Efficiently factoring polynomials modulo p^{4}

Ashish Dwivedi * Rajat Mittal ${ }^{\dagger} \quad$ Nitin Saxena ${ }^{\ddagger}$

Abstract

Polynomial factoring has famous practical algorithms over fields- finite, rational \& p-adic. However, modulo prime powers it gets hard as there is non-unique factorization and a combinatorial blowup ensues. For example, $x^{2}+p \bmod p^{2}$ is irreducible, but $x^{2}+p x \bmod p^{2}$ has exponentially many factors! We present the first randomized poly $(\operatorname{deg} f, \log p)$ time algorithm to factor a given univariate integral $f(x)$ modulo p^{k}, for a prime p and $k \leq 4$. Thus, we solve the open question of factoring modulo p^{3} posed in (Sircana, ISSAC'17).

Our method reduces the general problem of factoring $f(x) \bmod p^{k}$ to that of root finding in a related polynomial $E(y) \bmod \left\langle p^{k}, \varphi(x)^{\ell}\right\rangle$ for some irreducible $\varphi \bmod p$. We could efficiently solve the latter for $k \leq 4$, by incrementally transforming $E(y)$. Moreover, we discover an efficient and strong generalization of Hensel lifting to lift factors of $f(x) \bmod p$ to those $\bmod p^{4}$ (if possible). This was previously unknown, as the case of repeated factors of $f(x) \bmod p$ forbids classical Hensel lifting.

2012 ACM CCS concept: Theory of computation- Algebraic complexity theory, Problems, reductions and completeness; Computing methodologies- Algebraic algorithms, Hybrid symbolic-numeric methods; Mathematics of computing- Number-theoretic computations.
Keywords: efficient, randomized, factor, local ring, prime-power, Hensel lift, roots, p-adic.

1 Introduction

Polynomial factorization is a fundamental question in mathematics and computing. In the last decades, quite efficient algorithms have been invented for various fields, e.g., over rationals LLL82], number fields [Lan85], finite fields [Ber67, CZ81, KU11, p-adic fields [Chi87, CG00], etc. Being a problem of huge theoretical and practical importance, it has been very well studied; for more background refer to surveys, e.g., Kal92, vzGP01, FS15].

The same question over composite characteristic rings is believed to be computationally hard, e.g. it is related to integer factoring [Sha93, Kli97]. What is less understood is factorization over a local ring; especially, ones that are the residue class rings of \mathbb{Z} or $\mathbb{F}_{q}[z]$. A natural variant is as follows.

[^0]Problem: Given a univariate integral polynomial $f(x)$ and a prime power p^{k}, with p prime and $k \in \mathbb{N}$; output a nontrivial factor of $f \bmod p^{k}$ in randomized $\operatorname{poly}(\operatorname{deg} f, k \log p)$ time.

Note that the polynomial ring $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$ is not a unique factorization domain. So $f(x)$ may have many, usually exponentially many, factorizations. For example, $x^{2}+p x$ has an irreducible factor $x+\alpha p \bmod p^{2}$ for each $\alpha \in[p]$ and so $x^{2}+p x$ has exponentially many (wrt $\log p$) irreducible factors modulo p^{2}. This leads to a total breakdown in the classical factoring methods.

We give the first randomized polynomial time algorithm to non-trivially factor (or test for irreducibility) a polynomial $f(x) \bmod p^{k}$, for $k \leq 4$.

Additionally, when $f \bmod p$ is power of an irreducible, we provide (\mathcal{E} count) all the lifts $\bmod p^{k}(k \leq 4)$ of any factor of $f \bmod p$, in randomized polynomial time.

Usually, one factors $f(x) \bmod p$ and tries to "lift" this factorization to higher powers of p. If the former is a coprime factorization then Hensel lifting Hen18 helps us in finding a non-trivial factorization of $f(x) \bmod p^{k}$ for any k. But, when $f(x) \bmod p$ is power of an irreducible then it is not known how to lift to some factorization of $f(x) \bmod p^{k}$. To illustrate the difficulty let us see some examples (also see vzGH96]).
Example. [coprime factor case] Let $f(x)=x^{2}+10 x+21$. Then $f \equiv x(x+1) \bmod 3$ and Hensel lemma lifts this factorization uniquely mod 3^{2} as $f(x) \equiv(x+1 \cdot 3)(x+1+2 \cdot 3) \equiv$ $(x+3)(x+7) \bmod 9$. This lifting extends to any power of 3 .
Example. [power of an irreducible case] Let $f(x)=x^{3}+12 x^{2}+3 x+36$ and we want to factor it $\bmod 3^{3}$. Clearly, $f \equiv x^{3} \bmod 3$. By brute force one checks that, the factorization $f \equiv$ $x \cdot x^{2} \bmod 3$ lifts to factorizations mod 3^{2} as: $x\left(x^{2}+3 x+3\right),(x+6)\left(x^{2}+6 x+3\right),(x+3)\left(x^{2}+3\right)$. Only the last one lifts to mod 3^{3} as: $(x+3)\left(x^{2}+9 x+3\right),(x+12)\left(x^{2}+3\right),(x+21)\left(x^{2}+18 x+3\right)$.

So the big issue is: efficiently determine which factorization out of the exponentially many factorizations $\bmod p^{j}$ will lift to $\bmod p^{j+1}$?

1.1 Previously known results

Using Hensel lemma it is easy to find a non-trivial factor of $f \bmod p^{k}$ when $f \bmod p$ has two coprime factors. So the hard case is when $f \bmod p$ is power of an irreducible polynomial. The first resolution in this case was achieved by vzGH98 assuming that k is "large". They assumed k to be larger than the maximum power of p dividing the discriminant of the integral f. Under this assumption (i.e. k is large), they showed that factorization modulo p^{k} is well behaved and it corresponds to the unique p-adic factorization of f (refer p-adic factoring [Chi87, Chi94, CG00]). To show this, they used an extended version of Hensel lifting (also discussed in [BS86]). Using this observation they could also describe all the factorizations modulo p^{k}, in a compact data structure. The complexity of vzGH98 was improved by CL01.

The related questions of root finding and root counting of $f \bmod p^{k}$ are also of classical interest, see [NZM13, Apo13]. A recent result by [BLQ13, Cor.24] resolves these problems in randomized polynomial time. Again, it describes all the roots modulo p^{k}, in a compact data structure.

Root counting has interesting applications in arithmetic algebraic-geometry, eg. to compute Igusa zeta function of a univariate integral polynomial [ZG03, DH01]. Partial derandomization of root counting algorithm has been obtained by CGRW18, KRRZ18] last year; however, a deterministic poly-time algorithm is still unknown.

Going back to factoring $f \bmod p^{k}$, vzGH96 discusses the hurdles when k is small. The factors could be completely unrelated to the corresponding p-adic factorization, since an irreducible p-adic polynomial could reduce $\bmod p^{k}$ when k is small. We give an example from vzGH96.
Example. Polynomial $f(x)=x^{2}+3^{k}$ is irreducible over $\mathbb{Z} /\left\langle 3^{k+1}\right\rangle$ and so over 3-adic field. But, it is reducible $\bmod 3^{k}$ as $f \equiv x^{2} \bmod 3^{k}$.

They also discussed that the distinct factorizations are completely different and not nicely related, unlike the case when k is large. An example taken from vzGH96] is,
Example. $f=\left(x^{2}+243\right)\left(x^{2}+6\right)$ is an irreducible factorization over $\mathbb{Z} /\left\langle 3^{6}\right\rangle$. There is another completely unrelated factorization $f=(x+351)(x+135)\left(x^{2}+243 x+249\right) \bmod 3^{6}$.

Many researchers tried to solve special cases, especially when k is constant. The only successful factoring algorithm is by [Săl05] over $\mathbb{Z} /\left\langle p^{2}\right\rangle$; it is actually related to Eisenstein criterion for irreducible polynomials. The next case, to factor modulo p^{3}, is unsolved and was recently highlighted in Sir17.

1.2 Our results

We saw that even after the attempts of last two decades we do not have an efficient algorithm for factoring $\bmod p^{3}$. Naturally, we would like to first understand the difficulty of the problem when k is constant. In this direction we make significant progress by devising a unified method which solves the problem when $k=2,3$ or 4 (and sketch the obstructions we face when $k \geq 5$). Our first result is,
Theorem 1. Let p be prime, $k \leq 4$ and $f(x)$ be a univariate integral polynomial. Then, $f(x) \bmod p^{k}$ can be factored ($\mathcal{\xi}$ tested for irreducibility) in randomized poly $(\operatorname{deg} f, \log p)$ time.

Remarks. 1) The procedure to factorize $f \bmod p^{4}$ also factorizes $f \bmod p^{3}$ and $f \bmod p^{2}$ (and tests for irreducibility) in randomized poly $(\operatorname{deg} f, \log p)$ time. This solves the open question of efficiently factoring $f \bmod p^{3}$ Sir17] and gives a more general proof for factoring $f \bmod p^{2}$ than the one in Săl05.
2) Our method can as well be used to factor a 'univariate' polynomial $f \in\left(\mathbb{F}_{p}[z] /\left\langle\psi^{k}\right\rangle\right)[x]$, for $k \leq 4$ and irreducible $\psi(z) \bmod p$, in randomized $\operatorname{poly}(\operatorname{deg} f, \operatorname{deg} \psi, \log p)$ time.

Next, we do more than just factoring f modulo p^{k} for $k \leq 4$. It is well known that Hensel lemma efficiently gives two (unique) coprime factors of $f(x)$ modulo any prime power p^{k}, given two coprime factors of $f \bmod p$; but it fails to lift when f is power of an irreducible polynomial modulo p. We show that our method works in this case to give all the lifts $g(x) \bmod p^{k}$ (possibly exponentially many) of any given factor \tilde{g} of $f \bmod p$, for $k \leq 4$.

Theorem 2. Let p be prime, $k \leq 4$ and $f(x)$ be a univariate integral polynomial such that $f \bmod p$ is a power of an irreducible polynomial. Let \tilde{g} be a given factor of $f \bmod p$. Then,
in randomized poly($\operatorname{deg} f, \log p$) time, we can compactly describe (\mathcal{E} count) all possible factors of $f(x) \bmod p^{k}$ which are lifts of \tilde{g} (or report that there is none).

Remark. Theorem 2 can be seen as a significant generalization of Hensel lifting method (Lemma 16) to $\mathbb{Z} /\left\langle p^{k}\right\rangle, k \leq 4$. To lift a factor f_{1} of $f \bmod p$, Hensel lemma relies on a cofactor f_{2} which is coprime to f_{1}. Our method needs no such assumption and it directly lifts a factor \tilde{g} of $f \bmod p$ to (possibly exponentially many) factors $g(x) \bmod p^{k}$.

1.3 Proof technique- Root finding over local rings

Our proof involves two main techniques which may be of general interest.
Technique 1: Known factoring methods mod p work by first reducing the problem to that of root finding mod p. In this work, we efficiently reduce the problem of factoring $f(x)$ modulo the principal ideal $\left\langle p^{k}\right\rangle$ to that of finding roots of some polynomial $E(y) \in(\mathbb{Z}[x])[y]$ modulo a bi-generated ideal $\left\langle p^{k}, \varphi(x)^{\ell}\right\rangle$, where $\varphi(x)$ is an irreducible factor of $f(x) \bmod p$. This technique works for all $k \geq 1$.

Technique 2: Next, we find a root of the equation $E(y) \equiv 0 \bmod \left\langle p^{k}, \varphi(x)^{\ell}\right\rangle$, assuming $k \leq 4$. With the help of the special structure of $E(y)$ we will efficiently find all the roots y (possibly exponentially many) in the local ring $\mathbb{Z}[x] /\left\langle p^{k}, \varphi(x)^{\ell}\right\rangle$.

It remains open whether this technique extends to $k=5$ and beyond (even to find a single root of the equation). The possibility of future extensions of our technique is discussed in Appendix D.

