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Abstract

An (n, k, `)-vector MDS code is a F-linear subspace of (F`)n (for some field F) of dimension
k`, such that any k (vector) symbols of the codeword suffice to determine the remaining
r = n − k (vector) symbols. The length ` of each codeword symbol is called the sub-
packetization of the code. Such a code is called minimum storage regenerating (MSR), if any
single symbol of a codeword can be recovered by downloading `/r field elements (which is
known to be the least possible) from each of the other symbols.

MSR codes are attractive for use in distributed storage systems, and by now a variety
of ingenious constructions of MSR codes are available. However, they all suffer from expo-
nentially large sub-packetization ` & rk/r. Our main result is an almost tight lower bound
showing that for an MSR code, one must have ` > exp(Ω(k/r)). Previously, a lower bound
of ≈ exp(

√
k/r), and a tight lower bound for a restricted class of “optimal access” MSR

codes, were known. Our work settles a central open question concerning MSR codes that
has received much attention. Further our proof is really short, hinging on one key definition
that is somewhat inspired by Galois theory.

1 Introduction

Modern distributed storage systems (DSS) need to store vast amounts of data in a fault tolerant
manner, while also preserving data reliability and accessibility in the wake of frequent server fail-
ures. Traditional MDS (Maximum Distance Separable) codes like Reed-Solomon codes provide
the optimal trade-off between redundancy and number of worst-case erasures tolerated. When
encoding k symbols of data into an n symbol codeword by an (n, k)-MDS code, the data can be
recovered from any set of k out of n codeword symbols, which is clearly the best possible. They
are thus a naturally appealing choice to minimize storage overhead in DSS. One can encode
data, broken into k pieces, by an (n, k)-MDS code, and distribute the n codeword symbols on n
different storage nodes, each holding the symbol corresponding to one codeword position. The
erasure resilience of the MDS code implies that the data is safe even in the catastrophic situation
of all but k storage nodes failing. In the sequel, we use the terms storage node and codeword
symbol interchangeably.
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A rather common scenario in modern large scale DSS is the failure or temporary unavailabil-
ity of a single storage node. It is of great importance to promptly respond to such failures, by
efficient repair/regeneration of the node using the content stored in some of other nodes (which
are called “helper” nodes as they assist in the repair). This requirement has spurred a set of
fundamentally new and exciting challenges concerning codes for recovery from erasures, with
the goal of balancing worst-case fault tolerance from many erasures, with very efficient schemes
to recover from the much more common scenario of a single erasure.

There are two measures of repair efficiency that have received a lot of attention in the
last decade. One concerns locality, where we would like to repair a node locally based on the
contents of a small number of other storage nodes. Such locality necessarily compromises the
MDS property, and a rich body of work on locally repairable codes (LRCs) studies the best
trade-offs possible in this model and constructions achieving those [8, 13, 19]. The other line of
work, which is the subject of this paper, focuses on optimizing the amount of data downloaded
from the other nodes. This model allows the helper node to respond with a fraction of its
contents. The efficiency measure is the repair bandwidth, which is the total amount of data
downloaded from all the helper nodes. Codes in this model are called regenerating codes, and
were systematically introduced in the seminal work of Dimakis et al. [5], and have since witnessed
an explosive amount of research.

Rather surprisingly, even for MDS codes, by contacting more helper nodes but download-
ing fewer symbols from each, one can do much better than the “usual” scheme, which would
download the contents of k nodes in full. In general an entire spectrum of trade-offs is possible
between storage overhead and repair bandwidth. This includes minimum bandwidth regenerating
(MBR) codes with the minimum repair bandwidth of ` [15]. At the other end of the spectrum,
we have minimum storage regenerating (MSR) codes (defined formally below) which retain the
MDS property and thus have optimal redundancy. This work focuses on MSR codes.

Example. The possibility of lower than the naive repair bandwidth for MDS codes is rather
counterintuitive when one is first confronted with it, so to help the reader who may not be
familiar with regenerating codes, we reproduce a classic example of the EVENODD code [2, 6].
This is an (4, 2) MDS code with 4 storage nodes, each storing a vector of two symbols over the
binary field. We denote by P1,P2 the two parity nodes.

