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Abstract

We demonstrate a lower bound technique for linear decision lists,
which are decision lists where the queries are arbitrary linear thresh-
old functions. We use this technique to prove an explicit lower bound
by showing that any linear decision list computing the function MAJ◦
XOR requires size 20.18n. This completely answers an open question
of Turán and Vatan [18]. We also show that the spectral classes

PL1,PL∞, and the polynomial threshold function classes P̂T1,PT1,
are incomparable to linear decision lists.

1 Introduction

Decision lists are a widely studied model of computation, first introduced by
Rivest [17]. A decision list L of size ℓ computing a Boolean function f ∈ Bn

is a sequence of ℓ − 1 instructions of the form if fi(x) = ai then output

∗This work was done while the author was a graduate student at TIFR, Mumbai.
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bi and stop, followed by the instruction output ¬bℓ−1 and stop. Here Bn

denotes the set of all Boolean functions in n variables, each fi ∈ Bn is called
a query function, and ai and bi are Boolean constants. If the functions fi all
belong to a function class S ⊆ Bn, then L is said to be an S-decision list.

Krause [14] showed that there are functions with small representation as
AND-decision lists, but requiring exponential size when computed by depth-
two circuits with a linear threshold gate at the top and XOR gats at the
bottom. On the other hand, Impagliazzo and Williams [13] showed that a
certain condition is sufficient to prove lower bounds against a related com-
putation model that can be termed rectangle-decision lists. Linear decision
lists are decision lists where the query functions are linear threshold functions.
Lower bounds against linear decision lists (and even against bounded-rank
linear decision trees, a natural generalisation) for the Inner Product modulo 2
function were proved by Gröger, Turán and Vatan, in [9, 18]. Subsequently,
Uchizawa and Takimoto [19, 20] showed lower bounds against the class of
linear decision lists and linear decision trees when the weights of the linear
threshold queries are bounded by a polynomial in the input length. In fact,
the lower bounds of [19, 20] apply to any function with large unbounded-error
communication complexity.

We observe that the lower bound argument in [18] shows that functions
efficiently computable by linear decision lists (with no restrictions on the
weights of the queried linear threshold functions) must have large monochro-
matic rectangles. In fact, we build on their argument to establish a more
general result (Lemma 17). Informally, we show that if a function has no
“large” weight monochromatic rectangles under some product distribution
then it cannot be expressed by “small” linear decision lists. We then use this
fact to establish a lower bound for a seemingly simple function, MAJ ◦ XOR
(see Definition 18). Our main theorem is as follows.

Theorem 1. Any linear decision list computing MAJn ◦XOR must have size
2Ω(n).

It is not hard to see that MAJ ◦ XOR can be simulated by MAJ ◦ MAJ

circuits with only a linear blow-up in size. This immediately yields the
following corollary, resolving an open question posed by Turán and Vatan
in [18].

Corollary 2. There exists a function that can be computed by polynomial
sized MAJ ◦ MAJ circuits, but any linear decision list computing it requires
exponential size.

Impagliazzo and Williams [13] demonstrated a function, implicitly com-
putable by polynomial sized MAJ ◦MAJ circuits, which cannot be computed
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by polynomial sized rectangle-decision lists. We observe that our lower bound
technique against linear decision lists (Lemma 17) coincides with the suffi-
cient condition considered in [13] to prove lower bounds against rectangle-
decision lists. Thus, their function also separates linear decision lists from
MAJ ◦MAJ. However, we obtain a 2Ω(n) lower bound on the length of linear
decision lists in Theorem 1, improving upon the bound implicit in the work
of Impagliazzo and Williams, which is worse in the exponent by at least a
quadratic factor. Very recently, Chattopadhyay, Mande and Sherif [5] showed
several properties of the function SINK ◦ XOR. We observe that as a conse-
quence, our lower bound technique against linear decision lists (Lemma 17)
also applies to this function. We elaborate more on these remarks in Sec-
tion 5.

2 Preliminaries

Definition 3 (Sign function). The function sign : R → {0, 1} is defined as
follows.

sign(x) =

{
1 if x > 0
0 if x ≤ 0

Definition 4 (Linear Threshold Functions). A function f : {0, 1}n → {0, 1}
is said to be a linear threshold function (LTF) if there exist real numbers

w0, w1, . . . , wn such that f(x) = sign

(
w0 +

n∑
i=1

wixi

)
.

