
The Fine-Grained Complexity of
Strengthenings of First-Order Logic

Jiawei Gao Russell Impagliazzo∗
jiawei@cs.ucsd.edu russell@cs.ucsd.edu

University of California, San Diego University of California, San Diego

Abstract
The class of model checking for first-order formulas on sparse graphs has a complete problem

with respect to fine-grained reductions, Orthogonal Vectors (OV) [GIKW17]. This paper stud-
ies extensions of this class or more lenient parameterizations. We consider classes obtained by
allowing function symbols; first-order on ordered structures; adding various notions of transitive
closure operations; and stratifications of first-order properties by quantifier depth and variable
complexity, rather than number of quantifiers. For some of these classes, OV is still a com-
plete problem, in that significant improvement for the entire class is equivalent to significant
improvement for OV algorithms. For these classes, we can also use the improved OV algorithm
of [AWY15, CW16] to get moderate improvements on algorithms for the entire class. For other
classes, we show that model checking becomes harder than for first-order, under well-studied
conjectures such as SETH. For other classes, we show hardness follows from weaker assumptions
than SETH.

Surprisingly, whether an extension increases the complexity of model checking seems inde-
pendent of whether it increases the expressive power of the logic. For example, adding function
symbols does not change which problems are expressible by first-order, but does increase the
time for model checking under SETH. On the other hand, adding an ordering does not change
the fine-grained complexity of model checking, although it increases the logic’s expressive power.

1 Introduction

Fine-grained complexity is a relatively new sub-area within theoretical computer science that aims
to not only qualitatively classify problems as “easy” or “hard”, but (to the extent possible) pin-
point their exact complexities. There are now a wide variety of standard algorithmic problems
where no significant improvements in algorithmic running time can be made without refuting one
of a few conjectures about well-studied problems, such as the k-SUM problem [GO95], All Pairs
Shortest Paths [WW10, AGW14, LWW18], SAT, or Orthogonal Vectors [AWW14, Bri14, ABW15,
BI15, BK15, MPS16, KPS17, AR16, ABDN18, BRS+18].

In traditional complexity, classes of problems are related to each other, and individual problems
understood by identifying classes for which they are complete. In contrast, most of the results
in fine-grained complexity were obtained on a problem-by-problem basis. One reason for this is
that results in fine-grained complexity cut across traditional classes, with NP-complete problems
reducing to problems within P or even smaller classes. This raises the questions: is it possible
to give a fine-grained complexity of classes of problems? Is the notion of completeness useful in
fine-grained complexity?
∗Work supported by a Simons Investigator Award from the Simons Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 9 (2019)

Some preliminary answers were given in [Wil14b, GIKW17]. Both of these papers consider the
class of first-order definable properties, the first for the dense case (where each relation is given as a
matrix, aka adjacency matrix format), and the second for the sparse case (where the input is given
as a list of tuples in the relations, e.g., for graphs, adjacency list format). This class is natural
both in terms of computational complexity, where it is the uniform version of AC0, and in database
theory, because these are the queries expressible in basic SQL [AHV95]. First-order logic can also
express many polynomial time computable problems: Orthogonal Vectors, k-Orthogonal Vectors,
k-Clique, k-Independent set, k-Dominating set, etc. Not only were the likely complexities of the
hardest problems (as a function of number of quantifiers) given, but in the second paper, a natural
complete problem was identified, the orthogonal vectors problem (discussed below in more detail).
The conclusion was that there were substantial improvements possible in the worst-case complexity
of model checking for first-order properties if and only if the known Orthogonal Vectors algorithms
can be substantially improved. Using a recent sub-polynomial improvement in OV algorithms by
[AWY15], they obtained a similar improvement in model-checking every first order property.

There are also some work on classes of problems that are related in spirit, but do not form a
well-studied complexity class. [WW10] studies problems related to shortest paths in graphs, and
show that many are equivalent as far as having sub-cubic algorithms. [KPS17] studies dynamic
programming algorithms with a similar structure, and gives a unified treatment of their fine-grained
complexities.

Here, we extend this class-based approach to fine-grained complexity. We consider the fine-
grained complexities of various well-studied extensions of first-order logic. Surprisingly, we find
that some extensions of first-order that increase the expressive power greatly do not change the
fine-grained complexity of the corresponding model checking, while some extensions that do not
change expressibility substantially increase the complexity of model checking. (This may not be as
paradoxical as it would appear at first glance. Parity is not expressible in first-order, but a pre-
processing stage to compute the parity would not greatly change the running time of most queries.
In the other direction, although at a qualitative level, expressive power might be the same in an
extension, the simulation might change quantitative aspects, such as the number of quantifiers.
Our bounds give limits on the quantitative price that must be paid in doing the conversion from
one logic to another.)

The basic logic that we consider is first-order relational logic. There are a finite list R1, ..Rt of
relation symbols, each with a non-negative integer arity ai. A formula is built from these symbols
applied to variables, with Boolean connectives and the quantifers ∀ and ∃. A finite model is specified
as a universe U and for each Ri a set of tuples (u1, ..uai) ∈ Uai . For algorithmic purposes, we can
either represent a relation as a matrix or tensor of Booleans, which for every tuple, specifies whether
or not it is in the relation, or as a list of possible relations. In this paper, we generally use the list
representation, but sometimes need to refer to algorithms using the matrix representation. We use
n to mean the size of U , and m to be |U | plus the total number of tuples in all relations.

For k-quantifier first-order definable dense graph properties (i.e., structures with unary and
binary relations represented in adjacency matrix format), [Wil14b] shows that on a graph of n
vertices:

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking requires time
Ω(nk−1−ε).

2. For k ≥ 9, model checking can be performed in time O(nk−1).
Thus, the likely complexity is resolved under the assumption (which follows from the Strong Expo-
nential Time Hypothesis), for k ≥ 9 and graph problems. For 3 ≤ k ≤ 8 or for non-graph problems,
the exact complexity is still open, but upper and lower bounds differ by at most a linear factor.

For sparse first order properties, with arbitrary arities, the characterization is even stronger.

2

[GIKW17] shows that on a hypergraph of m edges:
1. If the OV conjecture is true, then for every ε > 0, worst-case model checking requires time

Ω(mk−1−ε). (This follows from the earlier result).
2. OV is complete for first-order: If the OV conjecture is false, then there is an ε > 0 so that for

every k ≥ 3, model checking can be done in time O(mk−1−ε).
3. Model checking can be improved using the fastest OV algorithm: Unconditionally, model

checking can be done in time mk−1/2Ω(
√

logm).
So improvements in the entire class of model checking problems are captured by the extent to which
OV algorithms can be improved.

We show, somewhat suprisingly, that different natural extensions of first-order sometimes main-
tain the complexity of model checking exactly, but sometimes change the complexity in an inter-
esting way. Whether the complexity of the model checking problem is changed seems completely
independent of whether the extension increases the expressive power of the logic.

In particular we consider:

First-order logic with unary function symbols: In general, function symbols can be replaced
with relations representing their graphs, so adding functions does not change the expressive
power of first-order logic. However, in doing so, we might increase the number of quantifiers
needed to express a property. We show that, assuming the low-dimension OV conjecture
(which follows from SETH), the model checking problem increases by almost a linear factor
when functions are added. More precisely, we show that assuming the low-dimension OV
conjecture holds, then ∀k ≥ 3, ∀ε > 0, there exists a k-quantifier first-order formula ϕ with
unary functions, so that no algorithm can decide ϕ in time O(mk−ε).
This approaches a factor of m over the upper bound for model checking such formulas without
function symbols.

First-order logic on ordered structures: The next three extensions all increase the expressive
power of the logics in different ways, but do not change the complexity of the corresponding
model-checking problems.
In many applications, the elements of the universe are ordered, e.g., by time or location in
memory. First order properties on ordered structures have strictly more expressive power
than those on un-ordered structures, even for properties not involving the ordering itself (by
Gurevich, Theorem 5.3 in [Lib13]). However, we show that adding orderings does not change
the complexity of model checking:

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking of ordered
structures requires time Ω(mk−1−ε). (This follows from the earlier result for unordered
structures).

2. OV is complete for first-order on ordered structures: If the OV conjecture is false, then
there is an ε > 0 so that for every k ≥ 3, model checking for structures with ordering
can be done in time O(mk−1−ε).

3. Model checking can be improved using the fastest OV algorithm: Unconditionally, model
checking of formulas over structures with ordering can be done in time mk−1/2Ω(

√
logm).

Transitive closures of symmetric relations: Adding transitive closure operations to first-order
logic enhances its power significantly. However, here we find a special class involving transi-
tive closure that is still equivalent to first-order: when transitive closure operations are only
taken on symmetric input relations. This allows us to query whether two elements are in
the same connected component of an undirected graph. We show that the same conclusions

3

above for first-order logic on ordered structures also hold for this class. Let ϕ be a first-order
formula with a fixed number of transitive closure operations that are only taken on symmetric
input relations, ϕ has k ≥ 3 quantifiers, then

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking for ϕ
requires time Ω(mk−1−ε). (This follows from the earlier result for FO without transitive
closure).

2. OV is complete for first-order: If the OV conjecture is false, then there is an ε > 0 so
that for every k ≥ 3, model checking for ϕ can be done in time O(mk−1−ε).

3. Model checking can be improved using the fastest OV algorithm: Unconditionally, model
checking for ϕ can be done in time mk−1/2Ω(

√
logm).

First-order formulas of quantifier rank k: We get a similar equivalence if we measure the
complexity of first-order formulas by quantifier rank rather than number of quantifiers. Quan-
tifier rank counts only the depth of nesting of quantifiers, rather than the total number of
them. For example ∀x[(∃yR(x, y))∧(∀zS(x, z))] has three quantifiers, but since the two inside
quantifiers are parallel rather than nested, has only quantifier rank two. However, we show
that problems of any fixed quantifier rank, have the same complexity of model checking as for
that number of total quantifiers. More precisely, let ϕ be a first-order formula of quantifier
rank k, where k ≥ 3, then

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking for ϕ
requires time Ω(mk−1−ε). (This follows from the earlier result for quantifier number.)