1.4 Proof overview

Proof idea of Theorem 1; Firstly, assume that the given degree d integral polynomial f satisfies $f(x) \equiv \varphi^{e} \bmod p$ for some $\varphi(x) \in \mathbb{Z}[x]$ which is irreducible $\bmod p$. Otherwise, using Hensel lemma (Lemma 16) we can efficiently factor $f \bmod p^{k}$.

Any factor of such an $f \bmod p^{k}$ must be of the form $\left(\varphi^{a}-p y\right) \bmod p^{k}$, for some $1 \leq a<e$ and $y \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$. In Theorem 8 , we first reduce the problem of finding such a factor $\left(\varphi^{a}-p y\right)$ of $f \bmod p^{k}$ to finding roots of some $E(y) \in(\mathbb{Z}[x])[y]$ in the local ring $\mathbb{Z}[x] /\left\langle p^{k}, \varphi^{a k}\right\rangle$. This is inspired by the p-adic power series expansion of the quotient $f /\left(\varphi^{a}-p y\right)$. On going $\bmod p^{k}$ we get a polynomial in y of degree $(k-1)$; which we want to be divisible by $\varphi^{a k}$.

The root y of $E(y) \bmod \left\langle p^{k}, \varphi^{a k}\right\rangle$ can be further decomposed into coordinates y_{0}, y_{1}, \ldots, $y_{k-1} \in \mathbb{F}_{p}[x] /\left\langle\varphi^{a k}\right\rangle$ such that $y=: y_{0}+p y_{1}+\ldots+p^{k-1} y_{k-1} \bmod \left\langle p^{k}, \varphi^{a k}\right\rangle$. When we take $k=4$, it turns out that the root y only depends on the coordinates y_{0} and y_{1} (i.e. y_{2}, y_{3} can be picked arbitrarily).

Next, we reduce the problem of root finding of $E\left(y_{0}+p y_{1}\right)$ in the ring $\mathbb{Z}[x] /\left\langle p^{4}, \varphi^{4 a}\right\rangle$ to root finding in characteristic p; of some $E^{\prime}\left(y_{0}, y_{1}\right)$ in the ring $\mathbb{F}_{p}[x] /\left\langle\varphi^{4 a}\right\rangle$ (Lemma 11). We take help of a subroutine Root-Find given by [BLQ13] which can efficiently find all the roots of a univariate $g(y)$ in the ring $\mathbb{Z} /\left\langle p^{j}\right\rangle$. We need a slightly generalized version of it, to find all the roots of a given $g(y)$ in the ring $\mathbb{F}_{p}[x] /\left\langle\varphi(x)^{j}\right\rangle$ (Appendix B).

Note that y_{0}, y_{1} are in the ring $\mathbb{F}_{p}[x] /\left\langle\varphi^{4 a}\right\rangle$ and so they can be decomposed as $y_{0}=$: $y_{0,0}+\varphi y_{0,1}+\ldots+\varphi^{4 a-1} y_{0,4 a-1}$ and $y_{1}=: y_{1,0}+\varphi y_{1,1}+\ldots+\varphi^{4 a-1} y_{1,4 a-1}$, with all $y_{i, j}$'s in the field $\mathbb{F}_{p}[x] /\langle\varphi\rangle$.

To get $E^{\prime}\left(y_{0}, y_{1}\right) \bmod \left\langle p, \varphi^{4 a}\right\rangle$ the idea is: to first divide by p^{2}, and then to go modulo the ideal $\left\langle p, \varphi^{4 a}\right\rangle$. Apply Algorithm Root-Find to solve $E\left(y_{0}+p y_{1}\right) / p^{2} \equiv 0 \bmod \left\langle p, \varphi^{4 a}\right\rangle$. This allows us to fix some part of y_{0}, say $a_{0} \in \mathbb{F}_{p} /\left\langle\varphi^{4 a}\right\rangle$, and we can replace it by $a_{0}+\varphi^{i_{0}} y_{0}$, $i_{0} \geq 1$. Thus, $p^{3} \mid E\left(a_{0}+\varphi^{i_{0}} y_{0}+p y_{1}\right) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$ and we divide out by this p^{3} (\& change the modulus to $\left\langle p, \varphi^{4 a}\right\rangle$). In Lemma 11 we show that when we go modulo the ideal $\left\langle p, \varphi^{4 a}\right\rangle$ (to find a_{0}), we only need to solve a univariate in y_{0} using Root-Find. So, we only need to fix some part of y_{0}, that we called a_{0}, and y_{1} is irrelevant. Finally, we get $E^{\prime}\left(y_{0}, y_{1}\right)$ such that $E^{\prime}\left(y_{0}, y_{1}\right):=E\left(a_{0}+\varphi^{i_{0}} y_{0}+p y_{1}\right) / p^{3} \bmod \left\langle p, \varphi^{4 a}\right\rangle$. Importantly, the process yields at most two possibilities of E^{\prime} (resp. a_{0}) to deal with.

Lemma 11 also shows that the bivariate $E^{\prime}\left(y_{0}, y_{1}\right)$ is a special one of the form $E^{\prime}\left(y_{0}, y_{1}\right) \equiv$ $E_{1}\left(y_{0}\right)+E_{2}\left(y_{0}\right) y_{1} \bmod \left\langle p, \varphi^{4 a}\right\rangle$, where $E_{1}\left(y_{0}\right) \in\left(\mathbb{F}_{p}[x] /\left\langle\varphi^{4 a}\right\rangle\right)\left[y_{0}\right]$ is a cubic univariate polynomial and $E_{2}\left(y_{0}\right) \in\left(\mathbb{F}_{p}[x] /\left\langle\varphi^{4 a}\right\rangle\right)\left[y_{0}\right]$ is a linear univariate polynomial. We exploit this special structure to represent y_{1} as a rational function of y_{0}, i.e. $y_{1} \equiv-E_{1}\left(y_{0}\right) / E_{2}\left(y_{0}\right) \bmod \left\langle p, \varphi^{4 a}\right\rangle$. The important issue is that, we can calculate y_{1} only when on some specialization $y_{0}=$ a_{0}, the division by $E_{2}\left(a_{0}\right)$ is well defined. So what we do is, we guess each value of $0 \leq r \leq 4 a$ and ensure that the valuation (wrt φ powers) of $E_{1}\left(y_{0}\right)$ is at least r but that of $E_{2}\left(y_{0}\right)$ is exactly r. Once we find such a y_{0}, we can efficiently compute y_{1} as $y_{1} \equiv-\left(E_{1}\left(y_{0}\right) / \varphi^{r}\right) /\left(E_{2}\left(y_{0}\right) / \varphi^{r}\right) \bmod \left\langle p, \varphi^{4 a-r}\right\rangle$.

To find y_{0}, we find common solution of the two equations: $E_{1}\left(y_{0}\right) \equiv E_{2}\left(y_{0}\right) \equiv 0 \bmod$ $\left\langle p, \varphi^{r}\right\rangle$, for each guessed value r, using Algorithm Root-Find. Since the polynomial $E_{2}\left(y_{0}\right)$ is linear, it is easy for us to filter all y_{0} 's for which valuation of $E_{2}\left(y_{0}\right)$ is exactly r (Lemma 13). Thus, we could efficiently find all (y_{0}, y_{1}) pairs that satisfy the equation $E^{\prime}\left(y_{0}, y_{1}\right) \equiv 0 \bmod \left\langle p, \varphi^{4 a}\right\rangle$ 。
Proof idea of Theorem 2; If $f \equiv \varphi^{e} \bmod p$ then any lift $g(x)$ of a factor $\tilde{g}(x) \equiv \varphi^{a} \bmod p$ of $f \bmod p$ will be of the form $g \equiv\left(\varphi^{a}-p y\right) \bmod p^{k}$. So basically we want to find all the y 's $\bmod p^{k-1}$ that appear in the proof idea of Theorem 1 above. This can be done easily, because Algorithm Root-Find (Appendix B) BLQ13] describes all possible y_{0} 's in a compact data structure. Moreover, using this, a count of all y 's could be provided as well.

2 Preliminaries

Let $R(+,$.$) be a ring and S$ be a non-empty subset of R. The product of the set S with a scalar $a \in R$ is defined as $a S:=\{a s \mid s \in S\}$. Similarly, the sum of a scalar $u \in R$ with the set S is defined as $u+S:=\{u+s \mid s \in S\}$. Note that the product and the sum operations used inside the set are borrowed from the underlying ring R. Also note that if S is the empty set then so are $a S$ and $u+S$ for any $a, u \in R$.

Representatives. The symbol '*' in a ring R, wherever appears, denotes all of ring R. For example, suppose $R=\mathbb{Z} /\left\langle p^{k}\right\rangle$ for a prime p and a positive integer k. In this ring, we will use the notation $y=y_{0}+p y_{1}+\ldots+p^{i} y_{i}+p^{i+1} *$, where $i+1<k$ and each $y_{j} \in R /\langle p\rangle$, to
denote a set $S_{y} \subseteq R$ such that

$$
S_{y}=\left\{y_{0}+\ldots+p^{i} y_{i}+p^{i+1} y_{i+1}+\ldots+p^{k-1} y_{k-1} \mid \forall y_{i+1}, \ldots, y_{k-1} \in R /\langle p\rangle\right\} .
$$

Notice that the number of elements in R represented by y is $\left|S_{y}\right|=p^{k-i-1}$.
We will sometimes write the set $y=y_{0}+p y_{1}+\ldots+p^{i} y_{i}+p^{i+1} *$ succinctly as $y=v+p^{i+1} *$, where $v \in R$ stands for $v=y_{0}+p y_{1}+\ldots+p^{i} y_{i}$.

In the following sections, we will add and multiply the set $\{*\}$ with scalars from the ring R. Let us define these operations as follows ($*$ is treated as an unknown)

- $u+\{*\}:=\{u+*\}$ and $u\{*\}:=\{u *\}$, where $u \in R$.
- $c+\{a+b *\}=\{(a+c)+b *\}$ and $c\{a+b *\}=\{a c+b c *\}$, where $a, b, c \in R$.

Another important example of the $*$ notation: Let $R=\mathbb{F}_{p}[x] /\left\langle\varphi(x)^{k}\right\rangle$ for a prime p and an irreducible $\varphi \bmod p$. In this ring, we use the notation $y=y_{0}+\varphi y_{1}+\ldots+\varphi^{i} y_{i}+\varphi^{i+1} *$, where $i+1<k$ and each $y_{j} \in R /\langle\varphi\rangle$, to denote a set $S_{y} \subseteq R$ such that

$$
S_{y}=\left\{y_{0}+\ldots+\varphi^{i} y_{i}+\varphi^{i+1} y_{i+1}+\ldots+\varphi^{k-1} y_{k-1} \mid \forall y_{i+1}, \ldots, y_{k-1} \in R /\langle\varphi\rangle\right\}
$$

Zerodivisors. Let $R[x]$ be the ring of polynomials over $R=\mathbb{Z} /\left\langle p^{k}\right\rangle$. The following lemma about zero divisors in $R[x]$ will be helpful.

Lemma 3. A polynomial $f \in R[x]$ is a zero divisor iff $f \equiv 0 \bmod p$. Consequently, for any polynomials $f, g_{1}, g_{2} \in R[x]$ and $f \not \equiv 0 \bmod p, f(x) g_{1}(x)=f(x) g_{2}(x)$ implies $g_{1}(x)=g_{2}(x)$.

Proof. If $f \equiv 0 \bmod p$ then $f(x) p^{k-1}$ is zero, and f is a zero divisor.
For the other direction, let $f \not \equiv 0 \bmod p$ and assume $f(x) g(x)=0$ for some non-zero $g \in R[x]$. Let

- i be the biggest integer such that the coefficient of x^{i} in f is non-zero modulo p,
- and j be the biggest integer such that the coefficient of x^{j} in g has minimum valuation with respect to p.

