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Abstract

In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove
unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing
clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate
the study of OBDD based proof systems that additionally contain a rule that allows changing the order
in OBDDs. At first we consider a proof system OBDD(∧, reordering) that uses the conjunction (join)
rule and the rule that allows changing the order. We exponentially separate this proof system from
OBDD(∧) proof system that uses only the conjunction rule. We prove two exponential lower bounds on
the size of OBDD(∧, reordering) refutations of Tseitin formulas and the pigeonhole principle. The first
lower bound was previously unknown even for OBDD(∧) proofs and the second one extends the result
of Tveretina et al. from OBDD(∧) to OBDD(∧, reordering).

In 2004 Pan and Vardi proposed an approach to the propositional satisfiability problem based on
OBDDs and symbolic quantifier elimination (we denote algorithms based on this approach as OBDD(∧, ∃)
algorithms). An instance of the propositional satisfiability problem is considered as an existential quan-
tified propositional formula. The algorithm chooses an order on variables and creates an ordered binary
decision diagram (OBDD) D that initially represents the constant 1 function. Then the algorithm down-
loads to D clauses of the CNF one by one, and applies to D the elimination of the existential quantifier
for variable x if all clauses that contain x are already downloaded. We augment these algorithms with
the operation of reordering of variables and call the new scheme OBDD(∧, ∃, reordering) algorithms.
We notice that there exists an OBDD(∧, ∃) algorithm that solves satisfiable and unsatisfiable Tseitin
formulas in polynomial time. In contrast, we show that there exist formulas representing systems of
linear equations over F2 that are hard for OBDD(∧, ∃, reordering) algorithms. Our hard instances are
satisfiable formulas representing systems of linear equations over F2 that correspond to some checksum
matrices of error correcting codes.

1 Introduction

An ordered binary decision diagram (OBDD) represents a Boolean function. A Boolean function is repre-
sented as a branching program with two sinks such that on every path from the source to a sink variables
appear in the same order. This restriction on the order of variables allows handling the diagrams (compute
binary Boolean operations on diagrams, compute projections, or test satisfiability) very efficiently.

Atserias, Kolaitis and Vardi [2] proposed an OBDD-based proof system. This system is meant to prove
that a given CNF formula is unsatisfiable. For some order of variables π we represent clauses of the input
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formula as a π-ordered BDD; we may derive a new OBDD applying either the conjunction rule or the
weakening rule. (The authors of [2] supplied the system with one more rule — the projection, which derives
∃xD from D; we consider this rule as a special case of the weakening rule, so we do not need to allow it
explicitly.) A proof in this system is a derivation of an OBDD that represents the constant false function. We
refer to this proof system as the OBDD(∧,weakening) proof system. The OBDD(∧,weakening) proof system
simulates Cutting Planes with unary coefficients and thus it is stronger than Resolution. This proof system
provides also short refutations for the formulas that represent unsatisfiable systems of linear equations over
F2 [2], while linear systems are hard for Resolution. This observation motivates the study of the OBDD-
based algorithms (notice that the popular DPLL and CDCL algorithms correspond to tree-like and DAG-like
Resolutions).

Several strong lower bounds are known for different versions of OBDD proof systems. Segerlind [20]
proved an exponential lower bound for the tree-like version of OBDD(∧,weakening) proof system using the
communication complexity technique proposed in [3]. Krajicek [14] proved an exponential lower bound for
the DAG-like version of it using monotone feasible interpolation. Several papers study the OBDD-based
proof system that has only one inference rule — the conjunction rule (we refer to this system as OBDD(∧)
proof system). Groote and Zantema [11] showed that there is a formula φ (not in CNF) such that Tseitin
transformation of this formula does not have a short resolution proof but φ has short OBDD(∧) proof.
Tveretina, Sinz and Zantema [22] proved the lower bound 2Ω(n) for the pigeonhole principle PHPn+1

n in the
OBDD(∧) proof system. Friedman and Xu [9] proved an exponential lower bound for the complexity of
random unsatisfiable 3CNF formulas in restricted versions of OBDD(∧) proof systems (with a fixed order of
the variables) and an exponential lower bound for the running time on random unsatisfiable 3XOR formulas
of restricted versions of OBDD(∧) proof systems (with fixed orders of application of rules).

An interesting approach to solving propositional satisfiability was suggested by Pan and Vardi [19]. They
proposed an algorithm that chooses some order π on the variables of the input CNF formula F and creates
the current π-ordered BDD D that initially represents the constant true function, and a set of clauses S that
initially consists of all clauses of the formula F . Then the algorithm applies the following operations in an
arbitrary order:

conjunction (or join): choose a clause C ∈ S, delete it from S and replace D by the π-ordered BDD
representing C ∧D;

projection (or ∃-elimination): choose a variable x that has no occurrence in the clauses from S and
replace D by the π-ordered BDD representing ∃xD.

When S becomes empty, the algorithm stops and reports “unsatisfiable” if D represents the constant false
function and “satisfiable” otherwise. Every particular instance of this algorithm uses its own strategies to
choose an order of variables π and an order of application of the operations. We refer to these algorithms as
OBDD(∧, ∃) algorithms.

Pan and Vardi [19] investigated some specific strategies and compared them with DPLL based SAT solvers
and SAT solvers based on OBDDs without quantifier eliminations (we call them OBDD(∧) algorithms).
Experiments showed in particular that OBDD(∧, ∃) algorithms are faster than OBDD(∧) algorithms [19].
A result of [6] implies that an OBDD(∧, ∃) algorithm can solve PHPn+1

n in polynomial time. The lower
bounds for the OBDD(∧,weakening) proof systems mentioned above imply the same lower bounds for the
OBDD(∧, ∃) algorithms.

1.1 Statement of the problem

It is known that changing the order of the variables in an OBDD can be performed in time polynomial in the
sizes of the input and the output [17]. So it seems to be very restrictive to use the same order of variables in
all OBDDs in the proof. Hence, we propose to strengthen the OBDD proof systems with a supplementary
rule that dynamically reorders the variables in OBDDs.

In OBDD proofs, reordering rule may be applied to an arbitrary OBDD from the proof but the conjunction
rule may be applied only to OBDDs with the same order since the verification of the application of the
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conjunction to OBDDs in different orders is hard (this problem is coNP-complete, see [18, Lemma 8.14]).
The first aim of this paper is to prove lower bounds for the OBDD-based algorithms and proof systems

that use the reordering rule. The second aim is to show that reordering of the variables is really useful; we
give examples of formulas that are hard for the OBDD-based proof systems without reordering and easy
with reordering.

1.2 Our results

In Section 3, we consider the OBDD(∧, reordering) proof system. We prove two exponential lower bounds
for size of OBDD(∧, reordering)-derivations of the pigeonhole principle PHPn+1

n and Tseitin formulas based
on constant-degree algebraic expanders. The lower bound for pigeonhole principle extends the result of
Tveretina et al. [22] from OBDD(∧) proofs to OBDD(∧, reordering) proofs. (Besides, we believe that our
argument is simpler than the proof in [22].) The result for Tseitin formulas, to the best of our knowledge,
was not known even for the more restrictive OBDD(∧) proofs. In both arguments we use the same strategy:

• At first step, we prove an exponential lower bound on the size of the OBDD-representation for an ap-
propriate satisfiable formula. Assume that the original unsatisfiable formula is minimally unsatisfiable.
Roughly speaking, the satisfiable formula under consideration is equal to the original unsatisfiable
formula with one canceled clause. For example, for the pigeonhole principle the appropriate satisfiable
formula would be PHPnn; for the Tseitin formulas such an appropriate formula is a satisfiable Tseitin
formula. This part of the proof is quite cumbersome but it involves only rather elementary techniques
of lower bounds for OBDD.

• Consider the last derivation step. It consists in the conjunction for F1 and F2 in the same order π. Our
goal is to prove that at least one of F1 and F2 has an exponential size. Both F1 and F2 are satisfiable
and they are conjunctions of different sets of clauses of the initial formulas. The idea is to construct
partial substitutions ρ1 and ρ2 with the same support such that the formula F1|ρ1

∧F2|ρ2
is isomorphic

to the satisfiable formula from the first step. Then any OBDD representation of F1|ρ1
∧ F2|ρ2

has
exponential size. Hence, the size of either F1|ρ1

or F2|ρ2
is large for the order π. Thus, the size of

either F1 or F2 is large for the order π.

In Section 4, we construct an example of a family of formulas that are easy for the OBDD(∧, reordering)
proof system but hard for the OBDD(∧) proof system.

In Section 5, we study OBDD(∧, ∃, reordering) algorithms. At first, we notice that there exists an
OBDD(∧, ∃) algorithm that solves satisfiable and unsatisfiable Tseitin formulas in polynomial time. In
contrast, we show that there exist formulas representing systems of linear equations over F2 that are hard for
OBDD(∧, ∃, reordering) algorithms. More specifically, we describe a construction of a family of satisfiable
formulas Fn on n variables in O(1)-CNF such that every OBDD(∧, ∃, reordering) algorithm runs at least
2Ω(n) steps on Fn.

The plan of the proof is as follows.

• We prove that if C ⊆ {0, 1}n is the set of codewords of a list-decodable code that allows to correct 2
3n

of erasures, then every OBDD that represents the characteristic function of C (χC) has a big size (this
size proved to be close to the number of all codewords in the code). Moreover, this property holds
even for the projections of χC onto any 1

6n coordinates. Notice that a similar result was known for
error-correcting codes with large enough minimal distance (see for example the paper of Duris et al. [8]).
Guruswami [12] showed that the codes with large enough minimal distance are erasure list-decodable
but the opposite statement does not hold.

• In Section 6.1, we give a randomized construction of the required linear code. This construction is
based on random checksum matrix. We use the codes of Gallager [10] that contain O(1) ones per row.
We prove that such a random code with a high probability enjoys the following expansion property:
every 1

6n columns of the matrix contain ones in almost all rows. And in Section 6.2 we give an explicit
construction of the required linear code.
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• We consider the execution of an OBDD(∧, ∃, reordering) algorithm on CNF formula that corresponds
to the CNF representation of the checksum matrix of the code. We study two cases:

1. the algorithm applies the projection rule less than n
6 times;

2. the projection rule is applied at least n
6 times.

In the first case, we focus on the OBDD at the end of the execution of the algorithm; its size should
be exponential due to the properties of the code. In the second case, we consider the first moment in
the computational process when we apply exactly n

6 projection operations. By the expansion property,
OBDD D is a projection of almost the entire formula, thus its size should be close to the size of the
OBDD of the characteristic function of the code. That is, the size of D should be large enough.

As we mentioned above, the previously known lower bounds for tree-like and DAG-like
OBDD(∧,weakening) proofs imply lower bounds for OBDD(∧, ∃) algorithms. So, what is new in our re-
sults comparative to the lower bounds proven by Segerlind [21] and Kraj́ıček [14]? First of all, our lower
bound also works for the reordering operation. The second advantage of our construction is that we come up
with quite a natural class of formulas (our formulas represent linear systems of equations that define some
error correcting codes), while the constructions in [14,21] seem to be rather artificial. Further, we prove the
lower bound 2Ω(n) for a formula with n variables, whereas the previously known lower bounds are of the type
2n

ǫ

(for some ǫ < 1/5). Besides, we proposed a new technique that might be applicable for other classes of
formulas.

2 Preliminaries

2.1 OBDD

An ordered binary decision diagram (OBDD) is a data structure that is used to represent Boolean functions.
Let Γ = {x1, . . . , xn} be a set of propositional variables. A binary decision diagram is a directed acyclic
graph with one source. Every vertex of the graph is labeled by a variable from Γ or by constants 0 or 1. If a
vertex is labeled by a constant, then it is a sink (has out-degree 0). If a vertex is labeled by a variable, then
it has exactly two outgoing edges: one edge is labeled by 0 and the other edge is labeled by 1. Every binary
decision diagram defines a Boolean function {0, 1}n → {0, 1}. The value of the function for given values of
x1, . . . , xn is computed as follows: we start a path at the source and on every step we go along the edge that
corresponds to the value of the variable at the current vertex. Every such path reaches a sink labeled by the
constant; this constant is the value of the function. The size of an OBDD is equal to the number of vertices
in the graph.

Let π be a permutation of the set {1, . . . , n}. A π-ordered binary decision diagram (BDD) is a binary
decision diagram such that on every path from the source to a sink every variable has at most one occurrence
and variable xπ(i) can not appear before xπ(j) if i > j. An ordered binary decision diagram (OBDD) is a
π-ordered binary decision diagram for some permutation π. Additionally, a binary decision diagram is called
k-OBDD if every path from the source to a leaf can be split into at most k parts such that in each part the
variables appears with respect to a fixed order π.

OBDDs have the following nice property: for every order of variables every Boolean function has a
unique minimal OBDD. For a given order π, the minimal OBDD of a function f may be constructed in
polynomial time from any π-ordered BDD for the same f . There are also known polynomial-time algorithms
that efficiently perform the operations of conjunction, negation, disjunction, and projection (elimination of
the existential quantifier) to π-ordered BDDs [17]. There is an algorithm running in time polynomial in the
size of the input and the output that gets as an input a π-ordered diagram A, a permutation ρ and returns
the minimal ρ-ordered diagram that represents the same function as A [17].
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2.2 Communication Complexity

In order to prove lower bounds on the size of an OBDD representation of a function we will use communication
complexity.