2. OV is complete for first-order: If the OV conjecture is false, then there is an ε > 0 so
that for every k ≥ 3, model checking for ϕ can be done in time O(mk−1−ε).

3. Model checking can be improved using the fastest OV algorithm: Unconditionally, model
checking for ϕ can be done in time mk−1/2Ω(

√
logm).

Transitive closure of arbitrary binary relations: For the next two extensions, we give some
evidence that the model checking problems are not reducible to unextended first-order logic.
While we do not give stronger conditional lower bounds in terms of running time, we show
that these conditional bounds hold under a substantially weaker assumption than OVC, the
analog of SETH for constant depth circuits.
Allowing general transitive closures of arbitrary relations increases the power of first-order
logic dramatically. If TC can be negated then the formula can express a even larger class
of problems. For the model checking problem on graph problems, and for binary relations,
however, the increase is less dramatic. We can compute each new transitive closure of an
existing relation in O(n3) time. Then we can solve the model checking problem on the
corresponding dense graph problem. This gives an O(nk−1) algorithm for model checking
k-quantifier problems for k ≥ 9, and O(nk) for any k ≥ 3. While we were unable to close this
gap, or to show that transitive closures increase the complexity, we were able to prove the
corresponding lower bound under a weaker assumption than SETH, SETH for polynomial-
sized bounded depth formulas. Under this hypothesis, the class of 2-quantifier first-order
formulas allowing transitive closure on arbitrary relations cannot be solved in time O(m2−ε)
for any ε > 0. More specifically,

1. The SETH of depth 2 circuit SAT implies the quadratic time hardness of 2-quantifier
FO with positive TC only on original relations.

2. The SETH of depth 3 circuit SAT implies the quadratic time hardness of 2-quantifier
FO with positive TC on subformulas containing TC only on original relations.

4

FO3

FO(quantifier rank = 3)

FO(variable complexity = 3)

FO3 + function symbols
FO3 + TC

FO3 + ordering

OV

CNF SAT

Constant depth circuit SAT

FO2 + function symbols FO2 + TC

Exponential time problems

Quadratic time problems

FO(variable complexity = 3)

(weakly succinct)FO3 + TC
on symmetric relations

Figure 1: The expressive power and complexity of problems and classes of problems. FOk stands for FO
formulas with k quantifiers. The solid arrows are reductions directly implied from the expressive power,
and the hollow arrows are non-trivial reductions. The solid lines are reductions preserving subquadratic
time (except for the one between exponential time problems), while the dashed lines are reductions between
problems with different conjectured running time. The thick lines are new results in this paper, and the
underlined problems get improved algorithms from these results.

3. In general, the SETH of depth d circuit SAT implies the quadratic time hardness of
2-quantifier FO with d− 1 nested layers of TC operations.

First-order formulas of variable complexity k: We get a similar result for another measure
of the logical depth of forumlas. When the variable names can be reused in different scopes,
but there is no restrictions on the quantifier rank, then the situation is similar as when we
allow transitive closures on arbitrary binary relations: on formulas of variable complexity k,
it is not known whether it can be computed faster than O(nk−1+ω) for 3 ≤ k < 9, or faster
than O(nk−1+o(1)) when k ≥ 9, even if a large number of problems in this class can be solved
in quadratic time (if they are “weakly succinct”, see Appendix B). Here we prove that under
the SETH for polynomial-sized constant depth formulas, the class of first-order formulas of
variable complexity 3 cannot be solved in time O(m2−ε) for any ε > 0.

Figure 1 shows the reductions among problems.

5

2 Organization of the paper

Section 3 introduces the problem definitions, notations, conjectures and basic reduction techniques.
Section 4 shows adding function symbols to first-order logic will make the model checking problem
strictly harder by a reduction from OV. In Section 5 we show that introducing ordering to FO will
not make the model checking harder. Section 6 shows when we allow transitive closures taken on
symmetric input relations, the complexity stays the same. Section 7 proves that quantifier rank k
formulas are no harder than formulas with k quantifiers in prenex normal form. In Section 8 we
study two classes of problems that are hard under the SETH of constant depth circuits: formulas
of variable complexity 3, and 2-quantifier formulas with transitive closure operations. In Section 9
we will talk about the open problems. Appendix A gives the baseline algorithm for first-order
with ordering and first-order formulas of fixed quantifier rank. In Appendix B we will discuss the
running time for formulas of fixed variable complexity.

3 Preliminaries

The Orthogonal Vectors (OV) problem is a well-studied problem in the field of fine-grained com-
plexity. Its hardness is implied by the hardness of CNF-SAT, and implies the hardness of many
problems (A list of hardness results under OV conjecture is compiled in [Wil18]). It is defined as
follows: Given n boolean vectors of dimension d, decide whether there exists two vectors so that
their inner product is zero. k-Orthogonal Vectors (k-OV) is a generalization of OV, where the goal
is to find k vectors so that their inner product is zero. Usually d = ω(logn). A naive algorithm
runs in time O(nkd) and the current best algorithm is nk−Ω(1/ log(d/ logn)). [AWY15, CW16].

Next we will give the definitions and notations regarding the model checking problems.
Let ϕ be a fixed formula and let G be an input structure, the model checking problem for ϕ

is to decide whether G satisfies ϕ. When ϕ is a first-order formula, we also call it a first-order
property problem.

ϕ is a fixed formula without free variables (i.e. all variables are quantified by either ∃ or ∀). We
use MC(ϕ) to denote the model checking problem for formula ϕ. In this paper we usually use letter
ϕ for formulas containing quantifiers, and use letter ψ for quantifier-free subformulas. Letter Q is
used to represent a quantifier, either ∃ or ∀.

The input structure has multiple variable domains and multiple relations. It can be considered
as a hypergraph (represented by adjacency list): the elements of the structure correspond to vertices,
and the relation tuples of the structure correspond to edges.

The domain of a variable is a fixed set of vertices so that a variable in ϕ can be assigned to any
one of the vertices. The total number of vertices is n.

A relation is a fixed set of edges (or hyperedges) so that a binary (or t-ary) predicate in ϕ can
correspond to one of the edges. The total number of edges is m. We only consider the case that
m ≥ n.

Because the number of edges is important in describing problem size, in the rest of this paper
we define the weight of a vertex v to stand for the total number of edges the vertex is in.
Types of first-order property problems and their extensions
• k-quantifier problems

Here ϕ has form Q1x1 . . . Qkxkψ(x1, . . . , xk). Without loss of generality, we assume ϕ is in
prenex normal form. For example, the sparse OV problem can be represented by

ϕOV = ∃x∃y∀z(¬One(x, z) ∨ ¬One(y, z)),

6

where x, y are vectors and z is a coordinate of the vectors. One(x, z) is true iff a vector x has
a one on its z-th coordinate. The sparse k-OV problem is equivalent to

ϕk−OV = ∃x1 . . . ∃xk∀z
∨k
i=1(¬One(xk, z)).

We use the notation FOPk for the class of MC(ϕ) where ϕ is a first-order formula with k
quantifiers.
• Quantifier rank k problems

When we can reuse the same variable name in different scopes, for example,
ϕ = ∃x(∃y(∃zψ1 ∧ ∀zψ2) ∧ ∀y(∃zψ3 ∨ ∀zψ4))

has only three variable names x, y, z, but they represent different variables in different scopes
of the formula. The quantifier rank of a formula is the maximum depth of nesting of its
quantifiers. The above formula is of quantifier rank 3.
We use the notation FOPqr=k for the class of MC(ϕ) where ϕ is a FO formula with quantifier
rank k. FOPqr=k contains FOPk. It can be solved in time O(mnk−2) for any k ≥ 2 (Lemma
A.1).
• Variable complexity k problems

If we do not bound the quantifier rank of ϕ, it will have even more expressive power, for
example, a formula of form

ϕ = ∃x∃y(R(x, y) ∧ ∃x(R(y, x) ∧ ∃y∃(R(x, y) ∧ . . .)))
can represent a path of any constant length using only 2 variables.
A formula with k different variable names is referred to as of variable complexity k. A formula
is of variable complexity k iff it can be computed by a straightline program, each line has
at most k distinct variables (even if written in prenex form). That is, it’s equivalent to the
result of a sequence of first-order queries of form Ri = {(x1, . . . , xa) | ϕi(x1, . . . , xa)} where
each Ri is an intermediate relation of arity a (0 ≤ a ≤ k), and each ϕi is a first-order formula
with at most k variables, including x1, . . . , xa, which appear as free variables in ϕi.
If in each line of the corresponding straightline program ϕ, there is at most one occurrence of
an intermediate binary relation computed in a previous line, then ϕ can be solved in O(mn)
time for sparse graphs, which will be shown in Appendix B. In this case we call this variable
complexity 3 problem weakly succinct.
We use the notation FOPvc=k for the class of MC(ϕ) where ϕ is a FO formula with variable
complexity k. The class of weakly succinct problems in FOPvc=k contains FOPqr=k (Each line
of the straightline program creates an new intermediate relation on x, y by an intermediate
relation on x, y and some original relations on some z. We will not elaborate the details here).
• First-order on ordered structures

If all the elements in the domain of some variable have a total order so that for any two
elements a, b it may be a > b, a < b or a = b, then the comparison relation on two elements
is a dense relation. But unlike general dense relations, it can be represented succinctly in the
input by O(n) space.
We use the notation FOPk(≤) for the class of MC(ϕ) where ϕ is a k-quantifier FO formula
with comparison predicates. FOPk(≤) contains FOPk. It can be solved in time O(mnk−2) for
any k ≥ 2 (Lemma A.1).
• First-order with transitive closure

The transitive closure of a sparse relation may be a dense relation. The comparison relation
is a special case, which is the transitive closure of the successor relation. We use TCR to
denote the transitive closure of relation R.
We use the notation FOPk(TC) for the class of MC(ϕ) where ϕ is a k-quantifier FO formula
allowing transitive closure operations. FOPk(TC) contains FOPk(≤).

