
On Closest Pair in Euclidean Metric:
Monochromatic is as Hard as Bichromatic

Karthik C. S.∗

Weizmann Institute of Science
karthik.srikanta@weizmann.ac.il

Pasin Manurangsi†

University of California, Berkeley
pasin@berkeley.edu

Abstract

Given a set of n points in Rd, the (monochromatic) Closest Pair problem asks
to find a pair of distinct points in the set that are closest in the `p-metric. Clos-
est Pair is a fundamental problem in Computational Geometry and understand-
ing its fine-grained complexity in the Euclidean metric when d = ω(log n) was
raised as an open question in recent works (Abboud-Rubinstein-Williams [FOCS’17],
Williams [SODA’18], David-Karthik-Laekhanukit [SoCG’18]).

In this paper, we show that for every p ∈ R≥1 ∪ {0}, under the Strong Exponen-
tial Time Hypothesis (SETH), for every ε > 0, the following holds:

• No algorithm running in time O(n2−ε) can solve the Closest Pair problem in
d = (log n)Ωε(1) dimensions in the `p-metric.

• There exists δ = δ(ε) > 0 and c = c(ε) ≥ 1 such that no algorithm running in
time O(n1.5−ε) can approximate Closest Pair problem to a factor of (1 + δ) in
d ≥ c log n dimensions in the `p-metric.

In particular, our first result is shown by establishing the computational equiva-
lence of the bichromatic Closest Pair problem and the (monochromatic) Closest Pair
problem (up to nε factor in the running time) for d = (log n)Ωε(1) dimensions.

Additionally, under SETH, we rule out nearly-polynomial factor approximation
algorithms running in subquadratic time for the (monochromatic) Maximum Inner
Product problem where we are given a set of n points in no(1)-dimensional Euclidean
space and are required to find a pair of distinct points in the set that maximize the
inner product.

At the heart of all our proofs is the construction of a dense bipartite graph with
low contact dimension, i.e., we construct a balanced bipartite graph on n vertices with
n2−ε edges whose vertices can be realized as points in a (log n)Ωε(1)-dimensional
Euclidean space such that every pair of vertices which have an edge in the graph
are at distance exactly 1 and every other pair of vertices are at distance greater than
1. This graph construction is inspired by the construction of locally dense codes
introduced by Dumer-Miccancio-Sudan [IEEE Trans. Inf. Theory’03].

∗Supported by Irit Dinur’s ERC-CoG grant 772839 and BSF grant 2014371.
†Supported by NSF under Grants No. CCF 1655215 and CCF 1815434.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 210 (2018)

Contents

1 Introduction 3

1.1 Our Results . 4

2 Proof Overview 5

2.1 Conditional Lower Bound on Exact Closest Pair 6

2.2 Abstracting the Construction via Error-Correcting Codes 9

2.3 Inapproximability of Closest Pair and Maximum Inner Product 12

2.3.1 Approximate Maximum Inner Product 12

2.3.2 Approximate Closest Pair . 13

3 Preliminaries 13

3.1 Notations, Problems and Fine-Grained Hypotheses 13

3.2 Error-Correcting Codes . 15

3.3 Miscellaneous Tools . 15

3.4 OVH-hardness of Exact Bichromatic Closest Pair 16

3.5 Contact Dimension of a Graph . 17

4 Lower Bound on Closest Pair under Orthogonal Vector Hypothesis 18

5 Gadget Constructions 20

5.1 Finding a Center of a Code via Another Code 21

5.2 Gadgets based on Reed-Solomon Codes . 21

5.2.1 The Basic Gadget: Dense Bipartite Graphs with Low Contact Di-
mensions . 22

5.2.2 A Gadget for Maximum Inner Product 23

5.3 Gadgets based on AG Codes . 23

6 Inapproximability of Maximum Inner Product 26

7 Inapproximability of Closest Pair 29

8 Discussion and Open Questions 31

References 32

A Lower Bound on Gap Closest Pair in Edit Distance Metric 38

B Covering Biclique By Isomorphic Graphs: Proof of Lemma 3.11 38

2

1 Introduction

The Closest Pair of Points problem or Closest Pair problem (CP) is a fundamental problem
in computational geometry: given n points in a d-dimensional metric space, find a pair
of distinct points with the smallest distance between them. The Closest Pair problem for
points in the Euclidean plane [SH75, BS76] stands at the origins of the systematic study
of the computational complexity of geometric problems [PS85, Man89, KT05, CLRS09].
Since then, this problem has found abundant applications in geographic information
systems [Hen06], clustering [Zah71, Alp10], and numerous matching problems (such as
stable marriage [WTFX07]).

The trivial algorithm for CP examines every pair of points in the point-set and runs
in time O(n2d). Over the decades, there have been a series of developments on CP in low
dimensional space for the Euclidean metric [Ben80, HNS88, KM95, SH75, BS76], leading
to a deterministic O(2O(d)n log n)-time algorithm [BS76] and a randomized O(2O(d)n)-
time algorithm [Rab76, KM95]. For low (i.e., constant) dimensions, these algorithms
are tight as a matching lower bound of Ω(n log n) was shown by Ben-Or [Ben83] and
Yao [Yao91] in the algebraic decision tree model, thus settling the complexity of CP in low
dimensions. On other hand, for very high dimensions (i.e., d = Ω(n)) there are subcubic
algorithms [GS16, ILLP04] in the `1, `2, and `∞-metrics using fast matrix multiplication
algorithms [Gal14]. However, CP in medium dimensions, i.e., d = polylog(n), and in
various `p-metrics, have been a focus of study in machine learning and analysis of Big
Data [Kle97], and it is surprising that, even with the tools and techniques that have been
developed over many decades, when d = ω(log n), there is no known subquadratic-
time (i.e., O(2o(d)n2−ε)-time) algorithm, for CP in any standard distance measure [Ind00,
AC09, ILLP04] . The absence of such algorithms was explicitly observed as early as the
late nineties by Cohen and Lewis [CL99] but there was not any explanation until recently.

David, Karthik, and Laekhanukit [DKL18] showed that for all p > 2, assuming the
Strong Exponential Time Hypothesis (SETH), for every ε > 0, no algorithm running in n2−ε

time can solve CP in the `p-metric, even when d = ω(log n). Their conditional lower
bound was based on the conditional lower bound (again assuming SETH) of Alman and
Williams [AW15] for the Bichromatic Closest Pair problem1 (BCP) where we are given
two sets of n points in a d-dimensional metric space, and the goal is to find a pair of
points, one from each set, with the smallest distance between them. Alman and Williams
showed that for all p ∈ R≥1 ∪ {0}, assuming SETH, for every ε > 0, no algorithm
running in n2−ε time can solve BCP in the ω(log n)-dimensional `p-metric space. Given
that [AW15] show their lower bound on BCP for all `p-metrics, the lower bound on CP of
[DKL18] feels unsatisfactory, since the `2-metric is arguably the most interesting metric
to study CP on. On the other hand, the answer to the complexity of CP in the Euclidean
metric might be on the positive side, i.e., there might exist an algorithm that performs
well in the `2-metric because there are more tools available, e.g., Johnson-Lindenstrauss
dimension reduction [JL84]. Thus we have the following question:

Open Question 1.1 (Abboud-Rubinstein-Williams2 [ARW17b], Williams [Wil18a], David
-Karthik-Laekhanukit [DKL18]). Is there an algorithm running in time n2−ε for some ε > 0

1We remark that BCP is of independent interest as it’s equivalent to finding the Minimum Spanning Tree
in `p-metric [AESW91, KLN99]. Moreover, understanding the fine-grained complexity of BCP has lead
to better understanding of the query time needed for Approximate Nearest Neighbor search problem (see
Razenshteyn’s thesis [Raz17] for a survey about the problem) with polynomial preprocessing time [Rub18].

2Please see the erratum in [ARW17a].

3

which can solve CP in the Euclidean metric when the points are in ω(log n) dimensions?

Even if the answer to the above question is negative, this does not rule out strong
approximation algorithms for CP in the Euclidean metric, which might suffice for all
applications. Indeed, we do know of subquadratic approximation algorithms for CP.
For example, LSH based techniques can solve (1+ δ)-CP (i.e., (1+ δ) factor approximate
CP) in n2−Θ(δ) time [IM98], but cannot do much better [MNP07, OWZ14]. In a recent
breakthrough, Valiant [Val15] obtained an approximation algorithm for (1 + δ)-CP with
runtime of n2−Θ(

√
δ). The state of the art is an n2−Θ̃(δ1/3)-time algorithm by Alman,

Chan, and Williams [ACW16]. Can the dependence on δ be improved indefinitely? For
the case of (1 + δ)-BCP, assuming SETH, Rubinstein [Rub18] answered the question in
the negative. Does (1 + δ)-CP also admit the same negative answer?

Open Question 1.2. Is there an algorithm running in time n2−ε for some ε > 0 which can solve
(1+ δ)-CP in the Euclidean metric when the points are in ω(log n) dimensions for every δ > 0?

Another important geometric problem is the Maximum Inner Product problem (MIP):
given n points in the d-dimensional Euclidean space, find a pair of distinct points with
the largest inner product. This problem along with its bichromatic variant (Bichromatic
Maximum Inner Product problem, denoted BMIP) is extensively studied in literature (see
[ARW17b] and references therein). Abboud, Rubinstein, and Williams [ARW17b] showed
that assuming SETH, for every ε > 0, no 2(log n)1−o(1)

-approximation algorithm running
in n2−ε time can solve BMIP when d = no(1). It is a natural question to ask if their inap-
proximability result can be extended to MIP:

Open Question 1.3. Is there an algorithm running in time n2−ε for some ε > 0 which can solve
γ-MIP in no(1) dimensions for even γ = 2(log n)1−o(1)

?

1.1 Our Results

In this paper we address all three previously mentioned open questions. First, we almost
completely resolve Open Question 1.1. In particular, we show the following.

Theorem 1.4 (Subquadratic Hardness of CP; Informal, See Theorem 4.3). Let p ∈ R≥1 ∪
{0}. Assuming SETH, for every ε > 0, no algorithm running in n2−ε time can solve CP in the
`p-metric, even when d = (log n)Ωε(1).

In particular we would like to emphasize that the dimension for which we show the
lower bound on CP depends on ε. We would also like to remark that our lower bound
holds even when the input point-set of CP is a subset of {0, 1}d. Finally, we note that the
centerpiece of the proof of the above theorem (and also the proofs of the other results that
will be subsequently mentioned) is the construction of a dense bipartite graph with low
contact dimension, i.e., we construct a balanced bipartite graph on n vertices with n2−ε

edges whose vertices can be realized as points in a (log n)Ωε(1)-dimensional `p-metric
space such that every pair of vertices which have an edge in the graph are at distance
exactly 1 and every other pair of vertices are at distance greater than 1. This graph
construction is inspired by the construction of locally dense codes introduced by Dumer,
Miccancio, and Sudan [DMS03] and uses special density properties of Reed Solomon
codes. A detailed proof overview is given in Section 2.1.

4

Next, we improve our result in Theorem 1.4 in some aspects by showing 1 + o(1)
factor inapproximability of CP even in Oε(log n) dimensions, but can only rule out al-
gorithms running in n1.5−ε time (as opposed to Theorem 1.4 which rules out exact algo-
rithms for CP running in n2−ε time). More precisely, we show the following.

Theorem 1.5 (Subquadratic Hardness of gap-CP). Let p ∈ R≥1 ∪ {0}. Assuming SETH,
for every ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε

time that can solve (1 + δ)-CP in the `p-metric, even when d = c log n.

We remark that the n1.5−ε lower bound on approximate CP is an artifact of our proof
strategy and that a different approach or an improvement in the state-of-the-art bound
on the number of minimum weight codewords in algebraic geometric codes (which are
used in our proof), will lead to the complete resolution of Open Question 1.2.

It should also be noted that the approximate version of CP and the dimension are
closely related. Namely, using standard dimensionality reduction techniques [JL84]3 for
(1 + δ)-CP, one can always assume that d = Oδ(log n). In other words, hardness of
(1 + δ)-CP immediately yields logarithmic dimensionality bound as a byproduct.

Finally, we completely answer Open Question 1.3 by showing the following inap-
proximability result for MIP, matching the hardness for BMIP from [ARW17b].

Theorem 1.6 (Subquadratic Hardness of gap-MIP). Assuming SETH, for every ε > 0, no
algorithm running in n2−ε time can solve γ-MIP for any γ ≤ 2(log n)1−o(1)

, even when d = no(1).

Recently, there have been a lot of results connecting BCP or (1 + o(1))-BCP to other
problems (see [Rub18, Che18a, Che18b, CW19]). Now such connections can be extended
to CP as well. For example, the following conditional lower bound follows from [Rub18]
for gap-CP in the edit distance metric and for completeness a proof is given in Ap-
pendix A.

Theorem 1.7 (Subquadratic Hardness of gap-CP in edit distance metric). Assuming SETH,
for every ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε

time can solve (1 + δ)-CP in the edit distance metric, even when d = c log n log log n.

2 Proof Overview

In this section, we provide an overview of our proofs. For ease of presentation, we will
sometimes be informal here; all notions and proofs are formalized in subsequent sec-
tions. Our overview is organized as follows. First, in Subsection 2.1, we outline our
proof of running time lower bounds for exact CP (Theorem 1.4). Then, in Subsection 2.2,
we abstract part of our reduction using error-correcting codes, and relate them back to
the works on locally dense codes [DMS03, CW12, Mic14] that inspire our constructions.
Finally, in Subsection 2.3, we briefly discuss how to modify the base construction (i.e.
code properties) to give conditional lower bounds for approximate CP and MIP (Theo-
rems 1.5 and 1.6).

3In fact, since our results applies to {0, 1}-vectors, simply subsampling coordinates would also work.

5

2.1 Conditional Lower Bound on Exact Closest Pair

In this subsection, we provide a proof overview of a slightly weaker version of Theo-
rem 1.4, i.e., we show that assuming SETH, for every p ∈ R≥1 ∪ {0}, no subquadratic
time algorithm can solve CP in the `p-metric when d = (log n)ω(1). We prove such a
result by reducing BCP in dimension d to CP in dimension d + (log n)ω(1), and the sub-
quadratic hardness for CP follows from the subquadratic hardness of BCP established
by [AW15]. Note that the results in this paper remain interesting even if SETH is false,
as our reduction shows that BCP and CP are computationally equivalent4 (up to no(1)

factor in the running time) when d = (log n)ω(1). The conditional lower bound on CP is
merely a consequence of this computational equivalence. Finally, we note that a similar
equivalence also holds between MIP and BMIP.

Understanding an obstacle of [DKL18]. Our proof builds on the ideas of [DKL18] who
showed that assuming SETH, for every p > 2, no subquadratic time algorithm can solve
CP in the `p-metric when d = ω(log n). They did so by connecting the complexity of
CP and BCP via the contact dimension of the balanced complete bipartite graph (biclique),
denoted by Kn,n. We elaborate on this below.