For strings x, y ∈ Rn, we denote their inner product by 〈x, y〉 ,∑i xiyi.
With this notation, f is an LTF if for some w0 ∈ R, w̃ ∈ Rn, f(x) =
sign(w0 + 〈w̃, x〉).

Definition 5 (Majority). The function MAJn : {0, 1}n → {0, 1} is the linear
threshold function defined by MAJn(x) = sign (x1 + x2 + · · ·+ xn − n/2).

Definition 6 (Function composition). For functions f : {0, 1}n → {0, 1}
and g : {0, 1}m → {0, 1}, the function f ◦ g : {0, 1}nm → {0, 1} is defined as
follows:

f◦g(x11, . . . , x1m, . . . , xn1, . . . , xnm) = f(g(x11, . . . , x1m), · · · , g(xn1, . . . , xnm)).

We now formally define the model of computation that is of interest in
this paper.

3



Definition 7 (Linear Decision Lists). A linear decision list (LDL) of size k is
a sequence (L1, a1), (L2, a2), . . . , (Lk, ak), where each ai ∈ {0, 1}, and each Li

is an LTF with Lk being the constant function 1. The decision list computes
a function f : {0, 1}n → {0, 1} as follows : If L1(x) = 1, then f(x) = a1;
elseif L2(x) = 1, then f(x) = a2; elseif . . . , elseif Lk(x) = 1, then f(x) = ak.
That is,

f(x) =
k∨

i=1

(
ai ∧ Li(x) ∧

∧

j<i

¬Lj(x)

)
.

Definition 8 (Communication matrix). For a function F : {0, 1}n×{0, 1}n →
{0, 1}, its communication matrix MF is the 2n × 2n matrix with entries
MF [x, y] := F (x, y).

Definition 9 (Monochromatic rectangles/squares). Let F : {0, 1}n×{0, 1}n →
{0, 1} be any function. For b ∈ {0, 1}, a monochromatic b-rectangle is a tuple
(X, Y ), where X, Y ⊆ {0, 1}n and F (x, y) = b for every (x, y) ∈ X × Y . We
say that (X, Y ) is a monochromatic square of size s if it is a monochromatic
0-rectangle or 1-rectangle and, furthermore, |X| = |Y | = s.

Definition 10 (Product distributions and weights). A probability distribu-
tion η over {0, 1}n × {0, 1}n is said to be a product distribution if there
are probability distributions µ, ν over {0, 1}n such that for every (x, y) ∈
{0, 1}n × {0, 1}n, η(x, y) = µ(x)× ν(y). We say that η is the product distri-
bution µ× ν.

Given a probability distribution µ over {0, 1}n and X ⊆ {0, 1}n, µ(X) is
defined to be the sum

∑
x∈X µ(x).

For a rectangle (X, Y ), its weight under a product distribution µ × ν is
(µ× ν)(X × Y ) = µ(X)× ν(Y ).

We will denote the number of 1’s in a string x ∈ {0, 1}n by |x|.

Definition 11 (Hamming distance). The (Hamming) distance between any
two strings x, y ∈ {0, 1}n, denoted d(x, y), is defined as d(x, y) , |{i : xi 6=
yi}|. The Hamming distance between any two sets A,B ⊆ {0, 1}n, denoted
d(A,B), is the minimum pairwise distance; d(A,B) = minx∈A,y∈B d(x, y).

Definition 12 (Hamming balls). Let c ∈ {0, 1}n and k ∈ {1, . . . , n}. A set
A ⊆ {0, 1}n is called a Hamming ball with centre c and radius k if

{s ∈ {0, 1}n | d(s, c) ≤ k − 1} ⊂ A ⊆ {s ∈ {0, 1}n | d(s, c) ≤ k}.

A singleton set A = {c} is a Hamming ball with centre c and radius 0.
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For a set A ⊆ {0, 1}n, the boundary of A is the set {s ∈ {0, 1}n | d(s, A) =
1}. In [12], Harper proved a isoperimetry result: among all sets of a given
size, Hamming balls have the smallest boundary set size. A simplified proof
was given by Frankl and Füredi [7], who also stated the theorem in the
equivalent form we mention below. (See also the presentation in [1]).