Assumptions

7

The complexity is measured in the word RAM model with O(logn) bit words. The notation
Õ notation is generally used for time complexity hiding sub-polynomial time factors. But in this
paper we usually consider savings factors in running time that grow faster than polylogarithmic,
so we still use the big-O notation but let it hide polylogarithmic factors.

In this paper, without loss of generality we make the following assumptions.
• Assume m = n1+o(1), because otherwise the O(mnk−2) time baseline algorithm (Lemma A.1)

is better than the conjectured time mk−o(1).
• Assume that different variables are in different domains. (For instance, the universe of x is
X, the universe of y is Y , etc.) In other words, a structure for a k-quantifier formula can be
considered as a k-partite graph. However, in the case where transtive closure operations can
be taken on a relation, we will assume both variables of the relation are in the same universe.
• We assume that for any tuple of elements, the value of a predicate on this tuple can be queried

in constant time. Also, assume that the neighbors of any element v can be enumerated in
time linear to the degree of v.

Conjectures
Below is a list of the conjectures about the hardness of the problems mentioned in this paper.
• Strong Exponential Time Hypothesis(SETH) for CNF-SAT: For all ε > 0, there exists a k so

that k-CNF-SAT cannot be solved in time O(2n(1−ε)). [IPZ98]
• Strong Exponential Time Hypothesis(SETH) for circuit class C: For all ε > 0, the satisfiability

of C cannot be solved in time O(2n(1−ε)). [AHWW16]
• Low-dimension OV conjecture(LDOVC), or Strong OV conjecture: For all ε > 0, there is no
O(n2−ε) time algorithm for OV with dimension d = ω(logn).
• Moderate-dimension OV conjecture(MDOVC): For all ε > 0, there is no O(n2−εpoly(d)) time

algorithm that solves OV with dimension d.
• Sparse OV conjecture(SOVC): For all ε > 0, there is no O(m2−ε) time randomized algorithm

for OV where m is the total Hamming weight of all the input vectors. [GIKW17]
• First-order property conjecture(FOPC): There exists integer k ≥ 2, so that FOPk+1 cannot

be solved in time O(mk−ε) for any ε > 0. [GIKW17]
The SETH of CNF-SAT implies LDOVC [Wil05], and LDOVC implies MDOVC because low-

dimension OV is a special case of moderate-dimension OV. MDOVC, SOVC and FOPC are equiv-
alent [GIKW17]. The SETH of depth d circuits, where d is a constant greater than 2, is weaker
than the SETH of CNF-SAT.
Reductions and reduction techniques

The fine-grained reduction was introduced in [WW10]. Let (Π1, T1(m)) ≤FGR (Π2, T2(m))
denote that if there is some ε2 > 0 such that problem Π2 is in TIME((T2(m))1−ε2), then problem
Π1 is in TIME((T1(m))1−ε1) for some ε1. This means if Π2 can be solved substantially faster than
T2 then Π1 can be solved substantially faster than T1. If both T1 and T2 are O(m2), the reduction
is called a subquadratic reduction.

If a reduction from Π1 to Π2 is more strict that can preserve any savings factor that can even
be sub-polynomial, it is called an exact-complexity reduction. Let (Π1, T1(m)) ≤EC (Π2, T2(m))
denote that if problem Π2 is in TIME(T2(m)), then problem Π1 is in TIME(T1(m)). We use these
notations not only on single problems but also on classes of problems. Let C1 and C2 be classes
problems. (C1, T1(m)) ≤EC (C2, T2(m)) means if all problems in class C2 are in time T2(m), then
we can solve any problem in C1 in time T1(m).

A useful reduction is that (FOPk+1, n · T (m,n)) ≤EC (FOPk, T (m,n)), where T (m,n) is the
running time on m edges and n vertices. This is because we can exhaustively search the outermost
quantified variable, and use the value as a constant in the rest of the formula, thus reducing it to n

8

instances of the model checking for k-quantifier formulas. The same technique can also be applied
in the reductions for formulas with comparisons, and formulas of quantifier rank k.

The grouping-reduction technique is another useful reduction technique, which was introduced
in [AWY15], that reduces the Batch OV problem to OV, and in [AWW16], that reduces Hitting
Set to OV. In [GIKW17] a weighted version is used on the model checking on sparse structures.

The template of this reduction looks like: Assume the model checking for ϕ = ∃x1 . . . ∃xk
P (x1, . . . , xk) can be decided in time O(mk/s(m)) for some savings factor s, where P is a property
on x1, . . . , xk that can be decided in time linear to the total weight of x1, . . . , xk. Then we can list
all x such that ∃x2 . . . ∃xkP (x1, . . . , xk) can be decided in time O(mk/s(poly(m))).

The idea is as follows: Pick a threshold size g, which is usually a polynomial of m. For elements
of weight greater than g, we enumerate all of them, and for each of them we run a O(mk−1)
algorithm to decide if P holds on x by doing exhaustive search on all other variables. So the total
time is O(m/g) ·O(mk−1) = O(mk/g).

Next, partition the each of the domain of x1, . . . , xk into groups so that a group has total weight
at most g, and there are O(m/g) groups for each of x1, . . . , xk. Every time we take a k-tuple of
groups, and query ϕ on this smaller instance. As long as the query returns true, we can find a
satisfying x1 in O(log g) queries. On finding a satisfying x1, we mark this x1 and remove this x1
from its group. Continue this process until either all x1 are marked or no combination of groups
satisfies ϕ. There are at most O(m log g + (m/g)k) calls to the oracle of ϕ. The running time is
O(m log g ·m · (m/g)k · gk/s(g)) = O(log g ·mk/s(g)).

Thus the final running time is O(mk/g+log g ·mk/s(g)). The logarithmic factor can be omitted
if function s grows much faster than polylog functions.

4 FO with unary function symbols

Consider adding function symbols to first order logic. Unary functions can be represented as arrays
of linear size, but binary functions increase the input size to quardratic, and so on for higher arities.
So to measure complexity in terms of the input size, we only consider unary functions. To simulate
higher arities, we could increase the universe to a Cartesian power and then have unary functions
on this product space.

While we can simulate any function by a relation coding the graph of the function, Rf (x, y) ⇐⇒
f(x) = y, to express , for example that f(x1) = f(x2) we would need to write ∃y,Rf (x1, y) ∧
Rf (x2, y). So the number of quantifiers in the translated forumlas would increase, possibly up to
the number of function symbols apprearing in the original. However, there is still a trivial O(nk)
algorithm for model-checking a k-quantifier formula with functions. So, assuming OV conjecture,
the complexity grows by at most a linear amount over that for first-order without functions.

In this section, we show that this increase is necessary. Compared to the linear time baseline
algorithm for the model checking of 2 quantifier formulas, when we introduce function symbols, a
2 quantifier formula may require quadratic time to solve.

Theorem 1. The low-dimension OV conjecture implies that for any ε > 0, there exists 2-quantifier
formula ϕ with function symbols, whose model checking cannot be decided in time O(m2−ε).

The low-dimension k-OV conjecture implies that for any ε > 0, there exists k-quantifier formula
ϕ with function symbols, whose model checking cannot be decided in time O(mk−ε).

Consider an OV instance where the dimension of vectors d = c logn for some constant c. We
construct a hypergraph for model checking as follows.

9

Let each vector correspond to an element. Besides these elements, we create O(
√
n) extra

elements, each corresponding to a distinct boolean vector of dimension 1
2 logn. For all pairs of

these short vectors that are orthogonal to each other, we create an edge of relation R⊥ between
them. There are at most (

√
n)2 = O(n) pairs of short vectors, so the relation R⊥ is sparse.

Each vector of length c logn can be partitioned into 2c blocks of length 1
2 logn. We define

functions f1, . . . f2c so that fi : {0, 1}c logn → {0, 1}
1
2 logn be the mapping from a vector to its i-th

block. Therefore, there exists a pair of orthogonal vectors x, y iff in FO with function symbols,

ϕ = ∃x∃y
2c∧
i=1

R⊥(fi(x), fi(y))

is satisfied.
If we can decide such ϕ in time m2−ε, then for any constant c > 0, OV of dimension d = c logn

can be solved in time O(n2−ε), contradicting the low-dimension OV conjecture. Furthermore, the
SETH of CNF-SAT will also be refuted.

The reduction from k-OV is similar, where we create a set of O(k
√
n) extra elements representing

all boolean vectors of length (1/k) logn, and create kc functions mapping vectors to its blocks of
length (1/k) logn. Here, the relation R⊥ is k-ary, defined on the k-tuples of short vectors whose
inner product is zero. The total number of these k-ary relations is still (k

√
n)k = O(n).

5 FO with comparison on ordered structures

In this section we will consider the case where elements are given a total pre-ordering, and there
are three predicates expressing that an element is greater than, less than, or equivalent to another
element in the ordering. The comparison relation is an implicit dense relation but can be represented
in O(n) space in the input, by giving a table indexed by element, giving the element’s rank within
the ordering, with equivalent elements given the same rank. (If we were not given this table, we
could use any sorting algorithm to construct it in O(n logn) time.) Using this table, we can list the
elements by this ordering in time O(n), and given any two elements, we can compare them in time
O(1). The following theorem shows that adding comparison to first-order logic does not increase
the fine-grained complexity because it is equivalent to first-order properties without comparison.

Theorem 2. For non-decreasing 2Ω(
√

logm) ≤ s(m) ≤ m,

(FOPk(≤),mk−1/s(poly(m))) ≤EC (FOP3,m
2/s(m)).