S1 S2 P1 P2

a1 b1 a1 + b1 a2 + b1
a2 b2 a2 + b2 a1 + a2 + b2

The naive scheme to repair a node would contact any two of the remaining three nodes, and
download both bits from each of them, for a total repair bandwidth of 4 bits. However, it turns
out that one can get away with downloading just one bit from each of the three other nodes, for
a repair bandwidth of 3 bits! If we were to repair the node S1, the remaining nodes (S2,P1,P2)
would send (b1, a1 + b1, a2 + b1), respectively. If we were to repair the node S2, the remaining
nodes (S1,P1,P2) would send (a2, a2 + b2, a2 + b1), respectively. If we were to repair the node
P1, the remaining nodes (S1,S2,P2) would send (a1, b1, a1 + a2 + b2), respectively. If we were to
repair the node P2, the remaining nodes (S1,S2,P1) would send (a2, b1, (a1 + b1) + (a2 + b2)),
respectively.

Vector codes and sub-packetization. The above example shows that when the code is an
(n, k) vector MDS code, where each codeword symbol itself is a vector, say in F` for some field
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F, then one can hope to achieve repair bandwidth smaller than then naive k`. The length of
the vector ` stored at each node is called the sub-packetization (since this is the granularity to
which a single codeword symbol needs to be divided into).

MSR codes. A natural question is how small a repair bandwidth one can achieve with MDS
codes. The so-called cutset bound [5] implies that one must download at least (n− 1)`/(n− k)
symbols of F from the remaining nodes to recover any single node. Further, in order to attain
this optimal repair bandwidth bound, each of the (n − 1) nodes must respond with `/(n − k)
field elements. Vector MDS codes which admit repair schemes meeting the cutset bound (for
repair of every node) are called minimum storage regenerating (MSR) codes (for the formal
description, see Definition 1). MSR codes, and specifically their sub-packetization, are the focus
of this paper.

Large sub-packetization: problematic and inherent. While there are many constructions
of MSR codes by now, they all have large sub-packetization, which is at least rk/r. For the setting
of most interest when the redundancy r is small, this is very large, and in particular exp(Ω(k))
when r = O(1). A small sub-packetization is important for a number of reasons, as explained in
some detail in the introduction of [16]. A large sub-packetization limits the number of storage
nodes (for example if ` > exp(Ω(n)), then n = O(log `) where ` is the storage capacity of each
node), and in general leads to a reduced design space in terms of various systems parameters. A
larger sub-packetization also makes management of meta-data, such as description of the code
and the repair mechanisms for different nodes, more difficult. For a given storage capacity,
a smaller sub-packetization allows one to distribute codewords corresponding to independently
coded files among multiple nodes, which allows for distributing the load of providing information
for the repair of a failed node among a larger number of nodes.

It has been known that somewhat large sub-packetization is inherent for MSR codes (we
will describe the relevant prior results in the next section). In this work, we improve this lower
bound to exponential, showing that unfortunately the exponential sub-packetization of known
constructions is inherent. Our main result is the following.

Theorem 1 (Informal). Suppose an (n, k)-vector MDS code with redundancy r = n − k is
minimum storage regenerating (MSR). Then its sub-packetization ` must satisfy ` > e(k−1)/(4r).

Our lower bound almost matches the sub-packetization of rO(k/r) achieved by the best known
constructions. Improving the base of the exponent in our lower bound to r will make it even
closer to the upper bounds. Though when r is small, which is the primary setting of interest in
codes for distributed storage, this difference is not that substantial.

A few words about our proof. Previous work [21] has shown that an (n, k) MSR code with
sub-packetization ` implies a family of (k− 1) `/r-dimensional subspaces Hi of F` each of which
has an associated collection of (r−1) linear maps obeying some strong properties. For instance,
in the case r = 2, there is an invertible map ψi associated with Hi for each i which leaves all
subspaces Hj , j 6= i, invariant, and maps Hi itself to a disjoint space (i.e., ψi(Hi) ∩Hi = {0}).
The task of showing a lower bound on ` then reduces to the linear-algebraic challenge of showing
an upper bound on the size of such a family of subspaces and linear transformations, which we call
an MSR subspace family (Definition 2). The authors of [9] showed an upper bound O(r log2 `)
on the size of MSR subspace families via a nifty partitioning and linear independence argument.

