
An Exponential Lower Bound on the Sub-Packetization of

Minimum Storage Regenerating Codes∗

Omar Alrabiah† Venkatesan Guruswami‡

Abstract

An (n, k, `)-vector MDS code over a field F is a F-linear subspace of (F`)n of dimension k`,
such that any k (vector) symbols of the codeword suffice to determine the remaining r = n−k
(vector) symbols. The length ` of each codeword symbol is called the sub-packetization of
the code. Such a code is called minimum storage regenerating (MSR), if any single symbol
of a codeword can be recovered by downloading `/r field elements (which is known to be the
minimum possible) from each of the other symbols.

MSR codes are attractive for use in distributed storage systems, and by now a variety
of ingenious constructions of MSR codes are available. However, they all suffer from expo-
nentially large sub-packetization ` & rk/r. Our main result is an almost tight lower bound
showing that for an MSR code, one must have ` > exp(Ω(k/r)). Previously, a lower bound
of ≈ exp(

√
k/r), and a tight lower bound for a restricted class of ”optimal access” MSR

codes, were known.

1 Introduction

Traditional Maximum Distance Separable (MDS) codes such as Reed-Solomon codes provide
the optimal trade-off between redundancy and number of worst-case erasures tolerated. When
encoding k symbols of data into an n symbol codeword by an (n, k)-MDS code, the data can
be recovered from any set of k out of n codeword symbols, which is clearly the best possible.
MDS codes are thus a a naturally appealing choice to minimize storage overhead in distributed
storage systems (DSS). One can encode data, broken into k pieces, by an (n, k)-MDS code,
and distribute the n codeword symbols on n different storage nodes, each holding the symbol
corresponding to one codeword position. In the sequel, we use the terms storage node and
codeword symbol interchangeably.

A rather common scenario faced by modern large scale DSS is the failure or temporary
unavailability of storage nodes. It is of great importance to promptly respond to such failures,
by efficient repair/regeneration of the failed node using the content stored in some of other nodes
(which are called “helper” nodes as they assist in the repair). This requirement has spurred a

∗An earlier version this work was presented at the 2019 ACM Symposium on Theory of Computing (STOC) [1].
The current version includes a slightly improved lower bound.

†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA. Email:
oalrabia@andrew.cmu.edu

‡Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Email:
venkatg@cs.cmu.edu. Research supported in part by NSF CCF-1563742.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 5 (2019)

set of fundamentally new and exciting challenges concerning codes for recovery from erasures,
with the goal of balancing worst-case fault tolerance from many erasures, with very efficient
schemes to recover from the much more common scenario of single (or a few) erasures.

There are two measures of repair efficiency that have received a significant amount of at-
tention in the last decade. One concerns locality, where we would like to repair a node locally
based on the contents of a small number of other storage nodes. Such locality necessarily com-
promises the MDS property, and a rich body of work on locally repairable codes (LRCs) studies
the best trade-offs possible in this model and constructions achieving those [8, 14, 20]. The
other line of work, which is the subject of this paper, focuses on optimizing the amount of data
downloaded from the other nodes. This model allows the helper node to respond with a fraction
of its contents. The efficiency measure is the repair bandwidth, which is the total amount of
data downloaded from all the helper nodes. Codes in this model are called regenerating codes,
and were systematically introduced in the seminal work of Dimakis et al. [6], and have since
witnessed an explosive amount of research.

Rather surprisingly, even for some MDS codes, by contacting more helper nodes but down-
loading fewer symbols from each, one can do much better than the “usual” scheme, which would
download the contents of k nodes in full. In general an entire spectrum of trade-offs is possible
between storage overhead and repair bandwidth. This includes minimum bandwidth regenerating
(MBR) codes with the minimum repair bandwidth of ` [16]. At the other end of the spectrum,
we have minimum storage regenerating (MSR) codes defined formally below) which retain the
MDS property and thus have optimal redundancy. This work focuses on MSR codes.

Example. We quickly recap the classic example of the EVENODD code [3, 7] to illustate
regeneration of a lost symbol in an MDS code with non-trivial bandwidth. This is an (4, 2)
MDS code with 4 storage nodes, each storing a vector of two symbols over the binary field. We
denote by P1,P2 the two parity nodes.

S1 S2 P1 P2

a1 b1 a1 + b1 a2 + b1
a2 b2 a2 + b2 a1 + a2 + b2

The naive scheme to repair a node would contact any two of the remaining three nodes, and
download both bits from each of them, for a total repair bandwidth of 4 bits. However, it turns
out that one can get away with downloading just one bit from each of the three other nodes, for
a repair bandwidth of 3 bits! If we were to repair the node S1, the remaining nodes (S2,P1,P2)
would send (b1, a1 + b1, a2 + b1), respectively. If we were to repair the node S2, the remaining
nodes (S1,P1,P2) would send (a2, a2 + b2, a2 + b1), respectively. If we were to repair the node
P1, the remaining nodes (S1,S2,P2) would send (a1, b1, a1 + a2 + b2), respectively. If we were to
repair the node P2, the remaining nodes (S1,S2,P1) would send (a2, b1, (a1 + b1) + (a2 + b2)),
respectively. Note that in the last case, the helper node P1 sends a linear combination of its
symbols—this is in general a powerful ability that we allow in MSR codes.

Vector codes and sub-packetization. The above example shows that when the code is an
(n, k) vector MDS code, where each codeword symbol itself is a vector, say in F` for some field
F, then one can hope to achieve repair bandwidth smaller than then naive k`. The length of
the vector ` stored at each node is called the sub-packetization (since this is the granularity to
which a single codeword symbol needs to be divided into).