We will show that (FOP3(≤),m2/s(poly(m))) ≤EC (FOP3,m
2/s(m)). The reduction from

FOPk(≤) follows from the quantifier-eliminating downward self-reduction.
Assume in time TFO(m) we can list all x satisfying any formula of form ∃yQ3zψFO(x, y, z),

where ψFO is a quantifier-free first-order formula without ordering. By the grouping-reduction
technique, it is reducible to FOP3.

Let ϕ be in prenex normal form, and assume ϕ = Q1x∃yQ3zψ(x, y, z), for otherwise if y is
quantified by ∀, we will decide the negation of the formula. We show that we can list all x such
that ∃yQ3zψ(x, y, z) holds.

We let the weight of an element be 1 plus the number of tuples that element occurs in. Let g
be a threshold value. First , we decide whether to include x on our list for all x of weight greater
than g. There are at most m/g of them. For each large weight x, treating it as a constant we get
a 2-quantifier problem. By the baseline algorithm (Lemma A.1), it can be decided in time O(m).
So the total time spent is O(m2/g).

10

Next, for all y of weight greater than g, we list the set of x that cause the one-quantifier sub-
formula to be true. For each large weight y, treating it as a constant we compute the problem: list
all x such that Q3zψ(x, y, z). Using the baseline algorithm we can list all x satisfying Q3zψ(x, y, z)
in time O(m). Finally we merge all lists of x computed on each y. For any x in the lists, there
must exist a y where Q3zψ(x, y, z) holds.

By triplicating elements, we can assume that the x, y, and z variables are quantified over disjoint
domains X, Y , and Z. The ordering relation is defined on the union of all three sets. We remove
from X and Y the elements of weight higher than g. We partition the whole universe X ∪ Y ∪ Z
into intervals where for each interval the total weight of elements in X ∪ Y ∪ Z is between g and
2g, the interval is a single element of Z of weight higher than g. Thus, there are O(m/g) intervals.

Note that we allow elements to be equivalent in the pre-ordering. When we group the elements
into intervals, we will keep all equivalent elements in the same interval, unless there are so many
such elements that their total weight is more than g. If that is the case, we break the set of
equivalent elements arbitraritly into groups of total weight between g and 2g, and do not include
any non-equivalent elements in these groups.

Let the elements of X,Y, Z in the i-th interval form sets Xi, Yi, Zi, respectively. For each pair
of groups Xi, Yj , we need to create a list Li,j of those x in Xi for which there exists a y in Yj such
that the rest of the formula holds true. Our final output will be the union of all these lists.

We call a pair i, j special if either i = j or there is some tuple in one of the non-ordering input
relations involving elements from both intervals. There are at most O(m) special pairs, since each
tuple involves at most a constant number of intervals. We handle special and non-special pairs
differently.

Note that each element z not in either of the two intervals Zi or Zj has the same ordering
relationship with all xi ∈ Xi and the same ordering relationship with all yj ∈ Yj . We say two
elements z1, z2 in Z are indistinguishable if they have the same ordering relationships to elements
in Xi and Yj , the same evaluation on unary relations, and have no non-ordering relationships
involving any elements of Xi or Yj . For any two indistinguishable z1, z2, for any x ∈ Xi, y ∈ Yj
if the inner-most formula is true for x, y, z1, then it is also true for x, y, z2. Thus, the formula,
including the innermost quantifier, is true for x, y if and only if it is true relative to a maximal
set of distinguishable elements. There are only O(g) elements z with some relation to the two
intervals, O(g) in the two intervals, and only constantly many equivalence classes of others under
indistinguishability. As a preprocessing step, in linear time, we can for each boolean combination of
unary predicates for z, create a sorted list of intervals with such elements. Then we can use binary
search to see whether such an element exists in some interval before i, between i and j, or after j.
We can find z’s with a relation to either Xi or Yj by searching all tuples involving such elements.
Thus, we can construct in time O(g + logn) a maximal set of O(g) distinguishable elements for a
given pair of intervals.

For special intervals, we use the quadratic time baseline algorithm on them, taking time g2. So
the total time is m · g2.

For non-special intervals, we know there are no relations involving elements in the two intervals.
Assume without loss of generality that i ≤ j. We create unary predicates on z that say whether z
comes from an interval before i, interval i, an interval between i and j, j, or after j. Call these five
predicates A1(z), . . . , A5(z).

Recall that the formula is of the form: ∃yQ3zψ(x, y, z). We can further divide the sets Xi and
Yj into constantly many subsets Xi,α and Yj,β according to the set of unary relations α and β that
are true for x and for y respectively. If for each pair of α, β, we compute the list of x ∈ Xi,α so
that ∃y ∈ Yj,βQ3zψ(x, y, z), the final output is the union of these lists. For each, we can replace
all unary predicates of x and of y in ψ to get equivalent formulas ψ1(x, y, z), . . . , ψ5(x, y, z) when

11

Ai(z) is true on z.
We can divide the z’s up into the five cases given by the new unary predicates A1, . . . , A5. In

each case, we will show that ψ can be simplified.
For the different cases, ψi will be simpler in different ways. ψ1, ψ3, and ψ5 will have no occurences

of the ordering relation. ψ2 will be a function only of x and z, and ψ4 only of y and z, but may
have ordering predicates.

If Q3 is ∃, our output list is the union of the corresponding lists for the five cases above. (The
list for the fourth case is either all x or none.) We will use the baseline algorithm to compute
those for cases 2 and 4 in O(g) time. The other three cases are size O(g) instances of 3-quantifier
unordered first order statements, and so we can use the best algorithm for model checking on
unordered structures for these.

If Q3 is ∀, we only want to consider x, y so that all five conditions are true simultaneously. We
can use the baseline algorithm to compute the subset X ′ of x so that the second case holds, and
the subset Y ′ of y so that the fourth case holds. Then we restrict the universe to those subsets, and
solve the other three cases: find the set of x ∈ X ′ so that ∃y ∈ Y ′∀z ∧l=1,3,5 (Al(z)→ ψl(x, y, z))

To finish the proof, we need to construct the simplified formulas ϕl for the five cases. First note
that in all cases, we have fixed all unary relations on x and y, and for each two distinct intervals,
any x and y in the intervals have the same order, so we can also fix ordering relations between x
and y.

For any z not in interval i or j, the ordering between z and any x in Xi is fixed , and the same
for any y ∈ Yj . (For some z that occur before i, we might have equivalence to elements in Xi,
for some, they are strictly smaller, so what this fixed relationship is does depend on z.) We can
introduce six new unary relations on z coding this ordering with respect to x and with respect to
y. So for cases 1, 3 and 5, we can replace any ordering relation between x and z or y and z with
the corresponding unary predicate of z. This removes all ordering relations to obtain ψ1, ψ3 and
ψ5.

To create ψ2, we are restricting to z in interval i. This fixes the ordering information between
z and any y ∈ Yj , but not between z and x. However, since the pair is not special, there are no
relations that involve both y and z. Thus, we can replace those relations by false in ψ. Similarly,
there are no relations that involve both x and y, so we can replace those relations by False as well.
In addition, we have already fixed the unary predicates of y, and comparisons between y and x or
z. Thus, the restricted formula now has no occurences of y at all, so is a predicate ψ2(x, z).

The case for ψ4 is symmetric.
In summary, fix a combination of α, β, then for a pair of non-special interval Xi, Yj , we first

decide ψ2: list x so that a formula on x, z holds (in this case, y is indistinguishable to x and z ∈ Zi
so the variable y is omitted). Next, decide ψ4: list y so that a formula on y, z holds (here x is
indistinguishable to y and z ∈ Zi so we omit the variable x). Here we get a list of x and a list of
y, then on these two lists, we decide ψ1, ψ3, ψ5.

Thus, the total time we spend on this sub-problem is O(q) to solve the second and fourth cases,
and then the best algorithm to solve a three quantifier unordered query on O(q) sized inputs for
the other three cases . So for each non-special pair of i, j, the time for ϕ2 is O(g) +TFO(O(g)). For
special pairs, the time is TFO(g2). There are at most O(m) special pairs, and at most O((m/g)2)
non-special pairs of i, j. We spent time O(m2/g) to solve the “high degree” case. So the total time
is O(m+m2/g + (m/g)2 · TFO(g) +m · g2).

If s(m) is a polynomial improvement factor, i.e., TFO(m) = m2−ε, then by letting g = m
1

2+ε the
running time is O(m2− ε

2+ε).
By the algorithm for OV in [AWY15, GIKW17], we get an improved algorithm for FOPk(≤) in

12

time mk/2Θ(
√

logm).

6 FO with transitive closure on symmetric input relations

Consider the model checking of a first-order formula with transitive closures, where the transitive
closure operation can only be taken on symmetric input relations. In this case TCR(x, y) is true iff
x and y are in the same connected component by edges of undirected edge set R. Thus the formula
can have binary predicates about whether two variables are in the same connected component or
not. Note that there can be more than one symmetric relations that the transitive closure operation
can be taken on.

Theorem 3. For non-decreasing 2Ω(
√

logm) ≤ s(m) ≤ m, if FOP3 is in time O(m2/s(m)), then
model checking for a fixed k-quantifier FO formula with transitive closures only taken on symmetric
input binary relations is solvable in time O(mk−1/s(poly(m))).

Proof. Like the previous section, here we consider the case k = 3, and demonstrate a subquadratic
time reduction to FOP3.

Let there be t different TC relations, where t is a constant integer. Let Tt(m) be the running
time on instances with t TC relations. We will reduce an instance with t TC relations to instances
with t − 1 TC relations. Here we pick one of the TC relations, and will only deal with this TC
relation. The goal is to reduce to instances without this TC relation.

Here we assume that in the input, each vertex has a “category”, indicating which connected
component it is in. The formula ϕ contains predicates of form TCR(x, y) to represent that x and
y are in the same connected component by edges of relation R.

Let ϕ = Q1xQ2yQ3zψ(x, y, z) Let the quantifier Q2 be ∃, otherwise we will decide the negation
of the formula.

