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Abstract

Polynomial factoring has famous practical algorithms over fields– finite, rational &
p-adic. However, modulo prime powers it gets hard as there is non-unique factorization
and a combinatorial blowup ensues. For example, x2 + p mod p2 is irreducible, but
x2 + px mod p2 has exponentially many factors! We present the first randomized
poly(deg f, log p) time algorithm to factor a given univariate integral f(x) modulo pk,
for a prime p and k ≤ 4. Thus, we solve the open question of factoring modulo p3 posed
in (Sircana, ISSAC’17).

Our method reduces the general problem of factoring f(x) mod pk to that of root
finding in a related polynomial E(y) mod 〈pk, ϕ(x)`〉 for some irreducible ϕ mod p.
We could efficiently solve the latter for k ≤ 4, by incrementally transforming E(y).
Moreover, we discover an efficient and strong generalization of Hensel lifting to lift
factors of f(x) mod p to those mod p4 (if possible). This was previously unknown, as
the case of repeated factors of f(x) mod p forbids classical Hensel lifting.

2012 ACM CCS concept: Theory of computation– Algebraic complexity theory, Problems,
reductions and completeness; Computing methodologies– Algebraic algorithms, Hybrid
symbolic-numeric methods; Mathematics of computing– Number-theoretic computations.
Keywords: efficient, randomized, factor, local ring, prime-power, Hensel lift, roots, p-adic.

1 Introduction

Polynomial factorization is a fundamental question in mathematics and computing. In the
last decades, quite efficient algorithms have been invented for various fields, e.g., over rationals
[LLL82], number fields [Lan85], finite fields [Ber67, CZ81, KU11], p-adic fields [Chi87, CG00],
etc. Being a problem of huge theoretical and practical importance, it has been very well
studied; for more background refer to surveys, e.g., [Kal92, vzGP01, FS15].

The same question over composite characteristic rings is believed to be computationally
hard, e.g. it is related to integer factoring [Sha93, Kli97]. What is less understood is
factorization over a local ring; especially, ones that are the residue class rings of Z or Fq[z].
A natural variant is as follows.
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Problem: Given a univariate integral polynomial f(x) and a prime power pk, with p prime
and k ∈ N; output a nontrivial factor of f mod pk in randomized poly(deg f, k log p) time.

Note that the polynomial ring (Z/〈pk〉)[x] is not a unique factorization domain. So f(x)
may have many, usually exponentially many, factorizations. For example, x2 + px has an
irreducible factor x+ αp mod p2 for each α ∈ [p] and so x2 + px has exponentially many (wrt
log p) irreducible factors modulo p2. This leads to a total breakdown in the classical factoring
methods.

We give the first randomized polynomial time algorithm to non-trivially factor (or test for
irreducibility) a polynomial f(x) mod pk, for k ≤ 4.

Additionally, when f mod p is power of an irreducible, we provide (& count) all the lifts
mod pk (k ≤ 4) of any factor of f mod p, in randomized polynomial time.

Usually, one factors f(x) mod p and tries to “lift” this factorization to higher powers of
p. If the former is a coprime factorization then Hensel lifting [Hen18] helps us in finding
a non-trivial factorization of f(x) mod pk for any k. But, when f(x) mod p is power of an
irreducible then it is not known how to lift to some factorization of f(x) mod pk. To illustrate
the difficulty let us see some examples (also see [vzGH96]).

Example. [coprime factor case] Let f(x) = x2 + 10x+ 21. Then f ≡ x(x+ 1) mod 3 and
Hensel lemma lifts this factorization uniquely mod 32 as f(x) ≡ (x+ 1 · 3)(x+ 1 + 2 · 3) ≡
(x+ 3)(x+ 7) mod 9. This lifting extends to any power of 3.

Example. [power of an irreducible case] Let f(x) = x3 + 12x2 + 3x + 36 and we want to
factor it mod 33. Clearly, f ≡ x3 mod 3. By brute force one checks that, the factorization f ≡
x ·x2 mod 3 lifts to factorizations mod 32 as: x(x2+3x+3), (x+6)(x2+6x+3), (x+3)(x2+3).
Only the last one lifts to mod 33 as: (x+3)(x2+9x+3), (x+12)(x2+3), (x+21)(x2+18x+3).

So the big issue is: efficiently determine which factorization out of the exponentially many
factorizations mod pj will lift to mod pj+1?

1.1 Previously known results

Using Hensel lemma it is easy to find a non-trivial factor of f mod pk when f mod p has two
coprime factors. So the hard case is when f mod p is power of an irreducible polynomial.
The first resolution in this case was achieved by [vzGH98] assuming that k is “large”. They
assumed k to be larger than the maximum power of p dividing the discriminant of the integral
f . Under this assumption (i.e. k is large), they showed that factorization modulo pk is well
behaved and it corresponds to the unique p-adic factorization of f (refer p-adic factoring
[Chi87, Chi94, CG00]). To show this, they used an extended version of Hensel lifting (also
discussed in [BS86]). Using this observation they could also describe all the factorizations
modulo pk, in a compact data structure. The complexity of [vzGH98] was improved by
[CL01].

The related questions of root finding and root counting of f mod pk are also of classical
interest, see [NZM13, Apo13]. A recent result by [BLQ13, Cor.24] resolves these problems in
randomized polynomial time. Again, it describes all the roots modulo pk, in a compact data
structure.
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Root counting has interesting applications in arithmetic algebraic-geometry, eg. to compute
Igusa zeta function of a univariate integral polynomial [ZG03, DH01]. Partial derandomization
of root counting algorithm has been obtained by [CGRW18, KRRZ18] last year; however, a
deterministic poly-time algorithm is still unknown.

Going back to factoring f mod pk, [vzGH96] discusses the hurdles when k is small. The
factors could be completely unrelated to the corresponding p-adic factorization, since an
irreducible p-adic polynomial could reduce mod pk when k is small. We give an example from
[vzGH96].

Example. Polynomial f(x) = x2 + 3k is irreducible over Z/〈3k+1〉 and so over 3-adic field.
But, it is reducible mod 3k as f ≡ x2 mod 3k.

They also discussed that the distinct factorizations are completely different and not nicely
related, unlike the case when k is large. An example taken from [vzGH96] is,

Example. f = (x2 +243)(x2 +6) is an irreducible factorization over Z/〈36〉. There is another
completely unrelated factorization f = (x+ 351)(x+ 135)(x2 + 243x+ 249) mod 36.

Many researchers tried to solve special cases, especially when k is constant. The only
successful factoring algorithm is by [Săl05] over Z/〈p2〉; it is actually related to Eisenstein
criterion for irreducible polynomials. The next case, to factor modulo p3, is unsolved and
was recently highlighted in [Sir17].

1.2 Our results

We saw that even after the attempts of last two decades we do not have an efficient algorithm
for factoring mod p3. Naturally, we would like to first understand the difficulty of the problem
when k is constant. In this direction we make significant progress by devising a unified
method which solves the problem when k = 2, 3 or 4 (and sketch the obstructions we face
when k ≥ 5). Our first result is,

Theorem 1. Let p be prime, k ≤ 4 and f(x) be a univariate integral polynomial. Then,
f(x) mod pk can be factored (& tested for irreducibility) in randomized poly(deg f, log p) time.

Remarks. 1) The procedure to factorize f mod p4 also factorizes f mod p3 and f mod p2

(and tests for irreducibility) in randomized poly(deg f, log p) time. This solves the open
question of efficiently factoring f mod p3 [Sir17] and gives a more general proof for factoring
f mod p2 than the one in [Săl05].

2) Our method can as well be used to factor a ‘univariate’ polynomial f ∈
(
Fp[z]/〈ψk〉

)
[x],

for k ≤ 4 and irreducible ψ(z) mod p, in randomized poly(deg f, degψ, log p) time.

