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Upper Bounds on Communication in terms of
Approximate Rank

Anna Gal* Ridwan Syed'

Abstract

We show that any Boolean function with approximate rank r can
be computed by bounded error quantum protocols without prior en-
tanglement of complexity O(y/rlogr). In addition, we show that any
Boolean function with approximate rank r and discrepancy § can be
computed by deterministic protocols of complexity O(r), and private
coin bounded error randomized protocols of complexity O((5)%+log 7).
Our results yield lower bounds on approximate rank. We also obtain
a strengthening of Newman’s theorem with respect to approximate
rank.

1 Introduction

The log-rank conjecture is one of the most intriguing open problems in com-
munication complexity. Lovasz and Saks [26] conjectured that the deter-
ministic communication complexity D(f) of a Boolean function f is upper
bounded by (logrank(f))* for some constant k, where rank(f) denotes the
rank over the reals of the communication matrix of the function f. It is a
classical result in communication complexity by Mehlhorn and Schmidt [29]
that D(f) > logrank(f). It is easy to see that D(f) < rank(f) + 1, but
until a few years ago no one was able to obtain upper bounds sublinear in
rank(f). The current best upper bound was obtained by Lovett [27] who
proved that D(f) < \/rank(f)logrank(f). Considering separations, a series
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of results (see [33]) showed that the deterministic communication complex-
ity can be superlinear in the logarithm of rank(f). Currently the largest
known separation is nearly quadratic: [14] shows that there are functions
with D(f) > Q((log rank(f))?).

Krause [19] extended the log-rank lower bound method to the context
of randomized communication complexity, by considering the approximate
rank of communication matrices. Different definitions of approximate rank
have been introduced in various contexts, see for example [3]. For a > 1, the
a-approzimate rank of a matrix A with +1, —1 entries is the smallest possible
rank of a matrix B that sign represents the matrix A (e.g. each entry of B has
the same sign as the corresponding entry in A) with the additional condition
that the absolute values of the entries are at least 1 and at most a. Krause
[19] proved that the logarithm of a-approximate rank provides lower bounds
on bounded error randomized communication complexity with private coins,
allowing error at most € = % — i The logarithm of approximate rank also
lower bounds quantum communication [10]. We state the precise bounds in
Section 2.

In light of these lower bounds, it is natural to consider the analogue of
the log-rank conjecture for approximate rank in the context of randomized
communication, and quantum communication. The “log-approximate-rank”
conjecture and its quantum version were stated in the survey by Lee and
Shraibman [21]. The conjecture states that R.(f) < (logrk®(f))* for ¢ =
% - i and some constant k, where R. denotes private coin randomized
communication with error € and rk® denotes a-approximate rank.

If we relax the definition of approximate rank and allow arbitrary real
entries in the matrix that sign represents the communication matrix, then
we obtain the definition of “sign rank” (sometimes referred to as “dimension
complexity”), which is a well studied measure. The appropriate communi-
cation model to consider is “unbounded error communication complexity”,
where it is only required that the error probability is less than 1/2. Paturi
and Simon [34] proved that the unbounded error communication complexity
essentially equals to the logarithm of sign rank of the function, thus in this
model the corresponding version of the log-rank conjecture holds.

In the case of randomized and quantum communication complexity, with
error bounded by a constant € < 1/2, the conjecture has been recently refuted
[11, 5, 38]. Until recently, the largest known separation between the loga-
rithm of approximate rank and quantum communication has been nearly

quadratic [4]. A quadratic separation between the logarithm of approxi-



mate rank and randomized communication is witnessed by the disjointness
function. The n-bit disjointness function can be computed by O(y/n)-qubit
quantum protocols [1] and thus it has approximate rank 2V™ by the lower
bound of [10], on the other hand it requires ©(n) randomized communica-
tion [17, 35]. A breakthrough result of Chattopadhyay et al. [11] gave an
example of a Boolean function with approximate rank r that requires Q(r/4)
randomized communication. [5, 38] showed that the same function requires
Q(r'/12) quantum communication.

