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Abstract

The 2-to-2 Games Theorem of [KMS17, DKK+18a, DKK+18b, KMS18] implies that
it is NP-hard to distinguish between Unique Games instances with assignment satisfy-
ing at least ( 1

2 − ε) fraction of the constraints vs. no assignment satisfying more than ε
fraction of the constraints, for every constant ε > 0. We show that the reduction can be
transformed in a non-trivial way to give a stronger guarantee in the completeness case:
For at least ( 1

2−ε) fraction of the vertices on one side, all the constraints associated with
them in the Unique Games instance can be satisfied.

We use this guarantee to convert the known UG-hardness results to NP-hardness.
We show:

1. Tight inapproximability of approximating independent sets in degree d graphs
within a factor of Ω

(
d

log2 d

)
, where d is a constant.

2. NP-hardness of approximate the Maximum Acyclic Subgraph problem within a
factor of 2

3 + ε, improving the previous ratio of 14
15 + ε by Austrin et al. [AMW15].

3. For any predicate P−1(1) ⊆ [q]k supporting a balanced pairwise independent
distribution, given a P -CSP instance with value at least 1

2 − ε, it is NP-hard to

satisfy more than |P
−1(1)|
qk

+ ε fraction of constraints.
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1 Introduction

Unique Games Conjecture is a central open problem in computer science. It states that for
a certain constraint satisfaction problem over a large alphabet, called Unique Games (UG),
it is NP-hard to decide whether a given instance has an assignment that satisfies almost all
the constraints or there is no assignment which satisfies even an ε fraction of the constraints
for a very small constant ε > 0.

Since the formulation of the conjecture, it has found interesting connections to tight
hardness of approximation results for many optimization problems [Kho02, KKMO07,
KR08, Rag08, GMR08, KN09, KTW14, KV15]. One of the most notable implications is the
result of Raghavendra [Rag08] which informally can be stated as follows: Assuming the
NP-hardness of approximating this single CSP (Unique Games) implies tight hardness for
approximating every other constraint satisfaction problem, stated in terms of the integral-
ity gap of a certain canonical SDP.

Unique Games Conjecture is inspired by the NP-hardness of approximating a problem
called Label Cover. A Label Cover instance G = (A,B,E,ΣA,ΣB, {πe}e∈E) consists of two
sets of variables A and B and a bipartite graph between them with the edge set E. The
variables from A take values from some alphabet ΣA and variables from B take values
from ΣB . Every edge e in E has a d-to-1 projection constraint πe : ΣA → ΣB .1 For an edge
e(a, b), a label α to a and a label β to b satisfies the edge e iff πe(α) = β. In this language,
Unique Games is a Label Cover instance where all the constraints are 1-to-1. We denote an
instance of Unique Games with G = (A,B,E, [L], {πe}e∈E) where ΣA = ΣB = [L].

Given an instance of Unique Games, the goal is to find an assignment to the vertices
that satisfies a good fraction of the edges. An instance is called ε-satisfiable if there exists
an assignment σ : A ∪ B → [L], that satisfies at least ε fraction of the edges in the graph.
The Unique Games Conjecture of Khot [Kho02] states that for every ε > 0, there exists L
such that given an Unique Games instance which is (1− ε)-satisfiable, it is NP-hard to find
an ε-satisfiable assignment. Note that there is a polynomial time algorithm that given a
1-satisfiable instance of Unique Games, finds a 1-satisfiable assignment.

A recent series of works [KMS17, DKK+18a, DKK+18b, KMS18] implies that for a
given Label Cover instance with 2-to-1 projection constraints, it is NP-hard to find an ε-
satisfiable assignment even if the instance is (1 − ε)-satisfiable for every constant ε > 0.
This directly implies the following inapproximability for Unique Games.

Theorem 1.1. For every constant ε > 0, there exists Σ such that for Unique Games instance over
Σ, it is NP-hard to distinguish between the following two cases

• Yes Case: The instance is (1
2 − ε)-satisfiable.

• No Case: No assignment satisfies ε fraction of the constraints.
1A constraint πe : ΣA → ΣB is called a d-to-1 projection constraint, if every β ∈ ΣB has exactly d pre-

images.
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Although we do not improve upon this theorem in terms of the inapproximability
gap, we show a stronger guarantee in the Yes Case. Specifically, we show that in the Yes
case, there are at least 1

2−ε fraction of the vertices on, say, the left side such that all the edges
incident on them are satisfied by some assignment and also the instance is left-regular. This
clearly implies the above theorem. Formally, the main theorem that we prove is as follows
(See Definition 2.1 for a formal definition of Unique Games):

Theorem 1.2. For every constant δ > 0 there exists L ∈ N such that the following holds. Given
an instance G = (A,B,E, [L], {πe}e∈E) of Unique Games, which is regular on the A side, it is
NP-hard to distinguish between the following two cases:

• YES case: There exists a set A′ ⊆ A of size (1
2 − δ)|A| and an assignment that satisfies all

the edges incident on A′.

• NO case: Every assignment satisfies at most δ fraction of the edge constraints.

We will denote by val(G) the maximum fraction, over all assignments, of the edges
satisfied and sval(G) to be the maximum fraction, over all assignments, of the vertices in
A such that all the edges incident on them are satisfied. Thus, the above theorem says that
for every δ > 0 there exists a label set [L] such that it is NP-hard to distinguish between the
cases sval(G) > 1

2 − δ and val(G) 6 δ.

1.1 (1
2
− ε)-satisfiable UG vs. (1− ε)-satisfiable UG

Let ε > 0 be a very small constant. In the (1 − ε)-satisfiable Unique Games instance, by
simple averaging argument it follows that for any satisfying assignment σ : A ∪ B → [L],
there exists A′ ⊆ A, |A′| > (1 −

√
ε)|A| such that for all v ∈ A′, at least (1 −

√
ε) fraction

of the edges incident on v are satisfied. Having such a large A′ is crucial in many UG-
reductions. For example, a typical k-query PCP, used in proving inapproximability of
k-ary CSPs assuming the Unique Games Conjecture, samples v ∈ A uniformly at random
and k neighbors of u1, u2, . . . , uk of v uniformly at random. Thus, with probability at least
(1−
√
ε)(1−k

√
ε) ≈ 1 all the edges (u, vi) are satisfied by any (1−ε) satisfying assignment

σ.

In contrast to this, if we take a 1
2 -satisfiable UG instance then the probability that all

the edges (v, ui) are satisfied is at most 1
2k

in the worst case. Therefore, in converting the
known UG-hardness result to NP-hardness result using the NP-hardness of Unique Games
with gap (1

2 −ε, ε), it is not always the case that we lose ‘only half’ in the completeness case.

Another important property of the Unique Games instance which was used in many
reductions is that in the completeness case, there are (1− δ) fraction of the vertices on one
side such that all the edges incident on them are satisfied i.e. sval(G) > 1 − δ instead of
val(G) > 1 − δ. For example, this property was crucial in the hardness of approximating
independent sets in bounded degree graphs [AKS11] and in many other reductions [BK10,
BGH+17].

3



As shown in [KR08], having completeness val(G) > 1−δ for all sufficiently small δ > 0
is equivalent to having completeness sval(G) > 1−δ′ for all sufficiently small δ′ > 0. It was
crucial in the reduction that the val(G) is arbitrarily close to 1 for the equivalence to hold.
We do not know a black-box way of showing the equivalence of val(G) = c and sval(G) = c
for any c < 1. Thus, in order to prove Theorem 1.2 with a stronger completeness guarantee,
we crucially exploit the structure of the game given by the known proofs of the 2-to-1
theorems [KMS17, DKK+18a, DKK+18b, KMS18] mentioned in the introduction.

1.2 Implications

Using Theorem 1.2, we show the following hardness results by going over the known
reductions based on the Unique Games Conjecture.