Theorem 13 (Harper’s Theorem). Let A,B ⊆ {0, 1}n be non-empty sets.
Then, there exists a Hamming ball A0 with centre 0n and a Hamming ball B0

with centre 1n such that |A0| = |A|, |B0| = B, and d(A0, B0) ≥ d(A,B).

Definition 14 (Binary Entropy). The binary entropy function H : [0, 1] →
[0, 1] is defined as follows: H(p) = −p log p− (1− p) log(1− p).

Fact 15. H(1/4) < 0.82.

3 Linear decision lists contain large monochro-

matic rectangles

The argument of Turán and Vatan from [18] implicitly showed that any
function f : {0, 1}n × {0, 1}n → {0, 1} with no large monochromatic squares
cannot be computed by small linear decision lists. Their argument was pre-
sented specific to the Inner Product function (Theorem 1 in [18]). However,
it is not too hard to see that their proof in fact works for any function as
long as it has no large monochromatic squares. In this section, we generalize
their argument to show that all functions computable by small size linear
decision lists must contain, under any product distribution, a monochromatic
rectangle of large weight with respect to that distribution.

We first establish a technical lemma that can be seen as a generalization
of Lemma 2 in [18].

Lemma 16. Let f be an LTF over the input variables x1, . . . , xn, y1, . . . , yn.
Let µ, ν be distributions over {0, 1}n, and X, Y ⊆ {0, 1}n. Define m :=
min{µ(X), ν(Y )}, and let t ∈ (0,m]. Then, one of the following is true.

1. There exists a monochromatic 1-rectangle (X ′, Y ′) within X × Y (i.e.,
X ′ ⊆ X and Y ′ ⊆ Y ) such that µ(X ′) ≥ t and ν(Y ′) ≥ t.

2. There exists a monochromatic 0-rectangle (X ′, Y ′) within X × Y such
that µ(X ′) > m− t and ν(Y ′) > m− t.

Proof. Let M be the submatrix of Mf restricted to X × Y . Let the LTF f
be given by sign(a+ 〈α ·x〉+ 〈β · y〉). Reorder the rows and columns of M in
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decreasing order of a+ 〈α · x〉 and 〈β · y〉 to get the matrix B = R×C. Let
i denote the least index of a row in B such that µ({R1, . . . Ri}) ≥ t, and j
denote the least index of a column in B such that µ({C1, . . . Cj}) ≥ t. Note
that these indices are well-defined since t ∈ (0,m]. If the [i, j]’th entry of
B is 1, then the top-left submatrix of B satisfies item (1) in the lemma. If
the [i, j]’th entry of B is 0, then the bottom-right submatrix of B satisfies
item (2) in the lemma.

We now prove the main lemma.

Lemma 17. Let µ, ν be distributions on {0, 1}n. Let f : {0, 1}n ×{0, 1}n →
{0, 1} be any function with no monochromatic rectangle of weight greater than
w under the distribution µ × ν. Then, any linear decision list computing f
must have size at least 1/

√
w.

Proof. Towards a contradiction, let (L1, a1), (L2, a2), . . . , (Lk, ak) be an LDL

of size k computing f , where k < 1/
√
w. Pick any t ∈ (

√
w, 1/k]. We

construct, for each i ∈ [k−1], a rectangle Si = Xi×Yi which is a 0-rectangle
for all Lj with j ≤ i, and furthermore µ(Xi), ν(Yi) ≥ 1 − i · t. We proceed
by induction on i.

For the base case i = 1, let S0 = (X0, Y0) be the entire 2n × 2n matrix.
Suppose S0 has a rectangle (X ′, Y ′) that is a 1-rectangle of L1 and moreover,
µ(X ′) ≥ t, ν(Y ′) ≥ t. Then everywhere in this rectangle, f will be a1. But
f has no monochromatic rectangle of weight as large as t2 > w. So S0 has
no rectangle (X ′, Y ′) with µ(X ′) ≥ t, ν(Y ′) ≥ t that is a 1-rectangle of L1.
By Lemma 16, S0 must then contain a 0-rectangle (X1, Y1) of L1 such that
both µ(X1) and ν(Y1) are at least 1− t. This establishes the base case.