Next, we do more than just factoring f modulo pk for k ≤ 4. It is well known that Hensel
lemma efficiently gives two (unique) coprime factors of f(x) modulo any prime power pk,
given two coprime factors of f mod p; but it fails to lift when f is power of an irreducible
polynomial modulo p. We show that our method works in this case to give all the lifts
g(x) mod pk (possibly exponentially many) of any given factor g̃ of f mod p, for k ≤ 4.

Theorem 2. Let p be prime, k ≤ 4 and f(x) be a univariate integral polynomial such that
f mod p is a power of an irreducible polynomial. Let g̃ be a given factor of f mod p. Then,
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in randomized poly(deg f, log p) time, we can compactly describe (& count) all possible factors
of f(x) mod pk which are lifts of g̃ (or report that there is none).

Remark. Theorem 2 can be seen as a significant generalization of Hensel lifting method
(Lemma 16) to Z/〈pk〉, k ≤ 4. To lift a factor f1 of f mod p, Hensel lemma relies on a
cofactor f2 which is coprime to f1. Our method needs no such assumption and it directly
lifts a factor g̃ of f mod p to (possibly exponentially many) factors g(x) mod pk.

1.3 Proof technique– Root finding over local rings

Our proof involves two main techniques which may be of general interest.

Technique 1: Known factoring methods mod p work by first reducing the problem to that
of root finding mod p. In this work, we efficiently reduce the problem of factoring f(x)
modulo the principal ideal 〈pk〉 to that of finding roots of some polynomial E(y) ∈ (Z[x])[y]
modulo a bi-generated ideal 〈pk, ϕ(x)`〉, where ϕ(x) is an irreducible factor of f(x) mod p.
This technique works for all k ≥ 1.

Technique 2: Next, we find a root of the equation E(y) ≡ 0 mod 〈pk, ϕ(x)`〉, assuming
k ≤ 4. With the help of the special structure of E(y) we will efficiently find all the roots y
(possibly exponentially many) in the local ring Z[x]/〈pk, ϕ(x)`〉.

It remains open whether this technique extends to k = 5 and beyond (even to find a single
root of the equation). The possibility of future extensions of our technique is discussed in
Appendix D.

1.4 Proof overview

Proof idea of Theorem 1: Firstly, assume that the given degree d integral polynomial f
satisfies f(x) ≡ ϕe mod p for some ϕ(x) ∈ Z[x] which is irreducible mod p. Otherwise, using
Hensel lemma (Lemma 16) we can efficiently factor f mod pk.

Any factor of such an f mod pk must be of the form (ϕa−py) mod pk, for some 1 ≤ a < e
and y ∈ (Z/〈pk〉)[x]. In Theorem 8, we first reduce the problem of finding such a factor
(ϕa−py) of f mod pk to finding roots of some E(y) ∈ (Z[x])[y] in the local ring Z[x]/〈pk, ϕak〉.
This is inspired by the p-adic power series expansion of the quotient f/(ϕa − py). On going
mod pk we get a polynomial in y of degree (k − 1); which we want to be divisible by ϕak.

The root y of E(y) mod 〈pk, ϕak〉 can be further decomposed into coordinates y0, y1, . . .,
yk−1 ∈ Fp[x]/〈ϕak〉 such that y =: y0 + py1 + . . . + pk−1yk−1 mod 〈pk, ϕak〉. When we take
k = 4, it turns out that the root y only depends on the coordinates y0 and y1 (i.e. y2, y3 can
be picked arbitrarily).

Next, we reduce the problem of root finding of E(y0 + py1) in the ring Z[x]/〈p4, ϕ4a〉 to
root finding in characteristic p; of some E ′(y0, y1) in the ring Fp[x]/〈ϕ4a〉 (Lemma 11). We
take help of a subroutine Root-Find given by [BLQ13] which can efficiently find all the
roots of a univariate g(y) in the ring Z/〈pj〉. We need a slightly generalized version of it, to
find all the roots of a given g(y) in the ring Fp[x]/〈ϕ(x)j〉 (Appendix B).
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Note that y0, y1 are in the ring Fp[x]/〈ϕ4a〉 and so they can be decomposed as y0 =:
y0,0 + ϕy0,1 + . . . + ϕ4a−1y0,4a−1 and y1 =: y1,0 + ϕy1,1 + . . . + ϕ4a−1y1,4a−1, with all yi,j’s in
the field Fp[x]/〈ϕ〉.

To get E ′(y0, y1) mod 〈p, ϕ4a〉 the idea is: to first divide by p2, and then to go modulo
the ideal 〈p, ϕ4a〉. Apply Algorithm Root-Find to solve E(y0 + py1)/p

2 ≡ 0 mod 〈p, ϕ4a〉.
This allows us to fix some part of y0, say a0 ∈ Fp/〈ϕ4a〉, and we can replace it by a0 + ϕi0y0,
i0 ≥ 1. Thus, p3|E(a0 + ϕi0y0 + py1) mod 〈p4, ϕ4a〉 and we divide out by this p3 (& change
the modulus to 〈p, ϕ4a〉). In Lemma 11 we show that when we go modulo the ideal 〈p, ϕ4a〉
(to find a0), we only need to solve a univariate in y0 using Root-Find. So, we only need to
fix some part of y0, that we called a0, and y1 is irrelevant. Finally, we get E ′(y0, y1) such that
E ′(y0, y1) := E(a0 + ϕi0y0 + py1)/p

3 mod 〈p, ϕ4a〉. Importantly, the process yields at most
two possibilities of E ′ (resp. a0) to deal with.

Lemma 11 also shows that the bivariate E ′(y0, y1) is a special one of the form E ′(y0, y1) ≡
E1(y0) +E2(y0)y1 mod 〈p, ϕ4a〉, where E1(y0) ∈ (Fp[x]/〈ϕ4a〉)[y0] is a cubic univariate polyno-
mial and E2(y0) ∈ (Fp[x]/〈ϕ4a〉)[y0] is a linear univariate polynomial. We exploit this special
structure to represent y1 as a rational function of y0, i.e. y1 ≡ −E1(y0)/E2(y0) mod 〈p, ϕ4a〉.
The important issue is that, we can calculate y1 only when on some specialization y0 =
a0, the division by E2(a0) is well defined. So what we do is, we guess each value of
0 ≤ r ≤ 4a and ensure that the valuation (wrt ϕ powers) of E1(y0) is at least r but
that of E2(y0) is exactly r. Once we find such a y0, we can efficiently compute y1 as
y1 ≡ −(E1(y0)/ϕ

r)/(E2(y0)/ϕ
r) mod 〈p, ϕ4a−r〉.

To find y0, we find common solution of the two equations: E1(y0) ≡ E2(y0) ≡ 0 mod
〈p, ϕr〉, for each guessed value r, using Algorithm Root-Find. Since the polynomial
E2(y0) is linear, it is easy for us to filter all y0’s for which valuation of E2(y0) is exactly
r (Lemma 13). Thus, we could efficiently find all (y0, y1) pairs that satisfy the equation
E ′(y0, y1) ≡ 0 mod 〈p, ϕ4a〉.
Proof idea of Theorem 2: If f ≡ ϕe mod p then any lift g(x) of a factor g̃(x) ≡ ϕa mod p
of f mod p will be of the form g ≡ (ϕa − py) mod pk. So basically we want to find all the y’s
mod pk−1 that appear in the proof idea of Theorem 1 above. This can be done easily, because
Algorithm Root-Find (Appendix B) [BLQ13] describes all possible y0’s in a compact data
structure. Moreover, using this, a count of all y’s could be provided as well.

2 Preliminaries

Let R(+, .) be a ring and S be a non-empty subset of R. The product of the set S with a
scalar a ∈ R is defined as aS := {as | s ∈ S}. Similarly, the sum of a scalar u ∈ R with the
set S is defined as u+ S := {u+ s | s ∈ S}. Note that the product and the sum operations
used inside the set are borrowed from the underlying ring R. Also note that if S is the empty
set then so are aS and u+ S for any a, u ∈ R.

