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Abstract

We construct a family of planar graphs (Gn : n ≥ 4), where Gn has n vertices including a
source vertex s and a sink vertex t, and edge weights that change linearly with a parameter λ
such that, as λ increases, the cost of the shortest path from s to t has nΩ(logn) break points.
This shows that lower bounds obtained earlier by Carstensen (1983) and Mulmuley & Shah
(2000) for general graphs also hold for planar graphs. A conjecture of Nikolova (2009) states
that the number of break points in n-vertex planar graphs is bounded by a polynomial in n;
our result refutes this conjecture.

Gusfield (1980) and Dean (2009) showed that the number of break points for an n-vertex
graph is nlogn+O(1) assuming linear edge weights; we show that if the edge weights are
allowed to vary as a polynomial of degree at most d, then the number of break points is

nlogn+O(α(n)d), where α(n) is the slowly growing inverse Ackermann function. This upper
bound arises from Davenport-Schinzel sequences.

1 Introduction

We consider the following parametric shortest path problem on graphs. The input is a directed
acyclic graph with two special vertices s and t. The edges have weights that vary linearly
with a real-valued parameter λ, that is, the weight of each edge e is a function of the form
we(λ) = meλ+ ce, for some real numbers me and ce. The cost (also referred to as length) of an
s-t path p is the sum of the weights of the edges on it; therefore this cost is also a linear function
of λ of the form wp(λ) = mpλ+ cp. The cost of the shortest s-t path is then given by

C(λ) = min
p
wp(λ),

where p ranges over all s-t paths; this function is the piece-wise linear lower envelope of the
linear costs provided by the s-t paths. The main object of our investigation is the number of break
points in this envelope, which is of interest in several applications; in particular, determining
this quantity for planar graphs has been a subject of several studies.

Let the parametric complexity of the shortest path problem, denoted by ϕ(n, b(n)), be the
maximum possible number of break points in C(λ) for a graph with n vertices, where the
coefficients in the weights of the edges is bounded by b(n). Let ϕpl(n, b(n)) be the complexity
when the graphs are restricted to be planar. Here is our main result.

Theorem 1 (Main result). ϕpl(n, (log n)3) = nΩ(logn).
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Before this work similar results were known for general graphs. Carstensen [Car83b] showed
that ϕ(n,∞) = nΩ(logn); her result was simplified and extended by Mulmuley & Shah [MS01],
who showed that ϕ(n, (log n)3) = nΩ(logn). Carstensen [Car83a] also presented a matching upper
bound argument, ϕ(n,∞) = nlogn+O(1), which she attributed to Dan Gusfield [Gus80] (a similar
argument, attributed to Brian Dean, was presented by Nikolova [Nik09, Page 86]). For planar
graphs, however, the complexity remained open [Nik09, Conjecture 6.1.6].

Conjecture 2 (Nikolova [Nik09]). ϕpl(n,∞) = nO(1).

Our main result provides a strong (with bit length O((log n)3)) refutation of this conjecture.

1.1 Significance of the main result

From their result, ϕ(n, (log n)3) = nΩ(logn), Mulmuley & Shah [MS01] derived a lower bound
on the running time of unbounded fan-in PRAMs with bit operations with a small number of
processors solving the shortest path problem. Theorem 1 allows us to make a similar claim for
planar graphs (see Appendix A for a discussion on this derivation).

Theorem 3. There exist constants α > 0 and ε > 0, and an explicitly described family of
weighted planar graphs {Gn} (Gn has n vertices, and the edge weights of Gn are O((log n)3) bits
long), such that for infinitely many n, every unbounded fan-in PRAM algorithm with at most nα

processors requires at least ε log n steps to compute the shortest s-t path in Gn.

Mulmuley & Shah observed that their result for the shortest path problem yields the same
lower bound for the Weighted Bipartite Matching Problem [MS01, Corollary 1.1]. Our result
extends this observation to planar graphs. Many graph problems are easier to solve for planar
graphs than their counterparts for general graphs; in particular, we note the NC algorithm for
counting perfect matchings based on the work of Kasteleyn [Kas67] and Csanky [Csa75], and its
remarkable recent application by Anari & Vazirani [AV18] to find perfect matchings in planar
graphs. It is interesting that the lower bound for the Weighted Bipartite Matching Problem
derived by Mulmuley & Shah continues to hold even when the input is restricted to be planar.

Parmetric shortest paths have been studied extensively in the optimization literature because
of their close connection with several other problems. We briefly mention four.

• Nikolova, Kelner, Brand & Mitzenmacher [NKBM06] consider a stochastic optimization
problem on graphs whose edge weights represent random Gaussian variables and where one
is required to determine the s-t path whose total cost is most likely to be below a specified
threshold (the deadline). They provide an nO(logn) time algorithm for the problem for
general graphs, and suggest that when restricted to planar graphs their algorithm might
run in polynomial time because the number of extreme points of the shadow dominant (a
notion closely related to parametric shortest path complexity) is likely to be polynomially
(perhaps even linearly) bounded. Our result unfortunately belies this hope.

• Correa, Harks, Kreuzen & Matuschke [CHKM17] study the problem of fare evasion in
transit networks, and consider strategies based on random checks for the service providers,
and the response of the users to such strategies. For one of the problems, referred to
as the non-adaptive followers’ minimization problem, they devise an algorithm based on
the parametric shortest path problem, and point out that their algorithm would run in
polynomial time on planar graphs if Nikolova’s conjecture were to hold.

• Erickson [Eri10] reformulates an O(n log n) time algorithm of Borradaile & Klein [BK09]
for max-flows in planar graph by considering a parametric shortest paths tree (see Karp &
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Orlin [KO81]) in the dual graph, and showing that the tree can undergo only a limited
number of changes. Erickson also points out that a similar approach for max-flows in
graphs drawn on a torus fails to yield a similar efficient algorithm because the tree might
undergo Ω(n2) changes.

• Chakraborty, Fischer, Lachish & Yuster [CFLY10] provide two-phase algorithms for the
parametric shortest path problem, where the first stage does preprocessing after which an
advice is stored in memory so that the algorithm can answer queries efficiently thereafter.
A natural application for such an algorithm is traffic networks. Since traffic networks tend
to be planar, a good upper bound on the parametric complexity of planar graphs would
have allowed for substantial savings in space.

Remark 1. Our construction yields a planar graph where s and t lie on the same face when the
graph is drawn on a plane. By appealing to the planar dual of our graph, we conclude that the
parametric complexity of the (s, t)-cut problem is also nΩ(logn).
Remark 2. Our construction yields a directed graph, but with a slight modification (by increasing
all edge costs uniformly), we obtain an undirected graph with the same number of break points.
Thus our result holds for undirected planar graphs as well.

1.2 Previous approaches and our approach

It is worthwhile to examine earlier approaches towards solving Nikolova’s conjecture Conjecture 2,
and why our approach succeeded where earlier attempts failed.