For the inductive step, we have a rectangle Si−1 = (Xi−1, Yi−1) which
is a 0-rectangle for L1, L2, . . . , Li−1 and, moreover, min{µ(Xi−1), ν(Yi−1)} ≥
1 − (i − 1)t. Within this rectangle, suppose Li has a 1-rectangle (X ′, Y ′)
such that µ(X ′) ≥ t and ν(Y ′) ≥ t. Then f = ai in this rectangle, giving a
monochromatic rectangle of f of weight greater than w. But we know that
such rectangles do not exist. Since kt ≤ 1 and i < k, we have t ≤ 1− (i− 1)t
and hence Lemma 16 is applicable. Hence we conclude that Si−1 must contain
a 0-rectangle (Xi, Yi) of Li with min{µ(Xi), ν(Yi)} ≥ 1− (i−1)t− t = 1− it.
Since this rectangle, say Si, is contained in Si−1, it is a 0-rectangle for all Lj

with j ≤ i.
Thus, we have a rectangle Sk−1 = (Xk−1, Yk−1) on which L1, L2, . . . , Lk−1

are 0, and Lk = 1 because Lk is the constant function 1. Furthermore,
µ(Xk−1) and ν(Yk−1) ≥ 1 − (k − 1)t. Everywhere on this rectangle, f eval-
uates to ak. So Sk−1 is a monochromatic rectangle for f . Hence it cannot
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have weight more than w. Thus 1 − (k − 1)t ≤ √
w < t; that is, 1 < kt,

contradicting our choice of t.

4 MAJ◦XOR has no large monochromatic squares

In this section, we show an upper bound and a matching tight lower bound
on the size of a largest monochromatic square in the communication matrix
of the MAJ ◦ XOR function.

Definition 18 (XOR functions). For a function f : {0, 1}n → {0, 1}, let
f ◦XOR denote the function defined by f ◦XOR(x1, . . . , xn, y1, . . . yn) = f(x1⊕
y1, . . . , xn ⊕ yn).

Lemma 19. Let F : {0, 1}n ×{0, 1}n → {0, 1} be the function MAJn ◦XOR.
Then, for any b ∈ {0, 1}, MF has a monochromatic b-square of size at least
⌊n/4⌋∑
i=0

(
n
i

)
.

Proof. Define the sets X, Y, Z as follows:

X = Y = {x ∈ {0, 1}n : |x| ≤ ⌊n/4⌋}.
Z = {x ∈ {0, 1}n : |x| ≥ n− ⌊n/4⌋}.

Note that F (x, y) = 0 for all x ∈ X, y ∈ Y , and F (x, z) = 1 for all x ∈ X,
z ∈ Z. Thus (X, Y ) and (X,Z) are a monochromatic 0-square and 1-square,

respectively, each of size
⌊n/4⌋∑
i=0

(
n
i

)
.

Remark 20. We remark that when n ≡ 3 (mod 4) the above construction
can be improved if we consider monochromatic rectangles. That is, for any
b ∈ {0, 1}, MF has a monochromatic b-rectangle (X1, X2) such that |X1| =
⌈n/4⌉∑
i=0

(
n
i

)
and |X2| =

⌊n/4⌋∑
i=0

(
n
i

)
. Indeed, let X = {x ∈ {0, 1}n : |x| ≤ ⌈n/4⌉},

Y = {x ∈ {0, 1}n : |x| ≤ ⌊n/4⌋} and Z = {x ∈ {0, 1}n : |x| ≥ n − ⌊n/4⌋}.
Then, it is easily seen that (X,Z) (resp., (X, Y )) is a monochromatic 1-
rectangle (resp., 0-rectangle) of the claimed size.

We now show that this bound is tight.

Theorem 21. Let F : {0, 1}n×{0, 1}n → {0, 1} be the function MAJn◦XOR.

