppose SZK′(f) = t. Then, there are two-party randomized communication protocols
Π0 and Π1, each with communication complexity, randomness complexity and output length all
O(t6), with the following properties.

� If f(x, y) = 1, then ∆ (Π0(x, y); Π1(x, y)) ≥ 0.99.

� If f(x, y) = 0, then ∆ (Π0(x, y); Π1(x, y)) ≤ 0.01.

Given f such that SZK′(f) = t, we wish to construct a CDS′ protocol for it with complexity
at most O(t6). For this, we use the pair of protocols (Π0,Π1) implies by Lemma 12. Our CDS′

protocol Π(x, y, z) is simply as follows:

� Alice and Bob run the protocol Π0(x, y) if z = 0 and Π1(x, y) if z = 1, and output whatever
these protocols output.
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For correctness, note that whenever f(x, y) = 1, by the guarantees of Lemma 12, we have:

∆ (Π(x, y, 0); Π(x, y, 1)) = ∆ (Π0(x, y); Π1(x, y)) ≥ 0.99

Thus the ideal distinguisher between Π0(x, y) and Π1(x, y) can be used as the decoder. When the
secret z is picked uniformly at random, by the properties of statistical distance, it will be correct
with probability at least 1/2 + 0.99/2 = 0.995. So, for any z, it will be correct with probability at
least 0.99.

For privacy, the simulator Sim(x, y) runs Π(x, y, 0) and outputs whatever it outputs. Again,
from Lemma 12, when f(x, y) = 0, for any z,

∆ (Sim(x, y); Π(x, y, z)) = ∆ (Π(x, y, 0); Π(x, y, z)) ≤ ∆ (Π0(x, y); Π1(x, y)) ≤ 0.01

The communication complexity of this CDS′ protocol is the length of the outputs of Π0 and
Π1, which is O(t6). This proves the theorem.

Lemma 12 is proven along the lines of the reduction to the “Statistical Difference” problem from
any problem with honest-verifier SZK proofs in the computational setting. The following lemma is
a quantitative statement of this completeness that is implicit in [SV03] and [Vad99, Chap. 3].

Lemma 13. Suppose that a language L has a statistical zero-knowledge protocol with simulator
S. Then, there exist a pair of oracle-aided circuits C0 and C1 that take as input an instance x
and a random string r such that, when given oracle access to S, the distributions of CS0 (x, r) and
CS1 (x, r), induced by a uniform random choice of r, have the following properties:

� If x ∈ L, then ∆
(
CS0 (x, r);CS1 (x, r)

)
≥ 0.99.

� If x 6∈ L, then ∆
(
CS0 (x, r);CS1 (x, r)

)
≤ 0.01.

Moreover, each of these circuits is of size O(t6) and makes O(t5) oracle calls, where t is the sum
of the length of the transcript output by S and the number of bits of randomness it uses.

Lemma 12 follows immediately from the above by instantiating the simulator oracle with the
simulator of the SZK′ protocol. For the sake of completeness, we unravel Lemma 13 and walk
through the entire proof of Lemma 12 in Appendix B.
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A A ppCDS protocol for NEQn

Lemma 14. For every constant c, there is a CDS protocol for NEQn with perfect privacy and
correctness error of 2−c that supports secrets of length c bits with communication complexity of 4c
bits. The randomness complexity is O(n + c) and it can be reduced to O(log n + c + log(1/ε)), for
an arbitrary ε > 0, at the expense of increasing the correctness error to δ = 2−c + ε. Moreover, the
protocol has a ZPP-type decoder, i.e., (on 1-inputs) the decoder never errs but may output a special
“I don’t know” symbol with probability at most δ.

Proof. The protocol is defined as follows.

� Shared Randomness: The parties share a pairwise independent hash function h from n-bits
to c-bits, and a random c-bit string r.

� Alice sends (h(x), z · h(x) + r) and Bob sends (h(y), z · h(y) + r), where multiplication is over
the field F2c .

� Decoding: Given (a, b) from Alice and (c, d) from Bob, if (a− c) = 0 output “I don’t know”,
else, output b− d/(a− c).

By pairwise independent, when x 6= y the probability of error (i..e, a − c = 0) is at most 2−c.
Privacy follows by noting that when x = y, the pair (a, b) = (c, d) is distributed uniformly over
F2c × F2c .