Previous approaches: We refer to two earlier efforts in resolving this conjecture. In her
PhD thesis, Nikolova [Nik09] considers embeddings of the planar graph in a plane, and shows
that the edges can always be assigned weights in such a way that the number of break points
is at least the number of faces in the embedding. Note, however, that the number of break
points in the n-vertex planar graphs constructed using this approach is at most 2n. We are
aware of only one work that establishes a better upper bound for a family of planar graphs:
Correa et al. [CHKM17] observe that for series parallel graphs, Nikolova’s conjecture is true; the
parametric complexity of series parallel graphs is in fact linear in n.

Our approach: It is instructive1 to briefly review the upper bound arguments of Gusfield
and Dean with the hope of tightening them in the setting of planar graphs. Let G(n,m) denote
a directed acyclic graph G with vertices s and t that has m layers of n vertices each in between
s and t. Fix a numbering of the vertices (1, 2, , . . . , n) in each layer. These arguments are based
on the following observations. Let us assume that the shortest s-t path is constructed in such
a way that starting from s we always move to the neighbour with the shortest distance to t,
choosing the neighbour having the smallest number when there is a tie. Let (p1, p2, . . . , pT )
be the sequence of shortest paths corresponding to the lower envelope, where each path pi is
constructed in this fashion. This sequence of paths has the following alternation-free property
(called expiration property by Nikolova [Nik09]). For a path p, and vertices u and v that appear
on it in that order, let p[u : v] be the subpath of p that connects u to v.

Proposition 4 (alternation-free property, expiration property). Suppose vertices u and v both
appear on the three paths pi, pj and pk in the sequence (p1, p2, . . . , pT ), where i < j < k.
Furthermore, suppose q = pi[u : v] = pk[u : v]. Then, pj [u : v] = q.

1As perhaps many others did before us, we initially believed that Nikolova’s conjecture was true and tried to
prove it.
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The length of the longest sequence of alternation-free paths is an upper bound on ϕpl(n,∞).
Let f(n,m) be the length of the longest sequence of alternation-free paths in the layered graph
G[n,m]2; let fpl(n,m) be the length of the longest sequence of alternation-free paths in any planar
subgraph of G[n,m] (with vertices s and t included). Using the alternation-free property one
observes f(n, 1) = n and f(n, 2k − 1) ≤ 2nf(n, 2k−1 − 1), which yields f(n, 2k − 1) ≤ 1

2(2n)k−1,

implying ϕ(n,∞) = nO(logn). The graphs with high parametric shortest path complexity
constructed by Carstensen [Car83b] and Mulumuley & Shah [MS01] imply that f(n, n) ≥ nδ logn

(for some δ > 0). In Subsection 2.1, we present a construction that shows that f(n, 2k) ≥ nk.
Thus, we have nk ≤ f(n, 2k) ≤ 1

2(2n)k. More crucially, this construction when adapted to planar
graphs yields the following.

Theorem 5. fpl(n, (n− 1)2k) ≥ nk.

In Subsection 2.3, we present this construction in detail. This shows that the alternation-free
property itself is insufficient to obtain significantly better upper bounds on ϕpl(n,∞). While
this construction provides some evidence against Nikolova’s conjecture, it does not immediately
refute it. There exist examples of alternation-free sequences of paths in planar graphs that do
not arise as parametric shortest paths. For example, Kuchlbauer [Kuc18, Example 3.11] presents
a planar (grid) graph that admits an infeasible alternation-free sequence with 10 paths; that
is, no assignment of linear functions to the edges can realize this sequence of paths as shortest
paths.

Our refutation of Nikolova’s conjecture is based on the construction of Mulmuley &
Shah [MS01]. The Mulmuley-Shah construction uses an intricate inductive argument involving
the composition of dense bipartite graphs. These bipartite graphs contain large complete bipar-
tite graphs, and are therefore highly non-planar. We show that, nevertheless, these non-planar
bipartite graphs can be simulated by a planar gadget, where each edge is replaced by a path
with up to n2 edges and the original weight is carefully distributed between them. For this we
introduce two ideas. First, staying with the original non-planar construction, we modify the edge
weights so that they vary in a structured way. Second, we imagine that the original bipartite
graph is drawn on a plane by connecting dots using straight lines, a new vertex arising whenever
two straight lines intersect. This results in several new vertices, and spurious paths that don’t
correspond to any edge of the original bipartite graph. However, the costs of the new edges are
so assigned that these spurious paths have much higher costs than the direct path corresponding
to the edge in the original bipartite graph. We devote Subsection 4.1 to the construction of this
gadget.

The main technique in our construction goes back to Carstensen’s work. Our planarization is
straightforward in hindsight. The reasons this was not observed before are perhaps the following:
(i) the earlier recursive constructions even for general graphs are complicated and not easy
to take apart and examine closely (in particular, the Mulmuley-Shah paper is rather cryptic
and has errors that throw the reader off); (ii) simple methods of constructing planar graphs
with many break points tend to navigate around regions in the planar drawing one at a time,
somehow (mis)leading one to believe that the limited number of planar regions ought to impose
a polynomial upper bound on the number of break points.

2 Alternation-free paths in graphs

In this section, we outline the construction of a planar graph with a large number of alternation-
free paths. Note that this graph is similar to (and inspired by) earlier examples of graphs

2G[n,m] has m layers with n vertices in each layer.
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with alternation-free paths [Car83b, MS01]. For this, we introduce a concept of alternation-free
sequences of words (in the case of planar graphs, these words will be binary strings), where each
word corresponds to a path. It so turns out that these words, when arranged in the standard
lexicographic order, correspond to a sequence of alternation-free paths.

2.1 Alternation-free paths and alternation-free sequences

We first present a version of alternation-free paths for non-planar graphs, and then refine it to
obtain another for a related planar graph. Consider a graph G[n,m] with vertex set

V = {(i, j) : i = 0, 1, . . . , n− 1, and j = 0, 1, . . . ,m− 1} ∪ {s, t}.

We partition V \ {s, t} into layers L0, L1, . . . , Lm−1 of n vertices each, where the j-th layer is

Lj = {(i, j) : i = 0, 1, . . . , n− 1}.

There are edges from vertex s to all vertices in L0, and from all vertices in Lm−1 to t. The
remaining edges connect vertices in one layer to the vertices in the next. We will have two
version of the graph: a non-planar version and a planar version. Let Zn = {0, 1, . . . , n− 1}. In
the non-planar version, we add all edges from a layer to the next. We refer to the resulting
graph as Gnpl[n,m]:

E(Gnpl) = ({u} × L0) ∪ (L0 × L1) ∪ (L1 × L2) ∪ · · · ∪ (Lm−2 × Lm−1) ∪ (Lm−1 × {v}).

