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Abstract

We study the question of algebraic rank or transcendence degree preserving homomor-
phisms over finite fields. This concept was first introduced by Beecken, Mittmann and Sax-
ena [BMS13], and exploited by them, and Agrawal, Saha, Saptharishi and Saxena [ASSS16]
to design algebraic independence based identity tests using the Jacobian criterion over char-
acteristic zero fields. An analogue of such constructions over finite characteristic fields was
unknown due to the failure of the Jacobian criterion over finite characteristic fields.

Building on a recent criterion of Pandey, Saxena and Sinhababu [PSS18], we construct ex-
plicit faithful maps for some natural classes of polynomials in the positive characteristic field
setting, when a certain parameter called the inseparable degree of the underlying polynomials
is bounded (this parameter is always 1 in fields of characteristic zero). This presents the first
generalisation of some of the results of Beecken et al. [BMS13] and Agrawal et al. [ASSS16] in
the positive characteristic setting.
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1 Introduction

Multivariate polynomials are fundamental objects in mathematics. These are the primary objects
of study in algebraic complexity with regard to classifying their hardness as well as algorithmic
tasks involving them. The standard computational model for computing multivariate polynomi-
als is algebraic circuits. These are directed acyclic graphs with internal nodes labelled by ‘+’ and
‘×’ gates having the obvious operational semantics, and leaves are labelled by the input variables
or field constants.

An important concept about relationships between polynomials is the notion of algebraic de-
pendence. A set of polynomials f = { f1, . . . , fm} ⊂ F[x] is said to be algebraically dependent if and
only if there is some nonzero polynomial combination of { f1, . . . , fm} that is zero. Such a nonzero
polynomial A(z1, . . . , zm) ∈ F[z], if one exist, for which A( f1, . . . , fm) = 0 is called the annihi-
lating polynomial for the set { f1, . . . , fm}. For instance, if f1 = x, f2 = y and f3 = x2 + y2, then
A = z2

1 + z2
2 − z3 is an annihilator. Note that the underlying field is very important. For example,

the polynomials x + y and xp + yp are algebraically dependent over Fp, but algebraically indepen-
dent over a characteristic zero field.

Algebraic independence is very well-studied and it is known that algebraically independent
subsets of a given set of polynomials form a matroid (see [Oxl92]). Hence, the size of the maximum
algebraically independent subset of f is well-defined and is called the algebraic rank or transcendence
degree of f. We denote it by algrank(f) = algrank( f1, . . . , fm).

Several computational questions arise from the above definition. For instance, given a set
of polynomials f = { f1, . . . , fm}, each fi given in its dense representation, can we compute the
algebraic rank of this set efficiently? What if the fi’s are provided as algebraic circuits? Such a
nonzero polynomial A(z1, . . . , zm) ∈ F[z], if one exist, for which A( f1, . . . , fm) = 0 is called the
annihilating polynomial for the set { f1, . . . , fm}. Furthermore, in instances when algrank(f) = m − 1,
Kayal [Kay09] showed that the smallest degree annihilating polynomial is unique. There could be
various questions about the minimal degree annihilator in this case. For instance, can we compute
it efficiently? Kayal [Kay09] showed that even checking if the constant term of the annihilator is
zero is NP-hard, and evaluating the annihilator at a given point is #P-hard. In fact, recently Guo,
Saxena, Sinhababu [GSS19] showed that even in the general case, checking if the constant term
of every annihilator is zero is NP-hard. This effectively rules out any attempt to compute the
algebraic rank via directly checking properties of the annihilating polynomials.

Despite this, over fields of characteristic zero, algebraic rank has an alternate characterisation
via the Jacobian criterion. Jacobi [Jac41] showed that the algebraic rank of a set of polynomials
f(⊆ F[x]) is given by the linear rank (over the rational function field F(x)) of the Jacobian of these
polynomials. This immediately yields a randomized polynomial time algorithm to compute the
algebraic rank of a given set of polynomials by computing the rank of the Jacobian evaluated at a
random point due to the polynomial identity lemma [Ore22, Sch80, Zip79, DL78].
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Faithful homomorphisms and PIT

Algebraic independence shares a lot of similarities with linear independence due to the matroid
structure. One natural task is to find a rank-preserving transformation in this setting. This is defined
by what are called faithful homomorphisms.

Definition 1.1 (Faithful homomorphisms [BMS13]). Let f = { f1, . . . , fm} ⊆ F[x] be a set of poly-
nomials. If K is an extension field of F, a homomorphism Φ : F[x] → K[y] is said to be an F-faithful
homomorphism for { f1, . . . , fm} if

algrankF { f1, . . . , fm} = algrankF {Φ( f1), . . . , Φ( fm)} . ♢

Ideally, we would like a faithful homomorphism with |y| ≈ algrank {f} and K = F. Beecken,
Mittmann and Saxena [BMS13] showed that a generic F-linear homomorphism to algrank(f) many
variables would be an F-faithful homomorphism with high probability.

One important consequence of faithful homomorphisms is that they preserve nonzeroness of
any polynomial composition of f1, . . . , fm.

Lemma 1.2 ([BMS13, ASSS16]). Suppose f1, . . . , fm ∈ F[x1, . . . , xn] and Φ is an F-faithful homomor-
phism for { f1, . . . , fm}. Then, for any circuit C(z1, . . . , zm) ∈ F[z1, . . . , zm], we have

C( f1, . . . , fm) = 0 ⇔ C(Φ( f1), . . . , Φ( fm)) = 0.

Thus, constructing explicit faithful homomorphisms can also be used for polynomial identity
testing (PIT), which is the task of checking if a given algebraic circuit C computes the identically
zero polynomial. For PIT, the goal is to design a deterministic algorithm that runs in time poly-
nomial in the size of the circuit. There are two types of PIT algorithms, whitebox and blackbox — in
the blackbox setting, we are only provided evaluation access to the circuit and some of its param-
eters (such as degree, number of variables, size etc.). Thus blackbox PIT algorithms for a class C
is equivalent to constructing a hitting set, which is a small list of points in S ⊂ Fn such that any
nonzero polynomial f ∈ C is guaranteed to evaluate to a nonzero value on some a ∈ S.

It follows from Lemma 1.2 that if we can construct explicit F-faithful homomorphisms for a
set { f1, . . . , fm} whose algebraic rank is k ≪ n, then we have a variable reduction that preserves the
nonzeroness of any composition C( f1, . . . , fm). This approach was used by Beecken, Mittmann
and Saxena [BMS13] and Agrawal, Saha, Saptharishi, Saxena [ASSS16], in the characteristic zero
setting, to design identity tests for several subclasses by constructing faithful maps for { f1, . . . , fm}
with algebraic rank at most k = O(1), when

• each fi is a sparse polynomial,

• each fi is a product of multilinear, variable disjoint, sparse polynomials,
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• each fi is a product of linear polynomials,

and further generalisations.
All the above constructions crucially depend on the fact that the rank of the Jacobian captures

algebraic independence. However, this fact is true only over fields of characteristic zero and hence
all the above results no longer hold over fields of positive characteristic.