1.1 Our Results

In this paper we consider upper bounds on communication in terms of ap-
proximate rank. Approximate rank can be significantly smaller than rank.
For example the equality function gives an exponential separation: the ap-
proximate rank of the n-bit equality function is ©(n) while its rank is 2".
Thus, upper bounds on communication complexity in terms of approximate
rank can potentially give much sharper upper bounds on communication
complexity. Our randomized upper bounds also involve the inverse of dis-
crepancy, which in turn can be arbitrarily small compared to approximate
rank: the discrepancy of the equality function is constant.

Our main results are the following upper bounds: We show that any
Boolean function with approximate rank r and discrepancy J can be com-
puted by

e deterministic protocols of complexity O(r),

e private coin bounded error randomized protocols of O((3)* + logr)
complexity and

e bounded error quantum protocols without prior entanglement of com-
plexity O(y/rlogr).

The example of the equality function shows that our deterministic upper
bound in terms of approximate rank is tight up to constant factors, and that
the additive logr term is necessary in our randomized upper bound.

While in the deterministic case the upper bound D(f) < rank(f)+ 1 is
immediate from bounding the number of different rows of the matrix, as far
as we know, a linear upper bound on communication in terms of approxi-
mate rank alone has not been established before, considering deterministic or



private coin bounded-error randomized communication. We show that any
Boolean function with a-approximate rank r can be computed by determin-
istic protocols of complexity O(r), where the constant in the big-Oh notation
depends on «. This bound in turn can also be used to obtain lower bounds
on approximate rank (see Section 3.1).

Lovett [27] asked if the techniques developed to prove his result can be
generalized to obtain upper bounds on randomized and quantum commu-
nication complexity in terms of approximate rank. Lovett’s result [27] im-
plies that deterministic communication (and hence randomized communi-
cation) is upper bounded by square-root of approximate rank with an ad-
ditional (logrank(f))? factor. This follows since Lovett’s proof gives that

D(f) < O(m(log rank(f))?), where disc(f) is the discrepancy of f, and

m is bounded above by the square-root of approximate rank [25].
However, when approximate rank is much smaller than rank(f), this bound
may be superlinear in approximate rank.

Results of Linial and Shraibman (Claim 2. in [25]), and Klauck [1§]
imply public coin bounded error randomized protocols with communication
O((W)Q) and therefore with communication linear in approximate rank.
It is well known by a theorem of Newman [32] that public coin protocols can
be converted to private coin protocols (with slightly larger error) at the cost of
additional O(logn+log(1/p)) bits where p is the (additive) increase in error.
However, applying Newman’s theorem as stated, does not give our claimed
bound when the approximate rank is very small. We obtain our result on
private coin protocols by giving a strengthening of Newman’s theorem with
respect to approximate rank.

Considering quantum protocols (without prior entanglement) we are able
to match Lovett’s bound in terms of approximate rank. We show that any
Boolean function with a-approximate rank r can be computed by quantum
protocols of complexity O(a?y/rlogr). To obtain these bounds, we first show
that any function with a-approximate rank r can be computed by O(logr)

communication and error at most % — 2a1ﬁ by private coin randomized or

since

quantum protocols. Previously, private coin protocols with O(logr) commu-
nication but with error  — 51 were given in [12]. Even with our improved
error bound, amplifying the correctness of this protocol classically would
only give bounded error private coin protocols with O(rlogr) communica-
tion. Using the amplitude amplification technique of [30] allows us to obtain

bounded error quantum protocols with O(a?y/7logr) communication.



2 Preliminaries

Let f: X xY — {—1,1} be a Boolean function. We write D(f), R.(f),
RPee(f), U(f) to respectively denote the deterministic communication com-
plexity, e-error randomized communication complexity with private coins,
e-error randomized communication complexity with public coins, and un-
bounded error randomized communication complexity with private coins.
For background in classical communication complexity we refer to [20]. For
the quantum analogues of these measures we write Q(f), Q.(f), Q(f) to
respectively denote the exact quantum communication complexity, e-error
quantum communication complexity without prior entanglement, and e-error
quantum communication complexity with prior entanglement. We postpone
a brief review of the quantum communication model until Section 5.

We will often identify f with its communication matrix M with entries
Mlz,y] = f(z,y). Our primary complexity measure of interest is the ap-
proximate rank.