Independent sets in degree d graphs The first application is approximating the maxi-
mum sized independent set in a degree d graph, where d is a large constant.

Theorem 1.3. It is NP-hard (under randomized reductions) to approximate independent sets in a
degree d graph within a factor of O

(
d

log2 d

)
, where d is constant.

This improves the NP-hardness of approximation within a factor O
(

d
log4 d

)
, as shown

in Chan [Cha16] as well as shows the tightness of the randomized polynomial time ap-
proximation algorithm given by Bansal et al. [BGG18].

Max-Acyclic Subgraph Given a directed graphG(V,E), the Max-Acyclic Subgraph prob-
lem is to determine the maximum fraction of edges E′ ⊆ E such that removal of E \ E′
makes the graph acyclic (removes all the cycles). We can always make a graph acyclic by
removing at most 1

2 fraction of the edges; take any arbitrary ordering of the vertices and re-
move either all the forward edges or all the backward edges whichever is minimum. This
gives a trivial 1

2 -approximation algorithm. Guruswami et al. [GMR08] showed this is tight
by showing that assuming the Unique Games Conjecture, it is NP-hard to approximate
Max-Acyclic Subgraph within a factor of 1

2 + ε for all ε > 0. In terms of NP-hardness, Aus-
trin et al. [AMW15] showed NP-hardness of approximating Max-Acyclic Subgraph within
a ratio of 14

15 + ε, improving upon the previous bound of 65
66 + ε by Newman [New01]. Our

next theorem shows an improved inapproximability of 2
3 + ε. One interesting feature of

our reduction is that it shows that in the worst case, it is NP-hard to perform better than
the trivial algorithm described above on instances with value at least 3

4 .

Theorem 1.4. For every constant ε > 0, it is NP-hard to approximate Max-Acyclic Subgraph
problem within a factor of 2

3 + ε.
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We note that Theorem 1.1 along with the reduction from [GMR08] implies NP-hardness
of Max-Acyclic Subgraph problem within a factor of 4

5 + ε (See Remark 5.5 for a proof
sketch). Therefore, Theorem 1.4 improves upon this bound too.

Predicates supporting balanced pairwise independent distributions The next result is
approximating Max-k-CSP(P ) for a predicate P : [q]k → {0, 1} where P−1(1) supports
a balanced pairwise independent distribution i.e. there exists a distribution on P−1(1)
such that 1) the marginal distribution on each coordinate is uniform and 2) the distribu-
tion is pairwise independent. Given an instance of Max-k-CSP(P ), a random assignment
satisfies |P

−1(1)|
qk

fraction of the constraints in expectation. Austrin-Mossel [AM09] showed
that assuming the Unique Games Conjecture, given a (1 − ε)-satisfiable instance of Max-
k-CSP(P ), it is NP-hard to find an assignment that satisfies more than |P

−1(1)|
qk

+ ε fraction
of the constraints for any constant ε > 0. This notion is called approximation resistance of a
predicate P where the best efficient algorithm cannot perform any better than just choosing
a random assignment, even if the instance is almost satisfiable. Showing approximation
resistance of such predicates unconditionally (i.e. assuming only P 6= NP) has received sig-
nificant attention. For instance, Chan [Cha16] showed that a predicate P is approximation
resistant if P−1(1) contains a subgroup that supports a balanced pairwise independent
distribution. Also, Barak et al. [BCK15] showed that certain class of algorithms, namely
sum-of-squares, cannot be used to perform better than the random assignment on almost
satisfiable instances of Max-k-CSP(P ) where P supports a balanced pairwise independent
distribution.

Our main theorem shows approximation resistance of such predicates but on instances
which are 1

2 -satisfiable. If we use Theorem 1.2 as a starting point of the reduction in
[AM09], we get the following NP-hardness result.

Theorem 1.5. If a predicate P : [q]k → {0, 1} supports a balanced pairwise independent distri-
bution, then it is NP-hard to find a solution with value |P

−1(1)|
qk

+ ε if a given P -CSP instance is
(1

2 − ε)-satisfiable, for every constant ε > 0.

Other Results Theorem 1.2 implies many more NP-hardness results in a straightforward
way by going over the known reductions based on the Unique Games Conjecture, but
we shall restrict ourselves to proving only the above three theorems. We only state the
following important implication which follows from the result of Raghavendra [Rag08]
and our main theorem. We refer to [Rag08] for the definition of (c, s) SDP integrality gap
of a P -CSP instance.

Theorem 1.6. (Informal) For all ε > 0, if a P -CSP has (c, s) SDP integrality gap instance, then
it is NP-hard to distinguish between ( c2 − ε)-satisfiable instances from at most (s + ε)-satisfiable
instances.
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The reduction actually gives a stronger result; instead of completeness ( c2 − ε) one can

get ( c2 + r
2 − ε) where r = |P−1(1)|

qk
for a predicate P : [q]k → {0, 1}.

1.3 Overview of the proof

In this section, we give an overview of the proof of Theorem 1.2. The main idea which goes
in proving Theorem 1.2 is very simple and we elaborate it next.

Let V = Fn2 and
[
V
`

]
denotes the set of all ` dimensional subspaces of V . Consider the

Grassmann 2-to-1 test T1 from Figure 1.3 for functions f :
[
V
`

]
→ F`2 and h :

[
V
`−1

]
→ F`−1

2 ,
where for a subspace L (L′), f(L) (h(L′)) represents a linear function on the subspace, by
fixing an arbitrarily chosen basis of L (L′). From the test it is clear that for every pair (L,L′)

• Select a `− 1 dimensional subspace L′ uniformly at random.

• Select a ` dimensional subspace L containing L′ uniformly at random.

• Check if f(L)|L′ = h(L′).

Figure 1: 2-to-1 Test T1

such that L′ ⊆ L, for every linear function β on L′, there are two linear functions α1, α2 on
L such that the test passes for any pair (αi, β). This gives the 2-to-1 type constraints.

One way to convert a 2-to-1 test to a unique test is by choosing a random i ∈ {1, 2}
for every pair (L,L′) such that L′ ⊆ L and for every linear function β on L′, and adding
just one accepting pair (αi, β) where {(α1, α2), β} are the original accepting assignments.
This does give a unique test and if f and h are restrictions of a global linear function to
the subspaces, then the test passes with probability ≈ 1

2 . One drawback of this test is that,
if we consider a bipartite graph on

[
V
`

]
×
[
V
`−1

]
where two subspaces L,L′ are connected

iff L′ ⊆ L, then for any global linear function we can only argue that half the edges are
satisfied in the sense of the unique test. Note that the uniform distribution on the edges
of this bipartite graph is the same as the test distribution T1. Hence, the similar guaran-
tee of satisfying around half the edges stays in the final Unique Games instance created
from the works of [KMS17, DKK+18a, DKK+18b, KMS18] and thus falls short of proving
Theorem 1.2.

Now we convert it into a Unique Test T2 (Figure 1.3) with a guarantee that for around
1
2 fraction of the vertices on one side of the bipartite test graph, all the edges incident on
them are satisfied if the assignments f and h are the restrictions of a global linear function.

Towards this, we modify the domain of f . We consider two functions f :
[
V
`

]
× (2[`] \

∅) × {0, 1} → F`−1
2 and h :

[
V
`−1

]
→ F`−1

2 . We fix an arbitrary one-to-one correspondence
between the non-zero elements of ` dimension subspace and 2[`] \ ∅. Thus, we can now
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• Select a `− 1 dimensional subspace L′ uniformly at random.

• Select a ` dimensional subspace L containing L′, x ∈ L \ L′ and b ∈ {0, 1}
uniformly at random.

• Check if f(L, x, b)|L′ = h(L′).