Then, the coefficient of x^{i+j} in $f \cdot g$ has same valuation as the coefficient of x^{j} in g, implying that the coefficient is nonzero. This contradicts the assumption $f(x) g(x)=0$.

The consequence follows because $f \not \equiv 0 \bmod p$ implies that f cannot be a zero divisor.
Quotient ideals. We define the quotient ideal (analogous to division of integers) and look at some of its properties.

Definition 4 (Quotient Ideal). Given two ideals I and J of a commutative ring R, we define the quotient of I by J as,

$$
I: J:=\{a \in R \mid a J \subseteq I\} .
$$

It can be easily verified that $I: J$ is an ideal. Moreover, we can make the following observations about quotient ideals.

Claim 5 (Cancellation). Suppose I is an ideal of ring R and a, b, c are three elements in R. By definition of quotient ideals, $c a \equiv c b \bmod I$ iff $a \equiv b \bmod I:\langle c\rangle$.

Claim 6. Let p be a prime and $\varphi \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$ be such that $\varphi \not \equiv 0 \bmod p$. Given an ideal $I:=\left\langle p^{l}, \phi^{m}\right\rangle$ of $\mathbb{Z}[x]$,

1. $I:\left\langle p^{i}\right\rangle=\left\langle p^{l-i}, \phi^{m}\right\rangle$, for $i \leq l$, and
2. $I:\left\langle\phi^{j}\right\rangle=\left\langle p^{l}, \phi^{m-j}\right\rangle$, for $j \leq m$.

Proof. We will only prove part (1), as proof of part (2) is similar. If $c \in\left\langle p^{l-i}, \varphi^{m}\right\rangle$ then there exists $c_{1}, c_{2} \in \mathbb{Z}[x]$, such that, $c=c_{1} p^{l-i}+c_{2} \varphi^{m}$. Multiplying by p^{i},

$$
p^{i} c=c_{1} p^{l}+c_{2} p^{i} \varphi^{m} \in I \Rightarrow c \in I:\left\langle p^{i}\right\rangle .
$$

To prove the reverse direction, if $c \in I:\left\langle p^{i}\right\rangle$ then there exists $c_{1}, c_{2} \in \mathbb{Z}[x]$, such that, $p^{i} c=c_{1} p^{l}+c_{2} \varphi^{m}$. Since $i \leq l$ and $p \nmid \varphi$, we know $p^{i} \mid c_{2}$. So, $c=c_{1} p^{l-i}+\left(c_{2} / p^{i}\right) \varphi^{m} \Rightarrow c \in\left\langle p^{l-i}, \phi^{m}\right\rangle$.

Lemma 7 (Compute quotient). Given a polynomial $\varphi \in \mathbb{Z}[x]$ not divisible by p, define I to be the ideal $\left\langle p^{l}, \phi^{m}\right\rangle$ of $\mathbb{Z}[x]$. If $g(y) \in(\mathbb{Z}[x])[y]$ is a polynomial such that $g(y) \equiv 0 \bmod \left\langle p, \phi^{m}\right\rangle$, then $p \mid g(y) \bmod I$ and $g(y) / p \bmod I:\langle p\rangle$ is efficiently computable.

Proof. The equation $g(y) \equiv 0 \bmod \left\langle p, \phi^{m}\right\rangle$ implies $g(y)=p c_{1}(y)+\varphi^{m} c_{2}(y)$ for some polynomials $c_{1}(y), c_{2}(y) \in \mathbb{Z}[x][y]$. Going modulo $I, g(y) \equiv p c_{1}(y) \bmod I$. Hence, $p \mid g(y) \bmod I$ and $g(y) / p \equiv c_{1}(y) \bmod I:\langle p\rangle($ Claim 5).

If we write g in the reduced form modulo I, then the polynomial $g(y) / p$ can be obtained by dividing each coefficient of $g(y) \bmod I$ by p.

3 Main Results: Proof of Theorems 1 and 2

Our task is to factorize a univariate integral polynomial $f(x) \in \mathbb{Z}[x]$ of degree d modulo a prime power p^{k}. Without loss of generality, we can assume that $f(x) \not \equiv 0 \bmod p$. Otherwise, we can efficiently divide $f(x)$ by the highest power of p possible, say p^{l}, such that $f(x) \equiv$ $p^{l} \tilde{f}(x) \bmod p^{k}$ and $\tilde{f}(x) \not \equiv 0 \bmod p$. In this case, it is equivalent to factorize \tilde{f} instead of f.

To simplify the input further, write $f \bmod p$ (uniquely) as a product of powers of coprime irreducible polynomials. If there are two coprime factors of f, using Hensel lemma (Lemma 16), we get a non-trivial factorization of f modulo p^{k}. So, we can assume that f is a power of a monic irreducible polynomial $\varphi \in \mathbb{Z}[x]$ modulo p. In other words, we can efficiently write $f \equiv \varphi^{e}+p l \bmod p^{k}$ for a polynomial l in $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$. We have $e \cdot \operatorname{deg} \varphi \leq \operatorname{deg} f$, for the integral polynomials f and φ.

3.1 Factoring to Root-finding

By the preprocessing above, we only need to find factors of a polynomial f such that $f \equiv \varphi^{e}+p l \bmod p^{k}$, where φ is an irreducible polynomial modulo p. Up to multiplication by units, any nontrivial factor h of f has the form $h \equiv \varphi^{a}-p y$, where $a<e$ and y is a polynomial in $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$.

Let us denote the ring $\mathbb{Z}[x] /\left\langle p^{k}, \varphi^{a k}\right\rangle$ by R. Also, denote the ring $\mathbb{Z}[x] /\left\langle p, \varphi^{a k}\right\rangle$ by R_{0}. We define an auxiliary polynomial $E(y) \in R[y]$ as

$$
E(y):=f(x)\left(\varphi^{a(k-1)}+\varphi^{a(k-2)}(p y)+\ldots+\varphi^{a}(p y)^{k-2}+(p y)^{k-1}\right)
$$

Our first step is to reduce the problem of factoring $f(x) \bmod p^{k}$ to the problem of finding roots of the univariate polynomial $E(y)$ in R. Thus, we convert the problem of finding factors of $f(x) \in \mathbb{Z}[x]$ modulo a principal ideal $\left\langle p^{k}\right\rangle$ to root finding of a polynomial $E(y) \in(\mathbb{Z}[x])[y]$ modulo a bi-generated ideal $\left\langle p^{k}, \varphi^{a k}\right\rangle$.

Theorem 8 (Reduction theorem). Given a prime power p^{k}; let $f(x), h(x) \in \mathbb{Z}[x]$ be two polynomials of the form $f(x) \equiv \varphi^{e}+p l \bmod p^{k}$ and $h(x) \equiv \varphi^{a}-p y \bmod p^{k}$. Here y, l are elements of $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$ and $a \leq e$. Then, h divides f modulo p^{k} if and only if

$$
E(y)=f(x)\left(\varphi^{a(k-1)}+\varphi^{a(k-2)}(p y)+\ldots+\varphi^{a}(p y)^{k-2}+(p y)^{k-1}\right) \equiv 0 \bmod \left\langle p^{k}, \varphi^{a k}\right\rangle
$$

Proof. Let Q denote the ring of fractions of the $\operatorname{ring}\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$. Since φ is not a zero divisor, $\left(E(y) / \varphi^{a k}\right) \in Q$.

We first prove the reverse direction. If $E(y) \equiv 0 \bmod \left\langle p^{k}, \varphi^{a k}\right\rangle$, then $\left(E(y) / \varphi^{a k}\right)$ is a valid polynomial over $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$. Multiplying h with $\left(E(y) / \varphi^{a k}\right) \bmod p^{k}$, we write,

$$
\left(\varphi^{a}-p y\right)\left(\left(f / \varphi^{a k}\right) \Sigma_{i=0}^{k-1} \varphi^{a(k-1-i)}(p y)^{i}\right) \equiv\left(f / \varphi^{a k}\right)\left(\varphi^{a k}-(p y)^{k}\right) \equiv f \cdot \varphi^{a k} / \varphi^{a k} \equiv f \bmod p^{k} .
$$

Hence, h divides f modulo p^{k}.
For the forward direction, assume that there exists some $g(x) \in\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$, such that, $f(x) \equiv h(x) g(x) \bmod p^{k}$. We get two factorizations of f in Q,

$$
f(x)=h(x) g(x) \quad \text { and } \quad f(x)=h(x)\left(E(y) / \varphi^{a k}\right)
$$

Subtracting the first equation from the second one,

$$
h(x)\left(g(x)-\left(E(y) / \varphi^{a k}\right)\right)=0 .
$$

Notice that $h(x)$ is not a zero divisor in $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$ (by Lemma 3) and is thus invertible in Q. So, $E(y) / \varphi^{a k}=g(x)$ in Q. Since $g(x)$ is in $\left(\mathbb{Z} /\left\langle p^{k}\right\rangle\right)[x]$, we deduce the equivalent divisibility statement: $E(y) \equiv 0 \bmod \left\langle p^{k}, \varphi^{a k}\right\rangle$.

The following two observations simplify our task of finding roots y of polynomial $E(y)$.

- First, due to symmetry, it is enough to find factors $h \equiv \varphi^{a} \bmod p$ with $a \leq e / 2$. The assertion follows because $f \equiv h g \bmod p^{k}$ implies, at least one of the factor (say h) must be of the form $\varphi^{a} \bmod p$ for $a \leq e / 2$. By Lemma 3, for a fixed $h \equiv\left(\varphi^{a}-p y\right) \bmod p^{k}$, there is a unique $g \equiv\left(\varphi^{e-a}-p y^{\prime}\right) \bmod p^{k}$ such that $f \equiv h g \bmod p^{k}$. So, to find g, it is enough to find h.
- Second, observe that any root $y \in R($ of $E(y) \in R[y])$ can be seen as $y=y_{0}+p y_{1}+$ $p^{2} y_{2}+\ldots+p^{k-1} y_{k-1}$, where each $y_{i} \in R_{0}$ for all i in $\{0, \ldots, k-1\}$. The following lemma decreases the required precision of root y.

Lemma 9. Let $y=y_{0}+p y_{1}+p^{2} y_{2}+\ldots+p^{k-1} y_{k-1}$ be a root of $E(y)$, where $k \geq 2$ and $a \leq e / 2$. Then, all elements of set $y=y_{0}+p y_{1}+p^{2} y_{2}+\ldots+p^{k-3} y_{k-3}+p^{k-2} *$ are also roots of $E(y)$.

Proof. Notice that the variable y is multiplied with p in $E(y)$, implying y_{k-1} is irrelevant. Similar argument is applicable for the variable y_{k-2} in any term of the form $(p y)^{i}$ for $i \geq 2$. The only remaining term containing y_{k-2} is $f \varphi^{a(k-2)}(p y)$. The coefficient of y_{k-2} in this term is $\varphi^{a(k-2)} f p^{k-1}$. This coefficient vanishes modulo $\left\langle p^{k}, \varphi^{a k}\right\rangle$ too, because
$\varphi^{a(k-2)} f \equiv \varphi^{a(k-2)} \varphi^{e} \equiv \varphi^{a k} \varphi^{e-2 a} \equiv 0 \bmod \left\langle p, \varphi^{a k}\right\rangle$.
Root-finding modulo a principal ideal. Finally, we state a slightly modified version of the theorem from BLQ13, Cor.24], showing that all the roots of a polynomial $g(y) \in R_{0}[y]$ can be efficiently described. They gave their algorithm to find (all) roots in $\mathbb{Z} /\left\langle p^{n}\right\rangle$; we modify it in a straightforward way to find (all) roots in $\mathbb{F}_{p}[x] /\left\langle\varphi^{a k}\right\rangle=R_{0}$ (Appendix B). Any root in R_{0} can be written as $y=y_{0}+\varphi y_{1}+\cdots+\varphi^{a k-1} y_{a k-1}$, where each y_{j} is in the field $R_{0} /\langle\varphi\rangle$.