To motivate the idea behind [DKL18], let us first consider the trivial reduction from
BCP to CP: given an instance A, B of BCP, we simply output A ∪ B as an instance of
CP. This reduction fails because there is no guarantee on the distances of a pair of points
both in A (or both in B). That is, there could be two points a, a′ ∈ A such that ‖a− a′‖p
is much smaller than the optimum of BCP on A, B. If we simply solve CP on A ∪ B, we
might find such a, a′ as the optimal pair but this does not give the answer to the original
BCP problem. In order to circumvent this issue, one needs a gadget that “stretch” pairs
of points both in A or both in B further apart while keeping the pairs of points across A
and B close (and preserving the optimum of BCP on A, B). It turns out that this notion
corresponds exactly to the contact dimension of the biclique, which we define below.

Definition 2.1 (Contact Dimension [Pac80]). For any graph G = (V, E), a mapping τ : V →
Rd is said to realize G (in the `p-metric) if for some β > 0, the following holds for every distinct
vertices u, v:

‖τ(u)− τ(v)‖p = β if {u, v} ∈ E, and, (1)
‖τ(u)− τ(v)‖p > β otherwise. (2)

The contact dimension (in the `p-metric) of G, denoted by cdp(G), is the minimum d ∈ N

such that there exists τ : V → Rd realizing G in the `p-metric.

In this paper, we will be mainly interested in the contact dimension of bipartite
graphs. Specifically, [DKL18] only consider the contact dimension of the biclique Kn,n.
Notice that a realization of biclique ensures that vertices on the same side are far from
each other while vertices on different sides are close to each other preserving the opti-
mum of BCP; these are exactly the desired properties of a gadget outlined above. Using
this, [DKL18] give a reduction from BCP to CP which shows that the two are computa-
tionally equivalent whenever d = Ω(cdp(Kn,n)), as follows.

4We can reduce an instance of CP to an instance of BCP by randomly partitioning the input set of CP
instance into two, and the optimal closest pair of points will be in different sets with probability 1/2 (and
this reduction can be made deterministic).

6

Let A, B ⊆ Rd each of cardinality n be an instance of BCP and let τ : A∪̇B →
Rcdp(Kn,n) be a map realizing the biclique (A∪̇B, A× B) in the `p-metric; we may assume
w.l.o.g. that β = 1. Let δ be the distance between any point in A and any point in B (i.e.,
δ is an upper bound on the optimum of BCP). Let ρ > 0 be such that ‖τ(a)− τ(b)‖p >
1+ ρ for all a ∈ A, b ∈ B (and this is guaranteed to exist by (2)). Moreover, let k > δ/ρ be
any sufficiently large number. Consider the point-sets Ã, B̃ ⊆ Rd+cdp(Kn,n) of cardinality
n each defined as

Ã = {a ◦ (k · τ(a)) | a ∈ A}, B̃ = {b ◦ (k · τ(b)) | b ∈ B},

where ◦ denotes the concatenation between two vectors and k · x denotes the usual
scalar-vector multiplication (i.e. scaling x up by a factor of k). For brevity, we write ã
and b̃ to denote a ◦ (k · τ(a)) and b ◦ (k · τ(b)) respectively.

We now argue that, if we can find the closest pair of points in Ã ∪ B̃, then we also
immediately solve BCP for (A, B). More precisely, we claim that (a∗, b∗) ∈ A × B is a
bichromatic closest pair of (A, B) if and only if (ã∗, b̃∗) is a closest pair of Ã ∪ B̃.

To see that this is the case, observe that, for cross pairs (ã, b̃) ∈ Ã × B̃, (1) im-
plies that the distance ‖ã− b̃‖p is exactly (kp + ‖a− b‖p

p)
1/p; hence, among these pairs,

(ã∗, b̃∗) is a closest pair iff (a∗, b∗) is a bichromatic closest pair in A, B. Notice also that,
since the bichromatic closest pair in A, B is of distance at most δ, the closest pair in Ã∪ B̃
is of distance at most (kp + δp)1/p ≤ k + δ.

On the other hand, for pairs both from Ã or both from B̃, the distance must be at
least k(1 + ρ), which is more than k + δ from our choice of k. As a result, these pairs
cannot be a closest pair in Ã ∪ B̃, and this concludes the sketch of the proof.

There are a couple of details that we have glossed over here: one is that the gap ρ
cannot be too small (e.g., ρ cannot be as small as 1/2n) and the other is that we should be
able to construct τ efficiently. Nevertheless, these are typically not an issue.

[DKL18] show that cdp(Kn,n) = Θ(log n) when p > 2 and that the realization can
be constructed efficiently and with sufficiently large ρ. This implies the subquadratic
hardness of CP (by reduction from BCP) in the `p-metric for all p > 2 and d = ω(log n).
However, it was known that cd2(Kn,n) = Θ(n) [FM88]. Thus, they could not extend
their conditional lower bound to CP in the Euclidean metric5 even when d = o(n). In
fact, this is a serious obstacle as it rules out many natural approaches to reduce BCP
to CP in a black-box manner. Elaborating, the lower bound on cd2(Kn,n) rules out local
gadget reductions which would replace each point with a composition of that point and
a gadget with a small increase in the number of dimensions, as such gadgets can be used
to construct a realization of Kn,n in the Euclidean metric in a low dimensional space,
contradicting the lower bound on cd2(Kn,n).

Overcoming the Obstacle: Beyond Biclique. We overcome the above obstacle by con-
sidering dense bipartite graphs, instead of the biclique. More precisely, we show that
there exists a balanced bipartite graph G∗ = (A∗∪̇B∗, E∗) on 2n vertices such that
|E∗| ≥ n2−o(1) and cdp(G∗) is small (i.e. cdp(G∗) ≤ (log n)ω(1)). We give a construction
of such a graph below but before we do so, let us briefly argue why this suffices to show

5Note that plugging in the bound on cd2(Kn,n) in the result of [DKL18] yields that assuming SETH, no
subquadratic in n running time algorithm can solve CP when d = Ω(n). This is not a meaningful lower
bound as just the input size of CP when d = Ω(n) is Ω(n2).

7

that BCP and CP are computationally equivalent (up to no(1) multiplicative overhead in
the running time) for dimension d = Ω(cdp(G∗)).

Let us consider the same reduction which produces Ã, B̃ as before, but instead of
using a realization of the biclique, we use a realization τ of G∗. This reduction is of
course incorrect: if (a∗, b∗) is not an edge in G∗, then ‖τ(a∗) − τ(b∗)‖p could be large
and, thus the corresponding pair of points (ã∗, b̃∗) ∈ Ã× B̃, may not be the closest pair.
Nevertheless, we are not totally hopeless: if (a∗, b∗) is an edge, then we are in good
shape and the reduction is correct.

With the above observation in mind, consider picking a random permutation π of
A ∪ B such that π(A) = A and π(B) = B and then initiate the above reduction with
the map (τ ◦ π) instead of τ. Note that τ ◦ π is simply a realization of an appropriate
permutation G′ of G∗ (i.e., G′ is isomorphic to G∗). Due to this, the probability that we
are “lucky” and (a∗, b∗) is an edge in G′ is p := |E|/n2; when this is the case, solving CP
on the resulting instance would give the correct answer for the original BCP instance. If
we repeat this log n/p = no(1) times, we would find the optimum of the original BCP
instance with high probability.

To recap, even when G∗ is not a biclique, we can still use it to give a reduction
from BCP to CP, except that the reduction produces multiple (i.e. Õ(n2/|E∗|)) instances
of CP. We remark here that the reduction can be derandomized: we can deterministi-
cally (and efficiently) pick the permutations so that the permuted graphs covers Kn,n (see
Lemma 3.11). As a minor digression, we would like to draw a parallel here with a recent
work of Abboud, Rubinstein, and Williams [ARW17b]. The obstacle raised in [DKL18]
is about the impossibility of certain kinds of many-one gadget reductions. We overcame
it by designing a reduction from BCP to CP which not only increased the number of
dimensions but also the number of points (by creating multiple instances of CP). This
technique is also utilized in [ARW17b] where they showed the impossibility of Deter-
ministic Distributed PCPs (Theorem I.2 in [ARW17b]) but then overcame that obstacle
by using an advice (which is then enumerated over resulting in multiple instances) to
build Non-deterministic Distributed PCPs.

Constructing a dense bipartite graph with low contact dimension. We now proceed
to construct the desired graph G∗ = (A∗ ∪ B∗, E∗). Note that any construction of a dense
bipartite graph with contact dimension no(1) is non-trivial. This is because it is known
that a random graph has contact dimension Ω(n) in the Euclidean metric with high
probability [RRS89, BL05], and therefore our graph construction must be significantly
better than a random graph.

Our realization τ∗ of G∗ will map into a subset of {0, 1}(log n)ω(1)
. As a result, we can

fix p = 0, since a realization of a graph with entries in {0, 1} in the Hamming-metric also
realizes the same graph in every `p-metric for any p 6= ∞.

Fix g = ω(1). We associate [n] with Fh
q where q = Θ ((log n)g) is a prime and

h = Θ
(

log n
g·log log n

)
. Let P be the set of all univariate polynomials (in x) over Fq of degree

at most h− 1. We have that |P| = qh = n and associate P with A∗. Let Q be the set of
all univariate monic polynomials (in x) over Fq of degree h, i.e.,

Q = {xh + p(x) | p(x) ∈ P}.

8

We associate the polynomials in Q with the vertices in B∗ (note that |Q| = n). In fact,
we view the vertices in A∗ and B∗ as being uniquely labeled by polynomials in P andQ
respectively. For notational clarity, we write pa (resp. pb) to denote the polynomial in P
(resp. Q) that is associated to a ∈ A∗ (resp. b ∈ B∗).

For every a ∈ A∗ and b ∈ B∗, we include (a, b) as an edge in E∗ if and only if
the polynomial pb − pa (which is of degree h) has h distinct roots. This completes the
construction of G∗. We have to now show the following two claims about G∗: (i) |E∗| =
n2−O(1/g) = n2−o(1) and (ii) there is τ : A∗∪̇B∗ → {0, 1}(log n)O(g)

= {0, 1}(log n)ω(1)
that

realizes G∗.

To show (i), letR be the set of all monic polynomials of degree h with h distinct roots.
We have that |R| = (q

h). Fix a vertex a ∈ A∗. Its degree in G∗ is exactly |R| = (q
h). This

is because, for every polynomial r ∈ R, r + a belongs toQ, and therefore (a, r + a) ∈ E∗.
This implies the following bound on |E∗|:

|E∗| = qh ·
(

q
h

)
≥ qh · qh

hh >
n2

(log n)Θ((log n)/(g·log log n))
= n2−O(1/g).

Next, to show (ii), we construct a realization τ∗ : A∗∪̇B∗ → F
q
q of G∗. We note that,

it is simple to translate the entries to {0, 1} instead of Fq, by replacing i ∈ Fq with the
i-th standard basis ei ∈ {0, 1}q. This would result in a realization τ∗ : A∗∪̇B∗ → {0, 1}q2

of G∗; notice that the dimension of τ∗ is q2 = Θ((log n)2g) as claimed.

We define τ∗ as follows.

• For every a ∈ A∗, τ∗(a) is simply the vector of evaluation of pa on every element
in Fq. More precisely, for every j ∈ [q], the j-th coordinate of τ∗(a) is pa(j− 1).

• Similarly, for every b ∈ B∗ and j ∈ [q], the j-th coordinate of τ∗(b) is pb(j− 1).

We now show that τ∗ is indeed a realization of G∗; specifically, we show that τ∗

satisfies (1) and (2) with β = q− h.

Consider any edge (a, b) ∈ E∗. Notice that ‖τ∗(a)− τ∗(b)‖0 is the number of x ∈ Fq
such that pb(x)− pa(x) 6= 0. By definition of E∗, pb − pa is a polynomial with h distinct
roots over Fq. Thus, ‖τ∗(a)− τ∗(b)‖0 = q− h = β as desired.

Next, consider a non-edge (a, b) ∈ (A∗ × B∗) \ E∗ . Then, we know that pb − pa has
at most h− 1 distinct roots over Fq. Therefore, the polynomial pb − pa is non-zero on at
least q− h + 1 coordinates. This implies that ‖τ∗(a)− τ∗(b)‖0 ≥ q− h + 1 > β.

Finally, for any distinct a, a′ ∈ A∗, we have ‖τ∗(a)− τ∗(a′)‖0 ≥ q− h + 1 because
pa − pa′ is a non-zero polynomial of degree at most h− 1 and thus can be zero over Fq in
at most h− 1 locations. Similarly, ‖τ∗(b)− τ∗(b′)‖0 ≥ q− h+ 1 for any distinct b, b′ ∈ B∗.

This completes the proof sketch for both the claims about G∗ and yields Theorem 1.4
for d = (log n)ω(1). Finally we remark that in the actual proof of Theorem 1.4, we
will set the parameters in the above construction more carefully and achieve the bound
cdp(G∗) = (log n)Oε(1).

2.2 Abstracting the Construction via Error-Correcting Codes

Before we move on to discuss the proofs of Theorems 1.6 and 1.5, let us give an abstrac-
tion of the construction in the previous subsection. This will allow us to easily generalize

9

the construction for the aforemention theorems, and also to explain where our motiva-
tion behind the construction comes from in the first place.

Dense Bipartite Graph with Low Contact Dimension from Codes. In order to con-
struct a balanced bipartite graph G∗ on 2n vertices with n2−o(1) edges such that
cdp(G∗) ≤ d∗, it suffices to have a code C∗ with the following properties (for code-
related definitions, see Section 3.2):

• C∗ ⊆ F`
q of cardinality n is a linear code with block length ` over alphabet Fq, and

minimum distance ∆.

• There exists a center s∗ ∈ F`
q and r∗ < ∆ such that |C∗|1−o(1) codewords are at

Hamming distance exactly r∗ from s∗ and no codeword is at distance less than r∗

from s∗.

• q · ` = d∗.

We also require that C∗ and s∗ can be constructed in poly(n) time but we shall ignore
this requirement for the ease of exposition.

We describe below how to construct G∗ from C∗, but first note that the construction
of G∗ we saw in the previous subsubsection was just showing that Reed Solomon codes
[RS60] of block length q = Θ((log n)g) and message length h = Θ

(
log n

g·log log n

)
over al-

phabet Fq with minimum distance q− h + 1 has the above properties. The center s∗ in
that construction was the evaluation of the polynomial xh over Fq, and r∗ was q− h.

In general, to construct G∗ from C∗, we first define a subset S∗ ⊆ F`
q of cardinality n

as follows:
S∗ = {s∗ + c | c ∈ C∗}.

We associate the vertices in A∗ with the codewords of C∗ and vertices in B∗ with the
strings in S∗. For any (a, b) ∈ A∗ × B∗, let (a, b) ∈ E∗ if and only if ‖b− a‖0 = r∗. This
completes the construction of G∗. We have to now show the following claims about G∗:
(i) |E∗| = n2−o(1) and (ii) there is τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗.

