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Abstract

Let A ∈ {0, 1}n×n be a matrix with z zeroes and u ones and x be an n-dimensional vector
of formal variables over a semigroup (S, ◦). How many semigroup operations are required to
compute the linear operator Ax?

As we observe in this paper, this problem contains as a special case the well-known range
queries problem and has a rich variety of applications in such areas as graph algorithms, func-
tional programming, circuit complexity, and others. It is easy to compute Ax using O(u)
semigroup operations. The main question studied in this paper is: can Ax be computed using
O(z) semigroup operations? We prove that in general this is not possible: there exists a ma-
trix A ∈ {0, 1}n×n with exactly two zeroes in every row (hence z = 2n) whose complexity is
Θ(nα(n)) where α(n) is the inverse Ackermann function. However, for the case when the semi-
group is commutative, we give a constructive proof of an O(z) upper bound. This implies that in
commutative settings, complements of sparse matrices can be processed as efficiently as sparse
matrices (though the corresponding algorithms are more involved). Note that this covers the
cases of Boolean and tropical semirings that have numerous applications, e.g., in graph theory.

As a simple application of the presented linear-size construction, we show how to multiply
two n × n matrices over an arbitrary semiring in O(n2) time if one of these matrices is a 0/1-
matrix with O(n) zeroes (i.e. a complement of a sparse matrix).
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1 Introduction

1.1 Problem Statement and New Results

Let A ∈ {0, 1}n×n be a matrix with z zeroes and u ones, and x = (x1, . . . , xn) be an n-dimensional
vector of formal variables over a semigroup (S, ◦). In this paper, we study the complexity of the
linear operator Ax, i.e., how many semigroup operations are required to compute a vector whose
i-th element is ∑

1≤j≤n
∧

Aij=1

xj

where the summation is over the semigroup operation ◦.1 More specifically, we are interested in
lower and upper bounds involving z and u. Matrices with u = O(n) are usually called sparse,
whereas matrices with z = O(n) are called complements of sparse matrices. Computing all n out-
puts of Ax directly (i.e. using the above definition) takes O(u) semigroup operations. The main
question studied in this paper is: can Ax be computed using O(z) semigroup operations? Note that
it is easy to achieve O(z) complexity if ◦ has an inverse. Indeed, in this case Ax can be computed
via subtraction: Ax = (U −A)x = Ux−Ax, where U is the all-ones matrix whose linear operator
can be computed trivially using O(n) semigroup operations, and A is the complement of A and
therefore has only z = O(n) ones.

1.1.1 Commutative Case

Our first main result shows that in the commutative case, complements of sparse matrices can be
processed as efficiently as sparse matrices. Specifically, we prove that if the semigroup is commuta-
tive, Ax can be computed in O(z) semigroup operations; or, more formally, there exists a circuit of
size O(z) that uses x = (x1, . . . , xn) as an input and computes Ax by only applying the semigroup
operation ◦ (we provide the formal definition of the computational model in Section 2.3). More-
over, the constructed circuits are uniform in the sense that they can be generated by an efficient
algorithm. Hence, our circuits correspond to an elementary algorithm that uses no tricks like ex-
amining the values xj , i.e., the semigroup operation ◦ is applied in a (carefully chosen) order that
is independent of the specific input x.

Theorem 1. Let (S, ◦) be a commutative semigroup, and A ∈ {0, 1}n×n be a matrix with z = Ω(n)
zeroes. There exists a circuit of size O(z) that uses a vector x = (x1, . . . , xn) of formal variables as
an input, uses only the semigroup operation ◦ at internal gates, and outputs Ax. Moreover, there
exists a randomized algorithm that takes the positions of z zeroes of A as an input and outputs

such a circuit in time O(z) with probability at least 1− O(log5 n)
n . There also exists a deterministic

algorithm with running time O(z + n log4 n).

We state the result for square matrices to simplify the presentation. Theorem 1 generalizes
easily to show that Ax for a matrix A ∈ {0, 1}m×n with z = Ω(n) zeroes can be computed using
O(m+z) semigroup operations. Also, we assume that z = Ω(n) to be able to state an upper bound

1Note that the result of summation is undefined in case of an all-zero row, because semigroups have no neutral
element in general. One can trivially sidestep this technical issue by adding an all-one column n+ 1 to the matrix A,
as well as the neutral element xn+1 into the vector. Alternatively, we could switch from semigroups to monoids, but
we choose not to do that, since we have no use for the neutral element and associated laws in the rest of the paper.
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O(z) instead of O(z + n). Note that when z < n, the matrix A is forced to contain all-one rows
that can be computed trivially.

The following corollary generalizes Theorem 1 from vectors to matrices.

Corollary 1. Let (S, ◦) be a commutative semigroup. There exists a deterministic algorithm that
takes a matrix A ∈ {0, 1}n×n with z = O(n) zeroes and a matrix B ∈ Sn×n and computes the
product AB in time O(n2).

1.1.2 Non-commutative Case

As our second main result, we show that commutativity is essential : for a faithful non-commutative
semigroup S (the notion of faithful non-commutative semigroup is made formal later in the text),
the minimum number of semigroup operations required to compute Ax for a matrix A ∈ {0, 1}n×n
with z = O(n) zeroes is Θ(nα(n)), where α(n) is the inverse Ackermann function.

Theorem 2. Let (S, ◦) be a faithful non-commutative semigroup, x = (x1, . . . , xn) be a vector of
formal variables, and A ∈ {0, 1}n×n be a matrix with O(n) zeroes. Then Ax is computable using
O(nα(n)) semigroup operations, where α(n) is the inverse Ackermann function. Moreover, there
exists a matrix A ∈ {0, 1}n×n with exactly two zeroes in every row such that the minimum number
of semigroup operations required to compute Ax is Ω(nα(n)).

1.2 Motivation

The complexity of linear operators is interesting for many reasons.

Range queries. In the range queries problem, one is given a vector x = (x1, . . . , xn) over a semi-
group (S, ◦) and multiple queries of the form (l, r), and is required to output the result
xl ◦ xl+1 ◦ · · · ◦ xr for each query. It is a classical problem in data structures and algorithms
with applications in many fields, such as bioinformatics and string algorithms, computational
geometry, image analysis, real-time systems, and others. We review some of the less straight-
forward applications in Section A.2, as well as a rich variety of algorithmic techniques for the
problem in Section A.3.

The linear operator problem is a natural generalization of the range queries problem: each
row of the matrix A defines a subset of the elements of x that need to be summed up and this
subset is not required to be a contiguous range. The algorithms (Theorem 1 and Corollary 1)
and hardness results (Theorem 2) for the linear operator problem presented in this paper are
indeed inspired by some of the known results for the range queries problem.

Graph algorithms. Various graph path/reachability problems can be reduced naturally to matrix
multiplication. Two classic examples are: (i) the all-pairs shortest path problem (APSP) is
reducible to min-plus matrix multiplication, and (ii) the number of triangles in an undirected
graph can be found by computing the third power of its adjacency matrix. It is natural to
ask what happens if a graph has O(n) edges or O(n) anti-edges (as usual, by n we denote
the number of nodes). In many cases, an efficient algorithm for sparse graphs (O(n) edges)
is straightforward whereas an algorithm with the same efficiency for complements of sparse
graphs (O(n) anti-edges) is not. For example, it is easy to solve APSP and triangle counting
on sparse graphs in time O(n2), but achieving the same time complexity for complements of
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sparse graphs is more complicated. Theorem 1 and Corollary 1 can be used to solve various
problems on complements of sparse graphs in time O(n2).

Matrix multiplication over semirings. Fast matrix multiplication methods rely essentially on
the ring structure of the underlying set of elements. The first such algorithm was given
by Strassen, the current record upper bound is O(n2.373) [18, 9]. The removal of the inverse
operation often drastically increases the complexity of algorithmic problems over algebraic
structures, and even the complexity of standard computational tasks are not well understood
over tropical and Boolean semirings (see, e.g. [17, 11]). For various important semirings, we
still do not know an n3−ε (for a constant ε > 0) upper bound for matrix multiplication, e.g.,
the strongest known upper bound for min-plus matrix multiplication is n3/ exp(

√
log n) [17].

The interest in computations over such algebraic structures has recently grew substantially
throughout the Computer Science community with the cases of Boolean and tropical semir-
ings being of the main interest (see, for example, [14, 17, 5]). From this perspective, the
computation complexity over sparse and complements of sparse matrices is one of the most
basic questions. Theorem 1 and Corollary 1 therefore characterise natural special cases when
efficient computations are possible.

Functional programming. Algebraic data structures for graphs developed in the functional pro-
gramming community [16] can be used for representing and processing densely-connected
graphs in linear (in the number of vertices) time and memory. As we discuss in Section A.4,
Theorem 1 yields an algorithm for deriving a linear-size algebraic graph representation for
complements of sparse graphs.