Figure 2: Unique Test T2

interpret f as defined on the tuple (L, x, b) where x ∈ L \ {0} and b ∈ {0, 1}. We consider
the assignments f(L, x, b) and h(L′) as linear functions on the spaces L and L′ respectively
as follows: As before, we select an arbitrary basis for every ` − 1 dimensional subspaces[
V
`−1

]
. Now f(L, x, b) ∈ F`−1

2 is thought of as a linear function on L such that

1. at point x it evaluates to b and

2. the evaluations of the linear function on the subspace Lx = {y ∈ L | y ⊥ x}, which is
an `−1 dimensional subspace, is given by f(L, x, b) (according to the already chosen
basis of Lx).

As before, h(L′) is thought of as a linear function on L′ according to the chosen basis for
L′.

Consider the following bipartite graph
([
V
`

]
× (2[`] \ ∅)× {0, 1},

[
V
`−1

]
, E
)

where (L, x, b)

is connected to L′ iff x /∈ L′ and L′ ⊆ L. The test distribution which we will define next
will be the uniform on the edges of this graph.

We now put permutation constraint on the edges of the graph. For an edge e ∈ E
between (L, x, b) and L′ we set the following unique constraint: Extend the linear function
given by h on L′ to a linear function h̃x,b on span{L′, x} by setting h̃x,b(x) = b. The ac-
cepting labels for an edge e are f(L, x, b) and h(L′) such that h̃x,b and f are identical when
thought of as linear functions on L. Note that the constraint is one-to-one.

Fix any global linear function g : V → F2. From this we define h(L′) as the restriction
of g on L′. We define the labeling f partially by setting f(L, x, g(x)) as the restriction of g
on L. Thus for every (L, x, g(x)) it is clear that all the edges are satisfied by the labeling h
and the label f(L, x, g(x)). The set {(L, x, g(x))} constitutes half fraction of one side of the
bipartite test graph and hence we are done.

2 Preliminaries

We start by defining the Unique Games.
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Definition 2.1 (Unique Games). An instanceG = (A,B,E, [L], {πe}e∈E) of the Unique Games
constraint satisfaction problem consists of a bipartite graph (A,B,E), an alphabet [L] and a per-
mutation map πe : [L] → [L] for every edge e ∈ E. Given a labeling ` : A ∪ B → [L] , an edge
e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of the edges.

We will define the following two quantities related to the satisfiability of the Unique
Games instance.

val(G) := max
σ:A∪B→[L]

{fraction of edges in G satisfied by σ} .

sval(G) := max
σ:A∪B→[L]

{
|A′|
|A|

∣∣∣∣ ∀e(u, v) s.t. u ∈ A′, e is satisfied by σ
}
.

The following is a conjecture by Khot [Kho02] which has been used to prove many
tight inapproximability results.

Conjecture 2.2 (Unique Games Conjecture[Kho02]). For every sufficiently small δ > 0 there
exists L ∈ N such that given a an instance G = (A,B,E, {πe}e∈E , [L]) of Unique Games it is
NP-hard to distinguish between the following two cases:

• YES case: val(G) > 1− δ.

• NO case: val(G) 6 δ.

For a linear subspace L ⊆ Fn2 , the dimension of L is denoted by dim(L). For two
subspaces L1, L2 ⊆ Fn2 , we will use span(L1, L2) to denote the subspace {x1 + x2 | x1 ∈
L1, x2 ∈ L2}. We will sometimes abuse the notation and write span(x, L),where x ∈ Fn2 , to
denote span({0, x}, L). For subspaces L1, L2 such that L1 ∩ L2 = {0}, define L1 + L2 :=
span(L1, L2).

For 0 < ` < n, let Gr(Fn2 , `) be the set of all ` dimensional subspaces of Fn2 . Similarly,
for a subspace L of Fn2 such that dim(L) > `, let Gr(L, `) be the set of all ` dimensional
subspaces of Fn2 contained in L.

3 The Reduction

In this section, we go over the reduction in [DKK+18b] from a gap 3LIN instance to a 2-
to-1 Label Cover instance and then show how to reduce it to a Unique Games instance in
Section 3.4. We retain most of the notations from [DKK+18b].

3.1 Outer Game

The starting point of the reduction is the following problem:
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Definition 3.1 (REG-3LIN ). The instance (X,Eq) of REG-3LIN consists of n variables X =
{x1, x2, . . . , xn} taking values in F2 and a collection of m F2-linear constraints Eq where each
constraint in Eq is a linear constraint on 3 variables. The instance is regular in the following ways:
every equation consists of 3 distinct variables, every variable xi appears in exactly 5 constraints
and every two distinct constraints share at most one variable.

An instance (X,Eq) is said to be t-satisfiable if there exists an assignment to X which
satisfies t fraction of the constraints. We have the following theorem implied by the PCP
theorem of [ALM+98, AS98, FGL+96].

Theorem 3.2. There exists an absolute constant s < 1 such that for every constant ε > 0 it is NP-
hard to distinguish between the cases when a given REG-3LIN instance is at least (1−ε)-satisfiable
vs. at most s-satisfiable.

We now define an outer 2-prover 1-round game, parameterized by k, q ∈ Z+ and β ∈
(0, 1), which will be the starting point of our reduction. The verifier selects k constraints
e1, e2, . . . , ek from the instance (X,Eq) uniformly at random with repetition. If ei and ej
share a variable for some i 6= j then accept. Otherwise, let xi,1, xi,2, xi,3 be the variables
in constraint ei. Let X1 = ∪ki=1{xi,1, xi,2, xi,3}. The verifier then selects a subset X2 of
X1 as follows: for each i ∈ [k], with probability (1 − β) add xi,1, xi,2, xi,3 to X2 and with
probability β, select a variable from {xi,1, xi,2, xi,3} uniformly at random and add it to X2.

On top of this, the verifier selects q pair of advice strings (sj , s
∗
j ) where sj ∈ {0, 1}X2 ,

and s∗j ∈ {0, 1}X1 for 1 ≤ j ≤ q as follows : For each j ∈ [q], select sj ∈ {0, 1}X2 uniformly
at random. The string sj can be though as assigning F2 values to each of the variables from
X2. The string s∗j ∈ {0, 1}3k is deterministically selected such that its projection on X2 is
the same as sj and the rest of the coordinates are assigned 0.

The verifier sends (X1, s
∗
1, s
∗
2, . . . , s

∗
q) to prover 1 and (X2, s1, s2, . . . , sq) to prover 2.

The verifier expects an assignment to variables in Xi from prover i. Finally, the verifier
accepts if and only if the assignment to X1 given by prover 1 satisfies all the equations
e1, e2, . . . , ek and the assignment X2 given by prover 2 is consistent with the answer of
prover 1.

Completeness: It is easy to see the completeness case. If the instance (X,Eq) is (1 − ε)-
satisfiable then there is a provers’ strategy which makes the verifier accepts with
probability at least (1−kε). The strategy is to use a fixed (1−ε)-satisfiable assignment
and answer according to it. In this case, with probability at least (1− kε), the verifier
chooses k constraints which are all satisfied by the fixed assignment and hence the
verifier will accept provers’ answers.

Soundness: Consider the case when the instance (X,Eq) is at most s-satisfiable for s < 1
from Theorem 3.2. If the provers were given only X1 and X2 without the advice
strings, then the parallel repetition theorem of Raz [Raz98] directly implies that for
any provers’ strategy, they can make the verifier accept with probability at most
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2−Ω(βk). This follows because in expectation, there are βk constraints out of k where
prover 2 receives one variable from the constraint. It turns out that a few advice
strings will not give provers any significant advantage.

To see this, for each of these βk constraints, with probability 2−q, all the advice strings
get assigned value 000 to the variables in the constraints and therefore does not leak
any information, about which variable from the constraint was being sent to prover
2, to prover 1. Thus in expectation, there are βk

2q constraints vs. variable questions
where prover 1 knows nothing about the which variable was being sent to the prover
2. One can then argue, by using Raz’s parallel repetition theorem, that any provers’
strategy can make verifier accept with probability at most 2−Ω(βk/2q).