Let $g(y)$ be a polynomial in $R[y]$, then a set $y=y_{0}+\varphi y_{1}+\ldots+\varphi^{i} y_{i}+\varphi^{i+1} *$ will be called a representative root of g iff

- All elements in $y=y_{0}+\varphi y_{1}+\ldots+\varphi^{i} y_{i}+\varphi^{i+1} *$ are roots of g.
- Not all elements in $y^{\prime}=y_{0}+\varphi y_{1}+\ldots+\varphi^{i-1} y_{i-1}+\varphi^{i} *$ are roots of g.

We will sometimes represent the set of roots, $y=y_{0}+\varphi y_{1}+\ldots+\varphi^{i} y_{i}+\varphi^{i+1} *$, succinctly as $y=v+\varphi^{i+1} *$, where $v \in R$ stands for $y=y_{0}+\varphi y_{1}+\ldots+\varphi^{i} y_{i}$. Such a pair, $(v, i+1)$, will be called a representative pair.

Theorem 10. BLQ13, Cor.24] Given a bivariate $g(y) \in R_{0}[y]$ where $R_{0}=\mathbb{Z}[x] /\left\langle p, \varphi^{a k}\right\rangle$, let $Z \subseteq R_{0}$ be the root set of $g(y)$. Then Z can be expressed as the disjoint union of at most $\operatorname{deg}_{y}(g)$ many representative pairs $\left(a_{0}, i_{0}\right)\left(a_{0} \in R_{0}\right.$ and $\left.i_{0} \in \mathbb{N}\right)$.

These representative pairs can be found in randomized poly $\left(\operatorname{deg}_{y}(g), \log p, a k \operatorname{deg} \varphi\right)$ time.
For completeness, Algorithm Root- $\operatorname{Find}\left(g, R_{0}\right)$ is given in Appendix B
We will fix $k=4$ for the rest of this section. Similar techniques (even simpler) work for $k=3$ and $k=2$. The issues with this approach for $k>4$ will be discussed in Appendix D.

3.2 Reduction to root-finding modulo a principal ideal of $\mathbb{F}_{p}[x]$

In this subsection, the task to find roots of $E(y)$ modulo the bi-generated ideal $\left\langle p^{4}, \varphi^{4 a}\right\rangle$ of $\mathbb{Z}[x]$ will be reduced to finding roots modulo the principal ideal $\left\langle\varphi^{4 a}\right\rangle$ (of $\mathbb{F}_{p}[x]$).

Let us consider the equation $E(y) \equiv 0 \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$. We have,

$$
\begin{equation*}
f\left(\varphi^{3 a}+\varphi^{2 a}(p y)+\varphi^{a}(p y)^{2}+(p y)^{3}\right) \equiv 0 \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle . \tag{1}
\end{equation*}
$$

Using Lemma 9, we can assume $y=y_{0}+p y_{1}$,

$$
\begin{equation*}
f\left(\varphi^{3 a}+\varphi^{2 a} p\left(y_{0}+p y_{1}\right)+\varphi^{a} p^{2}\left(y_{0}^{2}+2 p y_{0} y_{1}\right)+\left(p y_{0}\right)^{3}\right) \equiv 0 \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle . \tag{2}
\end{equation*}
$$

The idea is to first solve this equation modulo $\left\langle p^{3}, \varphi^{4 a}\right\rangle$. Since $f \equiv \varphi^{e} \bmod p, e \geq 2 a$, variable y_{1} is redundant while solving this equation modulo p^{3}. Following lemma finds all representative pairs $\left(a_{0}, i_{0}\right)$ for y_{0}, such that, $E\left(a_{0}+\varphi^{i_{0}} y_{0}+p y_{1}\right) \equiv 0 \bmod \left\langle p^{3}, \varphi^{4 a}\right\rangle$ for all $y_{0}, y_{1} \in R$. Alternatively, we can state this in the polynomial ring $R\left[y_{0}, y_{1}\right]$. Dividing by p^{3}, we will be left with an equation modulo the principal ideal $\left\langle\varphi^{4 a}\right\rangle$ (of $\mathbb{F}_{p}[x]$).

Lemma 11 (Reduce to char=p). We efficiently compute a unique set S_{0} of all representative pairs $\left(a_{0}, i_{0}\right)$, where $a_{0} \in R_{0}$ and $i_{0} \in \mathbb{N}$, such that,

$$
E\left(\left(a_{0}+\varphi^{i_{0}} y_{0}\right)+p y_{1}\right)=p^{3} E^{\prime}\left(y_{0}, y_{1}\right) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle
$$

for a polynomial $E^{\prime}\left(y_{0}, y_{1}\right) \in R_{0}\left[y_{0}, y_{1}\right]$ (it depends on $\left(a_{0}, i_{0}\right)$). Moreover,

1. $\left|S_{0}\right| \leq 2$. If our efficient algorithm fails to find E^{\prime} then Eqn. 2h has no solution.
2. $E^{\prime}\left(y_{0}, y_{1}\right)=: E_{1}\left(y_{0}\right)+E_{2}\left(y_{0}\right) y_{1}$, where $E_{1}\left(y_{0}\right) \in R_{0}\left[y_{0}\right]$ is cubic in y_{0} and $E_{2}\left(y_{0}\right) \in R_{0}\left[y_{0}\right]$ is linear in y_{0}.
3. For every root $y \in R$ of $E(y)$ there exists $\left(a_{0}, i_{0}\right) \in S_{0}$ and $\left(a_{1}, a_{2}\right) \in R \times R$, such that $y=\left(a_{0}+\varphi^{i_{0}} a_{1}\right)+p a_{2}$ and $E^{\prime}\left(a_{1}, a_{2}\right) \equiv 0 \bmod \left\langle p, \varphi^{4 a}\right\rangle$.

We think of E^{\prime} as the quotient $E\left(\left(a_{0}+\varphi^{i} y_{0}\right)+p y_{1}\right) / p^{3}$ in the polynomial ring $R_{0}\left[y_{0}, y_{1}\right]$; and would work with it instead of E in the root-finding algorithm.

Proof. Looking at Eqn. 2 modulo p^{2},

$$
f \varphi^{2 a}\left(\varphi^{a}+p y_{0}\right) \equiv 0 \bmod \left\langle p^{2}, \varphi^{4 a}\right\rangle
$$

Substituting $f=\varphi^{e}+p h_{1}$, we get $\left(\varphi^{e}+p h_{1}\right)\left(\varphi^{3 a}+\varphi^{2 a} p y_{0}\right) \equiv 0 \bmod \left\langle p^{2}, \varphi^{4 a}\right\rangle$. Implying, $p h_{1} \varphi^{3 a} \equiv 0 \bmod \left\langle p^{2}, \varphi^{4 a}\right\rangle$. Using Claim 6 the above equation implies that,

$$
\begin{equation*}
h_{1} \equiv 0 \bmod \left\langle p, \varphi^{a}\right\rangle, \tag{3}
\end{equation*}
$$

is a necessary condition for y_{0} to exist.
We again look at Eqn. 2, but modulo p^{3} now: $f\left(\varphi^{3 a}+\varphi^{2 a} p y_{0}+\varphi^{a} p^{2} y_{0}^{2}\right) \equiv 0 \bmod \left\langle p^{3}, \varphi^{4 a}\right\rangle$.

Notice that y_{1} is not present because its coefficient: $p^{2} f \varphi^{2 a} \equiv 0 \bmod \left\langle p^{3}, \varphi^{4 a}\right\rangle$. Substituting $f=\varphi^{e}+p h_{1}$, we get,

$$
\left(\varphi^{e}+p h_{1}\right)\left(\varphi^{3 a}+\varphi^{2 a} p y_{0}+\varphi^{a} p^{2} y_{o}^{2}\right) \equiv 0 \bmod \left\langle p^{3}, \varphi^{4 a}\right\rangle
$$

Removing the coefficients of y_{0} which vanish modulo $\left\langle p^{3}, \varphi^{4 a}\right\rangle$,

$$
\varphi^{e+a} p^{2} y_{0}^{2}+\varphi^{3 a} p h_{1}+\varphi^{2 a} p^{2} h_{1} y_{0} \equiv 0 \bmod \left\langle p^{3}, \varphi^{4 a}\right\rangle
$$

From Eqn. 3, h_{1} can be written as $p h_{1,1}+\varphi^{a} h_{1,2}$, so

$$
p^{2}\left(\varphi^{e+a} y_{0}^{2}+\varphi^{3 a} h_{1,2} y_{0}+\varphi^{3 a} h_{1,1}\right) \equiv 0 \bmod \left\langle p^{3}, \varphi^{4 a}\right\rangle
$$

We can divide by $p^{2} \varphi^{3 a}$ using Claim 6 to get an equation modulo φ^{a} in the ring $\mathbb{F}_{p}[x]$. This is a quadratic equation in y_{0}. Using Theorem 10, we find the solution set S_{0} with at most two representative pairs: for $\left(a_{0}, i_{0}\right) \in S_{0}$, every $y \in a_{0}+\varphi^{i_{0}} *+p *$ satisfies,

$$
E(y) \equiv 0 \bmod \left\langle p^{3}, \varphi^{4 a}\right\rangle .
$$

In other words, on substituting $\left(a_{0}+\varphi^{i_{0}} y_{0}+p y_{1}\right)$ in $E(y)$,

$$
E\left(a_{0}+\varphi^{i_{0}} y_{0}+p y_{1}\right) \equiv p^{3} E^{\prime}\left(y_{0}, y_{1}\right) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle
$$

for a "bivariate" polynomial $E^{\prime}\left(y_{0}, y_{1}\right) \in R_{0}\left[y_{0}, y_{1}\right]$. This sets up the correspondence between the roots of E and E^{\prime}.

Substituting $\left(a_{0}+\varphi^{i_{0}} y_{0}+p y_{1}\right)$ in Eqn. 2, we notice that $E^{\prime}\left(y_{0}, y_{1}\right)$ has the form $E_{1}\left(y_{0}\right)+$ $E_{2}\left(y_{0}\right) y_{1}$ for a linear E_{2} and a cubic E_{1}.

Finally, this reduction is constructive, because of Lemma 7 and Theorem 10, giving a randomized poly-time algorithm.

3.3 Finding roots of a special bi-variate $E^{\prime}\left(y_{0}, y_{1}\right)$ modulo $\left\langle p, \varphi^{4 a}\right\rangle$

The final obstacle is to find roots of $E^{\prime}\left(y_{0}, y_{1}\right)$ modulo $\left\langle\varphi^{4 a}\right\rangle$ in $\mathbb{F}_{p}[x]$. The polynomial $E^{\prime}\left(y_{0}, y_{1}\right)=E_{1}\left(y_{0}\right)+E_{2}\left(y_{0}\right) y_{1}$ is special because $E_{2} \in R_{0}\left[y_{0}\right]$ is linear in y_{0}.

For a polynomial $u \in \mathbb{F}_{p}[x][\mathbf{y}]$ we define valuation $\operatorname{val}_{\varphi}(u)$ to be the largest r such that $\varphi^{r} \mid u$. Our strategy is to go over all possible valuations $0 \leq r \leq 4 a$ and find y_{0}, such that,

- $E_{1}\left(y_{0}\right)$ has valuation at least r.
- $E_{2}\left(y_{0}\right)$ has valuation exactly r.

From these y_{0} 's, y_{1} can be obtained by 'dividing' $E_{1}\left(y_{0}\right)$ with $E_{2}\left(y_{0}\right)$. The lemma below shows that this strategy captures all the solutions.