For any n, MF has no monochromatic squares of size greater than
⌈n/4⌉∑
i=0

(
n
i

)
.
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Proof. Suppose, to the contrary, that there are sets A,B ⊆ {0, 1}n such that

|A| = |B| >
⌈n/4⌉∑
i=0

(
n
i

)
and A×B is a monochromatic 1-square in MF . By the

definition of F , this implies d(A,B) > ⌊n/2⌋. By Theorem 13, there exist
Hamming balls A0 around 0n, and B0 around 1n such that |A0| = |A|, |B0| =
|B| and d(A0, B0) ≥ d(A,B). The size lower bound enforces that the radius
of A0 and B0 must be greater than ⌈n/4⌉, and since they are centered on 0n

and 1n, it follows that d(A0, B0) ≤ ⌊n/2⌋. But then d(A,B) is also at most
⌊n/2⌋. Hence, there exist x ∈ A, y ∈ B such that d(x, y) ≤ ⌊n/2⌋, which
means F (x, y) = MAJn ◦ XOR(x, y) = 0, which contradicts our assumption.

Therefore, any monochromatic 1-square in MF has size at most
⌈n/4⌉∑
i=0

(
n
i

)
.

A similar argument shows the same upper bound on the size of monochro-
matic 0-squares.

Now we can put things together to prove our main theorem.

Proof of Theorem 1. Let sn be the minimum size of an LDL computingMAJn◦
XOR. Further let µ and ν be uniform distributions over {0, 1}n. Then, by
Lemma 17 and Theorem 21, for all n sufficiently large,

sn ≥ 2n
∑⌈n/4⌉

i=0

(
n
i

)

≥ 2n

2n·H(1/4)
using Stirling’s approximation

≥ 20.18n. using Fact 15

5 LDLs and the threshold circuit hierarchy

In this section, we see how the class of functions computable by polynomial
sized LDLs fits into the low depth threshold circuit hierarchy. The reader is
referred to Razborov’s survey [16] for a detailed exposition on the low depth
threshold circuits hierarchy.

5.1 Definitions

Definition 22 (MAJ). Define MAJ to be the class of all functions computable
by polynomial sized MAJ gates. Each input to the MAJ gate may be a constant
0 or 1, or a variable xi, or its negation ¬xi.
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Definition 23 (LTF). Define LTF to be the class of all functions computable
by LTF gates.

Definition 24 (LDL). Define LDL to be the class of all functions computable
by polynomial sized linear decision lists.

Definition 25 (L̂DL). Define L̂DL to be the class of all functions computable
by polynomial sized linear decision lists where, furthermore, weights of the
linear threshold queries are integers with values bounded by a polynomial in
the number of variables.

Definition 26 (Depth-2 classes). For classes of functions C,D, define C ◦D
to be the class of functions computable by polynomial-sized depth-2 circuits,
where the top gate computes a function from the class C, and the bottom layer
contains gates computing functions in D.

Definition 27 (P̂T1). The class P̂T1 consists of all functions f : {0, 1}n →
{0, 1} which can be represented by polynomial sized MAJ ◦ PARITY circuits.

Definition 28 (PT1). The class PT1 consists of all functions f : {0, 1}n →
{0, 1} which can be represented by polynomial sized LTF ◦ PARITY circuits.

(These are precisely the classes of polynomial threshold functions [2]; it
is more convenient for us here to use the equivalent formulation as depth-2
circuits.)

In order to define classes given by the spectral representation of functions,
we first recall a few preliminaries from Boolean function analysis.

Consider the real vector space of functions from {0, 1}n → R, equipped
with the following inner product.

〈f, g〉 = 1

2n

∑

x∈{0,1}n

f(x)g(x) = Ex∈{0,1}n [f(x)g(x)].

For each S ⊆ [n], define χS : {0, 1}n → {−1, 1} by χS(x) = (−1)
∑

i∈S
xi . It

is not hard to verify that {χS : S ⊆ [n]} forms an orthonormal basis for this
vector space. Thus, every f : {0, 1}n → R has a unique representation as

f =
∑

S⊆[n]

f̂(S)χS, where

f̂(S) = 〈f, χS〉 = Ex∈{0,1}n [f(x)χS(x)].