2

MSR codes. A natural question is how small a repair bandwidth one can achieve with MDS
codes. The so-called cutset bound [6] dictates that one must download at least (n− 1)`/(n− k)
symbols of F from the remaining nodes to recover any single node. Further, in order to attain
this optimal repair bandwidth bound, each of the (n − 1) nodes must respond with `/(n − k)
field elements. Vector MDS codes which admit repair schemes meeting the cutset bound (for
repair of every node) are called minimum storage regenerating (MSR) codes (for the formal
description, see Definition 1). MSR codes, and specifically their sub-packetization, are the focus
of this paper.

Large sub-packetization: problematic and inherent. While there are many constructions
of MSR codes by now, they all have large sub-packetization, which is at least rk/r. For the setting
of most interest, when we incur a small redundancy r in exchange for repair of information, this
is very large, and in particular exp(Ω(k)) when r = O(1). A small sub-packetization is important
for a number of reasons, as explained in some detail in the introduction of [17]. A large sub-
packetization limits the number of storage nodes (for example if ` > exp(Ω(n)), then n = O(log `)
where ` is the storage capacity of each node), and in general leads to a reduced design space
in terms of various systems parameters. A larger sub-packetization also makes management
of meta-data, such as description of the code and the repair mechanisms for different nodes,
more difficult. For a given storage capacity, a smaller sub-packetization allows one to distribute
codewords corresponding to independently coded files among multiple nodes, which allows for
distributing the load of providing information for the repair of a failed node among a larger
number of nodes.

It has been known that somewhat large sub-packetization is inherent for MSR codes (we
will describe the relevant prior results in the next section). In this work, we improve this lower
bound to exponential, showing that unfortunately the exponential sub-packetization of known
constructions is inherent. Our main result is the following.

Theorem 1. Suppose an (n, k)-vector MDS code with redundancy r = n − k > 2 is minimum
storage regenerating (MSR). Then its sub-packetization ` must satisfy1

` >

(
r2

r2 − r + 1

)(k−1)/2

> e(k−1)(r−1)/(2r2) .

Our lower bound almost matches the sub-packetization of rO(k/r) achieved by the best known
constructions. Improving the base of the exponent in our lower bound to r will make it even
closer to the upper bounds. Though when r is small, which is the primary setting of interest
in codes for distributed storage, this difference is not that substantial. We remark that our
theorem leaves out the case when r = 1, which is known to have a sub-packetization of ` = 1 [9].

A few words about our proof. Previous work [22] has shown that an (n, k) MSR code with
sub-packetization ` implies a family of (k− 1) `/r-dimensional subspaces Hi of F` each of which
has an associated collection of (r−1) linear maps obeying some strong properties. For instance,
in the case r = 2, there is an invertible map φi associated with Hi for each i which leaves all
subspaces Hj , j 6= i, invariant, and maps Hi itself to a disjoint space (i.e., φi(Hi) ∩Hi = {0}).
The task of showing a lower bound on ` then reduces to the linear-algebraic challenge of showing
an upper bound on the size of such a family of subspaces and linear transformations, which we call

1In the conference version [1], a weaker lower bound of e(k−1)/(4r) was shown.

3

an MSR subspace family (Definition 2). The authors of [10] showed an upper bound O(r log2 `)
on the size of MSR subspace families via a nifty partitioning and linear independence argument.

We follow a different approach by showing that the number of linear maps that fix all
subspaces in an MSR family decreases sharply as the number of subspaces increases. Specifically,
we show that dimension of the linear space of such linear maps decreases exponentially in the
number of subspaces in the MSR family. This enables us to prove an O(r log `) upper bound.
This bound is asymptotically tight (up to a O(log r) factor), as there is a construction of an
MSR subspace family of size (r + 1) logr ` [24]. We also present an alternate construction in
Section ??, which works for all fields with more than 2 elements, compared to the large field
size (of at least ≈ rr`) required in [24].

We now proceed to situate our work in the context of prior work, both constructions and
lower bounds, for MSR codes.

2 Prior and Related Work

The literature on regenerating codes, and even just MSR codes, is vast with numerous models
and constraints, and many incomparable results. Here we only mention the ones closely related
to our work and its context — MSR codes for exact repair with n − 1 helper nodes, focusing
primarily on their sub-packetization.

MSR code constructions. We begin code constructions/existence results. Rashmi et al.
present an explicit construction of MSR codes with small sub-packetization ` 6 r when the code
rate k/n is at most 1/2 [16]. Cadambe et al. [5] show the existence of high rate MSR codes when
the sub-packetization approaches infinity. Motivated by this result, the problem of designing
high-rate MSR codes with finite sub-packetization level is explored in [15, 21, 18, 24, 4, 9, 25,
26, 19] and references therein. In particular, Sasidharan et al. [18] show the existence of MSR
codes with the sub-packetization level ` = rd

n
r
e. Such a result with similar sub-packetization

levels for repair of only k systematic nodes was obtained earlier in [24, 4]. In order to ensure
the MDS property, these results relied on huge fields and randomized construction of the parity
check matrices.

In two fascinating (independent) works, Ye and Barg [26] and Sasidharan, Vajha, and Ku-
mar [19] give a fully explicit construction of MSR codes over small fields with sub-packetization
level ` = rd

n
r
e. These constructions also have the so-called optimal-access or help-by-transfer

property, which means that the helper nodes do not have to perform any linear combinations
on their data, and can simply transfer a suitable subset of `/r coordinates of the vector in F`
that they store. Thus the number of symbols accessed at a node equals the number of symbols
it transmits over the network to aid the repair (recall that the repair-bandwidth measures the
latter amount).