Algebraic independence over finite characteristic

A standard example to exhibit the failure of the Jacobian criterion over fields of finite characteristic,
is
{

xp−1y, yp−1x
}

— these polynomials are algebraically independent over Fp but the Jacobian is
not full-rank over Fp. Pandey, Saxena and Sinhababu [PSS18] characterised the extent of failure
of he Jacobian criterion for { f1, . . . , fm} by a notion called the inseparable degree associated with
this set (formally defined in Section 2.4). Over characteristic zero fields, this is always 1 but over
fields of characteristic p this is a power of p. In their work, Pandey et al. presented a Jacobian-like
criterion to capture algebraic independence. Informally, each row of the generalized Jacobian matrix
is obtained by taking the Taylor expansion of fi(x + z) about a generic point, and truncating to
just the terms of degree up to the inseparable degree1. The exact characterisation is more involved
and is presented in Section 2.5 but we just state their theorem here.

Theorem 1.3. [PSS18] Let { f1, . . . , fk} be a set of n-variate polynomials over a field F with inseparable
degree t. Also, for a generic point z, let Ht( fi) = deg≤t( fi(x + z)− fi(z)). Then, they are algebraically
dependent if and only if

∃(α1, . . . , αk)( ̸= 0) ∈ F(z)k s.t.
k

∑
i=1

αi · Ht( fi) = 0 mod ⟨Ht( f1), . . . ,Ht( fk)⟩≥2
F(z) + ⟨x⟩t+1 .

We note that although the statement above seems slightly different from the one in [PSS18], it
is not too hard to see that they are actually equivalent. In their paper, Pandey et al. have stated
their criterion in terms of functional dependence. However, stated this way, it clearly generalises
the traditional Jacobian criterion.

In the setting when the inseparable degree is constant, this characterisation yields a randomized
polynomial time algorithm to compute the algebraic rank. Thus, a natural question is whether
this criterion can be used to construct faithful homomorphisms for similar classes of polynomials
as studied by Beecken et al. [BMS13] and Agrawal et al. [ASSS16].

Remark 1.4. Recently, Guo et al. [GSS19] showed that the task of testing algebraic independence is in
AM∩ coAM via a very different approach. However, it is unclear if their algorithm also yields constructions
of faithful homomorphisms or applications to PIT in restricted settings. ♢

1Over characteristic zero, the inseparable degree is 1 and this is just the vector of first order partial derivatives
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Following up on the criterion of Pandey, Saxena and Sinhababu [PSS18] for algebraic inde-
pendence over finite characteristic, we extend the results of Beecken et al. [BMS13] and Agrawal
et al. [ASSS16] to construct faithful homomorphisms for some restricted settings.

Theorem 1.5. Let f1, . . . , fm ∈ F[x1, . . . , xn] be such that algrank { f1, . . . , fm} = k and the inseparable
degree is t. If t and k are bounded by a constant, then we can construct a polynomial (in the input length)
sized list of homomorphisms of the form Φ : F[x] → F(s)[y0, y1, . . . , yk] such that at least one of them is
guaranteed to be F-faithful for the set { f1, . . . , fm}, in the following two settings:

• When each of the fi’s are sparse polynomials,

• When each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Prior to this, construction of faithful homomorphisms over finite fields was known only in
the setting when each fi has small individual degree [BMS13]. Over characteristic zero fields, the
inseparable degree is always 1 and hence the faithful maps constructed in [BMS13], [ASSS16] over
such fields can be viewed as special cases of our constructions.

The above theorem also holds for a few other models studied by Agrawal et al. [ASSS16] (for
instance, occur-k products of sparse polynomials). We mention the above two models just as an
illustration of lifting the recipe for faithful maps from [BMS13, ASSS16] to the finite characteristic
setting. As corollaries, we get efficient PIT algorithms for these models.

Corollary 1.6. If { f1, . . . , fm} ∈ F[x1, . . . , xn] is a set of s′-sparse polynomials with algebraic rank k and
inseparable degree t where k, t = O(1). Then, for the class of polynomials of the form C( f1, . . . , fm) for any
polynomial C(z1, . . . , zm) ∈ F[z], there is an explicit hitting set of size (s′ · deg(C))O(1).

Corollary 1.7. Let C = ∑m
i=1 Ti be a depth-4 multilinear circuit of size s, where each Ti is a product

of variable-disjoint, s-sparse polynomials. Suppose {T1, . . . , Tm} ∈ F[x1, . . . , xn] is a set of polynomials
with algebraic rank k and inseparable degree t where k, t = O(1). Then, for the class of polynomials of
the form C(T1, . . . , Tm) for any polynomial C(z1, . . . , zm) ∈ F[z], there is an explicit hitting set of size
(s · deg(C))O(1).

Comparison with the PIT of [PSS18]

Pandey et al.[PSS18] also give a PIT result in their work for circuits of the form ∑i ( fi,1 · · · fi,m)

where algrank { fi,1, . . . , fi,m} ≤ k for every i and each fi,j is a degree d polynomial in F[x1, . . . , xn].
They extend the result of Kumar and Saraf [KS17] to arbitrary fields by giving quasi-polynomial
time hitting sets if kd is at most poly-logarithmically large.

Corollary 1.7 however is incomparable to the PIT of Pandey et al. [PSS18] for the following
reasons:
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• The algebraic rank bound in the case of [PSS18, KS17] is a gate-wise bound rather than a
global bound. Thus, in principle, it could be the case that algrank { fi,1, . . . , fi,m} is bounded
by k for each i but this would not necessarily translate to a bound on algrank

{
∏j fi,j : i

}
as

demanded in Corollary 1.7. Hence, in this regard, the PIT of [PSS18, KS17] is stronger.

• In the regime when we have algrank
{

∏j fi,j : i
}

and the inseparable degree of this set to
be bounded by a constant, Corollary 1.7 presents an explicit hitting set of polynomial size,
whereas it is unclear if [PSS18, KS17] provide any non-trivial upper bound as this does not
translate to any bound on algrank { fi,1, . . . , fi,m}.

On other models studied by Agrawal et al. [ASSS16]

Our results, in its current form, do not extend directly some of the other models studied by
Agrawal et al. [ASSS16], most notably larger depth multilinear formulas. The primary hurdle
appears to be the recursive use of explicit faithful homomorphisms for larger depth formulas. In
the characteristic p setting, unfortunately, it is unclear if a bound on the inseparable degree of the
original gates can be used to obtain a bound on the inseparable degree of other sets of polynomials
considered in the recursive construction of Agrawal et al. [ASSS16].

1.1 Proof overview

The general structure of the proof follows the outline of Agrawal et al. [ASSS16]’s construction
of faithful homomorphisms in the characteristic zero setting. Roughly speaking, this can be de-
scribed in the following steps:

Step 1 : For a generic linear map Φ : x → F(s)[y1, . . . , yk], write the Jacobian of the set of poly-
nomials { f1 ◦ Φ, · · · , fk ◦ Φ}. Thus can be described succinctly as a matrix product of the
form

Jy( f ◦ Φ) = Φ(Jx(f)) · Jy(Φ(x)).