Let f : {0, 1}n → {0, 1} be some function and Π = (Π0,Π1) be a partition of [n] i.e. Π0 ∪ Π1 = [n] and
Π0 ∩Π1 = ∅. Two players Alice and Bob want to compute f(x) for some x. However, Alice knows only bits
of x with indices from Π0 and Bob knows bits of x with indices from Π1. In order to compute the value they
can use a two-sided communication channel. They agreed in advance about a protocol; on each step of the
protocol one of them send a bit string to another, at the end of the protocol both Alice and Bob should know
f(x). The cost of the protocol is the maximal number of bits they sent to each other. The communication
complexity of f with respect to the partition Π is equal to the minimal cost of the protocols for f (for the
formal definition see [15]).

It is well-known that there is a connection between communication complexity and the minimal size of
an OBDD representation.

Lemma 2.1 ([15]). Let f : {0, 1}n → {0, 1} be a Boolean function, Π be a partition of [n]. Then for any
order π such that elements of Π0 precedes elements of Π1 in this order, any π-OBDD representation of f
has size at least 2C where C is equal to the communication complexity of f with respect to Π.

Moreover, the size of every π-k-OBDD representation of f is at least 2C/2k.

Proof. Let us fix some π-k-OBDD representation D of f . Let us consider the path p in D from the source
to a sink corresponding to the Alice and Bob’s input x.

Since D is a k-OBDD, this path can be split into k parts so that in each part all variables appear
according to the order π. This implies that the path can be split into 2k blocks so that in each block either
all variables are known to Alice or all variables are known to Bob.

Let us show that Alice and Bob can find the sink of the path using 2k log |D| bits of communication.
They do it in 2k rounds; starting from the source (which is known to both of them) they follow the path,
and on each round one of the players sends to the other the name of the vertex where the current block ends;
at the end, when one player reaches the sink, this player communicate the name of the sink to the other
one. The value f(x) is determined by the sink vertex. Hence, the communication complexity of f is at most
(2k + 1) log |D|.

In what follows, we will need to prove lower bounds on communication complexity. First of all we recall
the technique of combinatorial rectangles. Let f : X × Y → {0, 1} be a function. We say that R = A×B is
a 1-monochromatic rectangle for f iff A ⊆ X, B ⊆ Y , and for every a ∈ A and b ∈ B, f(a, b) = 1. We say
that a sequence of rectangles R1, . . . , Rℓ is a partition of X × Y into 1-monochromatic rectangles iff

• Ri ∩Rj = ∅ for every i, j ∈ [ℓ] and

• for every x ∈ X and y ∈ Y , f(x, y) = 1 iff (x, y) ∈ Ri, for some i.

Lemma 2.2 ([15]). Let f : {0, 1}n → {0, 1} be a Boolean function and Π be a partition of [n]. If any partition
of {0, 1}Π0 × {0, 1}Π1 into 1-monochromatic rectangles has at least T rectangles, then the communication
complexity of f is at least log T .

Lemma 2.3. Let f : {0, 1}n → {0, 1} be a Boolean function and Π be a partition of [n]. If there are
substitutions ρ1, . . . , ρℓ to the variables {xi | i ∈ Π0} such that

• for every i ∈ [ℓ] the function f |ρi
is satisfiable and

• for every i 6= j ∈ [ℓ] the satisfying assignments of f |ρi
and f |ρj

are disjoint.

Then the communication complexity of f with respect to Π is at least ⌊log ℓ⌋.

To prove this lemma we need the following lemma.
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Lemma 2.4 ([15]). Let EQn(x1, . . . , xn, y1, . . . , yn) be a Boolean function such that
EQn(x1, . . . , xn, y1, . . . , yn) = 1 iff xi = yi for all i ∈ [n] and Π = ([1, n], [n+ 1, 2n]) be a partition.

The Communication complexity of EQn with respect to the partition Π is equal to n+ 1.

Proof of Lemma 2.3. Let us assume that there is a communication protocol P for f of cost S. We are going
to show that there is a protocol for EQ⌊log ℓ⌋ of cost S and hence, by Lemma 2.4, S ≥ ⌊log ℓ⌋.

Let us assume that Alice knows x ∈ {0, 1}⌊log ℓ⌋ and Bob knows y ∈ {0, 1}⌊log ℓ⌋ and they wish to check
whether x = y.

Let y be the binary representation of j and x be the binary representation of i. In order to check whether
x = y, Bob finds a satisfying assignment τ for f |ρj

. After that they run the protocol P for ρi and τ . Note
that if x = y, then ρi = ρj and τ satisfies f |ρi

= f |ρj
, i.e., f |ρiτ = 1; otherwise i 6= j and sets of satisfying

assignments of f |ρi
and f |ρj

are disjoint, hence, f |ρiτ = 0.

2.3 OBDD proofs

If F is a formula in CNF, we say that the sequence D1, D2, . . . , Dt is an OBDD-derivation of F if Dt is an
OBDD that represents the constant false function, and for all 1 ≤ i ≤ t, Di is an OBDD that represents a
clause of F or can be obtained from the previous Dj ’s by one of the following inference rules:

conjunction or join: Di is a π-ordered OBDD, that represents Dk∧Dl for 1 ≤ l, k < i, where Dk, Dl have
the same order π;

weakening: there exists a j < i such that Dj and Di have the same order π, and Dj semantically implies
Di. The latter means that every assignment that satisfies Dj also satisfies Di;

reordering: Di is an OBDD that is equivalent to an OBDD Dj with j < i (note that Di and Dj may have
different orders).

We consider several different OBDD proof systems with different sets of allowed rules. When we need to
denote some specific proof system, we indicate the rules specific for this system in brackets. For example,
the OBDD(∧) proof system uses only conjunction rule and hence, we may assume that all OBDDs in a proof
have the same order. We use the notation π-OBDD(∧) proof if all diagrams in this proof have order π.

2.4 OBDD algorithms for SAT

Pan and Vardi [19] proposed for the Boolean satisfiability problem the following family of algorithms based
on OBDDs and the symbolic quantifier elimination.

The algorithm gets as an input a CNF formula F , it chooses some order π on the variables and creates
both a π-ordered OBDD D (which initially is equal to the constant true function) and a set of clauses S
(which initially consists of all clauses of the formula F ). While S is not empty the algorithm applies one of
the following three operations:

join or conjunction delete some clause C from S and replace D by a π-ordered BDD that represents the
conjunction D ∧ C;

projection choose a variable x that has no occurrences in the clauses from S and replace D by a π-ordered
BDD for the function ∃x D;

reordering choose a new order on variables π′ and replace D by the equivalent π′-ordered diagram. Assign
π := π′. (Note that Pan and Vardi did not consider this rule in [19]).

After every step of the algorithm, the following invariant is maintained: F is satisfiable if and only if
∧

C∈S

C∧D
is satisfiable. After the termination of the algorithm the set S is empty; if the diagram D has a path from
the source to a vertex labeled by 1, then the algorithm returns “Satisfiable” and returns “Unsatisfiable”
otherwise.
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We refer to the algorithms of this type as OBDD(∧, ∃, reordering) algorithms. Besides, we use a similar
notation for algorithms that use some of the rules: we just enumerate the used rules in the brackets. For
example, the OBDD(∧) algorithms use only the conjunction rule and the OBDD(∧, ∃) algorithms use only
the conjunction and projection rules.

Since join and projection for OBDDs may be performed in polynomial time and reordering may
be performed in time polynomial on the sizes of the input and the output, the running time of an
OBDD(∧, ∃, reordering) algorithm are polynomially related with the total sum of the sizes of all values
in the diagram D we ignore the time spent on choosing π and other operations with the permutation.

2.5 Error-correcting codes

By a code we mean a subset of binary strings with a fixed length. A code C ⊆ {0, 1}n has a relative distance
δ if for any two codewords c1, c2 ∈ C the Hamming distance between c1 and c2 is at least δn.

A linear code is a set of all n-bits vectors x = (x1 . . . xn) from some linear subspace in F
n
2 . If k is the

dimension of this space, then the ratio k/n is called the rate of the code.
A linear code can be specified by a system of linear equations. For a code of dimension k this system

should consist of m ≥ n − k linear equations involving n variables. The set of all solutions of the system
should give exactly our code, so the rank of the system must be equal to n−k. If we require in addition that
the equations in the system are linearly independent, then the number of equations is equal to m = n − k.
The matrix of this linear system is called a checksum matrix of the code.

For a checksum matrix (hij) over F2 we say that a column i intersects a row j, if hij = 1. Further, we say
that a tuple of columns 〈i1, . . . , is〉 intersects some row j if at least one of the columns i1, . . . , is intersects
row j.

We say that a code C recovers ρ fraction of erasures by a list of size L (or C is (ρ, L)-erasure list-decodable)
if for any w ∈ {0, 1, ?}n such that the number of ? in w does not exceed ρn, there exist at most L elements
in C that are consistent with w. A string s ∈ {0, 1}n is consistent with w if for all i, wi ∈ {0, 1} implies
si = wi.

Theorem 2.5 ([12, Lemma 2]). If C is a code with relative distance δ, then for every ǫ > 0 the code C is
((2− ǫ)δ, 2ǫ )-erasure list-decodable.

3 Lower bounds for OBDD(∧, reordering)
3.1 Tseitin formulas

In this Section, we prove an exponential lower bound on the size of OBDD(∧, reordering) proofs of Tseitin
formulas.

A Tseitin formula TSG,c is based on an undirected graph G = (V,E) with degree bounded by a constant
d. Every edge e ∈ E has the corresponding propositional variable pe. There is a function c : V → {0, 1},
we call it the labelling function. For every vertex v ∈ V we write down a formula in CNF that encodes

∑

u∈V :(u,v)∈E,u6=v

p(u,v) ≡ c(v) (mod 2). The conjunction of the formulas described above is called a Tseitin

formula. If
∑

v∈U

c(v) ≡ 1 (mod 2) for some connected component U ⊆ V , then the Tseitin formula is

unsatisfiable. Indeed, if we sum up (modulo 2) all equalities stated in vertices from U we get 0 = 1 since
every variable has exactly 2 occurrences. If

∑

v∈U

c(v) = 0 for every connected component U , then the Tseitin

formula is satisfiable ([23, Lemma 4.1]).
Note that if formulas TSG,c and TSG,c′ are satisfiable and c 6= c′ then TSG,c and TSG,c′ are different

functions; moreover, any satisfying assignment of TSG,c can not satisfy TSG,c′ .
In the following, we denote the number of connected components of a graph G by ♯G.
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Theorem 3.1. Let graph G with vertices V and edges E have the following property: for some m ∈ [|E|] and
k > 0 for all subsets E′ ⊆ E of the size m the inequality ♯G′ + ♯G′′ ≤ k holds, where G′ and G′′ are graphs
with vertices V and edges E′ and E \ E′ respectively. If TSG,c is satisfiable then communication complexity
of TSG,c is at least |V | − k.

Proof. Let us fix an order π of the variables of TSG,c (i.e. π orders the edges of G). Let E′ be the set of
the first m edges in this order. We show that there are at least 2|V |−k substitutions to the variables from
E′ such that applying each of these substitutions to TSG,c results in 2|V |−k satisfiable functions with disjoint
sets of satisfying assignments. Then due to Lemma 2.3, the communication complexity of TSG,c is at least
|V | − k.

Let c′ : V → {0, 1} be a labeling function that corresponds to a partial substitution with support E′:
in every vertex v, c(v) is the sum modulo 2 of the values of all edges from E′ that are incident to v. Note
that making a partial substitution to a Tseitin formula TSG,c gives as the resulting formula again a Tseitin
formula — some formula TSG′′,c+c′ , where G

′′ is a graph with vertices V and edges E \E′, and c+ c′ is the
sum of the functions c and c′ modulo 2.

We will prove a lower bound for the number of different c′ such that they can be obtained by a substitution
and TSG′′,c+c′ is satisfiable. The required properties of c′ can be described by a system of linear equations
with variables c′(v) for v ∈ V : for every connected component U of graph G′ with vertices V and edges E′

we put down the equation:
∑

v∈U

c′(v) = 0 (this subsystem states that c′ can be obtained by a substitution

or in other words that TSG′,c′ is satisfiable) and for each connected component W of G′′ we put down the
equation:

∑

v∈W c(v) + c′(v) = 0 (this subsystem corresponds to the satisfiability of TSG′′,c+c′).
The system has a solution since TSG,c is satisfiable. There are |V | variables and at most ♯G′ + ♯G′′ ≤ k

equations. Hence, there is at least 2|V |−k solutions. Different solutions correspond to different satisfiable
formulas TSG′′,c+c′ and thus their sets of satisfying assignments are disjoint.

We will apply Theorem 3.1 to algebraic expanders.

Definition 3.2. A graph G with vertices V and edges E is an (n, d, α)-algebraic expander, if |V | = n, the
degree of any vertex in V equals d and the absolute value of the second largest eigenvalue of the adjacency
matrix of G is not greater than αd.