The soundness is formally proved in [KMS17].

Theorem 3.3 (Section 3 in [KMS17]). If the REG-3LIN instance (X,Eq) is at most s-satisfiable
(s < 1 from Theorem 3.2) then there is no strategy with which the provers can make the verifier
accept with probability greater than 2−Ω(βk/2q).

Remark 3.4. The importance of the advice strings will come later in the proof of soundness. Specif-
ically, the proof of Theorem 3.14 (from [DKK+18b] which we use as a black-box) crucially uses the
advice strings given to the provers.

To prove our main theorem, the reduction is carried out in three steps:

Outer Game
↓ [DKK+18b]

Gunfolded(A,B,E,Π,ΣA,ΣB) (unfolded 2-to-1 Game)
↓ [DKK+18b]

Gfolded(Ã, B, Ẽ, Π̃,ΣA,ΣB) (folded 2-to-1 Game)
↓ (This work)

UGfolded(Â, B, Ê, Π̂,Σ) (Unique Game)

The first two steps are explained in the next two subsections. These follow from [DKK+18b].
The main contribution of our work is the last step which is given in Section 3.4.

3.2 Unfolded 2-to-1 Game

In this section we reduce REG-3LIN instance (X,Eq) to an instance of 2-to-1 Label Cover
instance Gunfolded = (A,B,E,Π,ΣA,ΣB).
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For an equation e ∈ Eq, let supp(e) = {i1, i2, i3} if e is a linear constraint on xi1 , xi2 , xi3 .
A set of k equations (e1, e2, . . . , ek) is legitimate if the support of equations are pairwise
disjoint and for every two different equations ei and ej and for any x ∈ ei and y ∈ ej , the
pair {x, y} does not appear in any equation in (X,Eq). Define U to be the following set
family.

U =

{
S ∈

(
[n]

3k

) ∣∣∣∣S = ∪ki=1supp(ei) and (e1, e2, . . . , ek) is legitimate
}
.

Note that by definition, there is a one-to-one correspondence between the set of legitimate
k tuples of equations and U . For U ∈ U , let XU ⊆ Fn2 be the subspace with support in U .
For an equation e ∈ Eq on xi1 , xi2 , xi3 , let xe be the vector in XU where xi1 = xi2 = xi3 = 1
and rest of the coordinates are 0. Denote by be ∈ F2 the RHS of the equation e. Let HU be
the span of {xe | xe ∈ XU}. Finally, let V be the collection of all sets of variables up to size
3k (thought of as subsets of [n]). Similar to XU , for V ∈ V , let XV ⊆ Fn2 be the subspace
with support in V .

Vertices (A,B): Let `� k which we will set later. The vertex set of the game Gunfolded is
defined as follows:

A = {(U,L) | U ∈ U , L ∈ Gr(XU , `), L ∩HU = {0}}.

B = {(V,L′) | V ∈ V, L′ ∈ Gr(XV , `− 1)}.

Edges E: The distribution on edges are defined by the following process: ChooseX1 and
X2 as per the distribution given in the outer verifier conditioned on X1 ∈ U . Let U = X1

and V = X2. Choose a random subspace L′ ∈ Gr(XV , `− 1) and a random L ∈ Gr(XU , `)
such that L′ ⊆ L. Output {(U,L), (V,L′)} ∈ (A,B).

Labels (ΣA,ΣB): The label set ΣA = F`2 and the label set ΣB = F`−1
2 . A labeling σ ∈ ΣA

to (U,L) can be thought of as a linear function σ : L → F2. Similarly the label σ′ ∈ ΣB to
a vertex (V,L′) is though of as a linear function σ′ : L′ → F2. This can be done by fixing
arbitrary basis of the respective spaces.

3.3 Folded 2-to-1 Game

For every assignment to the 3LIN instance, there are many vertices in the graph Gunfolded

which get the same label according to strategy of labeling the vertices in Gunfolded with
respect to a fixed assignment to X . So we might as well enforce this constraint on the
variables in Gunfolded. This is achieved by folding. In this section, we convert Gunfolded to
the following Game Gfolded = (Ã, B, Ẽ, Π̃,ΣA,ΣB).

11



Vertices (Ã, B): Consider the following grouping of the vertices from A

C(U0, L0) = {(U,L) ∈ A | L0 +HU +HU0 = L+HU +HU0}.

The following Lemma 3.5 says that C is indeed an equivalence class. The proof of the
lemma crucially uses the facts that U corresponds to a legitimate set of equations and that
the REG-3LIN instance is regular: namely, every equation consists of 3 distinct variables
and every two distinct constraints share at most one variable.

Lemma 3.5 (Lemma 3.2 in [DKK+18b]). C is an equivalence class: there exists an ` dimension
subspace RC such that for all (U,L) ∈ C,

HU + L = RC +HU .

We define the vertex set Ã as follows:

Ã = {C(U,L) | (U,L) ∈ A}.

In other words, there is a vertex for every equivalence class in Ã.

Edges Ẽ: Sample (U,L) (V,L′) with respect to E. Output C(U,L) , (V,L′).

Labels (ΣA,ΣB): The label set ΣA = F`2, a label σ to C can be thought of as a linear
function σ : RC → F2. As before, the label σ′ ∈ ΣB to a vertex (V,L′) is though of as a
linear function σ′ : L′ → F2.

In order to define the constraints on the edges, we need the following definitions:

Definition 3.6. For a space HU + L such that L ∩HU = {0} and a linear function σ : L → F2,
the extension of σ, respecting the side conditions, to the whole space HU + L is a linear function
β : HU + L→ F2 such that for all xe ∈ XU , β(xe) = be and β|L = σ.

Note that there is one to one mapping from a linear function on L and its extension as
all the equations in U are disjoint and hence {xe | xe ∈ XU} form a basis of the space HU .

Definition 3.7. Consider a label σ to a vertex C which is a linear function on RC . The unfolding
of it to the elements of the C is given as follows: For (U,L) ∈ C, define a linear function σ̃U :
HU +L→ F2 such that it is equal to the extension of σ to HU +RC respecting the side conditions.

The spaces HU + L and HU + RC are the same and hence the above definition makes
sense. We are now ready to define the constraints.
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Constraints Π̃: Consider linear functions σ : RC → F2 and σ′ : L′ → F2. A pair (σ, σ′)
satisfies the edge (C, (V,L′)) ∈ Ẽ, if for every (U,L) ∈ C such that ((U,L), (V,L′)) ∈ E, the
unfolding σ̃U |L′ = σ′.

We have the following completeness and soundness guarantee of the reduction from
[DKK+18b].

Lemma 3.8 (Completeness). (Lemma 4.1 in [DKK+18b]) If the REG-3LIN instance (X,Eq) is
(1 − ε)-satisfiable then there exists Ã′ ⊆ Ã, |Ã′| > (1 − kε)|Ã| and a labeling to the 2-to-1 Label
Cover instance Gfolded such that all the edges incident on Ã′ are satisfied.

Lemma 3.9 (Soundness). (Lemma 4.2 in [DKK+18b], and [KMS18]) For all δ > 0, there exists
q, k ≥ 1 and β ∈ (0, 1), such that if the REG-3LIN instance (X,Eq) is at most s-satisfiable (where
s is from Theorem 3.2) then every labeling to Gfolded satisfies at most δ fraction of the edges.

3.4 Reduction to Unique Games

In this section, we convert Gfolded Label Cover instance to a Unique Games instance with
the stronger completeness guarantee that we are after. We will reduce an instanceGfolded =

(Ã, B, Ẽ, Π̃,ΣA,ΣB) to an instance of Unique Game UGfolded = (Â, B, Ê, Π̂,Σ).

Vertices (Â, B): We will split each vertex C ∈ Ã into many copies. Fix an ` dimensional
subspace RC given by Lemma 3.5. For every x ∈ RC \{0} and b ∈ {0, 1}we add a copy Cx,b
to Â.