Item (i) follows rather easily from the properties of C∗ and s∗. Let T∗ be the subset of
C∗ of all codewords which are at distance exactly equal to r∗ from s∗. From the definition
of s∗, we have |T∗| = |C∗|1−o(1). Fix a ∈ A∗. Its degree in G∗ is |T∗| = |C∗|1−o(1). This
is because for every codeword t ∈ T∗ we have that t− a is a codeword in C∗ (from the
linearity of C∗) and thus s∗ − t + a is in S∗, and therefore (a, s∗ − t + a) ∈ E∗.

For item (ii), consider the identity mapping τ∗ : A∗∪̇B∗ → F`
q that maps each string

to itself. It is simple to check that τ∗ realizes G∗ in the Hamming metric (with β = r∗).

Recall from the previous subsection that given τ∗ : A∗∪̇B∗ → F`
q that realizes G∗

in the Hamming metric, it is easy to construct τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗

in the Hamming metric with a q multiplicative factor blow-up in the dimension. This
completes the proof of both the claims about G∗ and gives a general way to prove Theo-
rem 1.4 given the construction of C∗ and s∗.

Finding Center from Another Code. One thing that might not be clear so far is: where
does the center s∗ come from? Here we provide a systematic way to produce such an s∗,

10

by looking at another code that contains C∗. More precisely, let C∗ ⊆ C̃∗ ⊆ F`
q be two

linear codes with the same block length and alphabet. Suppose that the distance of C∗ is
∆, the distance of C̃∗ is r∗ and that r∗ < ∆. It is easy to see that, by taking s∗ to be any
element of C̃∗ \ C∗, it holds that every codeword in C∗ is at distance at least r∗ from s∗,
simply because both s∗ and the codewords of C∗ are codewords of C̃∗.

Hence, we are only left to argue that there are many codewords of C∗ that is of
distance exactly r∗ from s∗. While this is not true in general, we can show by an averaging
argument that this is true (for some s∗ ∈ C̃∗) if a large fraction (e.g. |C∗|−o(1) fraction) of
codewords of C̃∗ has Hamming weight exactly r∗ (see Lemma 5.1).

Indeed, viewing in this light, our previous choice of center for Reed-Solomon code
(i.e. evaluation of xh) is not coincidental: we simply take C̃∗ to be another Reed-Solomon
code with message length h + 1 (whereas the base code C∗ is of message length h).

Comparison to Locally Dense Codes. We end this subsection by remarking that the
codes that we seek are very similar to locally dense codes [DMS03, CW12, Mic14], which
is indeed our inspiration. A locally dense code is a linear code of block length ` and large
minimum distance ∆, admitting a ball centered at s of radius6 r < ∆ and containing a
large (i.e. exp(poly(`))) number of codewords7. Such codes are non-trivial to construct
and in particular all known constructions of locally dense codes are using codes that
beat the Gilbert-Varshamov (GV) bound [Gil52, Var57]; in other words we need to do
better than random codes to construct them. This is because (as noted in [DMS03]), for a
random code C ⊆ F`

q (or any code that does not beat the GV bound), a random point in
F`

q acting as the center contains in expectation less than one codeword in a ball of radius
∆. Of course, this is simply an intuition and not a formal proof that a locally dense code
needs to beat the GV bound, since there may be more sophisticated ways to pick a center.

Although the codes we require are similar to locally dense codes, there are differ-
ences between the two. Below we list four such differences: the first two makes it harder
for us to construct our codes whereas the latter two makes it easier for us.

• We seek a center s∗ so that no codewords in C∗ lies at distance less than r∗, as
opposed to locally dense codes which allows codewords to be close to s∗. This is
indeed where our idea of using another code C̃∗ ⊇ C∗ comes in, as picking s∗ from
C̃∗ \ C∗ ensures us that no codeword of C∗ is too close to s∗.

• Another difference is that we need the number of codewords at distance r∗ from s∗

to be very large, i.e., |C∗|1−o(1), whereas locally dense codes allow for much smaller
number of codewords. Indeed, the deterministic constructions from [CW12, Mic14]
only yield the bound of 2O(

√
log |C∗|). Hence, these do not directly work for us.

• Locally dense codes requires r to be at most (1 − ε)∆ for some constant ε > 0,
whereas we are fine with any r∗ < ∆. In fact, our Reed-Solomon code based con-
struction above only yields r∗ = ∆− 1 which would not suffice for locally dense
codes. Nevertheless, as we will see later for inapproximability of CP, we will also

6 Clearly, for the ball to contain more than a single codeword, it must be r ≥ ∆/2. Here we are interested
in balls with radius not much bigger than that, say r < γ · ∆ for some constant 1/2 < γ < 1.

7Strictly speaking, a locally dense code also requires an auxiliary matrix T used to index these code-
words. However, in previous works, finding T is typically not hard given the center s. Hence, we ignore T
in our discussion here for the ease of exposition.

11

need the ratio r∗/∆ to be a constant bounded away from 1 as well and, since we
need a code with these extraordinary properties, they are very hard to find. Indeed,
in this case we only manage to prove a weaker lower bound on gap-CP.

• Finally, we remark that locally dense codes are required to be efficiently con-
structed in poly(log |C∗|) time, which is part of why it is hard to find. Specifically,
while [DMS03] shows that an averaging argument works for a random center, de-
randomizing this is a big issue and a few subsequent works are dedicated solely to
this issue [CW12, Mic14]. (We also note that it remains open whether a center can
be deterministically found for a variant of locally dense codes used in hardness of
parameterized version of the minimum distance problem. See [BGKM18] for more
details.) On the other hand, brute force search (over all codewords in C̃∗) suffices
to find a center for us, as we are allowed construction time of poly(|C∗|).

2.3 Inapproximability of Closest Pair and Maximum Inner Product

In this subsection, we sketch our inapproximability results for MIP and CP. Both these
results use the same reduction that we had from BCP to CP, except that we now need
stronger properties from the gadget, i.e., the previously used notions of contact dimen-
sion does not suffice anymore. Below we sketch the required strengthening of the gadget
properties and explain how to achieve them.

2.3.1 Approximate Maximum Inner Product

Observe that the gadget we construct for CP in Subsection 2.2 can also be written in
terms of inner product as follows: there exists a dense balanced bipartite graph G∗ =
(A∗∪̇B∗, E∗), a mapping τ : A∗∪̇B∗ → {0, 1}q·` such that the following holds.

(i) For all edges (a, b) ∈ E∗, 〈τ(a), τ(b)〉 = `− r∗.

(ii) For all edges (a, b) ∈ (A∗ × B∗) \ E∗, 〈τ(a), τ(b)〉 < `− r∗.

(iii) For all distinct a, b both from A∗ or both from B∗, 〈τ(a), τ(b)〉 ≤ `− ∆.

Notice that we wrote the conditions above in a slightly different way than in previous
subsections; previously in the contact dimension notation, (ii) and (iii) would be simply
written together as: for all non-edge (a, b), 〈τ(a), τ(b)〉 < `− r∗. This change is inten-
tional, since, to get gap in our reductions, we only need a gap between the bounds in (i)
and (iii) (but not in (ii)). In particular, to get hardness of approximating MIP, we require
`−r∗
`−∆ to be at least (1 + ε) for some ε > 0.

From our Reed-Solomon construction above, `− ∆ and `− r∗ are exactly the mes-
sage length of C∗ minus one and the message length of C̃∗ minus one respectively. Previ-
ously, we selected these two to be h and h + 1. Now to obtain the desired gap, we simply
take the larger code C̃∗ to be a Reed-Solomon code with larger (i.e. (1 + ε)h) message
length8.

8This approach can in fact give not just (1 + ε) but arbitrarily large constant gap between the two cases.
In the actual reduction, we take this gap to be 3 (Theorem 6.2), which makes some computations simpler.

12

Finally, we note that even with the above gadget, the reduction only gives a small
(i.e. 1 + o(1)) factor hardness of approximating MIP (Theorem 6.2). To boost the gap to
near polynomial, we simply tensor the vectors with themselves (see Section 6).

2.3.2 Approximate Closest Pair

Once again, recall that we have the following gadget from Subsection 2.2: there exists
a dense balanced bipartite graph G∗ = (A∗∪̇B∗, E∗), a mapping τ : A∗∪̇B∗ → {0, 1}q·`

such that the following holds.

(i) For all edges (a, b) ∈ E∗, ‖τ(a)− τ(b)‖0 = r∗.

(ii) For all edges (a, b) ∈ (A∗ × B∗) \ E∗, ‖τ(a)− τ(b)‖0 > r∗.

(iii) For all distinct a, b both from A∗ or both from B∗, ‖τ(a)− τ(b)‖0 ≥ ∆.

Once again, we need an (1 + ε) gap between the bounds in (iii) and (i), i.e., ∆
r∗ . Unfor-

tunately, we cannot construct such codes using any of the Reed-Solomon code families.
We turn to another type of codes that beat the Gilbert-Varshamov bound: Algebraic- Ge-
ometric (AG) codes. Similar to the Reed-Solomon code based construction, we take C∗

as an AG code and C̃∗ to be a “higher degree” AG code; getting the desired gap simply
means that the distance of C∗ must be at least (1 + ε) times the distance of C̃∗.

Recall from Subsection 2.2 also that, to bound the density of G∗, we need a lower
bound on the number of minimum weight codewords of C̃∗. Such bounds for AG codes
are non-trivial and we turn to the bounds from [ABV01, Vlă18]. Unfortunately, this only
gives G∗ with density |C∗|−1/2−o(1), instead of |C∗|−o(1) as before. This is indeed the
reason that our running time lower bound for approximate CP is only n1.5−ε.

We are not aware of any result on the (asymptotic) tightness of the bounds
from [ABV01, Vlă18] that we use. However, improving upon such bounds would have
other consequences, such as a better bound on the kissing numbers of lattices constructed
in [Vlă18]. As a result, it seems likely that more understanding of AG codes (and perhaps
even new constructions) are needed in order to improve these bounds.

3 Preliminaries

In this section we define the geometric problems of interest to this paper, give an alter-
nate proof for the conditional lower bound on bichromatic closest pair, and recall the
definition of the contact dimension of a graph.

3.1 Notations, Problems and Fine-Grained Hypotheses

Distance Measures. For any two vectors a, b ∈ Rd, the distance between them in the

`p-metric is denoted by ||a− b||p =
(

∑d
i=1 |ai − bi|p

)1/p
. Their distance in the `∞-metric

is denoted by ||a− b||∞ = max
i∈[d]
{|ai − bi|}, and in the `0-metric is denoted by ||a− b||0 =

|{i ∈ [d] : ai 6= bi}|, i.e., the number of coordinates on which a and b differ. More
generally, for any two vectors a, b ∈ Rd in the ∆-metric, we denote by ∆(a, b) its distance

13

in that metric space. The `p-metrics that are well studied in literature are the Hamming
metric (`0-metric), the rectilinear metric (`1-metric), the Euclidean metric (`2-metric), and the
Chebyshev metric (`∞-metric). We denote the inner product (associated with the Euclidean
space) of a and b by 〈a, b〉 = ∑

i∈[d]
ai · bi. Finally, for every positive integer d we define the

edit metric over Σ to be the space Σd endowed with distance function ed(a, b), which
is defined as the minimum number of character substitutions/insertions/deletions to
transform a into b.

Problems. Here we give formal definitions of Orthogonal Vectors (OV), Closest Pair
(CP) and Bichromatic Closest Pair (BCP) problems, and also Maximum Inner Product
(MIP) and Bichromatic Maximum Inner Product (BMIP) problems.

Definition 3.1 (Orthogonal Vectors Problem, OV). In OV, we are given two collections of n
points A, B ⊆ {0, 1}d, and the goal is to find a pair of points a ∈ A, b ∈ B such that 〈a, b〉 = 0.

Definition 3.2 (Closest Pair Problem, CP). In CP in the ∆-metric, we are given a collection of
n points P ⊆ Rd and a positive real α, and the goal is to find a pair of distinct points a, b ∈ P
such that ∆(a, b) ≤ α.

Definition 3.3 (Bichromatic Closest Pair Problem, BCP). In BCP in the ∆-metric, we are
given two collections of n points A, B ⊆ Rd and a positive real α, and the goal is to find a pair of
points a ∈ A, b ∈ B such that ∆(a, b) ≤ α.

We will also use gap versions of these problems. For any δ ≥ 0, we define (1+ δ)-CP
(resp. (1+ δ)- BCP) in the ∆-metric to be the problem of distinguishing between the case
whether there exist distinct a, b ∈ P (resp. a ∈ A and b ∈ B) such that ∆(a, b) ≤ α and the
case where for all distinct a, b ∈ P (resp. a ∈ A and b ∈ B) we have ∆(a, b) > (1 + δ) · α.

Definition 3.4 (Maximum Inner Product Problem, MIP). In MIP, we are given a collection
of n points P ⊆ Rd and a real α, and the goal is to find a pair of distinct points a, b ∈ P such that
〈a, b〉 ≥ α.

Definition 3.5 (Bichromatic Maximum Inner Product Problem, BMIP). In BMIP, we are
given two collections of n points A, B ⊆ Rd and a real α, and the goal is to find a pair of points
a ∈ A, b ∈ B such that 〈a, b〉 ≥ α.

Again we define the gap versions of these problems as follows. For any γ ≥ 1,
we define γ-MIP (resp. γ-BMIP) to be the problem of distinguishing between the case
whether there exist distinct a, b ∈ P (resp. a ∈ A and b ∈ B) such that 〈a, b〉 ≥ α and the
case where for all distinct a, b ∈ P (resp. a ∈ A and b ∈ B) we have 〈a, b〉 < α/γ.

Hypotheses. Finally, we give formal definitions of the relevant fine-grained hypothe-
ses (see [Wil18b] for a survey on the state-of-the-art conditional lower bounds that are
known under these hypotheses).

Definition 3.6 (Strong Exponential Time Hypothesis, SETH [IP01, IPZ01, CIP06]). For
every ε > 0, there exists k = k(ε) ∈N such that no algorithm can solve k-SAT (i.e., satisfiability
on a CNF of width k) in O(2(1−ε)m) time where m is the number of variables. Moreover, this holds
even when the number of clauses is at most c(ε)m where c(ε) denotes a constant that depends
only on ε.

14

Definition 3.7 (Orthogonal Vector Hypothesis, OVH). For every ε > 0, no algorithm can
solve OV in O(n2−ε) time. Moreover, this holds even when the dimension d is at most c(ε) log n
where c(ε) denotes a constant that depends only on ε.

It is known that SETH implies OVH [Wil05], and therefore in the rest of the paper,
we base all our conditional lower bounds on OVH.