Definition 1. [19](see also [21]) Let M be the communication matriz of f.
Fiz some real o > 1. The a-approximate rank of f is defined as

Tk (f) == n IS%}J-I}MZ-,JSCM Tk(A)
where 1k is the usual rank over R, and the entries of A are reals. We say
such a matriz A is an approximating matrix for f. Note that when o = 1,

this measure coincides with the usual rank of f. When we do not bound the
entries of A, this measure coincides with the sign rank of f, denoted rk>(f).

We say that a matrix B sign represents a communication matrix M if
B;jM;; > 0 for all 4,j. Note that an approximating matrix for f sign
represents the communication matrix of f.

For a matrix A, we call a decomposition of the form A = UV a d-
dimensional factorization if the rows (resp. columns) of U (resp. V) are
in R?. Recall that the rank of a matrix is the minimum d for which such a
factorization is possible.

We will also be interested in bounds on the lengths of vectors in such
decompositions, which is captured by factorization norms. Approximate fac-
torization norm (2 norm) was introduced by Linial and Shraibman [25], who
showed that the logarithm of a-approximate +5 norm is a lower bound for
quantum communication with entanglement and error € = 1

1
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Definition 2. [25] Let f : X x Y — {—1,1} be a Boolean function, and let
M be its communication matriz. Fixz some real o > 1. The a-approrimate
factorization norm of f is defined as

72 (f) min (U) - £(v)

- A:UV : 1§Ai,j'Mi,jS04
where {(B) denotes the mazimum (o norm of a row of B. When o = 1,

we omit the superscript and simply write yo(f). When we do not bound the
entries of A, we write v3°(f).

The approximate 7, norm can be significantly smaller than the approxi-
mate rank. For example the 75 norm of the n-bit equality function is constant,
while its approximate rank is Q(n) [2, 22].

Our results exploit the following relationship shown by [22] between ~§
and rk®. See also [23, 37] for more on relating factorization norm and rank.

Theorem 1. For any f and o > 1,

V() < an/TE(f)

Moreover this bound can be witnessed by an approrimating matric A = UV
with a factorization of dimension rk*(f) such that ¢(U) < \/rk*(f) and
V) <a.

For this factorization, we will find it convenient to explicitly refer to
the rows (resp. columns) of U (resp. V), and we will additionally enforce
uniformity in the respective ¢, norms by slightly increasing dimension.

Lemma 1. Let f: X xY — {—1,1} be a Boolean function with rk*(f) =r.
There exist factorization vectors {uy }zex and {v,},ey in R™? such that for
all v,y, ||u.l| = V7, lv,l| = a, and 1 < (uy - v,) f(2,y) < a.

Proof. Let A = UV be the factorization guaranteed by Theorem 1. Write
the row of U corresponding to x € X as u),. Let s, = r — |[u,]|3. Write the

column of V' corresponding to y € Y as v}. Let s, = o — ||lv;||3. Finally
define u, = u, @ (s,,0) and v, = v, ® (0,s,). It is straightforward to check
that these vectors satisfy the claims of the lemma. n

We record the lower bounds alluded to in the introduction. For % >e>0

let a = ﬁ We use log to denote log, unless otherwise indicated.
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D(f) > logrk(f) > logva(f) [29, 23]
R(f) > logrk®(f) > 2log~5(f) — 2loga [19, 25

U(f) > logrk™(f) [34]

Q(f) > logrk(f)/2 19, 10]

® Qc(f) > logrk*(f)/2 [10]

o Q:(f) = log5(f) —loga — 2 [25]

Another important measure we consider is discrepancy.

Definition 3. For a Boolean function f: X xY — {—1,1} its discrepancy
1s defined as
disc(f) = minmax| 37 f(r,y)pte,y)
(z,y)ER
where p is an arbitrary distribution over X XY and R = Ax B with A C X,
B CY is an arbitrary rectangle.

It is known that m is equivalent to v5°(f) up to constant factors [24].

Thus, by Theorem 1 for constant o > 1 and any Boolean function f we have

1
disc(f)

For more on communication lower bounds and the relationships between
these and other measures we refer to an excellent survey by Lee and Shraib-
man [21].