Definition 29 (PL1). The class PL1 consists of all functions f : {0, 1}n →
{0, 1} for which

∑
S⊆[n]

|f̂(S)| ≤ poly(n).
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PL1

P̂T1

PT1

PL∞

MAJ

LTF

MAJ ◦MAJ

LTF ◦MAJ

LTF ◦ LTF

LDL

L̂DL

Figure 1: Low depth threshold circuit hierarchy

Definition 30 (PL∞). The class PL∞ consists of all functions f : {0, 1}n →
{0, 1} for which max

S⊆[n]
|f̂(S)| ≥ 1

poly(n)
.

Figure 1 depicts the currently known status of low depth circuit class
containments, and shows where linear decision lists fit in this hierarchy.

A thick solid arrow from C1 to C2 denotes C1 ( C2, a thin solid arrow
from C1 to C2 denotes C1 ⊆ C2, and a dashed line between C1 and C2 de-
notes incomparability. In the figure, we only show the newly established
incomparabilities.

The leftmost column has the classes defined based on spectral represen-
tation, and the middle column has the classes based on depth-2 circuits.
Concerning these classes, the picture was already completely clear: All con-
tainments shown among classes in these columns are known to be strict, and
wherever no arrow connects two classes, they are known to be incomparable.
Essentially this part of the figure appears in [8]; a subsequent refinement is
the insertion of the class LTF ◦MAJ, separated from MAJ ◦MAJ in [8], from
PT1 in [2] and most recently from LTF ◦ LTF in [4].

The two classes L̂DL and LDL form the new column on the right. In the
following subsection we explain their position with respect to the other two
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columns. However here the picture is not yet completely clear, and there are
still several open questions.

5.2 New results

By definition, MAJ ⊆ L̂DL and LTF ⊆ LDL via lists of size 2. The parity
function is known to not be in LTF, and it has a simple LDL with 0-1 weights
in the query functions. Thus both these containments are proper, and L̂DL

is not contained in LTF. We now observe that, implicit from prior work, L̂DL
is not even contained in MAJ ◦MAJ.

Theorem 31.

L̂DL * MAJ ◦MAJ.

Proof. Define the ODD-MAX-BIT function by OMB(x) = 1 iff the largest
index i where xi = 1 is odd (OMB(0n) = 0). Buhrman, Vereshchagin and
de Wolf [3] showed that OMB◦AND is hard, in the sense that it has exponen-
tially small discrepancy. By a result of Hajnal, Maass, Pudlák, Szegedy and
Turán [10], this implies that OMB◦AND cannot be computed by polynomial
sized MAJ ◦MAJ circuits.

Note that OMB can be computed by a linear sized decision list by querying
the variables in decreasing order of their indices. Thus OMB ◦ AND can be
computed by a linear sized decision list of AND’s, and hence by a linear
decision list with 0-1 weights.

On the other hand, it is easily seen that MAJn ◦ XOR is in MAJ ◦MAJ,
and even in P̂T1 (see for instance [2]). Combining this with Theorem 1, we
obtain:

Theorem 32.

P̂T1 * LDL.

The following strengthening of Theorem 32 is implicit from a recent result
of Chattopadhyay, Mande and Sherif [5].

Theorem 33.

PL1 6⊆ LDL.

(We defer a discussion of why Theorem 33 holds to Section 5.3.) Putting

together these separations with the known containments PL1 ⊆ P̂T1 ⊆ MAJ◦
MAJ, we obtain a slew of incomparability results.

Corollary 34. For any class A ∈ {L̂DL, LDL} and B ∈ {PL1,MAJ ◦MAJ},
the classes A and B are incomparable.
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In particular, the classes LDL and MAJ ◦ MAJ are incomparable. This
completely answers the open question posed by Turán and Vatan [18].

Impagliazzo and Williams [13, Theorem 4.8] showed that the function
ORn◦EQn (also called Block-Equality) does not contain large monochromatic
rectangles (in fact they showed that it does not contain large monochromatic
rectangles under any product distribution). Thus, by Lemma 17, any linear
decision list computing ORn ◦ EQn must be of size at least 2Ω(n). We now
observe that OR ◦ EQ ∈ MAJ ◦MAJ. Consequently, OR ◦ EQ also witnesses
MAJ ◦ MAJ * LDL. However, in contrast to Theorem 1, note that the
lower bound is subexponential since OR ◦ EQ is defined on 2n2 variables.
Moreover, OR ◦ EQ seems to incur a significant polynomial blow up in size
when simulated by MAJ◦MAJ circuits, whereas MAJn ◦XOR has linear sized
MAJ ◦MAJ circuits.