Circuit complexity. Computing linear operators over a Boolean semiring ({0, 1},∨) is a well-
studied problem in circuit complexity. The corresponding computational model is known
as rectifier networks. An overview of known lower and upper bounds for such circuits is given
by Jukna [13, Section 13.6]. Theorem 1 states that very dense linear operators have linear
rectifier network complexity.

2 Background

2.1 Semigroups and Semirings

A semigroup (S, ◦) is an algebraic structure, where the operation ◦ is closed, i.e., ◦ : S × S → S,
and associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, and z in S. Commutative (or abelian)
semigroups introduce one extra requirement: x ◦ y = y ◦ x for all x and y in S.

A commutative semigroup (S, ◦) can often be extended to a semiring (S, ◦, •) by introducing
another associative (but not necessarily commutative) operation • that distributes over ◦, that is

x • (y ◦ z) = (x • y) ◦ (x • z)

(x ◦ y) • z = (x • z) ◦ (y • z)

hold for all x, y, and z in S. Since ◦ and • behave similarly to numeric addition and multiplication,
it is common to give • a higher precedence to avoid unnecessary parentheses, and even omit • from
formulas altogether, replacing it by juxtaposition. This gives a terser and more convenient notation,
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e.g., the left distributivity law becomes: x(y ◦ z) = xy ◦ xz. We will use this notation, insofar as
this does not lead to ambiguity. See Subsection A.1 for an overview of commonly used semigroups
and semirings.

2.2 Range Queries Problem and Linear Operator Problem

In the range queries problem, one is given a sequence x1, x2, . . . , xn of elements of a fixed semigroup
(S, ◦). Then, a range query is specified by a pair of indices (l, r), such that 1 ≤ l ≤ r ≤ n. The
answer to such a query is the result of applying the semigroup operation to the corresponding
range, i.e., xl ◦ xl+1 ◦ · · · ◦ xr. The range queries problem is then to simply answer all given range
queries. There are two regimes: online and offline. In the online regime, one is given a sequence
of values x1 = v1, x2 = v2, . . . , xn = vn and is asked to preprocess it so that to answer efficiently
any subsequent query. By “efficiently” one usually means in time independent of the length of the
range (i.e., r − l + 1, the time of a naive algorithm), say, in time O(log n) or O(1). In this paper,
we focus on the offline version, where one is given a sequence together with all the queries, and
are interested in the minimum number of semigroup operations needed to answer all the queries.
Moreover, we study a more general problem: we assume that x1, . . . , xn are formal variables rather
than actual semigroup values. That is, we study the circuit size of the corresponding computational
problem.

The linear operator problem generalizes the range queries problem: now, instead of contiguous
ranges one wants to compute sums over arbitrary subsets. These subsets are given as rows of
a 0/1-matrix A.

2.3 Circuits

We assume that the input consists of n formal variables {x1, . . . , xn}. We are interested in the
minimum number of semigroup operations needed to compute all given words {w1, . . . , wm} (e.g.,
for the range queries problem, each word has a form xl ◦ xl+1 ◦ · · · ◦ xr). We use the following
natural circuit model. A circuit computing all these queries is a directed acyclic graph. There are
exactly n nodes of zero in-degree. They are labelled with {1, . . . , n} and are called input gates. All
other nodes have positive in-degree and are called gates. Finally, some m gates have out-degree 0
and are labelled with {1, . . . ,m}; they are called output gates. The size of a circuit is its number of
edges (also called wires). Each gate of a circuit computes a word defined in a natural way: input
gates compute just {x1, . . . , xn}; any other gate of in-degree r computes a word f1 ◦ f2 ◦ · · · ◦ fr
where {f1, . . . , fr} are words computed at its predecessors (therefore, we assume that there is an
underlying order on the incoming wires for each gate). We say that the circuit computes the words
{w1, . . . , wm} if the words computed at the output gates are equivalent to {w1, . . . , wm} over the
considered semigroup.

For example, the following circuit computes range queries (l1, r1) = (1, 4), (l2, r2) = (2, 5), and
(l3, r3) = (4, 5) over inputs {x1, . . . , x5} or, equivalently, the linear operator Ax where the matrix
A is given below.
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1 2 3 4 5

1 2 3

A =

1 1 1 1 0
0 1 1 1 1
0 0 0 1 1



For a 0/1-matrix A, by C(A) we denote the minimum size of a circuit computing the linear
operator Ax.

A binary circuit is a circuit having no gates of fan-in more than two. It is not difficult to see
that any circuit can be converted into a binary circuit of size at most twice the size of the original
circuit. For this, one just replaces every gate of fan-in k, for k > 2, by a binary tree with 2k − 2
wires (such a tree contains k leaves hence k−1 inner nodes and 2k−2 edges). In the binary circuit
the number of gates does not exceed its size (i.e., the number of wires). And the number of gates
in a binary circuit is exactly the minimum number of semigroup operations needed to compute the
corresponding function.

We call a circuit C computing A regular if for every pair (i, j) such that Aij = 1, there exists
exactly one path from the input j to the output i. A convenient property of regular circuits is the
following observation.

Observation 1. Let C be a regular circuit computing a 0/1-matrix A over a commutative semi-
group. Then, by reversing all the wires in C one gets a circuit computing AT .

Instead of giving a formal proof, we provide an example of a reversed circuit from the example
given above. It is because of this observation that we require circuit outputs to be gates of out-
degree zero (so that when reversing all the wires the inputs and the outputs exchange places).

1 2 3 4 5

1 2 3

AT =


1 0 0
1 1 0
1 1 0
1 1 1
0 1 1



3 Commutative Case

This section is devoted to the proofs of Theorem 1 and Corollary 1 which we remind below.

Theorem 1. Let (S, ◦) be a commutative semigroup, and A ∈ {0, 1}n×n be a matrix with z = Ω(n)
zeroes. There exists a circuit of size O(z) that uses a vector x = (x1, . . . , xn) of formal variables as
an input, uses only the semigroup operation ◦ at internal gates, and outputs Ax. Moreover, there
exists a randomized algorithm that takes the positions of z zeroes of A as an input and outputs

such a circuit in time O(z) with probability at least 1− O(log5 n)
n . There also exists a deterministic

algorithm with running time O(z + n log4 n).

Corollary 1. Let (S, ◦) be a commutative semigroup. There exists a deterministic algorithm that
takes a matrix A ∈ {0, 1}n×n with z = O(n) zeroes and a matrix B ∈ Sn×n and computes the
product AB in time O(n2).
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We start by proving two simpler statements to show how commutativity is important.

Lemma 1. Let S be a semigroup (not necessarily commutative) and let A ∈ {0, 1}n×n contain at
most one zero in every row. Then C(A) = O(n).

Proof. To compute the linear operator Ax, we first precompute all prefixes and suffixes of x =
(x1, . . . , xn). Concretely, let pi = x1 ◦ x2 ◦ · · · ◦ xi. All pi’s can be computed using (n − 1) binary
gates as follows:

p1 = x1, p2 = p1 ◦ x2, p3 = p2 ◦ x3, . . . , pi = pi−1 ◦ xi, . . . , pn = pn−1 ◦ xn.

Similarly, we compute all suffixes sj = xj ◦ xj+1 · · · ◦ xn using (n − 1) binary gates. From these
prefixes and suffixes all outputs can be computed as follows: if a row of A contains no zeroes, the
corresponding output is pn; otherwise if a row contains a zero at position i, the output is pi−1 ◦si+1

(for i = 1 and i = n, we omit the redundant term).

In the rest of the section, we assume that the underlying semigroup is commutative. Allowing
at most two zeroes per row already leads to a non-trivial problem. We give only a sketch of the
solution below, since we will further prove a more general result. It is interesting to compare the
following lemma with Theorem 2 that states that in the non-commutative setting matrices with
two zeroes per row are already hard.

Lemma 2. Let A ∈ {0, 1}n×n contain at most two zeroes in every row. Then C(A) = O(n).

Proof sketch. Consider the following undirected graph: the set of nodes is {1, 2, . . . , n}; two nodes
i and j are joined by an edge if there is a row having zeroes in columns i and j. In the worst
case (all rows are different and contain exactly two zeroes), the graph has exactly n edges and
hence it contains a cut (L,R) of size at least n/2. This cut splits the columns of the matrix into
two parts (L and R). Now let us also split the rows into two parts: the top part T contains all
columns that have exactly one zero in each L and R; the bottom part B contains all the remaining
rows. What is nice about the top part of the matrix (T × (L ∪ R)) is that it can be computed by
O(n) gates (using Lemma 1). For the bottom part, let us cut all-1 columns out of it and make a
recursive call (note that this requires the commutativity). The corresponding recurrence relation
is T (n) ≤ cn+ T (n/2) for a fixed constant c, implying T (n) = O(n), and hence C(A) = O(n).