Thus Lj−1 ∪Lj is a complete bipartite graph for j = 1, 2, . . . ,m− 1 in Gnpl[n,m]. In the planar
version, we connect a vertex in layer j to two vertices in layer j + 1. We refer to the resulting
graph as Gpl[n,m]:

E(Gpl) = {((i, j), (i+ b mod n, j + 1) : b ∈ {0, 1},
i = 0, 1, . . . , n− 1, and j = 0, 1, . . . ,m− 2}.

One can imagine that Gpl is drawn on the surface of a cylinder instead of the surface of a plane (the
(n− 1)-th vertex in layer Lj−1 goes around the surface of the cylinder to the 0-th vertex in layer
Lj). In Gnpl, we may encode s-t paths by words in Zmn : the word σ = (σ0, σ1, . . . , σm−1) ∈ Zmn
corresponds to the path

pσ = (s, (i0, 0), (i1, 1), . . . , (im−1,m− 1), t),

where i0 = σ0, and ij+1 = ij + σj+1 mod n, for j = 0, 1, . . . ,m− 2. Similarly, we associate words
τ ∈ {0, 1}m with paths pτ in Gpl. We define alternation-free sequences of words, and observe
that the corresponding paths are alternation-free. By showing long alternation-free sequences of
words, we establish the existence of long alternation-free sequences of paths.

Definition 6 (Word). Let Zn denote the set {0, 1, 2, . . . , n − 1} where addition is performed
modulo n. Let Zmn denote the set of words over Zn of length m. For a word σ ∈ Zmn and
i ∈ {0, 1, . . . ,m − 1}, let σ[i] denote the i-th element of σ; let σ[i : j] denote the subword
(σ[i], σ[i + 1], . . . , σ[j − 1]). For σ ∈ Zkn, let |σ|1 denote the sum (in Zn) of its elements. that
is, |σ|1 =

∑k−1
i=0 σ[i] mod n. Given a word σ ∈ Zmn and j ∈ Zn, let σ ↓ j be the word µ ∈ Z2m

n

obtained from σ by inserting j after each symbol of σ. That is, if µ = σ ↓ j, then µ[2i] = σ[i]
and µ[2i+ 1] = j, for i = 0, 1, . . . ,m− 1. Let S ∈ (Zmn )` be an alternation-free sequence of words,
and S ↓ j = (σ ↓ j : σ ∈ S) be the sequence obtained after performing such an insertion on every
word of S. ♦
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For instance, if σ = (7 2 6 2), then σ ↓ 3 = (7 3 2 3 6 3 2 3).

Definition 7 (Alternation-free sequence of words). Let S be sequence of ` words from Zmn , that
is, S ⊆ (Zmn )`. We say that S has an alternation at (a, b, c) between (u, v), where 0 ≤ a < b <
c ≤ `− 1 and 0 ≤ u < v ≤ m, if

• |σa[0 : u]|1 = |σb[0 : u]|1 = |σc[0 : u]|1;

• v = m or (|σa[0 : v]|1 = |σb[0 : v]|1 = |σc[0 : v]|1);

• σa[u : v] = σc[u : v] 6= σb[u : v].

Note that in any such alternation we must have either v = m or v − u ≥ 2. If S has no
alternation, we say it is alternation-free. ♦

Proposition 8 (Paths from sequences). If S = (σi : i = 0, 1, . . . , `−1) ∈ (Zmn )` is an alternation-
free sequence of words, then (pσi : i = 0, 1, . . . , `− 1) is an alternation-free sequence of paths in

Gnpl
m . Similarly, if T = (τi : i = 0, 1, . . . , `− 1) ∈ ({0, 1}m)` is an alternation-free sequence of

words, then (pτi : i = 0, 1, . . . , `− 1) is an alternation-free sequence of paths in Gpl
m.

Proof. Straightforward. Note that the special case v = m in the second condition of Definition 7
is used to verify that there is no alternation between pairs of the form (u,m).

Thus, we can now focus on creating alternation-free sequences of words.

2.2 Construction of alternation-free sequences of words

In this section, we will construct two alternation-free sequences X and X̂ (each of size n`) over
Zn and {0, 1} respectively. Let us first describe X. The i-th word (i = 0, 1, . . . , n` − 1) of X is
given by X[i] = (b0) ↓ b1 ↓ · · · ↓ b`−1, where (i)n =

∑`−1
j=0 bjn

j is the base n representation of
i. For example, suppose n = 4 and i = 114. Then X[114] = (2) ↓ 0 ↓ 3 ↓ 1 = (2 1 3 1 0 1 3 1)
because 114 is equal to 1302 in base 4.

Binary alternation-free sequences can be viewed as a composition of words over Zn, where we
map i ∈ Zn to the binary word ı̂ = 1i0n−1−i ∈ {0, 1}n−1. Thus X̂[i] is constructed exactly like
X[i], but it is represented differently (as a binary word of length (n− 1)2`−1 bits). Considering
the same example as in the previous paragraph, X̂[114] = (110 100 111 100 000 100 111 100).
Now we will show that X and X̂ are alternation-free.

Lemma 9. Suppose S ∈ (Zmn )` is an alternation-free sequence of ` words in Zmn . Then,

(a) S ↓ j is an alternation-free sequence of ` words in Z2m
n ;

(b) T = (S ↓ 0) ◦ (S ↓ 1) ◦ · · · ◦ (S ↓ (n− 1)) is an alternation-free sequence of n` words, where
each word is in Z2m

n .

Proof. For part (a), note that if S ↓ j has an alternation at (a, b, c) (0 ≤ a < b < c ≤
` − 1) between (s, t) (0 ≤ s < t ≤ 2m), then S itself has an alternation at (a, b, c), between
(ds/2e , dt/2e). Since S is alternation-free, so is S ↓ j.

For part (b), we use part (a). Suppose T has an alternation at (a, b, c) (0 ≤ a < b < c ≤ n`)
between (s, t) (0 ≤ s < t ≤ 2m). If σa and σc have the same symbol in their odd positions then
σa, σb and σc all come from a common segment of T of the form S ↓ j. By part (a), the sequence
S ↓ j is alternation-free. So T has no alternation at (a, b, c) between (s, t).

On the other hand, suppose σa and σc have different symbols in their odd positions. Since
σa[t − 1] = σc[t − 1], we conclude that t is odd. In particular, t 6= 2m and thus t − s ≥ 2 (as
observed above). This means that the interval {s, s + 1, . . . , t − 1} includes an odd number.
Hence σa[s : t] 6= σc[s : t], and there is no alternation at (a, b, c) between (s, t).
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Theorem 10. For all ` ≥ 1, there is an alternation-free sequence T of n` words in Z2`
n .

Proof. We will use Lemma 9 and induction on `. For ` = 1, the alternation-free sequence is
simply T = (0, 1, 2, . . . , n− 1), which we think of as a sequence of n words, where each word has

one symbol. Suppose ` > 1. Let S be sequence of n` words in Z2`−1

n . Consider the sequence

T = (S ↓ 0) ◦ (S ↓ 1) ◦ · · · ◦ (S ↓ (n− 1)).