Â =
⋃
C∈Ã

{Cx,b | x ∈ RC \ {0}, b ∈ {0, 1}}.

Edges Ê: The distribution on the edge set Ê is as follows: We first pick ((U,L), (V,L′))
according to the distribution E. Let (U,L) ∈ C. We then select y ∈ (HU + L) \ (HU + L′)
and b ∈ {0, 1} uniformly at random. Note that dim(span{y,HU} ∩ RC) = 1 since y /∈ HU

and y ∈ HU + L = HU + RC . Let x ∈ span{y,HU} ∩ RC be the non-zero vector. Output
(Cx,b, (V,L′)).

Claim 3.10. x is distributed uniformly in RC \ (HU + L′) conditioned on (U, V, L, L′).

Proof. We first claim that x ∈ RC \(HU +L′) by showing x /∈ HU +L′. Suppose not, then we
can write x = h+ x′ where h ∈ HU and x′ ∈ L′. We also know that x ∈ span{y,HU} ∩ RC
and RC ∩ HU = {0}. Thus x can be written as x = h̃ + y where h̃ ∈ HU . This implies
h+ x′ = h̃+ y. In other words, y = h+ h̃+ x′ ∈ HU + L′, a contradiction.

Since each y ∈ (HU + L) \ (HU + L′) gives a unique non-zero x ∈ span{y,HU} ∩ RC ,
we will show that the number of y ∈ (HU + L) \ (HU + L′) which gives a fixed x is same
for all x ∈ RC \ (HU + L′) and this will prove the claim.
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Fix any x̃ ∈ RC \ (HU + L′), we now claim that the set of all y ∈ (HU + L) \ (HU + L′)
that gives x̃ is span{x̃, HU} \HU . Clearly, for any y /∈ span{x̃, HU} \HU , x̃ /∈ span{y,HU}
and also for every y ∈ span{x̃, HU} \HU , x̃ ∈ span{y,HU}. Thus, it remains to show that
span{x,HU} \HU ⊆ (HU + L) \ (HU + L′) for all x ∈ RC \ (HU + L′).

To prove the inclusion, suppose for contradiction (span{x,HU}\HU )∩ (HU +L′) 6= ∅.
This means x + h = h̃ + v′ for some h, h̃ ∈ HU and v′ ∈ L′. This implies x = h + h̃ + v′ ∈
HU + L′ contradicting x ∈ RC \ (HU + L′). �

Labels Σ: The label set is Σ = F`−1
2 . A label σ to Cx,b can be thought of as a linear function

σ : RC → F2 such that σ(x) = b. This is done by fixing an arbitrary ` − 1 basis elements
from the subspace {y ∈ RC | y ⊥ x}.

It is easy to see that there is a one-to-one correspondence between a label σ and a
linear function σ̃ on RC . Similar to the previous case of Gfolded, a label from Σ(= ΣB) to a
vertex (V,L′) in B is interpreted as a linear function σ′ : L′ → F2.

We define an analogous unfolding of label to vertices in Â to the elements of the corre-
sponding equivalence class. Since the label sets are different, for a label σ to Cx,b (thought
of as a linear function on RC respecting σ(x) = b) we use the notation σ̂U to denote its
unfolding to (U,L) ∈ Cx,b .

1-to-1 Constraints Π̂: Finally the constraint πe : Σ → Σ between the endpoints of an
edge e = (Cx,b, (V,L′)) is given as follows: Consider linear functions σ : RC → F2 re-
specting σ(x) = b and σ′ : L′ → F2. A pair (σ, σ′) ∈ πe if for every (U,L) ∈ C such that
((U,L), (V,L′)) ∈ E and span{x,HU} ∩ L′ = {0}, the unfolding σ̃U satisfies σ̃U |L′ = σ′.

To see that every σ′ has a unique pre-image, for any linear function σ′ : L′ → F2, there
is a unique linear function σ : RC → F2 such that σ(x) = b satisfying the above conditions.
This is because of the following claim.

Claim 3.11. Any basis for L′ along with x and {xe | xe ∈ XU} forms a basis for HU + RC for
every (U,L) ∈ C.

Proof. Let us unwrap the conditions for putting an edge between (V,L′) and Cx,b. One
necessary condition is that (C, (V,L′)) should be an edge in Ẽ. By the definition of Ẽ, there
exists (U,L) ∈ C such that L′ ⊆ L. Recall, x is such that there exists y ∈ (HU +L)\(HU +L′)
such that dim(span{y,HU} ∩RC) = 1 and x ∈ span(y,HU )∩RC . Therefore x ∈ (HU +L) \
(HU + L′) and hence dim(span{x,HU + L′}) = k + ` (as HU ∩ L′ = {0}). This implies that
any basis of L′, basis {xe | xe ∈ XU} of HU and x span HU + L. Since by Lemma 3.5 the
space HU + L is same as the space HU +RC , the claim follows. �

We now show the completeness and soundness of the Unique Games instance.
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Lemma 3.12 (Completeness). For all ε > 0, if there exists Ã′ ⊆ Ã, |Ã′| > (1 − kε)|Ã| and
a labeling to the 2-to-1 Label Cover instance Gfolded such that all the edges incident on Ã′ are
satisfied then there exists Â′ ⊆ Â, |Â′| > (1−kε

2 )|Â| and a labeling to Unique Games instance
UGfolded such that all the edges incident on Â′ are satisfied.

Proof. Fix a labeling (Ã, B̃) to Gfolded where Ã : Ã → ΣA and B̃ : B → ΣB which satisfies
all the edges incident on (1− kε) fraction of the vertices in Ã. We will construct a labeling
(Â, B̂) to the instance UGfolded, where Â : Â→ Σ and B̂ : B → Σ which will satisfy all the
edges adjacent to at least (1−kε)

2 fraction of vertices Â in UGfolded.

We will set B̂ = B̃. Now to assign a label to Cx,b ∈ Â, we look at the labeling σ :=

Ã(C) ∈ F`2 as a linear function σ : RC → F2. If σ(x) = b, we set Â(Cx,b) to be the same linear
function σ : RC → F2 respecting σ(x) = b. Otherwise, we set Â(Cx,b) =⊥. It is obvious that
exactly half the vertices in Â got assigned a label in Σ.

Claim 3.13. If the label Ã(C) to C satisfies all the edges incident on it, then for all x ∈ RC \ {0},
there exists a unique b ∈ {0, 1} such that the label Â(Cx,b) satisfies all the edges incident on Cx,b,
unless Â(Cx,b) =⊥.

Proof. For convenience let σ = Ã(C). If we let Γ(C) ⊆ B to be the neighbors of C in Gfolded,
then the set of neighbors of Cx,b is a subset of Γ(C). Furthermore if (V,L′) is connected
to Cx,b in UGfolded then x /∈ L′ and x ∈ RC . The condition that the edge (C, (V,L′)) is
satisfied by Ã means that for all (U,L) ∈ C such that L′ ⊆ L, the unfolding of σ satisfies
σ̃U |L′ = B̃((V,L′)). Since the unfolding of the label Â(Cx,b) to Cx,b gives the same linear
function σ̃, it follows that σ̃U |L′ = B̂((V,L′)) for every (U,L) ∈ C and every (V,L′) ∈ Γ(C)
such that L′ ⊆ L. Therefore Â satisfies all the edges incident on Cx,b. �

Let Ã′ ⊆ Ã be the set of vertices such that all the edges incident on them are satisfied
by labeling (Ã, B̃). By assumption |Ã′| > (1− kε)|Ã|. Consider the subset Â′ ⊆ Â

Â′ = {Cx,b | Â(Cx,b) 6=⊥, C ∈ Ã′}.