ψ can be transformed into a disjunction of itself with TCR(x, y), TCR(x, z) and TCR(y, z)
replaced by all combinations of true and false respectively. Let C be the set of all the combinations
(there are at most 23 = 8 combinations).

So we consider the model checking of

ϕ = Q1x∃yQ3z [
∨
c∈C(ψc ∧ (x, y, z satisfy c))]

ψc is ψ with all TC predicates replaced by true or false according to c.
Let g be a threshold value. First of all, find out all x of weight greater than g. On each of

the x, we solve a 2 quantifier problem in time O(m) by the baseline algorithm. Next, find all y of
weight greater than g. On each of the y, treating y as a constant we using the baseline algorithm
we can list all satisfying x in time O(m), and thus we can check for all x whether there exists a
satisfiable y. There are at most O(m/g) such large weight elements, so the total time to deal with
these elements is O(m2/g).

Next, list all elements in X ∪ Y so that elements in the same category are listed consecutively.
Furthermore, we list all categories of total weight greater than g before the other small categories.
Partition the big list into O(m/g) groups so that each has total weight at most g. We make sure
that each category of total weight at least g is broken into groups that contain no elements from
other categories. The small-weight categories are merged together to make groups of total weight
as near to g as possible. In the i-th group, let the sets of elements in X,Y be Xi, Yi respectively.

For each pair of sets (Xi, Yj) and each truth value combination c, do the following case analysis.
• Case 1: If all elements of Xi and Yj are from the same category, and c implies x ∈ Xi, y ∈ Yi

are in the same category, then all pairs of x, y satisfy c. Next, find the set edges between

13

Xi, Z and between Yi, Z satisfying c, and make a query to the oracle solving t−1 TC relation
problems. The running time is Tt−1(g).
• Case 2: If Xi and Yj have elements from the same categories and also elements from different

categories, then i and j must be equal or adjacent integers. In this case we just query the
baseline algorithm, so the time is O(g2).
• Case 3: If elements in Xi and elements in Yj are from completely different categories, and
c implies x, y should be in different categories, then all pairs of x, y satisfy c. This case is
similar as the first case.

By some preprocessing, for any pair of i, j, it is easy to tell which of the above three cases the
pair (Xi, Yj) is in.

There are O((m/g)2) instances of time Tt−1(g), and O(m/g) instances of time O(g2). The total
time is O((m/g)2 ·Tt−1(g) + (m/g) ·g2 +m2/g). If Tt−1(m) = m2/st−1(m) then by taking g = m1/2

there is Tt(m) = O(m2/st−1(m1/2)). Letting Tt(m) = m2/st(m), we get st(m) = O(st−1(m1/2)) =
O(st−2((m1/2)1/2)) = · · · = O(s(m1/2t)). Thus Tt(m) = O(m2/s(m1/2t)).

7 FO formulas of quantifier rank k

A formula with quantifier rank k may have more than k variables when converted to prenex normal
form, but the following theorem shows that even if it seems more powerful, it is reducible to
quantifier number k problems.

Theorem 4. For non-decreasing 2Ω(
√

logm) ≤ s(m) ≤ m,

(FOPqr=k,m
k−1/poly(s(m))) ≤EC (FOP3,m

2/s(m)).

We will show that (FOPqr=3,m
3) ≤FGR (FOP3,m

2). The reduction from FOPqr=k follows from
the quantifier-eliminating downward self-reduction.

We will use a “Normal Problem” as an intermediate problem in the reduction. It is defined as
follows:

List all x such that ϕN (x) holds, where ϕN (x) = ∃y[(
∧

1≤i≤L ∃ziψi(x, y, zi)) ∧ (∀z′ψ′(x, y, z′))].
Each zi is a distinct variable from scope Zi. Each ψi is a conjunction of predicates1. The predicates
can appear either positively or negated.

In Lemma 7.1 we show a reduction from the Normal Problem to FOP3, and in Lemma 7.2 we
show a reduction from an FOPqr=3 problem to the Normal Problem.

Lemma 7.1. (Normal Problem,m2/poly(s(m))) ≤EC (FOP3,m
2/s(m)).

Proof. Let d be a threshold value of the weight of elements.
Step 1. Decide for x of weight at least d on some Zi.

For those x of degree greater than d on some Zi, there can be at most m/d of them. We
enumerate all such x and then solve corresponding 2-quantifier problems in linear time by the
baseline algorithm. The total time is O(m2/d).
Step 2. Decide for y of weight at least d on some Zi.

For those y of weight greater than d on some zi, there can be at most m/d of them. We
enumerate all such y’s and then list all the x in the corresponding 2-quantifier problems in linear
time by the baseline algorithm. Finally we can merge all the lists of x. The total time is O(m2/d).
Step 3. Decide for x and y of weight less than d.

1Here we assume all predicates are either unary or binary. A ternary predicate on x, y, zi can be treated in a
similar way as a binary predicate on either x, zi or y, zi.

14

For each ψi, we consider the two cases based on whether it contains any positive occurrences of
binary predicates on zi.
Step 3-1. Consider the ψi’s where all binary predicates involving zi are negative.

In this case, we will show that if |Zi| is large enough, then the conjunction of all negative
predicates on zi is always true, otherwise the problem is easy to be transformed to the case in Step
3-2.

If |Zi| is greater than 2d, then for any pair of x and y, at least one zi ∈ Zi is not adjacent to
x or y by any relation, because x and y together have no more than 2d neighbors. Thus all the
negative predicates on zi are true on the triple (x, y, zi). So we can replace the conjunction of all
these negative predicates by true in ψi, leaving only binary predicates on x, y and unary predicates.

If |Zi| is less than 2d, then in time O(m · 2d) we can create a new relation Rc(x, zi). Rc(x, zi)
is true iff all binary relations on (x, zi) evaluate to false. We remove all binary relations on (x, zi)
from ψi, and append “∧Rc(x, zi)” to the end of it. Because Rc(x, zi) appears positively, we will
decide it in the next step. After creating the new relation, the size of the structure has become
m′ = m · 2d.
Step 3-2. Now in all of the remaining ψi’s, either some binary predicate on (x, zi) is positive or
some on (y, zi) is positive.

Without loss of generality, assume that in the formulas ψi, for 1 ≤ i ≤ u the pairs (x, zi) are
in some positive predicates, and for i > u, the pairs (x, zi) do not appear in any positive binary
predicate. Similarly, assume for j > t the pairs (y, zj) are in some positive predicates, and for j ≤ t,
the pairs (y, zj) do not appear in any positive binary predicate. It must be t ≤ u, because for any
zi there is at least one positive predicate on zi.

The idea of this reduction is to let the big variable x̃ contain variables zi for i ≤ u, and let the
big variable ỹ contain variables zj for j > u. For each pair of x̃ and ỹ, there is a unique tuple of
(z1, . . . , zL). Therefore, each ∃zi can be replaced by ∀zi.

On each x, for all u tuples of neighbors z1 ∈ Z1, . . . , zu ∈ Zu, we create a new element x̃ =
(x, z1, . . . , zu) in the domain X̃. Because x has at most d neighbors, the number of distinct x̃ is
bounded by du. Next, we create the following new relations on x̃. Define an auxiliary relation R3
where R3(x̃, x) is true iff the tuple represented by x̃ contains x, and R3(x̃, zi) is true iff x̃ contains
zi.

Next we replace all relations on x by relations on x̃.
• For each unary relation Rk(x), we replace it by new unary relation R∗k where R∗k(x̃) is true

iff Rk(x) ∧ R3(x̃, x).
• For each unary relation Rk(zi) where i ≤ u, we replace it by new unary relation R∗k where
R∗k(x̃) is true iff Rk(zi) ∧ R3(x̃, zi).
• For each binary relation Rk(x, zi) where i ≤ u, we replace it by new unary relation R∗k where
R∗k(x̃) is true iff Rk(x, zi) ∧ R3(x̃, x) ∧ R3(x̃, zi).
• For each binary relation Rk(x, zj) where j > u, we replace it by new binary relation R∗k where
R∗k(x̃, zj) is true iff Rk(x, zj) ∧ R3(x̃, x).
• For each binary relation Rk(x, z′), we replace it by new binary relation R∗k where R∗k(x̃, z′) is

true iff Rk(x, z′) ∧ R3(x̃, x).
There are at most m · du distinct elements of x̃, so the unary relations on it is also bounded by this
value. From each edge on x we have created at most du new edges. Since there are m′ edges, the
total size of new binary relations is O(m′ · dL).

Similarly, on each y, for all L− u tuples of neighbors z1 ∈ Zu+1, . . . , zL ∈ ZL, we create a new
element ỹ = (y, zu+1, . . . , zL) in the domain Ỹ . Again we replace old relations by new relations on
ỹ in a similar way as those on x̃.

15

• For each unary relation Rk(y), we replace it by new unary relation R∗k where R∗k(ỹ) is true iff
Rk(y) ∧ R3(ỹ, y).
• For each unary relation Rk(zj) where j > u, we replace it by new unary relation R∗k where
R∗k(ỹ) is true iff Rk(zj) ∧ R3(ỹ, zj).
• For each binary relation Rk(y, zj) where j > u, we replace it by new unary relation R∗k where
R∗k(ỹ) is true iff Rk(y, zj) ∧ R3(ỹ, y) ∧ R3(ỹ, zj).
• For each binary relation Rk(y, zi) where i ≤ u, we replace it by new binary relation R∗k where
R∗k(ỹ, zi) is true iff Rk(y, zi) ∧ R3(ỹ, y).
• For each binary relation Rk(y, z′), we replace it by new binary relation R∗k where R∗k(ỹ, z′) is

true iff Rk(y, z′) ∧ R3(ỹ, y).
Similarly, the total size of the new relations is also O(m′ · dL).