Lemma 12 (Bivariate solution). A pair $\left(u_{0}, u_{1}\right) \in R_{0} \times R_{0}$ satisfies an equation of the form $E_{1}\left(y_{0}\right)+E_{2}\left(y_{0}\right) y_{1} \equiv 0 \bmod \left\langle p, \varphi^{4 a}\right\rangle$ if and only if $\operatorname{val}_{\varphi}\left(E_{1}\left(u_{0}\right)\right) \geq \operatorname{val}_{\varphi}\left(E_{2}\left(u_{0}\right)\right)$.

Proof. Let r be $\operatorname{val}_{\varphi}\left(E_{2}\left(u_{0}\right)\right)$, where r is in the set $\{0,1, \ldots, 4 a\}$. If $\operatorname{val}_{\varphi}\left(E_{1}\left(u_{0}\right)\right) \geq \operatorname{val}_{\varphi}\left(E_{2}\left(u_{0}\right)\right)$ then set $u_{1} \equiv-\left(E_{1}\left(u_{0}\right) / \varphi^{r}\right) /\left(E_{2}\left(u_{0}\right) / \varphi^{r}\right) \bmod \left\langle p, \varphi^{4 a-r}\right\rangle$. The pair $\left(u_{0}, u_{1}\right)$ satisfies the required equation. (Note: If $r=4 a$ then we take $u_{1}=*$.)

Conversely, if $r^{\prime}:=\operatorname{val}_{\varphi}\left(E_{1}\left(u_{0}\right)\right)<\operatorname{val}_{\varphi}\left(E_{2}\left(u_{0}\right)\right) \leq 4 a$ then, for every u_{1}, $\operatorname{val}_{\varphi}\left(E_{1}\left(u_{0}\right)+E_{2}\left(u_{0}\right) u_{1}\right)=r^{\prime} \Rightarrow E_{1}\left(u_{0}\right)+E_{2}\left(u_{0}\right) u_{1} \not \equiv 0 \bmod \left\langle p, \varphi^{4 a}\right\rangle$.

We can efficiently find all representative pairs for y_{0}, at most three, such that $E_{1}\left(y_{0}\right)$ has valuation at least r (using Theorem 10). The next lemma shows that we can efficiently filter all y_{0} 's, from these representative pairs, that give valuation exactly r for $E_{2}\left(y_{0}\right)$.

Lemma 13 (Reduce to a unit E_{2}). Given a linear polynomial $E_{2}\left(y_{0}\right) \in R_{0}\left[y_{0}\right]$ and an $r \in[4 a-1]$, let (b, i) be a representative pair modulo $\left\langle p, \varphi^{r}\right\rangle$, i.e., $E_{2}\left(b+\varphi^{i} *\right) \equiv 0 \bmod \left\langle p, \varphi^{r}\right\rangle$. Consider the quotient $E_{2}^{\prime}\left(y_{0}\right):=E_{2}\left(b+\varphi^{i} y_{0}\right) / \varphi^{r}$.

If $E_{2}^{\prime}\left(y_{0}\right)$ does not vanish identically modulo $\langle p, \varphi\rangle$, then there exists at most one $\theta \in$ $R_{0} /\langle\varphi\rangle$ such that $E_{2}^{\prime}(\theta) \equiv 0 \bmod \langle p, \varphi\rangle$, and this θ can be efficiently computed.

Proof. Suppose $E_{2}\left(b+\varphi^{i} y_{0}\right) \equiv u+v y_{0} \equiv 0 \bmod \left\langle p, \varphi^{r}\right\rangle$. Since y_{0} is formal, we get $\operatorname{val}_{\varphi}(u) \geq r$ and $\operatorname{val}_{\varphi}(v) \geq r$. We consider the three cases (wrt these valuations),

1. $\operatorname{val}_{\varphi}(u) \geq r$ and $\operatorname{val}_{\varphi}(v)=r: E_{2}^{\prime}(\theta) \not \equiv 0 \bmod \langle p, \varphi\rangle$, for all $\theta \in R_{0} /\langle\varphi\rangle$ except $\theta=$ $\left(-u / \varphi^{r}\right) /\left(v / \varphi^{r}\right) \bmod \langle p, \varphi\rangle$.
2. $\operatorname{val}_{\varphi}(u)=r$ and $\operatorname{val}_{\varphi}(v)>r: E_{2}^{\prime}(\theta) \not \equiv 0 \bmod \langle p, \varphi\rangle$, for all $\theta \in R_{0} /\langle\varphi\rangle$.
3. $\operatorname{val}_{\varphi}(u)>r$ and $\operatorname{val}_{\varphi}(v)>r: E_{2}^{\prime}\left(y_{0}\right)$ vanishes identically modulo $\langle p, \varphi\rangle$, so this case is ruled out by the hypothesis.

There is an efficient algorithm to find θ, if it exists; because the above proof only requires calculating valuations which entails division operations in the ring.

3.4 Algorithm to find roots of $E(y)$

We have all the ingredients to give the algorithm for finding roots of $E(y)$ modulo ideal $\left\langle p^{4}, \varphi^{4 a}\right\rangle$ of $\mathbb{Z}[x]$.
Input: A polynomial $E(y) \in R[y]$ defined as $E(y):=f(x)\left(\varphi^{3 a}+\varphi^{2 a}(p y)+\varphi^{a}(p y)^{2}+(p y)^{3}\right)$.
Output: A set $Z \subseteq R_{0}$ and a bad set $Z^{\prime} \subseteq R_{0}$, such that, for each $y_{0} \in Z-Z^{\prime}$, there are (efficiently computable) $y_{1} \in R_{0}$ (Theorem 14) satisfying $E\left(y_{0}+p y_{1}\right) \equiv 0 \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$. These are exactly the roots of E.

Also, both sets Z and Z^{\prime} can be described by $O(a)$ many representatives (Theorem 14). Hence, a $y_{0} \in Z-Z^{\prime}$ can be picked efficiently.