Sub-packetization lower bounds. In summary, while there are several constructions of high
rate MSR codes, they all incur large sub-packetization, which is undesirable as briefly explained
earlier. This has been partially explained by lower bounds on ` in a few previous works. For
the special case of optimal-access MSR codes, a lower bound of ` > rk/r was shown in [22], and
this was improved (when all-node repair is desired) to ` > rn/r recently [2]. Together with the
above-mentioned constructions, we thus have matching upper and lower bounds on ` for the

4

optimal-access case. This help-by-transfer setting is primarily combinatorial in nature, which is
exploited heavily in these lower bounds.

However, lower bounds for general MSR codes, that allow helper nodes to transmit linear
combinations of their comments, are harder to obtain. Such a lower bound must rule out a much
broader range of possible repair schemes, and must work in an inherently linear-algebraic rather
than combinatorial setting. Note that the simple example presented above also used linear
combinations in repairing one of the nodes. An MSR code construction with sub-packetization
` 6 rk/(r+1), which beats the above lower bound for optimal-access codes and thus shows a
separation between these models, was given in [24].

Turning to known lower bounds on `, a weak bound of `
(
`
`/r

)
> k was shown via a combi-

natorial argument in [22]. Using an elegant linear independence and partitioning argument, the
following bound is proven in [10]:

2 log2(`)(logr/(r−1)(`) + 1) > k − 1 . (1)

(This was slightly improved in [12], but the improvement is tiny for the case when k > r which

is our focus.) The bound (1) implies a lower bound on sub-packetization of ` > 2Ω(
√
k/r). Even

for the case r = 2, it was not known if one can achieve sub-packetization smaller than 2Ω(k).
Our Theorem 1 now rules out this possibility. We conjecture that our bound can be improved
to k 6 (r + 1) logr `+O(1) which will show that the construction in [24] is exactly tight.

Variants of MSR codes. While most constructions of MSR and regenerating codes were
tailormade vector codes, it was shown in [11] that the classical family of Reed-Solomon (RS)
themselves can allow for non-trivially bandwidth-efficient repair. This later led to the carefully
constructed RS codes which can be repaired with the optimal bandwidth meeting the cutset
bound [23] — in other words, certain RS codes themselves are MSR codes! However, these RS
codes have even larger sub-packetization of 2O(n logn) and this was also shown to be necessary
in the form of a lower bound of 2Ω(k log k) in [23].

A slight relaxation MSR codes called ε-MSR codes where the helper nodes are allowed to
transmit a factor (1 + ε) more than the cutset bound, i.e., (1 + ε)`/r symbols, were put forth
in [17]. They showed that one can construct ε-MSR codes with sub-packetization rO(r/ε) log n,
and roughly logarithmic sub-packetization is also necessary.

Regenerating and MSR codes have close connections to communication-efficient secret shar-
ing schemes, which were studied and developed in [13]. In this context, the sub-packetization
corresponds to the size of the shares that the parties must hold.

3 Preliminaries

We will now define MSR codes more formally. We begin by defining vector codes. Let F be a
field, and n, ` be positive integers. For a positive integer b, we denote [b] = {1, 2, . . . , b}. A vector
code C of block length n and sub-packetization ` is an F-linear subspace of (F`)n. We can express
a codeword of C as c = (c1, c2, . . . , cn), where for i ∈ [n], the block ci = (ci,1, . . . , ci,`) ∈ F`
denotes the length ` vector corresponding to the i’th code symbol ci.

Let k be an integer, with 1 6 k 6 n. If the dimension of C, as an F-vector space, is k`,
we say that C is an (n, k, `)F-vector code. The codewords of an (n, k, `)F-vector code are in

5

one-to-one correspondence with vectors in (F`)k, consisting of k blocks of ` field elements each.

Such a code is said to be Maximum Distance Separable (MDS), and called an (n, k, `)-MDS
code (over the field F), if every subset of k code symbols ci1 , ci2 , . . . , cik is an information set
for the code, i.e., knowing these symbols determines the remaining n − k code symbols and
thus the full codeword. An MDS code thus offers the optimal erasure correction property —
the information can be recovered from any set of k code symbols, thus tolerating the maximum
possible number n− k of worst-case erasures.

An (n, k, `)-MDS code can be used in distributed storage systems as follows. Data viewed
as k` symbols over F is encoded using the code resulting in n vectors in F`, which are stored in
n storage nodes. Downloading the full contents from any subset of these k nodes (a total of k`
symbols from F) suffices to reconstruct the original data in entirety. Motivated by the challenge
of efficient regeneration of a failed storage node, which is a fairly typical occurrence in large
scale distributed storage systems, the repair problem aims to recover any single code symbol ci
by downloading fewer than k` field elements. This is impossible if one only downloads contents
from k nodes, but becomes feasible if one is allowed to contact h > k helper nodes and receive
fewer than ` field elements from each.

Here we focus our attention to only repairing the first k code symbols, which we view as the
information symbols. This is called ”systematic node repair” as opposed to the more general
”all node repair” where the goal is to repair all n codeword symbols. We will also only consider
the case h = n− 1, when all the remaining nodes are available as helper nodes. Since our focus
is on a lower bound on the sub-packetization `, this only makes our result stronger, and keeps
the description somewhat simpler. We note that the currently best known constructions allow
for all-node repair with optimal bandwidth from any subset of h helper nodes.