Theorem 35.

OR ◦ EQ ∈ MAJ ◦MAJ.

Proof. First observe that OR ◦ EQ can be computed by a MAJ ◦ EQ circuit
by suitably padding constants to the input. Next, note that EQ is an exact
threshold function, that is there exist reals a1, . . . , an, b1, . . . , bn, c such that
EQ(x, y) = 1 iff

∑n
i=1 aixi + biyi = c. Hansen and Podolskii [11] showed that

such functions can be efficiently simulated byMAJ◦LTF circuits. However, we
do not need the full strength of their result, so we give a direct construction
below.

For an equality on 2n bits, say x1, . . . , xn, y1, . . . , yn, note that

EQn(x1, . . . , xn, y1, . . . , yn) = 1 ⇐⇒
n∑

i=1

2i(xi − yi) = 0.

Consider the following linear threshold functions.

g1(x, y) = sign

(
n∑

i=1

2i(xi − yi) + 1/2)

)
and

g2(x, y) = sign

(
n∑

i=1

2i(xi − yi)− 1/2)

)
.

Observe that g1(x, y)− g2(x, y) = EQn(x, y).

Let g
(i)
1 and g

(i)
2 denote these LTFs for the ith block on which we test

equality. The function ORn ◦ EQn is just

ORn ◦ EQn = sign
(
(g

(1)
1 − g

(1)
2 ) + (g

(2)
1 − g

(2)
2 ) + . . .+ (g

(n)
1 − g

(n)
2 )
)
;
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this formulation puts it in MAJ ◦ LTF.
Finally, Goldmann, H̊astad and Razborov [8] showed that MAJ ◦ LTF =

MAJ ◦MAJ. Thus, OR ◦ EQ ∈ MAJ ◦MAJ.

Theorem 36.

L̂DL * PL∞.

Proof. It is easy to see that any symmetric function (a function that only
depends on the Hamming weight of the input) can be computed by linear
sized linear decision lists where query functions are majority: the linear
threshold queries can be used to determine the Hamming weight of the input,
and the decision list outputs the appropriate answer at each decision.

Bruck [2] showed that the Complete Quadratic function, which is a sym-
metric function, is not in PL∞. This function yields the required separa-
tion.

Combining Corollary 34 and Theorem 36 yields more incomparability
results.

Corollary 37. For any class A ∈ {L̂DL, LDL} and B ∈ {PL1,PL∞}, the
classes A and B are incomparable. In other words, all spectral classes in
the first column (see Figure 1) are incomparable to all classes in the third
column.

Finally, as noted in [18], LDL is contained in LTF ◦ LTF. The same argu-

ment shows that L̂DL is contained in LTF ◦MAJ. Corollary 34 implies that
these containments are strict.

5.3 Proving Theorem 33

As mentioned earlier, it is implicit from a recent result of Chattopadhyay
et al. [5] that PL1 * LDL. We first define the function used to achieve the
separation and introduce some background required.

Definition 38 (SINK). Consider a complete undirected graph on n vertices
with variables xi,j for i < j ∈ [n]. The variable xi,j assigns a direction to the
edge between vi and vj in the following way: xi,j = 0 implies the edge points
towards vi, and xi,j = 1 implies the edge points towards vj. The function
SINK computes whether or not there is a sink in the graph. In other words,

SINK(x) = 1 ⇐⇒ ∃i ∈ [n] such that all edges adjacent to i are incoming.

13



We now define the notion of projections of strings to certain subsets of

coordinates. Let X ∈ {0, 1}(n2). For any vertex vi, let Evi be the set of n− 1
coordinates corresponding to the n− 1 edges adjacent to vi. Let Xvi denote
the (n− 1)-bit string obtained by projecting X to the coordinates in Evi .

Definition 39 (Entropy). Let X be a discrete random variable. The entropy
H(X) is defined as

H(X) =
∑

s∈supp(X)

Pr[X = s] log
1

Pr[X = s]
.