Step 2 : We know that Jx(f) is full rank. Ensure that Φ(Jx(f)) (where Φ is applied to every entry of
the matrix Jx(f)) remains full rank. This can be done if f’s are some structured polynomials
such as sparse polynomials, or variable-disjoint products of sparse polynomials etc.

Step 3 : Choose the map Φ so as to ensure that

rank(Φ(Jx(f)) · Jy(Φ(x))) = rank(Φ(Jx(f))).

This is typically achieved by choosing Φ so as to make Jy(Φ(x)) a rank-extractor. It was
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shown by Gabizon and Raz [GR08] that a parametrized Vandermonde matrix has this prop-
erty and this allows us to work with a homomorphism of the form (loosely speaking)

Φ : xi 7→
k

∑
j=1

sijyj.

We would like to execute essentially the same sketch over fields of finite characteristic but we
encounter some immediate difficulties. The criterion of Pandey et al. [PSS18] over finite charac-
teristic is more involved but it is reasonably straightforward to execute Steps 1 and 2 in the above
sketch using the chain rule of (Hasse) derivatives. The primary issue is in executing Step 3 and
this is for two very different reasons.

The first is that, unlike in the characteristic zero setting, the analogue of the matrix Jy(Φ(x)) has
many correlated entries. In the characteristic zero setting, we have complete freedom to choose Φ
so that Jy(Φ(x)) can be any matrix that we want. Roughly speaking, we only have n · k param-
eters to define Φ but the analogue of Jy(Φ(x)) is much larger in the finite characteristic setting.
Fortunately, there is just about enough structure in the matrix that we can show that it continues
to have some rank-preserving properties. This is done in Section 3.

The second hurdle comes from the subspace that we need to work with in the modified cri-
terion. The rank-extractor is essentially parametrized by the variable s. In order to show that it
preserves the rank of Φ(Jx(f)) under right multiplication, we would like to ensure that the vari-
able s effectively does not appear in this matrix. In the characteristic zero setting, this is done by a
suitable restriction on the other variables to remove any dependencies on s in Φ(Jx(f)). Unfortu-
nately, in the criterion of Pandey et al. [PSS18], we have to work modulo some suitable subspace
and these elements introduce other dependencies on s that appear to be hard to remove. Due to
this hurdle, we are unable to construct F(s)-faithful homomorphisms even in restricted settings.

However, we observe that for the PIT applications, we are merely required to ensure that
{ f1 ◦ Φ, . . . , fk ◦ Φ} remain F-algebraically independent instead of F(s)-algebraically indepen-
dent. With this weaker requirement, we can obtain a little more structure in the subspace involved
and that lets us effectively execute Step 3.

Structure of the paper

We begin with a description of some preliminaries that are necessary to understand the criterion
of Pandey, Saxena and Sinhababu [PSS18] in the next section. Following that, in Section 3, we
show that certain Vandermonde-like matrices have rank-preserving properties. We use these matri-
ces to give a recipe of constructing faithful maps, in Section 4, and execute this for the settings of
Theorem 1.5 in Section 5.
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2 Preliminaries

2.1 Notations

• For a positive integer m, we will use [m] to denote set {1, 2, . . . , m}.

• We will use bold face letters such as x to denote a set of indexed variables {x1, . . . , xn}. In
most cases the size of this set would be clear from context. Extending this notation, we will
use xe to denote the monomial xe1

1 · · · xen
n .

• For a set of polynomials f1, . . . , fm, we will denote by ⟨ f1, . . . , fm⟩K the set of all K-linear com-
binations of f1, . . . , fm. Extending this notation, we will use ⟨ f1, . . . , fm⟩r

K to denote the set
of all K-linear combinations of r-products fi1 · · · fir (with i1, . . . , ir ∈ [m]) and ⟨ f1, . . . , fm⟩≥r

K

similarly. In instances when we just use ⟨ f1, . . . , fm⟩, we will denote the ideal generated by
f1, . . . , fm.

2.2 Hitting set generators

Hitting set generators are defined as follows.

Definition 2.1 (Hitting set generators (HSG)). Let C be a class of n-variate polynomials. A tuple of
polynomials G = (G1(α), . . . , Gn(α)) is a hitting set generator for C if for every nonzero polynomial
P(x) ∈ C we have P(G1(α), . . . , Gn(α)) is a nonzero polynomial in α.

The degree of this generator is defined to be max deg(Gi). ♢

Intuitively, such a tuple can be used to generate a hitting set for C by running over several
instantiations of α. Also, it is well known that any hitting set can be transformed into an HSG via
interpolation.

2.3 Isolating weight assignments

Suppose wt : {xi} → N is a weight assignment for the variables {x1, . . . , xn}. We can extend it to
define the weight of a monomial as follows.

wt(xe) =
n

∑
i=1

ei · wt(xi)

Definition 2.2. A weight assignment wt : {xi} → N is said to be isolating for a set S of monomials if
every pair of distinct monomials in S receives distinct weights. ♢

Note that if the highest degree of a monomial in S is d, then assigning the weight wt(xi) =

(d + 1)i is trivially isolating for S. However, in this case the weight of a monomial can become
exponentially large in n.
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In the case when |S| = poly(n), results by Klivans and Spielman [KS01] or Agrawal and
Biswas [AB03] show that if we define wt(xi) = (d + 1)i mod p, then it suffices to go over poly(n)
many ‘p’s to guarantee that one of these weight assignments isolates the monomials in S. The
weight of a monomial in this case is thus bounded by poly(n).

2.4 Some field theoretic preliminaries

We present some basic preliminaries about field extensions.

Definition 2.3. A polynomial is said to be separable if it does not have repeated roots in a field where it
factorises completely. ♢

Over characteristic zero fields, ever irreducible univariate polynomial is separable since it can-
not have a common root with its derivative. However, this is not the case over fields of finite
characteristic as derivatives of non-trivial polynomials could become zero. This adds some sub-
tlety in field extensions over finite characteristic.

We mention some basic facts about field extensions; these may be found in any standard text
for field theory [Isa94].

1. An extension K/F is said to be algebraic if every element in K is the root of some polynomial
over F. Otherwise, it is transcendental.

2. For a transcendental extension K/F, a transcendence basis is a maximal subset of K that is
algebraically independent over F. An extension K/F is purely transcendental if there is a
transcendence base S ⊆ F such that K = F(S).

3. An algebraic extension K/F is said to be separable if the minimal polynomial of every ele-
ment in K is separable.

An example of an algebraic extension that is not separable is Fp(x)/Fp(xp). The minimal
polynomial µ(z) for x over Fp(xp) is zp − xp, which is not separable.

Further, if K = F(α1, . . . , αn) is an algebraic extension of F, then K/F is separable if and
only if the minimal polynomials of αi over F is separable for each i.