Suppose we want to repair the m’th code symbol for some m ∈ [k]. We download from
the i’th code symbol, i 6= m, a function hi,m(ci) of its contents, where hi,m : F` → Fβi,m is the
repair function. If we consider the linear nature of C, then we should expect from hi,m to utilize
it. Therefore, throughout this paper, we shall assume linear repair of the failed node. That is,
hi,m is an F-linear function. Thus, we download from each node certain linear combinations of
the ` symbols stored at that node. The total repair bandwidth to recover cm is defined to be∑

i 6=m βi,m. By the cutset bound for repair of MDS codes [6], this quantity is lower bounded by
(n − 1)`/r, where r = n − k is the redundancy of the code. Further, equality can be attained
only if βi,m = `/r for all i. That is, we download `/r field elements from each of the remaining
nodes. MDS codes achieving such an optimal repair bandwidth are called Minimum Storage
Regenerating (MSR) codes, as precisely defined below.

Definition 1 (MSR code). Let 1 6 k 6 n and ` be integers with r = n − k dividing `. An
(n, k, `)-MDS code C over a field F is said to be an (n, k, `)-MSR code if for every m ∈ [k], there
are linear functions hi,m : F` → F`/r, i ∈ [n] \ {m}, such that the code symbol cm of a codeword
c ∈ C can be computed by an F-linear operation on 〈hi,m(ci) | i ∈ [n] \ {m}〉 ∈ F(n−1)`/r.

4 Linear-algebraic setup of repair of MSR code

In this section, we will setup the repair problem for MSR codes more precisely, leading to a purely
linear-algebraic formulation in terms of a collection of subspaces and associated invertible maps.
We follow the explanation presented in [22].

6

Let C ⊆ (F`)n be an (n, k, `)-MSR code, with redundancy r = n − k. The MDS property
implies that any subset of k codeword symbols determine the whole codeword. We view the first
k symbols as the ”systematic” ones, with r parity check symbols computed from them, where
we remind that when we say code symbol we mean a vector in F`. So we can assume that there
are invertible matrices Ci,j ∈ F`×` for i ∈ [r] and j ∈ [k] such that for c = (c1, c2, . . . , cn) ∈ C,
we have

ck+i =

k∑
j=1

Ci,jcj .

Suppose we want to repair a systematic node cm for m ∈ [k] with optimal repair bandwidth, by
receiving from each of the remaining n− 1 nodes, `/r F-linear combinations of the information
they stored. This means that there are repair matrices S1,m, . . . , Sr,m ∈ F`/r×`, such that parity
node k + i sends the linear combination

Si,mck+i = Si,m

k∑
j=1

Ci,jcj (2)

Therefore, the information about cm that is sent to it by ck+i is Si,mCi,mcm. Since the k
systematic nodes are independent of each other, then the only way to recover cm is by taking a
linear combination of Si,mCi,mcm for i ∈ [r] such that the linear combination equals cm for any
cm ∈ F`. Therefore, to ensure full regeneration of cm, we must satisfy

rank


S1,mC1,m

S2,mC2,m
...

Sr,mCr,m

 = `

Since each Si,mCi,m has `/r rows, the above happens if and only if

r⊕
i=1

R(Si,mCi,m) = F` (3)

where R(M) denotes the row-span of a matrix M .

4.1 Cancelling interference of other systematic symbols

Now, for every other systematic node m′ ∈ [k] \ {m}, the parity nodes send the following
information linear combinations of cm′ 

S1,mC1,m′

S2,mC2,m′

...
Sr,mCr,m′

 cm′ (4)

In order to cancel this from the linear combinations (2) received from the parity nodes, the
systematic node m′ has to send the linear combinations (4) about its contents. To achieve

7

optimal repair bandwidth of at most `/r symbols from every node, this imposes the requirement

rank


S1,mC1,m′

S2,mC2,m′

...
Sr,mCr,m′

 6
`

r

However since Ci,m′ is invertible, and Si,m has full row rank, rank(Si,mCi,m′) = `/r for all i ∈ [r].
Combining this fact with the rank inequality above, this implies

R(S1,mC1,m′) = · · · = R(Sr,mCr,m′) (5)

for every m 6= m′ ∈ [k], where R(M) is the row-span of a matrix M .

4.2 Constant repair matrices and casting the problem in terms of subspaces

We now make an important simplification, which allows us to assume that the matrices Si,m
above depend only on the node m being repaired, but not on the helping parity node i. That
is, Sm = Si,m for all i ∈ [r]. We call repair with this restriction as possessing constant repair
matrices. It turns out that one can impose this restriction with essentially no loss in parameters
— by Theorem 2 of [22], if there is a (n, k, `)-MSR code then there is also a (n−1, k−1, `)-MSR
code with constant repair matrices.

This allows us to cast the requirements (3) and (5) in terms of a nice property about
subspaces and associated invertible maps, which we abstract below. This property was shown
to be intimately tied to MSR codes in [24, 22].

Definition 2 (MSR subspace family). For integers `, r with r|` and a field F, a collection of
subspaces H1, . . . ,Hk of F` of dimension `/r each is said to be an (`, r)F-MSR subspace family
if there exist invertible linear maps Φi,j on F`, i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , r − 1} such
that for every i ∈ [k], the following holds:

Hi ⊕
r−1⊕
j=1

Φi,j(Hi) = F` (6)

Φi′,j(Hi) = Hi for every j ∈ [r − 1], and i′ 6= i (7)

Now, we recall the argument that if we have an (n, k, `)-MSR code with constant repair ma-
trices, then that also yields a family of subspaces and maps with the above properties. Indeed,
we can take Hm, m ∈ [k], to be R(Sm), and Φm,j , j ∈ [r − 1], is the invertible linear transfor-
mation mapping x ∈ F`, viewed as a row vector, to xCj+1,mC

−1
1,m. It is clear that Property (6)

follows from (3), and Property (7) follows from (5). Together with the loss of one dimension in
the transformation [22] to an MSR code with constant repair subspaces, we can conclude the
following connection between MSR codes and the very structured set of subspaces and maps of
Definition 2.