It is well known that for all α > 0 and all large enough constants d there exists a family Gn of (n, d, α)-
algebraic expanders. There are explicit constructions such that Gn can be constructed in poly(n) time [16].
Also, it is known that a random d-regular graph is a good expander with high probability.

Lemma 3.3 ([1]). (Expander mixing lemma) Let G(V,E) be an (n, d, α)-expander. For any two subsets

S, T ⊆ V the following inequality holds: |E(S, T )| − d|S||T |
n | ≤ αd

√

|S||T |, where E(S, T ) = {(u, v) | u ∈
S, v ∈ T, (u, v) ∈ E}.

Lemma 3.4 ([5]). (Cheeger’s inequality) Let G(V,E) be an (n, d, α)-expander. For every set S ⊆ V , |S| ≤ n
2

the following inequality holds: |E(S, V \ S)| ≥ 1−α
2 d|S|.

Theorem 3.5. Let G(V,E) be an (n, d, α)-algebraic expander for α < 1
2 . Then for any E′ ⊆ E if |E′| = n

4d ,
then ♯G′ + ♯G′′ ≤ n(1− ǫ) + 2, where G′ is a graph with vertices V and edges E′, G′′ is a graph with vertices
V and edges E \ E′ and ǫ = 1

8d(αd+1) − 1
d2 . Note that ǫ > 0 if α < 1/32 and d ≥ 4.

Proof. At first we prove the following proposition.

Proposition 3.6. For any connected component C of G′′ either |C| ≤ 4|E′|
d or |C| > |V |

2 .

Proof. Assume for the sake of contradiction that there is a connected component C such that 4|E′|
d < |C| ≤

|V |
2 . By Lemma 3.4 applied to the graph G, we have that |E(C, V \ C)| ≥ 1−α

2 d|C| ≥ d
4 |C| > |E′|. Hence,

there are edges between C and V \ C in G′′, we get a contradiction.
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Let us prove that ♯G′′ ≤ 4|E′|
d + 2. By Proposition 3.6, if the size of a connected component of G′′ is at

least 4|E′|
d then the size of this component is greater than |V |

2 ; hence, there is at most one component with

size at least 4|E′|
d . Consider all other components. If the number of these components is at least 4|E′|

d + 1,
we choose several of them such that the total number of vertices in the chosen components is in the interval

[ 4|E
′|

d + 1, 8|E
′|

d + 1]. We denote the set of vertices in these components by T . Since T consists of several
connected components in G′′ we have that |E(T, V \ T )| = 0 in G′′ and thus E(T, V \ T ) ≤ |E′| in G. Since
|T | ≤ 8|E′|

d + 1 = 2n
d2 + 1 ≤ n

2 , it follows from Lemma 3.4 that |E(T, V \ T )| ≥ 1−α
2 d|T | > |E′| in G; so we

get a contradiction.

Now we prove that ♯G′ ≤ n− |E′|
2(αd+1) . Let S be a set of a vertices incident to E′. Note that if H is the

graph with vertices S and edges E′ then |V | − ♯G′ = |S| − ♯H and the degree of each vertex of H is at least

one. Hence, ♯H ≤ |S|
2 and ♯G′ ≤ n− |S|

2 .

By Lemma 3.3 for the graph G we have that |E(S, S)| ≤ d
|V | |S|2 + αd|S| ≤ |S|(αd + d

|V | |S|) ≤ |S|(αd +
2d
|V | |E′|) ≤ |S|(αd+ 1). However |E(S, S)| ≥ |E′| since we count each edge from E′ at least once in E(S, S).

Hence, |S| ≥ |E′|
αd+1 and ♯G′ ≤ n− |E′|

2(αd+1) .

Finally, we get ♯G′ + ♯G′′ ≤ n− |E′|
2(αd+1) +

4|E′|
d + 2 = n(1− ( 1

8d(αd+1) − 1
d2 )) + 2.

Corollary 3.7. Let G be an (n, d, α)-algebraic expander with α < 1
32 and d ≥ 4. Assume that a Tseitin

formula TSG,c is satisfiable. Then for every partition Π of the variables of TSG,c such that |Π0| = n
4d ,

communication complexity of TSG,c is at least Ω(n).

Proof. Follows from Theorems 3.1 and 3.5.

Corollary 3.8. If k > 0 is an integer constant, a graph G is an (n, d, α)-algebraic expander for α < 1
32 and

d ≥ 4, and a Tseitin formula TSG,c is satisfiable, then every k-OBDD representing TSG,c has size at least
2Ω(n).

Proof. Follows from Corollary 3.7 and Lemma 2.1.

Corollary 3.9. Let graph Hn be obtained from an (n, d, α)-expander G(V,E) with α < 1
32 and d ≥ 4 by

removing o(n) edges. If TSHn,c is satisfiable, then every OBDD representation of TSHn,c has size at least
2Ω(n).

Proof. Let M be a set of edges of Hn, E
′ ⊂M such that |E′| = n

4d , and H
′, G′′, H ′′ be graphs with vertices

V and edges E′, M \ E′ and E \ E′ respectively. Obviously ♯H ′′ ≤ ♯G′′ + o(n). By Corollary 3.8 size of an
OBDD for TSHn,c is at least 2Ω(n) since ♯H ′ + ♯G′′ ≤ (1− ǫ)n+ 1.

Lemma 3.10 ([24]). 1. If for functions f1 : {0, 1}n → {0, 1} and f2 : {0, 1}n → {0, 1} there exist π-
ordered BDDs (for some order π) with sizes k1 and k2 respectively then there exists a π-ordered BDD
of size at most k1k2 for f1 ∧ f2.

2. If for a function f : {0, 1}n → {0, 1} there exists a π-ordered BDD of a size k then for any substitution
ρ there exists a π-ordered BDD for f |ρ of size at most k.

Lemma 3.11. Assume that all OBDDs representing a CNF formula φ have the size at least k. Assume
that a CNF formula ψ can be obtained from φ by removing several clauses that are dependent on at most t
variables in total. Then the size of any OBDD representing ψ is at least k2−t−1.

Proof. The conjunction of the removed clauses is a function of t variables, hence it can be represented as
OBDD of size at most 2t+1 for every order. Thus if ψ has OBDD representation of size less than k2−t−1 by
Lemma 3.10, then φ has OBDD representation of size k.

Lemma 3.12. Let G(V,E) be an (n, d, α)-algebraic expander with α < 1
20 and d ≥ 50. Then G is connected

and it remains connected after removing of any vertex or any two vertices and the shortest path between
them.
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Proof. It is sufficient to prove that G is connected after removing any two vertices and the shortest path
between them. Consider arbitrary two vertices x, y ∈ V and consider an arbitrary set S ⊆ V \ {x, y} such
that |S| ≤ |V \({x, y}∪S)|. We will show that there is v ∈ S such that E({v}, V \({x, y}∪S)) ≥ 3. This will
imply that after removing x and y and the shortest xy-path from G the resulting graph is connected. Indeed
if it is not connected, then we get a contradiction for S that is equal to the smallest connected component.
In this case the shortest xy-path may contain at most 2 edges incident to v, hence, there is an edge that
goes from S to V \ ({x, y} ∪ S).

By Cheeger’s inequality (Lemma 3.4) |E(S, V \ S)| ≥ 1−α
2 d|S|. Since the degrees of x and y are at least

d, we get E(S, V \ (S ∪ {x, y})) ≥ 1−α
2 d|S| − 2d. If |E(S, V \ (S ∪ {x, y}))| > 2|S|, then the required v

exists by the averaging principle. Assume that E(S, V \ (S ∪ {x, y})) ≤ 2|S|, hence 1−α
2 d|S| − 2d ≤ 2|S| and

( 1−α
2 d− 2)|S| ≤ 2d, and since α < 1

20 and d > 50, then |S| < 5.

If |S| < 5, then the expander mixing lemma implies that |E(S, {x, y})| ≤ d
n2|S| + αd

√

2|S| ≤ 5αd. By
Cheeger’s inequality |E(S, V \ S)| ≥ 1−α

2 d|S| and |E(S, V \ (S ∪ {x, y}))| ≥ 1−α
2 d|S| − 5αd ≥ 10 > 2|S| for

α < 1
20 and d > 50; and this is a contradiction.

Lemma 3.13. Let G be an (n, d, α)-algebraic expander with d ≥ 4, α < 1
32 . Let Tseitin formula TSG,c be

unsatisfiable and Φ denote the formula that can be obtained from TSG,c by removing one arbitrary clause.
Then Φ is satisfiable and every OBDD representation of Φ has the size 2Ω(n).

Proof. Assume that TSG,c = Φ ∧ C, where C is a clause that corresponds to the equation in a vertex v.
Let H be the result of removing the vertex v from G. By Lemma 3.12 the graph H is connected. Let
us make a substitution to all variables of the clause C that falsifies C. Let Φ′ denote the result of this
substitution applied to Φ. Since the substitution falsifies the parity condition at the vertex v, Φ′ corresponds
to a satisfiable Tseitin formula based on H. By Corollary 3.9 the size of every OBDD for Φ′ is at least 2Ω(n).
(Formally we apply Corollary 3.9 to the graph H with one additional isolated vertex v. Note that a Tseitin
formula does not change if we add isolated vertex to the graph). Φ′ is the result of the substitution applied
to Φ, hence, the size of every OBDD representing Φ is at least 2Ω(n).

Theorem 3.14. Let G be an (n, d, α)-algebraic expander with d ≥ 50, α < 1
32 . Then any

OBDD(∧, reordering) proof of any unsatisfiable Tseitin formula TSG,c has the size at least 2Ω(n).

Before we present the formal proof of the theorem let us sketch the argument. We consider the last
step of the OBDD proof: the conjunction of OBDDs F1 and F2 is the identically false function but both
F1 and F2 are satisfiable. Both F1 and F2 are conjunctions of several clauses of TSG,c. We use the fact
that a satisfiable Tseitin formula based on an expander has only exponential sized OBDDs. Moreover, if the
underlying graph differs from some expander by o(n) edges, then any of its OBDD representations has also
an exponential size, since the number of connected component of graphs G′ and G′′ in Theorem 3.5 changes
by at most o(n).

Note that F1 and F2 together contain all clauses of TSG,c. The main case is the following: there are two
nonadjacent vertices u and v such that F1 does not contain a clause Cu that corresponds to the vertex u
and F2 does not contain a clause Cv that corresponds to v. We consider two partial substitutions ρ1 and ρ2
that are both defined on the edges adjacent to u and v and on the edges of a fixed shortest path p between
u and v. The substitutions ρ1 and ρ2 assign opposite values to edges of the path p and are consistent on all
other edges. The substitution ρ1 satisfies Cv and refutes Cu and ρ2 satisfies Cu and refutes Cv.

By the construction F1|ρ1
∧F2|ρ2

is a satisfiable Tseitin formula based on the graph that is obtained from
G by deletion of the vertices u and v and all edges from the path p (it is also possible that this formula does
not contain some clauses for the vertices from p). The size of an OBDD representation of such a formula
is exponential since the underlying graph is obtained from an expander by removing at most o(n) vertices.
(Note that p is the shortest path in the expander, thus p contains at most O(log n) edges.) Hence, we get
that either F1 or F2 has an exponential size in the given order.

Proof. We consider the last step of the proof: conjunction of OBDDs F1 and F2 is the identically false
function but F1 and F2 are satisfiable. Both F1 and F2 are conjunctions of several clauses of TSG,c. Every
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clause of TSG,c is either in F1 or in F2 since otherwise F1 ∧ F2 is satisfiable by Lemma 3.13. Our goal is to
prove that either F1 or F2 has size 2Ω(n).

We consider two cases:

1. There exist two non-adjacent vertices u and v from G such that F1 does not include some clause Cv

that corresponds to vertex v and F2 does not include some clause Cu for vertex u.

Consider a shortest path p from v to u. Let ev be the first edge of p and eu be the last edge (ev 6= eu
since u and v are non-adjacent). Consider two substitutions ρ1 and ρ2 with the same support: all
edges that are incident to u or v and all edges from p. Substitutions ρ1 and ρ2 are consistent on edges
that are out of p: all edges that are adjacent to u or v but not in p have values that do not satisfy Cu

and Cv (this is possible since u and v are non-adjacent). ρ1 substitute zeros to all edges from p except
eu and ev and substitute a value to ev that does not satisfy Cv and a value to eu that satisfies Cu. ρ2
substitute ones to all edges from p except eu and ev and substitute a value to ev that satisfies Cv and
a value to eu that does not satisfy Cu. So edges from p have different values in ρ1 and ρ2; ρ1 satisfies
u and refutes v and ρ2 refutes u and satisfies v.

Consider the graph G′ that can be obtained from G by removing u, v and all edges from the path p.
The graph G′ is connected since by Lemma 3.12 after removing any two vertices with the shortest path
between them the graph G remains connected.

Let c′ be a labeling function of the result of the substitution ρ1 applied to TSG,c and c
′′ be a restriction

of c′ on V \{u, v}. Note that ρ2 corresponds to the same c′′ since ρ1 and ρ2 identically change the value
of the labelling function for all vertices except u and v. We claim that TSG′,c′′ is satisfiable. Indeed if
we make a substitution ρ1 to TSG,c the vertex v would be refuted (it has no edges and it is labeled by
1), the vertex u would be satisfied (it has no edges and it is labeled by 0), all other vertices are marked
according c′. Thus the sum of values of c′′ is even and TSG′,c′′ is satisfiable since G′ is connected.