By Lemma 9, T is an alternation-free sequence of n · n` = n`+1 words in Z2·2`−1

n = Z2`
n .

Note that T is equal to the X that we had described earlier.

2.3 Construction of alternation-free sequences of binary words

Consider the following unary encoding, where we map i ∈ Zn to the binary word ı̂ = 1i0n−1−i ∈
{0, 1}n−1. Let Ẑn = {0̂, 1̂, . . . , n̂− 1}. Thus, words in Ẑmn over this alphabet consist of m
symbols, each of which is a binary word of n− 1 bits. We view such a word as a binary string of
length m(n− 1) by concatenating the m symbols. Now we will show that the resulting sequence
of binary strings is alternation-free.

Lemma 11. Suppose Ŝ ∈ (Ẑmn )` is alternation-free sequence of ` binary words of length m(n−1)
each. Then,

(a) Ŝ ↓ ̂ is an alternation-free sequence of ` words in {0, 1}2m(n−1);

(b) T̂ = (Ŝ ↓ 0̂) ◦ (Ŝ ↓ 1̂) ◦ · · · ◦ (Ŝ ↓ n̂− 1) is an alternation-free sequence of n` words in
{0, 1}2m(n−1).

Proof. Consider Ŝ ↓ ̂. A word in this sequence consists of blocks of n − 1 symbols, where
each block can be thought of as an element of Ẑn. In particular, the odd numbered blocks all
contain the word ̂. Since the symbols from these odd blocks make the same contribution to
the prefix sums of all words, we can suppress them and conclude that Ŝ ↓ ̂ is alternation-free
because Ŝ is known to be alternation-free. We now make this idea more precise. Suppose
Ŝ ↓ ̂ = (σi : i = 0, 1, . . . , `− 1) has an alternation at (a, b, c) (0 ≤ a < b < c ≤ `− 1) between
(s, t) (0 ≤ s < t ≤ 2m(n− 1)). Suppose t = 2m(n− 1), that is, it points to the end of the word.
Then s cannot be a location in the last block, for the entire block is identical in all words in
Ŝ ↓ ̂. Suppose s = q(n− 1) + r, where r = s mod n− 1 and q < 2m− 1. We conclude that S
has an alternation at (a, b, c) between (dq/2e (n− 1) + r,m(n− 1)), contradicting our assumption
that S is alternation-free. So we may assume that t < 2m(n − 1). We may also assume that
(s, t) has been chosen so that t − s is minimal. This implies that σa[s] = σc[s] 6= σb[s], and
similarly that σa[t− 1] = σc[t− 1] 6= σb[t− 1]. In particular, both s and t− 1 are indices into
even numbered blocks. Suppose s = q(n − 1) + r, t = q′(n − 1) + r′, where r = s mod n− 1
and r′ = t mod n− 1. Then, q and q′ are even. We conclude that Ŝ has an alternation at
(a, b, c) between ((q/2)(n − 1) + r, (q′/2)(n − 1) + r′), contradicting our assumption that Ŝ is
alternation-free. This establishes part (a).

For part (b), suppose T̂ has an alternation at (a, b, c) (0 ≤ a < b < c ≤ n`− 1) between (s, t)
(0 ≤ s < t ≤ 2m(n− 1)); assume that (s, t) has been chosen so that t− s is minimal. Now T̂
consists of subsequences of words of the form Ŝ ↓ ̂. We have two cases. First, suppose σa, σb
and σc come from the same subsequence of the form Ŝ ↓ ̂. Then, part (a) gives us the necessary
contradiction. So we may assume that the odd numbered blocks of σa and σc are different. Note
that the contents of the odd numbered blocks are monotonically non-decreasing in Ẑn, so if
there is a full odd numbered block in the range {s, s+ 1, . . . , t− 1}, then σa[s : t] 6= σc[s : t], and
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there can be no alternation. So we may assume that there is no full odd numbered in the range
{s, s+ 1, . . . , t− 1}. To complete the proof, we now use two crucial facts about our encoding.

First, in the sequence of words (0̂, 1̂, . . . , n̂− 1), the bit at any position starts at 0 and flips to 1,
never to return to 0 again. This implies that, in fact, both s and t− 1 lie within the same even
numbered block. Second, our encoding has the property that if for two words ̂1, ̂2 ∈ Ẑn, we have
|̂1[u : v]|1 = |̂2[u : v]|1, then ̂1[u : v] = ̂2[u : v]. This implies that σa[s : t] = σb[s : t] = σc[s : t];
so there is no alternation. This establishes part (b).

Note that T̂ is equal to the X̂ that we had described earlier.

3 Upper bound for polynomial edge weights

In this section, we will show that even if the edge weights are allowed to be polynomials of
degree d in the parameter λ, the upper bound is not significantly higher than that for d = 1.
Let ϕd(n, b(n)) be the maximum possible number number of break points in C(λ) for an n-
vertex graph when the edge weights are polynomials of degree at most d in a parameter λ with
coefficients bounded by b(n).

Theorem 12. For all fixed d, we have ϕd(n,∞) = nlogn+O(α(n)d), where α(n) is the extremely
slow growing inverse Ackermann function.

Proof. We adapt to our setting an argument due to Dean (see Nikolova [Nik09, Page 86]). Let
f(n,m) be the maximum length of a sequence of shortest paths, when the paths are restricted
to have at most m edges. Let m = 2k, and fix a sequence σ of paths. Let p be a path in
σ. We may fix a vertex v in p such that v is the middle vertex of the path p. That is, p has
at most 2k−1 edges from s to v and at most 2k−1 edges from v to t. Then, the number of
such paths in σ that pass through v is at most 2f(n, 2k−1). Accounting for all v, we obtain
that there are at most 2nf(n, 2k−1) distinct paths in the sequence σ. Since the costs of these
paths are polynomials of degree at most d in λ, two paths can alternate at most d + 1 times
(two distinct degree d polynomials cannot intersect each other in more than d points). That
is, σ is a Davenport-Schinzel sequence of order d with an alphabet of size N ≤ 2nf(n, 2k−1).
Bounds known for Davenport-Schinzel sequences (see Matoušek [Mat02, Page 173]) imply that

the maximum length of a sequence of shortest paths is at most N2α(N)d (for all large N).
Since N ≤ nn (a coarse upper bound on the total number of paths in any n-vertex graph), we

have 2α(N)d � 2(2α(n))d . Thus, f(n, 2k) ≤ N · 2α(N)d ≤ 2nf(n, 2k−1) · 2(2α(n))d , which yields

f(n, 2k) ≤ (2n)k2k(2α(n))d . Our theorem follows from this by taking k = dlog ne.