For public coin protocols, the following upper bounds have been estab-
lished in terms of discrepancy.

o( ) =7 (f) <5 (f) < avrk®(f) = O(Vrk(f)). (1)

Lemma 2. [25] Let f : X xY — {1,—1} be a Boolean function. Then
there is an O(1)-bit public coin randomized protocol for f with error at most

% — 2K+, where 1.5 < K < 1.8 is the Grothendieck constant.
Y2 (f)

Since m is equivalent to v5°(f) up to constant factors [24], this also

gives a bound with respect to discrepancy. A more direct argument in terms
of discrepancy is given by Klauck [18].



Lemma 3. [18] Let f : X xY — {1,—1} be a Boolean function. Then
there is an O(1)-bit public coin randomized protocol for f with error at most
1 disc(f)
3T 2

The following upper bound on public coin randomized protocols follows
by standard amplification.

Theorem 2. [25, 18] Let f : X xY — {1, —1} be a Boolean function. Then
R]1D7§(f) = O(<dis(l;(f))2)'

The following private coin protocol with O(logrk®(f)) communication
was observed in [12]. This protocol is similar to the proof of Paturi and
Simon [34] in the unbounded error model.

Lemma 4. [12] Let f: X xY — {1,—1} be a Boolean function and o > 1.
Then there is a log(4rk™(f))-bit private coin randomized protocol with error
at most L — —t—,

2 2ark”(f)

For functions f with rk®(f) = r, amplifying this protocol gives private
coin bounded error protocols with O(a?r? log ) communication. We improve
the error bounds of the protocol of Lemma 4 and we use the existence of this
protocol as a starting point for our results.

3 Deterministic Communication

In this section we give upper bounds on the number of different rows and
columns of Boolean matrices with given approximate rank. These estimates
directly yield upper bounds on deterministic communication in terms of ap-
proximate rank.

We need the following theorem of Krause [19].

Theorem 3. [19] Let f: X xY — {1,—1} be a Boolean function, and let

M be the communication matriz of f. If there is a private coin randomized

protocol for f with c-bit communication and error at most % — %, then there

15 a 2" x 2" matrix B with nonzero integer entries that sign represents M
such that the absolute values of the entries of B are at most t = 8s2¢, and B

has rank at most 2°.



Note that the lower bound of Krause stated in the Introduction and Sec-
tion 2 is a simplified version of this theorem, without requiring that the
approximating matrix has integer elements.

Theorem 3 allows us to estimate the number of different rows and columns
in the communication matrix of a function with given approximate rank.

Lemma 5. Let f: X xY — {1,—1} be a Boolean function and o > 1. Let
M be the communication matriz of the function f. If rk*(f) = r, then M
has at most (2t)*" distinct rows and columns, where t = 64ar?.

Proof. Applying Theorem 3 to the protocol from Lemma 4 we know that
there is a 2" x 2" matrix B with nonzero integer entries that sign represents
M such that the absolute values of the entries of B are at most ¢t = 64ar?,
and B has rank at most 4r. Thus the number of different rows and columns
of B is at most (2¢)*". But since B sign represents M, the number of different
rows (and columns) of M cannot be larger than the number of different rows
(and columns) of B. O

Shachar Lovett [28] pointed out to us that our bound can be improved
as follows.

Lemma 6. [28] Let f: X xY — {1,—1} be a Boolean function and o > 1.
Let M be the communication matriz of the function f. If T&*(f) = r, then
M has at most (a + 2)" distinct rows and columns.

Proof. Let A € RXI*IYI be an approximating matrix for f. Let V denote the
linear span of the rows of A. Consider a maximal set of pairwise different
rows of M, and denote the corresponding rows of A by vq,...,vy.

We will use the notation W = V N [~a, a]¥'l. By definition, v; € W for
each i € [N]. Moreover, for i; # iy there is an index 1 < j < |Y| such that
v, (7) —vi, (4)] = 2, where v;(j) denotes the j-th coordinate of the vector v;.

We also use the notation W = {fw|w € W} for constant 5 > 0, and we
will consider v + W = {v + u|u € fW}.