We consider the conjunction F1|ρ1
∧F2|ρ2

. Any satisfying assignment of TSG′,c′′ satisfies both F1|ρ1
and

F2|ρ2
, hence, F1|ρ1

∧F2|ρ2
is satisfiable. Let us represent F1|ρ1

∧F2|ρ2
as a conjunction of clauses. For

every vertex w that is not in p, the union of clauses of F1 and F2 contains all clauses that correspond
to the equation at vertex w, substitutions ρ1 and ρ2 are consistent for all variables from this equation,
hence, F1|ρ1

∧F2|ρ2
contains all clauses that correspond to the equation of vertex w in formula TSG′,c′′ .

Consider a vertex w from p (w /∈ {u, v}). Let ρ1 and ρ2 substitute some values to variables x and y
that correspond to w. Note that by the construction ρ1(x) + ρ1(y) = ρ2(x) + ρ2(y). Hence, each of
F1|ρ1

and F2|ρ2
contains several clauses from the equation that corresponds to w in TSG′,c′′ . And it is

not necessary that F1|ρ1
∧ F2|ρ2

contains all clauses from the equation that correspond to w. Finally,
F1|ρ1

∧ F2|ρ2
can be obtained from TSG′,c′′ by the removing of several clauses corresponding to the

vertices from the path p. It is well known that the diameter of any (n, d, α)-expander is O(log n), hence,
p contains at most O(log n) vertices.

The size of any OBDD representation of the formula TSG′,c′′ is at least 2Ω(n) by Corollary 3.9, since
G′ can be obtained from an (n, d, α)-algebraic expander by the removing of O(log n) edges (formally
we add two isolated vertices u and v to G′; adding isolated vertices does not change Tseitin formulas).
Then by Lemma 3.11, any OBDD representing F1|ρ1

∧ F2|ρ2
has the size at least 2Ω(n). Thus, by

Lemma 3.10, for every given order of variables π either F1|ρ1
or F2|ρ2

has the size of the minimal
π-OBDD at least 2Ω(n). Hence, the minimal π-OBDD for F1 or F2 has the size of the at least 2Ω(n).

2. In the second case there are no such non-adjacent vertices. Since F1 is not identically false, there
exists a vertex u such that F1 does not include a clause that corresponds to a vertex u and by the
assumption F2 does not include clauses only for the vertex v and its neighbors. In this case F2 differs
from a Tseitin formula without one clause by a constant number of clauses that depend on a constant
number of variables. Thus any OBDD representation of F2 by Lemmas 3.13 and 3.11 has size at least
2Ω(n).
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3.2 Pigeonhole principle

In this section we consider formulas that encode the pigeonhole principle and prove an exponential lower
bound on the size of OBDD(∧, reordering) proofs of them.

Let m and n be integers and pi,j be different variables; pi,j states whether the ith pigeon is in the jth
hole or not. The formula PHPmn has two types of clauses. The clauses of the first type (long clauses) state

that every pigeon is in at least one hole:
n∨

j=1

pi,j for all i ∈ [m]. The clauses of the second type (short clauses)

state that in every hole there is at most one pigeon: ¬pi,k ∨ ¬pj,k for all k ∈ [n] and all i 6= j ∈ [m].

Lemma 3.15. For every partition Π such that |Π0| = n2

96 , the communication complexity of PHPnn with respect
to Π at is least Ω(n).

Proof. Let us fix some partition of variables Π such that |Π0| = n2

96 .
Consider a bipartite graph G(L,R,E) with two parts L and R associated with [n] and the set of edges

E associated with Π0, i.e., (i, j) ∈ E iff pi,j ∈ Π0. Let G′(L,R,E′) be the complement bipartite graph, i.e.,
E′ = [n] × [n] \ E. Let v1, v2, . . . , vn be the vertices of R ∪ L sorted by decreasing of their degrees in G:
deg v1 ≥ deg v2 ≥ · · · ≥ deg v2n.

Let k be the maximum number such that deg vk ≥ 3k. Note that n2

48 = 2|E| ≥
k∑

i=1

deg vi ≥ 3k2, and

therefore k ≤ n
12 . Further, 2|Π0| = n2

48 =
2n∑

i=1

deg vi ≤ nk + (2n− k)(3k + 2) = 7nk − 3k2 + 4n− 2k ≤ 11nk.

Hence, k ≥ n
11·48 . Let B = {v1, v2, . . . , vk}. Note that every vertex from B is connected with at least 2k

vertices outside of B.
Let M be the set of all matchings of size k that cover B and do not connect two vertices from B. Let us

prove that |M| ≥ (2k)!
k! . Note that the number of possibilities for the ith vertex from B to find a pair is at

least 3k− |B| − (i− 1) = 2k− i. Hence, there are at least (2k)!
k! matchings of this type. So there are at least

(2k)!
k!k! =

(
2k
k

)
different sets that are sets of endpoints of matchings from M.

For every M ∈ M we define a partial substitution ρM with the support Π0 such that ρM (pi,j) = 1 if
(i, j) ∈M and ρM (pi,j) = 0 if (i, j) ∈ E \M . We claim that PHPnn|ρM

is satisfiable for all M ∈ M.
Let V (M) denote the set of endpoints of edges from M . PHPnn|ρM

is satisfiable if the graph G′ − V (M)
(which is obtained from G′ by removing of all vertices from M) has a perfect matching. Since M is a
matching, G′ has the same number of vertices in its parts. We are going to use Hall’s theorem to show that
G′ − V (M) has a perfect matching. To this end we have to show that every set A ⊆ L \ V (M) has at least
|A| neighbors in G′. Consider two cases: in the first case |A| ≤ n

2 and every vertex from A has degree at least
n−4k−2 ≥ n−6k ≥ n

2 . In the second case |A| > n
2 . We need to show that every vertex from R \V (M) has

a neighbor in A and thus the number of neighbors of A is precisely |R \ V (M)| = |L \ V (M)| ≥ |A|. Indeed,
every vertex from R \ V (M) has degree at least n− 4k − 2 ≥ n

2 and |L \R| < n, so it has a neighbor in A.
Let us consider M1,M2 ∈ M with V (M1) 6= V (M2). Functions PHPnn|ρM1

and PHPnn|ρM2
have disjoint

sets of satisfiable assignments since M1 and M2 are matchings covering different sets of vertices. Thus, by
Lemma 2.3, the communication complexity of PHPnn is at least log

(
2k
k

)
= Ω(n).

Corollary 3.16. For every fixed constant k, every k-OBDD-representation of PHPnn has size at least 2Ω(n).

Theorem 3.17. Any OBDD(∧, reordering) proof of pigeonhole principle formula PHPn+1
n has size at least

2Ω(n).

Proof. We consider the last step of the OBDD proof: the conjunction of OBDDs F1 and F2 is the identically
false function but F1 and F2 are satisfiable. Both F1 and F2 represent conjunctions of several clauses of
PHPn+1

n and have the same order π. Every clause of PHPn+1
n is either in F1 or in F2 since otherwise F1 ∧ F2

is satisfiable. Our goal is to prove that either F1 or F2 has size 2Ω(n).
We consider three cases and apply Corollary 3.16 in each of them:
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1. Assume that there exist an i1 ∈ [n + 1] and an i2 ∈ [n + 1] (i1 6= i2) such that F1 does not contain a
long clause that corresponds to i1 and F2 does not contain a long clause that corresponds to i2. Let
us fix any j ∈ [n] and consider substitutions ρ1 and ρ2 with the support

{ps,t | (s, t) ∈ {i1, i2} × [n] ∪ [n+ 1]× {j}}

that substitute zero to all variables with two exceptions: ρ1(pi2,j) = 1 and ρ2(pi1,j) = 1. Note that
the Boolean function F1|ρ1

∧ F2|ρ2
is equivalent to PHP

n−1
n−1 and thus by Corollary 3.16 the π-OBDD

representation of F1|ρ1
∧ F2|ρ2

is of size at least 2Ω(n). Hence, either F1 or F2 has size of its minimal
π-OBDD at least 2Ω(n).

2. Assume that there are i1, i2 ∈ [n+ 1], j ∈ [n] and i ∈ [n+ 1] such that F1 does not contain the short
clause (¬pi1,j ∨ ¬pi2,j) and F2 does not contain a long clause that corresponds to i.

Let us consider two sub-cases.

• In the first case i 6∈ {i1, i2}. Let us fix any j′ ∈ [n]\{j} and consider substitutions ρ1 and ρ2 with
the support

{ps,t | (s, t) ∈ {i1, i2, i} × [n] ∪ [n+ 1]× {j, j′}}
that substitute zero to all variables with five exceptions: ρ1(pi1,j) = 1, ρ1(pi2,j) = 1, ρ1(pi,j′) =
1, ρ2(pi1,j) = 1, and ρ2(pi2,j′) = 1. Note that the Boolean function F1|ρ1

∧ F2|ρ2
is equivalent

to PHP
n−2
n−2; hence, by Corollary 3.16 the π-OBDD representation of F1|ρ1

∧ F2|ρ2
has size 2Ω(n).

Hence, either for F1 or for F2, the size of its minimal π-OBDD at least 2Ω(n).

• In the second case i ∈ {i1, i2}. Without loss of generality i2 = i. Consider substitutions ρ1 and
ρ2 with the support

{ps,t | (s, t) ∈ {i1, i2} × [n] ∪ [n+ 1]× {j}}
that substitute zero to all variables with three exceptions: ρ1(pi1,j) = 1, ρ1(pi2,j) = 1, and
ρ2(pi1,j) = 1. Note that the Boolean function F1|ρ1

∧ F2|ρ2
is equivalent to PHP

n−1
n−1; hence, by

Corollary 3.16 the π-OBDD representation of F1|ρ1
∧F2|ρ2

has size 2Ω(n). Hence, either for F1 or
for F2, the size of the minimal π-OBDD at least 2Ω(n).

3. Assume that there are i1,1, i1,2 ∈ [n + 1], j1 ∈ [n], i2,1, i2,2 ∈ [n + 1] and j2 ∈ [n] such that F1 does
not contain the short clause (¬pi1,1,j1 ∨ ¬pi1,2,j1) and F2 does not contain the short clause (¬pi2,1,j2 ∨
¬pi2,2,j2). Let us consider five cases.

• The first case is when i1,1, i1,2 6∈ {i2,1, i2,2} and j1 6= j2. Let us fix any j ∈ [n] \ {j1, j2} and
consider substitutions ρ1 and ρ2 with the support

{ps,t | (s, t) ∈ {i1,1, i1,2, i2,1, i2,2} × [n] ∪ [n+ 1]× {j1, j2, j}}

that substitute zero to all variables with eight exceptions: ρ1(pi1,1,j1) = 1, ρ1(pi1,2,j1) = 1,
ρ1(pi2,1,j2) = 1, ρ1(pi2,2,j) = 1, ρ2(pi2,1,j2) = 1, ρ1(pi2,2,j2) = 1, ρ1(pi1,1,j1) = 1, and ρ1(pi1,2,j) = 1.

Note that the Boolean function F1|ρ1
∧ F2|ρ2

is equivalent to PHP
n−3
n−3 and thus by Corollary 3.16

the π-OBDD representation of F1|ρ1
∧ F2|ρ2

has size 2Ω(n).

• The second case is when i1,1 6∈ {i2,1, i2,2}, i1,2 ∈ {i2,1, i2,2}, and j1 6= j2. Without loss of generality
i1,2 = i2,1. Let us consider substitutions ρ1 and ρ2 with the support

{ps,t | (s, t) ∈ {i1,1, i1,2, i2,2} × [n] ∪ [n+ 1]× {j1, j2}}

that substitute zero to all variables with six exceptions: ρ1(pi1,1,j1) = 1, ρ1(pi1,2,j1) = 1,
ρ1(pi2,2,j2) = 1, ρ1(pi1,1,j1) = 1, ρ1(pi2,1,j2) = 1, and ρ1(pi2,2,j2) = 1. Note that the Boolean

function F1|ρ1
∧ F2|ρ2

is equivalent to PHP
n−2
n−2 and thus by Corollary 3.16 the π-OBDD represen-

tation of F1|ρ1
∧ F2|ρ2

has size 2Ω(n).
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• The third case is when i1,1, i1,2 ∈ {i2,1, i2,2} and j1 6= j2. Without loss of generality i1,1 = i2,1
and i1,2 = i2,2. Let us consider substitutions ρ1 and ρ2 with the support

{ps,t | (s, t) ∈ {i1,1, i1,2} × [n] ∪ [n+ 1]× {j1, j2}}

that substitute zero to all variables with four exceptions: ρ1(pi1,1,j1) = 1, ρ1(pi1,2,j1) = 1,
ρ1(pi1,1,j2) = 1, ρ1(pi1,2,j2) = 1. Note that the Boolean function F1|ρ1

∧ F2|ρ2
is equivalent

to PHP
n−1
n−1 and thus by Corollary 3.16 the π-OBDD representation of F1|ρ1

∧ F2|ρ2
has size 2Ω(n).