4 The planar construction

In this section, we construct a planar gadget which will be used to construct planar graphs with
high shortest path complexity. Our construction closely follows the construction of Mulmuley
& Shah [MS01], which in turn was based on the construction of Carstensen [Car83b]. These
earlier constructions proceed by induction, wherein each level of induction increases the number
of vertices by a constant factor and the number of breakpoints in the lower envelope by a factor
n. After m steps of induction, we obtain a graph Gm,n with poly(n) · exp(m) vertices and nm

paths. Figure 2 depicts how the graph Gm,n is put together from two copies of Gm−1,n and one
copy of the form Gm−1,2n−1. The edge weights in the constituent graphs are carefully chosen,
but are not important to our top-level view. The only new component added in this level of
recursion is the part labelled LINK.
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Figure 1: The LINK gadget L(B,n) for B = 4, n = 3 and its planarization

Our first observation is that the edge weights used by Mulmuley & Shah in LINK can be
modified so that they have a regular form. Our second observation is that with the modified
edge weights, LINK, which is a dense bipartite graph, can be simulated by a planar gadget.

In the following sections, we provide detailed justification for the two contributions outlined
above. In Section 5, we show that the new edge weights in LINK also result in a large number of
break points. In Subsection 4.1, we show that the non-planar graph Gnpl can be simulated by a
suitable weighted planar graph; this step, which is at the core of our contribution, has a simple
implementation with an appealing proof of correctness.

4.1 The linking gadget

A linking gadget L(B,n) is a bipartite graph G(U, V,E, (we : e ∈ E)) with U = {0, 1, . . . , B−1},
V = {0, 1, . . . , B + n− 1}, E = {(b, b+ r) : b ∈ U, r = 0, 1, . . . , n}. In this graph the cost of the
shortest path from vertex b to vertex j is precisely w(b,j) (we often write wb,j instead). We would

like to obtain a directed planar simulation of this behaviour. Let Gpl be the directed graph drawn
on a planar strip in R2 given by [0, 1]× [0, 2n− 2]; the vertices of Gpl include the sets of points
{0} × U and {1} × V ; the rest of the graph is obtained as follows. We draw the line segments
`(b,j) joining (0, b) to (1, j) whenever (b, j) ∈ E(G), and include all intersection points of such

segments in the vertex set of Gpl (see Figure 1). The edge (u, v) is in Gpl if v immediately follows
u on some line segment `e. The edge weight we of the edge e ∈ E(G) is distributed uniformly
among the various edges of Gpl that arise out of e. Suppose the vertices u = (ux, uy) and
v = (vx, vy) appear consecutively on `e (note vx > ux, vy ≥ uy); then wu,v = we · (vx − ux). This
completes the description of the weighted planarization Gpl of G. The locations of the vertices in
this special planar embedding of Gpl are not essential for our construction. However, one feature
of this embedding is useful in our proof. A vertex is placed at a point of intersection of two lines
of the form Y = m1X + c1 and Y = m2X + c2; so its x-coordinate, namely (c2 − c1)/(m1 −m2)
can be written as a fraction with denominator at most n. Thus the horizontal distance traversed
by an edge ((x1, y1), (x2, y2)) of Gpl (that is, x2− x1), can be written as a non-zero fraction with
denominator at most n2. We use this observation in Claim 15 below.

Definition 13. We say that Gpl faithfully simulates G if for all (b, j) ∈ U × V :

(i) if b ≤ j ≤ b+ n, the edges arising from the line segment (0, b) to (1, j) form the unique
shortest path from (0, b) to (1, j) in Gpl,

(ii) if b ≤ j ≤ b+ n, the cost of the shortest path from (0, b) to (1, j) in Gpl is precisely wb,j,
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and the cost of every other path from (0, b) to (1, j) is at least wb,j + 1,

(iii) if j < b or j > b+ n, then there is no path from (0, b) to (1, j) in Gpl.

In spirit, this definition says that paths in Gpl should behave like edges in G. ♦

Lemma 14. Suppose J : E(G)→ Z, and K and L are constants such that

K ≥ n2

(
1 + 2 max

e∈E(G)
|J(e)|

)
.

Consider a graph G(U, V,E,w) of the form described above with edge weights

wb,b+r = J(b, b+ r) +K

(
r(r + 1)

2

)
+ Lrλ, where 0 ≤ b ≤ B − 1 and 0 ≤ r ≤ n.

Then Gpl faithfully simulates G.

Proof. Consider vertices b ∈ U and j ∈ V such that b ≤ j ≤ b+ n. Consider the path P in Gpl

that takes edges along the line segment `(b,j). This path has cost wb,j . We will show that all
other paths from (0, b) to (1, j) have strictly greater cost. Let r = j − b be the slope of the line
segment `(b,j). Suppose Q is another path in Gpl from (0, b) to (1, j). We make the following
claim.

Claim 15. C(Q)− C(P ) ≥ n−2K − 2 max
e∈E(G)

|J(e)|.

Proof of claim. Let Q consist of vertices q0 = (x0, y0), q1 = (x1, y1), q2 = (x2, y2), . . . , qt =
(xt, yt), where (x0, y0) = (0, b) and (xt, yt) = (1, j). For i = 1, 2, . . . , t, let ri = (yi − yi−1)/(xi −
xi−1) denote the slope of the edge (qi−1, qi); let βi = xi − xi−1. Then for i ∈ 1, 2, . . . , t, we have

βi ≥ n−2; (by the observation above)

ri ∈ {0, 1, . . . , n};

r =

t∑
i=1

βiri = j − b;

wqi−1,qi =

(
J(y, y + ri) +K

(
ri(ri + 1)

2

)
+ Lriλ

)
(xi − xi−1). (here y = yi − rixi)

Since
∑t

i=1 βi = 1, we may define a random variable i, that takes the value i ∈ {0, 1, . . . , n}
with probability βi.

C(Q)− C(P ) ≥ −2|max
e
J(e)|+K

(
E
[
r2
i

2

]
− r2

2

)
+

(
K + 2Lλ

2

)
(E [ri]− r) (16)

≥ −2|max
e
J(e)|+K

(
E
[
r2
i

2

]
− r2

2

)
(17)

≥ −2|max
e
J(e)|+ K

2
var[ri]. (18)

We show a lower bound for var[ri]. Since Q deviates from P , it has at least two edges whose
slopes, say ri1 and ri2 , differ from r (by at least 1). Then,

var[ri] ≥ βi1(ri1 − r)2 + βi2(ri2 − r)2 ≥ 2n−2.

Combining this with (18) proves Claim 15.

The assumption on K then implies that P is the unique shortest path from (0, b) to (1, j),
and the cost of every other path Q from (0, b) to (1, j) is at least wb,j + 1. This proves (i) and
(ii). Finally, (iii) holds because every edge in Gpl corresponds to a line segment with slope at
least 0 and at most n.
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5 Proof of the main result

We now prove Theorem 1. The proof is by induction. Intuitively, we start off with a graph on
n vertices with n disjoint intervals. In each inductive step, we roughly triple the size of the
graph and subdivide each interval into n intervals. After log n steps, we end up with a graph on
poly(n) vertices with nlogn intervals. (Throughout our proof, n is a fixed number.)