For an algebraic extension K/F over characteristic p the separable closure of F in K, denoted by
Sep(K/F), is defined as

Sep(K/F) = {α ∈ K : the minimal polynomial of α is separable over F} .

For every element α in K \ Sep(K/F), we would have that αpi ∈ Sep(K/F) for some positive
integer i. Thus, the extension K/F splits into two extensions K ≥ Sep(K/F) ≥ F where the latter
is a separable algebraic extension and the former is a purely inseparable algebraic extension.
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Definition 2.4 (Inseparable degree of algebraic extensions). For an algebraic extension K/F of char-
acteristic p, the inseparable degree of the extension, denoted by insep-deg(K/F), is the smallest t such
that xt ∈ Sep(K/F) for every x ∈ K. ♢

Remark 2.5. The above definition deviates slightly from the standard definition texts on field theory, where
the inseparable degree is defined to be the degree of the extension K/ Sep(K/F). The definition above
is the one used by Pandey, Saxena and Sinhababu [PSS18] in their criterion and we stick with it in this
paper. ♢

We would like to extend this definition to non-algebraic extensions. Let { f1, . . . , fm} be a
set of polynomials over F. We will be interested in the extension F(x) = F(x1, . . . , xn) over
F( f1, . . . , fm). Suppose { f1, . . . , fk} is a separable transcendence basis of { f1, . . . , fm}. Using the
matroid property of algebraically independent polynomials, there exists xik+1 , . . . , xin such that{

f1, . . . , fk, xik+1 , . . . , xin

}
is algebraically independent as well. Now, since F(x) is algebraic over

F( f1, . . . , fk, xik+1 , . . . , xin), we can talk about the inseparable degree of this algebraic extension. We
use this to define a suitable notation of inseparable degree2 for a set of algebraically independent
polynomials.

Definition 2.6 (Inseparable degree of a set of polynomials). Let f = { f1, . . . , fm} be a set of poly-
nomials over a field F of characteristic p. For a set S ⊆ [n], define xS = {xi : i ∈ S}. We shall define
insep-deg({ f1, . . . , fk}) to be

min

{
insep-deg (F(x)/F(f, xS)) :

|S| = n − algrank(f) and
F(f, xS)/F(f) is purely transcendental

}

♢

Intuitively, every extension can be thought of as purely transcendental, followed by a separable
algebraic, followed by a purely inseparable algebraic extension. The above definition used the
inseparable degree of the purely inseparable part of this in the general case.

With this background, we are now ready to state the criterion for algebraic independence
over fields of finite characteristic. Similar to the Jacobian Criterion, Pandey, Saxena and Sinhab-
abu [PSS18] reduce the problem of checking algebraic independence to that of checking linear
independence. However, their criterion is slightly more subtle in the sense that we will have to
check the linear independence of a set of vectors modulo a large subspace.

2.5 The PSS Criterion over fields of finite characteristic

A set of polynomials { f1, . . . , fm} ∈ F[x1, . . . , xn] is said to be algebraically dependent if there
exists a polynomial 0 ̸= A ∈ F[z1, . . . , zm] such that A( f1, . . . , fm) = 0. If such a polynomial A(z)

2This definition is non-standard, but is sufficient for the purposes of this paper and the criterion of Pandey, Saxena
and Sinhababu [PSS18]
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exists, we call it the annihilating polynomial for { f1, . . . , fm}.
However given a set of polynomials f = { f1, . . . , fm} ∈ F[x], finding the annihilating polyno-

mial if one exists is hard [Kay09, GSS19]. Nevertheless if the underlying field F has characteristic
zero, the Jacobian Criterion [Jac41] reduces the question of checking whether a given set of poly-
nomials is algebraically dependent to the question of checking whether a corresponding set of
vectors is linearly dependent.

The Jacobian Criterion

For f1, . . . , fm ∈ F[x1, . . . , xn], the Jacobian matrix is defined as

Jx(f) =


∂x1( f1) ∂x1( f2) . . . ∂x1( fm)

∂x2( f1) ∂x2( f2) . . . ∂x2( fm)
...

...
. . .

...
∂xn( f1) ∂xn( f2) . . . ∂xn( fm)


With this definition, the Jacobian criterion [Jac41] is as follows.

Theorem 2.7 (Jacobian criterion). If F is a field of characteristic zero, then f1, . . . , fm ∈ F[x] are alge-
braically independent if and only if Jx(f) has full rank over the rational function field F(x).

As mentioned earlier, this criterion is not true over fields that have finite characteristic. For
f1 = xp−1y and f2 = xyp−1, if the underlying field is Fp, then det(J( f1, f2)) = 0 even though they
are algebraically independent. The key insight of Pandey et al. [PSS18] is to observe that the rows
of the Jacobian matrix, which are first order partial derivatives, are the linear terms present in
the Taylor expansion of f (x) around a generic point z. Generalising this, they study higher order
terms of the Taylor expansion around a generic point to come up with a modified criterion that
works over all fields.

Taylor Expansion and Hasse Derivatives

Define the following operator Ht( f ) := deg≤t( f (x+ z)− f (z)), where deg≤t restricts to just those
monomials in x of degree at most t. It is also worth noting that Ht( f ) does not have a constant
term and this would become useful in the criterion.

The operator Ht( f ) can be thought of as a vector over the field F(z) whose coordinates are
indexed by monomials xe of degree at most t. The entry in the coordinate xe of Ht(f) is the
corresponding Hasse derivative of f evaluated at z:

|e|!
e1!e2! · · · en!

·
(

∂|e| f
∂xe1

1 · · · ∂xen
n

)
(z).
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The operator Ht however, as defined above, is indexed by t. Pandey et al. [PSS18] show that the
correct value of t to work with is the inseparable degree of the given set of polynomials. Formally,
we have the following statement.

Theorem 1.3. [PSS18] Let { f1, . . . , fk} be a set of n-variate polynomials over a field F with inseparable
degree t. Also, for a generic point z, let Ht( fi) = deg≤t( fi(x + z)− fi(z)). Then, they are algebraically
dependent if and only if

∃(α1, . . . , αk)( ̸= 0) ∈ F(z)k s.t.
k

∑
i=1

αi · Ht( fi) = 0 mod ⟨Ht( f1), . . . ,Ht( fk)⟩≥2
F(z) + ⟨x⟩t+1 .

We note that at least one direction of this theorem can be slightly generalised to give the fol-
lowing lemma. A proof is given here for the sake of completeness, but we note that the steps are
almost identical to those in [PSS18].

Lemma 2.8. Let F be an algebraically closed field and K be an extension field of F. Further, suppose
{g1, . . . , gk} is a set of n-variate polynomials in K[y] that are F-algebraically dependent. Also, for a generic
point v, let Ht(gi) = deg≤t(gi(y+v)− gi(v)). Then for any positive integer t, there exists (α1, . . . , αk) ∈
F(g(v))k \ {0} such that

k

∑
i=1

αiHt(gi) ≡ 0 mod ⟨Ht(g1), . . . ,Ht(gk)⟩≥2
F(g(v)) + ⟨y⟩t+1

Proof. Suppose {g1, . . . , gk} are F-algebraically dependent. Then by standard properties of tran-
scendence bases [Kna07, Theorem 7.20 and 7.18], we have that there is an F-algebraically inde-
pendent subset of {g1, . . . , gk}, of size r < k, that forms a separable transcendence basis. Without
loss of generality, let that subset be {g1, . . . , gr}.