We now state a few auxiliary lemmas that will be used as building blocks in the proof of
Theorem 1.

Lemma 3. There exists a binary regular circuit of size O(n log n) such that any range can be
computed in a single additional binary gate using two gates of the circuit. It can be generated in
time O(n log n).

Lemma 4. There exists a binary regular circuit of size O(n) such that any range of length at
least log n can be computed in two binary additional gates from the gates of the circuit. It can be
generated by an algorithm in time O(n).

Lemma 5. Let m ≤ n and A ∈ {0, 1}m×n be a matrix with z = Ω(n) zeroes and at most log n
zeroes in every row. There exists a circuit of size O(z) computing Ax. Moreover, there exists
a randomized O(z) time algorithm that takes as input the positions of z zeros and outputs a circuit

computing Ax with probability at least 1− O(log5 n)
n . There also exists a deterministic algorithm with

running time O(n log4 n).
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Proof of Theorem 1. Denote the set of rows and the set of columns of A by R and C, respectively.
Let R0 ⊆ R be all the rows having at least log n zeroes and R1 = R \R0. We will compute all the
ranges of A. From these ranges, it takes O(z) additional binary gates to compute all the outputs.

We compute the matrices R0 × C and R1 × C separately. The main idea is that R0 × C is
easy to compute because it has a small number of rows (at most z/ log n), while R1 ×C is easy to
compute because it has a small number of zeroes in every row (at most log n).

The matrix R1×C can be computed using Lemma 5. To compute R0×C, it suffices to compute
C ×R0 by a regular circuit, thanks to the Observation 1. Let |R0| = t. Clearly, t ≤ z/ log n. Using
Lemma 3, one can compute all ranges of C ×R0 by a circuit of size

O(t log t+ z) = O

(
z

log n
· log z + z

)
= O(z + n) = O(z) ,

since z = O(n2).
The algorithm for generating the circuit is just a combination of the algorithms from Lemmas 3

and 5.

Proof of Lemma 3. We adopt the divide-and-conquer construction by Alon and Schieber [1]. Split
the input range (1, n) into two half-ranges of length n/2: (1, n/2) and (n/2 + 1, n). Compute
all suffixes of the left half and all prefixes of the right half. Using these precomputed suffixes
and prefixes one can answer any query (l, r) such that l ≤ n/2 ≤ r in a single additional gate. It
remains to be able to answer queries that lie entirely in one of the halves. We do this by constructing
recursively circuits for both halves. The resulting recurrence relation T (n) ≤ 2T (n/2)+O(n) implies
that the resulting circuit has size at most O(n log n).

Proof of Lemma 4. We use the block decomposition technique for constructing the required circuit.
Partition the input range (1, n) into n/ log n ranges of length log n and call them blocks. Compute
the range corresponding to each block (in total size O(n)). Build a circuit from Lemma 3 on top
of these blocks. The size of this circuit is O(n) since the number of blocks is n/ log n. Compute all
prefixes and all suffixes of every block. Since the blocks partition the input range (1, n), this also
can be done with an O(n) size circuit.

Consider any range of length at least log n. Note that it cannot lie entirely inside the block.
Hence, any such range can be decomposed into three subranges: a suffix of a block, a range of
blocks, and a prefix of a block (where any of the three components may be empty). For example,
for n = 16, a range (3, 13) is decomposed into a suffix (3, 4) of the first block, a range (2, 3) of
blocks (B1, B2, B3, B4), and a prefix (13, 13) of the last block:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B1 B2 B3 B4

It remains to note that all these three components are already precomputed.

Proof of Lemma 5. The z zeroes of A breaks its rows into ranges. Let us call a range short is its
length is at most log n. We will show that it is possible to permute the columns of A so that the
total length of all short ranges is at most O( n

logn). Then, all such short ranges can be computed by
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a circuit of size O( lognn ·n) = O(n) = O(z). All the remaining ranges can be computed by a circuit
of size O(n) using Lemma 4.

Randomized algorithm. Permute the columns randomly. A uniform random permutation of
n objects can be generated in time O(n) [15, Algorithm P (Shuffling)]. Let us compute the
expectation of the total length of short ranges. Let us focus on a single row and a particular
cell in it. Denote the number of zeroes in the row by t. What is the probability that the cell
belongs to a short segment? There are two cases to consider.

1. The cell lies close to the border, i.e., it belongs to the first log n cells or to the last logn
cells (the number of such cells is 2 log n). Then, this cell belongs to a short range iff
there is at least one zero in log n cells close to it (on the side opposite to the border).
Hence, one zero must belong to a set of log n cells while the remaining t− 1 zeroes may
be anywhere. The probability is then at most

log n ·
(

n
t−1
)(

n
t

) = log n · t

n− t+ 1
= O

(
log2 n

n

)
.

2. It is not close to the border (the number of such cells is n− 2 log n). Then, there must
be a zero on both sides of the cell. The probability is then at most

log2 n ·
(

n
t−2
)(

n
t

) = log2 n · t(t− 1)

(n− t+ 1)(n− t+ 2)
= O

(
log4 n

n2

)
.

Hence, the expected total length of short ranges in one row is

O

(
2 log n · log2 n

n
+ (n− 2 log n) · log4 n

n2

)
= O

(
log4 n

n

)
.

Thus, the expected length of short ranges in the whole matrix A is O(log4 n). By Markov
inequality, the probability that the length of all short ranges is larger than n

logn is at most

O( log
5 n
n ).

Deterministic algorithm. It will prove convenient to assume that A is a t × t matrix with
exactly t zeros with at most log t zeroes in every row. For this, we let t = max{n, z} and add
a number of all-ones rows and columns if needed. This enlargement of the matrix does not
make the computation simpler: additional rows mean additional outputs that can be ignored
and additional columns correspond to redundant variables that can be removed (substituted
by 0) once the circuit is constructed. Below, we show how to deterministically construct
a circuit of size O(t) for A. For this, we present a greedy algorithm for permuting the
columns of A in such a way that the total length of all short segments is O(log4 n). This will
follow from the fact that all short ranges in the resulting matrix A will lie within the last
O(log2 t) columns.

We construct the required permutation of columns step by step by a greedy algorithm. After
step r we will have a sequence of the first r columns chosen and we will maintain the following
properties:
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• For each i ≤ r, the first i columns contain at least i zeros.

• There are no short ranges within the first r rows (apart from those, that can be extended
by adding columns on the right).

The process will work for at least t− log2 t steps, so short ranges are only possible within the
last log2 t+ log t = O(log2 t) columns.

On the first step, we pick any column that has a zero in it. Suppose we have reached step r.
We explain how to add a column on step r+1. Consider the last log t columns in the currently
constructed sequence. Consider the set R of rows that have zeros in them. These are exactly
the rows that constrain our choice for the next column. There are two cases.

1. There are at most log t rows in R. Then, for each row in R, there are at most log t
columns that have zeros in this row. In total, there are at most log2 t columns that have
zeros in some row of R. Denote the set of this columns by F . If there is an unpicked
column outside of F that has at least one zero in it, we add this column to our sequence.
Clearly, both properties are satisfied and the step is over. Otherwise, all other columns
contain only ones, so we add all of them to our sequence, place the columns from F to
the end of the sequence, and the whole permutation is constructed.

2. There are more that log t rows in R. This means that the last log t columns of the
current sequence contain more than log t zeros. By the first property, the first r − log t
columns contain at least r− log t zeros. So overall, in the current sequence of r columns
there are more than r zeros. Thus, in the remaining t − r columns there are less then
t− r zeros and there is a column without zeros. We add this column to the sequence.

To implement this algorithm in time O(t log4 t), we store, for each column j of A, a sorted array
of rows i such that Aij = 0. Since the total number of zeros z is at most t log t, these arrays can
be computed in time O(t log2 t): if c1, . . . , ct are the numbers of zeros in the columns, then sorting
the corresponding arrays takes time

t∑
i=1

ci log ci ≤ log(t log t) ·
t∑

i=1

ci ≤ log(t log t) · t log t .

At every iteration, we need to update the set R. For this, we need to remove some rows from
it (from the column that no longer belongs to the stripe of columns of width log t) and to add the
rows of the newly added column. Since the size of |R| is always at most t and the total number
of zeros is z ≤ t log t, the total running time for all such updates is O(t log2 t) (if one uses, e.g.,
a balanced binary search tree for representing R).

If |R| > log t, one just takes an all-one column (all such columns can be stored in a list). If
|R| ≤ log t, we need to find a column outside of the set F . For this, we just scan the list of the yet
unpicked columns. For each column, we first check whether it belongs to the set F . This can be
checked in time O(log2 t): for every row in |R|, one checks whether this row belongs to the sorted
array of the considered column using binary search in time O(log t). Since |F | ≤ log2 t, we will find
a column outside of F in time O(log4 t).