To reduce the randomness complexity replace h with ε-almost 2-wise independent hash function
h. The error probability grows by ε. To keep perfect privacy, make sure that h is 1-wise independent
(i.e., for every x, the value h(x) is uniform). It is possible to sample such a hash function using
O(log n+ c+ log(1/ε)) random bits.
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B Completeness for SZK′ – Proof of Lemma 12

Lemma 12 is proven along the lines of the construction showing a reduction to the “Statistical
Difference” problem from any problem with honest-verifier SZK proofs in the computational setting.
We follow rather closely such a reduction presented in [Vad99, Chap. 3].

Proof of Lemma 12. We are given an SZK′ protocol Π for the function f with complexity t, com-
pleteness error c, soundness error s, and simulation error η (which is negligible in n). Let the
various quantities cV , cM , cS , ρV , and ρS be as in Definition 6 – note that all of these are at most
t which, in turn, is at most n. Let the number of rounds in the protocol be v – this means the
number of messages (sent between Alice and Merlin) is 2v. For notational convenience, we assume,
without loss of generality, that the final message is sent by Alice and consists of all the random
bits she shared with Bob (this is the (2v − 1)th message, and the 2vth message is empty).

Denote by S the simulator for this SZK′ protocol Π. Recall that S (written as ΠS in Definition 6)
is a public-coin two-party protocol that simulates the views of Alice and Bob – that is, it has two
parties that output V̂A and V̂B, the joint distribution of which is statistically close to that of the
actual views of Alice and Bob if f(x, y) = 1. Throughout this proof, we will only use the part of
the simulated transcript corresponding to the communication between Alice and Merlin, and the
shared randomness between Alice and Bob, and we simply ignore the rest of the simulator’s output.

Fix some input (x, y). Denote by Si (for i ∈ [2v]) the protocol that runs the simulator protocol
S on (x, y) and outputs just the first i simulated messages between Alice and Merlin. We define
the following two intermediate protocols:

� The protocol Π′0 runs one instance each of S2, S4, . . . , S2v, and outputs the concatenation of
their outputs.

� The protocol Π′1 works as follows:

1. Run one instance each of S1, S3, . . . , S2v−1, and output their outputs.

2. Output (ρV − 4) uniformly random bits.

3. Run S independently 100 log cM times, and if a majority of the resulting transcripts are
rejecting, additionally output (vcM + 2) uniformly random bits.

So far, the outputs of either of Π′0 and Π′1 are O(t2) bits long (as the output of any Si is at
most O(t) bits), and the same is true of their communication and randomness complexities. We
first show the following differences in the behaviour of the entropies of the output distributions of
the above protocols depending on the value of f(x, y).

Proposition 3. If f(x, y) = 1, then H(Π′0) ≥ H(Π′1) + 1. And if f(x, y) = 0, then H(Π′1) ≥
H(Π′0) + 1.

We prove Proposition 3 in Section B.1. The next step is to extract this purported difference in
the entropies of the protocols. Let the output lengths of Π′0 and Π′1 be m, and say they each use
ρ bits of shared randomness. (Recall that both m = O(t2) and ρ = O(t2).) Let Π′′0 (resply. Π′′1)
denote the protocol obtained by repeating Π′0 (respectively, Π′1) q = Θ(ρ2) times, where the exact

value of q will be determined later. Pick a family G =
{
g : {0, 1}q(m+ρ) → {0, 1}qm

}
of 2-universal

hash functions that can be sampled with O(q(m + ρ)) bits of randomness (e.g., by using Toeplitz
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matrices). For r ∈ {0, 1}qρ, denote by Π′′0(r) the protocol Π0 run with r as the shared randomness.

Our final protocols are defined as follow:

� Π0:

1. Pick an r
R← {0, 1}qρ and run Π′′0(r) to get its output π0.

2. Run Π′′1 to get its output π1.

3. Pick a hash function g
R← G and output (π0, g, g(r, π1)).

� Π1:

1. Run Π′′0 to get its output π0.

2. Pick a hash function g
R← G and an r′

R← {0, 1}qm and output (π0, g, r
′).

It can be verified that the communication and randomness complexities and the output lengths
of the above protocols are all O(q(m + ρ)) = O(t6). The following proposition (whose proof is
postponed to Section B.2 together with Proposition 3, now completes the proof of the lemma.