Let A ∈ F[u0, u1, . . . , ur] be the minimal annihilating polynomial for g = {g0, g1, . . . , gr} where
g0 := gr+1. Now since A(g) = 0, for formal variables v, we have A(g(y + v)) = 0. Also, from
the definition of Ht(g), we have that gj(y + v) = gj(v) +Ht(gj) mod ⟨y⟩t+1 for any j = 0, . . . , r.
Hence,

A(g0(v) +Ht(g0), . . . , gr(v) +Ht(gr)) = 0 mod ⟨y⟩t+1 .

Using Taylor expansion, we get

A(g0(v) +Ht(g0), . . . , gr(v) +Ht(gr)) = ∑
e≥0

(∂ue A)u=g(v) · (Ht(g))e

= A(g(v)) +
r

∑
i=0

(∂ui A)u=g(v) Ht(gi)

mod ⟨Ht(g0), . . . ,Ht(gr)⟩≥2
F(g(v)) + ⟨y⟩t+1

12



where the last equality crucially used the fact that the coefficients of A are from F and hence the
linear combinations of ⟨Ht(g)⟩≥2 are over F(g(v)).

Observe that A(g(v)) = 0. Furthermore, since {g1, . . . , gr} forms a separable basis, we have
that ∂u0 A is a nonzero polynomial. Hence ∂u0(A(g(v))) ̸= 0, as A is the minimal degree annihila-
tor for g. Therefore, we have a nonzero vector (α1, . . . , αk) ∈ (F(g(v)))k such that

k

∑
i=1

αiHt(gi) ≡ 0 mod ⟨Ht(g1), . . . ,Ht(gk)⟩≥2
F(g(v)) + ⟨y⟩t+1

A different perspective on the criterion

Let Ut(f) = Ut( f1, . . . , fk) denote the subspace ⟨Ht(f)⟩≥2
F(z)

= ⟨Ht( f1), . . . ,Ht( fk)⟩≥2
F(z) mod ⟨x⟩t+1. Then, for any h ∈ Ut(f), we define the modified Jacobian

matrix as follows.

PSSJact(f, h) =


Ht( f1) + h
Ht( f2)

...
Ht( fk)

 .

The columns of this matrix are indexed by monomials in x and entries in the column indexed by
xe are the coefficient of xe in the corresponding rows.

An alternative statement for the PSS criterion is thus, the following.

Theorem 2.9 (Alternate Statement for the PSS-criterion). Let { f1, . . . , fk} be a set of n-variate poly-
nomials over a field F with inseparable degree t. Then, they are algebraically independent if and only if for
every h ∈ Ut(f), PSSJact(f, h) is full rank.

We note that Lemma 2.8 can also be viewed from a similar perspective. Let Vt(g1, . . . , gk)

denote the subspace ⟨Ht(g1), . . . ,Ht(gk)⟩≥2
F(g(v)) mod ⟨y⟩t+1. An alternate statement for the lemma

is then the following.

Lemma 2.10 (Alternate statement for Lemma 2.8). Let F be any field and K be an extension field of F.
If {g1, . . . , gk} is a set of n-variate polynomials in K[y] that are F-algebraically dependent, then for any
positive integer t, there exists h′ ∈ Vt(g1, . . . , gk) such that PSSJact(g, h′) is not full rank.

3 Rank Condensers from Isolating Weight Assignments

In this section, we focus on rank-preserving properties of certain types of matrices. These are slight
generalisations of similar properties of Vandermonde matrices that were proved by Gabizon and
Raz [GR08] that would be necessary for the application to constructing faithful homomorphisms.
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Lemma 3.1. Suppose we have a matrix of the form:

V =


sw1 s2w1 . . . snw1

sw2 s2w2 . . . snw2

...
swn s2wn . . . snwn


where wi < wj whenever i < j. If V ′ is a matrix obtained from V by replacing some of the non-diagonal
entries by zero, then det(V ′) ̸= 0 and furthermore deg(det(V ′)) = ∑n

i=1 i · wi.

Proof. Since

det(V ′) = ∑
σ∈Sn

sgn(σ)

(
∏

i∈[n]
V ′[i, σ(i)]

)
,

the monomial corresponding to σ being the identity permutation contributes a nonzero monomial
of degree ∑ i · wi. We will show that all other terms of det(V ′) will have smaller degree.

Suppose σ is not the identity permutation, we must have i ̸= σ(i) for some index i; let i0 be the
first such index. Define j such that σ(j) = i0 and π = σ ◦ (i0 j). Note that π(i0) = σ(j) = i0 and
fixes the first i0 indices. Furthermore, π(i) = σ(i) for all i ̸= i0, j. Thus,

n

∑
i=1

(π(i)− σ(i)) · wi = (π(i0)− σ(i0)) · wi0 + (π(j)− σ(j)) · wj

= (σ(j)− σ(i0)) · wi0 + (σ(i0)− σ(j)) · wj

= (σ(i0)− σ(j)) · (wj − wi0) > 0

Repeating this exercise until we reach the identity permutation, we have that the monomial con-
tributed by the diagonal has the largest degree.

Lemma 3.2. Let A be a matrix over a field F with k rows and columns indexed by monomials in x of degree
at most D that is full-rank. Further, let w = (w1, . . . , wn) be an isolating weight assignment for the set of
degree D monomials, and let wt(xe) = ∑n

i=1 wiei.
Suppose MΦ is a matrix whose rows are indexed by monomials in x of degree at most D, and columns

indexed by pure monomials
{

yd
i : i ∈ {1, . . . , k} , d ≤ D

}
given by

MΦ(xe, yd
i ) =

si·wt(xe) if deg(xe) = d

0 otherwise
.

where s is a formal variable. Then, rankF(s)(A · MΦ) = rankF(A).
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Proof. By the Cauchy-Binet formula, if we restrict MΦ to a set T of k-columns, then

det(A · MΦ[T]) = ∑
S⊆Columns(A)

|S|=k

det(A[S]) · det(MΦ[S, T])

We wish to show that the above sum is nonzero for some choice of columns T. We do that by first
defining a weight function on minors of A, then proving that there is a unique nonzero minor of
A of largest weight, and then choosing a set of columns T such that the degree of det(MΦ[S, T])
coincides with this chosen weight function. Define the weight of a minor of A as follows:

Suppose the columns of the minor is indexed by S = {xe1 , . . . , xek} with the property
that wt(xe1) < wt(xe2) < · · · < wt(xek). Define the weight of this minor as

wt(S) =
k

∑
i=1

i · wt(xei)

where, recall, wt(xei) = ∑j wj · ei(j).

Claim 3.3. There is a unique nonzero k × k minor of A of maximum weight.