Let us fix g = QLH With this notation, we have that the sets v; + W

are pairwise disjoint for i € [N]. Thus, >,y Vol(v; + SW) = NVol(fW) <
Vol((1 4 B)W). This implies that N < (%)T = (a+2)". O
The above bounds on the number of different rows and columns imply

the following upper bound on deterministic communication in terms of ap-
proximate rank.



Theorem 4. Let f : X xY — {1,—1} be a Boolean function and o > 1.
Then D(f) < 1+ comk*(f), where ¢, = log(a + 2).

Note that this bound is tight up to constant factors, as demonstrated by
the equality function.

3.1 Lower Bounds on Approximate Rank

Theorem 4 can be used to derive lower bounds on approximate rank. First
we note that it implies that the separation between approximate rank and
rank is at most exponential.

Corollary 1. Let f : X x Y — {1,—1} be a Boolean function and o > 1.
Then rk*(f) > Q(log 7k(f)).

Next we note that by Theorem 4 any lower bound on the deterministic
communication complexity of a function yields lower bounds on its approxi-
mate rank. Previous lower bounds on approximate rank are usually based on
measures like discrepancy, factorization norm and trace norm. Our method
will not give larger than n lower bounds for communication problems involv-
ing n-bit inputs for the players, but it can give interesting lower bounds for
functions where the previously used measures are not very large.

For the n-bit Greater Than function GT,, Braverman and Weinstein [7]
proved that m > +/n, which implies that its approximate rank for
constant « is Q(y/n). We show that for constant « the approximate rank of

GT, is Q(n).

Corollary 2. For a > 1, k*(GT,) > Toa(aTD) -

We also obtain a new proof of the Q(n) lower bound of Alon [2] on the
approximate rank of the n-bit Equality function EQ),.

Corollary 3. For a > 1, rk*(EQ,) > ToalaTa) -

4 Randomized Communication

Using Lemma 5 we obtain the following strengthening of Newman’s theorem
[32] with respect to approximate rank.
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Theorem 5. Let f: X xY — {1,—1} be a Boolean function and o > 1. For
every p > 0 and every e > 0, R.1,(f) < RP*(f)+O(log rk*(f) +log(a + 2)+
log p~1).

Proof. Let M be the communication matrix of the function. If the number
of different rows of the matrix M is at most N; and the number of different
columns of M is at most Ny then the players can determine the value of f
by running a protocol for a function f’: X’ x Y’ — {1, -1} with | X'| = N,
and |Y'| = N,. Newman’s theorem [32] gives that R.y,(f) < RPU(f) +
O(loglog(NiNy) + log p~ 1), where N; is the number of different rows of M
and N, is the number of different columns of M. The statement follows by
Lemma 5. O

Theorem 5 allows us to simulate public coin protocols by private coin pro-
tocols efficiently with respect to approximate rank. We obtain the following
bounds on private coin protocols.

Theorem 6. Let f : X xY — {1,—1} be a Boolean function and o > 1.

There is a private coin protocol computing f with O(log rk®(f) + log(a + 2))
disc(f)

communication and error at most % - =

Proof. Follows by applying Theorem 5 with p = di%(f) to the protocol given
by Lemma 3, and using that m = O(a/tk*(f)) by (1). O

Theorem 7. Let f : X xY — {1,—1} be a Boolean function and o > 1.

Then Rl/g(f) = O((m)z + lOg T’ka(f) + log(a + 2))
Proof. Follows by applying Theorem 5 to Theorem 2. O]

The equality function shows that the additive log rk®( f) term is necessary
in Theorem 7.

5 Quantum Communication

5.1 Quantum Communication Model

We assume basic familiarity with quantum information, and refer to [31] for
more background. The state space of a quantum communication protocol is
comprised of three registers : Alice’s private register, Bob’s private register,
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and a shared register. Each of these registers may be of some arbitrary
fixed size which may depend on the function (but not the inputs) being
computed. We assume that Alice and Bob are given their inputs x, y encoded
as computational basis states |x) , |y), and that the initial state of the protocol

) nit) = |z} |0) |y)

Alice and Bob then alternate sending each other messages across the channel.
More precisely, when it is Alice’s ith turn to speak she applies some unitary
U to her register and the shared register, and when it is Bob’s jth turn to
speak he applies some unitary U7P to his register and the shared register.
At the end of the protocol, one of the players measures the qubits in the
channel and as a function of the result outputs a result for the protocol.
Recall that we write Q(f), Q.(f) to respectively denote the exact quantum
communication complexity and e-error quantum communication complexity
and e-error quantum communication.