Proposition 4. If H(Π′0) > H(Π′1) + 1, then ∆ (Π0(x, y); Π1(x, y)) ≥ 0.99. And if H(Π′1) >
H(Π′0) + 1, then ∆ (Π0(x, y); Π1(x, y)) ≤ 0.01.

B.1 Proof of Proposition 3

Recall that we have fixed an input (x, y). First, we write the entropies of the outputs of the two
protocols as follows:

H(Π′0) =
v∑
i=1

H(S2i)

H(Π′1) =
v∑
i=1

H(S2i−1) + (ρV − 4) +H(P )

where by P we denote the random variable that is (vcM+2) random bits if the majority of 100 log cM
runs of S on (x, y) produce rejecting transcripts, and is empty otherwise.

The difference between these entropies is:

H(Π′1)−H(Π′0) = ρV −
v∑
i=1

(H(S2i)−H(S2i−1)) +H(P )− 4 (10)

To analyze this difference, we make use of the following corollaries of Lemmas 3.3.8, 3.3.11, and
3.3.12 from [Vad99]. While these were originally stated in the computational setting, it may be seen
that these lemmas only concern the properties of the simulator’s output in an interactive protocol,
and are oblivious to the model of computation of the verifier as long as all of its randomness is
accounted for in the following statements.
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Proposition 5. Let ηx,y be the statistical distance between the distribution of the output of S and
that of the actual transcript of Π on the input (x, y). Then,

ρV −
v∑
i=1

(H(S2i)−H(S2i−1)) ≤ 2v (cMηx,y + h(ηx,y))

where h is the binary Shannon entropy.

Proposition 6. On input (x, y), let p be the probability that S outputs an accepting transcript, and
q be the maximum, over all strategies of Merlin, that Alice and Bob accept. Then, if p ≥ q,

d(p||q) ≤ ρV −
v∑
i=1

(H(S2i)−H(S2i−1))

where d is the binary KL-divergence.

Suppose f(x, y) = 1. We first bound the entropy of the variable P . Let R denote the event
that a majority of the 100 log cM runs of S (used in sampling P ) produce rejecting transcripts. As
long as the correctness and simulation errors are small enough constants, by the Chernoff bound,
Pr [R] is less than, say, 1/5c3

M . And unless R happens, P is empty and has no entropy. As R is
also completely determined by P , we may bound H(P ) as:

H(P ) = H(P,R) = H(R) +H(P |R) ≤ h
(

1

5c3
M

)
+

1

5c3
M

· (cMv + 2) +

(
1− 1

5c3
M

)
· 0 < 2 (11)

Putting together Eqs. (10) and (11) and Proposition 5, we have:

H(Π′1)−H(Π′0) < 2v (cMηx,y + h(ηx,y))− 2

which, if the simulation error is smaller than, say, 1/5cMv, is smaller than (−1). This proves the
first part of the proposition.

Next, suppose f(x, y) = 0. If p – the probability that S outputs accepting transcripts – is at
most 1/4 then, again by the Chernoff bound, the probability that P is empty is at most 1/5c3

M .
Thus, H(P ) is at least (1− 1/5c3

M ) · (cMv + 2) ≥ (cMv + 1) ≥ H(Π′0) + 1.
Suppose p is larger than 1/4. Note that, by the soundness of the SZK′ protocol, q – the

maximum probability that Alice accepts for any Merlin strategy – is at most s, the soundness
error. Thus, d(p||q) is at least d(0.25||s), which in turn is at least 5 if s is a small enough constant.
Now, using Eq. (10) and Proposition 6 and the fact that H(P ) ≥ 0, we have:

H(Π′1)−H(Π′0) ≥ d(p||q)− 4 ≥ 1

Thus, if f(x, y) = 0, in either case, H(Π′1) ≥ H(Π′0) + 1. This completes the proof of Proposition 3.

B.2 Proof of Proposition 4

Our arguments in this proof will be based on the entropy that the random string r ∈ {0, 1}ρ and
the output of Π′1 have given the output of Π′0(r). Denoting the random variable corresponding to
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r by R, this quantity is written as follows:

H(R,Π′1|Π′0(R)) = H(Π′1) +H(R|Π′0(R))

= H(Π′1) +H(R,Π′0(R))−H(Π′0(R))

= H(Π′1) +H(R)−H(Π′0)

= ρ+H(Π′1)−H(Π′0)

where the second-to-last equality follows from the fact that r is the only source of randomness for
the protocol Π′0.