Now, |Â′| > 1−kε
2 |Â| and from the above claim, all the edges incident on Â′ are satisfied by

the labeling (Â, B̂). �

3.5 Soundness

Let FU : {L+HU | L ∈ Gr(XU , `), L∩HU = {0}} → F`2. FU [L+HU ] can be thought of as a
linear function on L + HU respecting the side conditions. This is again by fixing arbitrary
basis of L. Define agreement(FU ) as the probability of the following event:

• Select a ` − 1 dimension subspace L′ ∈ XU such that L′ ∩ HU = {0} uniformly at
random.
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– Select a ` dimension subspaces L1 and L2 containing L′ such that L1 ∩ HU =
L2 ∩HU = {0} uniformly at random.

– Check if FU [L1 +HU ]|L′ = FU [L1 +HU ]|L′ .

The main technical theorem which was conjectured in [DKK+18b] and proved in [KMS18]
is that if agreement(FU ) is a constant bounded away from 0, then there is a global linear
function g : XU → {0, 1} respecting the side conditions and a special (not too small) subset
S of {L+HU | L ∈ Gr(XU , `), L ∩HU = {0}} such that for a constant fraction of elements
in S, FU agrees with g. We will not need the details of this theorem. Instead, we state the
main soundness lemma from [DKK+18b] which crucially used the aforementioned struc-
tural theorem and also the advice strings as mentioned in Remark 3.4.

Theorem 3.14 (Implied by Lemma 4.1 in [DKK+18b]). For every constant δ > 0, there exist
large enough ` � k, q ∈ Z+ and β ∈ (0, 1) such that if there is an unfolded assignment A :
A→ ΣA to Gunfolded such that for at least δ fraction of U , agreement(FU ) > δ, then there exists
a provers’ strategy which makes the outer verifier accepts with probability at least pδ, where pδ is
independent of k.

Armed with this theorem, we are ready to prove the soundness of the Unique Games
instance UGfolded.

Lemma 3.15 (Soundness). Let δ > 0 and fix q ∈ Z+ and β ∈ (0, 1) and ` � k as in Theo-
rem 3.14. If UGfolded is δ-satisfiable then there exists a provers strategy which makes the outer
verifier accepts with probability at least p δ4

216
.

Proof. Fix any δ-satisfiable assignment (Â, B̂), Â : Â→ Σ, B̂ : B̂ → Σ to the Unique Games
instance UGfolded. We first get a randomized labeling (Ã, B̃) to Gfolded where Ã : Ã→ ΣA

and B̃ : B → ΣB as follows: We will keep B̃ = B̂. For every C ∈ Ã, we pick a random
x ∈ RC and b ∈ {0, 1} and set Ã(C) = Â(Cx,b). We now unfold the assignment Ã to A.
Define FU [L+HU ] = A(U,L) for every L ∈ Gr(XU , `).

Let p(U) denote the probability that an edge in UGfolded is satisfied conditioned on U .
Consider U such that p(U) > δ

2 . By an averaging argument, there are at least δ
2 fraction of

U such that p(U) > δ
2 .

Claim 3.16. EFU [agreement(FU )] > p(U)4

211
− ok(1).

Proof. Define a randomized assignment F ′U [L′] as follows: Select a random V ⊆ U con-
ditioned on the event that L′ ⊆ XV . Set F ′U [L′] = B̂(V,L′). Consider the following two
distributions:

Distribution DU :

• Select V uniformly at random from {V | (U, V ) ∈ E}
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• Select L′ uniformly at random from Gr(XV , `− 1)

• Select L uniformly at random from {L | L ∈ Gr(XU , `) and L′ ⊆ L}

• Let C be the equivalence class such that (U,L) ∈ C, select x ∼ RC as in the edge
distribution Ê.

• Select b ∈ {0, 1} uniformly at random.

Distribution D′U :

• Select L′ uniformly at random from Gr(XU , `− 1)

• Select V uniformly at random from {V | (U, V ) ∈ E and L′ ∈ Gr(XV , `− 1)}

• Select L uniformly at random from {L | L ∈ Gr(XU , `) and L′ ⊆ L}

• Let C be the equivalence class such that (U,L) ∈ C, select x ∼ RC as in the edge
distribution Ê.

• Select b ∈ {0, 1} uniformly at random.

We have the following lemma from [DKK+18b].

Lemma 3.17 (Lemma 3.6 in [DKK+18b]). Consider the two marginal distributions on the pair
(V,L′), one with respect to DU and another with respect to D′U . If 2`β ≤ 1

8 , then the statistical
distance between the two distributions is at most β

√
k · 2`+4.

In the distributionDU , there is always a constraint between Cx,b and (V,L′) in UGfolded.
Moreover, the distribution of (Cx,b, (V,L′)) is same as the edge distribution Ê. Therefore

p(U) = Pr
DU

[
Â(Cx,b), B̂(V,L′) satisfy the edge (Cx,b, (V,L′))

]
.

Rewriting the above equality,

p(U) = Pr
DU

[
σ̂U |L′ = B̂(V,L′) | σ = Â(Cx,b)

]
.

Using Claim 3.10, the distribution of FU [L + HU ], conditioned on x ∈ RC \ (HU + L′), is
same as the distribution Â(Cx,b) (with appropriate unfolding of it) chosen with respect to
DU . As |RC \ (HU + L′)| = |RC |/2 for a random x ∈ RC , the event x ∈ RC \ (HU + L′)
happens with probability 1

2 . Since we pick an uniformly random x ∈ RC while defining
Ã(C), which in turn defines FU [L+HU ], we have

p(U)

2
6 E

FU
Pr
DU

[
FU [L+HU ]|L′ = B̂(V,L′)

]
,
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Now,
Pr
DU

[
FU [L+HU ]|L′ = B̂(V,L′)

]
≈ Pr
D′U

[
FU [L+HU ]|L′ = B̂(V,L′)

]
.

follows from the closeness of distributions DU and D′U on (V,L′) given by Lemma 3.17
by setting β � 1√

k
(this setting of β is consistent with the setting of β in Theorem 3.14).

Conditioned on L′ the distribution of (V,L′) in D′U is same as the distribution we used to
assign F ′U [L′] and therefore we get

p(U)

2
− ok(1) 6 E

FU
Pr
L′⊆L

[
FU [L+HU ]|L′ = F ′U [L′]

]
.

Let E1 be the event that p(U)
4 6 PrL′⊆L [FU [L+HU ]|L′ = F ′U [L′]], by averaging argument

Pr[E1] > P (U)
4 . We now fix an FU for which E1 occurs. By an averaging argument, there

are at least p(U)
8 fraction of L′ ∈ Gr(XU , `− 1) such that PrL⊇L′ [FU [L+HU ]|L′ = F ′U [L′]] >

p(U)
8 . For each of such L′ we have,

Pr
L1,L2⊇L′

[FU [L1 +HU ] = FU [L2 +HU ]] = Pr
L1,L2⊇L′

[
FU [L1 +HU ]|L′ = FU [L2 +HU ]|L′ = F ′U [L′]

]
>
p(U)2

26
− ok(1).

Thus overall, we get

Pr
L1,L2⊇L′

[FU [L1 +HU ] = FU [L2 +HU ] | E1] >
p(U)3

29
− ok(1).

Hence,

E
FU

[agreement(FU )] > Pr[E1] · Pr
L1,L2⊇L′

[FU [L1 +HU ] = FU [L2 +HU ] | E1] >
p(U)4

211
− ok(1).