5.2 Root Approximate Rank Upper Bound

Let tk®(f) = r and assume as well that & > 1 is a constant. Our main
protocol combines two standard techniques: quantum fingerprinting! and
amplitude amplification. The first, is for Alice and Bob to associate their
(potentially long) inputs x and y with significantly shorter quantum states
or fingerprints [8]. In particular, we will have Alice and Bob associate their
inputs with quantum states which encode the factorization vectors u,, v, €
RO given by Lemma 1. In particular, such vectors (up to normalization)
can be encoded with O(logr) qubits. Alice and Bob can then perform a
distributed variant of the Hadamard test on their encoded states, which will
allow them to estimate the inner product of their respective fingerprints,
and in turn compute f(z,y) with bias 1/O(y/r) over random guessing. To
improve the bias to a constant classically requires £2(r) repetitions.

To improve the bias more efficiently we apply the second technique :
amplitude amplification. Generalizing the ideas involved in Grover’s search
algorithm [15], the technique of amplitude amplification [30] has been applied
to quantum search and several problems in communication complexity [16, 9]

'Our protocol does not use fingerprinting in the usual sense since we will really be
encoding the factorization vectors corresponding to Alice and Bob’s inputs rather than
their actual inputs.
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to achieve polynomial speedups over classical algorithms. We record the
technique in the following lemma.

Lemma 7. Let A be a quantum algorithm which makes no measurements,
and let G be some collection of ’good’ basis states. Suppose that on initial
state |0) the algorithm produces the state

A0) = sin(0) |g) + cos(6) |b)

where |g) is contained in a subspace W¢ spanned by states in G, |b) is con-
tained in the orthogonal complement of Wg, and 60 € [0,7/2]. Let B =
—~ASyA~1Sq, where Sg negates the amplitudes of the states in Wg, and Sy
negates the amplitude of |0). Repeatedly applying B to A |0) k times produces
the state

B A|0) = sin((2k + 1)6) |g) + cos((2k + 1)0) |b)

We can view the pre-measurement state A |init) of the protocol as a unit
vector in a two dimensional space spanned by |g) (corresponding to the proto-
col outputting 1) and |b) (corresponding to the protocol outputting —1). Asa
two dimensional vector in this space, the vector A |init) has angle § = w/4+§
with |b) if f(x,y) = 1, and angle § = w/4 — 6 with |b) if f(z,y) = —1, where
0 > 0 is some small value. The operator B above essentially implements
a rotation of 20 towards |g). Thus applying this operator 4 times, results
in the vector having angle §# = 7/4 + 80 with |b) if f(z,y) = 1, and angle
0 = m/4—8) with |b) if f(x,y) = —1. This will correspond to increasing the
bias by a constant factor! As we will show, Alice and Bob can apply B in
blocks of 4 repetitions so that O(4/r) rounds of application suffice to amplify
the bias to a constant.

We begin with the fingerprinting protocol.

Lemma 8. Fiz o > 1, and let € = 1/2 — 1/(2av/r). If 7K*(f) = r, then
Q:(f) =O(logr).

Proof. Note that the statement follows from Theorem 6 with slightly different
error bound. Here we give a direct proof by presenting an explicit protocol,
which will be convenient for us to use in the proof of the next theorem.
The protocol we give is simply a distributed version of what is sometimes
called the Hadamard test. Let x and y be Alice and Bob’s respective inputs.

13



By Lemma 1, there are vectors u,, v, € R satisfying

1 Uy * Uy < 1
ay/r luzll2l[vyll2 = V7

The vectors’ normalizations u, /||u;||2 and v, /||v,||2 can be encoded as d =
O(log(r + 2)) qubit quantum states |¢,) , |1),) in a straightforward manner, so
that the coordinates of the normalized vectors are precisely the amplitudes of
the states in the computational basis. Alice and Bob’s protocol is as follows:

< f(z,y) (2)

1. Alice prepares the d + 1 qubit state \/Li 0) |¢) + \% |0) |0) and sends
the state to Bob.

2. Bob unitarily transforms the received state to \/Li 10) |¢z) + \/Li 11) |y)
and sends the state to Alice.

3. Alice performs a Hadamard transformation on the first qubit, and mea-
sures the first qubit. If she measures 0, Alice outputs 1, and otherwise
she outputs —1.