Proposition 2. Suppose there exists an (n, k, `)-MSR code over a field F. Then there exists an
(`, r)F-MSR subspace family with k − 1 subspaces.

8

For the reverse direction, the MSR subspace family can take care of the node repair, but one
still needs to ensure the MDS property. This approach was taken in [24], based on a construction
of an (`, r)F-MSR subspace family of size (r + 1) logr `. For completeness, we present another
construction of an MSR subspace family in Section ??. The subspaces in our construction are
identical to [24] but we pick the linear maps differently, using just two distinct eigenvalues. As
a result, our construction works over any field with more than two elements. In comparison, the
approach in [24] used kr−1`/r distinct eigenvalues, and thus required a field that is bigger than
this bound. It is an interesting question to see if the MDS property can be incorporated into
our construction to give MSR codes with sub-packetization rk/(r+1) over smaller fields.

5 Limitation of MSR subspace families

In this section, we state and prove the following strong upper bound on the size of an MSR
family of subspaces, showing that the construction claimed in Theorem 8 is not too far from
the best possible. This upper bound together with Proposition 2 immediately implies our main
result, Theorem 1.

Theorem 3. An (`, r)F-MSR subspace family can have at most

2 ln `

ln
(

r2

r2−r+1

) 6
(

2r2

r−1

)
ln `

subspaces.

In the rest of the section, we prove the above theorem. Let H1, H2, . . . ,Hk be the subspaces
in an (`, r)F-MSR subspace family with associated invertible linear maps Φi,j where i ∈ [k] and
j ∈ [r − 1]. Note that these linear maps are in some sense statements about the structure of
the spaces H1, H2, . . . ,Hk. They dictate the way the subspaces can interact with each other,
thereby giving rigidity to the way they are structured.

The major insight and crux of the proof is the following definition on collections of subspaces.
This definition is somewhat inspired by Galois Theory, in that we are looking at the space of
linear maps on the vector space F` that fix all the subspaces in question.

Definition 3. In the vector space L(F`,F`) of all linear maps from F` to F`, define the subspace

F(A1 → B1, . . . , As → Bs) := {ψ ∈ L(F`,F`) | ψ(Ai) ⊆ Bi ∀i ∈ {1, . . . , s}}

for arbitrary subspaces Ai, Bi of F`. Define the value

I(A1 → B1, . . . , As → Bs) := dim(F(A1 → B1, . . . , As → Bs))

When Ai = Bi for each i, we adopt the shorthand notation F(A1, . . . , As) and I(A1, . . . , As) to
denote the above quantities. We will also use the mixed notation F(A1, . . . , As−1, As → Bs) to
denote F(A1 → A1, . . . , As → Bs) and likewise for I(A1, . . . , As−1, As → Bs).

Thus I(A1, . . . , As) is the dimension of the space of linear maps that map each Ai within
itself. We use the notation I() to suggest such an invariance. The key idea will be to clev-
erly exploit the invertible maps Φi,j associated with each Hi to argue that the dimension

9

I(H1, H2, . . . ,Ht) shrinks by a constant factor whenever we add in an Ht+1 into the collec-

tion. Specifically, we will show that the dimension shrinks at least by a factor of r2−r+1
r2

for
each newly added Ht+1. Because the identity map is always in F(H1, H2, . . . ,Hk), the dimen-
sion I(H1, H2, . . . ,Hk) is at least 1. As the ambient space of linear maps from F` → F` has
dimension `2, this leads to an O(r log `) upper bound on k. We begin with the following lemma.

Lemma 4. Let U1, U2, . . . , Us 6 Fp, s > 2 be arbitrary subspaces such that
⋂s
i=1 Ui = {0}. Then

following inequality holds:

s∑
i=1

dim(Ui) 6 (s− 1) dim (U1 + . . .+ Us) .

Proof. We proceed by inducting on s. Indeed, when s = 2, we have from the Principle of
Inclusion and Exclusion (PIE)

dim(U1) + dim(U2) = dim(U1 + U2) + dim(U1 ∩ U2) = dim(U1 + U2)

And thus the base case holds. Now, if the inequality holds when s = p, then we have via the
Principle of Inclusion and Exclusion

p+1∑
i=1

dim(Ui) = dim(U1 + U2) + dim(U1 ∩ U2) +

p+1∑
i=3

dim(Ui) (8)

By the induction hypothesis, we deduce that Equation (8) is at most

dim(U1 + U2) + (p− 1) dim((U1 ∩ U2) + · · ·+ Up+1) (9)

And Equation (9) is at most
p dim(U1 + U2 + · · ·+ Up+1) (10)

By combining Equations (8), (9), and (10), we deduce that the inequality also holds when
s = p + 1. Since the base case s = 2 holds, we therefore conclude that the inequality holds for
all integers s > 2.

Next, we prove an identity for MSR subspace families that will come in handy. For the sake
of brevity, we use the shorthands Ha := {H1, . . . ,Ha} and Φa,0 to denote the identity map.