Fact 40 (Folklore). supp(X) = k =⇒ H(X) ≤ log k, with equality if and
only if X is uniform.

Lemma 41 (Shearer’s Lemma [6] (see also [15])). Let X = (X1, . . . , Xt) be
a random variable. If S is a set of projections such that for each i ∈ [t], i
appears in at least k projections, then

∑
P∈S[HXP

] ≥ kH(X).

Chattopadhyay et al. [5] introduced and used the function SINK ◦ XOR

to refute the long-standing Log-Approximate-Rank Conjecture, along with
several other conjectures. They observe that SINK ◦ XOR ∈ PL1 [5, Theo-
rem 1.10].

Lemma 42 (Part 1 of Theorem 1.10 in [5]).

SINK ◦ XOR ∈ PL1.

It is also implicit from their work that SINK◦XOR does not contain large
monochromatic rectangles under the uniform distribution. More precisely,
plugging the value ǫ = 0 in [5, Claim 6.4] implies that any monochromatic
rectangle in the communication matrix of SINK◦XOR on 2

(
n
2

)
variables must

have weight at most 22(
n

2
)−Ω(n). However, we do not require the full power

of their proof for our purpose, and therefore produce a self-contained proof
below.

Theorem 43. Any monochromatic rectangle R = A×B in the communica-

tion matrix of SINK ◦ XOR must satisfy |R| ≤ 22(
n

2
)−n+logn+1.

Proof. It is easy to verify that the probability of a 1-input under the uniform
distribution equals n/2n−1. Hence if R is a 1-monochromatic rectangle, then

|R| ≤ 22(
n

2
) × n/2n−1, as claimed in the theorem.

Let R = A × B be a 0-monochromatic rectangle. Consider the random
variable XY (X concatenated with Y ) over 2

(
n
2

)
coordinates, when X and

14



Y are sampled uniformly from A and B, respectively. From Fact 40 we have
H(XY ) = log |R|.

Let S be the set of projections S := {Evi | 1 ≤ i ≤ n}. Then each
coordinate appears in exactly two projections. Hence by Lemma 41,

2H(XY ) ≤
∑

P∈S

H((XY )P ) =
∑

i∈[n]

H((XY )vi).

We now bound the entropy in XY restricted to each of the projections. Let
Avi and Bvi be the projections of A and B on Evi , respectively. Since there
is no input in R which is a sink, we have |supp(Avi)| + |supp(Bvi)| ≤ 2n−1.
(Each string in Avi rules out one string from Bvi and vice versa.) By the
AM-GM inequality, |supp(Avi)| · |supp(Bvi)| ≤ 22n−4. Hence Fact 40 implies
that H((XY )vi) ≤ 2n− 4.

Returning to our use of Lemma 41, we obtain

2H(XY ) ≤
∑

P∈S

H((XY )P ) ≤ n(2n− 4)

=⇒ H(XY ) ≤ 2

(
n

2

)
− n

=⇒ |R| ≤ 22(
n

2
)−n.

Along with Lemma 17, Theorem 43 shows that any linear decision list
computing the function SINK ◦XOR on 2

(
n
2

)
variables (which is in PL1) must

have size at least 2n/2. This completes the proof of Theorem 33.
Clearly, SINK◦XOR also witnesses MAJ◦MAJ 6⊆ LDL. However, the lower

bound against LDL is again only subexponential.

6 Conclusions

We show that MAJ ◦ XOR cannot be computed by polynomial sized linear
decision lists, resolving an open question of Turán and Vatan [18]. We also
show that several spectral classes and polynomial threshold function classes
are incomparable to linear decision lists. Figure 1 depicts where the class
LDL, and its small-weight version L̂DL, fit in the low depth threshold circuit
hierarchy.

A subset of the authors [4] showed that a decision list of exact threshold
functions cannot be computed by LTF ◦MAJ. A natural question that arises
is whether LDL is incomparable with LTF ◦ MAJ. (Note that the function

15



from [4] separating LTF ◦ LTF from LTF ◦MAJ does not settle this question
as it is also not in LDL – it contains the function OR ◦ EQ as a subfunction.)

Another natural question is whether L̂DL is strictly contained in LDL;
that is, whether weights matter in linear decision lists.
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