• The fourth case is when i1,1 6∈ {i2,1, i2,2}, i1,2 ∈ {i2,1, i2,2}, and j1 = j2. Without loss of generality
i1,2 = i2,1. Let us fix any j ∈ [n] \ {j1} and consider substitutions ρ1 and ρ2 with the support

{ps,t | (s, t) ∈ {i1,1, i1,2, i2,2} × [n] ∪ [n+ 1]× {j1, j}}

that substitute zero to all variables with six exceptions: ρ1(pi1,1,j1) = 1, ρ1(pi1,2,j1) = 1,
ρ1(pi2,2,j) = 1, ρ1(pi1,1,j) = 1, ρ1(pi1,2,j1) = 1, and ρ1(pi2,2,j1) = 1, Note that the Boolean function

F1|ρ1
∧ F2|ρ2

is equivalent to PHP
n−2
n−2 and thus by Corollary 3.16 the π-OBDD representation of

F1|ρ1
∧ F2|ρ2

has size 2Ω(n).

• The fifth case is when i1,1, i1,2 6∈ {i2,1, i2,2} and j1 = j2. Let us fix any j3, j4 ∈ [n] \ {j1} and
consider substitutions ρ1 and ρ2 with the support

{ps,t | (s, t) ∈ {i1,1, i1,2, i2,1, i2,2} × [n] ∪ [n+ 1]× {j1, j3, j4}}

that substitute zero to all variables with eight exceptions: ρ1(pi1,1,j1) = 1, ρ1(pi1,2,j1) = 1,
ρ1(pi2,1,j3) = 1, ρ1(pi2,2,j4) = 1, ρ1(pi1,1,j3) = 1, ρ1(pi1,2,j4) = 1, ρ1(pi2,1,j1) = 1, and

ρ1(pi2,2,j1) = 1. Note that the Boolean function F1|ρ1
∧F2|ρ2

is equivalent to PHP
n−3
n−3 and thus by

Corollary 3.16 the π-OBDD representation of F1|ρ1
∧ F2|ρ2

has size 2Ω(n).

4 OBDD(∧, reordering) is stronger than OBDD(∧)
In this section we give an example of a family of unsatisfiable formulas Φn that have OBDD(∧, reordering)
proofs of polynomial size while all OBDD(∧) proofs of it have size at least 2Ω(n).

Theorem 4.1. Let Ψn(x1, x2, . . . , xn) be a family of unsatisfiable formulas of size poly(n) that satisfies the
following conditions:

• there exists an order τ such that Ψn has τ -OBDD(∧) refutation of size poly(n);

• there exists a polynomial p(n), an integer k ≤ log(p(n)) and permutations σ1, σ2, . . . , σ2k ∈ Sn such
that for any permutation π ∈ Sn there exists i ∈ [2k] such that any πσi-OBDD(∧) proof of Ψn has size
at least 2Ω(n).

Then the formula

Φn(w1, w2, . . . , wk, x1, x2, . . . , xn) =

2k∧

i=1

(
(w = i− 1) → Ψ(xσi(1), xσi(2), . . . , xσi(n))

)

has an OBDD(∧, reordering) proof of size poly(n), but any OBDD(∧) proof has size at least 2Ω(n). Here the
equality w = i− 1 means that w1w2 . . . wk is a binary representation of i− 1. We assume that Φn is written
in CNF as follows: we add a clause ¬(w = i− 1) to every clause of Ψ(xσi(1), xσi(2), . . . , xσi(n)).
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Let us consider the following sketch of the proof, before we give a complete proof of this theorem.
The lower bound. Consider an OBDD(∧) proof T of the formula Φn, let τ be the order of the variables
x1, x2, . . . , xn that is induced by the order from T . By the statement of the theorem, there exists 1 ≤ i ≤ 2k

such that all (τσi)-OBDD(∧) proofs of Ψ have at least the exponential size. We make a substitution w = i−1
to the proof T . This substitution converts the proof of Φn into a proof of Ψn with the order τσi. Hence, T
has the exponential size.

The upper bound. Since there exists a polynomial sized OBDD(∧) proof of Ψn, then for all i there is an
order πi (we may assume after the permutation π the variables w get the leftmost positions) such that there
is a πi-OBDD(∧) derivation of the diagram representing w 6= i − 1. From all such diagrams for different i
we may construct a polynomial sized refutation of Φn, since w contains only O(log n) variables.

Proof. The lower bound. Consider an α-OBDD(∧) proof T of the formula Φn for some order α. We consider
α as a permutation of [n+ k]. Let π be a permutation of [n] (or variables x1, x2, . . . , xn) that is induced by
α (formally π(j) = |{i ∈ [n] | α(i+ k) ≤ α(j + k)}|).

By the statement of the theorem there exists an i0 ∈ [2k] such that any πσi0-OBDD(∧) proof of Ψn has size
at least 2Ω(n). Consider a partial substitution ρ that assign to the variables w1, w2, . . . , wk a binary represen-
tation of i0−1. Consider the formula Φn|ρ. Clauses that represent (w = i−1) → Ψ(xσi(1), xσi(2), . . . , xσi(n))
for i 6= i0 are satisfied by ρ. Hence, Φn|ρ is equal to Ψ(xσi0

(1), xσi0
(2), . . . , xσi0

(n)). Thus, if we substitute
ρ to the proof T we get a π-OBDD(∧) proof Ψ(xσi0

(1), xσi0
(2), . . . , xσi0

(n)); this proof can be seen as a

πσi0 -OBDD(∧) proof of Ψ(x1, x2, . . . , xn) that has size at least 2Ω(n) by choice of i0.
The upper bound. Let τ be an order of variables x1, x2, . . . , xn such that Ψ(x1, x2, . . . , xn) has a short

τ -OBDD(∧) proof.
We describe a short OBDD(∧, reordering) proof of Φn. Let µi be orders of variables

w1, w2, . . . , wk, x1, x2, . . . , xn such that x1, x2, . . . , xn are ordered by τσ−1
i and the variables w1, w2, . . . , wk

appear before the variables x1, x2, . . . , xn. In other words, µi orders variables as follows:
w1, w2, . . . , wk, xτσ−1

i
(1), xτσ−1

i
(2), . . . , xτσ−1

i
(n).

Consider a polynomial sized τ -OBDD(∧) proof of Ψn. It is easy to see that this derivation may be
transformed into a µi-OBDD(∧) derivation of a diagram that represents w 6= i from the formula (w = i) →
Ψ(xσi(1), xσi(2), . . . , xσi(n)). Indeed, the variables w1, w2, . . . , wk in the order µi appear in the beginning,
hence, every diagram D from the original proof will be transformed to a diagram that represents D∨¬(w = i)
and the latter diagram has size at most |D|+O(k), where |D| is size of the diagram D.

So we have all diagrams that represent w 6= i for all i ∈ [2k]. Formally these diagrams use different orders
µi but in fact the diagrams depend essentially only on the variables w1, w2, . . . , wk, and all µi order them
in the same way. Thus, if we change orders in all of these diagrams to some “standard” one, the diagrams
will be not changed. Then we apply the conjunction rule to these diagrams and get a constant false diagram
since w1w2 . . . wk is a binary representation of i − 1 for some i ∈ [2k]. All intermediate diagrams have size
at most 2kpoly(n). Hence, we get a proof of size poly(n).

Now we construct a family of unsatisfiable formulas Ψn that satisfies the conditions of Theorem 4.1. We
use an argument similar to the proofs of the lower bounds for OBDD(∧, reordering) proofs. At first, we
construct a function that has sizes of OBDD representations in different orders close to the required sizes of
proofs for Ψn.

Let EQn : {0, 1}2n → {0, 1} be equality function; i.e., the function that is true on an input s ∈ {0, 1}2n,
if and only if si = si+n for all i ∈ [n]. It is convenient to use the following notation for variables:
EQn(x1, x2, . . . , xn, xn+1, . . . , x2n); in this notation the function is true iff x1x2 . . . xn = xn+1xn+2 . . . x2n.

Proposition 4.2. In the order x1, xn+1, x2, xn+2, . . . , xn, x2n the function EQn has an OBDD representation
of size 3n+ 2.

Proof. The proof can be easily done by induction, using the following equation:
EQn(x1, x2, . . . , xn, xn+1, . . . , x2n) = (x1 = xn+1) ∧ EQn−1(x2, . . . , xn, xn+2, . . . , x2n).
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The proof of the following lemma is similar to the proof of the Ω(n) lower bound on the best communi-
cation complexity of the shifted equality function [15, Example 7.9].

Lemma 4.3. Let σi for i ∈ [n] be a permutation such that σi(j) = j for j ∈ [n] and σi(n + j) = n + (i +
j − 1 mod n) + 1 for j ∈ [n]. Then for any balanced partition Π = (Π0,Π1) of 2n variables x1, . . . , x2n there
exists i ∈ [n] such that communication complexity of EQn with respect to σiΠ is at least Ω(n), where

Πσi = ({j | σi(j) ∈ Π0}, {j | σi(j) ∈ Π1}).

Proof. Let Γ be a partition of [2n], V Γ
x = {i ∈ [n] | i ∈ Π0}, and V Γ

y = {i ∈ [n] | (i+ n) ∈ Π0}.
We denote by BΓ = V Γ

x ⊕ V Γ
y the symmetric difference of V Γ

x and V Γ
y .

Claim 4.3.1. Communication complexity of EQn with respect to a partition Γ is at least |BΓ|.

Proof. Let V Γ
x \ V Γ

y = {i1, . . . , iℓ1} and V Γ
x \ V Γ

y = {j1, . . . , jℓ2}. Note that the communication complexity

of EQℓ1+ℓ2 is at least ℓ1 + ℓ2 = |BΓ|. Additionally, if we define vk =







xk′ if k = ik′

xk′ if k = jk′ + n

xk′+ℓ1+ℓ2 if k = ik′ + n

xk′+ℓ1+ℓ2 if k = jk′

0 otherwise

for k ∈ [2n],

then EQn(v1, . . . , v2n) = EQ(x1, . . . , xℓ1+ℓ2 , . . . , x2(ℓ1+ℓ2)). Since Alice and Bob can independently compute
v1, . . . , vn and vn+1, . . . , v2n, respectively, we prove that communication complexity of EQn with respect to
a partition Γ is at least |BΓ|.

If for some i ∈ [n] size |BΠσi | ≥ n
32 , then by Claim 4.3.1, communication complexity of EQn with respect

to Πσi is at least n/32. Assume that for all i the following holds: |BΠσi | < n
32 .

Let us show that |V Π
y | ≥ n/2. Indeed, we know that |V Π

x | + |V Π
y | = n, hence, |V π

x ∪ V π
x | ≥ n

2 . Since σn
is the identical permutation, we get n/32 > |V Π

x ⊕ V Π
y | = |V Π

x ∪ V Π
y | − |V Π

x ∩ V Π
y | ≥ n

2 − |V Π
y |, and therefore

|V π
y | ≥ 15n

32 .

By definition, BΠσi = V Πσi
x ⊕ V Πσi

y . Since the permutation σi does not move variables xj for j ∈ [n],

we get V Πσi
x = V Π

x for all i ∈ [n]. Note that if |V Π
x ⊕ V Π

y σi| < n/32 and |V Π
x ⊕ V

Πσj
y | < n/32, then

|V Πσi
y ⊕ V

Πσj
y | < n/16 for all i, j ∈ [n].

We show that there exists a j ∈ [n] such that |V Π
y ⊕ V

Πσj
y | ≥ n/16. The latter would be a contradiction

with our assumption since σn is an identical substitution. Consider the sum
n∑

k=1

|V Π
y ∩ V Πσk

y |. From the one

hand this sum equals |V Π
y |2. Indeed,

n∑

k=1

|V Π
y ∩ V Πσk

y | =
n∑

k=1

∑

i∈V Π
y

1
i∈V

Πσk
y

=

n∑

k=1

∑

i∈V Π
y

1σk(i+n)∈Π0
=

n∑

k=1

∑

i=V Π
y

1σk(i+n)−n∈V Π
y

=
∑

i∈V Π
y

∑

j∈V Π
y

|{k ∈ [n] | σk(i+ n)− n = j}| =
∑

i∈V Π
y

∑

j∈V Π
y

1 = |V Π
y |2.

From the other hand

n∑

k=1

|V Π
y ∩ V Πσk

y | ≥
n∑

k=1

(
|V Π

y ∪ V Πσk
y | − |V Π

y ⊕ V Πσk
y |

)
≥

n∑

k=1

(
|V Π

y | − |V Π
y ⊕ V Πσk

y |
)
> n|V Π

y | − n2

16
.

Note that if |V Π
y | ≥ n

2 + n
64 , then |V Π

x | < n
2 − n

64 and |V Π
x ⊕ V Π

y σi| ≥ n
32 which contradicts the assumption.