3.2 Error-Correcting Codes

We recall here a few coding theoretic notations since all of our gadgets are based on error-
correcting codes. As is standard in error-correcting codes, we will use ∆(a, b) to denote
‖a − b‖0, the Hamming distance of a and b, for any a, b ∈ FN

q and we further define
∆(a, S) := min

b∈S
∆(a, b) for any a ∈ FN

q and S ⊆ FN
q . The weight of a ∈ FN

q , denoted

by ∆(a), is simply ‖a‖0 := |i ∈ [N] : ai 6= 0|. For a ∈ FN
q and d ∈ N, we use B(a, d) to

denote the (closed) Hamming ball of radius d centered at a, i.e., B(a, d) := {b ∈ FN
q |

∆(a, b) ≤ d}.
An error correcting code of block length N over alphabet Fq is simply a collection

of codewords C ⊆ FN
q . The distance of the code C, denoted by ∆(C), is defined as

min
a 6=b∈C

∆(a, b). A code is said to be linear if C is a subspace of FN
q . For a linear code C,

its message length is defined to be the dimension of C, or equivalently logq |C|. We often
use the notion [N, K, D]q to denote a linear code of block length N, message length K,
and distance D. The rate and relative distance of a linear [N, K, D]q code C are defined
as K/N and D/N respectively. Note also that, for a linear code C, ∆(C) is equal to
the minimum weight of a non-zero codeword of C. Finally, for any code C, we use
Aw(C) := |{c ∈ C | ∆(c) = w}| to denote the number of codewords of weight w.

Let us also recall the Singleton bound and the definition of maximum distance separa-
ble (MDS) codes.

Theorem 3.8 (Singleton bound [Sin64]). For any linear [N, K, D]q code, K + D ≤ N + 1.

Definition 3.9 (MDS Codes). A linear [N, K, D]q code is said to be a maximum distance sepa-
rable (MDS) code if it matches the Singleton bound, i.e., K + D = N + 1.

We note here that the above bound and notation are well-defined (or can be natu-
rally extended) also for non-linear codes, but we will only use them in context of linear
codes in this paper.

3.3 Miscellaneous Tools

Covering Biclique by Isomorphic Graphs. A useful fact we use to derandomize our
reductions is that the biclique can be covered by any dense bipartite graph G with only a
few graphs that are isomorphic to G. To state this more formally, let us first define a few
notions.

Definition 3.10. For any graph G = (VG, EG) and any permutation π : VG → VG, we
use Gπ to denote the graph (VGπ

, EGπ
) where the vertex set VGπ

is equal to VG and EGπ
=

{(π(a), π(b)) | (a, b) ∈ EG}.

15

For brevity, we say that a permutation π : A∪̇B → A∪̇B of vertices of a bipartite
graph G = (A∪̇B, EG) is side-preserving if π(A) = A and π(B) = B.

We can now state the result as follows. The proof, which proceeds via a simple set
covering argument, is deferred to Appendix B.

Lemma 3.11. For any bipartite graph G(A∪̇B, EG) where |A| = |B| = n and EG 6= ∅, there
exist side-preserving permutations π1, . . . , πk : A ∪ B → A ∪ B where k ≤ 2n2 ln n

|EG | + 1 such
that

∪
i∈[k]

EGπi
= EKn,n

Moreover, such permutations can be found in time O(n6 log n).

Translating Finite Fields Vectors to {0, 1}-Vectors. Another simple fact which was
already mentioned in the proof overview (Section 2) is that, we can embed Hamming
metric on alphabet of size q to Hamming metric on Boolean alphabet, with only q multi-
plicative factor blow-up in the dimension:

Proposition 3.12. For any q, N ∈N, and alphabet Σ such that |Σ| = q, there exists a mapping
ψ : ΣN → {0, 1}q·N such that, for all v1, v2 ∈ ΣN , we have ‖ψ(v1)− ψ(v2)‖0 = 2 · ∆(v1, v2)
and 〈ψ(v1), ψ(v2)〉 = N − ∆(v1, v2).

Proof. The mapping ψ simply replaces each coordinate that is equal to j ∈ Σ by the j-th
standard basis in the q-dimensional space. More precisely, for v = (v1, . . . , vN) ∈ Fq, we
define

ψ(v) = ev1 ◦ ev2 ◦ · · · ◦ evN ,

where ◦ denotes concatenation of vectors and ej denote the j-th standard basis in Rq, i.e.,
the vector whose j-th coordinate is one and the remaining coordinates are zeroes.

It is simple to check that this satisfies the two requirements.

3.4 OVH-hardness of Exact Bichromatic Closest Pair

Alman and Williams [AW15] showed the conditional hardness (under OVH) of exact
BCP in every `p-metric even when the point-sets are over {0, 1} via a Turing reduction
from OV. David, Karthik, and Laekhanukit [DKL18] gave an alternate proof of the same
result where point-sets were over R via a many-one reduction from OV. For independent
interest, below we give another proof, which is both a many-one reduction and the point-
sets are over {0, 1}.

Theorem 3.13. Assuming OVH, for every ε > 0, no algorithm running in time n2−ε can solve
BCP, even when the point-sets A, B are subsets of {0, 1}d and d = cε log n, for some constant
cε > 1 (only depending on ε).

Proof. Let A, B ⊆ {0, 1}d where |A| = |B| = n be the input to an OV instance. We build
an instance (A′, B′, α) of BCP where A′, B′ ⊆ {0, 1}5d, |A| = |B| = n, and α = 2d, using
functions TA and TB guaranteed by the following claim.

Claim 3.14. There are functions TA, TB : {0, 1} → {0, 1}5 such that for every x, y ∈ {0, 1} we
have:

16

• x · y = 0 implies ‖TA(x)− TB(y)‖0 = 2.

• x · y = 1 implies ‖TA(x)− TB(y)‖0 = 4.

For every i ∈ [n], the ith point of A′, say a′ is constructed from the ith point of A, say a
by simply applying TA pointwise on each coordinate of a, i.e., a′ = (TA(a1), . . . , TA(ad)).
Similarly we apply TB pointwise on each coordinate of points in B. It is easy to see that
there exists (a′i, b′j) ∈ A′ × B′ such that ‖a′i − b′j‖0 = 2d if and only if 〈ai, bj〉 = 0, and
otherwise every pair of points in A′ × B′ is at Hamming distance at least 2d + 2.

Proof of Claim 3.14. We define for all x, y ∈ {0, 1}, TA(x) = (TA(x)0,0, TA(x)0,1, TA(x)1,0, x, 0)
and TB(y) = (TB(y)0,0, TB(y)0,1, TB(y)1,0, 0, y), where for all i, j ∈ {0, 1} such that i · j = 0,
we have TA(x)i,j = 1 if and only if x = i and TB(y)i,j = 1 if and only if y = j. More
succinctly, TA and TB are described below as strings and the claim follows by a straight-
forward calculation.

TA(0) = 11000 TA(1) = 00110

TB(0) = 10100 TB(1) = 01001

3.5 Contact Dimension of a Graph

The central gadget in our reduction from BCP to CP is based on the contact dimension of
a graph. Below we reproduce its definition from the proof overview (i.e. Definition 2.1)
for convenience.

Definition 3.15 (Contact Dimension [Pac80]). For any graph G = (V, E), a mapping τ :
V → Rd is said to realize G (in the `p-metric) if for some β > 0, the following holds:

(i) For all (u, v) ∈ E, ‖τ(u)− τ(v)‖p = β.

(ii) For all (u, v) /∈ E, ‖τ(u)− τ(v)‖p > β.

The contact dimension (in the `p-metric) of G, denoted by cdp(G), is the minimum d ∈ N

such that there exists τ : V → Rd realizing G in the `p-metric.

We may also say that τ β-realizes G if we wishes to emphasize the value of β.

Note here that we may view points in τ(V) as centers of spheres of radius β/2. No
two spheres overlap but they may touch, and G has an edge (u, v) if and only if the
spheres centered at τ(u) and τ(v) touches.

For a summary of the bounds on cd(G) for various graphs in the Euclidean metric
see [Mae85, FM86, FM88, Mae91] and for a summary of the bounds on cd(Kn,n) in various
metrics see [DKL18]. For this paper, the following bounds are relevant.

Theorem 3.16 (Frankl-Maehara [FM88]). (1.286)n− 1 < cd2(Kn,n) < (1.5)n.

Theorem 3.17 (David-Karthik-Laekhanukit [DKL18]). cd0(Kn,n) = n.

In particular, the above two theorems are the obstacles of the approach of [DKL18]
for the `2 and Hamming metrics respectively. As discussed in the proof overview, we
will overcome these barriers by constructing dense bipartite graphs with low contact
dimensions in every `p metrics.

17

As discussed in Section 2.3.2, we need a generalization of contact dimension in order
to show inapproximability for CP. This is formally defined below; it should be noted
that the definition only makes sense for bipartite graphs, whereas the original contact
dimension is well-defined for any graphs. Moreover, when λ = 1, the notion of gap
contact dimension coincides with the (non-gap) contact dimension in bipartite graphs.

Definition 3.18 (Gap Contact Dimension). For any bipartite graph G = (A∪̇B, E) and λ ≥
1, a mapping τ : V → Rd is said to λ-gap-realize G (in the `p-metric) if for some β > 0, the
following holds:

(i) For all (u, v) ∈ E, ‖τ(u)− τ(v)‖p = β.

(ii) For all (u, v) ∈ (A× B) \ E, ‖τ(u)− τ(v)‖p > β.

(iii) For all distinct u, v both from A or both from B, ‖τ(u)− τ(v)‖p > λ · β.

The λ-gap contact dimension (in the `p-metric) of G, denoted by λ-cdp(G), is the minimum
d ∈N such that there exists τ : V → Rd λ-gap-realizing G in the `p-metric.

Again, we may say that τ (β, λ)-gap-realizes G to emphasize the value of β.

Finally, we define an analogous notion for inner product:

Definition 3.19 (Gap Inner Product Dimension). For any bipartite graph G = (A∪̇B, E)
and λ ≥ 1, a mapping τ : V → Rd is said to λ-gap-IP-realize G if for some β > 0, the
following holds:

(i) For all (u, v) ∈ E, 〈τ(u), τ(v)〉 = β.

(ii) For all (u, v) ∈ (A× B) \ E, 〈τ(u), τ(v)〉 < β.

(iii) For all distinct u, v both from A or both from B, 〈τ(u), τ(v)〉 < β/λ.

The λ-gap inner product dimension of G, denoted by λ-ipd(G), is the minimum d ∈ N such
that there exists τ : V → Rd λ-gap-IP-realizing G.

We may say that τ (β, λ)-gap-IP-realizes G to emphasize the value of β.

4 Lower Bound on Closest Pair under Orthogonal Vector Hy-
pothesis

In this section, we prove the subquadratic hardness for CP (assuming OVH) using the
efficient construction of a realization of a dense bipartite graph. The construction will be
be formally stated below and the details will be given in Section 5.2.1. First, we define
the notion of a log-dense sequence of integers:

Definition 4.1. A sequence (ni)i∈N of increasing positive integers is said to be log-dense if
there exists a constant C ≥ 1 such that log ni+1 ≤ C · log ni for all i ∈N.

As outlined in Section 2.1 , we use Reed-Solomon codes to construct a family of
dense bipartite graphs with low contact dimensions. While the construction does not
yield a graph for every number of vertices n, it does yield a graph for a log-dense se-
quence of numbers of vertices, which turns out to be sufficient for the purpose of the
reduction. More formally, we will prove the following in Section 5.2.1.

18

Theorem 4.2. For every 0 < δ < 1, there exists a log-dense sequence (ni)i∈N such that,
for every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where |Ai| = |Bi| = ni and
|Ei| ≥ Ω(n2−δ

i), such that cd(Gi) = (log ni)
O(1/δ). Moreover, for all i ∈ N, a realization

τ : Ai∪̇Bi → {0, 1}(log ni)
O(1/δ)

of Gi can be constructed in time n2+o(1)
i .

Notice that we did not specify any `p-metric in the notion of contact dimension
above. This is intentional, because our point sets τ(Ai∪̇Bi) have coordinate entries in
{0, 1}, for which the distances in the Hamming metric are equivalent (up to power of
p) to distances in any `p-metric (p 6= ∞). We also adopt this notational convenience
below. Specifically, we will prove the following theorem which states that CP is hard
even when the points are from {0, 1}d; clearly, this also implies Theorem 1.4 due to the
aforementioned equivalence to other `p-metrics.

Theorem 4.3 (Subquadratic Hardness of {0, 1}-CP). Assuming OVH, for every ε > 0, there
exists sε > 0 such that no algorithm running in O(n2−ε) time can solve CP in the Hamming
metric even when d = (log n)sε and all points have {0, 1} entries.

Proof. For any ε > 0, let Cexp be the constant such that the dimension guarantee for τ in
Theorem 4.2 is at most (log ni)

Cexp/ε for δ = ε/2. We define sε as 2 · Cexp/ε + 2.

Assume that there exists ε > 0 and an algorithm A that can solve CP in time n2−ε

in the Hamming metric for any input of n points in {0, 1}(log n)sε . We will construct an
algorithm A′ that solves any instance of BCP in time n2−ε′ for some constant ε′ > 0 (to
be specified below), on n points in dimension d := cε′ · log n with coordinate entries in
{0, 1}. Together with Theorem 3.13, this implies that OVH is false, arriving at a contra-
diction.

Let Cε denote the log-density constant (i.e. supi
log ni+1

log ni
) of the sequence from Theo-

rem 4.2 for δ = ε/2, and let ε′ be 0.01 · ε/Cε. The algorithm A′ on input (A, B, α) where
A, B ⊆ {0, 1}d, with |A| = |B| = n, and α ∈ [d], works as follows:

1. Let n′ be the largest number in the sequence from Theorem 4.2 with δ = ε/2 s.t.
n′ ≤ n0.1.

2. Let G′ = (A′∪̇B′, E′) be the graph from Theorem 4.2 with |A′| = |B′| = n′, |E′| ≥
Ω((n′)2−δ), and τ : A′∪̇B′ → {0, 1}(log n′)Cexp/ε

be a β-realization of G′ where β ∈N.

3. We use the algorithm from Lemma 3.11 to find π1, . . . , πk where k = O((n′)δ log n′)
such that the union of EG′π1

, . . . , EG′πk
is EKn′ ,n′ .

4. We assume w.l.o.g.9 that n is divisible by n′. Partition A and B into A1, . . . , An/n′

and B1, . . . , Bn/n′ each of size n′. For each i, j ∈ [n/n′], t ∈ [k], do the following:

(a) Let τt be an appropriate permutation of τ that β-realizes G′πt
. Label the ver-

tices of G′πt
with the points in Ai∪̇Bj.

(b) Let α′ = α + (d + 1) · β, and define At
i , Bt

j as

At
i = {a ◦ (1d+1 ⊗ τt(a)) | a ∈ Ai}, Bt

j = {b ◦ (1d+1 ⊗ τt(b)) | b ∈ Bj}

9This is without loss of generality, since if n is not divisible by n′, we can use brute force for the remainder
points. This requires only O(n · n′·) = O(n1.1 log n) which does not affect the overall asymptotic running
time of the algorithm.

19

where 1d+1 ⊗ v simply denotes v ◦ v ◦ · · · ◦ v, i.e., the concatenation of d + 1
copies of v.