We follow a different approach by showing that the number of linear maps that fix all
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subspaces in an MSR family decreases sharply as the number of subspaces increases. Specifically,
we show that dimension of the linear space of such linear maps decreases exponentially in the
number of subspaces in the MSR family. This enables us to prove an O(r log `) upper bound.
This bound is asymptotically tight (up to a O(log r) factor), as there is a construction of an
MSR subspace family of size (r + 1) logr ` [23]. We also present an alternate construction in
Appendix A, which works for all fields with more than 2 elements, compared to the large field
size (of at least ≈ rr`) required in [23].

We now proceed to situate our work in the context of prior work, both constructions and
lower bounds, for MSR codes.

2 Prior and Related Work

The literature on regenerating codes, and even just MSR codes, is vast with numerous models
and constraints, and many incomparable results. Here we only mention the ones closely related
to our work and its context — MSR codes for exact repair with n − 1 helper nodes, focusing
primarily on their sub-packetization.

MSR code constructions. We begin code constructions/existence results. Rashmi et al.
present an explicit construction of MSR codes with small sub-packetization ` 6 r when the code
rate k/n is at most 1/2 [15]. Cadambe et al. [4] show the existence of high rate MSR codes when
the sub-packetization approaches infinity. Motivated by this result, the problem of designing
high-rate MSR codes with finite sub-packetization level is explored in [14, 20, 17, 23, 3, 7, 24,
25, 18] and references therein. In particular, Sasidharan et al. [17] show the existence of MSR
codes with the sub-packetization level ` = rd

n
r
e. Such a result with similar sub-packetization

levels for repair of only k systematic nodes was obtained earlier in [23, 3]. In order to ensure
the MDS property, these results relied on huge fields and randomized construction of the parity
check matrices.

In two fascinating (independent) works, Ye and Barg [25] and Sasidharan, Vajha, and Ku-
mar [18] give a fully explicit construction of MSR codes over small fields with sub-packetization
level ` = rd

n
r
e. These constructions also have the so-called optimal-access or help-by-transfer

property, which means that the helper nodes do not have to perform any linear combinations
on their data, and can simply transfer a suitable subset of `/r coordinates of the vector in F`
that they store. Thus the number of symbols accessed at a node equals the number of symbols
it transmits over the network to aid the repair (recall that the repair-bandwidth measures the
latter amount).

Sub-packetization lower bounds. In summary, while there are several constructions of high
rate MSR codes, they all incur large sub-packetization, which is undesirable as briefly explained
earlier. This has been partially explained by lower bounds on ` in a few previous works. For
the special case of optimal-access MSR codes, a lower bound of ` > rk/r was shown in [21], and
this was improved (when all-node repair is desired) to ` > rn/r recently [1]. Together with the
above-mentioned constructions, we thus have matching upper and lower bounds on ` for the
optimal-access case. This help-by-transfer setting is primarily combinatorial in nature, which is
exploited heavily in these lower bounds.

However, lower bounds for general MSR codes, that allow helper nodes to transmit linear
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combinations of their comments, are harder to obtain. Such a lower bound must rule out a much
broader range of possible repair schemes, and must work in an inherently linear-algebraic rather
than combinatorial setting. Note that the simple example presented above also used linear
combinations in repairing one of the nodes. An MSR code construction with sub-packetization
` 6 rk/(r+1), which beats the above lower bound for optimal-access codes and thus shows a
separation between these models, was given in [23].

Turning to known lower bounds on `, a weak bound of `
(
`
`/r

)
> k was shown via a combi-

natorial argument in [21]. Using an elegant linear independence and partitioning argument, the
following bound is proven in [9]:

2 log2(`)(logr/(r−1)(`) + 1) > k − 1 . (1)

(This was slightly improved in [11], but the improvement is tiny for the case when k > r which

is our focus.) The bound (1) implies a lower bound on sub-packetization of ` > 2Ω(
√
k/r). Even

for the case r = 2, it was not known if one can achieve sub-packetization smaller than 2Ω(k).
Our Theorem 1 now rules out this possibility. We conjecture that our bound can be improved
to k 6 (r + 1) logr `+O(1) which will show that the construction in [23] is exactly tight.