Proof of Corollary 1. One deterministically generates a circuit for A of size O(n) in time
O(n log4 n) = O(n2) by Theorem 1. This circuit can be used to multiply A by any column of B in
time O(n). For this, one constructs a topological ordering of the gates of the circuits and computes
the values of all gates in this order. Hence, AB can be computed in time O(n2).
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4 Non-commutative Case

In the previous section, we have shown that for commutative semigroups dense linear operators can
be computed by linear size circuits. A closer look at the circuit constructions reveals that we use
commutativity crucially: it is important that we may reorder the columns of the matrix. In this
section, we show that this trick is unavoidable: for non-commutative semigroups, it is not possible
to construct linear size circuits for dense linear operators. Namely, we prove Theorem 2.

Theorem 2. Let (S, ◦) be a faithful non-commutative semigroup, x = (x1, . . . , xn) be a vector of
formal variables, and A ∈ {0, 1}n×n be a matrix with O(n) zeroes. Then Ax is computable using
O(nα(n)) semigroup operations, where α(n) is the inverse Ackermann function. Moreover, there
exists a matrix A ∈ {0, 1}n×n with exactly two zeroes in every row such that the minimum number
of semigroup operations required to compute Ax is Ω(nα(n)).

4.1 Faithful semigroups

We consider computations over general semigroups that are not necessarily commutative. In par-
ticular, we will establish lower bounds for a large class of semigroups and our lower bound does not
hold for commutative semigroups. This requires a formal definition that captures semigroups with
rich enough structure and in particular requires that a semigroup is substantially non-commutative.

Previously lower bounds in the circuit model for a large class of semigroups were known for the
Range Queries problem [19, 6]. These result are proven for a large class of commutative semigroups
that are called faithful (we provide a formal definition below). Since we are dealing with non-
commutative case we need to generalize the notion of faithfulness to non-commutative semigroups.

To provide formal definition of faithfulness it is convenient to introduce the following notation.
Suppose (S, ◦) is a semigroup. Let XS,n be a semigroup with generators {x1, . . . , xn} and with
the equivalence relation consisting of identities in variables {x1, . . . , xn} over (S, ◦). That is, for
two words W and W ′ in the alphabet {x1, . . . , xn} we have W ∼ W ′ in XS,n iff no matter which
elements of the semigroup S we substitute for {x1, . . . , xn} we obtain a correct equation over S. In
particular, note that if S is commutative (respectively, idempotent), then XS,n is also commutative
(respectively, idempotent). The semigroup XS,n is studied in algebra under the name of relatively
free semigroup of rank n of a variety generated by semigroup S [?]. We will often omit the subscript
n and write simply XS since the number of generators will be clear from the context.

Below we will use the following notation. Let W be a word in the alphabet {x1, . . . , xn}. Denote
by Var(W ) the set of letters that are present in W .

We are now ready to introduce the definition of a commutative faithful semigroup.

Definition 1 ([19, 6]). A commutative semigroup (S, ◦) is faithful commutative if for any equiva-
lence W ∼W ′ in XS we have Var(W ) = Var(W ′).

Note that this definition does not pose any restrictions on the cardinality of each letter in W
and W ′. This allows to capture in this definition important cases of idempotent semigroups. For
example, semigroups ({0, 1},∨) and (Z,min) are commutative faithful.

We need to study the non-commutative case, and moreover, our results establish the difference
between commutative and non-commutative cases. Thus, we need to extend the notion of faithful-
ness to non-commutative semigroups to capture their non-commutativity in the whole power. At
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the same time we would like to keep the case of idempotency. We introduce the notion of faithful-
ness for the non-commutative case inspired by the properties of free idempotent semigroups [10].
To introduce this notion we need several definitions.

The initial mark of W is the letter that is present in W such that its first appearance is farthest
to the right. Let U be the prefix of W consisting of letters preceding the initial mark. That is,
U is the maximal prefix of W with a smaller number of generators. We call U the initial of W .
Analogously we define the terminal mark of W and the terminal of W .

Definition 2. We say that a semigroup X with generators {x1, . . . , xn} is strongly non-
commutative if for any words W and W ′ in the alphabet {x1, . . . , xn} the equivalence W ∼ W ′

holds in X only if the initial marks of W and W ′ are the same, terminal marks are the same, the
equivalence U ∼ U ′ holds in X, where U and U ′ are the initials of W and W ′, respectively, and the
equivalence V ∼ V ′ holds in X, where V and V ′ are the terminals of W and W ′, respectively.

In other words, this definition states that the first and the last occurrences of generators in
the equivalence separates the parts of the equivalence that cannot be affected by the rest of the
generators and must therefore be equivalent themselves. We also note that this definition exactly
captures the idempotent case: for a free idempotent semigroup the condition in this definition is
“if and only if”[10].

Definition 3. A semigroup (S, ◦) is faithful non-commutative if XS is strongly non-commutative.

We note that this notion of faithfulness is relatively general and is true for semigroups (S, ◦) with
considerable degree of non-commutativity in their structure. It clearly captures free semigroups
with at least two generators. It is also easy to see that the requirements in Definition 3 are satisfied
for the free idempotent semigroup with n generators (if S is idempotent, then XS,n is also clearly
idempotent and no other relations are holding in XS,n since we can substitute generators of S for
x1, . . . , xn).

Next we observe some properties of strongly non-commutative semigroups that we need in our
constructions.

Lemma 6. Suppose X is strongly non-commutative. Suppose the equivalence W ∼W ′ holds in X
and |Var(W )| = |Var(W ′)| = k. Suppose U and U ′ are minimal (maximal) prefixes of W and W ′

such that |Var(U)| = |Var(U ′)| = l ≤ k. Then the equivalence U ∼ U ′ holds in X. The same is
true for suffixes.

Proof. The proof is by induction on the decreasing l. Consider the maximal prefixes first. For l = k
and maximal prefixes we just have U = W and U ′ = W ′. Suppose the statement is true for some
l, and denote the corresponding prefixes by U and U ′, respectively. Then note that the maximal
prefixes with l − 1 variables are initials of U and U ′. And the statement follows by Definition 2.

The proof of the statement for minimal prefixes is completely analogous. Note that on the step
of induction the prefixes differ from the previous case by one letter that are initial marks of the
corresponding prefixes. So these additional letters are also equal by the Definition 2.

The case of suffixes is completely analogous.

The next lemma is a simple corollary of Lemma 6.

Lemma 7. Suppose X is strongly non-commutative. Suppose W ∼ W ′ holds in X. Let us write
down the letters of W in the order in which they appear first time in W when we read it from left
to right. Let’s do the same for W ′. Then we obtain exactly the same sequences of letters.

The same is true if we read the words from right to left.
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4.2 Proof Strategy

We now proceed to the proof of Theorem 2.
The upper bound follows easily by a naive algorithm: split all rows of A into ranges, compute

all ranges by a circuit of size O(nα(n)) using Yao’s construction [19], then combine ranges into
rows of A using O(n) gates.

Thus we will concentrate on lower bounds. We will view the computation of the circuit as a
computation in a strongly non-commutative semigroup X = XS .

We will use the following proof strategy. First we observe that it is enough to prove the lower
bound for the case of idempotent strongly non-commutative semigroups X. Indeed, if X is not
idempotent, we can factorize it by idempotency relations and obtain a strongly non-commutative
idempotent semigroup Xid. A lower bound for the case of Xid implies lower bound for the case of
X. We provide a detailed explanation in Section 4.3.

Hence, from this point we can assume that X is idempotent and strongly non-commutative.
Next for idempotent case we show that our problem is equivalent to the commutative version of
the range query problem.

For a semigroup X with generators {x1, . . . , xn} denote by Xsym its factorization under com-
mutativity relations xixj ∼ xjxi for all i, j. Note that if X is idempotent and strongly non-
commutative, then Xsym is just the semigroup in which W ∼ W ′ iff Var(W ) = Var(W ′) (this is
free idempotent commutative semigroup).

Theorem 3. For an idempotent strongly non-commutative X and for any s = Ω(n) we have that
(commutative) range queries problem over Xsym has size O(s) circuits iff (non-commutative) dense
linear operator problem over X has size O(s) circuits.

Using this theorem, it is straightforward to finish the proof of Theorem 2. Indeed, by Theorem 3
if non-commutative dense linear operator problem has size s circuit, then the commutative range
queries problem also does. However, for the latter problem it is proved by Chazelle and Rosen-
berg [6] that s = Ω(nα(n)). Moreover, in our construction for the proof of Theorem 3 it is enough
to consider dense linear operators with exactly two zeroes in every row. From this the second part
of Theroem 2 follows.