(c) Run A on (At
i ∪̇Bt

j , α′). If A outputs YES, then output YES and terminate.

5. If none of the executions of A returns YES, then output NO.

Observe that the bottleneck in the running time of the algorithm is in the execu-
tions of A. The number of executions is (n/n′)2 · k and each execution takes O((n′)2−ε)
time. Hence, in total the running time of the algorithm A′ is O((n/n′)2 · k · (n′)2−ε) ≤
O(n2 log n · (n′)−ε/2). Now, from the log-density of the sequence from Theorem 4.2, we
have n′ ≥ n0.1/Cε = n10ε′/ε. As a result, the running time ofA is at most O(n2−5ε′ log n) ≤
O(n2−ε′) as desired.

To see the correctness of the algorithm, first observe that the dimensions of vectors in
At

i , Bt
j are at most d + (d + 1) · (log n′)Cexp/ε which is at most (log n)sε for any sufficiently

large n; that is, the calls to A are valid. Next, observe that, if (A, B, α) is a YES instance
of BCP, there must be i, j ∈ [n/n′] and a∗ ∈ Ai, b∗ ∈ Bj such that ‖a∗ − b∗‖0 is at most
α. Since G′π1

, . . . , G′πk
covers Kn′,n′ , there must be t ∈ [k] such that ‖τt(a∗)− τt(b∗)‖0 = β.

As a result, ‖(a∗ ◦ (1d+1 ⊗ τt(a∗))) − (b∗ ◦ (1d+1 ⊗ τt(b∗)))‖0 ≤ α + (d + 1) · β = α′.
Thus, (At

i ∪ Bt
j , α′) is a YES instance for CP and A′ outputs YES as desired.

Finally, assume that (A, B, α) is a NO instance of BCP. Consider any i, j ∈ [n/n′]
and t ∈ [k]. To argue that (At

i ∪ Bt
j , α′) is a NO instance for CP, we have to show that any

two points in At
i ∪ Bt

j have distance more than α′. To see this, let us consider two cases.

1. Both points are either from At
i or from Bt

j . Assume w.l.o.g. that the two points are
from At

i ; let them be a ◦ (1d+1 ⊗ τt(a)) and a′ ◦ (1d+1 ⊗ τt(a′)). Recall that, from
the definition of β-realization, ‖τt(a)− τt(a′)‖0 > β. Since ‖τt(a)− τt(a′)‖0 is an
integer, we must have ‖τt(a)− τt(a′)‖0 ≥ β+ 1. As a result, the Hamming distance
between the two points is at least (d + 1) · (β + 1) > d + (d + 1) · β = α′.

2. One of the point is from At
i and the other from Bt

j . Let them be a ◦ (1d+1 ⊗ τt(a))
and b ◦ (1d+1 ⊗ τt(b)). Since (A, B, α) is a NO instance of BCP, ‖a − b‖0 > α.
Furthermore, from definition of β-realization, we must have ‖τt(a)− τt(b)‖0 ≥ β.
Combining the two implies that the Hamming distance between a ◦ (1d+1 ⊗ τt(a))
and b ◦ (1d+1 ⊗ τt(b)) is more than α′.

Hence, (At
i ∪̇Bt

j , α′) must be a NO instance for CP for every t ∈ [k] and i, j ∈ [n/n′]. Thus,
A′ outputs NO as desired.

5 Gadget Constructions

In this section, we construct all the gadgets that are used in our reductions, including the
basic gadget (Theorem 4.2) and more advanced gadgets used for MIP and approximate
version of CP.

20

5.1 Finding a Center of a Code via Another Code

At the heart of all our gadgets is the task of finding a code C1 and a center s such that
there are |C1|1−o(1) many codewords at Hamming distance exactly equal to r (for some
r > 0) from s but there is no codeword in C1 at distance less than r from s. The below
lemma is useful in finding such an s.

Lemma 5.1. Let C1 ⊆ C2 ⊆ FN
q be two linear codes with the same block length N and alphabet

Fq such that ∆(C2) < ∆(C1). Then, there exists a center s ∈ FN
q such that (1) ∆(s, C1) ≥ ∆(C2)

and (2) |B(s, ∆(C2)) ∩ C1|/|C1| ≥ A∆(C2)(C2)/|C2|. Moreover, given C1, C2, such an s can be
found in O(|C1| · |C2| · qN) time.

Proof. We show that there exists s ∈ C2 \ C1 such that (2) holds. Note that (1) immediately
holds, because s − c must be a non-zero codeword of C2 which implies that ∆(s, c) ≥
∆(C2).

To show that there exists s ∈ C2 \ C1 such that |B(s, ∆(C2))∩ C1| ≥ |C1| · A∆(C2)/|C2|.
We will in fact show a stronger statement: for a random s ∈ C2 \ C1, we have
E[|B(s, ∆(C2)) ∩ C1|] ≥ |C1| · A∆(C2)/|C2|. Consider Es∈C2\C1

[|B(s, ∆(C2)) ∩ C1|]. Due
to linearity of expectation, we have

Es∈C2\C1
[|B(s, ∆(C2)) ∩ C1|] = ∑

c∈C1

Pr
s∈C2\C1

[c ∈ B(s, ∆(C2))]

= ∑
c∈C1

Pr
s∈C2\C1

[∆(s− c) ≤ ∆(C2)]

= ∑
c∈C1

Pr
s∈C2\C1

[∆(s) ≤ ∆(C2)]

= |C1| ·
|(C2 \ C1) ∩ B(0, ∆(C2))|

|C2 \ C1|
.

Now, since ∆(C1) > ∆(C2), we have C1 ∩ B(0, ∆(C2)) = {0}. That is, |(C2 \ C1) ∩
B(0, ∆(C2))| = |(C2 \ {0}) ∩ B(0, ∆(C2))| = A∆(C2)(C2). Plugging this back into the
above equality, we have

Es∈C2\C1
[|B(s, ∆(C2)) ∩ C1|] = |C1| ·

A∆(C2)(C2)

|C2 \ C1|
≥ |C1| ·

A∆(C2)(C2)

|C2|
.

Thus, there must exist a center s ∈ C2 \ C1 that satisfies (2) (and also (1)) as desired.

Finally, note that s can be found by a brute force algorithm that tries every s ∈ C2
and check whether (2) is satisfied; this algorithm takes O(|C1| · |C2| · qN) time.

5.2 Gadgets based on Reed-Solomon Codes

In this subsection, we construct gadgets based on the Reed Solomon codes, which are
defined below.

Theorem 5.2 (Reed-Solomon Codes). For every prime power q, and every K ≤ N ≤ q, there
exists a [N, K, N − K + 1]q linear code, denoted by RSq[N, K]. The generator matrix of this
code can be computed in time poly(N, K, q). Moreover, for every q ≥ N ≥ K2 > K1, we have
RSq[N, K1] ⊆ RSq[N, K2].

21

In order to find a good center s, we use the following (well-known) bound on the
number of minimum weight codewords of Reed Solomon codes (and more generally
MDS codes). For a reference of this bound, see e.g. [MS77, Ch. 11, Theorem 6].

Lemma 5.3. Let C be any linear [N, K, D]q code that is MDS. Then, AD(C) = (N
K−1) · (q− 1).

5.2.1 The Basic Gadget: Dense Bipartite Graphs with Low Contact Dimensions

Now we construct a dense bipartite graph with low contact dimension. A proof sketch
of this construction was provided in Section 2.1 and was formally stated as Theorem 4.2.

Proof of Theorem 4.2. Let qi be the i-th prime number and let ni = (qi)
(bqδ

i c); it is simple
to see that the sequence (ni)i∈N is log-dense. For q = qi, consider the Reed-Solomon
codes C1 = RSq[q, K1] and C2 = RSq[q, K2] where K1 = bqδc and K2 = K1 + 1. Applying
Lemma 5.1 with (C1, C2) implies that there exists a center s ∈ C2 such that

|B(s, ∆(C2)) ∩ C1|
|C1|

≥
A∆(C2)

|C2|

(By Lemma 5.3) =
(q

K2−1) · (q− 1)

qK2

≥

(
q

K2−1

)K2−1
· (q− 1)

qK2

=
q− 1

q
·
(

1
K2 − 1

)K2−1

=
q− 1

q
· 1

KK1
1

≥ 1
2
· 1

qδK1

= Ω(|C1|−δ),

where the last equality follows from the fact that |C1| = qK1 .

We construct the graph Gi = (Ai, Bi, Ei) and a realization τ as follows. Let Ai =
C1, Bi = {s + c | c ∈ C1} and Ei = {(a, b) ∈ Ai × Bi | ∆(a, b) = ∆(C2)}. Gi can be
easily realized by applying the mapping ψ : F

q
q → {0, 1}q2

from Proposition 3.12. More
precisely, let τ be the restriction of ψ on Ai ∪ Bi. Below we argue about the density of Gi
and that τ is a 2∆(C2)-realization of Gi.

• First, notice that |Ei| is exactly |C1| · |B(s, ∆(C2)) ∩ C1| ≥ Ω(|C1|2−δ) = Ω(n2−δ
i).

• Second, notice that, for every v1, v2 both from Ai or both from Bi, we have v1− v2 ∈
C1 \ {0}. This implies that ‖τ(v1)− τ(v2)‖0 = 2∆(v1, v2) ≥ 2∆(C1) > 2∆(C2).

• Third, for every a ∈ Ai and b ∈ Bi, we have a − b ∈ C2 \ {0}. Thus, ∆(a, b) ≥
∆(C2). Hence, ‖τ(a)− τ(b)‖0 = 2∆(a, b) ≥ 2∆(C2). Moreover, the inequality is an
equality if and only if ∆(a, b) = ∆(C2), i.e., (a, b) ∈ Ei as desired.

• Finally, observe that the dimension is q2 = (log ni)
O(1/δ).

22

As for the running time of constructing Gi and τ, observe that the bottleneck is the
running time needed to find the center s; according to Lemma 5.1, s can be computed in
O(|C1| · |C2| · q2) = O(n2

i · q2), which is n2+o(1)
i as desired.

5.2.2 A Gadget for Maximum Inner Product

Now, we build gadgets (stated below) which will be used for proving the inapproxima-
bility of MIP.

Theorem 5.4. For every 0 < δ < 1, there exists a log-dense sequence (ni)i∈N such that,
for every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where |Ai| = |Bi| = ni and
|Ei| ≥ Ω(n2−δ

i), such that 3-ipd(G) = (log ni)
O(1/δ). Moreover, for all i ∈ N, a 3-gap-IP-

realization τ : Ai∪̇Bi → {0, 1}(log ni)
O(1/δ)

of Gi can be constructed in time n4+o(1)
i .

Proof. The proof here is exactly the same as the proof of Theorem 4.2, except that we will
not pick K2 = K1 + 1, but rather pick K2 > 3K1 (and ni accordingly).

More precisely, let qi be the i-th prime number and let ni = (qi)
(bq0.3δ

i /3c); it is simple
to see that the sequence (ni)i∈N is log-dense. For q = qi, consider the Reed-Solomon
codes C1 = RSq[q, K1] and C2 = RSq[q, K2] where K1 = bq0.3δ/3c and K2 = 3K1 + 1.
Similar to the proof of Theorem 4.2, applying Lemma 5.1 with (C1, C2) implies that there
exists s ∈ C2 \ C1 such that

|B(s, ∆(C2)) ∩ C1|
|C1|

≥ q− 1
q
·
(

1
K2 − 1

)K2−1

=
q− 1

q
· 1
(3K1)(3K1)

≥ 1
2
· 1

qδK1
= Ω(|C1|−δ).

We construct the graph Gi = (Ai, Bi, Ei) and a realization τ as follows. Let Ai =
C1, Bi = {s + c | c ∈ C1} and Ei = {(a, b) ∈ Ai × Bi | ∆(a, b) = ∆(C2)}. Gi can be easily
3-gap-IP-realized by applying the mapping ψ : F

q
q → {0, 1}q2

from Proposition 3.12.
More precisely, let τ be the restriction of ψ on Ai ∪ Bi. Below we argue about the density
of Gi and that τ is a (K2 − 1, 3)-gap-IP-realization of Gi.

• First, notice that |Ei| is exactly |C1| · |B(s, ∆(C2)) ∩ C1| ≥ Ω(|C1|2−δ) = Ω(n2−δ
i).

• Second, for every v1, v2 both from Ai or both from Bi, we have v1 − v2 ∈ C1 \ {0}.
Thus, 〈τ(v1), τ(v2)〉 = q− ∆(v1, v2) ≤ q− ∆(C1) = K1 − 1 < (K2 − 1)/3.

• Third, for every a ∈ Ai and b ∈ Bi, we have a − b ∈ C2 \ {0}. Thus, ∆(a, b) ≥
∆(C2). Hence, 〈τ(a), τ(b)〉 = q − ∆(a, b) ≤ q − ∆(C2) = K2 − 1. Moreover, the
inequality is an equality if and only if ∆(a, b) = ∆(C2), i.e., (a, b) ∈ Ei as desired.

• Finally, observe that the dimension is q2 = (log ni)
O(1/δ).

Once again, the running time of the construction is O(|C1| · |C2| · q2) ≤ n4+o(1)
i .

5.3 Gadgets based on AG Codes

In this subsection, we construct gadgets based on algebraic geometric (AG) codes. The
definitions of AG Codes are well beyond the scope of this work and we refer the readers
to [Sti08, VNT07] for more thorough introductions.

23

Once again to find a good center, we need a bound on the number of minimum
weight codewords. On this front, we use the following bound10 from [Vlă18]. Through-
out this subsection, we follow the notations from [Vlă18].

Theorem 5.5 (Theorem 4.3 of [Vlă18]). Let q be a prime power, X be a curve of genus g over
Fq, let S ⊆ X(Fq) such that |S| = N, and let a ∈N with 1 ≤ a ≤ N− 1. Then, there exists an
Fq-positive divisor D ≥ 0, deg(D) = a, such that the corresponding AG Code C = C(X, D, S)
has minimum distance N − a and

AN−a(C) ≥
(N

a)

(
√

q + 1)2g .

We also need the following well-known (central) fact about the parameters of AG
codes.

Theorem 5.6. Let q be a prime power, X be a curve of genus g over Fq, let S ⊆ X(Fq) such
that |S| = N, and let a ∈ N with 1 ≤ a ≤ N − 1. Then, the corresponding AG Code
C = C(X, D, S) is a linear code over Fq with block length N, distance at least N − a and
message length k ≥ a− g + 1.

Recall also the tower of functions of Garcia and Stichtenoth [GS96], whose param-
eters approach the TVZ bound. We note here that, it suffices for us to have the genus
approaching Ω(N/

√
q) and there are also other curves that satisfy this.

Theorem 5.7 ([GS96]). For any ζ > 0 and any square of prime q, there exists a dense sequence11

(Ni)i∈N such that there exists a curve Xi with genus at most Ni√
q−1 + ζ where |Xi(Fq)| ≥ Ni.