If |V Π
y | < n

2 + n
64 , then |V Π

y |2 ≤ n2

4 + n2

32 but n|V Π
y | − n2

16 ≥ 15n2

32 − n2

16 and this is a contradiction.
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Corollary 4.4. Let σi for i ∈ [n] be a cyclic permutation of variables y that maps yj to yi+j mod n+1 for
any j ∈ [n]. Formally σi(j) = j for j ∈ [n] and σi(n+ j) = n+ (i+ j − 1 mod n) + 1 for j ∈ [n]. Then for
any order π on 2n variables there exists i ∈ [n] such that every πσi-OBDD representation of EQn has size at
least 2Ω(n).

Now we are ready to construct a formula that may be used in Theorem 4.1. Consider a formula Ψn(x, y, z)
from 3n + 1 variables (here x, y are vectors of n variables and z is a vector of n + 1 variables) that is the
conjunction of CNF representations of the following conditions:

• xi = yi for all i ∈ [n];

• z0;

• (xi = yi) → (zi−1 → zi) for all i ∈ [n];

• ¬zn.
Note that Ψn(x, y, z) is unsatisfiable since we have that xi = yi for all i; it implies that zi = 1 for all i, but
zn should be zero. The following statement is straightforward.

Proposition 4.5. Ψn has a proof of polynomial size in the order z0, x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn.

Proposition 4.6. Ψn(x, y, z) is minimally unsatisfiable, i.e., it becomes satisfiable after removing any of its
clauses.

Proof. We consider 3 cases.

1. If we remove the clause ¬zn (or z0), then identically 1 (or identically 0) assignment satisfies all other
clauses.

2. If we remove a clause that represents xi = yi (w.l.o.g. assume that this is the clause ¬xi ∨ yi), then
we assign xj = 1 for all j, yj = 1 for all j 6= i, yi = 0 and zj = 1 for j < i and zj = 0 for j ≥ i.

3. If we remove a clause that represents (xi = yi) → (zi−1 → zi) (w.l.o.g. assume that this is the clause
xi ∨ yi ∨¬zi−1 ∨ zi), then we assign xj = yj = 0 for all j ∈ [n] and zj = 1 for j < i and zj = 0 for j ≥ i.

Lemma 4.7. For any order π on the variables x, y, z size of a π-OBDD(∧) proof of Ψn is at least 1
10

√
S,

where S is the size of the shortest π′-OBDD representation of EQn(x, y), where π
′ is the order induced by π

on the variables x, y.

Proof. Assume that in the last step of the proof we apply the conjunction operation to F1 and F2 and get a
contradiction. By Proposition 4.6, Ψn is minimal unsatisfiable; hence, every clause of Ψn was joined either
to F1 or to F2. F1 and F2 are not identically false functions. By the argument similar to the proof of
Proposition 4.6 there exists a satisfying assignment τ1 for F1 and there exists a set I1 ⊆ [n] of size at least
(n − 1) such that for all i ∈ I1 the values of variables τ1(xi) = τ1(yi). Moreover, if for arbitrary set J ⊆ I1
we simultaneously change values of variables xj and yj for j ∈ J , then τ1 remains satisfiable. Let ρ1 be a
partial substitution that does not substitute values for xi and yi for i ∈ I and for all other variables it is
consistent with τ1. We define I2 and ρ2 analogously. Let us consider the function F1|ρ1

∧ F2|ρ2
; it contains

all clauses of EQn(x, y) that have occurrences of xi and yi for i ∈ I1 ∩ I2 and possibly several remaining
clauses of EQn(x, y). Hence, EQn(x, y) can be obtained from F1|ρ1

∧F2|ρ2
by addition of at most four clauses,

and each of them depends on two variables. Hence, S (recall that S is the shortest π′-OBDD representation
of EQn(x, y)) is at most 100 times the size of any π′-OBDD representation of F1|ρ1

∧ F2|ρ2
. Therefore, an

π-OBDD-representation of either F1 or F2 has size at least 1
10

√
S.

Theorem 4.8. There exists an unsatisfiable CNF formula Φn of size poly(n) such that there exists a poly-
nomial size OBDD(∧, reordering) proof of Φn but every OBDD(∧) proof of Φn has size 2Ω(n).
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Proof. By Lemma 4.7 for every order π a size of π-OBDD(∧) proof of Ψn is at least 1
10

√
S, where S is the

size of the shortest π′-OBDD representation of EQn. By Lemma 4.4 there exists a family of permutations
σi of [2n] for i ∈ [n] such that for every order τ there exists an i ∈ [n] such that size of any τσi-OBDD(∧)
proof of Ψn is at least 2Ω(n). By Proposition 4.5 there exists a required order τ and a τ -OBDD(∧) proof of
Ψn of size poly(n). Theorem 4.1 gives a construction of the desired formula Φn.

5 OBDD(∧, ∃, reordering) algorithms

It is known that OBDD(∧, ∃) algorithms can prove PHPn+1
n in polynomial time [6]. Now we show that the

Tseitin formulas are also easy for OBDD(∧, ∃) algorithms.

Proposition 5.1. There exists an OBDD(∧, ∃) algorithm that solves Tseitin formulas in polynomial time.

Informally the proof of this theorem is the following. Notice that the projection of two linear equations
over the common variable is just the sum of these equations. Since every variable has exactly two occurrences
in Tseitin formulas, we can sum up all equations in every connected component.

Proof. Consider the following OBDD(∧, ∃) algorithm.

1. If S 6= ∅, choose C ∈ S and apply join operation; otherwise goto Step 5.

2. If D depends on some variable x, apply join operation to all clauses in S that depend on x.

3. Apply projection operation over variable x.

4. If D represents a constant then go to Step 1, otherwise goto Step 2.

5. If D is satisfiable then return 1, otherwise return 0.

We prove that this algorithm solves Tseitin formulas in polynomial-time. We note that after Step 2 the
current diagram D represents the conjunction of two linear equations and after Step 3 the current diagram
D represents one linear equation. Indeed every variable of Tseitin formula has occurrences in exactly two
equations. And the projection of two linear equations over the common variable is just the sum of this
equations.

It is easy to see that the algorithm chooses a connected component of the graph and sums up all equations
from this component. If the component is unsatisfiable the algorithm stops and return 0; otherwise it goes
to the next component. Finally if all components are satisfiable it returns 1.

Any OBDD that represents one linear equation have linear size. We need to check that if we join to D
a subset of clauses representing linear equation we still have small diagram. Consider some equation from a
Tseitin formula that depends on d variables, the maximum size of OBDD for the subset of clauses has size
at most 2d+1 − 1 (the size of a decision tree). The size of any CNF representation of a linear equation is at
least 2d−1. Hence, the OBDD size of conjunction of the clauses is less than the size of the formula multiplied
by 4.

Now we show that every OBDD for a characteristic function of a good enough code has at least exponential
size.

Theorem 5.2. Let C ⊆ {0, 1}n be a ( 12 + ǫ, L)-erasure list decoding code. Then for every partition Π such
that |Π0| = n

2 the communication complexity of the characteristic function of C (i.e. function χC : {0, 1}n →
{0, 1} : ∀c ∈ {0, 1}n χC(x) = 1 ⇔ c ∈ C) with respect to Π is at least log |C|

L2 .
Moreover, for every tuple of k different indices i1, . . . , ik ∈ [n] (0 ≤ k ≤ 2ǫn) and every partition Π such

that |Π0| = n−k
2 , communication complexity of the Boolean function ∃xi1 . . . ∃xik χC(x1, . . . , xn) with respect

to Π is at least log |C|
L2 .
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Proof. It is enough to prove the “moreover” part of the statement since the first part is its special case
(with k = 0). Without loss of generality we may assume that Π = ({1, . . . , n−k

2 }, {n−k
2 + 1, . . . , n− k}) and

ij = n− k + j for all j ∈ [k].
We prove that any 1-monochromatic rectangle for χ(x1, . . . , xn−k) =

∃y1, . . . , yk χC(x1, . . . , xn−k, y1, . . . , yk) contains at most L2 elements. Let R = A × B be some 1-
monochromatic rectangle and a ∈ A. Consider the string c = a?n−|v|: it has at most n+k

2 ≤ ( 12 + ǫ)n
symbols ?, hence, there are at most L codewords that are consistent with c. As a result, |B| ≤ L. |A| ≤ L,
by the same argument.

Hence, there are at least |C|
L2 1-monochromatic rectangles and communication complexity of χ is at least

log |C|
L2 .

Theorem 5.3. Let C ⊆ {0, 1}n be a linear code with the relative distance 1
3 such that the checksum matrix

H of the code C has the following properties:

• H has size αn× n, where α ∈ (0, 1) is a constant;

• every row of H contains at most t(n) ones, where t is some function;

• every 1
6n columns of H intersect (contains ones in) at least (α − δ)n rows, where δ ∈

(
0, 1−α

2

)
is a

constant.

Let a formula Fn be a standard representation of H(x) = 0 as a t-CNF of size at most αn2t(n)−1t(n)
(every equation is represented in a straightforward way, without any additional variables). Then every
OBDD(∧, ∃, reordering) algorithm runs on the formula Fn for at least 2Ω(n) steps.

Proof. The code C has relative distance 1
3 . Hence, C is ( 7

12 , 8)-erasure list-decodable by Theorem 2.5,
choosing ǫ = 1/4. We consider the execution of an OBDD(∧, ∃) algorithm on the formula Fn. We prove that
in some moment size of a diagram D will be at least 2Ω(n). Assume that the algorithm during its execution
applies the projection operation at least k = 1

6n times. We consider the diagram D just after the first
moment when the algorithm applies the projection operation k times. Let D represent a function of type
∃y1, . . . , yk φ(x1, . . . , xn−k, y1, . . . , yk), where φ is the conjunction of several clauses from Fn. The projection
operation on a variable x can be applied only if all clauses from S do not depend on x. Then all clauses
corresponding to linear equations with the variable x must be among clauses of φ. By the assumption of
the theorem any k columns of H have ones in at least (α− δ)n rows. Thus, φ contains all clauses from the
representation of (α− δ)n equations and possibly several other clauses from other equations.

Lemma 5.4. Let A be an m× n checksum matrix of a (ρ, L)-erasure list decodable code. The matrix A′ is
the result of deleting r rows from A. Then A′ is a checksum matrix of a (ρ, 2rL)-erasure list-decodable code.

Proof. Consider an arbitrary n-dimensional vector z with variables at ρn coordinates and {0, 1} constants
at other coordinates. We have to show that the number of solutions of the system A′z = 0 is at most 2rL.
Consider an n-dimensional vector z′ with variables in the same positions as in z and with zeros in all other
positions. Since A is the checksum matrix of a (ρ, L)-erasure list decodable code, the system Az′ = 0 has at
most L solutions. The system Az′ = 0 is homogeneous, hence, the number of its solutions is exactly 2ρn−ℓ,
where ℓ is the rank of the linear system. Note that ℓ is not necessary equal to the rank of A since not all
components of z′ contains variables, some of them contains constants. But the rank of this system equals to
the rank of the system Az = 0. Since A′ can be obtained from A by deleting of r rows, rank of the system
A′z′ = 0 is at least ℓ− r. Hence, A′z = 0 has at most 2ρn−ℓ+r ≤ 2rL solutions. Rank of the system A′z = 0
equals to the rank of the homogeneous system A′z′ = 0. Thus, the number of solution of A′z = 0 is at most
2rL.

Lemma 5.4 implies that φ is a characteristic function of a ( 7
12 , 8 · 2δn)-erasure list-decodable code.

The number of satisfying assignments of φ is at least the number of solutions of the system Hx = 0,
hence, size of the code defined by φ is at least 2(1−α)n. By Theorem 5.2 size of every OBDD for
∃y1, . . . , yk φ(x1, . . . , xn−k, y1, . . . , yk) is at least 2

(1−α)n2−2δn 1
16 > 2(1−α−2δ)n−4 for every order of variables.
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The case where the algorithm applies the projection operator less than n/6 times is analogous, we have
to consider the last diagram D.

In what follows we show that there exist linear codes matching the requirements of Theorem 5.3. In
Section 6.1 we prove the existence of suitable codes; in Section 6.2 we prove a stronger statement and show
that the required codes can be constructed explicitly. These constructions of codes together with Theorem 5.3
imply the following result:

Corollary 5.5. For all large enough n there exists a CNF formula with n Boolean variables, of size O(n)
such that every OBDD(∧, ∃, reordering) algorithm runs on this formula at least 2Ω(n) steps. Moreover, for a
given n such a formula can be constructed by a deterministic algorithm in time poly(n).

6 Constructions of suitable linear codes

6.1 A randomized construction of suitable linear codes

We are going to combine Theorem 5.3 with some specific constructions of codes. In this section we describe
a construction of low-density parity codes (LDPC) that can be combined with Theorem 5.3. The idea of
low-density parity codes goes back to Gallager [10]. The LDPC are linear codes whose checksum matrix are
“sparse”, i.e., contains few ones in each row and each column. We employ the standard properties of the
LDPC — a randomly chosen matrix (with suitable parameters) with high probability defines a linear code
with large enough distance. We also employ a somewhat less conventional property of LDPC: most of these
codes share some property of “uniformity”; that is, even a rather small set of variables must be involved in
almost all checksums of the code.

First of all we recall the classic construction of random LDPC from [10]. Let us fix some integer parameters
t, r, and n (assuming that t divides n). Define the “basic” matrix A of size (n/t)× n as a concatenation of
t copies of the identity matrix (n/t)× (n/t):

A =




















1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

︸ ︷︷ ︸

(n/t)×(n/t)−identity matrix

. . . . . . . . .