Next, we deal with relations between x̃ and ỹ.
• For each binary relation Rk(x, y), we replace it by new binary relation R∗k where R∗k(x̃, ỹ) is

true iff Rk(x, y) ∧ R3(x̃, x) ∧ R3(ỹ, y).
Because the number of x̃ corresponding to an x is du and the number of ỹ corresponding to an y is
dL−u, and because there are m′ relations on x, y, the total size of the new relations is O(m′ · dL).

After modifying the input structure, next we will modify the formula ϕN (x). We change the
predicates in each formula ψi to get ψ∗i , and change the predicates in ψ′ to get ψ′∗.
• For each occurrence of predicate Rk(x), we replace it by R∗k(x̃). For each occurrence of

predicate Rk(x), we replace it by R∗k(ỹ).
• For each occurrence of predicate Rk(zi) where i ≤ u, we replace it by R∗k(x̃). For each

occurrence of predicate Rk(zj) where j > t, we replace it by R∗k(ỹ).
• For each occurrence of predicate Rk(x, zi) where i ≤ u, we replace it by R∗k(x̃).
• For each occurrence of predicate Rk(x, zj) where j > u, we replace it by R∗k(x̃, zj).
• For each occurrence of predicate Rk(y, zj) where j > u, we replace it by R∗k(ỹ).
• For each occurrence of predicate Rk(y, zi) where i ≤ u, we replace it by R∗k(ỹ, zi).
• For each occurrence of predicate Rk(x, y), we replace it by R∗k(x̃, ỹ).
• For each occurrence of predicate Rk(x, z′), we replace it by R∗k(x̃, z′). For each occurrence of

predicate Rk(y, z′), we replace it by R∗k(ỹ, z′).
We merge all zi elements and z′ elements into the same universe Z, and create unary predicates

IsZ1(z), . . . , IsZL(z) and IsZ ′(z) to represent whether a z is originally from some certain Zi or in
Z ′.

Now the goal of the new problem is to list all x̃ such that ∃ỹ∀z, all of the following holds.
• For i in range 1 to t, (IsZi(z) ∧ R3(x̃, z))→ ψ∗i (x̃, ỹ, z)
• For i in range u+ 1 to L, (IsZi(z) ∧ R3(ỹ, z))→ ψ∗i (x̃, ỹ, z)
• IsZ ′(z)→ ψ′∗(x̃, ỹ, z)

So it is a “List-∃-∀” type problem of size O(m · 2d · dL) = O(mdL+1). By the grouping-reduction
technique, it is reducible to FOP3 [GIKW17]. Assume “List-∃-∀” problems are in time m2/s(m).
Then the Normal Problem is in time O(m2/d+(mdL+1)2/s(mdL+1)) ≤ O(m2/d+(mdL+1)2/s(m)).
By choosing d = s(m)

1
2L+3 , we get running time O(m2/s(m)

1
2L+3).

Lemma 7.2. There is a linear time Turing reduction from any FOPqr=3 problem to the Normal
Problem.

Proof. Let the variables defined in the outermost layer be named x, let the variables defined in the
middle layer be named y and let the variables defined in the innermost layer be named z.
The structure outside the outermost quantifiers

16

For a quantifier rank 3 formula ϕ that is composed of form (Qixϕi(x)) connected by ANDs and
ORs, we decide each Qixϕi(x) separately. For each Qixϕi(x), we will show that we can compute
a list of x such that ϕi(x) is true, so that we can do union and intersection operations on all the
lists and decide the value of ϕ.
The outermost layer of quantifiers

To decide the truth value of ϕi(x) for every x, we write ϕi(x) in DNF, treating any quantified
subformulas as atoms, so that ϕi(x) has form

∨
j∈[J]

∧
k∈[K](Qijkyϕ′ijk(x, y)) for some constants J

and K. For each x, we will decide for all j, k the truth value of Qijkyϕ′ijk(x, y). Thus finally we can
decide whether for each x there exists some j such that for all k, Qijkyϕ′ijk(x, y) holds. If Qijk is
∀, we decide its negation (that is ∃y¬ϕ′ijk(x, y)), and after we finally get a list of x, we complement
the list. Thus we can only consider the case Qijk = ∃.
The second layer of quantifiers

We fix the x, i, j, k in the previous step, and consider subformula of form ∃yϕ′(x, y). We write it
in DNF so that it has form ∃y

∨
g∈[G]

∧
h∈[H](Qghzψ′gh(x, y, z)) =

∨
g∈[G] ∃y

∧
h∈[H](Qghzψgh(x, y, z)).

Then
∧
h∈[H](Qghzψ′gh(x, y, z)) can be written in form (

∧
` ∃zψ`(x, y, z)) ∧ ∀zψ′(x, y, z) by merging

all the ∀z subformulas into one big ∀z connected by ∧. Next, write each ψ` in DNF, and move the
∨’s outside the the“∃z”s, and distribute with the “

∧
`”, so that (

∧
` ∃zψ`(x, y, z)) is equivalent to a

disjunction of (
∧
`′ ∃zψ`′(z)) where each ψ`′ is a conjunction of predicates and negated predicates.

Because “∨” commutes with “∃”, the big disjunction before “∃z” can be moved outside “∃y”. So
in the end, we only need to solve a constant number of instances of form “List all x such that
∃y[(

∧
`′ ∃zψ`′(z)) ∧ (∀zψ′(x, y, z))].

8 Conditional hardness under the SETH of constant depth cir-
cuits

The satisfiability of higher depth circuits may be harder than the satisfiability of CNF. Thus, the
Strong Exponential Time Hypothesis of a circuit of depth greater than 2 is weaker than the SETH
of CNF-SAT. It may be possible that even if the SETH of CNF-SAT is refuted, the SETH of higher
depth circuits still holds true. This section shows that in this case, variable complexity 3 formulas
and 2-quantifier formulas with transitive closures would require quadratic time.

8.1 Hardness of variable complexity 3 formulas

Thw following theorem shows that the SETH of constant depth circuit implies the quadratic-time
hardness of FOPvc=3.

Theorem 5. If FOPvc=3 is solvable in time O(m2−ε) for some ε > 0, then the satisfiabilty of
constant depth circuits of size M with N variables is solvable in time 2(1−ε/2)N · poly(M).

In Circuit SAT, without loss of generality we assume that the circuit is in De Morgan form: it
has d levels, where the gates of level (i+ 1) only have input wires from gates of level i. The NOT
gates only appear in the bottom level, which we call level 0. Let the level of AND and OR gates
nearest to the input wires be level 1, and the output gate be level d.

Now we reduce the satisfiability of this circuit to a property defined by an FO formula of
variable complexity 3. For the N input variables, we split them into two sets of size N/2 each.
Let α represent partial assignments of the first N/2 variables, and let β represent those of the rest
N/2 variables. So there are 2N/2 distinct α and β. For each gate g and each partial asssignment
α, create a variable gα representing the tuple (g, α). Define predicate Same(gα, g) to be true iff the

17

gate in ga is the same gate as g. Define unary predicate IsAND(gα) to true iff g is an AND gate,
and similarly define IsOR(gα) for whether g is an OR gate. For any tuple (g′α, gα) sharing the same
α where gate g′ is input to g, we let relation Input(g′α, gα) be true on this tuple.

For each level 1 gate g and each α, consider the two cases. If g is an AND gate, we evaluate
whether the partial assignment α does not falsify g. If so, then let the relation Sat1(gα) be true,
otherwise false. If g is an OR gate, we evaluate whether the partial assignment already makes g
true. If so, let the relation Sat1(gα) be true, otherwise false.

Similarly, for each level 1 gate g and each β, if g is an AND gate and β does not falsify g, then
let the relation Sat2(g, β) be true, otherwise false. If g is an OR gate and β makes g true, then we
let the relation Sat2 (g, β) be true, otherwise false.

Next we will compute d intermediate relations from TrueGates1 to TrueGatesd. TrueGatesi(gα, β)
holds iff g is a level-i gate, and the assignment by α and β satisfies g.

TrueANDGates1 = {(gα, β) | (gα ∈ Level1) ∧ IsAND(gα) ∧ Sat1(gα) ∧ ∃g(Same(gα, g) ∧ Sat2(g, β))}
TrueORGates1 = {(gα, β) | (gα ∈ Level1) ∧ IsOR(gα) ∧ (Sat1(gα) ∨ ∃g(Same(gα, g) ∧ Sat2(g, β)))}

TrueGates1 = {(gα, β) | TrueANDGates1(gα, β) ∨ TrueORGates1(gα, β)}

For i = 2 to i = d, we define the following intermediate relations:

TrueANDGatesi = {(gα, β) |(gα ∈ Leveli)
∧ IsAND(gα) ∧ ∀g′α ∈ Leveli−1(Input(g′α, gα)→ TrueGatesi−1(g′α, β))}

TrueORGatesi = {(gα, β) |(gα ∈ Leveli)
∧ IsOR(gα) ∧ ∃g′α ∈ Leveli−1(Input(g′α, gα) ∧ TrueGatesi−1(g′α, β))}

TrueGatesi = {(gα, β) |TrueANDGatesi(gα, β) ∨ TrueORGatesi(gα, β)}

Finally, the circuit is satisfiable iff ∃gα∃βTrueGatesd(gα, β).
Here, each intermediate relation is defined by 3 variables, therefore, the total variable complexity

is 3. Also, in the definition formula of each intermediate relation, there is at most one occurence
of any previously computed intermediate binary relations. By Appendix B, the formula is weakly
succinct, therefore it can be solved in quadratic time.

The total number of elements is 2N/2poly(M). The total number of original relations is also
2N/2poly(M). So if FOP3(TC) is time O(m2−ε), then the Circuit SAT instance is in 2(1−ε/2)N ·
poly(M) time, contradicting the SETH of constant depth circuits.

8.2 Hardness of 2 variable formulas with transitive closure

This section proves the conditional hardness for the case where the formula has only two quantifiers,
where transitive closure operations can appear arbitrarily.

Theorem 6. Let SATd be the satisfiability problem of depth d circuits with N variables of size
M .