Plugging the bound from [Vlă18] into the above family of curves immediately yields
the following:

Lemma 5.8. For any ζ > 0 and any square of prime q, there exists a dense sequence (Ni)i∈N

such that the following holds. For any i ∈N and any a1, a2 ∈N such that 1 ≤ a1 < a2 ≤ Ni −
1, there exists linear codes C1 ⊆ C2 ⊆ F

Ni
q such that the following holds, where gi =

Ni√
q−1 + ζ:

• C1 has message length at least a1 − gi + 1 and distance at least Ni − a1.

• C2 has message length at least a2 − gi + 1 and distance exactly Ni − a2 and

ANi−a2(C2) ≥
(Ni

a2
)

(
√

q + 1)2gi
. (3)

Moreover, the generator matrices of C1, C2 can be computed in O
(
(N+a2−1

a2
) · |C2| · poly(Ni)

)
time.

Proof. Let (Ni)i∈N be a dense sequence as in Theorem 5.7. From Theorem 5.5, there
exists an Fq-positive divisor D2 of degree a2 such that the corresponding code C2 =

10Note that most of the proof of this bound was from [ABV01]; [Vlă18] simply makes the bound more
explicit, which is more convenience for us.

11A sequence (Ni)i∈N of increasing positive integers is said to be dense if there exists a constant C ≥ 1
such that Ni+1 ≤ C · Ni for all i ∈N.

24

C(Xi, D2, Si) (where S ⊆ Xi(Fq) of size Ni) satisfies (3) and that its distance is Ni − a2;
from Theorem 5.6, its message length must also be at least a2 − gi + 1. Next, let D1 be
any Fq-positive divisor of degree a1 such that D2 − D1 ≥ 0. Let C1 = C(Xi, D1, Si) be
the corresponding AG code; once again, Theorem 5.6 yields the desired bounds on its
message length and distance. Finally, observe that D2 − D1 ≥ 0 implies that C1 ⊆ C2 as
desired.

The main bottleneck to algorithmically construct such codes lies in finding D2. Nev-
ertheless, the total number of degree-a2 Fq-positive divisor is only (Ni+a2−1

a2
). We can use

brute force to enumerate all of them and check whether the corresponding code satis-
fies (3), which further takes |C2| time. This results in the claimed running time.

Finally, we can now construct our gadgets, by an appropriate setting of parameters.
In particular, a1 and a2 will be selected to be close to each other and to both be slightly
larger than N/

√
q. This results in the graphs whose degrees are roughly square root of

the number of vertices.

Theorem 5.9. For every 0 < δ < 1, there exist µ > 0 and a log-dense sequence (ni)i∈N such
that, for every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where |Ai| = |Bi| = ni and
|Ei| ≥ Ω(n2−δ

i), such that (1 + µ)-cd(G) = O(log ni). Moreover, for all i ∈ N, a (β, 1 + µ)-
gap-realization τ : Ai∪̇Bi → {0, 1}O(log ni) of Gi can be constructed in time O(n3

i) for some
β = Θ(log ni).

Proof. Once again, the proof here is similar to those of Theorems 4.2 and 5.4, except that
we use the (pairs of) AG codes from Lemma 5.8 instead of Reed-Solomon codes.

Let q ≥ 49 be any sufficiently large square of prime and ζ > 0 be any sufficiently
small positive real number (both to be precisely specified later).

Let (Ni)i∈N be the sequence guarantee by Lemma 5.8. Let a1 = Ni ·
(

1
q0.5(1−δ) − 1

q

)
and a2 = Ni

q0.5(1−δ) . For convenience, we assume that a1 and a2 are integers12. Let C1, C2 be

the codes given by Lemma 5.8. The sequence (ni)i∈N is defined as ni = |C1|.
Applying Lemma 5.1 to (C1, C2) implies that there exists s ∈ C2 \ C1 such that

|B(s, ∆(C2)) ∩ C1|
|C1|

≥
A∆(C2)(C2)

|C2|

(From Lemma 5.8) ≥
(Ni

a2
)

(
√

q + 1)2gi · |C2|

(Singleton Bound) ≥
(Ni

a2
)

(
√

q + 1)2gi · qa2+1

≥ (Ni/a2)
a2

(
√

q + 1)2gi · qa2+1

=
q0.5(1−δ)a2

(
√

q + 1)2gi · qa2+1

=
1

(
√

q + 1)2gi · q(0.5+0.5δ)a2+1

12Note that, for sufficiently large Ni, one can take the ceilings (or floors) of the specified values to get
integers with negligible affect to the calculations.

25

=
1

q(0.5+0.5δ+o(1))a2

=
1

q(0.5+0.5δ+o(1))(a1+o(1))

=
1

|C1|(0.5+0.5δ+o(1))

≥ Ω(|C1|−0.5−0.5δ−o(1)) (4)

where o(1) terms above denote the terms that go to zero as q → ∞ and ζ → 0. As a
result, by picking q sufficiently large and ζ sufficiently small, the term in (4) is at least
Ω(|C1|−0.5−δ).

We construct the graph Gi = (Ai, Bi, Ei) and a realization τ as follows. Let Ai =
C1, Bi = {s + c | c ∈ C1} and Ei = {(a, b) ∈ Ai × Bi | ∆(a, b) = ∆(C2)}. Gi can be
easily realized by applying the mapping ψ : F

q
q → {0, 1}q2

from Proposition 3.12. More
precisely, let τ be the restriction of ψ on Ai ∪ Bi. Below we argue about the density of Gi

and that τ is a (2∆(C2), 1 + µ)-gap-realization of Gi where µ = ∆(C1)−1
∆(C2)

− 1. Note that

µ ≥ a2 − a1 − 1
Ni − a2

= Ω(1/q).

Let us now check that Gi and τ satisfy all the claimed properties:

• First, notice that |Ei| is exactly |C1| · |B(s, ∆(C2)) ∩ C1| ≥ Ω(|C1|1.5−δ) = Ω(n1.5−δ
i).

• For any v1 = ψ(c1), v2 = ψ(c2) both from Xi or both from Yi, we have c1 − c2 ∈
C1 \ {0}. Hence, ‖v1 − v2‖0 = 2 · ∆(v1, v2) ≥ 2 · ∆(C1) > (1 + µ) · (2∆(C2)).

• Next, for every a ∈ Ai and b ∈ Bi, we have a − b ∈ C2 \ {0}. Thus, ∆(a, b) ≥
∆(C2). Hence, ‖τ(a)− τ(b)‖0 = 2∆(a, b) ≥ 2∆(C2). Moreover, the inequality is an
equality if and only if ∆(a, b) = ∆(C2), i.e., (a, b) ∈ Ei as desired.

Given C1, C2, the running time of constructing (Xi, Yi) is O(|C1| · |C2| · q2) = O(n3
i). More-

over, the running time to construct C1 and C2, as given by Lemma 5.8, is

O
((

N + a2 − 1
a2

)
· |C2| · poly(Ni)

)
≤ O ((e(N + a2)/a2)

a2 · |C2| · poly(Ni))

≤ O ((2e
√

q)a2 · |C2| · poly(Ni))

≤ O (|C1| · |C2| · poly(Ni))

≤ O(n3
i),

where the last two inequalities are true for any sufficiently large q.

6 Inapproximability of Maximum Inner Product

In this section, we prove the hardness of approximating MIP. Once again, we show
a stronger version (than Theorem 1.6) where every point has Boolean coordinates, as
stated below.

26

Theorem 6.1. Assuming OVH, for every ε > 0, there is no algorithm running in O(n2−ε) time
for γ-MIP even for points in {0, 1}no(1)

, for any γ ≤ 2(log n)1−o(1)
.

The proof proceeds in two steps: first, we show hardness of approximating MIP in
low dimension but with a small (1 + o(1)) approximation factor. Second, we use tensor
product operation to amplify the gap to be almost polynomial, as stated in Theorem 6.1.
More specifically, in the first step, we prove the following:

Theorem 6.2. Assuming OVH, for every ε > 0, there exists sε > 0 such that no algorithm
running in O(n2−ε) time can solve

(
1 + 1

log log n

)
-MIP even for points in {0, 1}(log n)sε

.

Note that the factor 1
log log n is not significant, and this can be replaced by any o(1)

factor; we use this just to make the calculations more concrete. Before we move on to the
proof of Theorem 6.2, let us first show how it implies Theorem 6.1.

Proof of Theorem 6.1 from Theorem 6.2. Let (P, α) be an instance of
(

1 + 1
log log n

)
-MIP where

P ⊆ {0, 1}(log n)sε
. For t = log n

(log log n)2 , define P′ = {x⊗t | x ∈ P}, α′ = αt and γ =(
1 + 1

log log n

)t
= 2(log n)1−o(1)

. The dimension of points in P′ is (log n)sε·t = no(1). More-

over, it is easy to check, based on the identity
〈
x⊗t, y⊗t〉 = 〈x, y〉t, that (P′, α′) is a YES

(resp. no) instance of γ-MIP iff (P, α) is a YES (resp. NO) instance of
(

1 + 1
log log n

)
-MIP.

In other words, if there is an O(n2−ε) time algorithm for γ-MIP in no(1) dimension,
then there also exist an O(n2−ε) subquadratic time algorithm for

(
1 + 1

log log n

)
-MIP in

(log n)sε dimension. Thus, Theorem 6.1 follows from Theorem 6.2.

The rest of this section is devoted to proving Theorem 6.2. To do so, we consider the
gap-Additive-BMIP problem.

Definition 6.3 (γ-Additive-BMIP problem). Let γ ≥ 0. In the γ-Additive-BMIP problem we
are given two sets A, B each of n points in {0, 1}d and an integer α ∈ [d] as input, and the goal
is to distinguish between the following two cases.

• Completeness. There exists (a, b) ∈ A× B such that 〈a, b〉 ≥ α.

• Soundness. For every (a, b) ∈ A× B we have 〈a, b〉 < α− γ.

We need the below hardness result from [Rub18]. Note that the result is stated
differently in [Rub18]; for how the result in [Rub18] implies the one below, see Section
3.2 of [Che18a].

Theorem 6.4 ([Rub18]). Assuming OVH, for every ε > 0, there is no algorithm running in
O(n2−ε) time for the γ-Additive-BMIP problem, for any d = ω(log n) and γ = o(d).

Proof of Theorem 6.2. For any ε > 0, let Cexp be the constant such that the dimension of τ

in Theorem 5.4 is at most (log ni)
Cexp/ε for δ = ε/2. We define sε as 2 · Cexp/ε + 2.

Suppose contrapositively that there exists ε > 0 and an algorithm A that can solve(
1 + 1

log log n

)
-MIP of dimension (log n)sε in time n2−ε. We will construct an algorithmA′

27

that solves (log n)-Additive-BMIP in time n2−ε′ for some constant ε′ > 0 (to be specified
below) for d = (log n

√
log log n) dimensions. Together with Theorem 6.4, this implies

that OVH is false, as desired.

Let Cε denote the constant of the log-dense sequence from Theorem 5.4 for δ = ε/2,
and let ε′ be 0.01 · ε/Cε. The algorithmA′ on input (A, B, α) where A, B ⊆ {0, 1}d, α ∈ [d]
works as follows:

1. Let n′ be the largest number in the sequence from Theorem 5.4 with δ = ε/2 s.t.
n′ ≤ n0.1.

2. Let G′ = (A′∪̇B′, E′) be the graph from Theorem 5.4 with |A′| = |B′| = n′, |E′| ≥
Ω((n′)2−δ), and τ : A′∪̇B′ → {0, 1}(log n′)Cexp/ε

be a (β, 3)-gap-IP-relization of G′

where β ∈N.

3. We use the algorithm from Lemma 3.11 to find π1, . . . , πk where k = O((n′)δ log n′)
such that the union of EG′π1

, . . . , EG′πk
is EKn′ ,n′

4. We assume w.l.o.g. that n is divisible by n′. Partition A and B into A1, . . . , An/n′

and B1, . . . , Bn/n′ each of size n′. For each i, j ∈ [n/n′], t ∈ [k], do the following:

(a) Let τt be an appropriate permutation of τ that (β, 3)-gap-IP-realizes G′πt
.

(b) Let α′ = β · α + 3d · β, and define At
i , Bt

j as

At
i = {(1β⊗ a) ◦ (13d⊗ τt(a)) | a ∈ Ai}, Bt

j = {(1β⊗b) ◦ (13d⊗ τt(b)) | b ∈ Bj}.

(c) Run A on (At
i ∪̇Bt

j , α′). If A outputs YES, then output YES and terminate.

5. If none of the executions of A returns with YES, then output NO.

Observe that the bottleneck in the running time of the algorithm is in the execu-
tions of A. The number of executions is (n/n′)2 · k and each execution takes O((n′)2−ε)
time. Hence, in total the running time of the algorithm A′ is O((n/n′)2 · k · (n′)2−ε) ≤
O(n2 log n · (n′)−ε/2). Now, from the log-density of the sequence from Theorem 5.4, we
have n′ ≥ n0.1/Cε = n10ε′/ε. As a result, the running time ofA is at most O(n2−5ε′ log n) ≤
O(n2−ε′) as desired.

To see the correctness of the algorithm, first observe that the dimensions of vectors
in At

i , Bt
j are at most β · d + 3d · (log n′)Cexp/ε which is at most (log n)sε for any sufficiently

large n; that is, the calls toA are valid. Next, observe that, if (A, B, α) is a YES instance of
Additive-BMIP, there must be i, j ∈ [n/n′] and a∗ ∈ Ai, b∗ ∈ Bj such that 〈a∗, b∗〉 is at least
α. Since G′π1

, . . . , G′πk
covers Kn′,n′ , there must be t ∈ [k] such that 〈τt(a∗), τt(b∗)〉 ≥ β. As

a result,
〈
(1β ⊗ a∗) ◦ (13d ⊗ τt(a∗), (1β ⊗ b∗) ◦ (13d ⊗ τt(b∗))

〉
≥ β · α+ 3d · β = α′. Thus,

(At
i ∪ Bt

j , α′) is a YES instance for MIP and A′ outputs YES as desired.

Finally, let us assume that (A, B, α) is a NO instance of (log n)-Additive-BMIP. Con-
sider any i, j ∈ [n/n′] and t ∈ [k]. To argue that (At

i ∪ Bt
j , α′) is a NO instance for(

1 + 1
log log n′

)
-MIP, we have to show that any two points in At

i ∪ Bt
j have inner prod-

uct less than α′/
(

1 + 1
log log n′

)
. To see this, let us consider two cases.

28

1. The two points are either both from At
i or both from Bt

j . Assume w.l.o.g. that
the two points are from At

i ; let them be (1β ⊗ a) ◦ (13d ⊗ τt(a)) and (1β ⊗ a′) ◦
(13d ⊗ τt(a′)). Recall that, from Theorem 5.4, we must have 〈τt(a), τt(a′)〉 < β/3.
Moreover, since a, a′ ∈ {0, 1}d, we have 〈a, a′〉 ≤ d. Thus, we can conclude that〈

(1β ⊗ a) ◦ (13d ⊗ τt(a)), (1β ⊗ a′) ◦ (13d ⊗ τt(a′))
〉
< β · d + 3d · (β/3)

< (2/3) · α′,

which is less than α′/
(

1 + 1
log log n′

)
for any sufficiently large n.