Proof. Suppose S1 and S2 are two different minors of A with the same weight. We will just identify
S1 and S2 by the set of column indices for simplicity. Say S1 has columns indexed by xe1 , . . . , xek

with wt(xe1) < wt(xe2) < · · · < wt(xek) and S2 has columns indexed by xe′1 , . . . , xe′k with wt(xe′1) <

wt(xe′2) < · · · < wt(xe′k).
Suppose S1 and S2 agree on the first i columns, that is ej = e′j for all j ≤ i, and say wt(ei+1) <

wt(e′i+1). By the matroid property, there must be some column xe′j from S2 that we can add to

S1 \ {xei+1} so that S = S1 \ {xei+1} ∪
{

xe′j
}

is also a nonzero minor of A. Suppose that

wt(xe1) < · · · < wt(xei+r) < wt(xe′j) < wt(xei+r+1) < · · · < wt(xek).

Then,

wt(S) =
i

∑
a=1

a · wt(xea) +
i+r

∑
a=i+2

(a − 1) · wt(xea) + (i + r)wt(xe′j) +
k

∑
a=i+r+1

a · wt(xea)

>
i

∑
a=1

a · wt(xea) + (i + 1)wt(xe′j) +
k

∑
a=i+2

a · wt(xea)

>
k

∑
a=1

a · wt(xea) = wt(S1)

Hence, there cannot be two different nonzero minors of A of the same weight. Thus, the
nonzero minor of largest weight is unique.
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We will now choose k columns from MΦ, as follows, in such a way that the degree of the cor-
responding determinant agrees with the weight function. Note that the matrix MΦ has a natural
block-diagonal structure based on the degree of the monomials indexing the rows and columns.

• Let S0 be the unique k × k minor of A having maximum weight. Further, assume its columns
are indexed by xe1 , . . . , xek with wt(xe1) < wt(xe2) < . . . < wt(xek). Let di = deg(xei) =

∑j(ei)j.

• Choose the columns T =
{

yd1
1 , yd2

2 , . . . , ydk
k

}
of the matrix MΦ.

By Lemma 3.1, for any set of S′ ⊆ Columns(A), we have deg(det(MΦ[S′, T])) ≤ wt(S′) and
furthermore we also have deg(MΦ[S0, T]) = wt(S0) as we chose the columns T to ensure that the
main diagonal of the sub-matrix has only nonzero elements. Hence,

det(A · MΦ[T]) = ∑
S⊆Columns(A)

|S|=k

det(A[S]) · det(MΦ[S, T]) ̸= 0

since the contribution from det(A[S0])det(MΦ[S0, T]) is the unique term of highest degree and so
cannot be cancelled.

4 Construction of Explicit Faithful Maps

We will be interested in applying a map Φ : F[x] → F(s)[y] and study the transformation of the
PSS-Jacobian. Since the entries of the PSS-Jacobian involve Ht( f (x)) = deg≤t ( f (x + z)− f (z)),
we would need to also work with Ht(g(y)) where g(y) = f ◦ Φ. To make it easier to follow, we
shall use a different name for the variables in the two cases. Hence,

Ht( f (x)) := deg≤t ( f (x + z)− f (z)) , Ht(g(y)) := deg≤t (g(y + v)− g(v)) .

4.1 Recipe for constructing faithful maps

Let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials with algrank { f1, . . . , fm} = k and inseparable degree
t. We will work with linear transformations of the form:

Φ : xi 7→ aiy0 +
k

∑
j=1

swi ·jyj, for all i ∈ [n],

Φz : zi 7→ aiv0 +
k

∑
j=1

swi ·jvj, for all i ∈ [n].

where all the variables on the RHS are formal variables. Further, define {g1, . . . , gm} ∈ F[y] as
gi = fi ◦ Φ and Ht(gi) = deg≤t(gi(y + v)− gi(v)).

16



The main lemma of this section is the following recipe for constructing faithful maps.

Lemma 4.1 (Recipe for faithful homomorphisms). Let f1, . . . , fm ∈ F[x] be polynomials such that their
algebraic rank is at most k and suppose the inseparable degree is bounded by a constant t. Further,

• suppose G = (G1(α), . . . , Gn(α)) = (a1, . . . , an) is such that for some a ∈ G, the rank of PSSJact(f, h)
is preserved after the substitution z → a.

• suppose w : [n] → N is an isolating weight assignment for the set of n-variate monomials of degree
at most t.

Then, the homomorphism Φ : F[x1, . . . , xn] → F(s, α)[y0, . . . , yk] defined as

Φ : xi 7→ y0Gi(α) +
k

∑
j=1

yj · sw(i)j,

is an F-faithful homomorphism for the set { f1, . . . , fm}.

As mentioned earlier, the rough proof sketch would be to first write the PSS-Jacobian of the
transformed polynomials g in terms of f, express that as a suitable matrix product, and use some
rank extractor properties of the associated matrix, as described in Section 3. The rest of this section
will execute this sketch.

Lemma 4.2 (Evolution of polynomials under Φ). Let Φ : x → F(s)[y] and Φz : z → F(s)[v] be given
as above. Further, for any polynomial h′(a1, . . . , am) ∈ F(g(v))[a], define h(a1, . . . , am) ∈ F(f(z))[a] as
follows.

coeffae(h) is got by replacing every occurrence of gi(v) by fi(z) in coeffae(h′)

Then,

h′(Ht(g1), . . . ,Ht(gm)) = Φ ◦ Φz(h(Ht( f1), . . . ,Ht( fm))).

It is worth noting that the polynomial h(a1, . . . , am) is independent of s, by definition. This
would be crucial later on in the proof.

Proof. Firstly, note that h is well defined. This is because by the definition of {g1, . . . , gm}, if
coeffae(h′) ∈ F(g(v)) has a nonzero denominator then by replacing the gi(v)s with fi(z) in it,
it will continue to remain nonzero.

The claim now follows essentially from the fact that Φ is linear and homogeneous in y.

Ht( f ◦ Φ)(y, v) = deg≤t [( f ◦ Φ)(y + v)− ( f ◦ Φ)(v)]

= deg≤t [ f (Φ(x) + Φz(z))− f (Φz(z))] (by linearity in y)

= Φ ◦ Φz(Ht( f )) (by homogeneity in y)
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and it extends to higher degree terms just from the fact that Φ and Φz are homomorphisms and
that Φ does not change the degree (in x and y). Further, note that if h(a1, . . . , am) = ∑e he · ae then

h′ = ∑
e

Φz(he) · ae.