Note that for the proof of Theorem 2 only one direction of Theorem 3 is needed. However, we
think that the equivalence in Theorem 3 might be of independent interest, so we provide the proof
for both directions.

Thus, it remains to prove Theorem 3. We do this by showing the following equivalences for any
s = Ω(n).

(commutative) range
queries problem over
Xsym has O(s) size
circuits

(non-commutative)
range queries prob-
lem over X has O(s)
size circuits

(non-commutative)
dense linear operator
problem over X has
O(s) size circuits

Lemma 9

special case

straightforward

Lemma 8

Note that two of the reductions on this diagram are trivial. The other two are formulated in
the following lemmas.

Lemma 8. If the (non-commutative) dense linear operator problem over X has size s circuit then
the (non-commutative) range queries problem over X has size O(s) circuit.
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Lemma 9. If the (commutative) version of the range queries problem over Xsym has size s circuits
then the (non-commutative) version over X also does.

The proofs of these lemmas are presented in Sections 4.4 and 4.5 respectively.

4.3 From Idempotent Semigroups to General Semigroups

In this section we provide a detailed explanation of the reduction in Theorem 2 from general
semigroups to idempotent semigroups.

Consider an arbitrary strongly non-commutative semigroup X. Consider a new semigroup Xid

over the same set of generators that is a factorization of X by idempotency relations W 2 ∼W for
all words W in the alphabet {x1, . . . , xn}.

Lemma 10. If X is strongly non-commutative, then Xid is also strongly non-commutative.

Proof. Suppose W and W ′ are words in the alphabet {x1, . . . , xn} and W ∼W ′ in Xid. This means
that there is a sequence W0, . . . ,Wk of words in the same alphabet such that W = W0, W

′ = Wk

and for each i either Wi ∼ Wi+1 in X, or Wi+1 is obtained from Wi by one application of the
idempotency equivalence to some subword of Wi. Clearly, it is enough to check that the conditions
of Definition 2 are satisfied in Xid for each consecutive pair Wi and Wi+1.

If Wi ∼ Wi+1 in X, then the conditions of Definition 2 follows from the strong non-
commutativity of X.

Suppose now that Wi+1 is obtained from Wi by substituting some subword A by A2 (the
symmetrical case is analyzed in the same way). We will show that initial marks of Wi and Wi+1

are the same and Ui ∼ Ui+1 in Xid, where Ui and Ui+1 are initials of Wi and Wi+1 respectively.
For the terminals and terminal marks the proof is completely analogous.

Suppose A lies to the left of initial mark in Wi and we substitute A by A2. Then the initial mark
is unaltered and in the initial Ui we also substitute A by A2. Thus in this case Ui+1 is obtained
from Ui by idempotency relation.

Suppose A contains initial mark of Wi or lies to the right of it. Then after the substitution of
A by A2 the initial mark is still the same and the initial Ui also does not change.

Now we outline the reduction of the lower bound in Theorem 2 from idempotent semigroup to
the general case.

Suppose X is strongly non-commutative and suppose that for X all dense operators can be
computed by circuits of size at most s.

Consider a semigroup Xid as introduced above. By Lemma 10 Xid is also strongly non-
commutative. On the other hand, since Xid is a factorization of X any circuit computing dense
operator over X also computes the same dense operator over Xid. Thus, by our assumption there
are circuits of size at most s for all dense operators over Xid. Finally, Xid is idempotent, so by the
special case of our theorem we have s = Ω(nα(n)) and we are done.

4.4 Reducing Dense Linear Operator to Range Queries

In this subsection, we prove Lemma 8. Intuitively, the lemma holds as the best way to compute rows
of a dense matrix is to combine input variables in the natural order. This intuition is formalized
in Lemma 11 below. Given this, it is easy to reduce dense linear operator problem to the range
queries problem: we just “pack” each range query into a separate row, i.e., for a query (l, r) we
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introduce a 0/1-row having two zeroes in positions l− 1 and r+ 1 (hence, this row consists of three
ranges: (1, l− 1), (l, r), (r + 1, n)). Then, if a circuit computing the corresponding linear operator
has a nice property of always using the natural order of variables (guaranteed by Lemma 11), one
may extract the answer to the query (l, r) from it.

It should be mentioned, at the same time, that the semigroup X might be complicated. In
particular, the idempotency is tricky. For example, it can be used to simulate commutativity: one
can turn xy into yx, by first multiplying xy by y from the left and then multiplying the result by
x from the right (obtaining (y(xy))x = (yx)(yx) = yx). Using similar ideas, one can place new
variables inside of already computed products. To get xyz from xz, one multiplies it by xyz first
from the left and then from the right: (xyz)xz(xyz) = xy(zxzx)yz = xy(zx)yz = xyz. This is not
extremely impressive, since to get xyz we multiply by xyz, but the point is that this is possible in
principle.

We proceed to the formal proofs. Let’s call the word W in the alphabet {x1, . . . , xn} increasing
if it is a product of variables in the increasing order. A binary circuit is called an increasing circuit
if each of its gates computes a word equivalent in X to increasing word. Note that if a gate in
an increasing circuit is fed by two gates G and H, then the increasing words computed by G and H
are matching in a sense that some suffix of G (possibly an empty suffix) is equal to some prefix
of H. Otherwise, the result is not equal to a product of variables in the increasing order, due to
Lemma 7.

Analogously, a binary circuit is called a range circuit if each of its gates computes a word that
is equivalent to a range.

The proof of Lemma 8 follows from the following two lemmas.

Lemma 11. Given a binary circuit computing Ax, one may transform it into an increasing circuit
of the same size computing the same function.

Lemma 12. Given an increasing circuit computing Ax, one may transform it into a range circuit
of the same size computing all ranges of A.

Proof of Lemma 8. Given n ranges, pack them into a matrix A ∈ {0, 1}n×n with at most 2n zeroes.
Take a size-s circuit computing Ax and convert it into a binary circuit. Then, transform it into
an increasing circuit using Lemma 11. Finally, extract the answers to all the ranges from this
circuit using Lemma 12.

Note that the second statement of Theorem 2 follows since the proof of Lemma 8 deals with
matrices with exactly two zeroes in every row.

Proof of Lemma 12. Take an increasing circuit C computing Ax and process all its gates in some
topological ordering. Each gate G of C computes a (word that is equivalent to an) increasing word.
We split this increasing word into ranges and we put into correspondence to G an ordered sequence
G1, . . . , Gk of gates of the new circuit. Each of this gates compute one of the ranges of the word
computed by G and G ∼ G1 ◦ . . . ◦Gk.

Consider a gate G of C and suppose we have already computed all gates of the new circuit
corresponding to previous gates of C. G is the product F ◦ H of previous gates of C, for which
new range gates are already computed. Since C is increasing we have that F and H are matching,
that is some suffix (maybe empty) of the increasing word computed in F is equal to some prefix
(maybe empty) of the increasing word computed in H and there are no other common variables in
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these increasing words. It is easy to see that ranges for the sequence corresponding to G are just
the ranges for the sequences for F and H with possibly two of them united. If needed, we compute
the product of gates of the new circuit corresponding to the united ranges and the sequence of new
gates for G is ready.

Thus, to process each gate of C we need at most one operation in the new circuit and the size
of the new circuit is at most the size of C.

For output gates of C we have gates in the new circuit that compute exactly ranges of output
gates. Thus, in the new circuit all ranges of A are computed.

Proof of Lemma 11. Consider a binary circuit C computing Ax and its gate G together with a vari-
able xi it depends on. We say that xi is good in G if there is a path in C from G to an output gate,
on which the word is never multiplied from the left by words containing variables greater than or
equal to xi. Note that if xi and xi′ are both contained in G, i < i′, and xi is good in G, then xi′ is
good in G, too. That is, the set of all good variables in G is closed upwards.

Consider the largest good variable in G (if there is one), denote it by xk (xk is actually just the
largest variable in G, unless of course there are no good variables in G). Let us focus on the first
occurrence of xk in G.

Claim 1. All first occurrences of other good variables in G must be to the left of the first occurrence
of xk.

Proof. Suppose that a good variable xi has the first occurrence to the right of (the first occurrence
of) xk. Consider an output gate H such that there is a path from G to H and along this path there
are no multiplications of G from the left by words containing variables greater than xi. Then we
have H ∼ LGR, where all variables of L are smaller then xi. Then in H the variable xi appears
before xk when we read from left to right, but at the same time we have that xk appears before xi
in LGR. This contradicts Lemma 7.

Now, for a gate G, define two words MING and MAXG. Both these words are products of variables
in the increasing order: MING is the product of good variables of G in the increasing order, MAXG
is the product (in the increasing order) of all variables that has first occurrences before (the first
occurrence of) xk. Note that MING is a suffix of MAXG. If there are no good variables in G we just let
MINg = MAXg = λ (the empty word). For the word W that has the form of the product of variables
in the increasing order, we call xj a gap variable if it is not contained in W while W contains
variables xi and xk with i < j < k.