Lemma 5. Given an (`, r)F-MSR subspace family of H1, H2, . . . ,Hk, we have for any t ∈ [k]
and i, s ∈ {0, 1, . . . , r − 1} that

s∑
j=0

I(Ht−1,Φt,i(Ht)→ Φt,j(Ht)) 6 sI(Ht−1, Ht → 0) + I(Ht−1,Φt,i(Ht)→ ⊕s
j=0Φt,j(Ht)) (11)

Proof. We proceed by inducting on s. The base case when s = 0 is clear as the right hand side
simplifies to the left hand side. Now, if Equation (11) holds when s = p and p < r − 1, then we
have via the Principle of Inclusion and Exclusion (PIE) and Equation (6)

p+1∑
j=0

I(Ht−1,Φt,i(Ht)→ Φt,j(Ht)) (12)

10

By the induction hypothesis, we deduce that Equation (12) is at most

pI(Ht−1, Ht → 0) + I(Ht−1,Φt,i(Ht)→ ⊕pj=0Φt,j(Ht)) + I(Ht−1,Φt,i(Ht)→ Φt,p+1(Ht)) (13)

By applying the Principle of Inclusion and Exclusion and Equation 6, we deduce that Equa-
tion (13) is at most

pI(Ht−1, Ht → 0) + I(Ht−1,Φt,i(Ht)→ 0) + I(Ht−1,Φt,i(Ht)→ ⊕p+1
j=0Φt,j(Ht)) (14)

And Equation (14) is equal to

(p+ 1)I(Ht−1, Ht → 0) + I(Ht−1,Φt,i(Ht)→ ⊕p+1
j=0Φt,j(Ht)) (15)

And so combining Equations (12), (13), (14), and (15), we deduce that Equation (11) also holds
when s = p+ 1. Since the base case s = 0 holds, we therefore conclude that the inequality holds
for all s ∈ {0, 1, . . . , r − 1}.

Following Lemma 5 and Equation (6), we deduce when s = r − 1 the following corollary.

Corollary 6. Given an (`, r)F-MSR subspace family of H1, H2, . . . ,Hk, we have for any t ∈ [k]
and i ∈ {0, 1, . . . , r − 1} that

r−1∑
j=0

I(Ht−1,Φt,i(Ht)→ Φt,j(Ht)) 6 (r − 1)I(Ht−1, Ht → 0) + I(Ht−1)

We are now ready to establish the key iterative step, showing geometric decay of the dimension
I(H1, . . . ,Ht) in t.

Lemma 7. For each t = 1, 2, . . . , k, the following holds

I(H1, . . . ,Ht−1, Ht) 6

(
r2 − r + 1

r2

)
I(H1, . . . ,Ht−1) . (16)

Proof. Recall that by the property of an (`, r)F-MSR subspace family, the maps Φt,j , j ∈
{0, 1, . . . , r − 1}, leave H1, . . . ,Ht−1 invariant. Using this it follows that I(Ht−1, Ht) = I(Ht−1,
Φt,i(Ht)→ Φt,j(Ht)) for each i, j ∈ {0, 1, . . . , r−1}, since we have an isomorphism F(Ht−1, Ht)→
F(Ht−1,Φt,i(Ht)→ Φt,j(Ht)) given by ψ 7→ Φt,j ◦ ψ ◦ Φ−1

t,i . Thus we have

r2 · I(Ht−1, Ht) =
r−1∑
i=0

r−1∑
j=0

I(Ht−1,Φt,i(Ht)→ Φt,j(Ht)) . (17)

Notice the the inner sum is the same as the left hand side in Corollary 6. Thus we are able to
apply Corollary 6 on Equation (17) to find that

r−1∑
i=0

r−1∑
j=0

I(Ht−1,Φt,i(Ht)→ Φt,j(Ht)) 6
r−1∑
i=0

[(r − 1)I(Ht−1,Φt,i(Ht)→ 0) + I(Ht−1)]

= rI(Ht−1) + (r − 1)
r−1∑
i=0

I(Ht−1,Φt,i(Ht)→ 0) . (18)

11

Now we observe that the only linear transformation of F` that maps Φt,i(Ht) → 0 for all i ∈
{0, 1, . . . , r − 1} simultaneously is the identically 0 map. This is because

⊕r−1
j=0 Φt,j(Ht) = F`

from Equation 6. Thus we are in a situation where Lemma 4 applies, and we have

rI(Ht−1) + (r − 1)

r−1∑
i=0

I(Ht−1,Φt,i(Ht)→ 0) 6 rI(Ht−1) + (r − 1) · (r − 1)I(Ht−1)

= (r2 − r + 1)I(Ht−1) (19)

Combining Equations (17), (18), and (19), we conclude Equation (16) as desired.

We are now ready to finish off the proof of our claimed upper bound on the size k of an
(`, r)F-MSR family.

Proof of Theorem 3. Since the identity map belongs to the space of I(H1, . . . ,Hk), by applying
Lemma 7 inductively on H1, H2, . . . ,Hk, we obtain the inequality

1 6 I(H1, . . . ,Hk) 6

(
r2 − r + 1

r2

)k
· `2 ,

from which we find that

k 6

 2 ln `

ln
(

r2

r2−r+1

)
 6

(
2 ln `
r−1
r2

)
=

(
2r2

r − 1

)
ln `

where the second inequality follows because ln(1 + x) > x
1+x for all x > −1. We thus have the

claimed upper bound.

A Proof of Theorem 8

In this section, we state and prove an alternate construction of an MSR subspace family of size
(r+ 1) logr `. The first construction of an (`, r)F-MSR subspace family of size (r+ 1) logr ` that
also satisfied the MDS property was shown in [24] for fields of size more than kr−1`/r elements.
Without the MDS property, the field size needed to be more than r elements to show that the
construction satisfied the node repair property.

Our construction uses subspaces that are identical to the ones in [24], but we choose different
linear maps that required only two distinct eigenvalues. As a result, our construction works over
all fields with more than two elements. It remains a very interesting question whether the
MDS property can be additionally incorporated into our construction to yield MSR codes with
sub-packetization rk/(r+1) over smaller fields.