[^1]```
for each \(\left(a_{0}, i_{0}\right) \in S_{0}\) do
 Substitute \(y_{0} \mapsto a_{0}+\varphi^{i_{0}} y_{0}\), let \(E^{\prime}\left(y_{0}, y_{1}\right)=E_{1}\left(y_{0}\right)+E_{2}\left(y_{0}\right) y_{1} \bmod \left\langle p, \varphi^{4 a}\right\rangle\) be the
 polynomial obtained from Lemma 11 .
 If \(E_{2}\left(y_{0}\right) \not \equiv 0 \bmod \langle p, \varphi\rangle\) then find (at most one) \(\theta \in R_{0} /\langle\varphi\rangle\) such that \(E_{2}(\theta) \equiv\)
 \(0 \bmod \langle p, \varphi\rangle\). Update \(Z \leftarrow Z \cup\left(a_{0}+\varphi^{i_{0}} *\right)\) and \(Z^{\prime} \leftarrow Z^{\prime} \cup\left(a_{0}+\varphi^{i_{0}}(\theta+\varphi *)\right)\).
 for each possible valuation \(r \in[4 a]\) do
 Initialize sets \(Z_{r}=\{ \}\) and \(Z_{r}^{\prime}=\{ \}\).
 Call Root- \(\operatorname{Find}\left(E_{1}, \varphi^{r}\right)\) to get a set \(S_{1}\) of representative pairs \(\left(a_{1}, i_{1}\right)\) where
 \(a_{1} \in R_{0}\) and \(i_{1} \in \mathbb{N}\) such that \(E_{1}\left(a_{1}+\varphi^{i_{1}} y_{0}\right) \equiv 0 \bmod \left\langle p, \varphi^{r}\right\rangle\).
 for each \(\left(a_{1}, i_{1}\right) \in S_{1}\) do
 Analogously consider \(E_{2}^{\prime}\left(y_{0}\right):=E_{2}\left(a_{1}+\varphi^{i_{1}} y_{0}\right) \bmod \left\langle p, \varphi^{4 a}\right\rangle\).
 Call Root-Find \(\left(E_{2}^{\prime}, \varphi^{r}\right)\) to get a representative pair \(\left(a_{2}, i_{2}\right)\left(\because E_{2}^{\prime}\right.\) is linear \()\),
 where \(a_{2} \in R_{0}\) and \(i_{2} \in \mathbb{N}\) such that \(E_{2}^{\prime}\left(a_{2}+\varphi^{i_{2}} y_{0}\right) \equiv 0 \bmod \left\langle p, \varphi^{r}\right\rangle\).
 if \(r=4 a\) then
 Update \(Z_{r} \leftarrow Z_{r} \cup\left(a_{1}+\varphi^{i_{1}}\left(a_{2}+\varphi^{i_{2}} *\right)\right)\) and \(Z_{r}^{\prime} \leftarrow Z_{r}^{\prime} \cup\{ \}\).
 else if \(E_{2}^{\prime}\left(a_{2}+\varphi^{i_{2}} y_{0}\right) \not \equiv 0 \bmod \left\langle p, \varphi^{r+1}\right\rangle\) then
 Get a \(\theta \in R_{0} /\langle\varphi\rangle\left(\right.\) Lemma 13), if it exists, such that \(E_{2}^{\prime}\left(a_{2}+\varphi^{i_{2}}\left(\theta+\varphi y_{0}\right)\right) \equiv\)
 \(0 \bmod \left\langle p, \varphi^{r+1}\right\rangle\). Update \(Z_{r}^{\prime} \leftarrow Z_{r}^{\prime} \cup\left(a_{1}+\varphi^{i_{1}}\left(a_{2}+\varphi^{i_{2}}(\theta+\varphi *)\right)\right)\).
 Update \(Z_{r} \leftarrow Z_{r} \cup\left(a_{1}+\varphi^{i_{1}}\left(a_{2}+\varphi^{i_{2}} *\right)\right)\).
 end if
 end for
 Update \(Z \leftarrow Z \cup\left(a_{0}+\varphi^{i_{0}} Z_{r}\right)\) and \(Z^{\prime} \leftarrow Z^{\prime} \cup\left(a_{0}+\varphi^{i_{0}} Z_{r}^{\prime}\right)\).
 end for
end for
Return \(Z\) and \(Z^{\prime}\).
```

We prove the correctness of Algorithm 1 in the following theorem.
Theorem 14. The output of Algorithm 1 (set $Z-Z^{\prime}$ ) contains exactly those $y_{0} \in R_{0}$ for which there exist some $y_{1} \in R_{0}$, such that, $y=y_{0}+p y_{1}$ is a root of $E(y)$ in $R$. We can easily compute the set of $y_{1}$ corresponding to a given $y_{0} \in Z-Z^{\prime}$ in poly $(\operatorname{deg} f, \log p)$ time.

Thus, we efficiently describe ( $\xi$ exactly count) the roots $y=y_{0}+p y_{1}+p^{2} y_{2}$ in $R$ of $E(y)$, where $y_{0}, y_{1} \in R_{0}$ are as above and $y_{2}$ can assume any value from $R$.

Proof. The algorithm intends to output roots $y$ of equation $E(y) \equiv f(x)\left(\varphi^{3 a}+\varphi^{2 a}(p y)+\right.$ $\left.\varphi^{a}(p y)^{2}+(p y)^{3}\right) \equiv 0 \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$, where $y=y_{0}+p y_{1}+p^{2} y_{2}$ with $y_{0}, y_{1} \in R_{0}$ and $y_{2} \in R$. From Lemma 9, $y_{2}$ can be kept as $*$, and is independent of $y_{0}$ and $y_{1}$.

Using Lemma 11, Algorithm 1 partially fixes $y_{0}$ from the set $S_{0}$ and reduces the problem to finding roots of an $E^{\prime}\left(y_{0}, y_{1}\right) \bmod \left\langle p, \varphi^{4 a}\right\rangle$. In other words, if we can find all roots $\left(y_{0}, y_{1}\right)$ of $E^{\prime}\left(y_{0}, y_{1}\right) \bmod \left\langle p, \varphi^{4 a}\right\rangle$, then we can find (and count) all roots of $E(y) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$. This is accomplished by Step 1. From Lemma 11, $\left|S_{0}\right| \leq 2$, so loop at Step 3 runs only for a constant number of times.

Using Lemma 11, $E^{\prime}\left(y_{0}, y_{1}\right) \equiv E_{1}\left(y_{0}\right)+E_{2}\left(y_{0}\right) y_{1} \bmod \left\langle p, \varphi^{4 a}\right\rangle$ for a cubic polynomial $E_{1}\left(y_{0}\right) \in R_{0}\left[y_{0}\right]$ and a linear polynomial $E_{2}\left(y_{0}\right) \in R_{0}\left[y_{0}\right]$.

We find all solutions of $E^{\prime}\left(y_{0}, y_{1}\right)$ by going over all possible valuations of $E_{2}\left(y_{0}\right)$ with respect to $\varphi$. The case of valuation 0 is handled in Step 5 and valuation $4 a$ is handled in Step 12. For the remaining valuations $r \in[4 a-1]$, Lemma 12 shows that it is enough to find $\left(z_{0}, z_{1}\right) \in R_{0} \times R_{0}$ such that $\varphi^{r} \mid E_{1}\left(z_{0}\right)$ and $\varphi^{r}| | E_{2}\left(z_{0}\right)$.

Notice that the number of valuations is bounded by $4 a=O(\operatorname{deg} f)$. At Step 6, the algorithm guesses the valuation $r$ of $E_{2}\left(y_{0}\right) \in R_{0}\left[y_{0}\right]$ and subsequent conputation finds all representative roots $b+\varphi^{i} *$ efficiently (using Theorem 10), such that,

$$
E_{1}\left(b+\varphi^{i} y_{0}\right) \equiv E_{2}\left(b+\varphi^{i} y_{0}\right) \equiv 0 \bmod \left\langle p, \varphi^{r}\right\rangle
$$

The representative root $b+\varphi^{i} *$ is denoted by $a_{1}+\varphi^{i_{1}}\left(a_{2}+\varphi^{i_{2}} *\right)$ in Steps $13 \& 16$ of Algorithm 1.

Finally, we need to filter out those $y_{0}$ 's for which $E_{2}\left(b+\varphi^{i} y_{0}\right) \equiv 0 \bmod \left\langle p, \varphi^{r+1}\right\rangle$. This can be done efficiently using Lemma 13 , where we get a unique $\theta \in R_{0} /\langle\varphi\rangle$ for which,

$$
E_{2}\left(b+\varphi^{i}\left(\theta+\varphi y_{0}\right)\right) \equiv 0 \bmod \left\langle p, \varphi^{r+1}\right\rangle
$$

We store partial roots in two sets $Z_{r}$ and $Z_{r}^{\prime}$, where $Z_{r}^{\prime}$ contains the bad values filtered out by Lemma 13 as $b+\varphi^{i}(\theta+\varphi *)$ and $Z_{r}$ contains all possible roots $b+\varphi^{i} *$. So, the set $Z_{r}-Z_{r}^{\prime}$ contains exactly those elements $z_{0}$ for which there exists $z_{1} \in R_{0}$, such that, the pair $\left(z_{0}, z_{1}\right)$ is a root of $E^{\prime}\left(y_{0}, y_{1}\right) \bmod \left\langle p, \varphi^{4 a}\right\rangle$.

Note that size of each set $S_{1}$ obtained at Step 9 is bounded by three using Theorem 10 ( $E_{1}$ is at most a cubic in $y_{0}$ ). Again using Theorem 10, we get at most one pair $\left(a_{2}, i_{2}\right)$ at Step 11 for some $a_{2} \in R_{0}$ and $i_{2} \in \mathbb{N}\left(E_{2}^{\prime}\right.$ is linear in $\left.y_{0}\right)$.

Now, for a fixed $z_{0} \in Z_{r}-Z_{r}^{\prime}$ we can calculate all $z_{1}$ 's by the equation

$$
z_{1} \equiv \tilde{z}_{1}:=-\left(C\left(y_{0}\right) / L\left(y_{0}\right)\right) \bmod \left\langle p, \varphi^{4 a-r}\right\rangle .
$$

Here $C\left(y_{0}\right):=E_{1}\left(z_{0}\right) / \varphi^{r} \bmod \left\langle p, \varphi^{4 a-r}\right\rangle$ and $L\left(y_{0}\right):=E_{2}\left(z_{0}\right) / \varphi^{r} \bmod \left\langle p, \varphi^{4 a-r}\right\rangle$. So, $z_{1} \in R_{0}$ comes from the set $z_{1} \in \tilde{z}_{1}+\varphi^{4 a-r} *$. This can be done efficiently in poly $(\operatorname{deg} f, \log p)$ time.

Finally, sets $Z=a_{0}+\varphi^{i_{0}} Z_{r}$ and $Z^{\prime}=a_{0}+\varphi^{i_{0}} Z_{r}^{\prime}$, for $\left(a_{0}, i_{0}\right) \in S_{0}$ and corresponding valid $r \in\{0, \ldots, 4 a-1\}$, returned by Algorithm 11, describe the $y_{0}$ for the roots of $E\left(y_{0}+\right.$ $\left.p y_{1}\right) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$. The number of representatives in each of these sets is $O(a)$, since $\left|S_{0}\right| \leq 2$ and sizes of $Z_{r}$ and $Z_{r}^{\prime}$ are only constant.

Since we can efficiently describe these $y_{0}$ 's and corresponding $y_{1}$ 's, and we know their precision, we can count all roots $y=y_{0}+p y_{1}+p^{2} * \subseteq R$ of $E(y) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$.

Remark 1 (Root finding for $k=3$ and $k=2$ ). Algorithm 1 can as well be used when $k \in\{2,3\}$ (the algorithm simplifies considerably).

For $k=3$, by Lemma 9, the only relevant coordinate is $y_{0}$. Moreover, we can directly call algorithm Root-Find to find all roots of $E(y) / p^{2}$.

For $k=2$, using Lemma 9 again, we see that there are only two possibilities: $y_{0}=*$, or there is no solution. This can be determined by testing whether $E(y) / p^{2} \bmod \left\langle\varphi^{2 a}\right\rangle$ exists.

### 3.5 Wrapping up Theorems 1 \& 2

Proof of Theorem 1. We prove that given a general univariate $f(x) \in \mathbb{Z}[x]$ and a prime $p$, a non-trivial factor of $f(x)$ modulo $p^{4}$ can be obtained in randomized poly $(\operatorname{deg} f, \log p)$ time (or the irreducibility of $f(x) \bmod p^{4}$ gets certified).

If $f(x) \equiv f_{1}(x) f_{2}(x) \bmod p$, where $f_{1}(x), f_{2}(x) \in \mathbb{F}_{p}[x]$ are two coprime polynomials, then we can efficiently lift this factorization to the $\operatorname{ring}\left(\mathbb{Z} /\left\langle p^{4}\right\rangle\right)[x]$, using Hensel lemma (Lemma 16), to get non-trivial factors of $f(x) \bmod p^{4}$.

For the remaining case, $f(x) \equiv \varphi^{e} \bmod p$ for an irreducible polynomial $\varphi(x)$ modulo $p$. The question of factoring $f \bmod p^{4}$ then reduces to root finding of a polynomial $E(y) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$ by Reduction theorem (Theorem 8). Using Theorem 14, we get all such roots and hence a non-trivial factor of $f(x) \bmod p^{4}$ is found. If there are no roots $y \in R$ of $E(y)$, for all $a \leq e / 2$, then the polynomial $f$ is irreducible (by symmetry, if there is a factor for $a>e / 2$ then there is a factor for $a \leq e / 2)$.

Remark 2. As discussed before, the above proof applies to factorization modulo $p^{3}$ and $p^{2}$ as well (by considering the generality of Theorems 8 8314). Hence, Theorem 1 also solves the open question of factoring $f$ modulo $p^{3}$. In fact, in Appendix $\square$ we observe that our efficient algorithm outputs all the factors of $f \bmod p^{3}$ in a compact way.

Proof of Theorem 2. We will prove the theorem for $k=4$, case of $k<4$ is similar.