5.1 Inductive definition of intervals

In our recursive construction, we will construct paths that reign as the shortest path in particular
intervals (that is, each interval has its dedicated path) for the parameter λ. We will construct a
large number of intervals and show that a different path is the shortest path in each interval.
This will establish that there are many break points in the cost of the shortest path in our
graph. The graph we construct and the role of the intervals is described in detail below. In this
section, we place the framework by describing the intervals inductively. The intervals depend on
a parameter N , defined as

N = n2. (19)

Then, for m = 0, 1, . . . , log n and j = 0, 1, . . . , nm − 1, we define α(j,m) ∈ R inductively; these
points will be used to define intervals.

m = 0 : Since 0 ≤ j ≤ nm − 1, the only possible value for j is 0. We set α(0, 0) = 0.

m ≥ 1 : For m ≥ 1 and 0 ≤ j ≤ nm − 1, we write j = nd + r, where 0 ≤ d < nm−1 and
0 ≤ r < n; then, we set α(j,m) = Nα(d,m− 1) +N(r + 1).

Intervals: For m ≥ 0 and 0 ≤ j < nm, let I(j,m) = [α(j,m) + 1, α(j,m) + N − 1]. Since
0 ≤ r < n � N , we have that for m ≥ 1, the interval I(j,m) is a subset of the interval
N · I(d,m− 1), which is obtained by stretching I(d,m− 1) by a factor N .

5.2 Inductive construction of graphs

Our induction depends on several parameters which impose constraints on the layered, weighted,
planar graphs we construct. The parameter B denotes the number of vertices in the first (input)
layer of this graph, and b ∈ {0, 1, 2, . . . , B − 1} denotes an input vertex. All our paths originate
in the first layer of the graph and end in the last layer. (When we derive our main theorem from
this construction, we set B = 1, call the unique input vertex s, and connect all the vertices in
the last layer to a new vertex t using edges with weight 0, so that we have pristine s-t paths
as promised.) The number D ∈ R is used to determine the weights of the edges. Finally,
the induction parameter m (this is the same induction parameter which is used to define the
intervals) helps ensure that the number of break points in the cost of the shortest path is large.
See Figure 3 for a nice step-by-step visualization of this construction.

The predicate Φ: For B, D and m as described above, we say that the predicate Φ(B,D,m)
holds if there is a layered, weighted, planar graph G(B,D,m) with at most (3m+1−1)(B+mn)4

vertices, B input vertices, and paths Pbj (for b = 0, 1, . . . , B − 1 and j = 0, 1, . . . , nm − 1) such
that

(i) for all b, j and λ ∈ I(j,m), the unique shortest path from the input vertex b is Pbj and
C(Qb)− C(Pbj) ≥ 1, for all other paths Qb from the input vertex b to the last layer;

11
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Figure 2: The graph Gm,n is obtained by composing GL, GM , the linking gadget, and GR

(ii) for all b and j, we have C(Pbj)(λ) = C(P0j)(λ) + bDα(j,m);

(iii) for all j, the paths in the list (Pbj : b = 0, 1, . . . , B − 1) are vertex-disjoint;

(iv) for all b, the paths in the list (Pbj : j = 0, 1, . . . , nm − 1) are distinct.

The following lemma is essentially the same as Lemma 4.1 of Mulmuley & Shah [MS01]. We closely
follow their argument, slightly simplifying the induction, providing more detailed calculations,
and correcting some errors; we crucially employ the planarized linking gadget of Subsection 4.1
and Lemma 14 to keep our graphs planar.

Lemma 20 (Main lemma). For all B, D and m ≥ 0, the predicate Φ(B,D,m) holds.

We will prove this lemma after using it to establish our main theorem.

Proof of Theorem 1. By Lemma 20, taking B = 1, D = 0 and m = blog nc, we conclude that the
predicate Φ(1, 0, blog nc) holds. The number of vertices in the corresponding graph G = (V,E)
is at most

(3m+1 − 1)(B +mn)4 ≤ (3logn+1 − 1)(1 + (log n)n)4

≤ 6n1.585(n log n)4 (assume n ≥ 4)

≤ 6n1.585(n · n0.6)4

≤ 6n8

To this graph we attach a sink vertex t as stated above. The graph admits nm disjoint intervals,
with a different unique shortest s-t path in each; so the cost of the shortest s-t path in this
graph has nblognc break points. We also show that the bit lengths of coefficients involved in this
construction are at most C(log n)3 for some constant C. Let ν be a large positive integer. Let n
be the largest integer such that 6n8 + 1 ≤ ν and C(log n)3 ≤ (log ν)3. Note n = νΩ(1). Using
the construction above (adding dummy isolated vertices if necessary), we obtain a graph on ν
vertices, whose edge weights have coefficients bounded by (log ν)3, and in which the cost of the
shortest path has νΩ(log ν) break points.

The remainder of this paper is devoted to proving our main lemma.

Proof of Lemma 20. We will use induction on m. For the base case (m = 0), let G consist of B
disjoint edges, each with weight 0, leaving the B input vertices. The only choice for j in this
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case is j = 0 (since j varies from 0 to nm − 1), and the requirements for Φ are easily verified.
(To verify (ii), recall that α(0, 0) = 0.)

Let m ≥ 1 and assume that the Φ(B′, D′,m− 1) holds for all B′ and D′. We now fix B and
D and show that Φ(B,D,m) holds. Based on B, D and m, we fix constants

KL = 100(|D|2 + 1)Nm+4B2 (21)

KR = 10(|D|+ 1)N3B (22)

DL =
N

2KL

(
D − KR

N

)
(23)

DR = 1 (24)

The assignments to these constants may seem mysterious but they will be justified by the claims
that follow. Let GL be the graph corresponding to the induction hypothesis Φ(B,DL,m− 1);
we denote the corresponding B × nm−1 paths by PLbj where 0 ≤ b < B and 0 ≤ j < nm−1. Let

GM denote the graph obtained by mirroring GL about its last layer and reversing the directions
of its edges so that all edges go from left to right. Thus GM has B vertices in its last layer
(see Figure 2); let (Pbj)

rev be the reverse of the path Pbj (thus, Pbj starts at the vertex b of
the first layer of GM and ends at the vertex b of the last layer of GM ). Let GR be the graph
corresponding to the induction hypothesis Φ(B + n,DR,m− 1); we denote the corresponding
B × nm−1 paths by PRbj where 0 ≤ b < B and 0 ≤ j < nm−1.

We need to transform the edges weights in GL, GM and GR before we put them together with
a linking gadget to obtain our graph G. We replace the weight function we(λ) by KL · we(λ/N)
for each edge e in GL and GM , and replace the weight function we(λ) by KR ·we(λ/N) for each
edge e in GR. In essence, we are scaling (by factors KL and KR) and stretching (by a factor N)
our already existing solutions for GL, GM and GR so that together they can form a solution for
G. Let L(B,n) be the non-planar linking gadget with edge weights

wb,b+r = NDrb+
KR

N

((
r(r + 1)

2

)
N − rλ

)
, where 0 ≤ b < B and 0 ≤ r ≤ n,

and let Lpl(B,n) be its planarized version. The graph G obtained by composing GL, GM , Lpl

and GR is shown in Figure 2. Since GL, GM and GR are planar by induction, and Lpl(B,n) is
planar, G is also planar.