2. One of the point is from At
i and the other from Bt

j . Let them be (1β ⊗ a) ◦ (13d ⊗
τt(a)) and (1β ⊗ b) ◦ (13d ⊗ τt(b)). Since (A, B, α) is a NO instance of (log n)-
Additive-BMIP, we must have 〈a, b〉 < α− log n. Furthermore, from Theorem 5.4,
we must have 〈τt(a), τt(b)〉 ≤ β. Combining the two implies that〈

(1β ⊗ a) ◦ (13d ⊗ τt(a)), (1β ⊗ b) ◦ (13d ⊗ τt(v))
〉
< β · (α− log n) + 3d · β
= α′ − β · (log n)

(Since α′ ≤ 4dβ) ≤ α′
(

1− 1
4
√

log log n

)

≤ α′
(

1− 1
log log n′

)
≤ α′/

(
1 +

1
log log n′

)
,

where the second-to-last inequality holds for any sufficiently large n.

Hence, (At
i ∪̇Bt

j , α′) must be a NO instance for
(

1 + 1
log log n′

)
-MIP for every t ∈ [k]

and i, j ∈ [n/n′]. Thus, A′ outputs NO as desired.

7 Inapproximability of Closest Pair

In this section, we prove the hardness of approximating CP (Theorem 1.5). As usual,
we reduce from the bichromatic version of the problem, and the lower bound for the
bichromatic version is stated below:

Theorem 7.1 (Rubinstein [Rub18]). Assuming OVH, for every ε > 0 there exists κ > 0
such that there is no algorithm running in n2−ε time for (1 + κ)-BCP in the Hamming metric.
Moreover, this holds even for instances (A, B, α) of (1 + κ)-BCP when d = Θε(log n), α =
Θε(log n) and A, B ⊆ {0, 1}d.

Again, we prove below the inapproximability of the gap-CP problem for Boolean
vectors. Clearly, this immediately implies Theorem 1.5.

Theorem 7.2. Assuming OVH, for every ε > 0, there exists θ > 0 and c > 0 such that there
is no algorithm running in n1.5−ε time for (1 + θ)-CP in the Hamming metric for point-set in
{0, 1}c·log n.

29

Proof. Assume towards a contradiction that there exists an ε > 0 and an algorithm A
that, for every θ > 0 solves (1+ θ)-CP of dimension c · log n in time O(n1.5−ε), where c :=
c(ε) is a constant that will be specified later. Let ε′ > 0 be a small constant (depending on
ε) that we will specify below and let κ = κ(ε′) be as in Theorem 7.1. We construct below
an algorithm A′ that solves (1 + κ)-BCP in time O(n2−ε′) for any instance (A, B, α) such
that A, B ⊆ {0, 1}O(log n) and α = Θ(log n). Together with Theorem 7.1, this implies that
OVH is false, as desired.

Let Cε denote the constant of the log-dense sequence from Theorem 5.9 for δ = ε/2,
and let ε′ be 0.01 · ε/Cε. Let µ be the constant from Theorem 5.9. Select θ > 0 be a
sufficiently small constant such that µ−θ

1+θ > θ
κ−θ .

The algorithm A′ on (A, B, α) where A, B ⊆ {0, 1}O(log n), α = Θ(log n) works as
follows:

1. Let n′ be the largest number in the sequence from Theorem 5.9 with δ = ε/2 s.t.
n′ ≤ n0.1.

2. Let G′ = (A′∪̇B′, E′) be the graph from Theorem 5.9 with |A′| = |B′| = n′, |E′| ≥
Ω((n′)1.5−δ), and τ : A′∪̇B′ → {0, 1}O(log n′) be a (β, 1 + µ)-gap-relization of G′

where β ∈N and β = Θ(log n′).

3. We use the algorithm from Lemma 3.11 to find π1, . . . , πk where k = O((n′)0.5+δ log n′)
such that the union of EG′π1

, . . . , EG′πk
is EKn′ ,n′

4. We assume w.l.o.g. that n is divisible by n′. Partition A and B into A1, . . . , An/n′

and B1, . . . , Bn/n′ each of size n′. For each i, j ∈ [n/n′], t ∈ [k], do the following:

(a) Let τt be an appropriate permutation of τ that (β, 1 + µ)-gap-realizes G′πt
.

(b) Pick r1, r2 such that

θ

κ − θ
· β

α
≤ r1

r2
≤ µ− θ

1 + θ
· β

α
. (5)

Notice that the upper and lower bounds are Θ(1) and they are also Θ(1) apart.
Hence, we can pick these r1, r2 so that r1, r2 = Θ(1).

(c) Let α′ = r1 · α + r2 · β and define At
i , Bt

j as

At
i = {(1r1 ⊗ a) ◦ (1r2 ⊗ τt(a)) | a ∈ Ai}, Bt

j = {(1r1 ⊗ b) ◦ (1r2 ⊗ τt(b)) | b ∈ Bj}.

(d) Run A on (At
i ∪ Bt

j , α′). If A outputs YES, then output YES and terminate.

5. If none of the executions of A returns with YES, then output NO.

Observe that the bottleneck in the running time of the algorithm is in the execu-
tions of A. The number of executions is (n/n′)2 · k and each execution takes O((n′)1.5−ε)
time. Hence, in total the running time of the algorithm A′ is O((n/n′)2 · k · (n′)1.5−ε) ≤
O(n2 log n · (n′)−ε/2). Now, from the log-density of the sequence from Theorem 5.9, we
have n′ ≥ n0.1/Cε = n10ε′/ε. As a result, the running time ofA is at most O(n2−5ε′ log n) ≤
O(n2−ε) as desired.

To see the correctness of the algorithm, first observe that the dimensions of vectors
in At

i , Bt
j are at most r1 · α + r2 · β which is O(log n′); that is, the calls to A are valid.

30

Next, observe that, if (A, B, α) is a YES instance of BCP, there must be i, j ∈ [n/n′] and
a∗ ∈ Ai, b∗ ∈ Bj such that ‖a∗ − b∗‖0 is at most α. Since G′π1

, . . . , G′πk
covers Kn′,n′ ,

there must be t ∈ [k] such that ‖τt(a∗)− τt(b∗)‖0 ≤ β. As a result, ‖((1r1 ⊗ a∗) ◦ (1r2 ⊗
τt(a∗))− ((1r1 ⊗ b∗) ◦ (1r2 ⊗ τt(b∗)))‖0 ≤ r1 · α + r2 · β = α′. Thus, (At

i ∪ Bt
j , α′) is a YES

instance for CP and A′ outputs YES as desired.

Finally, let us assume that (A, B, α) is a NO instance of (1 + κ)-BCP. Consider any
i, j ∈ [n/n′] and t ∈ [k]. To argue that (At

i ∪ Bt
j , α′) is a NO instance for (1 + θ)-CP, we

have to show that any two points in At
i ∪ Bt

j have distance more than α′. To see this, let
us consider two cases.

1. Both points are either from At
i or from Bt

j . Assume w.l.o.g. that they are from At
i ;

let them be (1r1 ⊗ a) ◦ (1r2 ⊗ τt(a)) and (1r1 ⊗ a′) ◦ (1r2 ⊗ τt(a′)). Recall that, from
the definition of X′t and Theorem 5.9, we must have ‖τt(a)− τt(a′)‖0 > (1 + µ) · β.
Thus, the Hamming distance between the two points is more than r2 · (1+ µ) · β ≥
(1 + θ) · α′, where the inequality comes from our choice of r1, r2.

2. One of the point is from At
i and the other from Bt

j . Let them be (1r1 ⊗ a) ◦ (1r2 ⊗
τt(a)) and (1r1 ⊗ b) ◦ (1r2 ⊗ τt(b)). Since (A, B, α) is a NO instance of (1 + κ)-BCP,
‖a − b‖0 > (1 + κ) · α. Moreover, from definition of τt, we must have ‖τt(a) −
τt(b)‖0 ≥ β. Combining the two implies that the distance between (1r1 ⊗ a) ◦ (1r2 ⊗
τt(a)) and (1r1 ⊗ b) ◦ (1r2 ⊗ τt(b)) is more than r1 · (1 + κ) · α + r2 · β ≥ (1 + θ) · α′,
where the inequality is once again from our choice of r1, r2.

Hence, (At
i ∪̇Bt

j , α′) must be a NO instance for (1 + θ)-CP for every t ∈ [k] and i, j ∈
[n/n′]. Thus, A′ outputs NO as desired.

8 Discussion and Open Questions

It remains open to completely resolve Open Questions 1.1 and 1.2. It is still possible that
our framework can be used to resolve these problems: we just need to construct gad-
gets with better parameters! In particular, to resolve Question 1.1, we have to improve
the dimension bound in Theorem 4.2 to Oδ(log ni). For Question 1.2, we just have to
improve the bound on the number of pairs in (3) of Theorem 5.9 to Ω(n2−δ

i). Following
our observation from Lemma 5.1, this motivates us to ask the following purely coding
theoretic question:

Open Question 8.1. For every 0 < δ < 1, are there linear codes C1 ⊆ C2 ⊆ FN
q both of block

length N over alphabet Fq such that the following holds:

• ∆(C1) ≥ (1 + f (δ)) · ∆(C2), for some f : (0, 1)→ (0, 1).

• |A∆(C2)(C2)|/|C2| ≥ |C1|−δ.

Apart from the aforementioned questions, Rubinstein [Rub18] pointed out an inter-
esting obstacle, aptly dubbed the “triangle inequality barrier”, to obtain fine-grained
lower bounds against 3-approximation algorithms for BCP (see Open Question 3 in
[Rub18]). In the case of CP, this barrier turns out to be against 2-approximation algo-
rithms as noted in [DKL18]. We reiterate this below as an open problem to be resolved:

31

Open Question 8.2. Can we show that assuming SETH, for some constant ε > 0, no algorithm
running in time n1+ε can solve 2-CP in any metric when the points are in ω(log n) dimensions?

Another interesting direction is to extend the hardness of MIP to the k-vector gener-
alization of the problem, called k-MIP. In k-MIP, we are given a set of n points P ⊆ Rd

and we would like to select k distinct points a1, . . . , ak ∈ P that maximizes

〈a1, . . . , ak〉 := ∑
j∈[d]

(a1)j · · · (ak)j.

It is known that the k-chromatic variant of k-MIP is hard to approximate (see Ap-
pendix B of [KLM18]) but this is not known to be true for k-MIP itself. Our approach
seems quite compatible to tackling this problem as well; in particular, if we can con-
struct a certain (natural) generalization of our gadget for MIP, then we would immedi-
ately arrive at the inapproximability of k-MIP even for {0, 1}-entries vectors. The issue
in constructing this gadget is that we are now concerned about agreements of more than
two vectors, which does not correspond to error-correcting codes anymore and some
additional tools are needed to argue for this more general case.

It should be noted that the hardness of approximating k-MIP for {0, 1}-entry vectors
is equivalent to the one-sided k-biclique problem [Lin15], in which a bipartite graph is
given and the goal is to select k vertices on the right that maximize the number of their
common neighbors. The equivalence can be easily seen by viewing the coordinates as
the left-hand-side vertices and the vectors as the right-hand-side vertices. The one-sided
k-biclique is shown to be W[1]-hard to approximate by Lin [Lin15] who also showed
a lower bound of nΩ(

√
k) for the problem assuming ETH. If the generalization of our

gadget for k-MIP works as intended, then this lower bound can be improved to nΩ(k)

under ETH and even nk−o(1) under SETH.

The one-sided k-biclique is closely related to the (two-sided) k-biclique problem,
where we are given a bipartite graph and we wish to decide whether it contains Kk,k as a
subgraph. The k-biclique problem was consider a major open problem in parameterized
complexity (see e.g., [DF13]) until it was shown by Lin to be W[1]-hard [Lin15]. Never-
theless, the running time lower bound known is still not tight: currently, the best lower
bound known for this problem is nΩ(

√
k) both for the exact version (under ETH) [Lin15]

and its approximate variant (under Gap-ETH) [CCK+17]. It remains an interesting open
question to close the gap between the above lower bounds and the trivial upper bound
of nO(k). Progresses on the one-sided k-biclique problem could lead to improved lower
bounds for k-biclique problem too, although several additional steps have to be taken
care of.

Acknowledgements

We are grateful to Madhu Sudan for extremely helpful and informative discussion about
AG codes; in particular, Madhu pointed us to [Vlă18]. We thank Bundit Laekhanukit
and Or Meir for general discussions, and the Simons Institute for their wonderful work-
space. Finally, we would like to thank Lijie Chen for sharing [CW19], and Orr Paradise
for useful comments on an earlier draft of this manuscript.

32

References

[ABV01] Alexei E. Ashikhmin, Alexander Barg, and Serge G. Vladut. Linear codes
with exponentially many light vectors. J. Comb. Theory, Ser. A, 96(2):396–399,
2001.

[AC09] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform
and approximate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009.
Preliminary version in STOC’06.

[ACW16] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial repre-
sentations of threshold functions and algorithmic applications. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 Oc-
tober 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 467–476,
2016.

[AESW91] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo
Welzl. Euclidean minimum spanning trees and bichromatic closest pairs.
Discrete & Computational Geometry, 6:407–422, 1991. Preliminary version in
SoCG’90.

[Alp10] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edi-
tion, 2010.

[ARW17a] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed PCP the-
orems for hardness of approximation in P. CoRR, abs/1706.06407, 2017.

[ARW17b] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed PCP the-
orems for hardness of approximation in P. In FOCS, pages 25–36, 2017.

[AW15] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming
nearest neighbors. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 136–150,
2015.

[Ben80] Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM,
23(4):214–229, 1980.

[Ben83] Michael Ben-Or. Lower bounds for algebraic computation trees (preliminary
report). In Proceedings of the 15th Annual ACM Symposium on Theory of Com-
puting, 25-27 April, 1983, Boston, Massachusetts, USA, pages 80–86, 1983.

[BGKM18] Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manu-
rangsi. Parameterized intractability of even set and shortest vector problem
from gap-eth. In ICALP, pages 17:1–17:15, 2018.

[BL05] Yonatan Bilu and Nathan Linial. Monotone maps, sphericity and bounded
second eigenvalue. J. Comb. Theory, Ser. B, 95(2):283–299, 2005.

[BS76] Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in multidi-
mensional space. In Proceedings of the 8th Annual ACM Symposium on Theory of
Computing, May 3-5, 1976, Hershey, Pennsylvania, USA, pages 220–230, 1976.

33

[CCK+17] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit,
Pasin Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-eth
to fpt-inapproximability: Clique, dominating set, and more. In FOCS, pages
743–754, 2017.

[Che18a] Lijie Chen. On the hardness of approximate and exact (bichromatic) maxi-
mum inner product. In 33rd Computational Complexity Conference, CCC 2018,
June 22-24, 2018, San Diego, CA, USA, pages 14:1–14:45, 2018.