Below we show how for a given circuit C to construct an increasing circuit C′ that for each
gate G of C computes some intermediate product PG between MING and MAXG: MINg is a suffix
of PG and PG is a suffix of MAXg. The size of C′ is at most the size of C. For an output gate G,
MINg = MAXg = g hence the circuit C′ computes the correct outputs.

To construct C′, we process the gates of C in a topological ordering. If G is an input gate,
everything is straightforward: in this case MAXG = MING is either λ or xj . Assume now that G is an
internal gate with predecessors F and H. Consider the set of good variables in G. If there are none,
we let PG = λ. If all first occurrences of good variables of G are lying in one of the predecessors
(F and H), then they are good in the corresponding input gate. We then set PG to PF or PH .

The only remaining case is that some good variables have their first occurrence in F while some
others have their first occurrence in H. Then the largest variable xk of G has the first occurrence
in H and all variables of F are smaller than xk.
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Claim 2. There are no gap variables for MAXH in F .

Proof. Suppose that some variable xi in F is a gap variable for MAXH . Consider an output C such
that there is a path from G to C and along this path there are no multiplications of G from the left
by words containing variables greater than xk. Then we have C ∼ LGR where all variables of L
are smaller then xk. Consider the prefix P of C preceding the variable xk and the prefix Q of LG
preceding the variable xk. Then by Lemma 6 we have P ∼ Q. But then the variables of P and Q
appear in the same order if we read the words from right to left. But this is not true (the variable
in P are in the decreasing order and in Q the variable xi is not on its place), a contradiction.

Claim 3. There are no gap variables for MAXF in H.

Proof. Suppose that a variable xi in H is a gap variable for MAXF . Consider an output C such that
there is a path from G to C and along this path there are no multiplications of G from the left
by words containing variables greater than xl, the largest variable of F . Then we have C ∼ LGR,
where all variables of L are smaller then xl. Consider the prefix P of C preceding xl and the prefix
Q of LG preceding xl. Then by Lemma 6 we have P ∼ Q. But then the variables of P and Q
appear in the same order if we read the words from right to left. But this is not true (the variables
in P are in the decreasing order and in Q the variable xi is not on its place), a contradiction.

We are now ready to complete the proof of Lemma 11. Consider PF and PH . By Claims 2
and 3, we know that they are ranges in the same sequence of variables Var(PF )∪Var(PH). We know
that the largest variables of PH is greater than all variables of Pf . Then either PF is contained in
PH , and then we can let PG = PH (it contains all good variables of G), or we have PF = PQ and
PH = QR for some words P,Q,R. In this case we let PG = PF ◦ PH = PQQR = PQR. Clearly,
MING is the suffix of PG and PG itself is the suffix of MAXG.

4.5 Reducing Non-commutative Range Queries to Commutative Range Queries

In this subsection we prove Lemma 9.

Proof of Lemma 9. We will show that any computation of ranges over Xsym can be reconstructed
without increase in the number of gates in such a way that each gate computes a range (recall, that
we call this a range circuit). It is easy to see that then this circuit can be reconstructed as a circuit
over X each gate of which computes the same range with the variables in the increasing order.
Indeed, we need to make sure that each gate computes a range in such a way that all variables are
in the increasing order and this is easy to do by induction. Each gate computes a product of two
ranges a and b. If one of them is contained in the other, we simplify the circuit, since the gate
just computes the same range as one of its inputs (due to idempotency and commutativity). It
is impossible that a and b are non-intersecting and have a gap between them, since then our gate
does not compute a range (in a range circuit). So, if a and b are non-intersecting, then they are
consecutive and we just need to multiply them in the right order. If the ranges are intersecting, we
just multiply then in the right order and apply idempotency.

Thus it remains to show that each circuit for range query problem over Xsym can be recon-
structed into a range circuit. For this we will need some notation.

Suppose we have some circuit C. For each gate G denote by left(G) the smallest index of the
variable in G (the leftmost variable). Analogously denote by right(G) the largest index of the
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variable in G. Denote by gap(G) the smallest i such that xi is not in G, but there are some j, k
such that j < i < k and xj and xk (the smallest index of the variable that is in the gap in G).
Next, fix some topological ordering of gates in C (the ordering should be proper, that is inputs to
any gate should have smaller numbers). Denote by num(G) the number of a gate in this ordering.
Finally, by out(G) denote the out-degree of G.

For each gate that computes a non-range consider the tuple

tup(G) = (left(G), gap(G), num(G),−out(G)).

For the circuit C consider tup(C) = minG tup(G), where the minimum is considered in the lex-
icographic order and is taken over all non-range gates. If there are no non-range gates we let
tup(C) =∞. This is our semi-invariant, we will show that if we have a circuits that is not a range
circuit, we can reconstruct it to increase its tup (in the lexicographic order) without increasing its
size. Since tup ranges over a finite set, we can reconstruct the circuit repeatedly and end up with
a range circuit.

Now we are ready to describe a reconstruction of a circuit. Consider a circuit C that is not a
range circuit. And consider a gate G such that tup(G) = tup(C) (it is clearly unique). Denote by
A and B two inputs of G. Let i = left(G) and j = gap(G), that is xi is the variable with the
smallest index in G and xj is the first gap variable of G (it is not contained in G).

The variable xi is contained in at least one of A and B. Consider the gate among A and B
that contains xi. This gate cannot have xj or earlier variable as a gap variable: it would contradict
minimality of G (by the second or the third coordinate of tup). Thus this gate is a range [xi, xj′) for
some j′ ≤ j (by this we denote the product of variables from xi to xj′ excluding xj′). In particular,
only one of A and B contains xi: otherwise they are both ranges and xj is not a gap variable for
G.

From now on we assume that A contains xi, that is A = [xi, xj′).
Now we consider all gates H1, . . . ,Hk that have edges leading from G. Denote by F1, . . . , Fk

their other inputs. If k is equal to 0, we can remove G and reduce the circuit. Now we consider
cases.

F1 Fl Fk G

H1 Hl Hk

A B

. . . . . .

. . . . . .

Case 1. Suppose that there is l such that left(Fl) ≤ left(G). If left(Fl) < left(G), then Fl

must contain all variables xi, . . . , xj , since otherwise either Fl or Hl will have smaller tup then G.
Thus Fl contains A. Then, we can restructure the circuit by feeding B to Hl instead of G. This
does not change the value of the gate computed by Hl and reduces out(G). Thus tup(C) increases
and we are done.
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If left(Fl) = left(G), then Fl still cannot have gap variables among xi, . . . , xj−1 as it would
contradict the minimality of G. Thus, Fl is either a range, or it is not a range, but contain all
variables xi, . . . , xj−1. In the latter case again Fl contains A. In the former case Fl either contains
A, or is contain in G. If Fl contains A, we can again simplify the circuit as above. If Fl is contained
in G, we have G = Hl, so we can remove Hl from the circuit and reduce the size of the circuit.

Case 2. Suppose that for all l we have left(Fl) > left(G). Consider l such that Fl has the
minimal right(Fl) (if there are several such l pick among them the one with the minimal num(Fl)).
For convenience of notation let l = k. Now we restructure the circuit in the following way. We feed
Fk to G instead of A. We feed A to Hk instead of Fk. We feed Hk to all other Hp’s instead of G.

F1 Fk−1

Fk

G

H1 Hk−1

Hk

A B

. . .

. . .

Observe that all these reconstructions are valid, that is, they do not create directed cycles in
the circuit. To verify this we need to check that there are no cycles using new edges. Indeed, there
cannot be a cycle going through one of the edges (Hk, Hp) since this would mean that there was a
directed path from Hp to one of the vertices Fk, A and G on the original circuit. Such a path to A
or G would mean a cycle in the original circuit. Such a path to Fk violates the minimality property
of Fk (minimal right(Fk)). Next, there cannot be a cycle going through both edges (Fk, G) and
(A,Hk), since substituting these edges by (Fk, Hk) and (A,G) we obtain one or two cycles in the
original circuit. Next, there cannot be a cycle going through the edge (A,Hk) only, since Hk is
reachable from A in the original circuit and this would mean a cycle in the original circuit. Finally,
there cannot be a cycle going only through the edge (Fk, G) since this would mean a directed path
from G to Fk in the original circuit and this contradicts left(Fk) > left(G).

Note that our reconstruction might require reordering of the circuit gates, since we create edges
between previously incomparable H-gates and between Fk and G. But the reordering affect only
the gates with num greater than num(G) and may only reduce num(Fk) to be smaller than num(G).
But this can only increase tup(G) and since left(Fk) > left(G) this can only increase tup(C).