Representatives. The symbol ‘*’ in a ring R, wherever appears, denotes all of ring R.
For example, suppose R = Z/〈pk〉 for a prime p and a positive integer k. In this ring, we will
use the notation y = y0 + py1 + . . .+ piyi + pi+1∗, where i+ 1 < k and each yj ∈ R/〈p〉, to
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denote a set Sy ⊆ R such that

Sy = {y0 + . . .+ piyi + pi+1yi+1 + . . .+ pk−1yk−1 | ∀yi+1, . . . , yk−1 ∈ R/〈p〉}.

Notice that the number of elements in R represented by y is |Sy| = pk−i−1.
We will sometimes write the set y = y0 +py1 + . . .+piyi+p

i+1∗ succinctly as y = v+pi+1∗,
where v ∈ R stands for v = y0 + py1 + . . .+ piyi.

In the following sections, we will add and multiply the set {∗} with scalars from the ring
R. Let us define these operations as follows (∗ is treated as an unknown)

• u+ {∗} := {u+ ∗} and u{∗} := {u∗}, where u ∈ R.

• c+ {a+ b∗} = {(a+ c) + b∗} and c{a+ b∗} = {ac+ bc∗}, where a, b, c ∈ R.

Another important example of the ∗ notation: Let R = Fp[x]/〈ϕ(x)k〉 for a prime p and
an irreducible ϕ mod p. In this ring, we use the notation y = y0 + ϕy1 + . . .+ ϕiyi + ϕi+1∗,
where i+ 1 < k and each yj ∈ R/〈ϕ〉, to denote a set Sy ⊆ R such that

Sy = {y0 + . . .+ ϕiyi + ϕi+1yi+1 + . . .+ ϕk−1yk−1 | ∀yi+1, . . . , yk−1 ∈ R/〈ϕ〉}.

Zerodivisors. Let R[x] be the ring of polynomials over R = Z/〈pk〉. The following
lemma about zero divisors in R[x] will be helpful.

Lemma 3. A polynomial f ∈ R[x] is a zero divisor iff f ≡ 0 mod p. Consequently, for any
polynomials f, g1, g2 ∈ R[x] and f 6≡ 0 mod p, f(x)g1(x) = f(x)g2(x) implies g1(x) = g2(x).

Proof. If f ≡ 0 mod p then f(x)pk−1 is zero, and f is a zero divisor.
For the other direction, let f 6≡ 0 mod p and assume f(x)g(x) = 0 for some non-zero

g ∈ R[x]. Let

• i be the biggest integer such that the coefficient of xi in f is non-zero modulo p,

• and j be the biggest integer such that the coefficient of xj in g has minimum valuation
with respect to p.

Then, the coefficient of xi+j in f · g has same valuation as the coefficient of xj in g, implying
that the coefficient is nonzero. This contradicts the assumption f(x)g(x) = 0.

The consequence follows because f 6≡ 0 mod p implies that f cannot be a zero divisor.

Quotient ideals. We define the quotient ideal (analogous to division of integers) and
look at some of its properties.

Definition 4 (Quotient Ideal). Given two ideals I and J of a commutative ring R, we define
the quotient of I by J as,

I : J := {a ∈ R | aJ ⊆ I}.

It can be easily verified that I : J is an ideal. Moreover, we can make the following
observations about quotient ideals.
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Claim 5 (Cancellation). Suppose I is an ideal of ring R and a, b, c are three elements in R.
By definition of quotient ideals, ca ≡ cb mod I iff a ≡ b mod I : 〈c〉.

Claim 6. Let p be a prime and ϕ ∈ (Z/〈pk〉)[x] be such that ϕ 6≡ 0 mod p. Given an ideal
I := 〈pl, φm〉 of Z[x],

1. I : 〈pi〉 = 〈pl−i, φm〉, for i ≤ l, and

2. I : 〈φj〉 = 〈pl, φm−j〉, for j ≤ m.

Proof. We will only prove part (1), as proof of part (2) is similar. If c ∈ 〈pl−i, ϕm〉 then there
exists c1, c2 ∈ Z[x], such that, c = c1p

l−i + c2ϕ
m. Multiplying by pi,

pic = c1p
l + c2p

iϕm ∈ I ⇒ c ∈ I : 〈pi〉.

To prove the reverse direction, if c ∈ I : 〈pi〉 then there exists c1, c2 ∈ Z[x], such that,
pic = c1p

l + c2ϕ
m. Since i ≤ l and p 6 | ϕ, we know pi|c2. So,

c = c1p
l−i + (c2/p

i)ϕm ⇒ c ∈ 〈pl−i, φm〉.

Lemma 7 (Compute quotient). Given a polynomial ϕ ∈ Z[x] not divisible by p, define I to be
the ideal 〈pl, φm〉 of Z[x]. If g(y) ∈ (Z[x])[y] is a polynomial such that g(y) ≡ 0 mod 〈p, φm〉,
then p|g(y) mod I and g(y)/p mod I : 〈p〉 is efficiently computable.

Proof. The equation g(y) ≡ 0 mod 〈p, φm〉 implies g(y) = pc1(y) + ϕmc2(y) for some polyno-
mials c1(y), c2(y) ∈ Z[x][y]. Going modulo I, g(y) ≡ pc1(y) mod I. Hence, p|g(y) mod I and
g(y)/p ≡ c1(y) mod I : 〈p〉 (Claim 5).

If we write g in the reduced form modulo I, then the polynomial g(y)/p can be obtained
by dividing each coefficient of g(y) mod I by p.

3 Main Results: Proof of Theorems 1 and 2

Our task is to factorize a univariate integral polynomial f(x) ∈ Z[x] of degree d modulo a
prime power pk. Without loss of generality, we can assume that f(x) 6≡ 0 mod p. Otherwise,
we can efficiently divide f(x) by the highest power of p possible, say pl, such that f(x) ≡
plf̃(x) mod pk and f̃(x) 6≡ 0 mod p. In this case, it is equivalent to factorize f̃ instead of f .

To simplify the input further, write f mod p (uniquely) as a product of powers of coprime
irreducible polynomials. If there are two coprime factors of f , using Hensel lemma (Lemma
16), we get a non-trivial factorization of f modulo pk. So, we can assume that f is a power of
a monic irreducible polynomial ϕ ∈ Z[x] modulo p. In other words, we can efficiently write
f ≡ ϕe + pl mod pk for a polynomial l in (Z/〈pk〉)[x]. We have e · degϕ ≤ deg f , for the
integral polynomials f and ϕ.
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3.1 Factoring to Root-finding

By the preprocessing above, we only need to find factors of a polynomial f such that
f ≡ ϕe + pl mod pk, where ϕ is an irreducible polynomial modulo p. Up to multiplication
by units, any nontrivial factor h of f has the form h ≡ ϕa − py, where a < e and y is a
polynomial in (Z/〈pk〉)[x].

Let us denote the ring Z[x]/〈pk, ϕak〉 by R. Also, denote the ring Z[x]/〈p, ϕak〉 by R0. We
define an auxiliary polynomial E(y) ∈ R[y] as

E(y) := f(x)(ϕa(k−1) + ϕa(k−2)(py) + . . .+ ϕa(py)k−2 + (py)k−1).

Our first step is to reduce the problem of factoring f(x) mod pk to the problem of finding
roots of the univariate polynomial E(y) in R. Thus, we convert the problem of finding factors
of f(x) ∈ Z[x] modulo a principal ideal 〈pk〉 to root finding of a polynomial E(y) ∈ (Z[x])[y]
modulo a bi-generated ideal 〈pk, ϕak〉.

Theorem 8 (Reduction theorem). Given a prime power pk; let f(x), h(x) ∈ Z[x] be two
polynomials of the form f(x) ≡ ϕe + pl mod pk and h(x) ≡ ϕa − py mod pk. Here y, l are
elements of (Z/〈pk〉)[x] and a ≤ e. Then, h divides f modulo pk if and only if

E(y) = f(x)(ϕa(k−1) + ϕa(k−2)(py) + . . .+ ϕa(py)k−2 + (py)k−1) ≡ 0 mod 〈pk, ϕak〉.