[Che18b] Lijie Chen. Toward super-polynomial size lower bounds for depth-two
threshold circuits. CoRR, abs/1805.10698, 2018.

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality be-
tween clause width and clause density for SAT. In 21st Annual IEEE Confer-
ence on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech
Republic, pages 252–260, 2006.

[CL99] Edith Cohen and David D. Lewis. Approximating matrix multiplication for
pattern recognition tasks. J. Algorithms, 30(2):211–252, 1999.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition,
2009.

[CW12] Qi Cheng and Daqing Wan. A deterministic reduction for the gap minimum
distance problem. IEEE Trans. Information Theory, 58(11):6935–6941, 2012.

[CW19] Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors.
To appear in SODA, 2019.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[DKL18] Roee David, Karthik C. S., and Bundit Laekhanukit. On the complexity
of closest pair via polar-pair of point-sets. In 34th International Symposium
on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary,
pages 28:1–28:15, 2018.

[DMS03] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approxi-
mating the minimum distance of a linear code. IEEE Trans. Information The-
ory, 49(1):22–37, 2003.

[FM86] Peter Frankl and Hiroshi Maehara. Embedding the n-cube in lower dimen-
sions. Eur. J. Comb., 7(3):221–225, 1986.

[FM88] Peter Frankl and Hiroshi Maehara. On the contact dimensions of graphs.
Discrete & Computational Geometry, 3:89–96, 1988.

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC’14, Kobe,
Japan, July 23-25, 2014, pages 296–303, 2014.

[Gil52] E. N. Gilbert. A comparison of signalling alphabets. Bell System Technical
Journal, 31:504 – 522, 1952.

34

[GS96] Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behaviour of
some towers of function fields over finite fields. Journal of Number Theory,
61(2):248 – 273, 1996.

[GS16] Omer Gold and Micha Sharir. Dominance products and faster algorithms for
high-dimensional closest pair under $l \infty$. CoRR, abs/1605.08107, 2016.

[Hen06] Tomislav Hengl. Finding the right pixel size. Computers & Geosciences,
32(9):1283 – 1298, 2006.

[HNS88] Klaus H. Hinrichs, Jürg Nievergelt, and Peter Schorn. Plane-sweep solves
the closest pair problem elegantly. Inf. Process. Lett., 26(5):255–261, 1988.

[ILLP04] Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat. Closest pair
problems in very high dimensions. In Automata, Languages and Programming:
31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004.
Proceedings, pages 782–792, 2004.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26,
1998, pages 604–613, 1998.

[Ind00] Piotr Indyk. Dimensionality reduction techniques for proximity problems.
In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, January 9-11, 2000, San Francisco, CA, USA., pages 371–378, 2000.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J.
Comput. Syst. Sci., 62(2):367–375, 2001. Preliminary version in CCC’99.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which prob-
lems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–
530, 2001. Preliminary version in FOCS’98.

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz map-
pings into a hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[Kle97] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high di-
mensions. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 599–608, 1997.

[KLM18] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the param-
eterized complexity of approximating dominating set. In STOC, 2018. To
appear.

[KLN99] Drago Krznaric, Christos Levcopoulos, and Bengt J. Nilsson. Minimum
spanning trees in d dimensions. Nord. J. Comput., 6(4):446–461, 1999.

[KM95] Samir Khuller and Yossi Matias. A simple randomized sieve algorithm for
the closest-pair problem. Inf. Comput., 118(1):34–37, 1995.

[Kop13] Swastik Kopparty. Lecture 5: k-wise independent hashing and applications. Lec-
ture notes for Topics in Complexity Theory and Pseudorandomness. Rutgers
University, 2013.

35

[KT05] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[Lin15] Bingkai Lin. The parameterized complexity of k-biclique. In SODA, pages
605–615, 2015.

[Lue09] George S. Lueker. Improved bounds on the average length of longest com-
mon subsequences. J. ACM, 56(3):17:1–17:38, 2009.

[Mae85] Hiroshi Maehara. Contact patterns of equal nonoverlapping spheres. Graphs
and Combinatorics, 1(1):271–282, 1985.

[Mae91] Hiroshi Maehara. Dispersed points and geometric embedding of complete
bipartite graphs. Discrete & Computational Geometry, 6:57–67, 1991.

[Man89] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[McD89] Colin McDiarmid. On the method of bounded differences. London Mathemati-
cal Society Lecture Note Series. Surveys in Combinatorics: Invited Papers at
the Twelfth British Combinatorial Conference, Cambridge University Press,
1989.

[Mic14] Daniele Micciancio. Locally dense codes. In IEEE 29th Conference on Compu-
tational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages
90–97, 2014.

[MNP07] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality
sensitive hashing. SIAM J. Discrete Math., 21(4):930–935, 2007.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes.
North-Holland mathematical library: v. 16. Amsterdam ; New York : North-
Holland Pub. Co. ; New York : sole distributors for the U.S.A. and Canada,
Elsevier/North Holland, 1977., 1977.

[OWZ14] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-
sensitive hashing (except when q is tiny). TOCT, 6(1):5:1–5:13, 2014.

[Pac80] Janos Pach. Decomposition of multiple packing and covering. Diskrete Ge-
ometrie, 2 Kolloq. Math. Inst. Univ. Salzburg:169–178, 1980.

[PS85] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An In-
troduction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[Rab76] Michael O. Rabin. Probabilistic algorithms. In Proceedings of a Symposium
on New Directions and Recent Results in Algorithms and Complexity, Computer
Science Department, Carnegie-Mellon University, April 7-9, 1976, pages 21–39,
1976.

[Raz17] Ilya Razenshteyn. High-dimensional similarity search and sketching: Algo-
rithms and hardness. PhD Thesis, MIT, 2017.

[RRS89] Jan Reiterman, Vojtech Rödl, and Edita Sinajová. Embeddings of graphs in
euclidean spaces. Discrete & Computational Geometry, 4:349–364, 1989.

36

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathematics (SIAM),
8(2):300 – 304, 1960.

[Rub18] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1260–1268, 2018.

[SH75] Michael Ian Shamos and Dan Hoey. Closest-point problems. In 16th An-
nual Symposium on Foundations of Computer Science, Berkeley, California, USA,
October 13-15, 1975, pages 151–162, 1975.

[Sin64] Richard C. Singleton. Maximum distance q -nary codes. IEEE Trans. Informa-
tion Theory, 10(2):116–118, 1964.

[Sti08] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer Publishing
Company, Incorporated, 2nd edition, 2008.

[Val15] Gregory Valiant. Finding correlations in subquadratic time, with applica-
tions to learning parities and the closest pair problem. J. ACM, 62(2):13:1–
13:45, 2015.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes.
Dokl. Akad. Nauk SSSR, 117:739 – 741, 1957.

[Vlă18] Serge Vlăduţ. Lattices with exponentially large kissing numbers. arXiv
preprint arXiv:1802.00886, 2018.

[VNT07] Serge Vladut, Dmitry Nogin, and Michael Tsfasman. Algebraic Geometric
Codes: Basic Notions. American Mathematical Society, Boston, MA, USA,
2007.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.

[Wil18a] Ryan Williams. On the difference between closest, furthest, and orthogonal
pairs: Nearly-linear vs barely-subquadratic complexity. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, pages 1207–1215, 2018.

[Wil18b] Virginia Vassilevska Williams. On some fine-grained questions in algorithms
and complexity. In Proc. Int. Cong. of Math., volume 3, pages 3431–3472, 2018.

[WTFX07] Raymond Chi-Wing Wong, Yufei Tao, Ada Wai-Chee Fu, and Xiaokui Xiao.
On efficient spatial matching. In Proceedings of the 33rd International Confer-
ence on Very Large Data Bases, University of Vienna, Austria, September 23-27,
2007, pages 579–590, 2007.

[Yao91] Andrew Chi-Chih Yao. Lower bounds for algebraic computation trees with
integer inputs. SIAM J. Comput., 20(4):655–668, 1991. Preliminary version in
FOCS’89.

[Zah71] Charles T. Zahn. Graph-theoretical methods for detecting and describing
gestalt clusters. IEEE Trans. Computers, 20(1):68–86, 1971.

37

A Lower Bound on Gap Closest Pair in Edit Distance Metric

In this section we prove Theorem 1.7. The proof is almost identical to Rubinstein’s
[Rub18] proof for the OVH-hardness of gap-BCP in the edit distance metric and uses
the following technical tool established in [Rub18].

Lemma A.1 (Rubinstein [Rub18]). For large enough d ∈N, there is a function ζ : {0, 1}d →
{0, 1}d′ , where d′ = O(d log d), such that for all a, b ∈ {0, 1}d the following holds for some
constant λ > 0:

|ed(ζ(a), ζ(b))− λ · log d · ‖a− b‖0| = o(d′).

At a high level, ζ picks a random O(log d)-bit string si,x uniformly and indepen-
dently for every (i, x) ∈ [d] × {0, 1}, and for every vector u ∈ {0, 1}d, replaces the ith

coordinate ui by si,ui . The claims in the lemma statement follow by the known concen-
tration bounds on the edit distance of random strings [McD89, Lue09]. This construction
is further efficiently derandomized by using log log n-wise independent strings [Kop13].

Proof of Theorem 1.7. We show that if there exists an algorithmA running in time O(n1.5−ε)
for some ε > 0 that can solve (1 + δ)-CP in the edit distance metric for some δ > 0 over
point-sets in {0, 1}d′ , then A can be used to solve (1 + δ − o(1))-CP in the Hamming
metric in time O(n1.5−ε) over point-sets in {0, 1}d, where d′ = O(d log d). Together with
Theorem 7.2, this implies that OVH is false, as desired.

Let (P, α) be an instance of (1 + δ)-CP in the Hamming metric over point-sets in
{0, 1}d. It is clear13 from the proofs of Theorem 7.1 and Theorem 7.2 that α = Ω(d). We
now define an instance of (P′, α′ := (1 + o(1)) · λ log d · α) of (1 + δ − o(1))-CP in the
edit distance metric as follows. Recall the function ζ from Lemma A.1 and define the
set P′ = {ζ(p) | p ∈ P}. Notice that for every pair of distinct points p, q ∈ P, we have
|ed(ζ(p), ζ(q)) = λ · log d · ‖p− q‖0| = o(d′). In other words if we had a pair of distinct
points p, q in P such that ‖p− q‖0 ≤ α then, ed(ζ(p), ζ(q)) ≤ λ log d · α + o(d′) = (1 +
o(1)) · λ log d · α and suppose for all pairs of distinct points p, q ∈ P we had ‖p− q‖0 >
(1+ δ) · α then ed(ζ(p), ζ(q)) > λ log d · (1+ δ) · α− o(d′) > (1+ δ− o(1))λ log d · α, since
α = Ω(d). This completes the analysis of the completeness and soundness cases, and we
can conclude that running A on input (P′, α′) solves the instance (P, α) of (1 + δ)-CP in
the Hamming metric.

B Covering Biclique By Isomorphic Graphs: Proof of Lemma 3.11

Below we prove Lemma 3.11. The proof strategy is similar to how the greedy approxima-
tion algorithms for the set cover problem are analyzed: we show that at each step, we can
pick a graph isomorphic to G that covers at least |EG|/n2 fraction of the remaining edges
of the biclique. By doing so, we guarantee that the process ends in O(log n) · n2/|EG|
steps. Note however that, there are exponential number of isomorphisms and thus we
cannot simply enumerate all isomorphisms to find one that covers the desired fraction of
uncovered edges. Nevertheless, it is not hard to see that we can use the method of condi-
tional expectation to find one such isomorphism in polynomial time. This is formalized
below.

13In fact, one can design a 2α · n log n time algorithm for CP in the Hamming metric, and therefore to
assume OVH, we require α = Ω(d).

38

Lemma B.1. For any two bipartite graphs G = (A∪̇B, EG) and H = (A∪̇B, EH), there exists
a side-preserving permutation π : A∪̇B→ A∪̇B such that

|EH ∩ EGπ
| ≥ |EG| · |EH |

|A| · |B| .

Moreover, such a permutation π can be found (deterministically) in O((|A|+ |B|)4) time.

Proof. Notice that, if we pick π|A and π|B randomly among all permutations of A and
B respectively, then, for a fixed (a, b) ∈ EH, the probability that (a, b) belongs to EGπ

is
|EG |
|A|·|B| . Thus,

Eπ [|EH ∩ EGπ
|] = |EG| · |EH |

|A| · |B| .

This proves the existence part of the claim. To deterministically find such a π, we use the
method of conditional expectation. Suppose A∪̇B = {1, . . . , n}. The algorithm works as
follows:

1. Let Vassigned ← ∅.

2. For i = 1, . . . , n:

(a) If i ∈ A, let Vcandidate = A \ Vassigned. Otherwise, if i ∈ B, let Vcandidate =
B \Vassigned.

(b) For each k ∈ Vcandidate, compute the conditional expectation:

Eπ

|EH ∩ EGπ
|

∣∣∣∣∣∣π(i) = k ∧

i−1∧
j=1

π(j) = π∗(j)

 .

Let k∗ be the maximizer for the above conditional expectation. We set π∗(i) =
k∗.

3. Output π∗.

It is simple to see that the conditional expectation never decreases as we fill in the per-
mutation. As a result, we must have |EH ∩ EGπ

| ≥ |EG |·|EH |
|A|·|B| as desired. Moreover, it is

easy to see that the conditional expectation can be computed in time O(|A| · |B|) because,
for each edge (a, b) ∈ EH, we can compute the probability that (a, b) ∈ EGπ

in O(1) time.
As a result, the overall running time of the algorithm is O((|A|+ |B|)4).

Finally using Lemma B.1, we prove Lemma 3.11 using the strategy outlined earlier
in this section.

Proof of Lemma 3.11. We describe below an algorithm for finding π1, . . . , πk. It works as
follows.

1. Let k← 0.

2. While EH := EKn,n \ ∪
i∈[k]

EGπi
is non-empty, do the following:

39

(a) Let k← k + 1.

(b) Let H = (A∪̇B, EH).

(c) Use the algorithm from Lemma B.1 to find πk such that |EH ∩ EGπk
| ≥ |EH | ·

|EG |
n2 .

3. Output π1, . . . , πk.

It is obvious that the permutations are all side-preserving permutations and that the
union of EGπi

over i ∈ [k] is equal to EKn,n . To see that k ≤ 2n2 ln n
|EG | + 1, observe that due to

the guarantee of Lemma B.1, |EH | decreases by a multiplicative factor of (at most) (1−
|EG|/n2) ≤ e−|EG |/n2

for each permutation picked. Since the set EH remains non-empty
after k− 1 permutations are picked, we have e−(k−1)·|EG |/n2 · n2 ≥ 1, which implies that
k ≤ 2n2 ln n/|EG|+ 1 as desired. Finally, the bottleneck in the running time is Step 2c; we
execute this step k times and each execution takes O(n4) time. Thus, the total running
time is O(nk) = O(n6 log n).

40 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