�

There are at least δ
2 fraction of U such that p(U) > δ

2 . This means for at least δ
2 frac-

tion of U , E[agreement(FU )] > δ4

215
− ok(1) using the previous claim. Thus, again by an

averaging argument, there exists a fixed {FU | U ∈ U}, coming from unfolding of some
assignment Ã, such that for at least δ4

216
fraction of U , we have agreement(FU ) > δ4

216
. The

Lemma now follows from Theorem 3.14. �

We now prove the main theorem.
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Proof of Theorem 1.2 Fix δ > 0. We let q, β and ` � k be as given in the setting of
Theorem 3.14. Firstly, if we look the the marginal distribution of the edge distribution on
Â then it is uniform and hence the instance is left-regular.2 Now, starting with an instance
of (X,Eq) we have the following two guarantees of the reduction:

1. If the instance (X,Eq) is (1− 2δ
k )-satisfiable then by Lemma 3.8 and Lemma 3.12, the

Unique Games instance UGfolded has a property that for at least (1
2 − δ) fraction of

the vertices in Â, all the edges incident on them are satisfied.

2. Consider the other case in which the instance (X,Eq) is at most s-satisfiable where
s < 1. If the Unique Games instance UGfolded is has a δ-satisfying assignment, then
by Lemma 3.15 there is a provers’ strategy which can make the outer verifier accepts
with probability at least p δ4

216
� 2−Ω(βk/2q) for large enough k. This contradicts Theo-

rem 3.3 and hence in this case, UGfolded has no assignment which satisfies δ fraction
of the edges.

Since by Theorem 3.2 distinguishing between a given instance (X,Eq) being at least
(1− 2δ

k )-satisfiable or at most s-satisfiable is NP-hard, this proves our main theorem. �

4 Independent set in degree d graphs

We consider a weighted graph H = (V,E) where the sum of all the weights of the vertices
is 1 and also sum of all weights of the edges is also 1. For S ⊆ V , we will denote the total
weight of vertices in S by w(S).

Definition 4.1. A graph H is (δ, ε)-dense if for every S ⊆ V (H) with w(S) > δ, the total weight
of edges inside S is at least ε.

For ρ ∈ [−1, 1] and β ∈ [0, 1], the quantity Γρ(β) is defined as:

Γρ(β) := Pr[X ≤ φ−1(β) ∧ Y ≤ φ−1(β)],

whereX and Y are jointly distributed normal Gaussian random variables with co-variance
ρ and φ is the cumulative density function of a normal Gaussian random variable.

We will prove the following theorem.

Theorem 4.2. Fix ε > 0, p ∈
(
0, 1

2

]
, then for all sufficiently small δ > 0, there exists a polynomial

time reduction from an instance of a left-regular Unique Games G(A,B,E, [L], {πe}e∈E) to a
graph H such that

1. If sval(G) > c, then there is an independent set of weight c · p in H.
2The edges have weights, but it can be made an unweighted left-regular instance by adding multiple edges

proportional to its weight with the same constraint.
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Let G(A,B,E, [L], {πe}e∈E) be an instance of Unique Games. The distribution of
edges in H is as follows:

• Select u ∈ B uniformly at random.

• Select its two neighbors v1 and v2 uniformly at random. Let π1 and π2 are the
constraints between (u, v1) and (u, v2) respectively.

• Select x, y ∈ {0, 1}L, such that for each i ∈ [L], (xi, yi) are sampled indepen-
dently from the distribution D.

• Output an edge (v1, x ◦ π1), (v2, y ◦ π2).

Figure 3: Reduction from UG to Independent Set from [AKS11].

2. If val(G) 6 δ, then H is (β,Γρ(β)− ε) dense for every β ∈ [0, 1] and ρ = − p
p−1 .

The reduction is exactly the same as the one in [AKS11]. We will only show the com-
plete case (1) here. The soundness is proved in [AKS11]. This theorem will imply Theo-
rem 1.3 using a randomized sparsification technique of [AKS11] to convert the weighted
graph into a bounded degree unweighted graph.

4.1 The AKS reduction

Consider the distribution D on (a, b) ∈ {0, 1}2 such that Pr[a = b = 1] = 0 and each bit
is p-biased i.e. Pr[b = 1] = Pr[b = 1] = p. For a string x ∈ {0, 1}L and a permutation
π : [L]→ [L], define x ◦ π ∈ {0, 1}L as (x ◦ π)i = xπ(i) for all i ∈ [L].

Let G(A,B,E, [L], {πe}e∈E) be an instance of Unique Games which is regular on the
A side. We convert it into a weighted graph H . The vertex set is A × {0, 1}L. Weight of a
vertex (v, x) where v ∈ A and x ∈ {0, 1}L is µp(x)

|A| , where µp(x) := p|x|(1−p)L−|x|. The edge
distribution is given in Figure 3.

Lemma 4.3 (Completeness). If sval(G) > c, then there is an independent set in H of weight c ·p.

Proof. Fix an assignment ` : A ∪ B → Σ which gives sval(G) > c. Let A′ ⊆ A be the set
of vertices such all the edges incident on A′ are satisfied by `, we know that |A′| > c · |A|.
Consider the following subset of vertices in H .

I = {(v, x) | v ∈ A′, x`(v) = 1}.

Firstly, the weight of set I is c·p. We show that I is in fact an independent set inH . Suppose
for contradiction, there exists an edge (v1, x), (v2, y) in H and both of its endpoints are in I .
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Let u be the common neighbor of v1, v2 (one such u must exist). If we let π1 and π2 be the
permutation constraints between (u, v1) and (u, v2) then the conditions for being an edge
implies that (xπ1(`(u)), yπ2(`(u))) should have a support in D. Since all the edges incident on
A′ are satisfied, πi(`(u)) = `(vi) for i ∈ {1, 2}. Therefore,(x`(v1), y`(v2)) is also supported in
D and hence both cannot be 1 which implies that both cannot belong to I . �

Lemma 4.4 (Soundness [AKS11]). For every constant ε > 0, if H is not (β,Γρ(β) − ε)-dense
for some β ∈ [0, 1] and ρ = − p

p−1 , then G is δ-satisfiable for δ := δ(ε, p) > 0.

Lemma 4.3 and Lemma 4.4 prove Theorem 4.2.

5 Maximum Acyclic Subgraph

In this section we state the reduction from [GMR08] and analyze the completeness case.
Given a directed graph H = (V,E), we will denote by Val(H) the fraction of edges in the
maximum sized acyclic subgraph of H . We need the following definition.

Definition 5.1. A t-ordering of a directed graph H = (V,E) consists of a map O : V → [t]. The
value of a t-ordering O is given by

Valt(O) = Pr
(a,b)∈E

[O(a) < O(b)] +
1

2
· Pr

(a,b)∈E
[O(a) = O(b)].

Define Valt(H) as:
Valt(H) = max

O
Valt(O).

The following lemma [GMR08] will be crucial in the reduction from Unique Games to
Maximum Acyclic Subgraph.

Lemma 5.2 ([GMR08]). Given η > 0 and a positive integer t, for every sufficiently large m, there
exists a weighted directed acyclic graph H(V,E) on m vertices along with a of distribution D on
the orderings {O : V → [m]} such that:

1. For every u ∈ V and i ∈ [m], PrO∼D[O(u) = i] = 1
m .

2. For every directed edge (a→ b), PrO∼D[O(a) < O(b)] > 1− η.

3. Valt(H) 6 1
2 + η.

The reduction is given in Figure 4. For a string x ∈ [q]L and a permutation π : [L] →
[L], define x ◦ π ∈ [q]L such that (x ◦ π)i = xπ(i) for all i ∈ [L].

Lemma 5.3. (Completeness) For small enough ε, η > 0, if the Unique Games instance G is has
sval(G) > c then Val(G) > c · (1− 2ε)(1− η) + (1− c) ·

(
1
2 −

1
2m

)
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Let G(A,B,E, [L], {πe}e∈E) be an instance of Unique Games. Fix a graph
H([m], EH) from Lemma 5.2 with parameters η > 0 and t ∈ Z+, along with the
distribution D. Construct a weighted directed graph G on B× [m]L with the follow-
ing distribution on the edges:

• Select u ∈ A uniformly at random.