We are given a univariate $f(x) \in \mathbb{Z}[x]$ of degree $d$ and a prime $p$, such that, $f(x) \bmod p$ is a power of an irreducible polynomial $\varphi(x)$. So, $f(x)$ is of the form $\varphi(x)^{e}+p h(x) \bmod p^{4}$, for an integer $e \in \mathbb{N}$ and a polynomial $h(x) \in\left(\mathbb{Z} /\left\langle p^{4}\right\rangle\right)[x]$ of degree $\leq d$ (also, $\operatorname{deg} \varphi^{e} \leq d$ ). By unique factorization over the ring $\mathbb{F}_{p}[x]$, if $\tilde{g}(x)$ is a factor of $f(x) \bmod p$ then, $\tilde{g}(x) \equiv \tilde{v} \varphi(x)^{a} \bmod p$ for a unit $\tilde{v} \in \mathbb{F}_{p}$.

First, we show that it is enough to find all the lifts of $\tilde{g}(x)$, such that, $\tilde{g}(x) \equiv \varphi(x)^{a} \bmod p$ for an $a \leq e$. If $\tilde{g}(x) \equiv \tilde{v} \varphi(x)^{a} \bmod p$, then any lift has the form $g(x) \equiv v(x)\left(\varphi^{a}-p y\right) \bmod p^{4}$ for a unit $v(x) \in(\tilde{v}+p *) \subseteq\left(\mathbb{Z} /\left\langle p^{4}\right\rangle\right)[x]$. Any such $g(x)$ maps uniquely to a $g_{1}(x):=$ $\tilde{v}^{-1} g(x) \bmod p^{4}$, which is a lift of $\varphi(x)^{a} \bmod p$. So, it is enough to find all the lifts of $\varphi(x)^{a} \bmod p$.

We know that any lift $g(x) \in\left(\mathbb{Z} /\left\langle p^{4}\right\rangle\right)[x]$ of $\tilde{g}(x)$, which is a factor of $f(x)$, must be of the form $\varphi(x)^{a}-p y(x) \bmod p^{4}$ for a polynomial $y(x) \in\left(\mathbb{Z} /\left\langle p^{4}\right\rangle\right)[x]$. By Reduction theorem (Theorem 8), we know that finding such a factor is equivalent to solving for $y$ in the equation $E(y) \equiv 0 \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$. By Theorem 14, we can find all such roots $y$ in randomized $\operatorname{poly}(d, \log p)$ time, for $a \leq e / 2$.

If $a>e / 2$ then we replace $a$ by $b:=e-a$, as $b \leq e / 2$, and solve the equation $E(y) \equiv 0 \bmod \left\langle p^{4}, \varphi^{4 b}\right\rangle$ using Theorem 14. This time the factor corresponding to $y$ will be, $g(x) \equiv f /\left(\varphi^{b}-p y\right) \equiv E(y) / \varphi^{4 b} \bmod p^{4}$, from Reduction theorem (Theorem 8).

The number of lifts of $\tilde{g}(x)$ which divide $f \bmod p^{4}$ is the count of $y$ 's that appear above. This is efficiently computable.

## 4 Conclusion

The study of vzGH98, vzGH96] sheds some light on the behaviour of the factoring problem for integral polynomials modulo prime powers. It shows that for "large" $k$ the problem is similar to the factorization over $p$-adic fields (already solved efficiently by [CG00]). But, for "small" $k$ the problem seems hard to solve in polynomial time. We do not even know a practical algorithm.

This motivated us to study the case of constant $k$, with the hope that this will help us invent new tools. In this direction, we make significant progress by giving a unified method to factor $f \bmod p^{k}$ for $k \leq 4$. We also generalize Hensel lifting for $k \leq 4$, by giving all possible lifts of a factor of $f \bmod p$, in the classically hard case of $f \bmod p$ being a power of an irreducible.

We give a general framework (for any $k$ ) to work on, by reducing the factoring in a big ring to root-finding in a smaller ring. We leave it open whether we can factor $f \bmod p^{5}$, and beyond, within this framework.

We also leave it open, to efficiently get all the solutions of a bivariate equation, in $\mathbb{Z} /\left\langle p^{k}\right\rangle$ or $\mathbb{F}_{p}[x] /\left\langle\varphi^{k}\right\rangle$, in a compact representation. Surprisingly, we know how to achieve this for univariate polynomials BLQ13. This, combined with our work, will probably give factoring $\bmod p^{k}$, for any $k$.
Acknowledgements. We thank Vishwas Bhargava for introducing us to the open problem of factoring $f \bmod p^{3}$. N.S. thanks the funding support from DST (DST/SJF/MSA-01/201314). R.M. would like to thank support from DST through grant DST/INSPIRE/04/2014/001799.

## References

[Apo13] Tom M Apostol. Introduction to analytic number theory. Springer Science \& Business Media, 2013. 2
[Ber67] Elwyn R Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal, 46(8):1853-1859, 1967. 1
[BLQ13] Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. Polynomial root finding over local rings and application to error correcting codes. Applicable Algebra in Engineering, Communication and Computing, 24(6):413-443, 2013. 2, 4. 5, 9, 16, 19
[BS86] Zenon Ivanovich Borevich and Igor Rostislavovich Shafarevich. Number theory, volume 20. Academic press, 1986. 2
[CG00] David G Cantor and Daniel M Gordon. Factoring polynomials over $p$-adic fields. In International Algorithmic Number Theory Symposium, pages 185-208. Springer, 2000. 1, 2, 16
[CGRW18] Qi Cheng, Shuhong Gao, J Maurice Rojas, and Daqing Wan. Counting roots of polynomials over prime power rings. In Thirteenth Algorithmic Number Theory Symposium, ANTS-XIII. Mathematical Sciences Publishers, 2018. arXiv:1711.01355. 3
[Chi87] AL Chistov. Efficient factorization of polynomials over local fields. Dokl. Akad. Nauk SSSR, 293(5):1073-1077, 1987. 1, 2
[Chi94] AL Chistov. Algorithm of polynomial complexity for factoring polynomials over local fields. Journal of mathematical sciences, 70(4):1912-1933, 1994. 2
[CL01] Howard Cheng and George Labahn. Computing all factorizations in $\mathbb{Z}_{N}[x]$. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC'01, pages 64-71, 2001. 2
[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields. Mathematics of Computation, pages 587-592, 1981. 1, 18
[DH01] Jan Denef and Kathleen Hoornaert. Newton polyhedra and Igusa's local zeta function. Journal of number Theory, 89(1):31-64, 2001. 3
[FS15] Michael A Forbes and Amir Shpilka. Complexity theory column 88: Challenges in polynomial factorization. ACM SIGACT News, 46(4):32-49, 2015. 1
[Hen18] Kurt Hensel. Eine neue theorie der algebraischen zahlen. Mathematische Zeitschrift, 2(3):433-452, Sep 1918. 2, 18, 19
[Kal92] Erich Kaltofen. Polynomial factorization 1987-1991. In Latin American Symposium on Theoretical Informatics, pages 294-313. Springer, 1992. 1
[Kli97] Adam Klivans. Factoring polynomials modulo composites. Technical report, Carnegie-Mellon Univ, Pittsburgh PA, Dept of CS, 1997. 1
[KRRZ18] Leann Kopp, Natalie Randall, J Maurice Rojas, and Yuyu Zhu. Randomized polynomial-time root counting in prime power rings. arXiv preprint arXiv:1808.10531, 2018. 3
[KU11] Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization and modular composition. SIAM Journal on Computing, 40(6):1767-1802, 2011. 1
[Lan85] Susan Landau. Factoring polynomials over algebraic number fields. SIAM Journal on Computing, 14(1):184-195, 1985. 1
[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515-534, 1982. 1
[NZM13] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An introduction to the theory of numbers. John Wiley \& Sons, 2013. 2
[Săl05] Ana Sălăgean. Factoring polynomials over $\mathbb{Z}_{4}$ and over certain galois rings. Finite fields and their applications, 11(1):56-70, 2005. 3
[Sha93] Adi Shamir. On the generation of multivariate polynomials which are hard to factor. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 796-804. ACM, 1993. 1
[Sir17] Carlo Sircana. Factorization of polynomials over $\mathbb{Z} /\left(p^{n}\right)$. In Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pages 405-412. ACM, 2017. 3
[vzGH96] Joachim von zur Gathen and Silke Hartlieb. Factorization of polynomials modulo small prime powers. Technical report, Paderborn Univ, 1996. 2, 3, 16
[vzGH98] Joachim von zur Gathen and Silke Hartlieb. Factoring modular polynomials. Journal of Symbolic Computation, 26(5):583-606, 1998. 2, 16
[vzGP01] Joachim von zur Gathen and Daniel Panario. Factoring polynomials over finite fields: A survey. Journal of Symbolic Computation, 31(1-2):3-17, 2001. 1
[Zas69] Hans Zassenhaus. On hensel factorization, I. Journal of Number Theory, 1(3):291311, 1969. 18
[ZG03] WA Zuniga-Galindo. Computing Igusa's local zeta functions of univariate polynomials, and linear feedback shift registers. Journal of Integer Sequences, 6(2):3, 2003. 3

## A Preliminaries

The following theorem by Cantor-Zassenhaus [CZ81 efficiently finds all the roots of a given univariate polynomial over a finite field.

Theorem 15 (Cantor-Zassenhaus). Given a univariate degree d polynomial $f(x)$ over a given finite field $\mathbb{F}_{q}$, we can find all the irreducible factors of $f(x)$ in $\mathbb{F}_{q}[x]$ in randomized poly $(d, \log q)$ time.

Currently, it is a big open question to derandomize this algorithm.
Below we state a lemma, originally due to Hensel [Hen18], for $\mathcal{I}$-adic lifting of coprime factorization for a given univariate polynomial. Over the years, it has acquired many forms in different texts; the version being presented here is due to Zassenhaus [Zas69].

Lemma 16 (Hensel lemma \& lift [Hen18]). Let $R$ be a commutative ring with unity, and let $\mathcal{I} \subseteq R$ be an ideal. Given a polynomial $f(x) \in R[x]$, let $g(x), h(x), u(x), v(x) \in R[x]$ be polynomials, such that, $f(x)=g(x) h(x) \bmod \mathcal{I}$ and $g(x) u(x)+h(x) v(x)=1 \bmod \mathcal{I}$.

Then, for any $l \in \mathbb{N}$, we can efficiently compute $g^{*}, h^{*}, u^{*}, v^{*} \in R[x]$ such that

$$
f=g^{*} h^{*} \bmod \mathcal{I}^{l} \quad \text { (called lift of the factorization) }
$$

where $g^{*}=g \bmod \mathcal{I}, h^{*}=h \bmod \mathcal{I}$ and $g^{*} u^{*}+h^{*} v^{*}=1 \bmod \mathcal{I}^{l}$.
Moreover, $g^{*}$ and $h^{*}$ are unique upto multiplication by a unit.

## B Root finding modulo $\varphi(x)^{i}$

Let us denote the ring $\mathbb{F}_{p}[x] /\left\langle\varphi^{i}\right\rangle$ by $R_{0}$ (for an irreducible $\varphi(x) \bmod p$ ). In this section, we give an algorithm to find all the roots $y$ of a polynomial $g(y) \in R_{0}[y]$ in the ring $R_{0}$. The algorithm was originally discovered by [BLQ13, Cor.24] to find roots in $\mathbb{Z} /\left\langle p^{i}\right\rangle$, we adapt it here to find roots in $R_{0}$.

Note that $R_{0} /\left\langle\varphi^{j}\right\rangle=\mathbb{F}_{p}[x] /\left\langle\varphi^{j}\right\rangle$, for $j \leq i$, and $R_{0} /\langle\varphi\rangle=: \mathbb{F}_{q}$ is the finite field of size $q:=p^{\operatorname{deg}(\varphi \bmod p)}$. The structure of a root $y$ of $g(y)$ in $R_{0}$ is

$$
y=y_{0}+\varphi y_{1}+\varphi^{2} y_{2}+\ldots+\varphi^{i-1} y_{i-1}
$$

where $y \in R_{0}$ and each $y_{j} \in \mathbb{F}_{q}$ for all $j \in\{0, \ldots, i-1\}$. Also, recall the notation of $*$ (given in Section 2) and representative roots (in Section 3.1).

The output of this algorithm is simply a set of at most $(\operatorname{deg} g)$ many representative roots of $g(y)$. This bound of $\operatorname{deg} g$ is a curious by-product of the algorithm.