Before we proceed further, let us verify that for our choice of parameters, Lpl faithfully
simulates its non-planar counterpart. Invoke Lemma 14 with J(b, b+ r) = NDrb, K = KR and
L = −KR/N . For the setting of KR in (22), we have

n2

(
1 + 2 max

e∈E(G)
|J(e)|

)
≤ n2 (1 + 2N |D|nB) ≤ 4(|D|+ 1)N2.5B ≤ KR,

so the condition K ≥ 2n2 (1 + max
e∈E(G)

|J(e)|) of Lemma 14 holds.

To show that Φ(B,D,m) holds, we need to exhibit B × nm paths in G and verify that
conditions (i)–(iv) hold. For 0 ≤ j < nm, write j = nd+ r with 0 ≤ d < nm−1 and 0 ≤ r < n;
then for 0 ≤ b < B, let

Pbj = PLbd ◦ (PLbd)
rev ◦ link(b, b+ r + 1) ◦ PRb+r+1,d,

where link(b, b+ r+ 1) is the unique shortest path (the straight line) in Lpl connecting vertex b
in the last layer of GM to vertex b+ r + 1 in the first layer of GR. Since the planarization of
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the linking gadget adds at most (B + n)4 new vertices, the number of vertices in the planarized
version of G is at most

2(3m − 1)(B + (m− 1)n)4 + (B + n)4 + (3m − 1)(B + n+ (m− 1)n)4 ≤ (3m+1 − 1)(B +mn)4.

The requirements (iii) and (iv) are straightforward to verify. We now verify (ii).3

C(Pbj)(λ) = KLCL(PLbd)

(
λ

N

)
+KLCM

(
(PLbd)

rev
)( λ

N

)
+ wb,b+r+1 +KRCR(PRb+r+1,d)

(
λ

N

)
= 2KLCL(PLbd)

(
λ

N

)
+ wb,b+r+1 +KRCR(PRb+r+1,d)

(
λ

N

)
= 2KL

[
CL(PL0d)

(
λ

N

)
+ bDLα(d,m− 1)

]
+ND(r + 1)b+

KR

N

[
(r + 1)(r + 2)

2
N − (r + 1)λ

]
+KR

[
CR(PR0d)

(
λ

N

)
+ (b+ r + 1)DRα(d,m− 1)

]
Substitute b = 0 to get

C(P0j)(λ) = 2KLCL(PL0d)

(
λ

N

)
+
KR

N

[
(r + 1)(r + 2)

2
N − (r + 1)λ

]
+KRCR(PR0d) +KR(r + 1)DRα(d,m− 1)

With this expression for C(P0j)(λ), we obtain

C(Pbj)(λ) = C(P0j)(λ) + b [2KLDLα(d,m− 1) +KRDRα(d,m− 1) +ND(r + 1)]

= C(P0j)(λ) + b

[
2KL

N

2KL

(
D − KR

N

)
α(d,m− 1) +KRα(d,m− 1) +ND(r + 1)

]
= C(P0j)(λ) + b [NDα(d,m− 1)−KRα(d,m− 1) +KRα(d,m− 1) +ND(r + 1)]

= C(P0j)(λ) + bD [Nα(d,m− 1) +N(r + 1)]

= C(P0j)(λ) + bDα(j,m),

as required. To complete the verification of (i), we need to check that Pbj as defined above
is indeed the shortest path from input vertex b to the last layer when λ ∈ I(j,m), and any
deviation from it attracts significant additional cost. We do this through two claims.

In Claim 25, we track paths from an input vertex as they travel through GL and GM . In
Claim 26, we analyze how such paths continue through Lpl and GR. Fix j (0 ≤ j < nm − 1, say
j = nd+ r, for 0 < d < nm−1 and 0 ≤ r < n) and a λ ∈ I(j,m). Note that since λ ∈ I(j,m),
we have λ/N ∈ I(d,m− 1) = [α(d,m− 1) + 1, α(d,m− 1) +N − 1].4

Claim 25. Let Q be a path from the input vertex b to the last layer of GL ◦ GM (note that
PLbd ◦ (PLbd)

rev is one such path). If Q 6= PLbd ◦ (PLbd)
rev, then

C(Q)− C(PLbd ◦ (PLbd)
rev) ≥ KL/2.

3Since paths of G are composed of paths from GL, GM and GR, we use CL, CM and CR to denote the costs of
those subpaths in their constituent graphs.

4In fact, our recursive definition of α(j,m) has (r + 1)N instead of rN precisely to ensure that I(j,m) ⊆
N · I(d,m− 1). The definition in Mulmuley & Shah [MS01] unfortunately overlooks this point.
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Proof of claim. We omit the argument λ in this discussion. Let Q = QL ◦QM , where QL is the
subpath of Q in GL and QM is the subpath of Q in GM . Suppose QM terminates at vertex c in
the last layer of GM . Then,

C(Q)− C(PLbd ◦ (PLbd)
rev) =

(
C(QL) + C(QM )

)
−
(
C(PLbd) + C((PLbd) rev)

)
=
(
C(QL)− C(PLbd)

)
+
(
C(QM )− C(PLcd)

)
+
(
C((PLcd)rev)− C((PLbd)rev)

)
≥

Term I︷ ︸︸ ︷
C(QL)− C(PLbd) +

Term II︷ ︸︸ ︷
C(QM )− C(PLcd)−

Term III︷ ︸︸ ︷
KLBDLα(d,m− 1).

To obtain Term III, we use part (ii) of the induction hypothesis for GL, whose edge costs we
evaluated at λ/N and scaled by KL; recall that λ/N ∈ I(d,m− 1). If Q 6= PLbd ◦ (PLbd)

rev, then
one of the following is true.

(a) QL 6= PLbd.

(b) c = b and QM 6= (PLbd)
rev.

(c) c 6= b and QM 6= (PLcd)
rev (here we use the fact that the paths PLbd and PLcd are vertex-disjoint

if c 6= b).

From part (i) of the induction hypothesis, the costs of a shortest and a non-shortest path from
the same input vertex differ by at least one in GL and GM ; after scaling all the edge weights of
GL and GM by a factor of KL, this difference becomes at least KL. Also note that both Term I
and Term II are non-negative. Thus we can conclude the following.

If (a) is true, then Term I ≥ KL. If (b) or (c) is true, then Term II ≥ KL. Also note that
α(d,m−1) ≤ Nm. For the setting of KL according to (21) we have KLBDLα(d,m−1)� KL/10.
This completes the proof of Claim 25.