Variants of MSR codes. While most constructions of MSR and regenerating codes were
tailormade vector codes, it was shown in [10] that the classical family of Reed-Solomon (RS)
themselves can allow for non-trivially bandwidth-efficient repair. This later led to the carefully
constructed RS codes which can be repaired with the optimal bandwidth meeting the cutset
bound [22] — in other words, certain RS themselves are MSR codes! However, these RS codes
have even larger sub-packetization of 2O(n logn) and this was also shown to be necessary in the
form of a lower bound of 2Ω(k log k) in [22].

A slight relaxation MSR codes called ε-MSR codes where the helper nodes are allowed to
transmit a factor (1 + ε) more than the cutset bound, i.e., (1 + ε)`/r symbols, were put forth
in [16]. They showed that one can construct ε-MSR codes with sub-packetization rO(r/ε) log n,
and roughly logarithmic sub-packetization is also necessary.

Regenerating and MSR codes have close connections to communication-efficient secret shar-
ing schemes, which were studied and developed in [12]. In this context, the sub-packetization
corresponds to the size of the shares that the parties must hold.

3 Preliminaries

We will now define MSR codes more formally. We begin by defining vector codes. Let F be a
field, and n, ` be positive integers. For a positive integer b, we denote [b] = {1, 2, . . . , b}. A vector
code C of block length n and sub-packetization ` is an F-linear subspace of (F`)n. We can express
a codeword of C as c = (c1, c2, . . . , cn), where for i ∈ [n], the block ci = (ci,1, . . . , ci,`) ∈ F`
denotes the length ` vector corresponding to the i’th code symbol ci.

Let k be an integer, with 1 6 k 6 n. If the dimension of C, as an F-vector space, is k`,
we say that C is an (n, k, `)F-vector code. The codewords of an (n, k, `)F-vector code are in
one-to-one correspondence with vectors in (F`)k, consisting of k blocks of ` field elements each.

Such a code is said to be Maximum Distance Separable (MDS), and called an (n, k, `)-MDS
code (over the field F), if every subset of k code symbols ci1 , ci2 , . . . , cik is an information set
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for the code, i.e., knowing these symbols determines the remaining n − k code symbols and
thus the full codeword. An MDS code thus offers the optimal erasure correction property —
the information can be recovered from any set of k code symbols, thus tolerating the maximum
possible number n− k of worst-case erasures.

An (n, k, `)-MDS code can be used in distributed storage systems as follows. Data viewed
as k` symbols over F is encoded using the code resulting in n vectors in F`, which are stored in
n storage nodes. Downloading the full contents from any subset of these k nodes (a total of k`
symbols from F) suffices to reconstruct the original data in entirety. Motivated by the challenge
of efficient regeneration of a failed storage node, which is a fairly typical occurrence in large
scale distributed storage systems, the repair problem aims to recover any single code symbol ci
by downloading fewer than k` field elements. This is impossible if one only downloads contents
from k nodes, but becomes feasible if one is allowed to contact h > k helper nodes and receive
fewer than ` field elements from each.

Here we restrict attention to repairing the first k code symbols, which we view as the
information symbols. This is called “systematic node repair” as opposed to the more general
“all node repair” where the goal is to repair all n codeword symbols. We will also only consider
the case h = n− 1, when all the remaining nodes are available as helper nodes. Since our focus
is on a lower bound on the sub-packetization `, this only makes our result stronger, and keeps
the description somewhat simpler. We note that the currently best known constructions allow
for all-node repair with optimal bandwidth from any subset of h helper nodes.

Suppose we want to repair the m’th code symbol for some m ∈ [k]. We download from the
i’th code symbol, i 6= m, a function hi,m(ci) of its contents, where hi,m : F` → Fβi,m is an F-
linear function. Thus, we download from each node certain linear combinations of the ` symbols
stored at that node. The total repair bandwidth to recover cm is defined to be

∑
i 6=m βi,m. By

the cutset bound for repair of MDS codes [5], this quantity is lower bounded by (n−1)`/r, where
r = n − k is the redundnacy of the code. Further, equality can be attained only if βi,m = `/r
for all i. That is, we download `/r field elements from each of the remaining nodes. MDS codes
achieving such an optimal repair bandwidth are called Minimum Storage Regenerating (MSR)
codes, as precisely defined below.