The statistical distance between the outputs of Π0 and Π1 is that between (Π′q0 (Rq), G,G(Rq,Πq
1))

and (Π′q0 (Rq), G, U), where G is the hash function chosen by the protocol and U is the uniform
distribution over strings of the appropriate length. Π′q0 , Π′q1 and Rq denote independent q-fold
repetitions of Π′0, Π′1 and R, respectively.

Suppose that H(Π′1) ≥ H(Π′0) + 1. We wish to show that the hash of (Rq,Π′q1 ) is close to
uniform. We do this using the following appropriate leftover hash lemma, which follows from results
in [HR11, RW05] (see Theorem 4.8 and Lemma 4.9 in [BDRV18] for the necessary summary).

Lemma 15 (Leftover Hash Lemma with Flattening). For some natural numbers q, n and m, let
G = {g : {0, 1}qn → {0, 1}m} be a family of universal hash functions. For any random variables
(X,Y ) where X is distributed over {0, 1}n, let (Xq, Y q) denote the q-fold repetition of (X,Y ).
Then, for any δ ≥ 0,

∆ ((Y q, G,G(Xq, Y q)); (Y q, G, U)) ≤ 2−
qδ2

3n2 +
1

2
·
√

2−q(H(X|Y )−δ) · 2m

where U is uniform over {0, 1}qm.

In our case, the variable X corresponds to (R,Π′1), Y corresponds to Π′0(R), and the conditional
entropy H(X|Y ) is at least (ρ+ 1). We pick δ to be a small constant (say 0.01), and set q to be dt4

for a constant d that is large enough (say 105) for the following bounds. The length of the output
of the hash function here is qρ, and applying Lemma 15, we have the following:

∆ (Π0; Π1) = ∆
(
(Π′q0 (Rq), G,G(Rq,Πq

1)); (Π′q0 (Rq), G, U)
)

≤ 2
− 105t4·δ2

3·O(t2)2 +
1

2
·
√

2−q(ρ+1−δ−ρ))

≤ 0.01

This proves the first part of the proposition.
Next, suppose that H(Π′0) ≥ H(Π′1)+1. In this case, H(R,Π′1|Π′0(R)) is at most (ρ−1). In this

case, we wish to show that the above distributions are far. We make use of the following lemma
that is again to be found in [HR11] (as Theorem 2).

Lemma 16. Let (X,Y ) be random variables where X is distributed over {0, 1}n, and let (Xq, Y q)
denote their q-fold repetition. For any δ ∈ [0, n], and any y in the support of Y q, there exists a set
T δy ⊆ {0, 1}

qn that is of size at most 2q(H(X|Y )+δ) such that:

Pr
(x,y)←(Xq ,Y q)

[
x ∈ T δy

]
≥ 1− 2 · 2−

qδ2

3n2
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Taking X, Y and δ to be as earlier, Lemma 16 implies that for any π0 in the support of Π′q0 (R)q,
there is a set T δπ0 of size at most 2q(ρ−1+δ) such that:

Pr
r←{0,1}qρ,π0←Π′q0 (r),π1←Π′q1

[
(r, π1) ∈ T δπ0

]
≥ 1− 2 · 2−

105t4δ2

3·O(t2)2

For a hash function g, let g(T δπ0) denote the set of images of elements of T δπ0 ; note that
∣∣g(T δπ0)

∣∣ ≤∣∣T δπ0∣∣ ≤ 2q(ρ−1+δ). The statistical distance between Π0 and Π1 can be written as follows:

∆ (Π0; Π1) = ∆
(
(Π′q0 (Rq), G,G(Rq,Πq

1)); (Π′q0 (Rq), G, U)
)

≥ Pr
r←{0,1}qρ,π0←Π′q0 (r),π1←Π′q1 ,g←G

[
g(r, π1) ∈ g(T δπ0)

]
− Pr
π0←Π′q0 ,g←G,r′←{0,1}

qρ

[
r′ ∈ g(T δπ0)

]
≥ 1− 2 · 2−

105t4δ2

3·O(t2)2 − 2q(ρ−1−δ)

2qρ

≥ 0.99

This proves Proposition 4.
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