Thus,

h′(Ht(g1), . . . ,Ht(gm)) = ∑
e

Φz(he) · (Ht(f ◦ Φ))e

= ∑
e

Φz(he) · Φ ◦ Φz(Ht(f)e)

= ∑
e
(Φ ◦ Φz(he)) · Φ ◦ Φz(Ht(f)e) (he is independent of x)

= Φ ◦ Φz

(
∑
e

he · Ht(f)e

)
(Φ and Φz are homomorphisms)

= Φ ◦ Φz(h(Ht( f1), . . . ,Ht( fm)))

Corollary 4.3 (Matrix representation of the evolution). Suppose A′ is a matrix whose columns are
indexed by monomials in y. Further suppose a row in A′ corresponds to a polynomial, say h′(Ht(g)) =

h′(Ht(g1), . . . ,Ht(gm)) ∈ F(g(v))[y], whose entry in the column indexed by ye is coeffye(h′(Ht(g))) ∈
F(v, s). If A is the corresponding matrix (having entries from F(z)) with columns indexed by monomials
in x and the corresponding row being h(Ht( f1), . . . ,Ht( fm)) ∈ F(f(z))[x] as described in Lemma 4.2,
then

A′ = Φz(A)× M̃Φ

where M̃Φ(xe, yd) = coeffyd(Φ(xe)).

Proof. Suppose h(Ht( f1), . . . ,Ht( fm)) = ∑e he(z) · xe. Then,

h′(Ht(g1), . . . ,Ht(gm)) = Φ ◦ Φz(h(Ht( f1), . . . ,Ht( fm))) (by Lemma 4.2)

= ∑
e

he(Φz(z)) · Φ(xe)

= ∑
e

he(Φz(z)) ·
(

∑
d
coeffyd(Φ(xe)) · yd

)

= ∑
d

(
∑
e

he(Φz(z)) · coeffyd(Φ(xe))

)
· yd
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Thus, the coefficient of yd in h′(Ht(g1), . . . ,Ht(gm)) is

∑
e

Φz(he(z)) · coeffyd(Φ(xe))

which gives the required matrix decomposition.

We are now in a position to prove Lemma 4.1.

Proof of Lemma 4.1. Without loss of generality, say { f1, . . . , fk} is an algebraically independent set.
We wish to show that if gi = fi ◦ Φ, then {g1, . . . , gk} is an F-algebraically independent set as well.
Assume on the contrary that {g1, . . . , gk} is an F-algebraically dependent set. Then for t being the
inseparable degree of { f1, . . . , fk}, by Lemma 2.10, there exists

h′ ∈ Vt(g1, . . . , gk) := ⟨Ht(g1), . . . ,Ht(gk)⟩≥2
F(g(v)) mod ⟨y⟩t+1

such that PSSJact(g, h′) is not full rank. Without loss of generality, we can assume that the entries
of PSSJact(g, h′) are denominator-free by clearing out any denominators. Corresponding to h′,
define h as in Lemma 4.2, which would also satisfy that

h ∈ Ut( f1, . . . , fk) := ⟨Ht( f1), . . . ,Ht( fk)⟩≥2
F(z) mod ⟨x⟩t+1.

It is worth stressing the fact that the polynomial h is independent of the variable s. Then by
Corollary 4.3 we get

PSSJact(g, h′) = Φz(PSSJact(f, h))× M̃Φ.

Now, if we substitute v0 = 1 and vi = 0 for every i ∈ [k], we get

PSSJact(g, h′)(v0 = 1, v1 = . . . = vk = 0) = PSSJact(f, h)(z = G(α))× M̃Φ.

But since { f1, . . . , fk} is algebraically independent, Theorem 2.9 yields that PSSJact(f, h) has full
rank. Thus, for the correct choice of α, PSSJact(f, h)(z = G(α)) also has full rank by the property
we assumed G has. Most crucially, the matrix PSSJact(f, h) is independent of the variable s.

To complete the proof, we need to show that multiplication by M̃Φ continues to keep this full
rank to contradict the initial assumption that PSSJact(g, h′) was not full rank.

Finally note that for the Φ we have defined, M̃Φ restricted to only the pure monomial columns{
yj

i : i ∈ {1, . . . , k} , j ∈ {0, 1, . . . , t}
}

,

is the same as MΦ as defined in Lemma 3.2. Further, w is an isolating weight assignment for the
set of n-variate monomials of degree at most t, we satisfy the requirements of Lemma 3.2. Hence,
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by Lemma 3.2,

rankF(s,α)
(
PSSJact(g, h′)(v0 = 1, v1 = . . . , vk = 0)

)
= rankF(α) PSSJact(f, h)(z = G(α))

=⇒ rankF(s,α,v)
(
PSSJact(g, h′)

)
≥ rankF(α) PSSJact(f, h)(z = G(α))

= k,

which contradicts our assumption that it was not full rank. Hence, it must indeed be the case that
{ f1 ◦ Φ, . . . , fk ◦ Φ} is F - algebraically independent.

5 Explicit faithful maps and PIT applications in restricted settings

We now describe some specific instantiations of the recipe given by Lemma 4.1 in restricted set-
tings. Let us first recall the statement of the main theorem.

Theorem 1.5. Let f1, . . . , fm ∈ F[x1, . . . , xn] be such that algrank { f1, . . . , fm} = k and the inseparable
degree is t. If t and k are bounded by a constant, then we can construct a polynomial (in the input length)
sized list of homomorphisms of the form Φ : F[x] → F(s)[y0, y1, . . . , yk] such that at least one of them is
guaranteed to be F-faithful for the set { f1, . . . , fm}, in the following two settings:

• When each of the fi’s are sparse polynomials,

• When each of the fi’s are products of variable disjoint, multilinear, sparse polynomials.

Proof. By Lemma 4.1, Φ : F[x1, . . . , xn] → F(s, α)[y0, . . . , yk] defined as

Φ : xi 7→ y0Gi(α) +
k

∑
j=1

yj · sw(i)j,

is a faithful homomorphism for the set { f1, . . . , fm} if w = (w1, . . . , wn) is an isolating weight as-
signment for n-variate monomials of degree at most t, and for any h ∈ Ut(f), G = (G1(α), . . . , Gn(α))

is such that the rank of PSSJact(f, h) is preserved after the substitution z → a for some a ∈ G. We
define the weight using the standard hashing techniques [KS01, AB03].

Defining w Define w : [n] → N as

w(i) = (t + 1)i (mod p)

where t is the inseparable degree.
Assuming t to be a constant, there are only poly(n) many distinct monomials in x of degree

at most t. Thus, standard results by Klivans and Spielman [KS01] or Agrawal and Biswas [AB03]
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shows that it suffices to go over poly(n) many ‘p’s before w isolates all monomials in x of degree
at most t.

Let PSSJact(f) be the matrix with columns indexed by monomials in x of degree at most t and
rows by k-variate monomials ae in degree at most t, defined as follows.

PSSJact(f)[ae, xd] = coeffxd(Ht(f)e)

Set K = (k+t
t ) to be the number of rows in PSSJact(f). Then the following is true.

Claim 5.1. If G is a hitting set generator for every K′ × K′ minor of PSSJact(f) where K′ ≤ K, then the
rank of PSSJact(f, h) is preserved for every h ∈ Ut(f).

Proof. We need to show that there is an a in G which has the following property:

For any h ∈ Ut(f), if {Ht( f1) + h,Ht( f2), . . . ,Ht( fk)} are linearly independent, then so
are {Ht( f1)(a) + h(a),Ht( f2)(a), . . . ,Ht( fk)(a)}.