Definition 1 (MSR code). Let 1 6 k 6 n and ` be integers with r = n − k dividing `. An
(n, k, `)-MDS code C over a field F is said to be an (n, k, `)-MSR code if for every m ∈ [k], there
are linear functions hi,m : F` → F`/r, i ∈ [n] \ {m}, such that the code symbol cm of a codeword
c ∈ C can be computed by an F-linear operation on 〈hi,m(ci) | i ∈ [n] \ {m}〉 ∈ F(n−1)`/r.

4 Linear-algebraic setup of repair of MSR code

In this section, we will setup the repair problem for MSR codes more precisely, leading to a purely
linear-algebraic formulation in terms of a collection of subspaces and associated invertible maps.
We follow the explanation presented in [21].

Let C ⊆ (F`)n be an (n, k, `)-MSR code, with redundancy r = n − k. The MDS property
implies that any subset of k codeword symbols determine the whole codeword. We view the first
k symbols as the “systematic” ones, with r parity check symbols computed from them, where
we remind that when we say code symbol we mean a vector in F`. So we can assume that there
are invertible matrices Ci,j ∈ F`×` for i ∈ [r] and j ∈ [k] such that for c = (c1, c2, . . . , cn) ∈ C,
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we have

ck+i =

k∑
j=1

Ci,jcj .

Suppose we want to repair a systematic node cm for m ∈ [k] with optimal repair bandwidth, by
receiving from each of the remaining n− 1 nodes, `/r F-linear combinations of the information
they stored. This means that there are repair matrices S1,m, . . . , Sr,m ∈ F`/r×`, such that parity
node k + i sends the linear combination

Si,mck+i = Si,m

k∑
j=1

Ci,jcj (2)

Therefore, the information about cm that is sent to it by ck+i is Si,mCi,mcm. To ensure full
regeneration of cm, we must have the property that

rank


S1,mC1,m

S2,mC2,m
...

Sr,mCr,m

 = `

Since each Si,mCi,m has `/r rows, the above happens if and only if

R(Si,mCi,m) ∩R(Si′,mCi′,m) = {0} for 1 6 i < i′ 6 r, and

r⊕
i=1

R(Si,mCi,m) = F` (3)

where R(M) denotes the row-span of a matrix M .

4.1 Cancelling interference of other systematic symbols

Now, for every other systematic node m′ ∈ [k] \ {m}, the parity nodes send the following
information linear combinations of cm′ 

S1,mC1,m′

S2,mC2,m′

...
Sr,mCr,m′

 cm′ (4)

In order to cancel this from the linear combinations (2) received from the parity nodes, the
systematic node m′ has to send the linear combinations (4) about its contents. To achieve
optimal repair bandwidth of at most `/r symbols from every node, this imposes the requirement
that

rank


S1,mC1,m′

S2,mC2,m′

...
Sr,mCr,m′

 6
`

r

However since Ci,m′ is invertible, and Si,m has full row rank, rank(Si,mCi,m′) = `/r for all i ∈ [r].
Combining this fact with the rank inequality above, this would imply

R(S1,mC1,m′) = R(S2,mC2,m′) = · · · = R(Sr,mCr,m′) (5)

for every m 6= m′ ∈ [k], where R(M) is the row-span of a matrix M .
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4.2 Constant repair matrices and casting the problem in terms of subspaces

We now make an important simplification, which allows us to assume that the matrices Si,m
above depend only on the node m being repaired, but not on the helping parity node i. That
is, Sm = Si,m for all i ∈ [r]. We call repair with this restriction as possessing constant repair
matrices. It turns out that one can impose this restriction with essentially no loss in parameters
— by Theorem 2 of [21], if there is a (n, k, `)-MSR code then there is also a (n−1, k−1, `)-MSR
code with constant repair matrices.