1. If the model checking for 2-quantifier FO formula with positive TC only on original relations
is in time O(m2−ε) for some ε > 0, then SAT 2 can be solved in time 2(1−ε/2)N · poly(M).

2. If the model checking for 2-quantifier FO formula with positive TC on subformulas containing
TC on original relations can be solved in time O(m2−ε) for some ε > 0, then SAT 3 can be
solved in time 2(1−ε/2)N · poly(M).

3. In general, if the model checking for 2-quantifier FO formula with d nested layers of TC
operations can be solved in time O(m2−ε) for some ε > 0, then SATd−2 can be solved in time
2(1−ε/2)N · poly(M).

18

The reduction is similar to the one for FOPvc=3. We again use partial assignments α, β, and let
variable gα to represent tuple (g, α). Relations Same, Input are also defined in the same way. This
time we assume that in the circuit, on each level either all gates are AND or all gates are OR.
The bottom 2 levels of gates
• If the bottom level are AND gates, and the next level are OR gates:

First, define a relation Sat as follows:

Sat ={(g, β) | g ∈ Level1 ∧ (β does not make g false)}
∪ {(gα, g) | gα ∈ Level1 ∧ Same(gα, g) ∧ (α does not make g false)}
∪ {(g′α, gα) | g′α ∈ Level2 ∧ gα ∈ Level1 ∧ Input(gα, g′α)}

The above relation can be created in time 2n/2poly(m), where m is the size of the circuit. This
relation is like a union of Sat1, Sat2,TrueGates1 and Input relations in the previous section.

Next, we define an intermediate relation for level 2 gates:

TrueGates2 ={(gα, β) | gα ∈ Level2 ∧ TCSat(gα, β)}
∪ {(g′α, gα) | g′α ∈ Level3 ∧ gα ∈ Level2 ∧ Input(gα, g′α)}

We claim that level 2 gate g′ is satisfied by α and β iff TrueGates2 is true on tuple g′α, β. This
is because TrueGates2 is true on g′α, β where g′ is a level 2 gate iff there is a path g′α → gα → g → β
by Sat, where g is a level 1 gate. This means neither α and β make the AND gate g false, so g is
satisfied by α and β. Also g is input to the OR gate g′, so g′ is also satisfied. In the other direction,
if g′ is satisfied by α and β then there must be such a path.
• If the bottom level are OR gates, and the next level are AND gates:

This case is analogous to the previous case because AND is the negation of OR. First, define a
relation Falsify as follows:

Falsify ={(g, β) | g ∈ Level1 ∧ (β does not make g true)}
∪ {(gα, g) | gα ∈ Level1 ∧ Same(gα, g) ∧ (α does not make g true)}
∪ {(g′α, gα) | g′α ∈ Level2 ∧ gα ∈ Level1 ∧ Input(gα, g′α)}

Then we define an intermediate relation for level 2 gates:

TrueGates2 ={(gα, β) | gα ∈ Level2 ∧ ¬TCFalsify(gα, β)}
∪ {(g′α, gα) | g′α ∈ Level3 ∧ gα ∈ Level2 ∧ Input(gα, g′α)}

We claim that level 2 gate g′ is satisfied by α and β iff TrueGates2 is true on tuple g′α, β. This is
becauseTrueGates2 is false on g′α, β where g′ is a level 2 gate iff there exists a path g′α → gα → g → β
by Falsify, where g is a level 1 gate. This means neither α and β make the OR gate g true, so g is
falsified by α and β. Also g is input to the AND gate g′, so g′ is also falsified.
Higher levels of gates

From level 3 up, if the current level i are OR gates and the level i − 1 are AND gates, then
define intermediate relations

TrueGatesi ={(gα, β) | gα ∈ Leveli ∧ TCTrueGatesi−1(gα, β)}
∪ {(g′α, gα) | g′α ∈ Leveli+1 ∧ gα ∈ Leveli ∧ Input(gα, g′α)}

Otherwise, if the current level i are AND gates and the level i− 1 are OR gates, then define

19

TrueGatesi ={(gα, β) | gα ∈ Leveli ∧ ¬TCFalseGatesi(gα, β)}
FalseGatesi ={(gα, β) | gα ∈ Leveli ∧ ¬TrueGatesi(gα, β)}

∪ {(g′α, gα) | g′α ∈ Leveli+1 ∧ gα ∈ Leveli ∧ Input(gα, g′α)}

For OR gates g′α where g′ is on level i, TrueGatesi(g′α, β) is true iff there exists some gα where g
is on level i− 1 satisfying TrueGatesi−1(gα, β) and TrueGatesi−1(g′α, gα). This means g is satisfied
by α, β and g is input to g′.

For AND gates g′α where g′ is on level i, TrueGatesi(g′α, β) is false iff there exists some gα where
g is on level i−1 satisfying FalseGatesi−1(gα, β) and FalseGatesi−1(g′α, gα). This means g is falsified
by α, β and g is input to g′.

Finally, the circuit is satisfiable iff ∃gα ∈ Leveld∃βTrueGatesd(gα, β).
Like the previous section, the total number of elements is 2N/2poly(M), and the total number

of original relations is also 2N/2poly(M).

9 Open problems

1. A very general type of open problem is to see whether other complexity classes have complete
problems under fine-grained reductions, or give evidence that there are no such complete
problems. To make sense, we need a stratification of the class where each layer in the stratifi-
cation has a reasonable conjecture for its worst-case complexity. For example, we could look
at SPACE(k logn), with conjectured complexity nk, if we restrict the tape alphabet to binary.

2. MC(ϕ) where ϕ is a variable complexity k formula with only unary and binary predicates
can be written in a straightline program whose intermediate relations have arity at most
2. Thus it can be solved in Õ(nk−3+ω) time, and when k ≥ 9, it can be solved in time
nk−1+o(1), by [Wil14b]. When the input is sparse, will there be better algorithms? From the
space complexity point of view, it possible to succinctly represent the intermediate relations
without explicitly listing O(n2) tuples?

3. What is the best algorithm for FO formulas with t function symbols, where t is a fixed small
constant, such as 2 or 3? In this case, can a 2-quantifier problem be solved in time m2 or
faster? One idea is to use grouping-reduction to eliminate one function each time, but this
time we cannot guarantee that on any pair of groups, the relations on their function values
are still sparse compared to the group size.

4. On a directed graph with edge set E, is there a reduction from a problem of form (∃x ∈
V)(∃y ∈ V)[TCE(x, y)∧P (x, y)] where P is a property decidable in time linear to the sum of
weights of x and y, to a problem of form (∃x ∈ V)(∃y ∈ V)P (x, y)? This would be interesting
because the former problem is highly sequential and the latter is highly parallel.

5. The first-order logic can be extended to more expressive classes in many ways, including
least fixed point, and temporal logic. It would be interesting if they can be studied in the
fine-grained complexity context.

Acknowledgements
The authors sincerely thank Marco Carmosino for comments on improving this paper.

20

References

[ABDN18] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences
of falsifying SETH and the orthogonal vectors conjecture. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 253–266. ACM,
2018.

[ABW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness
results for LCS and other sequence similarity measures. In Foundations of Computer
Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.

[AGW14] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equiv-
alences between graph centrality problems, apsp and diameter. In Proceedings of the
twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 1681–1697.
SIAM, 2014.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the logical
level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with edit distance and friends: Or: A
polylog shaved is a lower bound made. In Proc. STOC, pages 375–388. ACM, 2016.

[AR16] Udit Agarwal and Vijaya Ramachandran. Fine-grained complexity and conditional
hardness for sparse graphs. arXiv preprint arXiv:1611.07008, 2016.

[AWW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of
faster alignment of sequences. In International Colloquium on Automata, Languages,
and Programming, pages 39–51. Springer, 2014.

[AWW16] Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 377–391. SIAM, 2016.

[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 218–230. SIAM, 2015.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 51–58. ACM, 2015.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for
string problems and dynamic time warping. In Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pages 79–97. IEEE, 2015.

[Bri14] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless seth fails. In Foundations of Computer Science
(FOCS), 2014 IEEE 55th Annual Symposium on, pages 661–670. IEEE, 2014.

21

[BRS+18] Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole
Wein. Towards tight approximation bounds for graph diameter and eccentricities. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 267–280. ACM, 2018.

[CW16] Timothy M Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and
More: Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1246–1255.
SIAM, 2016.

[GIKW17] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Complete-
ness for first-order properties on sparse structures with algorithmic applications. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’17, pages 2162–2181, 2017.

[GO95] Anka Gajentaan and Mark H Overmars. On a class of o (n2) problems in computational
geometry. Computational geometry, 5(3):165–185, 1995.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In Computational
Complexity, 1999. Proceedings. Fourteenth Annual IEEE Conference on, pages 237–
240. IEEE, 1999.

[IPZ98] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? In Foundations of Computer Science, 1998. Pro-
ceedings. 39th Annual Symposium on, pages 653–662. IEEE, 1998.

[KPS17] Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained
Complexity of One-Dimensional Dynamic Programming. In 44th International Col-
loquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:15, 2017.

[Lib13] Leonid Libkin. Elements of finite model theory. Springer Science & Business Media,
2013.

[LWW18] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness
for shortest cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1236–1252. Society for
Industrial and Applied Mathematics, 2018.

[MPS16] Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algorithms
for succinct stable matching. In International Computer Science Symposium in Russia,
pages 294–308. Springer, 2016.

[PW10] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
SODA, volume 10, pages 1065–1075. SIAM, 2010.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoretical Computer Science, 348(2):357–365, 2005.

[Wil14a] Richard Ryan Williams. The polynomial method in circuit complexity applied to
algorithm design (invited talk). In LIPIcs-Leibniz International Proceedings in Infor-
matics, volume 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

22

[Wil14b] Ryan Williams. Faster decision of first-order graph properties. In Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS), page 80. ACM, 2014.