We note that the protocol can be implemented so that it acts as the identity
on each of Alice’s and Bob’s private registers. Clearly the total communica-
tion is O(logr). By a straightforward calculation, the probability that Alice
measures 0 in the first qubit is

S+ (Baltlulo)

The upper bound on the error probability of the protocol follows immediately
from (2). O

We are now ready to prove our main theorem.
Theorem 8. Fiz oo > 1. If rk*(f) = r, then Q13(f) = O(a®y/rlogr).

Proof. Let A be the pre-measurement steps of the fingerprinting protocol
of Lemma 8. Let the set of good states G be the set of basis states for
which the first qubit of Alice and Bob’s shared qubits is 0, and let Wg be the
subspace spanned by these basis states. Asin Lemma 7 let Sy be an operator

which negates the amplitude on the initial state? |init) = |z) ‘6> ly) of the

2Tt suffices for Sy to negate the amplitudes on states where all channel qubits are 0.
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protocol and let S be an operator which negates the amplitude on states in
We. Finally let j, k be integers whose values we set later. Alice and Bob’s
protocol is as follows:

1.
2.

Alice and Bob apply A to the initial state [init).

Alice applies Sg to the shared qubits, negating the amplitudes on states
in Wg.

. Alice and Bob apply the inverse A~! of the basic protocol.

. Alice applies Sy to the shared qubits, negating the amplitude on the

initial state |init).

. Alice and Bob apply A, and then negate all amplitudes.

Alice and Bob repeat steps 2-5 an additional 45 — 1 times so that the
final state of the protocol is B¥ A [init), where B = —AS,.AS.

Alice measures the first qubit. If she measures 0, Alice outputs 1, and
otherwise she outputs —1.

. Alice and Bob repeat steps 1-7 k independent times and output the

majority result.

Clearly the communication cost of each of steps 1-5 is O(logr). Thus the
total communication cost of the protocol is O(jklogr). It remains to set the
parameters j, k.

By (2) the probability of measuring a state in W after step 1 is 1/2 +

flz,y

) -0, where 0 € [1/(2a+/7),1/(24/7)]. Thus we can write the state of

the protocol after step 1 as

Alinit) = sin(7/4 + 0) |g) + cos(w/4 + 6) |b)

It follows from basic trigonometric identities that sin(20) = 2f(z,y) - §. For
all z € (0,1], z < sin"!(2) < 27/2. Thus, 1/(2ay/T) < f(z,y) -0 < 7/(4/T).

By Lemma 7 the state of the protocol after step 6 can be written as

BY Alinit) = sin(7/4 + (1 +45)0) |g) + cos(n/4 + (1 +45)0) [b)  (3)
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Take j to be the largest integer such that (14 4j) < /r. Given our choice
of j, we can re-write 3 as

BY A |init) = sin(€') |g) + cos(#’) |b) (4)

where /44 1/(ca) < 0" < 7/2 for some constant c. It follows that the prob-
ability that Alice outputs f(z,y) is at least 1/2+1/(c«) for some constant .
By a standard argument we can take k = O(a?), so that the entire protocol
has cost O(a?y/rlogr) and the final result is correct with probability at least
2/3. O

When o = 1 (that is when r is the rank of f) we can modify the analysis
here to get an exact protocol. In particular, if u,,v, arise from a rank r
factorization, then (2) can be written as the equality (u,-vy)/(||uz2]|vyll2) =
f(z,y)/y/r. We can adjust the amount by which we increase the norms of
Uy, vy in the Lemma 1, so that in (4) for some integer j = O(y/r) we have
(1+45)0 = f(x,y)m/4. This gives an alternative and more direct proof of the
following result which is a corollary of Lovett’s deterministic upper bound in
terms of rank.

Theorem 9. If rk(f) = r, then Q(f) = O(y/rlogr).
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