This allows us to cast the requirements (3) and (5) in terms of a nice property about
subspaces and associated invertible maps, which we abstract below. This property was shown
to be intimately tied to MSR codes in [23, 21].

Definition 2 (MSR subspace family). For integers `, r with r|` and a field F, a collection of
subspaces H1, . . . ,Hk of F` of dimension `/r each is said to be an (`, r)F-MSR subspace family
if there exist invertible linear maps Φi,j on F`, i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , r − 1} such
that for every i ∈ [k], the following holds:

Hi ∩ Φi,j(Hi) = {0} for every j ∈ [r − 1] (6)

Φi′,j(Hi) = Hi for every j ∈ [r − 1], and i′ 6= i (7)

Now, we recall the argument that if we have an (n, k, `)-MSR code with constant repair ma-
trices, then that also yields a family of subspaces and maps with the above properties. Indeed,
we can take Hm, m ∈ [k], to be R(Sm), and Φm,j , j ∈ [r − 1], is the invertible linear transfor-
mation mapping x ∈ F`, viewed as a row vector, to xCj+1,mC

−1
1,m. It is clear that Property (6)

follows from (3), and Property (7) follows from (5). Together with the loss of one dimension in
the transformation [21] to an MSR code with constant repair subspaces, we can conclude the
following connection between MSR codes and the very structured set of subspaces and maps of
Definition 2.

Proposition 2. Suppose there exists an (n, k, `)-MSR code over a field F. Then there exists an
(`, r)F-MSR subspace family with k − 1 subspaces.

For the reverse direction, the MSR subspace family can take care of the node repair, but
one still needs to ensure the MDS property. This approach was taken in [23], based on a
construction of an (`, r)F-MSR subspace family of size (r + 1) logr `. For completeness, we
present another construction of an MSR subspace family in Theorem 3 below, whose proof we
defer to Appendix A. The subspaces in our construction are identical to [23] but we pick the
linear maps differently, using just two distinct eigenvalues. As a result, our construction works
over any field with more than two elements. In comparison, the approach in [23] used kr−1`/r
distinct eigenvalues, and thus required a field that is bigger than this bound. It is an interesting
question to see if the MDS property can be incorporated into our construction to give MSR
codes with sub-packetization rk/(r+1) over smaller fields.

Theorem 3. For |F| > 2, there exists an (` = rm, r)F-MSR subspace family of (r + 1)m =
(r + 1) logr(`) subspaces.
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5 Limitation of MSR subspace families

In this section, we state and prove the following strong upper bound on the size of an MSR
family of subspaces, showing that the construction claimed in Theorem 3 is not too far from
the best possible. This upper bound together with Proposition 2 immediately implies our main
result, Theorem 1.

Theorem 4. An (`, r)F-MSR subspace family can have at most 4r ln ` subspaces.

In the rest of the section, we prove the above theorem. Let H1, H2, . . . ,Hk be the subspaces
in an (`, r)F-MSR subspace family with associated invertible linear maps Φi,j where i ∈ [k] and
j ∈ [r − 1]. Note that these linear maps are in some sense statements about the structure of
the spaces H1, H2, . . . ,Hk. They dictate the way the subspaces can interact with each other,
thereby giving rigidity to the way they are structured.

The major insight and crux of the proof is the following definition of a subspace of maps.
The definition is somewhat inspired by Galois Theory, in that we looking at linear on the vector
space F` that fix all the subspaces in question.

Definition 3. In the vector space L(F`,F`) of all linear maps from F` to F`, define the subspace

F(A1 → B1, A2 → B2, . . . , As → Bs) := {ψ ∈ L(F`,F`) | ψ(Ai) ⊆ Bi ∀i ∈ {1, . . . , s}}

for arbitrary subspaces Ai, Bi of F`. Define the value

I(A1 → B1, A2 → B2, . . . , As → B2) := dim(F(A1 → B1, A2 → B2, . . . , As → Bs))

When Ai = Bi for each i, we adopt the shorthand notation F(A1, A2, . . . , As) and I(A1, A2, . . . , As)
to denote the above quantities. We will also use the mixed notation F(A1, A2, . . . , As−1, As →
Bs) to denote F(A1 → A1, . . . , As−1 → As−1, As → Bs) and likewise for I(A1, A2, . . . , As−1, As →
Bs).