```
Algorithm 2 Root-finding in ring \(R_{0}\)
 procedure Root-Find \(\left(g(y), \varphi^{i}\right)\)
 If \(g(y) \equiv 0\) in \(R_{0} /\left\langle\varphi^{i}\right\rangle\) return \(*\) (every element is a root).
 Let \(g(y) \equiv \varphi^{\alpha} \tilde{g}(y)\) in \(R_{0} /\left\langle\varphi^{i}\right\rangle\), for the unique integer \(0 \leq \alpha<i\) and the polynomial
 \(\tilde{g}(y) \in R_{0} /\left\langle\varphi^{i-\alpha}\right\rangle[y]\), s.t., \(\tilde{g}(y) \not \equiv 0\) in \(R_{0} /\langle\varphi\rangle\) and \(\operatorname{deg}(\tilde{g}) \leq \operatorname{deg}(g)\).
 Using Cantor-Zassenhaus algorithm find all the roots of \(\tilde{g}(y)\) in \(R_{0} /\langle\varphi\rangle\).
 If \(\tilde{g}(y)\) has no root in \(R_{0} /\langle\varphi\rangle\) then return \(\}\). (Dead-end)
 Initialize \(S=\{ \}\).
 for each root \(a\) of \(\tilde{g}(y)\) in \(R_{0} /\langle\varphi\rangle\) do
 Define \(g_{a}(y):=\tilde{g}(a+\varphi y)\).
 \(S^{\prime} \leftarrow \operatorname{Root-FIND}\left(g_{a}(y), \varphi^{i-\alpha}\right)\).
 \(S \leftarrow S \cup\left(a+\varphi S^{\prime}\right)\).
 end for
 return \(S\).
 end procedure
```

Note that in Step 9 we ensure: $\varphi \mid g_{a}(y)$. So, in every other recursive call to Root-FInd the second argument reduces by at least one. The key reason why $|S| \leq \operatorname{deg} g$ holds: The number of representative roots of $g_{a}(y)$ are upper bounded by the multiplicity of the root $a$ of $\tilde{g}(y)$.

## C Finding all the factors modulo $p^{3}$

We will give a method to efficiently get and count all the distinct factors of $f \bmod p^{3}$, where $f(x) \in \mathbb{Z}[x]$ is a univariate polynomial of degree $d$.

Theorem 17. Given $f(x) \in \mathbb{Z}[x]$, a univariate polynomial of degree $d$ and a prime $p \in \mathbb{N}$, we give ( $\mathcal{\xi}$ count) all the distinct factors of $f \bmod p^{3}$ of degree at most $d$ in randomized poly $(d, \log p)$ time.

Note: We will not distinguish two factors if they are same up to multiplication by a unit. We will only find monic (leading coefficient 1) factors of $f(x) \bmod p^{3}$ and assume that $f$ is monic.

Proof of Theorem 17. By Theorem 15 and Lemma 16 we write:

$$
f(x) \equiv \prod_{i=1}^{n} f_{i}(x) \equiv \prod_{i=1}^{n}\left(\varphi_{i}^{e_{i}}+p h_{i}\right) \bmod p^{3}
$$

where $f_{i}(x) \equiv\left(\varphi_{i}^{e_{i}}+p h_{i}\right) \bmod p^{3}$ with $\varphi_{i} \bmod p^{3}$ being monic and irreducible $\bmod p, e_{i} \in \mathbb{N}$, and $h_{i}(x) \bmod p^{3}$ of degree $<e_{i} \operatorname{deg}\left(\varphi_{i}\right)$, for all $i \in[n]$.

Thus, wlog, consider the case of $f \equiv \varphi^{e}+p h$.
By Reduction theorem (Theorem 8) finding factors of the form $\varphi^{a}-p y \bmod p^{3}$ of $f \equiv$ $\varphi^{e}+p h \bmod p^{3}$, for $a \leq e / 2$, is equivalent to finding all the roots of the equation

$$
E(y) \equiv f(x)\left(\varphi^{2 a}+\varphi^{a}(p y)+(p y)^{2}\right) \equiv 0 \bmod \left\langle p^{3}, \varphi^{3 a}\right\rangle
$$

Consider $R:=\mathbb{Z}[x] /\left\langle p^{3}, \varphi^{3 a}\right\rangle$ and $R_{0}:=\mathbb{Z}[x] /\left\langle p, \varphi^{3 a}\right\rangle$, analogous to those in Section 2 .
Using Lemma 9, we know that all solutions of the equation $E(y) \equiv 0 \bmod \left\langle p^{3}, \varphi^{3 a}\right\rangle$ will be of the form $y=y_{0}+p * \in R$, for a $y_{0} \in R_{0}$. On simplifying this equation we get $E(y) \equiv p h \varphi^{2 a}+\left(p^{2} h \varphi^{a}\right) y_{0}+\left(p^{2} \varphi^{e}\right) y_{0}^{2} \equiv 0 \bmod \left\langle p^{3}, \varphi^{3 a}\right\rangle$.

Reducing this equation $\bmod \left\langle p^{2}, \varphi^{3 a}\right\rangle$, we get that $h \equiv 0 \bmod \left\langle p, \varphi^{a}\right\rangle$ is a necessary condition for a root $y_{0}$ to exist. So, we get

$$
E(y) \equiv p^{2} g_{2} \varphi^{2 a}+\left(p^{2} g_{1} \varphi^{2 a}\right) y_{0}+\left(p^{2} \varphi^{e}\right) y_{0}^{2} \equiv 0 \bmod \left\langle p^{3}, \varphi^{3 a}\right\rangle
$$

where $h:=\varphi^{a} g_{1}+p g_{2}$ for unique $g_{1}, g_{2} \in \mathbb{F}_{p}[x]$.
This equation is already divisible by $p^{2}$ as well as $\varphi^{2 a}$ and so using Claim 6 we get that, finding factors of the form $\varphi^{a}-p y \bmod p^{3}$ of $f \equiv \varphi^{e}+p h \bmod p^{3}$, for $a \leq e / 2$, is equivalent to finding all the roots of the equation

$$
g_{2}+g_{1} y_{0}+\varphi^{e-2 a} y_{0}^{2} \equiv 0 \bmod \left\langle p, \varphi^{a}\right\rangle
$$

We find all the roots of this equation using one call to Root-FInd in randomized $\operatorname{poly}(d, \log p)$ time. Note that any output root $u_{0}$ lives in $\mathbb{F}_{p}[x] /\left\langle\varphi^{a}\right\rangle$ and so its degree in $x$ is $<a \operatorname{deg}(\varphi)$. This yields monic factors of $f \bmod p^{3}($ with $0 \leq a \leq e / 2)$.

For $e \geq a>e / 2$, we can replace $a$ by $b:=e-a$ in the above steps. Once we get a factor $\varphi^{b}-p y \bmod p^{3}$, we output the cofactor $f /\left(\varphi^{b}-p y\right)$ (which remains monic).

Counting these factors can be easily done in poly-time.
In the general case, if $N_{i}$ is the number of factors of $f_{i} \bmod p^{3}$ then, $\prod_{i=1}^{n} N_{i}$ is the count on the number of distinct monic factors of $f \bmod p^{3}$.

## D Barriers to extension modulo $p^{5}$

The reader may wonder about polynomial factoring when $k$ is greater than 4 . In this section we will discuss the issues in applying our techniques to factor $f(x) \bmod p^{5}$.

Given $f(x) \equiv \varphi^{e} \bmod p$, finding one of its factor $\varphi^{a}-p y \bmod p^{5}$, for $a \leq e / 2$ and $y \in\left(\mathbb{Z} /\left\langle p^{5}\right\rangle\right)[x]$, is reduced to solving the equation

$$
\begin{equation*}
E(y):=f(x)\left(\varphi^{4 a}+\varphi^{3 a}(p y)+\varphi^{2 a}(p y)^{2}+\varphi^{a}(p y)^{3}+(p y)^{4}\right) \equiv 0 \bmod \left\langle p^{5}, \varphi^{5 a}\right\rangle \tag{4}
\end{equation*}
$$

By Lemma 9, the roots of $E(y) \bmod \left\langle p^{5}, \varphi^{5 a}\right\rangle$ are of the form $y=y_{0}+p y_{1}+p^{2} y_{2}+p^{3} *$ in $R$, where $y_{0}, y_{1}, y_{2} \in R_{0}$ need to be found.

First issue. The first hurdle comes when we try to reduce root-finding modulo the bigenerated ideal $\left\langle p^{5}, \varphi^{5 a}\right\rangle \subseteq \mathbb{Z}[x]$ to root-finding modulo the principal ideal $\left\langle\varphi^{5 a}\right\rangle \subseteq \mathbb{F}_{p}[x]$. In the case $k=4$, Lemma 11 guarantees that we need to solve at most two related equations of the form $E^{\prime}\left(y_{0}, y_{1}\right) \equiv 0 \bmod \left\langle p, \varphi^{4 a}\right\rangle$ to find exactly the roots of $E(y) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$. Below, for $k=5$, we show that we have exponentially many candidates for $E^{\prime}\left(y_{0}, y_{1}, y_{2}\right) \in R_{0}\left[y_{0}, y_{1}, y_{2}\right]$ and it is not clear if there is any compact efficient representation for them.

Putting $y=y_{0}+p y_{1}+p^{2} y_{2}$ in Eqn. 4 we get,

$$
\begin{equation*}
E(y)=: E_{1}\left(y_{0}\right)+E_{2}\left(y_{0}\right) y_{1}+E_{3}\left(y_{0}\right) y_{2}+\left(f \varphi^{2 a} p^{4}\right) y_{1}^{2} \equiv 0 \bmod \left\langle p^{5}, \varphi^{5 a}\right\rangle, \tag{5}
\end{equation*}
$$

where $E_{1}\left(y_{0}\right):=f \varphi^{4 a}+f \varphi^{3 a} p y_{0}+f \varphi^{2 a} p^{2} y_{0}^{2}+f \varphi^{a} p^{3} y_{0}^{3}+f p^{4} y_{0}^{4}$ is a quartic in $R\left[y_{0}\right], E_{2}\left(y_{0}\right):=$ $f \varphi^{3 a} p^{2}+f \varphi^{2 a} 2 p^{3} y_{0}+f \varphi^{a} 3 p^{4} y_{0}^{2}$ is a quadratic in $R\left[y_{0}\right]$ and $E_{3}\left(y_{0}\right):=f \varphi^{3 a} p^{3}+f \varphi^{2 a} 2 p^{4} y_{0}$ is linear in $R\left[y_{0}\right]$.

To divide Eqn. 5 by $p^{3}$, we go $\bmod \left\langle p^{3}, \varphi^{5 a}\right\rangle$ obtaining

$$
E(y) \equiv E_{1}\left(y_{0}\right) \equiv f \varphi^{4 a}+f \varphi^{3 a} p y_{0}+f \varphi^{2 a} p^{2} y_{0}^{2} \equiv 0 \bmod \left\langle p^{3}, \varphi^{5 a}\right\rangle
$$

a univariate quadratic equation which requires the whole machinery used in the case $k=3$. We get this simplified equation since $E_{3}\left(y_{0}\right) \equiv 0 \bmod \left\langle p^{3}, \varphi^{5 a}\right\rangle$ and $E_{2}\left(y_{0}\right) \equiv f \varphi^{3 a} p^{2} \equiv$ $\varphi^{e-2 a} \varphi^{2 a+3 a} p^{2} \equiv 0 \bmod \left\langle p^{3}, \varphi^{5 a}\right\rangle$.

But, to really reduce Eqn. 5 to a system modulo the principal ideal $\left\langle\varphi^{5 a}\right\rangle \subseteq \mathbb{F}_{p}[x]$, we need to divide it by $p^{4}$. So, we go $\bmod \left\langle p^{4}, \varphi^{5 a}\right\rangle$ :

$$
E(y) \equiv E_{1}^{\prime}\left(y_{0}\right)+E_{2}^{\prime}\left(y_{0}\right) y_{1} \equiv 0 \bmod \left\langle p^{4}, \varphi^{5 a}\right\rangle
$$

where $E_{1}^{\prime}\left(y_{0}\right) \equiv E_{1}\left(y_{0}\right) \bmod \left\langle p^{4}, \varphi^{5 a}\right\rangle$ is a cubic in $R\left[y_{0}\right]$ and $E_{2}^{\prime}\left(y_{0}\right) \equiv E_{2}\left(y_{0}\right) \bmod \left\langle p^{4}, \varphi^{5 a}\right\rangle$ is linear in $R\left[y_{0}\right]$. This requires us to solve a special bivariate equation which requires the machinery used in the case $k=4$.

Now, the problem reduces to computing a solution pair $\left(y_{0}, y_{1}\right) \in\left(R_{0}\right)^{2}$ of this bivariate. We can apply the idea used in Algorithm 1 to get all valid $y_{0}$ efficiently, but since $y_{1}$ is a function of $y_{0}$, we need to compute exponentially many $y_{1}$ 's. So, there seem to be exponentially many candidates for $E^{\prime}\left(y_{0}, y_{1}, y_{2}\right)$, that behaves like $E(y) / p^{4}$ and lives in $\left(\mathbb{F}_{p}[x] /\left\langle\varphi^{5 a}\right\rangle\right)\left[y_{0}, y_{1}, y_{2}\right]$. At this point, we are forced to compute all these $E^{\prime}$ s, as we do not know which one will lead us to a solution of Eqn. 5 .

Second issue. Even if we resolve the first issue and get a valid $E^{\prime}$, we are left with a trivariate equation to be solved $\bmod \left\langle p, \varphi^{5 a}\right\rangle$ (Eqn. 5 after shifting $y_{0}$ and $y_{1}$ then dividing by $p^{4}$ ). We could do this when $k$ was 4 , because we could easily write $y_{1}$ as a function of $y_{0}$. Though, it is unclear how to solve this trivariate now as the equation is nonlinear in both $y_{0}$ and $y_{1}$.

For $k>5$ the difficulty will only increase because of the recursive nature of Eqn. 4 with more and more number of unknowns (with higher degrees).


[^0]:    ${ }^{*}$ CSE, Indian Institute of Technology, Kanpur, ashish@cse.iitk. ac.in
    ${ }^{\dagger} \mathrm{CSE}$, Indian Institute of Technology, Kanpur, rmittal@cse.iitk.ac.in
    ${ }^{\ddagger} \mathrm{CSE}$, Indian Institute of Technology, Kanpur, nitin@cse.iitk. ac.in

[^1]:    Algorithm 1 Finding all roots of $E(y)$ in $R$
    1: Given $E\left(y_{0}+p y_{1}\right)$, using Lemma 11, get the set $S_{0}$ of all representative pairs $\left(a_{0}, i_{0}\right)$, where $a_{0} \in R_{0}$ and $i_{0} \in \mathbb{N}$, such that $p^{3} \mid E\left(\left(a_{0}+\varphi^{i_{0}} y_{0}\right)+p y_{1}\right) \bmod \left\langle p^{4}, \varphi^{4 a}\right\rangle$.
    2: Initialize sets $Z=\{ \}$ and $Z^{\prime}=\{ \}$; seen as subsets of $R_{0}$.