Proof. Let Q denote the ring of fractions of the ring (Z/〈pk〉)[x]. Since ϕ is not a zero divisor,
(E(y)/ϕak) ∈ Q.

We first prove the reverse direction. If E(y) ≡ 0 mod 〈pk, ϕak〉, then (E(y)/ϕak) is a valid
polynomial over (Z/〈pk〉)[x]. Multiplying h with (E(y)/ϕak) mod pk, we write,

(ϕa − py)((f/ϕak)Σk−1
i=0ϕ

a(k−1−i)(py)i) ≡ (f/ϕak)(ϕak − (py)k) ≡ f · ϕak/ϕak ≡ f mod pk.

Hence, h divides f modulo pk.

For the forward direction, assume that there exists some g(x) ∈ (Z/〈pk〉)[x], such that,
f(x) ≡ h(x)g(x) mod pk. We get two factorizations of f in Q,

f(x) = h(x)g(x) and f(x) = h(x)(E(y)/ϕak).

Subtracting the first equation from the second one,

h(x)
(
g(x)− (E(y)/ϕak)

)
= 0.

Notice that h(x) is not a zero divisor in (Z/〈pk〉)[x] (by Lemma 3) and is thus invertible
in Q. So, E(y)/ϕak = g(x) in Q. Since g(x) is in (Z/〈pk〉)[x], we deduce the equivalent
divisibility statement: E(y) ≡ 0 mod 〈pk, ϕak〉.

The following two observations simplify our task of finding roots y of polynomial E(y).
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• First, due to symmetry, it is enough to find factors h ≡ ϕa mod p with a ≤ e/2. The
assertion follows because f ≡ hg mod pk implies, at least one of the factor (say h) must
be of the form ϕa mod p for a ≤ e/2. By Lemma 3, for a fixed h ≡ (ϕa − py) mod pk,
there is a unique g ≡ (ϕe−a − py′) mod pk such that f ≡ hg mod pk. So, to find g, it is
enough to find h.

• Second, observe that any root y ∈ R (of E(y) ∈ R[y]) can be seen as y = y0 + py1 +
p2y2 + . . . + pk−1yk−1, where each yi ∈ R0 for all i in {0, . . . , k − 1}. The following
lemma decreases the required precision of root y.

Lemma 9. Let y = y0 + py1 + p2y2 + . . . + pk−1yk−1 be a root of E(y), where k ≥ 2 and
a ≤ e/2. Then, all elements of set y = y0 + py1 + p2y2 + . . .+ pk−3yk−3 + pk−2∗ are also roots
of E(y).

Proof. Notice that the variable y is multiplied with p in E(y), implying yk−1 is irrelevant.
Similar argument is applicable for the variable yk−2 in any term of the form (py)i for i ≥ 2.
The only remaining term containing yk−2 is fϕa(k−2)(py). The coefficient of yk−2 in this term
is ϕa(k−2)fpk−1. This coefficient vanishes modulo 〈pk, ϕak〉 too, because

ϕa(k−2)f ≡ ϕa(k−2)ϕe ≡ ϕakϕe−2a ≡ 0 mod 〈p, ϕak〉 .

Root-finding modulo a principal ideal. Finally, we state a slightly modified version
of the theorem from [BLQ13, Cor.24], showing that all the roots of a polynomial g(y) ∈ R0[y]
can be efficiently described. They gave their algorithm to find (all) roots in Z/〈pn〉; we modify
it in a straightforward way to find (all) roots in Fp[x]/〈ϕak〉 = R0 (Appendix B). Any root in
R0 can be written as y = y0 + ϕy1 + · · ·+ ϕak−1yak−1, where each yj is in the field R0/〈ϕ〉.

Let g(y) be a polynomial in R[y], then a set y = y0 + ϕy1 + . . . + ϕiyi + ϕi+1∗ will be
called a representative root of g iff

• All elements in y = y0 + ϕy1 + . . .+ ϕiyi + ϕi+1∗ are roots of g.

• Not all elements in y′ = y0 + ϕy1 + . . .+ ϕi−1yi−1 + ϕi∗ are roots of g.

We will sometimes represent the set of roots, y = y0 +ϕy1 + . . .+ϕiyi +ϕi+1∗, succinctly
as y = v + ϕi+1∗, where v ∈ R stands for y = y0 + ϕy1 + . . .+ ϕiyi. Such a pair, (v, i+ 1),
will be called a representative pair.

Theorem 10. [BLQ13, Cor.24] Given a bivariate g(y) ∈ R0[y] where R0 = Z[x]/〈p, ϕak〉,
let Z ⊆ R0 be the root set of g(y). Then Z can be expressed as the disjoint union of at most
degy(g) many representative pairs (a0, i0) (a0 ∈ R0 and i0 ∈ N).

These representative pairs can be found in randomized poly(degy(g), log p, ak degϕ) time.

For completeness, Algorithm Root-Find(g,R0) is given in Appendix B.

We will fix k = 4 for the rest of this section. Similar techniques (even simpler) work for
k = 3 and k = 2. The issues with this approach for k > 4 will be discussed in Appendix D.
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3.2 Reduction to root-finding modulo a principal ideal of Fp[x]

In this subsection, the task to find roots of E(y) modulo the bi-generated ideal 〈p4, ϕ4a〉 of
Z[x] will be reduced to finding roots modulo the principal ideal 〈ϕ4a〉 (of Fp[x]).

Let us consider the equation E(y) ≡ 0 mod 〈p4, ϕ4a〉. We have,

f(ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3) ≡ 0 mod 〈p4, ϕ4a〉 . (1)

Using Lemma 9, we can assume y = y0 + py1,

f(ϕ3a + ϕ2ap(y0 + py1) + ϕap2(y20 + 2py0y1) + (py0)
3) ≡ 0 mod 〈p4, ϕ4a〉 . (2)

The idea is to first solve this equation modulo 〈p3, ϕ4a〉. Since f ≡ ϕe mod p, e ≥ 2a,
variable y1 is redundant while solving this equation modulo p3. Following lemma finds all
representative pairs (a0, i0) for y0, such that, E(a0 + ϕi0y0 + py1) ≡ 0 mod 〈p3, ϕ4a〉 for all
y0, y1 ∈ R. Alternatively, we can state this in the polynomial ring R[y0, y1]. Dividing by p3,
we will be left with an equation modulo the principal ideal 〈ϕ4a〉 (of Fp[x]).

Lemma 11 (Reduce to char=p). We efficiently compute a unique set S0 of all representative
pairs (a0, i0), where a0 ∈ R0 and i0 ∈ N, such that,

E((a0 + ϕi0y0) + py1) = p3E ′(y0, y1) mod 〈p4, ϕ4a〉

for a polynomial E ′(y0, y1) ∈ R0[y0, y1] (it depends on (a0, i0)). Moreover,

1. |S0| ≤ 2. If our efficient algorithm fails to find E ′ then Eqn. 2 has no solution.

2. E ′(y0, y1) =: E1(y0)+E2(y0)y1, where E1(y0) ∈ R0[y0] is cubic in y0 and E2(y0) ∈ R0[y0]
is linear in y0.

3. For every root y ∈ R of E(y) there exists (a0, i0) ∈ S0 and (a1, a2) ∈ R×R, such that
y = (a0 + ϕi0a1) + pa2 and E ′(a1, a2) ≡ 0 mod 〈p, ϕ4a〉.

We think of E ′ as the quotient E((a0 + ϕi0y0) + py1)/p
3 in the polynomial ring R0[y0, y1];

and would work with it instead of E in the root-finding algorithm.

Proof. Looking at Eqn. 2 modulo p2,

fϕ2a(ϕa + py0) ≡ 0 mod 〈p2, ϕ4a〉.