Theorem 8. For |F| > 2 and r > 2, there exists an (` = rm, r)F-MSR subspace family of
(r + 1)m = (r + 1) logr(`) subspaces.

In the rest of the section, we will prove the theorem above.

12

To give a general view of our construction, we first shift our view of the ambient space
F` = Frm to (Fr)⊗m, vectors that consist of m tensored vectors in Fr. We then consider a
collection of vectors T := {v1, v2, . . . , vr, vr+1}, situated in Fr, such that any r of them form
a basis in Fr. The subspace Ak,i will be all vectors in (Fr)⊗m whose k’th position in the m
tensored vectors is the vector vi.

The r − 1 associated linear maps Φ(k,i),1, . . . , Φ(k,i),r−1 of the subspace Ak,i will simply
focus on transforming the k’th position of each vector while retaining all remaining positions.
Specifically, on the k’th position, it will scale all vectors in T \ {vi}. The linear map Φ(k,i),t will
scale vi+t by a factor λ 6= 1 while all other vectors in T \ {vi} will be identically mapped, where
the indices are taken modulo r + 1. That way, everything in T \ {vi} will stay almost the same
while vi along with the r − 1 images of vi will form a basis for Fr in the k’th position.

Proof. Let ` = rm, and let V = (Fr)⊗m ' F` be the ambient space. Consider a set of vectors
{v1, v2, . . . , vr, vr+1} ⊂ Fr for which the first r form a basis in Fr and satisfy the equation

v1 + v2 + . . .+ vr + vr+1 = 0

For k ∈ [m] and i ∈ [r + 1], we define our (r + 1)m subspaces to be

Ak,i := span(vi1 ⊗ . . .⊗ vim | ij ∈ [r + 1], ik = i)

which is a subspace of V . Observe that while the k’th position is fixated for any vector in
Ak,i, the remaining m − 1 positions are free to choose from any r vectors in Fr. Through this
observation, we see that dim(Ak,i) = rm−1 = `/r.

To properly define the associated linear maps of the subspace family, it suffices to show their
mapping for the basis

Si := {vi1 ⊗ . . .⊗ vim | ij ∈ [r + 1] \ {i}}

of V . Since |F| > 2, then we can fix a constant λ ∈ F with λ /∈ {0, 1}, which we will use as an
eigenvalue across all (r − 1)(r + 1)m linear maps. For each t ∈ [r − 1], the linear map Φ(k,i),t

will scale all vectors in Si whose k’th position is vi+t by a factor λ and identically all remaining
vectors in Si, where indices are taken modulo r + 1. Namely, for ik = i+ t,

vi1 ⊗ . . .⊗ vik ⊗ . . .⊗ vim
Φ(k,i),t7−−−−→ vi1 ⊗ . . .⊗ (λvik)⊗ . . .⊗ vim

And for ik ∈ [r + 1] \ {i+ t, i},

vi1 ⊗ . . . vik ⊗ . . .⊗ vim
Φ(k,i),t7−−−−→ vi1 ⊗ . . .⊗ vik ⊗ . . .⊗ vim

Observe that all the vectors in the basis Si are scaled by either 1 or λ, which means that the
image Φ(k,i),t(Si) is also a basis for V . This tells us that Φ(k,i),t is an invertible linear map. It
now remains to show Properties 6 and 7 hold for our given subspaces and linear maps.

To show Property 6, we can use Equation (A) to rewrite vi as vi = −
∑

j∈[r+1]\{i} vi. This
shows us that when the k’th position of a vector is vi, then Φ(k,i),t will map it as

vi1 ⊗ . . .⊗ vik ⊗ . . .⊗ vim
Φ(k,i),t7−−−−→ vi1 ⊗ . . .⊗ (vi − (λ− 1)vi+t)⊗ . . .⊗ vim

13

Since λ 6= 1, then the set {vi, vi− (λ− 1)vi+1, . . . , vi− (λ− 1)vi+r−1} forms a basis for Fr. Thus
for vector v = vi1⊗ . . .⊗vik−1

⊗vi⊗vik+1
⊗ . . .⊗vim , the vectors {v,Φ(k,i),1(v), . . . ,Φ(k,i),r−1(v)}

span all of Fr in the k’th position. Because we are free to choose any vector in all remaining
positions, then are all able to span all of V for all such v. That is, we find that

Ak,i ⊕

(
r−1⊕
t=1

Φ(k,i),t(Ak,i)

)
= F`

this shows Property 6.

To show (7), we start by breaking the subspace Ak′,i′ into two possibilities:

1. For the case when k′ 6= k, the subspace Ak′,i′ remains invariant under each Φ(k,i),t as they
only linearly transform the k’th position while retaining all other positions.

2. For the case when k′ = k and i′ 6= i, the subspace Ak,i′ is an eigenspace for Φ(k,i),t. Namely,
when i′ 6= i + t, Ak,i′ is the eigenspace of eigenvalue 1. When i′ = i + t, the eigenvalue is
instead λ.

This shows that (7) also holds.

B Proof of the Cutset bound

Proof. Consider an (n, k, `)-MDS vector code that stores a file M of size k` in storage nodes
s1, s2, . . . , sn. The MDS vector code will repair a storage node sh by making every other storage
node si communicate βi,h bits to sh. From the MDS property, we know that any collection
C ⊆ [n] \ {h} of k − 1 of nodes {si}i∈C along with sh is able to construct our original file M.
Thus the collective information of these k storage nodes is at least |M| = k`, implying the
inequality ∑

i∈C
|si|+

∑
i∈[n]\C∪{h}

βi,h > k`. (20)

Since every storage node stores ` bits (|si| = `), then (20) reduces down to∑
i∈[n]\(C∪{h})

βi,h > `. (21)

Hence (21) implies that any n− k helper storage nodes collectively communicate at least ` bits.
Thus we find from (21) by summing over all possible n− k collections of helper storage nodes∑

i∈[n]\{h}

βi,h >
(n− 1)

(n− k)
· `. (22)

Which is the claimed cutset bound. Moreover, to achieve equality for (22), equality must be
achieved for (21) over all n− k collections of helper storage nodes. That is possible only when
βi,h = `/(n−k) for all i ∈ [n]\{h}. Hence, under optimal repair bandwidth, the total information
communicated is

∑n
i=2 βi,h = (n − 1)`/(n − k) and is only achieved when every helper storage

node communicates exactly `/(n− k) bits to storage node sh.