[Wil18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and com-
plexity. In Proceedings of the ICM, 2018.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

A Baseline Algorithms

Lemma A.1. For any integer k ≥ 2, FOPk, FOPqr=k and FOPk(≤) are in time O(mnk−2). The
model checking for k-quantifier formulas with transitive closure operations only on symmetric input
binary relations is also in time O(mnk−2).

The baseline algorithm for FOPk is proved in [GIKW17]. For FOPqr=k and FOPk(≤), we only
need to show the case where k = 2. The cases for k > 2 follows from the quantifier-eliminating
downward self-reduction.

The linear time baseline algorithm for FOPqr=2 is straightforward from the baseline algorithm
for FOP2. Let the variables in the outer scopes be x and the one in the inner scopes be y. For each
variable named x and each variable named y, we can compute #(x) = |{y ∈ y | ψ(x, y)}| for any
quantifier-free formula ψ(x, y). Thus, for a variable x, we can list all elements in the domain of x
satisfying any ϕ(x) where ϕ has quantifier rank 1. Thus we can decide ∃xϕ(x) and ∀xϕ(x) for any
variable named x.

The linear time baseline algorithm for FOP2(≤) is also adapted from the baseline algorithm for
FOP2. We prove that FOP2(≤) ⊆ TIME(m). Let ϕ = Q1x Q2y ψ(x, y), where

ψ(x, y) = ((x < y) ∧ ψ<(x, y)) ∨ ((x = y) ∧ ψ=(x, y)) ∨ ((x > y) ∧ ψ>(x, y))

for each x, we let Y<, Y=, Y> be the subsets of Y less than x, equal to x or greater than x. These sets
are disjoint. The proof for FOP2 showed that each time taking one x ∈ X, we can compute #<(x) =
|{y ∈ Y< | ψ(x, y)}| (and similarly #=(x),#>(x) for Y=, Y> respectively) in time linear to the degree
of x. Thus for each x, if y is quantified by ∃ then we check whether #<(x) + #=(x) + #>(x) > 0.
If y is quantified by ∀ then we check whether #<(x) + #=(x) + #>(x) = |Y |.

For k-quantifier formulas with transitive closure operations only on symmetric input relations,
it is easy to see that using the same method, for each x we can count the number of y satisfying
a relation and also satisfying a constant number of predicates about whether x and y are in the
same connected component by a certain undirected edge relation.

B Baseline algorithm for variable complexity k

B.1 Variable complexity 2
Lemma B.1. FOPvc=2 ⊆ TIME(m)

23

For the complement of a sparse relation, we call it a co-sparse relation. If a relation R is
co-sparse, we can represent it by its complement R̄, which takes only O(m) space.

First, convert the variable complexity 2 formula ϕ into a constant number of first-order queries
of at most 2 variables. Each query is one of the following forms.

1. R(x, y) = Ri(x, y) ∧Rj(x, y)
2. R(x, y) = Ri(x, y) ∨Rj(x, y)
3. R(x, y) = ¬Ri(x, y)
4. R(x) = ∃yRi(x, y)
5. R(x) = ∀yRi(x, y)
6. R = ∃xRi(x)
7. R = ∀xRi(x)
8. R = ¬Ri
We will show that if we have already computed all of the previous queries in O(m) time, then

we can compute the current query (or its negation, if it is co-sparse) in O(m) time.
1. Intersection

• The intersection of sparse relation Ri(x, y) and sparse relation Rj(x, y) can be computed
in time O(min(|Ri|, |Rj |)), by going through the shorter list of Ri and Rj , and check if
the tuple satisfies the other relation.
• The intersection of sparse Ri(x, y) and co-sparse Rj(x, y) can be computed in time
O(|Ri|), by going through all tuples of Ri, and check if the tuple satisfies the other
relation.
• The intersection of co-sparse Ri(x, y) and co-sparse Rj(x, y) can be computed in time
O(|R̄i + R̄j |), by letting R̄t be the union of R̄i and R̄j .

2. Union
It is reducible to the intersection of two relations, by De Morgan’s Law.

3. Existential quantifier
• R(x) = ∃yRi(x, y) for sparse Ri(x, y) can be computed in time O(|Ri|) by going through

all tuples of Ri and list all x that appear in some tuple.
• R(x) = ∃yRi(x, y) for co-sparse Ri(x, y) can be computed by taking the complement of
∀yR̄i(x, y).

4. Universal quantifier
• R(x) = ∀yRi(x, y) for sparse Ri(x, y) can be computed in time O(|Ri|) by going through

all tuples of Ri, for each x count how many tuples it is in, and finally list all x that
appear in |Y | tuples.
• R(x) = ∀yRi(x, y) for co-sparse Ri(x, y) can be computed by taking the complement of
∃yR̄i(x, y).

B.2 3 and more variables

Any formula of 3 quantifiers is can be solved in time O(nω) [Wil14b]. By applying this algorithm
on every line, we can decide a formula of variable complexity 3 in the amount of time. This can be
generalized to any k ≥ 3.

Theorem 7. (Strengthening of Williams’ algorithm) Any first-order property defined by a formula
of variable complexity k is decidable in time Õ(nk−3+ω) for c ≥ 2. For k ≥ 9, it can be decided in
nk−1+o(1) time.

SETH implies k-OV for k ≥ 2 requires time nk−o(1). Therefore, assuming SETH, for 2 ≤ k < 8,
it is impossible to express k-OV in FO using only k variables, without blowing up the input size

24

by a polynomial factor.

B.3 Case analysis on FO with three variables

Now we consider formulas of variable complexity 3.
If a ternary intermediate relation is created in the straightline program in a line of form

R(x, y, z) = ψi(x, y, z), then ψ must be quantifier-free. Whenever this ternary intermediate re-
lation is used in other places, we can just replace the relation by ψi. Thus we can without loss of
gererality assume that all intermediate relations are unary or binary.

We define three types of variable complexity 3 formulas.

1. Strongly Succinct: The formula is equivalent to a straightline program where all intermedi-
ate relations are unary. One example is to decide if there exists a length ` chain of orthogonal
vectors: v1 ⊥ v2, v2 ⊥ v3, . . . , v`−1 ⊥ v` for some constant `.
Because in computing the straighline program, no dense relation is created, we can use the
algorithm for “List-∃-∀” problems for each line. Thus, it is subquadratic time reducible to
OV by the reduction in [GIKW17].

2. Weakly Succinct: The formula is equivalent to a straightline program where in each line
there is at most one occurrence of an intermediate binary relation. Most natural problems of
variable complexity 3 are in this case. The formula we have constructed for the constant-depth
circuit satisfiability is weakly succinct. FOPqr=3 problems are also weakly succinct.
In this case, it can be solved in O(mn) time for sparse graphs. The proof will be presented
in the end of this section.

3. Non-succinct: The formula is not weakly succinct. In this case, it is solvable in matrix
multiplication time, and in O(n3) using combinatorial algorithms.
An example is that, in a sparse graph, decide whether there is a pair (x ∈ X, y ∈ Y) such
that for all z ∈ Z, z either has a neighbor not adjacent to x, or has a neighbor not adjacent
to y. In FO, it is

∃x∃y∀z(∃y′¬E(x, y′) ∧ E(z, y′)) ∨ (∃x′¬E(y, x′) ∧ E(z, x′))

which is equivalent to the straightline program

R1(y, z) = ∃y′(¬E(x, y′) ∧ E(z, y′))
R2(x, z) = ∃x′(¬E(y, x′) ∧ E(z, x′))

ϕ = ∃x∃y∀z(R1(y, z) ∨R2(x, z))

An equivalent problem is: Given three families of sets, A,B,C, decide if for all ∀S1 ∈ A, ∀S2 ∈
B, there is a set S3 ∈ C contained in the intersection of A and B.

∀S1 ∈ A∀S2 ∈ B∃S3 ∈ C(S3 ⊆ S1 ∩ S2)

In FO,
∀x ∈ A∀y ∈ B∃z ∈ C(∀y′(y′ ∈ x ∨ ¬y′ ∈ z) ∧ ∀x′(x′ ∈ y ∨ ¬x′ ∈ z))

It is open whether non-succinct formulas can be decided in O(m2) time.

25

Proof for the O(mn) upper bound for weakly succinct formulas.
Consider each line of the straightline program R(x, y) = Qzψ(x, y, z). Without loss of generality

assume Qz is ∃, for otherwise we can compute the complement of R. Furthermore, we also assume
ψ(x, y, z) is a conjunction. For otherwise, we will write ψ(x, y, z) in DNF, and consider each
conjunction separately.

Case 1: The intermediate relation is on x, y.
Enumerate all x, for each x, we can list y such that Qzψ(x, y, z) holds for x, y, using the O(m)

time baseline algorithm. The time is O(mn).
Case 2: The intermediate relation is on y, z.
Case 2-1: Some binary predicate on x, z appears positively in the conjunction.
We enumerate the edges of the positive predicate, to get the pairs of (x, y), and for each of

them, enumerate all z, and check if ψ(x, y, z) holds. This takes time O(mn).
Case 2-2: All binary predicates on x, z appear negatively in the conjunction.
Let ψ′ be the subformula of the conjunction that contains all predicates on y, z, including the

intermediate relation.
For each y, count how many z satisfy ψ′ with y. Let the sum be f(y). The total time is O(n2).
Enumerate all edges on x, z and enumerate all y. In this way we can count for each pair of

(x, y) the number of z so that ψ′ is satisfied on y, z and also there is an edge between x, z. Let the
sum be g(x, y). The total time is O(mn).

For each pair of x, y, the value f(y) − g(x, y) is the number of z such that ψ′ is true and also
there are no edges between x, z.

Case 2-3: There are no binary predicates on x, z.
Then there must be binary predicates on x, y, or otherwise x is isolated from other variables in

the formula, making it easier to decide. We do a similar counting argument as Case 2-2.
Case 3: The intermediate relation is on x, z.
This case is equivalent to Case 2, because we can switch variables x and y in the formula.

26
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