Substituting f = ϕe + ph1, we get (ϕe + ph1)(ϕ
3a + ϕ2apy0) ≡ 0 mod 〈p2, ϕ4a〉. Implying,

ph1ϕ
3a ≡ 0 mod 〈p2, ϕ4a〉. Using Claim 6 the above equation implies that,

h1 ≡ 0 mod 〈p, ϕa〉 , (3)

is a necessary condition for y0 to exist.
We again look at Eqn. 2, but modulo p3 now: f(ϕ3a+ϕ2apy0+ϕap2y20) ≡ 0 mod 〈p3, ϕ4a〉.
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Notice that y1 is not present because its coefficient: p2fϕ2a ≡ 0 mod 〈p3, ϕ4a〉. Substi-
tuting f = ϕe + ph1, we get,

(ϕe + ph1)(ϕ
3a + ϕ2apy0 + ϕap2y2o) ≡ 0 mod 〈p3, ϕ4a〉.

Removing the coefficients of y0 which vanish modulo 〈p3, ϕ4a〉,

ϕe+ap2y20 + ϕ3aph1 + ϕ2ap2h1y0 ≡ 0 mod 〈p3, ϕ4a〉.

From Eqn. 3, h1 can be written as ph1,1 + ϕah1,2, so

p2
(
ϕe+ay20 + ϕ3ah1,2y0 + ϕ3ah1,1

)
≡ 0 mod 〈p3, ϕ4a〉.

We can divide by p2ϕ3a using Claim 6 to get an equation modulo ϕa in the ring Fp[x].
This is a quadratic equation in y0. Using Theorem 10, we find the solution set S0 with at
most two representative pairs: for (a0, i0) ∈ S0, every y ∈ a0 + ϕi0 ∗+p∗ satisfies,

E(y) ≡ 0 mod 〈p3, ϕ4a〉 .

In other words, on substituting (a0 + ϕi0y0 + py1) in E(y),

E(a0 + ϕi0y0 + py1) ≡ p3E ′(y0, y1) mod 〈p4, ϕ4a〉,

for a “bivariate” polynomial E ′(y0, y1) ∈ R0[y0, y1]. This sets up the correspondence between
the roots of E and E ′.

Substituting (a0 + ϕi0y0 + py1) in Eqn. 2, we notice that E ′(y0, y1) has the form E1(y0) +
E2(y0)y1 for a linear E2 and a cubic E1.

Finally, this reduction is constructive, because of Lemma 7 and Theorem 10, giving a
randomized poly-time algorithm.

3.3 Finding roots of a special bi-variate E ′(y0, y1) modulo 〈p, ϕ4a〉
The final obstacle is to find roots of E ′(y0, y1) modulo 〈ϕ4a〉 in Fp[x]. The polynomial
E ′(y0, y1) = E1(y0) + E2(y0)y1 is special because E2 ∈ R0[y0] is linear in y0.

For a polynomial u ∈ Fp[x][y] we define valuation valϕ(u) to be the largest r such that
ϕr|u. Our strategy is to go over all possible valuations 0 ≤ r ≤ 4a and find y0, such that,

• E1(y0) has valuation at least r.

• E2(y0) has valuation exactly r.

From these y0’s, y1 can be obtained by ‘dividing’ E1(y0) with E2(y0). The lemma below
shows that this strategy captures all the solutions.

Lemma 12 (Bivariate solution). A pair (u0, u1) ∈ R0 ×R0 satisfies an equation of the form
E1(y0) + E2(y0)y1 ≡ 0 mod 〈p, ϕ4a〉 if and only if valϕ(E1(u0)) ≥ valϕ(E2(u0)).
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Proof. Let r be valϕ(E2(u0)), where r is in the set {0, 1, . . . , 4a}. If valϕ(E1(u0)) ≥ valϕ(E2(u0))
then set u1 ≡ −(E1(u0)/ϕ

r)/(E2(u0)/ϕ
r) mod 〈p, ϕ4a−r〉. The pair (u0, u1) satisfies the re-

quired equation. (Note: If r = 4a then we take u1 = ∗.)
Conversely, if r′ := valϕ(E1(u0)) < valϕ(E2(u0)) ≤ 4a then, for every u1,
valϕ(E1(u0) + E2(u0)u1) = r′ ⇒ E1(u0) + E2(u0)u1 6≡ 0 mod 〈p, ϕ4a〉 .

We can efficiently find all representative pairs for y0, at most three, such that E1(y0) has
valuation at least r (using Theorem 10). The next lemma shows that we can efficiently filter
all y0’s, from these representative pairs, that give valuation exactly r for E2(y0).

Lemma 13 (Reduce to a unit E2). Given a linear polynomial E2(y0) ∈ R0[y0] and an
r ∈ [4a−1], let (b, i) be a representative pair modulo 〈p, ϕr〉, i.e., E2(b+ϕi∗) ≡ 0 mod 〈p, ϕr〉.
Consider the quotient E ′2(y0) := E2(b+ ϕiy0)/ϕ

r.
If E ′2(y0) does not vanish identically modulo 〈p, ϕ〉, then there exists at most one θ ∈

R0/〈ϕ〉 such that E ′2(θ) ≡ 0 mod 〈p, ϕ〉, and this θ can be efficiently computed.

Proof. Suppose E2(b+ϕiy0) ≡ u+vy0 ≡ 0 mod 〈p, ϕr〉. Since y0 is formal, we get valϕ(u) ≥ r
and valϕ(v) ≥ r. We consider the three cases (wrt these valuations),

1. valϕ(u) ≥ r and valϕ(v) = r: E ′2(θ) 6≡ 0 mod 〈p, ϕ〉, for all θ ∈ R0/〈ϕ〉 except θ =
(−u/ϕr)/(v/ϕr) mod 〈p, ϕ〉.

2. valϕ(u) = r and valϕ(v) > r: E ′2(θ) 6≡ 0 mod 〈p, ϕ〉, for all θ ∈ R0/〈ϕ〉.

3. valϕ(u) > r and valϕ(v) > r: E ′2(y0) vanishes identically modulo 〈p, ϕ〉, so this case is
ruled out by the hypothesis.

There is an efficient algorithm to find θ, if it exists; because the above proof only requires
calculating valuations which entails division operations in the ring.

3.4 Algorithm to find roots of E(y)

We have all the ingredients to give the algorithm for finding roots of E(y) modulo ideal
〈p4, ϕ4a〉 of Z[x].
Input: A polynomial E(y) ∈ R[y] defined as E(y) := f(x)(ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3).
Output: A set Z ⊆ R0 and a bad set Z ′ ⊆ R0, such that, for each y0 ∈ Z − Z ′, there are
(efficiently computable) y1 ∈ R0 (Theorem 14) satisfying E(y0 + py1) ≡ 0 mod 〈p4, ϕ4a〉.
These are exactly the roots of E.

Also, both sets Z and Z ′ can be described by O(a) many representatives (Theorem 14).
Hence, a y0 ∈ Z − Z ′ can be picked efficiently.

Algorithm 1 Finding all roots of E(y) in R

1: Given E(y0 + py1), using Lemma 11, get the set S0 of all representative pairs (a0, i0),
where a0 ∈ R0 and i0 ∈ N, such that p3|E((a0 + ϕi0y0) + py1) mod 〈p4, ϕ4a〉.

2: Initialize sets Z = {} and Z ′ = {}; seen as subsets of R0.
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3: for each (a0, i0) ∈ S0 do
4: Substitute y0 7→ a0 + ϕi0y0, let E ′(y0, y1) = E1(y0) + E2(y0)y1 mod 〈p, ϕ4a〉 be the

polynomial obtained from Lemma 11.

5: If E2(y0) 6≡ 0 mod 〈p, ϕ〉 then find (at most one) θ ∈ R0/〈ϕ〉 such that E2(θ) ≡
0 mod 〈p, ϕ〉. Update Z ← Z ∪ (a0 + ϕi0∗) and Z ′ ← Z ′ ∪ (a0 + ϕi0(θ + ϕ∗)).

6: for each possible valuation r ∈ [4a] do
7: Initialize sets Zr = {} and Z

′
r = {}.