Thus I(A1, . . . , As) is the dimension of the space of linear maps that map each Ai within
itself. We use the notation I() to suggest such an invariance. The key idea will be to clev-
erly exploit the invertible maps Φi,j associated with each Hi to argue that the dimension
I(H1, H2, . . . ,Ht) drops by a constant factor whenever we add in an Ht+1 into the collec-
tion. Specifically, we will show that the dimension shrinks at least by a factor of 2r−1

2r for
each newly added Ht+1. Because the identity map is always in F(H1, H2, . . . ,Hk), the dimen-
sion I(H1, H2, . . . ,Hk) is at least 1. As the ambient space of linear maps from F` → F` has
dimension `2, this leads to an O(r log `) upper bound on k. We begin with the following lemma.

Lemma 5. Let U1, U2, . . . , Us 6 Fp be arbitrary subspaces such that
⋂s
i=1 Ui = {0}. Then

following inequality holds:

dim(U1) + dim(U2) . . .+ dim(Us) 6 (s− 1) dim(U1 + U2 + . . .+ Us) .

Proof. We proceed by inducting on s. Indeed, when s = 1, the inequality evidently holds. Now,
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if the inequality holds when s = k, then we have via the Principle of Inclusion and Exclusion

dim(U1) + dim(U2) . . .+ dim(Uk) + dim(Uk+1)

= dim(U1 + U2) +
[

dim(U1 ∩ U2) + dim(U3) + · · ·+ dim(Uk) + dim(Uk+1)
]

6 dim(U1 + U2) + (k − 1) dim((U1 ∩ U2) + U3 + · · ·+ Uk+1) by induction hypothesis

6 k dim(U1 + U2 + · · ·+ Uk + Uk+1) .

Thus the inequality also holds when s = k + 1. Since the base case s = 1 holds, we therefore
conclude that the inequality holds for all s ∈ Z+.

We are now ready to establish the key iterative step, showing geometric decay of the dimension
I(H1, . . . ,Ht) in t.

Lemma 6. For each t = 1, 2, . . . , k, the following holds

I(H1, H2, . . . ,Ht−1, Ht) 6

(
2r − 1

2r

)
I(H1, H2, . . . ,Ht−1) . (8)

Proof. Recall that by the property of an (`, r)F-MSR subspace family, the maps Φt,j , j ∈
{0, 1, . . . , r − 1}, leave H1, . . . ,Ht−1 invariant, where we use Φt,0 to denote the identity map.
Using this it follows that I(H1, . . . ,Ht−1, Ht) = I(H1, . . . ,Ht−1,Φt,j(Ht) → Ht) for each j ∈
{0, 1, . . . , r−1}, since we have an isomorphism F(H1, . . . ,Ht−1, Ht)→ F(H1, . . . ,Ht−1,Φt,j(Ht)→
Ht) given by ψ 7→ ψ◦Φ−1

t,j , and likewise we have I(H1, . . . ,Ht−1, Ht) = I(H1, . . . ,Ht−1,Φt,j(Ht)→
Φt,1(Ht)). Thus we have

2r · I(H1, . . . ,Ht−1, Ht) =

r−1∑
j=0

I(H1, . . . ,Ht−1,Φt,j(Ht)→ Ht)

+
r−1∑
j=0

I(H1, . . . ,Ht−1,Φt,j(Ht)→ Φt,1(Ht)) . (9)

Now we observe that the only linear transformation of F` that maps Φt,j(Ht) → Ht and
Φt,j(Ht)→ Φt,1(Ht) for all j ∈ {0, 1, . . . , r − 1} simultaneously is the identically 0 map. This is
because

∑r−1
j=0 Φt,j(Ht) = F` and Ht∩Φt,1(Ht) = {0}. Thus we are in a situation where Lemma 5

applies, and we have

r−1∑
j=0

I(H1, . . . ,Ht−1,Φt,j(Ht)→ Ht) +
r−1∑
j=0

I(H1, . . . ,Ht−1,Φt,j(Ht)→ Φt,1(Ht))

6 (2r − 1) · I(H1, . . . ,Ht−1) (10)

Combining (9) and (10), we conclude (8) as desired.