• Select its two neighbors v1 and v2 uniformly at random. Let π1 and π2 are the
constraints between (u, v1) and (u, v2) respectively.

• Pick an edge e = (a, b) ∈ EH at random from the graph H .

• Select x, y ∈ [m]L, such that for each i ∈ [L], (xi, yi) are sampled independently
as follows:

– sample O ∼ D, set xi = O(a) and yi = O(b).

• Perturb x and y as follows: for each i ∈ [L], with probability (1−ε), set x̃i = xi,
with probability ε set x̃i to be uniformly at random from [m]. Do the same
thing for y independently to get ỹ.

• Output a directed edge (v1, x̃ ◦ π1)→ (v2, ỹ ◦ π2).

Figure 4: Reduction from UG to Max-Acyclic Graph from [GMR08].

Proof. Fix an assignment ` : A ∪ B → Σ which gives sval(G) > c. Let A′ ⊆ A be the set
of vertices such that its edges are satisfied by `, we know that |A′| > c · |A|. Consider the
following m ordering O : B × [m]L → [m] of the vertices of G: O(v, x) = x`(v). We will
show that Valm(O) > c(1− 2ε)(1− η) + (1− c) ·

(
1
2 −

1
2m

)
. This will prove the lemma.

Val(G) > Valm(O) > Pr[O((v1, x̃ ◦ π1) < O(v2, ỹ ◦ π2)]

= Pr[x̃π1(`(v1)) < ỹπ2(`(v2))]

> c · Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u ∈ A′]
+ (1− c) · Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′]. (1)

Now, if u ∈ A′ then π1(`(v1)) = π2(`(v2)) = `(u) and hence,

Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u ∈ A′] = Pr[x̃`(u) < ỹ`(u)]

> (1− 2ε) · E
(a,b)∈EH

Pr
O∼D

[O(a) < O(b)]

> (1− 2ε)(1− η). (2)

Now, we can lower bound Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] by (1 − 2ε)(1 − η) as above if
π1(`(v1)) = π2(`(v2)). If π1(`(v1)) 6= π2(`(v2)) then x̃π1(`(v1)) and ỹπ1(`(v1)) are uncorrelated
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and are distributed uniformly in [m]. Therefore, Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] =
(m2 )
m2 =

1
2 −

1
2m . Thus, for small enough ε and η, we can lower bound

Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] > min

{
(1− 2ε)(1− η),

1

2
− 1

2m

}
>

1

2
− 1

2m
. (3)

Plugging (2) and (3) into (1), we get

Val(G) > c · (1− 2ε)(1− η) + (1− c) ·
(

1

2
− 1

2m

)
.

�

The following soundness of the reduction is shown in [GMR08].

Lemma 5.4. (Soundness)[GMR08] If the Unique Games instanceG has val(G) 6 δ then Val(G) 6
1
2 + η + ot(1) + δ′, where δ′ → 0 as δ → 0.

Proof of Theorem 1.4 For every ε′ < 0, setting ε, η, δ > 0 small enough constants and
m large enough, in the completeness case we have a maximum acyclic subgraph of size at
least c2 + 1

2−ε
′, whereas in the soundness case it is at most 1

2 +ε′. Since by Theorem 1.2, it is
NP-hard to distinguish between sval(G) > 1

2−δ and val(G) 6 δ we get that it is NP-hard to
approximate the Maximum Acyclic Subgraph problem within a factor of 1/2+ε′

1/4+1/2−ε′−δ/2 ≈
2
3 .

Remark 5.5. Instead of sval(G) = 1
2 , if we only have val(G) = 1

2 , then the same construction and
the labeling from Lemma 5.3 gives Val(G) > 5

8 . To see this, fix an assignment ` : A∪B → Σ which
gives val(G) > 1

2 . Let αu denote the fraction of edges attached to u that are satisfied by `. Therefore,
we have val(G) = Eu∈A[αu] = 1

2 . Using a similar analysis as in the completeness case, we get
Val(G) > Eu∈A[α2

u · (1− 2ε)] + Eu∈A[(1− α2
u) · 1

2 ] > (1− 2ε)E[1
2 + α2

u
2 ]. By Cauchy-Schwartz

inequality E[α2
u] > (E[αu])2 = 1

4 and hence Val(G) > (1−2ε) · 5
8 . This along with the soundness

lemma gives the NP-hardness of 4
5 .

6 Predicates supporting Pairwise Independence

In this section, we prove Theorem 1.5.

6.1 The Austrin-Mossel reduction

Let D be a distribution on P−1(1) which is balanced and pairwise independent. For a
string x ∈ [q]L and a permutation π : [L]→ [L], define x ◦ π ∈ [q]L such that (x ◦ π)i = xπ(i)

for all i ∈ [L].
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Let G(A,B,E, [L], {πe}e∈E) be an instance of Unique Games.

• Select u ∈ A uniformly at random.

• Select k neighbors {v1, v2, . . . , vk} of u uniformly at random. Let πi be the
constraints between (u, vj) for all j ∈ [k].

• Select x1, x2, . . . , xk ∈ [q]L, such that for each i ∈ [L] sample (x1
i , x

2
i , . . . , x

k
i )

independently as follows:

– with probability (1− ε), (x1
i , x

2
i , . . . , x

k
i ) is sampled from the distribution

D.

– with probability ε, (x1
i , x

2
i , . . . , x

k
i ) is sampled from [q]k uniformly at ran-

dom.

• Output ((v1, x
1 ◦ π1), (v2, x

2 ◦ π2), . . . , (vk, x
k ◦ πk)).

Figure 5: Reduction from UG to a P -CSP instance I from [AM09].

Let G(A,B,E, [L], {πe}e∈E) be an instance of Unique Games. We convert it into a P -
CSP instance I as follows. The variable set is B × [q]L. The variable sets are folded in the
sense that for every assignment f : B × [q]L → [q] to the variables, we enforce that for
every v ∈ B, x ∈ [q]L and α ∈ [q],

f(v, x+ αL) = f(v, x) + α,

where additions are (mod q).

The distribution on the constraints is given in Figure 5:

Lemma 6.1 (Completeness). If sval(G) > c, the I is (c− ε)-satisfiable.

Proof. Fix an assignment ` : A ∪ B → Σ which gives sval(G) > c. Let A′ ⊆ A be the set of
vertices such that all the edges incident on A′ are satisfied by `, we know that |A′| > c · |A|.
Thus with probability c, u ∈ A′ and all edges attached to it are satisfied by `. Consider the
following assignment f to the variables of I : For a variable (v, x), we assign f(v, x) = x`(v).

Conditioned on u ∈ A′, we will show that (f(v1, x
1 ◦ π1), f(v2, x

2 ◦ π2), . . . , f(vk, x
k ◦

πk)) ∈ P−1(1) with probability (1 − ε) and this will prove the lemma. Now, (f(v2, x
2 ◦

π2), . . . , f(vk, x
k ◦ πk))) is same as ((x1 ◦ π1)`(v1), (x

2 ◦ π2)`(v2), . . . , (x
k ◦ πk)`(vk)), which in

turns equals (x1
π1(`(v1), x

2
π2(`(v2), . . . , x

k
πk(`(vk)). Since ` satisfies all the edges (u, vi), we have

that for all j ∈ [k], πj(`(vj)) = `(u) =: i for some i ∈ [L]. Therefore we get (x1
i , x

2
i , . . . , x

k
i ),

and according to the distribution, it belongs to P−1(1) with probability (1− ε). �

We have the following soundness of the reduction.
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Lemma 6.2 (Soundness [AM09]). If the instance I is
(
P−1(1)
qk

+ η
)

-satisfiable, then G is δ :=

δ(η, ε, k, q) > 0 satisfiable.

The completeness and soundness of the reduction, along with our main theorem, im-
ply Theorem 1.5.

Acknowledgements. We would like to thank all the anonymous reviewers for their com-
ments which helped in improving the presentation significantly.
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