Observe, that the circuit still computes the outputs correctly. The changes are in the gates
H1 . . . , Hk (and also in G, but H1, . . . ,Hk are all of its outputs). Hk does not change. Other
Hp’s might have changed, they now additionally include variables of Fk. But note that all of these
variables are in between of left(Hp) and right(Hp), so they must be presented in the output gates
connected to Hp anyway (recall that at the output gates we compute ranges).

Now, observe that tup(G) has increased (by the first coordinate). There are no new gates with
smaller left. Among gates with the minimal left there are no new gates with smaller gap. Among
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gates with minimal (left, gap) all gates have larger num then G. Thus tup(C) increased and we
are done.

5 Open Problems

There are two natural problems left open.

1. Design a deterministic O(z) time algorithm for generating a circuit in the commutative case.
For this, it suffices to design an O(n) deterministic algorithm for the following problem: given
a list of positions of n zeroes of an n× n 0/1-matrix with at most log n zeroes in every row,
permute its columns so that the total length of all segments of length at most O(log n) is
O( n

logn).

2. Determine the asymptotic complexity of the linear operator in terms of the number of zeroes
in the non-commutative case.

Acknowledgments

We thank Pawe l Gawrychowski for pointing us out to the paper [6]. We thank Alexey Talambutsa
for fruitful discussions on the theory of semigroups.

References

[1] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.
Technical report, 1987.

[2] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000.

[3] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005.

[4] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993.
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A Review

A.1 Algebraic Structures

A semigroup (S, ◦) is an algebraic structure, where the operation ◦ is closed, i.e., ◦ : S × S → S,
and associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, and z in S. Commutative (or abelian)
semigroups introduce one extra requirement: x ◦ y = y ◦ x for all x and y in S.

Commutative semigroups are ubiquitous. Below we list a few notable examples, starting with
the most basic one, which is, arguably, known to every person on the planet.

• Integer numbers form commutative semigroups with many operations. For example, the order
in which numbers are added is irrelevant, hence (Z,+) is a commutative semigroup. So are
(Z,×), (Z,min) and (Z,max). On the other hand, it does matter in which order numbers are
subtracted, hence (Z,−) is not a commutative semigroup: 1− 2 6= 2− 1. In fact, (Z,−) is not
even a semigroup, since subtraction is non-associative: 1− (2− 3) 6= (1− 2)− 3.

• Boolean values form commutative semigroups (B,∨), (B,∧), (B,⊕) and (B,≡).

• Any commutative semigroup (S, ◦) can be lifted to the set Ŝ of “containers” of elements S, e.g.,
vectors or matrices, obtaining a commutative semigroup (Ŝ, ◦̂), where the lifted operation ◦̂
is applied to the contents of containers element-wise. The lifting operation ·̂ can often be
omitted for clarity if there is no ambiguity.

The average semigroup (Z × Z, ◦) is a simple yet not entirely trivial example of semigroup
lifting. By defining (t1, c1) ◦ (t2, c2) = (t1 + t2, c1 + c2), we can aggregate partial totals and
counts of a set of numbers, which allows us to efficiently calculate their average as avg(t, c) = t

c .
The average semigroup is commutative.

• Set union and intersection are commutative and associative operations giving rise to many set-
based commutative semigroups. Here we highlight an example that motivated our research:
the graph overlay operation, defined2 as (V1, E1) + (V2, E2) = (V1∪V2, E1∪E2), where (V,E)
is a standard set-based representation for directed unweighted graphs, comes from an algebra
of graphs used in functional programming [16]. See further details in Section A.4.

Groups extend semigroups by requiring the existence of the identity element 0 ∈ S, such that
0 ◦ x = x ◦ 0 = x, and the inverse element −x ∈ S for all x ∈ S, such that (−x) ◦ x = x ◦ (−x) = 0.
Groups provide a natural generalisation of arithmetic subtraction, whereby x ◦ (−y) denotes the
subtraction of y from x.

A commutative semigroup (S, ◦) can often be extended to a semiring (S, ◦, •) by introducing
another associative (but not necessarily commutative) operation • that distributes over ◦, that is

x • (y ◦ z) = (x • y) ◦ (x • z)

(x ◦ y) • z = (x • z) ◦ (y • z)

hold for all x, y, and z in S. Since ◦ and • behave similarly to numeric addition and multiplication,
it is common to give • a higher precedence to avoid unnecessary parentheses, and even omit • from

2This definition coincides with that of the graph union operation [12]. Graph union typically requires that given
graphs are non-overlapping, hence it is not closed on the set of all graphs. Graph overlay does not have such a
requirement, and is therefore closed and forms a semigroup.
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formulas altogether, replacing it by juxtaposition. This gives a terser and more convenient notation,
e.g., the left distributivity law becomes: x(y ◦ z) = xy ◦ xz. We will use this notation, insofar as
this does not lead to ambiguity.

Most definitions of semirings also require that the two operations have identities: the additive
identity, denoted by 0, such that 0 ◦ x = x ◦ 0 = x, and the multiplicative identity, denoted by 1,
such that 1x = x1 = x. Furthermore, 0 is typically required to be annihilating : 0x = x0 = 0.

A semiring (S, ◦, •) is also a ring if (S, ◦) is a group, i.e., the operation ◦ is invertible. One can
think of rings as semirings with subtraction.

Let us extend some of our semigroup examples to semirings:

• The most basic and widely known semiring is that of integer numbers with addition and
multiplication: (Z,+,×). Since every integer number x ∈ Z has an inverse −x ∈ Z with
respect to the addition operation, (Z,+,×) is also a ring. Interestingly, integer addition can
also play the role of multiplication when combined with the max operation, resulting in the
tropical semiring (Z,max,+), which is also known as the max-plus algebra. Unlike +, the
max operation has no inverse, therefore (Z,max,+) is not a ring.

• Boolean values form the semiring (B,∨,∧). Note that (B,∧,∨) is a semiring too thanks to
the duality between the operations ∨ and ∧. Furthermore, (B,⊕,∧) is a ring, where every
element is its own inverse: x⊕ x = 0 for x ∈ B.

• Semirings and rings (S, ◦, •) can also be lifted to the set Ŝ of “containers” of elements S,
most commonly matrices, obtaining (Ŝ, ◦̂, •̂). Matrices over tropical semirings, for example,
are used for solving various path-finding problems on graphs.

A.2 Applications of the Range Queries Problem

There are many natural applications of the range queries problem for a collection of records in
a database: computing the total population of cities that are at most some distance away from
a given point, computing an average salary in a given period of time, finding the minimum depth
on a given subrectangle on a sea map, etc. Below, we review some of the less straightforward
applications where efficient algorithms for the range queries problem are usually combined with
other algorithmic ideas.

String algorithms and computational biology. It is possible to preprocess a given string in
O(n) time (where n is its length) so that to then find the longest common prefix of any two
suffixes of the original string in constant time. This is done by first constructing the suffix
array and the longest common prefix array of the string and then using an efficient RMQ
algorithm.

Computational geometry. Algorithms for the range queries problems can be used together with
the scanning line technique to solve efficiently various problems like: given a set of segments
on a line, compute the number of intersecting pairs of segments; or, given a set of rectangles
and a set of points on a plane, compute, for each each rectangle, the number of points it
contains.
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A.3 Known Approaches to Range Queries

In this subsection, we give a brief overview of a rich variety of known algorithms for the range queries
problem. We say that an algorithm has type (f(n), g(n)) if it spends f(n) time on preprocessing
the input sequence, and then answers any query in time g(n).

No preprocessing. A naive algorithm skips the preprocessing stage and answers a query (l, r)
directly in time O(r − l + 1). It therefore has type (O(1), O(n)).

Full preprocessing. One may precompute the answers to all possible queries to be able to answer
any subsequent query immediately. Using dynamic programming, it is possible to precompute
the answers to all Θ(n2) queries in time O(n2): for this, it is enough to process the queries
in order of increasing length. This gives an (O(n2), O(1)) algorithm.

Fixed length queries (sliding window). In case one is promised that all the queries are going
to have the same length m, it is possible to do an O(n) time preprocessing and then to answer
any query in time O(1). For this, one partitions the input sequence of size n into n

m blocks
of size m. For each block, one computes all its prefixes and suffixes in time O(m). The
overall running time is O( n

m · m) = O(n). Then, each query of length m touches at most
two consecutive blocks and can be answered by taking a precomputed suffix of the left block
and a precomputed prefix of the right block in time O(1). This, in particular, implies that,
given a sequence of length n and an integer 1 ≤ m ≤ n, one may slide a window of length m
through the sequence and to output the answer to all such window queries in time O(n).