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

︸ ︷︷ ︸

(n/t)×(n/t)−identity matrix
︸ ︷︷ ︸

tcopies




















Notice that each column of A contains one non-zero element; in each row of A there are exactly t non-zero
elements. Further, we consider the family of all matrices of size (rn/t)×n that consist of r horizontal “blocks”
of size (n/t)× n, where each block is obtained as a permutation of columns of A,








[ 1st permutation of columns of A]
[2nd permutation of columns of A]

...
[r-th permutation of columns of A]








It is easy to see that in each column of this matrix there are r ones, and in each row there are exactly t
ones. We introduce the uniform distribution on all matrices of this type. We can interpret these matrices
as checksums matrices of some linear codes. Gallager proved that most of these codes have rather large
minimal distance.
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Proposition 6.1 (see [10]). Most (say, at least 90%) of matrices in Gallager’s family define a linear code with
parameters approaching Gilbert–Varshamov bound. More precisely, for every δ ∈ (0, 12 ) and for every t there
exists r = r(t) such that for large enough n most matrices from the defined family have minimal distance ≥ δn.
Moreover, the ratio r(t)/t approaches h(2δ) as t goes to infinity, where h(x) = −x log x− (1− x) log(1− x)
(the binary entropy). This means that the rate of the code can be made arbitrarily close to 1− h(2δ) (i.e., to
the Gilbert–Varshamov bound).

A family of linear codes defined above can be specified by parameters r, t, n. However, it is more convenient
to specify these codes by another triple of numbers — by (δ, t, n) (assuming that the value r = r(δ, t, n) is
defined implicitly as the minimal integer such that most codes of the family have minimal distance greater
than δn). Now we can state the main technical lemma of this section.

Lemma 6.2. For all β ∈ (0, 1), γ < 1, and δ ∈ (0, 12 ), for all large enough t most (say, at least 90%) of
linear codes from Gallager’s family with parameters (δ, t, n) satisfy the following property: every βn columns
in the checksum matrix of the code intersect at least a fraction γ of all rows of the matrix.

Proof. By construction, every checksum matrix from Gallager’s codes family consists of r blocks of size
(n/t)× n (where each if these blocks is a permutation of columns of the basic matrix A defined above). Let
us fix some real ρ > 0. We say that some tuple of βn columns is poor for some block of the matrix, if these
columns intersect with at most ρ · (n/t) rows of the block. We will proceed as follows.

Step 1. We estimate the probability of the event that one fixed tuple of βn columns is poor for a randomly
chosen block (which is obtained as a random permutation of columns in A).

Step 2. We estimate the probability that one fixed tuple of βn columns is poor for more than ρr randomly
chosen blocks.

Step 3. At last, we estimate the probability that at least one tuple of βn columns is poor for more than ρr
(independently) randomly chosen blocks.

We are going to show that the probability estimated on Step 3 becomes very small for a suitable t. It
follows that for most Gallager’s codes, every tuple of βn columns intersects all but 2ρrn/t rows (one fraction
of ρ rows comes from all blocks where these columns are poor, and another fraction of ρ rows comes from all
other blocks). We can choose ρ so that 1− 2ρ > γ, and the Lemma will follow. Thus, it remains to bound
the probabilities in Steps 1–3.

Step 1: We fix some tuple of βn indices of columns, then take a random permutation of columns in
a matrix A and count the total number of intersected rows. These random procedure can be equivalently
explained in other words: we fix the original matrix A and choose at random a tuple of βn columns. By the
construction of the matrix A, every column from the chosen tuple intersects with only one row. We need
to estimate the number of rows that intersect with at least one of these βn columns. We have to show that
for βn ≫ n/t a “typical” tuple of columns 〈i1, . . . , iβn〉 intersects with almost all rows. Let us estimate the
probability of the “bad” event, when the randomly chosen columns intersect with only s ≤ (1−ρ)(n/t) rows.
This bad event means that we can select s positions in the sequence of indices 1, . . . , βn so that

(i) the s columns with “selected” indices il1 , . . . , ils intersect pairwise different rows of the matrix A, and

(ii) each of the other (βn−s) columns intersects once again the same row as one of the s “selected” columns.

Probability of this event is not greater than

(1−ρ)n/t
∑

s=1

(
βn

s

)

Pr[columns il1 , . . . , ils intersect pairwise different rows](1− ρ)βn−s ≤

(1−ρ)n/t
∑

s=1

(
βn

s

)

(1− ρ)βn−s. (1)
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Indeed, for each s we have
(
βn
s

)
ways to choose s indices in the list 1, . . . , βn. When the positions of the s

“selected” columns are fixed, every next randomly chosen column intersects with with one of the previously
counted rows with a probability less than

[columns intersecting with given s rows]

[total number of columns]
=
s · t
n

< 1− ρ.

For a fixed ρ and (n/t) ≪ βn, the sum (1) is less than 2−cβn, where c > 0 depends on ρ (and not on n).
Step 2: Let us fix some tuple of βn columns. At Step 1 we proved that the probability to get one poor

block is pn < 2−cβn. Since all r blocks in the checksum matrix are chosen independently, the probability
that at least k = (1− ρ)r of them are poor for the fixed columns is less than

(
r
k

)
· (pn)k ≤ 2r · 2−cβkn. As we

increase t, the corresponding values of r = r(t) and k(t) = (1−ρ)r(t) grow linearly. It follows that 2r ·2−cβkn

decreases as 2−Θ(βtn)+O(t) (the multiplicative constants hidden in the terms Θ(βtn) and O(t) depend on ρ
but not on t).

Step 3: It remains to multiply the probability from Step 2 by the number of all tuples of βn columns.
We get the bound

(
n
βn

)
·2−Θ(βtn)+O(t) = 2h(β)n+o(n) ·2−Θ(βtn)+O(t) for the probability that at least one tuple

of βn columns intersects too few rows. It remains to choose a suitable t = t(β) and make this probability
less than 0.1.

Corollary 6.3. For the distribution defined above, the system of linear equations Hx = 0 with probability
close to 1 can be represented as a CNF of size O(n).

Thus, we obtain a weak version of Corollary 5.5 (without the moreover part) for CNF of size O(n) with
n Boolean variables. In other words, for every N there exists a CNF formula of size N such that every
OBDD(∧, ∃) algorithm runs on this formula at least 2Ω(N) steps. In the next section we prove a similar
result for an explicitly constructed code.

6.2 An explicit construction of suitable linear codes

In this section we present an explicit construction of a linear code with the property of list decoding and
a check-sum matrix that is sparse and strongly mixing. More technically, we construct explicitly a code
that enjoys the properties from Proposition 6.1 and Lemma 6.2 (in the previous section we proved that this
property holds with high probability for randomly chosen code from Gallager’s family of linear codes).

6.2.1 The large-scale scheme of the construction

Our aim is to construct an explicit family of linear codes with the properties discussed in the previous section.
To be more specific, we fix a triple of real parameters (α, β, γ) and define four properties of a linear code
(more precisely, we define properties of a checksum matrix of a linear code).

(G) The number of codewords matching this matrix is equal to 2Ω(n) (the code is asymptotically good).

(S) Sparseness: every row contains only O(1) ones (the other matrix elements are zeros)

(L) List decoding: for every set of αn positions in a codeword

1 ≤ i1 < · · · < iαn ≤ n,

and for every assignment of bits bj to these positions, there exist at most O(1) codewords x̄ =
(x1, . . . , xn) corresponding to this checksum matrix such that xij = bj for j = 1, . . . , αn.

(M) Mixing: For every set of βn columns (between the 1-st and the n-th) there exist ≥ γn rows of the
matrix intersecting at least one of these columns with 1.

Now we can formulate the main result of this section.
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Theorem 6.4. For any values of parameters α > 0, β > 0, and γ < 1 there exists a polynomial-time
computable algorithm that finds for inputs n from a dense enough sequence of integers n (technically, for an
arithmetic series of n) a (binary) checksum matrix Mn of size n × k(n) (with n columns and k(n) linearly
independent rows) that satisfies the conditions (G), (S), (L), and (M).

Together with Theorem 5.3 this statement implies Corollary 5.5. Indeed, to prove Corollary 5.5 it is
enough to take the natural representation of the linear system constructed in Theorem 6.4.

In the proof of Theorem 6.4 we prefer to use instead of (L) another property that can be defined in terms
of the code distance:

(L′) Code distance: the distance between every two codewords in the code is ≥ ( 12 − δ)n.

Notice that (L′) implies (L) due to Theorem 2.5. Thus, to prove the theorem it is enough to provide an
explicit construction of codes that satisfy (G), (S), (L′), and (M). Also for some technical reason we will
need in the proof a stronger version of (M) with some suitable parameter q > 0:

(M′) Strong mixing: for every set of βn columns there exist ≥ γn rows of the matrix intersecting at least
q of these columns with 1.

The rest of this section is organized as follows. In Section 6.2.2 we explain an explicit construction of
a code that satisfies (L′). In Section 6.2.3 we explain an explicit construction of a code that satisfies (M′).
In Section 6.2.4 we merge these two constructions. At last, in Section 6.2.5 we briefly discuss the explicit
construction of algebraic expanders involved in the previous sections.

6.2.2 A code with a very high distance.

Our construction is iterative: we start with some asymptotically good explicitly constructed linear code and
then amplify its parameters by iterating O(1) times some transformation of this code, as explained below.

The starting point of our construction is an asymptotically good linear code with the code length N and
code distance ρN for some constant ρ > 0. For instance, we can take the explicit construction of expander
codes suggested by Zémor, [25]. So far we only assume that ρ > 0 (so the code distance can be much less
than N/2). In what follows we apply (O(1) times) to this code some amplification procedure. Each iteration
of this procedure

• extends the length of codewords by some constant factor,

• does not change the number of codewords,

• makes the code distance closer to 1/2 of the code length.

The amplification procedure decreases the rate of the code by some constant factor. However, the code
remains asymptotically good. After O(1) iteration of this procedure we will obtain a code that satisfies
properties (G), (S), and (L′). At this stage we cannot guarantee the property (M) (to achieve (M) we will
need some more work, see the next section). To “amplify” a code with the length N and the distance ρN we
will use an (explicitly constructed) expander graph G = (V,E) on N vertices, with the following property of
strong ε-expansion:

For every set of vertices S ⊂ V of size ≤ ( 12 − ε)n the number of neighbors of this set (i.e., the number if
vertices w ∈ V that are connected by an edge with at least on vertex v ∈ S) is not less that (2 + ε)|S|.
Remark: A graph with the property of strong ε-expansion can be easily constructed from any algebraic
expander with parameters (N, d, 1/2). It is enough to add a loop to each vertex and then take a suitable
degree r of this graph. In other words, the edges of the new graph are paths of length ≤ r in the initial
algebraic expander. The less is the value of ε, the bigger length of the path r = r(ε) we need to take, and
the bigger is the degree of the resulting graph. However, for every constant ε we obtain a graph with the
property of strong ε-expansion and some degree D = D(ε), which does not depend on N . We may assume
that ε is less than the value of δ from (L′).
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Figure 1: The bits (x1x2x3) assigned to the six ends of edges of the triangle graph.

In what follows we describe the amplification procedure. We assume that we are given a linear code C
with the code length N and the code distance ρN . We fix some one-to-one correspondence between the bits
of the codewords of C (i = 1, . . . , n) and the vertices of a graph G (with N vertices, of some degree D) with
the property of strong ε-expansion defined above. In what follows we transform C into a code C′, and then
into another code C′′. The last one will be the required “amplified” code.

The first stage of the amplification: from C to C′. We construct a new code C′ where each codeword
will consist of N ′ := DN bits, with the distance ρN ′ (i.e., the relative code distance in the new code C′ is
the same as in the original code C). The bits of the codeword in C′ correspond to the ends of edges in the
graph G (in a uniform graph of degree D with N ′ vertices we have DN/2 edges, and each edge has 2 ends).

The transformation from C to C′ is quite trivial: we place the bits a codeword x̄ = (x1, . . . , xN ) from C to
the corresponding vertices (v1, . . . , vN ) of G, and then rewrite the value of each bit xi to the opposite ends
of the edges (vi, vj) incident to vi. In other words, for each edge (vi, vj) of the graph we assign the bits xi
and xj from the codeword x̄ to the opposite ends of this edge (xi is assigned to the end incident to vj , and
xj is incident to the end incident to vi, see an example in Fig. 1).

Thus, we essentially duplicate D times each bit of a codewords and then redistribute these values between
the ends of the edges of G.

The second stage of the amplification: from C′ to C′′. We construct another code C′′, where each
codeword consists of N ′′ := 2DN bits. To transform a codeword of C′ in a codeword of C′′, we split the
codeword in blocks of D bits corresponding to the ends of edges incident to one vertex. Then we separately
encode each of these blocks by the Hadamard code. (In fact, instead of the Hadamard code with the relative
code distance 1/2 we could take any other linear code with the relative code distance close enough to 1/2).