We are now ready to finish off the proof of our claimed upper bound on the size k of an
(`, r)F-MSR family.
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Proof of Theorem 4. Since the identity map belongs to I(H1, . . . ,Hk), by applying Lemma 6
inductively on H1, H2, . . . ,Hk, we obtain the inequality

1 6 I(H1, H2, . . . ,Hk) 6

(
2r − 1

2r

)k
· `2 ,

from which we find that

k 6

 2 ln(`)

ln
(

2r
2r−1

)
 6

(
2 ln(`)

1
2r

)
= 4r ln `

where the second inequality follows because ln(1 + x) > x
1+x for all x > −1. We thus have the

claimed upper bound.

A Proof of Theorem 3

Proof. Consider a set of vectors {v1, v2, . . . , vr, vr+1} ⊂ Fr for which the first r form a basis in
Fr and

v1 + v2 + . . .+ vr + vr+1 = 0 (∗)

For k ∈ [m] and i ∈ [r + 1], define

Ak,i := span(vi1 ⊗ . . .⊗ vik−1
⊗ vi ⊗ vik+1

⊗ . . .⊗ vim | ij ∈ [r + 1] ∀j ∈ [m]\{k})

which is a subspace of V = (Fr)⊗m ' F`, for ` = rm. Moreover, we can see that dim(Ak,i) =
rm−1 = `/r.

As for the linear maps, it suffices to show the mapping for the basis

S := {vi1 ⊗ . . .⊗ vim | ij ∈ [r + 1] \ {i}}

of V . Since |F| > 2, then we can pick λ ∈ F with λ /∈ {0, 1}. For each t ∈ [r − 1], we construct
Φ(k,i),t for ik ∈ [r + 1] \ {i+ t, i}, where the indices are taken modulo r + 1, as

vi1 ⊗ . . .⊗ vik−1
⊗ vik ⊗ vik+1

⊗ . . .⊗ vis
Φ(k,i),t7−−−−→ vi1 ⊗ . . .⊗ vik−1

⊗ vik ⊗ vik+1
⊗ . . .⊗ vis

(basically mapping identically), and when ik = i+ t as

vi1 ⊗ . . .⊗ vik−1
⊗ vi+t ⊗ vik+1

⊗ . . .⊗ vis
Φ(k,i),t7−−−−→ vi1 ⊗ . . .⊗ vik−1

⊗ (λvi+t)⊗ vik+1
⊗ . . .⊗ vis

From this definition, we can easily see that Φ(k,i),t is invertible as all vectors in the basis S are
simply eigenvectors with eigenvaue either 1 or λ 6= 0.

To show (7), we consider the two possibilities for Ak′,i′ :

1. For k′ ∈ [m] \ {k} and i′ ∈ [r + 1], the spaces Ak′,i′ remain invariant under Φk,i, t these
maps only change the k-th position while the remaining positions are fixated.
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2. For the case k′ = k and i′ ∈ [r + 1] \ {i}, the spaces Ak,i′ in fact become eigenspaces
for Φ(k,i),t and t ∈ [r − 1]. Namely, Ak,i′ are eigenspaces of eigenvalue 1 in Φ(k,i),t when
i′ ∈ [r + 1] \ {i+ t, i}. For i′ = i+ t, the eigenvalue becomes λ instead.

For (6), we know from (∗) that vi = −
∑

j∈[r+1]\{i} vi. Thus we see that

vi1⊗ . . .⊗vik−1
⊗vi⊗vik+1

⊗ . . .⊗vims
Φ(k,i),t7−−−−→ vi1⊗ . . .⊗vik−1

⊗(vi−(λ−1)vi+t)⊗vik+1
⊗ . . .⊗vis

Since λ 6= 1, the set {vi, vi− (λ− 1)vi+1, . . . , vi− (λ− 1)vi+r−1} forms a basis for Fr. Therefore,
we conclude from the mapping above and the definition of Ak,i

Ak,i ⊕

(
r−1⊕
t=1

Φ(k,i),t(Ak,i)

)
= F`

which is equivalent to (6). Thus both (6) and (7) hold, thereby proving our claim.
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