Prefix sums. In case, a semigroup operation has an easily computable inverse, it is easy to design
an (O(n), O(1)) algorithm. We illustrate this for a group (Z,+). Given x1, . . . , xn, we compute
(n+ 1) prefix sums: S0 = 0, S1 = x1, S2 = x1 + x2, . . . , Sn = x1 + · · ·+ xn . This can be done
in time O(n) since Si = Si−1 + xi. Then, the answer to any query (l, r) is just Sr − Sl−1.
Note that the algorithm above solves a static version of the problem. For the dynamic version,
where one is allowed to change the elements of the input sequence, there is a data structure
known as Fenwick’s tree [7]. It allows to change any element as well as to retrieve any prefix
sum in time O(log n).

Block decomposition. One decomposes the input range (1, n) into n/b blocks of length b and
then computes, for each block, all its prefixes and suffixes. This can be done in time O(n).
Then, for each query, if it lies entirely in a block, we compute the answer directly (hence, in
time at most O(b)). If it crosses a number of blocks, we decompose it into a suffix of a block,
a number of consecutive blocks, and a prefix of a block. This allows us to answer such long
queries in time O(n/b). Setting b =

√
n to balance both cases, we get a (O(n), O(

√
n))-

algorithm.

Sparse table. This data structure works for idempotent semigroups (bands) and has type
(O(n log n), O(1)). We illustrate its main idea for the range minimum query (RMQ) (i.e.,
for a semigroup (Z,min)). One precomputes answers to O(n log n) queries—namely, those
whose length is a power of 2. More formally, for all 0 ≤ k ≤ log2 n and 1 ≤ i ≤ n − 2k + 1,
let Sk,i be the answer to a query (i, i + 2k − 1): Sk,i = xi ◦ xi+1 ◦ · · · ◦ xi+2k−1 . Since any
range of length 2k consists of two ranges of length 2k−1, one can compute all Sk,i’s in time
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O(n log n) using dynamic programming. Then, any range (l, r) can be covered by two pre-
computed ranges: if k is the smallest integer such that 2k ≥ (r − l + 1)/2, then the answer
to this query is Sk,l ◦Sk,r−2k+1 (idempotency is required since we are covering the range, but
not partitioning it). This gives an (O(n log n), O(1)) algorithm.

Hybrid strategy. One may extend the block decomposition approach further and use one efficient
data structure on top of blocks and possibly a different data structure for each block. Namely,
we decompose the input range into blocks of size b, use a (p1(n), q1(n))-algorithm on top of
blocks and a (p2(n), q2(n))-algorithm within each block. The resulting algorithm then has
type

(O(n+ p1(n/b) + (n/b) · p2(b), O(q1(n/b) + q2(b))) .

E.g., for the range minimum problem, combining the sparse table data structure (p1(n) =
O(n log n), q1(n) = O(1)) with no preprocessing technique (p2(n) = O(1), q2 = O(n)) and
block size b = log n, gives an (O(n), O(log n))-algorithm. Another example: using sparse
table in both cases (with block size b = log n) gives an (O(n log logn), O(1)) algorithm.

Segment tree. The segment tree data structure is also based on dynamic programming ideas and
works for any semigroup. Consider the following complete binary tree with O(n) nodes: the
root is labeled by a query (1, n), the two children of each inner node (l, r) are labeled by the
left and right halves of the current query (i.e., (l,m) and (m+ 1, r) where m = (l+ r)/2), the
leaves are labeled by length one queries. Going from leaves to the root, one can precompute
the answers to all the queries in this tree in time O(n). Then, it is possible to show that any
query (l, r) can be partitioned into O(log n) queries that are stored in the tree. This gives
an (O(n), O(log n)) algorithm. It should be noted that the segment tree can also be used to
solve the dynamic version of the range queries problem efficiently: to change the value of one
of the elements of the input sequence, one needs to adjust the answers to O(log n) queries
stored in the tree.

Algorithms by Yao and by Alon and Schieber. Yao [19] showed that, for any semigroup, it
is possible to preprocess the input sequence in time O(n) so that to further answer any query
in time O(α(n)) where α(n) is the inverse Ackermann function and proved a matching lower
bound. Later, Alon and Schieber [1] studied a more specific question: what is the minimum
number of semigroup operations needed at the preprocessing stage for being able to then
answer any query in at most k steps? They proved matching lower and upper bounds for
every k. As a special case, they show how to preprocess the input sequence in time O(n log n)
so that to answer any subsequent query by applying at most one semigroup operation. This
algorithm generalizes the sparse table data structure (as it does not require the semigroup
to be idempotent) and is particularly easy to describe. It is based on the divide-and-conquer
paradigm. Let m = n/2. We precompute answers to all queries of the form (i,m) and
(m+1, j), where 1 ≤ i ≤ m and m+1 ≤ j ≤ n (i.e., suffixes of the left half and prefixes of the
right half). This allows to answer in a single step any query that intersects the middle of the
sequence, i.e., queries (l, r) such that l ≤ m ≤ r. All the remaining preprocessing boils down
to answering queries that lie entirely in either left or right half. This can be done recursively
for the halves. The corresponding recurrence relation T (n) = 2T (n/2)+O(n) implies an upper
bound O(n log n) on preprocessing time (and hence, the number of semigroup operations).
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(O(n), O(1))-type algorithms. There is a sequence of (O(n), O(1))-type algorithms designed
specifically to the range minimum query problem and a related problem called least common
ancestor (LCA) [4, 3, 2, 8]. Here, we briefly sketch the algorithm by Bender and Farach-
Colton. Its main idea is to first reduce RMQ to LCA (the least common ancestor problem).
One then reduces LCA back to RMQ and notices that the resulting instance of RMQ has
a convenient property: the difference between any two consecutive elements is ±1. This prop-
erty allows to do the following trick: we precompute answers to all relatively short queries
(this can be done even without knowing the input sequence because of the ±1 property); we
also partition the input sequence into blocks and build a segment tree out of these blocks.

A.4 Dense Graph Representation

Let us revisit the graph semigroup defined in Section A.1. We will denote it by (GU ,+), where GU

is the set of directed graphs whose vertices come from a universe U , that is, if (V,E) ∈ GU then
V ⊆ U and E ⊆ V × V . Recall that the graph overlay operation + is defined as

(V1, E1) + (V2, E2) = (V1 ∪ V2, E1 ∪ E2).

The algebra of graphs presented in [16] also defines the graph connect operation →:

(V1, E1)→ (V2, E2) = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2).

This operation allows us to “connect” two graphs by adding edges from every vertex in the left-
hand graph to every vertex in the right-hand graph, possibly introducing self-loops if V1 ∩ V2 6= ∅.
The operation is associative, non-commutative and distributes over +. Note, however, that the
empty graph ε = (∅, ∅) is the identity for both overlay and connect operations: ε+ x = x+ ε = x
and ε → x = x → ε = x, and consequently the annihilating zero property does not hold, which
makes this algebraic structure not a semiring according to the classic semiring definition.

By using the two operations one can construct any graph starting from primitive single-vertex
graphs. For example, let U = {1, 2, 3} and k stand for a single-vertex graph (k, ∅). Then:

• 1→ 2 is the graph comprising a single edge (1, 2), i.e. 1→ 2 = ({1, 2}, {(1, 2)}).

• 1→ (2 + 3) is the graph ({1, 2, 3}, {(1, 2), (1, 3)}).

• 1→ 2→ 3 is the graph ({1, 2, 3}, {(1, 2), (1, 3), (2, 3)}).

Clearly any sparse graph (V,E), i.e. a graph with a sparse connectivity matrix, can be constructed
by a linear-size expression:

(V,E) =
∑
v∈V

v +
∑

(u,v)∈E

u→ v.

But what about complements of sparse graphs, i.e. graphs with dense connectivity matrices? It is
not difficult to show that by applying the dense linear operator we can obtain a linear-size circuit
comprising 2-input gates + and → for any dense graph.

Let A be a dense matrix of size n× n. Our goal is to construct the graph GA = ({1, . . . , n}, E)
such that (i, j) ∈ E whenever Aij = 1.
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First, we compute the dense linear operator y = Ax over the (commutative) graph semigroup +,
where x = (1, 2, . . . , n), i.e., xj is the primitive graph comprising a single vertex j, obtaining
graphs yi that comprise sets of isolated vertices corresponding to the rows of matrix A:

yi =
∑

Aij=1

j .

The resulting graphGA = ({1, . . . , n}, E) can now be obtained by using the connect operation→
to connect i to all vertices yi, and subsequently overlaying the results:

GA =

n∑
i=1

i→ yi.

Thanks to the linear-size construction for the dense linear operator, the size of the circuit
computing GA is O(n). This allows us to store dense graphs on n vertices using O(n) memory, and
perform basic transformations of dense graphs in O(n) time. We refer the reader to [16] for further
details about applications of algebraic graphs in functional programming languages.
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