Let us estimate the distance of C′′. The distance of the initial code C is equal to ρN , so every non-zero
codeword x̄ in this code contains at least ρN ones. If ρ < 1

2 − ε, then in the corresponding codeword x̄′ in C′

contains ≥ (2 + ε)ρN blocks (with D bits in each block) that involve at least one non-zero bit. By applying
the Hadamard code we obtain a codeword x̄′′ in C′′ with ≥ (2+ ε)ρN non-zero blocks of size 2D, where each
of these blocks contains exactly D/2 zeros and D/2 ones. Hence, the code distance of C′′ is not less than

(2 + ε)ρ

2
N ′′ =

(

1 +
ε

2

)

ρN ′′.

Thus, we have “amplified” the relative code distance from ρ to
(
1 + ε

2

)
ρ.

This described amplification procedure does not change the number of codewords in a code, and increases
the code length by a constant factor. Hence, if the original family of codes C is asymptotically good, then
the amplified codes C′′ are also asymptotically good.
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What is the structure of the checksum matrix of the new code? W.l.o.g. we may assume that the
Hadamard code is systematic, so each bit of a codeword of C is just transferred to some position of the
amplified C′′. Hence, for the amplified code we inherit all equations that define the original code C without
any changes (up to renaming of the variables). If the checksum matrix of C is sparse, then each of these
equations involve only O(1) variables. Besides the equation inherited from C, we add the equation that
define the Hadamard code for each block of 2D bits (one block for each vertex of G). Each of these equations
contains at most 2D = O(1) variables. Thus, the transformation preserves the property of sparsity of the
checksum matrix. If the resulting family of linear constraints is not linearly independent, we can eliminate
the redundant equations.

By repeating this amplification procedure O(1) times we obtain a linear code with the relative distance
≥ 1

2 − δ. This code satisfies condition (L′), and therefore (L). The properties (G) and (S) are satisfied for
this code, as explained above. It remains to achieve the property (M). We discuss in the next section.

6.2.3 A checksum matrix with the mixing property

In this section we focus on the properties of a checksum matrix that look more natural being formulated as
properties of a system of linear equations. Given a real σ > 0 and an integer q > 0, we study the following
problem of linear algebra: we need to construct a system of m ≤ σn linear equations with n variables, with
the properties of sparsity (S) and mixing (M′). This problem can be reformulated as follows: we need to
construct a bipartite graph G = (VL, VR, E) with n vertices in the left part (the n vertices in VL correspond
to the variables of the system) and m vertices in the right part (the m vertices in VR correspond to the
linear equations of the system); an edge connects vi ∈ VL with wj ∈ VR (i.e., (vi, wj) ∈ E), if and only if
the i-th variable is involved in the j-th l equation of the linear system. In terms of this graph, the property
of sparsity means that the degrees of all vertices in the right part are bounded by O(1), and the property of
mixing means that for every set S of βn vertices on the left there exists a set T of γm vertices on the right
such that every w ∈ T is connected with S by at least q edges.

We construct the required bipartite graph using an algebraic expander. Let us fix an algebraic expander
H with parameters (N, d, λ). In our construction the vertices in VR (the linear equations) will correspond
to the vertices of this expander, and the vertices in VL (the variables of the linear system) correspond to the
paths of length t in the expander. Thus, the number of variables in the system is n = Ndt, and the number
of equations is m = N . The i-th variable is involved in the j-th equation, if and only if the i-th path of
length t in H contains the j-th vertex of H. If t is a constant (does not depend on n), then this construction
gives a sparse linear system: every variable is involved in (t+ 1) · dt = O(1) equations. By choosing t large
enough, we can make the fraction m/n less than the given parameter σ.

With a large enough t we obtain a linear system with the strong property mixing. Indeed, let us fix in
H some set of vertices S of size γN . Then the fraction of paths P of length t where all but q vertices belong
to S, is not greater than

(γ + λ)t−q ·
(
t

q

)

see [13, Theorem 3.10]. We can choose t and λ so that this fraction is less than β. Thus, we can achieve the
property of strong mixing for the required values of β, γ, q.

6.2.4 Merging two constructions

Let us summarize the constructions discussed in two previous sections. In Section 6.2.2 we obtained a system
of linear equations 





a1,1x1 + · · ·+ a1,nxn = 0,
. . .

am,1x1 + · · ·+ am,nxn = 0,

with n variables, with the dimension of the solution space > c1n (property (G)), where every equation
involves ≤ c2 variables (property (S)), for some positive constants c1, c2 that does not depend on n. In
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Section 6.2.3 we constructed another linear system







b1,1x1 + · · ·+ b1,nxn = 0,
. . .

bℓ,1x1 + · · ·+ bℓ,nxn = 0,

with n variables and ℓ = σn equations, with the property of strong mixing (M′) from some β, γ, q. We are
free to chose the parameters, so we may assume that q > c2. Moreover, we can achieve the property (M′)
with arbitrarily small positive σ.

Now we joint together these two linear systems (we just take the union of linear equations from both
systems). The resulting linear system is defined by the matrix

















a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
. . .
. . .
am,1 am,2 am,3 . . . am,n

b1,1 b1,2 b1,3 . . . b1,n
. . .
bℓ,1 bℓ,2 bℓ,3 . . . bℓ,n

















This linear system defines a code which is still asymptotically good provided that σ < c1 (we may choose
the value of σ small enough). We refer to the m linear constraints that came to the joint system from
the construction of Section 6.2.2 as primary equations, and to the ℓ linear constraints that came from the
construction of Section 6.2.2 as auxiliary equations.

The new code has only a weak version of the mixing property: the property (M′) holds only for the
auxiliary equations. How to spread the property (M′) to the entire linear system? To this end we xor
the auxiliary equations with the primary equations. More precisely, we add (in the sense of linear algebra)
each of the auxiliary equations to the fraction 1/ℓ of the primary equations. The same time, the auxiliary
equations remain intact. Thus, we obtain a linear system with the matrix









































a1,1 ⊕ b1,1 a1,2 ⊕ b1,2 a1,3 ⊕ b1,3 . . . a1,n ⊕ b1,n
a2,1 ⊕ b2,1 a2,2 ⊕ b2,2 a2,3 ⊕ b2,3 . . . a2,n ⊕ b2,n

. . .
aℓ,1 ⊕ bℓ,1 aℓ,2 ⊕ bℓ,2 aℓ,3 ⊕ bℓ,3 . . . aℓ,n ⊕ bℓ,n

aℓ+1,1 ⊕ b1,1 aℓ+1,2 ⊕ b1,2 aℓ+1,3 ⊕ b1,3 . . . aℓ+1,n ⊕ b1,n
aℓ+2,1 ⊕ b2,1 aℓ+2,2 ⊕ b2,2 aℓ+2,3 ⊕ b2,3 . . . aℓ+2,n ⊕ b2n

. . .
a2ℓ,1 ⊕ bℓ,1 a2ℓ,2 ⊕ bℓ,2 a2ℓ,3 ⊕ bℓ,3 . . . a2ℓ,n ⊕ bℓ,n

a2ℓ+1,1 ⊕ b1,1 a2ℓ+1,2 ⊕ b1,2 a2ℓ+1,3 ⊕ b1,3 . . . a2ℓ+1,n ⊕ b1,n
a2ℓ+2,1 ⊕ b2,1 a2ℓ+2,2 ⊕ b2,2 a2ℓ+2,3 ⊕ b2,3 . . . a2ℓ+2,n ⊕ b2n

. . .
a3ℓ,1 ⊕ bℓ,1 a3ℓ,2 ⊕ bℓ,2 a3ℓ,3 ⊕ bℓ,3 . . . a3ℓ,n ⊕ bℓ,n

. . .

. . .

b1,1 b1,2 b1,3 . . . b1,n
. . .
bℓ,1 bℓ,2 bℓ,3 . . . bℓ,n
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This transform does not change the solution space of the system. The same time, the transformed system
satisfies the mixing property (spread on all equations). Notice that when we xor an auxiliary equation with
some of the primary equations, some 1’s from both equations may cancel out. So we cannot claim that
the modified system satisfies (M′). However, since q > c2, we can claim that the entire matrix satisfies the
weaker property (M).

If the equations of the resulting system are not linearly independent, we can eliminate the redundant
equations. The number of eliminated equations is not greater than σn (the number of all auxiliary equations),
and therefore this operation will not much affect the mixing property: in the worst case the value of parameter
γ shrinks to γ′ = γ − σ. Since the constructions in Sections 6.2.2–6.2.3 work for any γ < 1 and any σ > 0,
we can obtain as the result any γ′ < 1.

6.2.5 The algebraic expanders involved in the construction

In our construction we employed algebraic expanders with different parameters. In Section 6.2.2 we used a
series of algebraic expanders with parameters

(N0, d, 1/2), (N1 = N0 · 2D(ε), d, 1/2), . . . , (Ns = N0 · 2sD(ε), d, 1/2)

for some constants d and s. In Section 6.2.3 we used another algebraic expanders with parameters (ns, d, λ)
for a small enough λ and a suitable d. The required algebraic expanders can be constructed explicitly, for
example, by using the recursive schemes based on the zig-zag product, see [13]. This observation concludes
the proof of Theorem 6.4.

7 Conclusion

In the prolific paper [7], Cook and Reckhow proposed a very general definition of a proof system. The
OBDD(∧) and OBDD(∧, reordering) studied in this paper are two specific examples of proof systems. Indeed,
it is enough to observe that the following three properties are satisfied for these OBDDs:

1. There is a polynomial-time algorithm that verifies whether a function represented by an OBDD is
satisfiable.

2. Let D1, D2, D3 be some OBDDs in the same order. It is possible to check whether D1 = D2 ∧D3 in
polynomial time.

3. There is a polynomial-time algorithm that verifies whether an OBDD D1 in an order π1 and an OBDD
D2 in an order π2 represent the same function.

From Properties 1–3 it easily follows that the OBDD(∧) and OBDD(∧, reordering) are proof systems by
Cook and Reckhow.

We believe that our techniques can be applied in a more general setting and extended to some other
proof systems, with possibly other data structures representing the Boolean functions. More specifically, we
argue that our techniques apply to the k-OBDDs. To outline this generalization, we survey our proofs and
take inventory of the properties of the OBDD(∧, reordering)s that were used in our argument. In our lower
bounds we used the following property of the OBDDs:

4. If f : {0, 1}n → {0, 1} is represented by a π-OBDD of size S, then for every partition (Π0,Π1) of [n]
such that elements of Π0 precede elements of Π1 in the order π, the communication complexity of f
with respect to (Π0,Π1) is O(logS).

These are essentially the only property of OBDD(∧, reordering) used in Section 3. Indeed, a lower bounds
on complexity OBDD(∧, reordering) can be proven by the following argument:
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• On the first step, we prove exponential lower bounds on the OBDD complexity of a satisfiable formula
Φ. Actually, in each case we prove a linear lower bound on the communication complexity of computing
Φ with respect to every nearly balanced partition of the input.

• We focus on the last step of the derivation. This step is the conjunction of F1 and F2 in the same
order π. We need to prove that at least one of F1 and F2 has exponential size. Both F1 and F2 are
satisfiable, and they are conjunctions of different sets of clauses of the initial formula. We construct
partial substitutions ρ1 and ρ2 with the same support such that the formula F1|ρ1

∧F2|ρ2
is isomorphic

to Φ. Then the communication complexity of computing F1|ρ1
∧ F2|ρ2

is linear with respect to any
nearly balanced partition Π consistent with π. Hence, the communication complexity of F1|ρ1

or F2|ρ2

with respect to Π is linear. Thus, the communication complexity of either F1 or F2 with respect to
π is linear. Therefore, by Property 4 of OBDDs it follows that for the order π either F1 or F2 has
exponential size.

Thus, only Property 4 is needed to prove a lower bound for OBDDs. It is known that k-OBDDs enjoy
Properties 1-3 and Property 4 as well (see for example [24]). Therefore, our lower bounds and separations
proven (for OBDD(∧) and OBDD(∧, reordering)) in Section 3, equally apply to the proof systems based on
k-OBDDs.

In Section 4, we constructed a family of formulas that have short OBDD(∧, reordering) proofs but all the
OBDD(∧) proofs of them have exponential size. And again, to get the lower bound, we used only Property 4
of OBDDs. So this lower bound holds for k-OBDD(∧) as well.

Finally, in Section 5, we proved that while an OBDD(∧, ∃, reordering) algorithm processes a formula, at
some moment it comes to a diagram D that computes a function with a linear communication complexity.
By Property 4, this implies an exponential lower bound on the size of D. Therefore, the proven lower bound
holds also for the k-OBDD(∧, ∃, reordering) algorithms.

7.1 Further research

The major open problem is to prove superpolynomial lower bounds for OBDD(∧,weakening, reordering)
proofs.

Recently Buss et al. [4] established an exponential separation between OBDD(∧,weakening, reordering)
and OBDD(∧,weakening) proof systems. Tseitin formulas based on expanders are easy for
OBDD(∧,weakening), but by Theorem 3.14 they are hard for OBDD(∧, reordering). The paper [4] pre-
sented a family of formulas such that their shortest OBDD(∧,weakening) proof is superpolynomially larger
than every OBDD(∧, reordering) proof of these formulas; it would be interesting to to strengthen this result
and establish an exponential separation.
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