8: Call Root-Find(E1, ϕ
r) to get a set S1 of representative pairs (a1, i1) where

a1 ∈ R0 and i1 ∈ N such that E1(a1 + ϕi1y0) ≡ 0 mod 〈p, ϕr〉.
9: for each (a1, i1) ∈ S1 do

10: Analogously consider E ′2(y0) := E2(a1 + ϕi1y0) mod 〈p, ϕ4a〉.
11: Call Root-Find(E ′2, ϕ

r) to get a representative pair (a2, i2) (∵ E ′2 is linear),
where a2 ∈ R0 and i2 ∈ N such that E ′2(a2 + ϕi2y0) ≡ 0 mod 〈p, ϕr〉.

12: if r = 4a then
13: Update Zr ← Zr ∪ (a1 + ϕi1(a2 + ϕi2∗)) and Z

′
r ← Z

′
r ∪ {}.

14: else if E ′2(a2 + ϕi2y0) 6≡ 0 mod 〈p, ϕr+1〉 then
15: Get a θ ∈ R0/〈ϕ〉 (Lemma 13), if it exists, such that E ′2(a2+ϕi2(θ+ϕy0)) ≡

0 mod 〈p, ϕr+1〉. Update Z
′
r ← Z ′r ∪ (a1 + ϕi1(a2 + ϕi2(θ + ϕ∗))).

16: Update Zr ← Zr ∪ (a1 + ϕi1(a2 + ϕi2∗)).
17: end if
18: end for
19: Update Z ← Z ∪ (a0 + ϕi0Zr) and Z ′ ← Z ′ ∪ (a0 + ϕi0Z

′
r).

20: end for
21: end for
22: Return Z and Z ′.

We prove the correctness of Algorithm 1 in the following theorem.

Theorem 14. The output of Algorithm 1 (set Z − Z ′) contains exactly those y0 ∈ R0 for
which there exist some y1 ∈ R0, such that, y = y0 + py1 is a root of E(y) in R. We can easily
compute the set of y1 corresponding to a given y0 ∈ Z − Z ′ in poly(deg f, log p) time.

Thus, we efficiently describe (& exactly count) the roots y = y0 + py1 + p2y2 in R of E(y),
where y0, y1 ∈ R0 are as above and y2 can assume any value from R.

Proof. The algorithm intends to output roots y of equation E(y) ≡ f(x)(ϕ3a + ϕ2a(py) +
ϕa(py)2 + (py)3) ≡ 0 mod 〈p4, ϕ4a〉, where y = y0 + py1 + p2y2 with y0, y1 ∈ R0 and y2 ∈ R.
From Lemma 9, y2 can be kept as ∗, and is independent of y0 and y1.

Using Lemma 11, Algorithm 1 partially fixes y0 from the set S0 and reduces the problem
to finding roots of an E ′(y0, y1) mod 〈p, ϕ4a〉. In other words, if we can find all roots (y0, y1)
of E ′(y0, y1) mod 〈p, ϕ4a〉, then we can find (and count) all roots of E(y) mod 〈p4, ϕ4a〉. This
is accomplished by Step 1. From Lemma 11, |S0| ≤ 2, so loop at Step 3 runs only for a
constant number of times.

Using Lemma 11, E ′(y0, y1) ≡ E1(y0) + E2(y0)y1 mod 〈p, ϕ4a〉 for a cubic polynomial
E1(y0) ∈ R0[y0] and a linear polynomial E2(y0) ∈ R0[y0].
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We find all solutions of E ′(y0, y1) by going over all possible valuations of E2(y0) with
respect to ϕ. The case of valuation 0 is handled in Step 5 and valuation 4a is handled in
Step 12. For the remaining valuations r ∈ [4a− 1], Lemma 12 shows that it is enough to find
(z0, z1) ∈ R0 ×R0 such that ϕr|E1(z0) and ϕr||E2(z0).

Notice that the number of valuations is bounded by 4a = O(deg f). At Step 6, the
algorithm guesses the valuation r of E2(y0) ∈ R0[y0] and subsequent conputation finds all
representative roots b+ ϕi∗ efficiently (using Theorem 10), such that,

E1(b+ ϕiy0) ≡ E2(b+ ϕiy0) ≡ 0 mod 〈p, ϕr〉 .

The representative root b+ϕi∗ is denoted by a1 +ϕi1(a2 +ϕi2∗) in Steps 13 & 16 of Algorithm
1.

Finally, we need to filter out those y0’s for which E2(b + ϕiy0) ≡ 0 mod 〈p, ϕr+1〉. This
can be done efficiently using Lemma 13, where we get a unique θ ∈ R0/〈ϕ〉 for which,

E2(b+ ϕi(θ + ϕy0)) ≡ 0 mod 〈p, ϕr+1〉.

We store partial roots in two sets Zr and Z ′r, where Z ′r contains the bad values filtered
out by Lemma 13 as b+ ϕi(θ + ϕ∗) and Zr contains all possible roots b + ϕi∗. So, the set
Zr − Z ′r contains exactly those elements z0 for which there exists z1 ∈ R0, such that, the pair
(z0, z1) is a root of E ′(y0, y1) mod 〈p, ϕ4a〉.

Note that size of each set S1 obtained at Step 9 is bounded by three using Theorem 10
(E1 is at most a cubic in y0). Again using Theorem 10, we get at most one pair (a2, i2) at
Step 11 for some a2 ∈ R0 and i2 ∈ N (E ′2 is linear in y0).

Now, for a fixed z0 ∈ Zr − Z ′r we can calculate all z1’s by the equation

z1 ≡ z̃1 := −(C(y0)/L(y0)) mod 〈p, ϕ4a−r〉.

Here C(y0) := E1(z0)/ϕ
r mod 〈p, ϕ4a−r〉 and L(y0) := E2(z0)/ϕ

r mod 〈p, ϕ4a−r〉. So, z1 ∈ R0

comes from the set z1 ∈ z̃1 + ϕ4a−r∗. This can be done efficiently in poly(deg f, log p) time.
Finally, sets Z = a0 + ϕi0Zr and Z ′ = a0 + ϕi0Z ′r, for (a0, i0) ∈ S0 and corresponding

valid r ∈ {0, . . . , 4a− 1}, returned by Algorithm 1, describe the y0 for the roots of E(y0 +
py1) mod 〈p4, ϕ4a〉. The number of representatives in each of these sets is O(a), since |S0| ≤ 2
and sizes of Zr and Z ′r are only constant.

Since we can efficiently describe these y0’s and corresponding y1’s, and we know their
precision, we can count all roots y = y0 + py1 + p2∗ ⊆ R of E(y) mod 〈p4, ϕ4a〉.

Remark 1 (Root finding for k = 3 and k = 2). Algorithm 1 can as well be used when
k ∈ {2, 3} (the algorithm simplifies considerably).

For k = 3, by Lemma 9, the only relevant coordinate is y0. Moreover, we can directly call
algorithm Root-Find to find all roots of E(y)/p2.

For k = 2, using Lemma 9 again, we see that there are only two possibilities: y0 = ∗, or
there is no solution. This can be determined by testing whether E(y)/p2 mod 〈ϕ2a〉 exists.
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3.5 Wrapping up Theorems 1 & 2

Proof of Theorem 1. We prove that given a general univariate f(x) ∈ Z[x] and a prime p, a
non-trivial factor of f(x) modulo p4 can be obtained in randomized poly(deg f, log p) time
(or the irreducibility of f(x) mod p4 gets certified).

If f(x) ≡ f1(x)f2(x) mod p, where f1(x), f2(x) ∈ Fp[x] are two coprime polynomials,
then we can efficiently lift this factorization to the ring (Z/〈p4〉)[x], using Hensel lemma
(Lemma 16), to get non-trivial factors of f(x) mod p4.