14

References

[1] O. Alrabiah and V. Guruswami. An exponential lower bound on the sub-packetization of
MSR codes. In Proceedings of the 51st Annual ACM Syposium on Theory of Computing,
pages 979–985, 2019.

[2] S. B. Balaji and P. V. Kumar. A tight lower bound on the sub- packetization level of
optimal-access MSR and MDS codes. In Proceedings of the IEEE International Symposium
on Information Theory, pages 2381–2385, 2018.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: an optimal scheme for tolerating
double disk failures in RAID architectures. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 245–254, 1994.

[4] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra. Polynomial length MDS codes with
optimal repair in distributed storage. In Proc. of Forty Fifth Asilomar Conference on
Signals, Systems and Computers (ASILOMAR), pages 1850–1854, Nov 2011.

[5] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh. Asymptotic interfer-
ence alignment for optimal repair of MDS codes in distributed storage. IEEE Transactions
on Information Theory, 59(5):2974–2987, May 2013.

[6] A. G. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran. Network coding
for distributed storage systems. IEEE Transactions on Information Theory, 56(9):4539–
4551, Sept 2010.

[7] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network codes for
distributed storage. Proceedings of the IEEE, 99(3):476–489, 2011.

[8] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of codeword symbols.
IEEE Trans. Information Theory, 58(11):6925–6934, 2012.

[9] S. Goparaju, A. Fazeli, and A. Vardy. Minimum storage regenerating codes for all param-
eters. IEEE Transactions on Information Theory, 63(10):6318–6328, 2017.

[10] S. Goparaju, I. Tamo, and R. Calderbank. An improved sub-packetization bound for min-
imum storage regenerating codes. IEEE Transactions on Information Theory, 60(5):2770–
2779, May 2014.

[11] V. Guruswami and M. Wootters. Repairing reed-solomon codes. IEEE transactions on
Information Theory, 63(9):5684–5698, 2017.

[12] K. Huang, U. Parampalli, and M. Xian. Improved upper bounds on systematic-length for
linear minimum storage regenerating codes. IEEE Transactions on Information Theory,
65(2):975–984, 2018.

[13] W. Huang, M. Langberg, J. Kliewer, and J. Bruck. Communication efficient secret sharing.
IEEE Transactions on Information Theory, 62(12):7195–7206, Dec 2016.

[14] D. S. Papailiopoulos and A. G. Dimakis. Locally repairable codes. IEEE Trans. Information
Theory, 60(10):5843–5855, 2014.

15

[15] D. S. Papailiopoulos, A. G. Dimakis, and V. Cadambe. Repair optimal erasure codes
through hadamard designs. IEEE Transactions on Information Theory, 59(5):3021–3037,
May 2013.

[16] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating codes for dis-
tributed storage at the MSR and MBR points via a product-matrix construction. IEEE
Trans. Information Theory, 57(8):5227–5239, 2011.

[17] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko. MDS code constructions with
small sub-packetization and near-optimal repair bandwidth. IEEE Trans. Information The-
ory, 64(10):6506–6525, 2018.

[18] B. Sasidharan, G. K. Agarwal, and P. V. Kumar. A high-rate MSR code with polynomial
sub-packetization level. In Proc. of 2015 IEEE International Symposium on Information
Theory (ISIT), pages 2051–2055, June 2015.

[19] B. Sasidharan, M. Vajha, and P. V. Kumar. An explicit, coupled-layer construction of a
high-rate msr code with low sub-packetization level, small field size and d¡(n- 1). In 2017
IEEE International Symposium on Information Theory (ISIT), pages 2048–2052. IEEE,
2017.

[20] I. Tamo and A. Barg. A family of optimal locally recoverable codes. IEEE Trans. Infor-
mation Theory, 60(8):4661–4676, 2014.

[21] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array codes with optimal rebuilding.
IEEE Transactions on Information Theory, 59(3):1597–1616, March 2013.

[22] I. Tamo, Z. Wang, and J. Bruck. Access versus bandwidth in codes for storage. IEEE
Transactions on Information Theory, 60(4):2028–2037, April 2014.

[23] I. Tamo, M. Ye, and A. Barg. Optimal repair of Reed-Solomon codes: Achieving the cut-
set bound. In 58th IEEE Annual Symposium on Foundations of Computer Science, pages
216–227, 2017.

[24] Z. Wang, I. Tamo, and J. Bruck. Long MDS codes for optimal repair bandwidth. In Proc.
of 2012 IEEE International Symposium on Information Theory (ISIT), pages 1182–1186,
July 2012.

[25] M. Ye and A. Barg. Explicit constructions of high-rate MDS array codes with optimal
repair bandwidth. IEEE Trans. Information Theory, 63(4):2001–2014, 2017.

[26] M. Ye and A. Barg. Explicit constructions of optimal-access MDS codes with nearly optimal
sub-packetization. IEEE Trans. Information Theory, 63(10):6307–6317, 2017.

16 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