Now suppose this is not the case. Then it must be the case that without loss of generality, some
h ∈ Ut(f), PSSJact(f, h) has full rank but for any a ∈ G,

α1(Ht( f1)(a) + h(a)) +
k

∑
i=2

(αi · Ht( fi)(a)) = 0.

Here, not all of {αi}i∈[k] are zero. However by our hypothesis, this would mean that

α1(Ht( f1) + h) +
k

∑
i=2

(αi · Ht( fi)) ̸= 0.

Let B be a basis of the rows in PSSJact(f, h). Then each of {Ht( f1) + h,Ht( f2), . . . ,Ht( fk)} can
be written in terms of rows in B. Thus, the above statement can be rewritten as

K′

∑
i=1

βi · bi = α1(Ht( f1) + h) +
k

∑
i=2

(αi · Ht( fi)) ̸= 0

where {βi}i∈[K′] are some scalars, bi ∈ B and K′ = |B|.
This shows that not all {βi}K′

i=1 can be zero. Now since G is a hitting set generator for every
K′ × K′ minor in PSSJact(f), there is some a ∈ G such that {bi(a)}i∈[K′] continue to remain linearly
independent. Thus, ∑K′

i=1 βi × bi(a) ̸= 0, since not all {βi}i∈[K′] is zero. However, this shows that

α1(Ht( f1)(a) + h(a)) +
k

∑
i=2

(αi · Ht( fi)(a)) =
K′

∑
i=1

βi × bi(a) ̸= 0.

21



This contradicts our assumption, and so it must be the case that for any h ∈ Ut(f), the rank of
PSSJact(f, h) is preserved.

Now it is only a question of finding a hitting set generator of low degree, for every K′ × K′

minor of PSSJact(f) where K′ ≤ K.

Defining G when fi’s are sparse

When the fi’s are s-sparse, every entry of PSSJac(f) is a sum of products of at most t Hasse-
derivatives of the fi’s. Further the number of such products is at most (n+t

t ), and hence each
entry of PSSJac(f) has sparsity at most (n+t

t ) · st. When k, t are constants, then any K × K minor
of PSSJac(f) has sparsity sO(1) and hence standard hitting-set generators for sparse polynomials
[KS01, AB03] would be sufficient in this setting.

Defining G when fis are products of variable disjoint, multilinear, sparse polynomials

In exactly along the same lines as Agrawal et al. [ASSS16], we can construct hitting-set generators
for minors of PSSJac(f) when each fi is a product of variable disjoint, multilinear, sparse polyno-
mials.

The key observation is that when k, t = O(1), any K × K minor of PSSJac(f) only involves
derivatives over constantly many variables, say x1, . . . , xℓ with ℓ ≤ Kt. Since each fi is a product
of variable disjoint sparse polynomials, each row of this submatrix can be expressed as a common
factor F and a product of ℓ sparse polynomials. The reason is as follows.

If f = g.g′ where g′ is independent of variables in S ⊆ {x1, . . . , xn}, then for any
monomial xe that depends only on S we have

coeffxe(Ht( f )) = coeffxe(Ht(g)).g′(z).

Hence, the determinant of this matrix is a product of sparse polynomials (each of sparsity at most
sKt = poly(s) when k, t = O(1)). Once again, standard hitting-set generators for sparse polyno-
mials [KS01, AB03] are sufficient in this case as well.

5.1 Applications to PIT

Using Lemma 1.2, two straightforward corollaries for PIT for related models.

Corollary 1.6. If { f1, . . . , fm} ∈ F[x1, . . . , xn] is a set of s′-sparse polynomials with algebraic rank k and
inseparable degree t where k, t = O(1). Then, for the class of polynomials of the form C( f1, . . . , fm) for any
polynomial C(z1, . . . , zm) ∈ F[z], there is an explicit hitting set of size (s′ · deg(C))O(1).
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Proof. Without loss of generality, we may assume that F is algebraically closed (since nonzeroness
of polynomials remain unchanged when interpreted as polynomials over an extension). Suppose
{ f1, . . . , fk} is a separable transcendence basis for { f1, . . . , fm} with inseparable degree t.

By Theorem 1.5, we have a polynomial sized list of maps {Φi : F[x] → F[s, y0, . . . , yk, α]}, each
of degree poly(n) such that at least one of them is F-faithful for { f1, . . . , fk} (and hence also for
{ f1, . . . , fm}); let Φ be such a F-faithful homomorphism. From the construction of Theorem 1.5,
the homomorphism Φ has degree poly(s′). By Lemma 1.2, we know that C( f1, . . . , fm) = 0 if
and only if Φ(C( f1, . . . , fm)) is zero. Now that Φ(C( f1, . . . , fm)) is a polynomial in k + 3 = O(1)
variables, we can use the hitting set obtained from the polynomial identity lemma [Ore22, DL78,
Sch80, Zip79] to give hitting set of size poly(s′, deg(C)) for C( f1, . . . , fm).

Along exactly the same lines, we get the following corollary in the case when we are working
with depth-4 multilinear circuits of small algebraic rank and inseparable degree.

Corollary 1.7. Let C = ∑m
i=1 Ti be a depth-4 multilinear circuit of size s, where each Ti is a product

of variable-disjoint, s-sparse polynomials. Suppose {T1, . . . , Tm} ∈ F[x1, . . . , xn] is a set of polynomials
with algebraic rank k and inseparable degree t where k, t = O(1). Then, for the class of polynomials of
the form C(T1, . . . , Tm) for any polynomial C(z1, . . . , zm) ∈ F[z], there is an explicit hitting set of size
(s · deg(C))O(1).

As mentioned in the introduction, the above result is incomparable with the PIT results of
Pandey et al. [PSS18] and Kumar and Saraf [KS17].

6 Conclusion and open problems

We studied the task of constructing faithful homomorphisms in the finite characteristic setting
and extended the results of Agrawal et al. [ASSS16] in the setting when the inseparable degree is
bounded. There are some very natural open problems in this context.

• Are the homomorphisms constructed in the paper also F(s)-faithful homomorphisms?

Our proof only provides a recipe towards constructing F-faithful homomorphisms due to
technical obstacles involving the criterion for algebraic independence over finite character-
istic fields. The exact point where it fails is in the proof of Lemma 4.1. It is crucial that
h ∈ Ut(f) is s-free for our proof to work. This is not an issue in characteristic zero fields and
Agrawal et al. [ASSS16] construct F(s)-faithful homomorphisms.

• How crucial is the notion of inseparable degree in the context of testing algebraic indepen-
dence?
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The criterion of Pandey, Saxena and Sinhababu [PSS18] crucially depends on this field the-
oretic notion and there seems to be compelling algebraic reasons to believe that this is nec-
essary. However, as mentioned earlier, Guo, Saxena and Sinhababu [GSS19] showed that
algebraic independence testing is in AM ∩ coAM and this proof has absolutely no depen-
dence on the inseparable degree.
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