For the remaining case, f(x) ≡ ϕe mod p for an irreducible polynomial ϕ(x) modulo p. The
question of factoring f mod p4 then reduces to root finding of a polynomial E(y) mod 〈p4, ϕ4a〉
by Reduction theorem (Theorem 8). Using Theorem 14, we get all such roots and hence a
non-trivial factor of f(x) mod p4 is found. If there are no roots y ∈ R of E(y), for all a ≤ e/2,
then the polynomial f is irreducible (by symmetry, if there is a factor for a > e/2 then there
is a factor for a ≤ e/2).

Remark 2. As discussed before, the above proof applies to factorization modulo p3 and p2 as
well (by considering the generality of Theorems 8 & 14). Hence, Theorem 1 also solves the
open question of factoring f modulo p3. In fact, in Appendix C we observe that our efficient
algorithm outputs all the factors of f mod p3 in a compact way.

Proof of Theorem 2. We will prove the theorem for k = 4, case of k < 4 is similar.
We are given a univariate f(x) ∈ Z[x] of degree d and a prime p, such that, f(x) mod p is a

power of an irreducible polynomial ϕ(x). So, f(x) is of the form ϕ(x)e + ph(x) mod p4, for an
integer e ∈ N and a polynomial h(x) ∈ (Z/〈p4〉)[x] of degree ≤ d (also, degϕe ≤ d). By unique
factorization over the ring Fp[x], if g̃(x) is a factor of f(x) mod p then, g̃(x) ≡ ṽϕ(x)a mod p
for a unit ṽ ∈ Fp.

First, we show that it is enough to find all the lifts of g̃(x), such that, g̃(x) ≡ ϕ(x)a mod p
for an a ≤ e. If g̃(x) ≡ ṽϕ(x)a mod p, then any lift has the form g(x) ≡ v(x)(ϕa−py) mod p4

for a unit v(x) ∈ (ṽ + p∗) ⊆ (Z/〈p4〉)[x]. Any such g(x) maps uniquely to a g1(x) :=
ṽ−1g(x) mod p4, which is a lift of ϕ(x)a mod p. So, it is enough to find all the lifts of
ϕ(x)a mod p.

We know that any lift g(x) ∈ (Z/〈p4〉)[x] of g̃(x), which is a factor of f(x), must be
of the form ϕ(x)a − py(x) mod p4 for a polynomial y(x) ∈ (Z/〈p4〉)[x]. By Reduction
theorem (Theorem 8), we know that finding such a factor is equivalent to solving for y in the
equation E(y) ≡ 0 mod 〈p4, ϕ4a〉. By Theorem 14, we can find all such roots y in randomized
poly(d, log p) time, for a ≤ e/2.

If a > e/2 then we replace a by b := e − a, as b ≤ e/2, and solve the equation
E(y) ≡ 0 mod 〈p4, ϕ4b〉 using Theorem 14. This time the factor corresponding to y will be,
g(x) ≡ f/(ϕb − py) ≡ E(y)/ϕ4b mod p4, from Reduction theorem (Theorem 8).

The number of lifts of g̃(x) which divide f mod p4 is the count of y’s that appear above.
This is efficiently computable.
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4 Conclusion

The study of [vzGH98, vzGH96] sheds some light on the behaviour of the factoring problem
for integral polynomials modulo prime powers. It shows that for “large” k the problem is
similar to the factorization over p-adic fields (already solved efficiently by [CG00]). But,
for “small” k the problem seems hard to solve in polynomial time. We do not even know a
practical algorithm.

This motivated us to study the case of constant k, with the hope that this will help us
invent new tools. In this direction, we make significant progress by giving a unified method
to factor f mod pk for k ≤ 4. We also generalize Hensel lifting for k ≤ 4, by giving all
possible lifts of a factor of f mod p, in the classically hard case of f mod p being a power of
an irreducible.

We give a general framework (for any k) to work on, by reducing the factoring in a big
ring to root-finding in a smaller ring. We leave it open whether we can factor f mod p5, and
beyond, within this framework.

We also leave it open, to efficiently get all the solutions of a bivariate equation, in Z/〈pk〉
or Fp[x]/〈ϕk〉, in a compact representation. Surprisingly, we know how to achieve this for
univariate polynomials [BLQ13]. This, combined with our work, will probably give factoring
mod pk, for any k.
Acknowledgements. We thank Vishwas Bhargava for introducing us to the open problem
of factoring f mod p3. N.S. thanks the funding support from DST (DST/SJF/MSA-01/2013-
14). R.M. would like to thank support from DST through grant DST/INSPIRE/04/2014/001799.
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A Preliminaries

The following theorem by Cantor-Zassenhaus [CZ81] efficiently finds all the roots of a given
univariate polynomial over a finite field.

Theorem 15 (Cantor-Zassenhaus). Given a univariate degree d polynomial f(x) over a
given finite field Fq, we can find all the irreducible factors of f(x) in Fq[x] in randomized
poly(d, log q) time.

Currently, it is a big open question to derandomize this algorithm.
Below we state a lemma, originally due to Hensel [Hen18], for I-adic lifting of coprime

factorization for a given univariate polynomial. Over the years, it has acquired many forms
in different texts; the version being presented here is due to Zassenhaus [Zas69].
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Lemma 16 (Hensel lemma & lift [Hen18]). Let R be a commutative ring with unity, and
let I ⊆ R be an ideal. Given a polynomial f(x) ∈ R[x], let g(x), h(x), u(x), v(x) ∈ R[x] be
polynomials, such that, f(x) = g(x)h(x) mod I and g(x)u(x) + h(x)v(x) = 1 mod I.

Then, for any l ∈ N, we can efficiently compute g∗, h∗, u∗, v∗ ∈ R[x] such that

f = g∗h∗ mod I l (called lift of the factorization)

where g∗ = g mod I, h∗ = h mod I and g∗u∗ + h∗v∗ = 1 mod I l.
Moreover, g∗ and h∗ are unique upto multiplication by a unit.

B Root finding modulo ϕ(x)i

Let us denote the ring Fp[x]/〈ϕi〉 by R0 (for an irreducible ϕ(x) mod p). In this section, we
give an algorithm to find all the roots y of a polynomial g(y) ∈ R0[y] in the ring R0. The
algorithm was originally discovered by [BLQ13, Cor.24] to find roots in Z/〈pi〉, we adapt it
here to find roots in R0.

Note that R0/〈ϕj〉 = Fp[x]/〈ϕj〉, for j ≤ i, and R0/〈ϕ〉 =: Fq is the finite field of size
q := pdeg(ϕ mod p). The structure of a root y of g(y) in R0 is

y = y0 + ϕy1 + ϕ2y2 + . . .+ ϕi−1yi−1,

where y ∈ R0 and each yj ∈ Fq for all j ∈ {0, . . . , i− 1}. Also, recall the notation of ∗ (given
in Section 2) and representative roots (in Section 3.1).

The output of this algorithm is simply a set of at most (deg g) many representative roots
of g(y). This bound of deg g is a curious by-product of the algorithm.

Algorithm 2 Root-finding in ring R0

1: procedure Root-find(g(y), ϕi)
2: If g(y) ≡ 0 in R0/〈ϕi〉 return ∗ (every element is a root).
3: Let g(y) ≡ ϕαg̃(y) in R0/〈ϕi〉, for the unique integer 0 ≤ α < i and the polynomial

g̃(y) ∈ R0/〈ϕi−α〉[y], s.t., g̃(y) 6≡ 0 in R0/〈ϕ〉 and deg(g̃) ≤ deg(g).

4: Using Cantor-Zassenhaus algorithm find all the roots of g̃(y) in R0/〈ϕ〉.
5: If g̃(y) has no root in R0/〈ϕ〉 then return {}. (Dead-end)
6: Initialize S = {}.
7: for each root a of g̃(y) in R0/〈ϕ〉 do
8: Define ga(y) := g̃(a+ ϕy).
9: S ′ ←Root-find(ga(y), ϕi−α).

10: S ← S ∪ (a+ ϕS ′).
11: end for
12: return S.
13: end procedure
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Note that in Step 9 we ensure: ϕ|ga(y). So, in every other recursive call to Root-find
the second argument reduces by at least one. The key reason why |S| ≤ deg g holds: The
number of representative roots of ga(y) are upper bounded by the multiplicity of the root a
of g̃(y).