Since KL is positive, Claim 25 implies that PLbd ◦ (PLbd)
rev is the shortest path from the input

vertex b to the last layer of GL ◦GM . We need to argue that the overall shortest path must be
an extension of this.

Claim 26. Let λ ∈ I(j,m), where j = nd+ r (0 ≤ d < nm−1 and 0 < r ≤ n− 1). Let P be a
path from the input vertex b of L to the last layer of GR (note that link(b, b+ r + 1) ◦ PRb+r+1,d

is one such path). If P 6= link(b, b+ r + 1) ◦ PRb+r+1,d, then

C(P )(λ)− C(link(b, b+ r + 1) ◦ PRb+r+1,d)(λ) ≥ 1 . (27)

Proof of claim. Fix the input vertex b. The induction hypothesis guarantees that PRxd is the
unique shortest path from the input vertex x of GR to the last layer of GR. We may assume
that P travels travels along the shortest path in GR, that is, it has the form

Pk = link(b, b+ k) ◦ PRb+k,d,

for some k ∈ {0, 1, . . . , n}. Let Zk = C(Pk). We will show that for λ ∈ I(j,m), we have

Z0 � Z1 � · · · � Zr � Zr+1 � Zr+2 � · · · � Zn, (28)

where we use � and � to suggest that there is a large gaps between the quantities. Indeed, for
k = 1, 2, . . . , n, we have

Zk − Zk−1 = wb,b+k − wb,b+k−1 + C(PRb+k,d)− C(PRb+k−1,d),
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where

wb,b+k = NDkb+
KR

N

((
k(k + 1)

2

)
N − kλ

)
;

wb,b+k−1 = ND(k − 1)b+
KR

N

((
(k − 1)k

2

)
N − (k − 1)λ

)
;

C(PRb+k,d)(λ) = KR

[
CR(PR0,d)(λ/N) + (b+ k)DRα(d,m− 1)

]
;

C(PRb+k−1,d)(λ) = KR

[
CR(PR0,d)(λ/N) + (b+ k − 1)DRα(d,m− 1)

]
.

Thus,

Zk − Zk−1 = NDb+
KR

N
(kN − λ) +KRDRα(d,m− 1) (29)

= NDb+
KR

N
(kN +Nα(d,m− 1)− λ) (recall DR = 1) (30)

= NDb+
KR

N
(α(k − 1,m)− λ). (31)

Since λ ∈ I(r,m) = [α(r,m) + 1, α(r,m) +N − 1], we have

α(k − 1,m)− λ ∈ [α(k − 1,m)− α(r,m)−N + 1, α(k − 1,m)− α(r,m)− 1] (32)

= [(k − (r + 1))N −N + 1, (k − (r + 1))N − 1] . (33)

Thus, for k = 1, 2, . . . , r + 1, we have α(k − 1,m)− λ ≤ −1 and for k = r + 2, . . . , n, we have
α(k − 1,m)− λ ≥ +1. Returning to (31) with this, we obtain

Zk − Zk−1 ≤ NDb−
KR

N
for k = 1, . . . , r + 1, and (34)

Zk − Zk−1 ≥ NDb+
KR

N
for k = r + 2, . . . , n. (35)

Since KR � N2Db, the RHS of (34) is negative and the RHS of (35) is positive. This
confirms (28) and establishes Claim 26.

We are now in a position to establish (i) and complete the induction. By Claim 25, if the
shortest path from b does not follow PLb,d ◦ (PRb,d)

rev, then the increase in cost is at least KL/2.

The shortest path from an input vertex of Lpl to the last layer of GR has cost at most

NDnB +
KR

N

(
n2N + nλ

)
+KRDBα(d,m− 1)

≤ N2DB +
KR

N

(
N2 + n(α(j,m) +N)

)
+KRDBα(d,m− 1)

≤ N2DB +
KR

N

(
N2 + n(Nm+1 +N)

)
+KRDBN

m

≤ N2DB +KRN
m+1 +KRDBN

m

� KL/10.

So any compensation from Lpl ◦GR is at most KL/10. Thus the shortest path in G must follow
the prescribed route in GL ◦GM until it arrives at the first layer of Lpl (or it already incurs an
increase in cost of KL/2−KL/10� 1, regardless of what route it takes in Lpl ◦GR). Claim 26
now confirms that it must continue by taking the edge link(b, b + r + 1) and PRb+r+1,d; any
deviation from this path will incur an increase in cost of at least 1.
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Space Complexity: In the description above, we did not explicitly keep track of the growth
of the coefficients involved in the edge weights. Since KL is the largest of the four constants
(KL,KR, DL, DR) involved in computing the edge weights, it is sufficient to track the growth of
KL. In terms of n, we have N = n2 and B ≤ n log n (all of these are poly(n); we also need not
consider D separately since it is initialized to 0).

Note that in the m-th level of recursion, KL grows by a factor of at most nmc, where c is
some constant (21). After m steps, KL has grown as large as nc ·n2c ·n3c · · ·nmc = nO(m2). Since
our induction terminates at m = log n, we have KL ≤ nO((logn)2) = 2O((logn)3). Thus each edge
weight can be stored using O((log n)3) bits of memory, completing the proof of Lemma 20.
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A The PRAM lower bounds

Mulmuley & Shah’s [MS01] Theorem 1.4 states the following.

Theorem 36. The Shortest Path Problem cannot be computed in o(log n) steps on an unbounded
fan-in PRAM without bit operations using poly(n) processors, even if the weights on the edges
are restricted to have bit-lengths O(log3 n).

A more precise statement of their result (see also Theorem 4.2.1 of Pradyut Shah’s PhD
thesis [Sha01]) is the following: There exist constants α > 0 and ε > 0, and an explicitly
described family of weighted graphs Gn (Gn has n vertices and weights that are O((log n)3) bits
long), such that for infinitely many n, every algorithm on an unbounded fan-in PRAM without
bit operations with at most nα processors requires at least ε log n steps to compute the shortest
s-t path in Gn. (Their proof yields a constant α < 1.)

Our proof of Theorem 3, like Mulmuley & Shah’s proof of the corresponding theorem [MS01,
Theorem 1.4], is based on the following (see [MS01, Theorem 1.1]).

Theorem 37. Let Φ(n, β(n)) be the parametric complexity of any homogeneous optimization
problem where n denotes the input cardinality and β(n) the bit-size of the parameters. Then
the decision version of the problem cannot be solved in the PRAM model without bit operations

in o(
√

log Φ(n, β(n))) time using 2
√

log Φ(n,β(n)) processors even if we restrict every numeric
parameter in the input to size O(β(n)).

A version of Theorem 37 for bounded fan-in PRAMs is established in Mulmuley [Mul99,
Theorem 3.3]; Mulmuley and Shah [MS01] state that this theorem is also applicable to unbounded
fan-in PRAMs. Unfortunately, no formal justification of this latter claim seems to be available
in the literature (see Shah [Sha01, Page 36] for an informal justification).
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