C Finding all the factors modulo p3

We will give a method to efficiently get and count all the distinct factors of f mod p3, where
f(x) ∈ Z[x] is a univariate polynomial of degree d.

Theorem 17. Given f(x) ∈ Z[x], a univariate polynomial of degree d and a prime p ∈ N,
we give (& count) all the distinct factors of f mod p3 of degree at most d in randomized
poly(d, log p) time.

Note: We will not distinguish two factors if they are same up to multiplication by a unit.
We will only find monic (leading coefficient 1) factors of f(x) mod p3 and assume that f is
monic.

Proof of Theorem 17. By Theorem 15 and Lemma 16 we write:

f(x) ≡
n∏
i=1

fi(x) ≡
n∏
i=1

(ϕeii + phi) mod p3

where fi(x) ≡ (ϕeii + phi) mod p3 with ϕi mod p3 being monic and irreducible mod p, ei ∈ N,
and hi(x) mod p3 of degree < ei deg(ϕi), for all i ∈ [n].

Thus, wlog, consider the case of f ≡ ϕe + ph.
By Reduction theorem (Theorem 8) finding factors of the form ϕa − py mod p3 of f ≡

ϕe + ph mod p3, for a ≤ e/2, is equivalent to finding all the roots of the equation

E(y) ≡ f(x)(ϕ2a + ϕa(py) + (py)2) ≡ 0 mod 〈p3, ϕ3a〉.

Consider R := Z[x]/〈p3, ϕ3a〉 and R0 := Z[x]/〈p, ϕ3a〉, analogous to those in Section 2.
Using Lemma 9, we know that all solutions of the equation E(y) ≡ 0 mod 〈p3, ϕ3a〉

will be of the form y = y0 + p∗ ∈ R, for a y0 ∈ R0. On simplifying this equation we get
E(y) ≡ phϕ2a + (p2hϕa)y0 + (p2ϕe)y20 ≡ 0 mod 〈p3, ϕ3a〉.

Reducing this equation mod 〈p2, ϕ3a〉, we get that h ≡ 0 mod 〈p, ϕa〉 is a necessary
condition for a root y0 to exist. So, we get

E(y) ≡ p2g2ϕ
2a + (p2g1ϕ

2a)y0 + (p2ϕe)y20 ≡ 0 mod 〈p3, ϕ3a〉,

where h := ϕag1 + pg2 for unique g1, g2 ∈ Fp[x].
This equation is already divisible by p2 as well as ϕ2a and so using Claim 6 we get that,

finding factors of the form ϕa − py mod p3 of f ≡ ϕe + ph mod p3, for a ≤ e/2, is equivalent
to finding all the roots of the equation

g2 + g1y0 + ϕe−2ay20 ≡ 0 mod 〈p, ϕa〉 .
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We find all the roots of this equation using one call to Root-find in randomized
poly(d, log p) time. Note that any output root u0 lives in Fp[x]/〈ϕa〉 and so its degree in x is
< a deg(ϕ). This yields monic factors of f mod p3 (with 0 ≤ a ≤ e/2).

For e ≥ a > e/2, we can replace a by b := e− a in the above steps. Once we get a factor
ϕb − py mod p3, we output the cofactor f/(ϕb − py) (which remains monic).

Counting these factors can be easily done in poly-time.

In the general case, if Ni is the number of factors of fi mod p3 then,
∏n

i=1Ni is the count
on the number of distinct monic factors of f mod p3.

D Barriers to extension modulo p5

The reader may wonder about polynomial factoring when k is greater than 4. In this section
we will discuss the issues in applying our techniques to factor f(x) mod p5.

Given f(x) ≡ ϕe mod p, finding one of its factor ϕa − py mod p5, for a ≤ e/2 and
y ∈ (Z/〈p5〉)[x], is reduced to solving the equation

E(y) := f(x)(ϕ4a + ϕ3a(py) + ϕ2a(py)2 + ϕa(py)3 + (py)4) ≡ 0 mod 〈p5, ϕ5a〉 (4)

By Lemma 9, the roots of E(y) mod 〈p5, ϕ5a〉 are of the form y = y0 + py1 + p2y2 + p3∗ in
R, where y0, y1, y2 ∈ R0 need to be found.

First issue. The first hurdle comes when we try to reduce root-finding modulo the bi-
generated ideal 〈p5, ϕ5a〉 ⊆ Z[x] to root-finding modulo the principal ideal 〈ϕ5a〉 ⊆ Fp[x]. In
the case k = 4, Lemma 11 guarantees that we need to solve at most two related equations of the
form E ′(y0, y1) ≡ 0 mod 〈p, ϕ4a〉 to find exactly the roots of E(y) mod 〈p4, ϕ4a〉. Below, for
k = 5, we show that we have exponentially many candidates for E ′(y0, y1, y2) ∈ R0[y0, y1, y2]
and it is not clear if there is any compact efficient representation for them.

Putting y = y0 + py1 + p2y2 in Eqn. 4 we get,

E(y) =: E1(y0) + E2(y0)y1 + E3(y0)y2 + (fϕ2ap4)y21 ≡ 0 mod 〈p5, ϕ5a〉, (5)

where E1(y0) := fϕ4a+fϕ3apy0 +fϕ2ap2y20 +fϕap3y30 +fp4y40 is a quartic in R[y0], E2(y0) :=
fϕ3ap2 + fϕ2a2p3y0 + fϕa3p4y20 is a quadratic in R[y0] and E3(y0) := fϕ3ap3 + fϕ2a2p4y0 is
linear in R[y0].

To divide Eqn. 5 by p3, we go mod 〈p3, ϕ5a〉 obtaining

E(y) ≡ E1(y0) ≡ fϕ4a + fϕ3apy0 + fϕ2ap2y20 ≡ 0 mod 〈p3, ϕ5a〉,

a univariate quadratic equation which requires the whole machinery used in the case k = 3.
We get this simplified equation since E3(y0) ≡ 0 mod 〈p3, ϕ5a〉 and E2(y0) ≡ fϕ3ap2 ≡
ϕe−2aϕ2a+3ap2 ≡ 0 mod 〈p3, ϕ5a〉.

But, to really reduce Eqn. 5 to a system modulo the principal ideal 〈ϕ5a〉 ⊆ Fp[x], we
need to divide it by p4. So, we go mod 〈p4, ϕ5a〉:

E(y) ≡ E
′

1(y0) + E
′

2(y0)y1 ≡ 0 mod 〈p4, ϕ5a〉
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where E
′
1(y0) ≡ E1(y0) mod 〈p4, ϕ5a〉 is a cubic in R[y0] and E

′
2(y0) ≡ E2(y0) mod 〈p4, ϕ5a〉

is linear in R[y0]. This requires us to solve a special bivariate equation which requires the
machinery used in the case k = 4.

Now, the problem reduces to computing a solution pair (y0, y1) ∈ (R0)
2 of this bivariate.

We can apply the idea used in Algorithm 1 to get all valid y0 efficiently, but since y1 is a function
of y0, we need to compute exponentially many y1’s. So, there seem to be exponentially many
candidates for E ′(y0, y1, y2), that behaves like E(y)/p4 and lives in (Fp[x]/〈ϕ5a〉)[y0, y1, y2].
At this point, we are forced to compute all these E ′s, as we do not know which one will lead
us to a solution of Eqn. 5.

Second issue. Even if we resolve the first issue and get a valid E ′, we are left with a
trivariate equation to be solved mod 〈p, ϕ5a〉 (Eqn. 5 after shifting y0 and y1 then dividing
by p4). We could do this when k was 4, because we could easily write y1 as a function of y0.
Though, it is unclear how to solve this trivariate now as the equation is nonlinear in both y0
and y1.

For k > 5 the difficulty will only increase because of the recursive nature of Eqn. 4 with
more and more number of unknowns (with higher degrees).
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