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Abstract

Suppose that you wish to sample a random graph G over n vertices and m edges conditioned on the
event that G does not contain a “small” t-size graph H (e.g., clique) as a subgraph. Assuming that most
such graphs are H-free, the problem can be solved by a simple rejected-sampling algorithm (that tests
for t-cliques) with an expected running time of nO(t). Is it possible to solve the problem in running time
that does not grow polynomially with nt?

In this paper, we introduce the general problem of sampling a “random looking” graph G with a
given edge density that avoids some arbitrary predefined t-size subgraph H. As our main result, we show
that the problem is solvable with respect to some specially crafted k-wise independent distribution over
graphs. That is, we design a sampling algorithm for k-wise independent graphs that supports efficient
testing for subgraph-freeness in time f(t) ·nc where f is a function of t and the constant c in the exponent
is independent of t. Our solution extends to the case where both G and H are d-uniform hypergraphs.

We use these algorithms to obtain the first probabilistic construction of constant-degree polynomially-
unbalanced expander graphs whose failure probability is negligible in n (i.e., n−ω(1)). In particular, given
constants d > c, we output a bipartite graph that has n left nodes, nc right nodes with right-degree of
d so that any right set of size at most nΩ(1) expands by factor of Ω(d). This result is extended to the
setting of unique expansion as well.

We observe that such a negligible-error construction can be employed in many useful settings, and
present applications in coding theory (batch codes and LDPC codes), pseudorandomness (low-bias gen-
erators and randomness extractors) and cryptography. Notably, we show that our constructions yield a
collection of polynomial-stretch locally-computable cryptographic pseudorandom generators based on
Goldreich’s one-wayness assumption resolving a central open problem in parallel-cryptography (cf.,
Applebaum-Ishai-Kushilevitz, FOCS 2004; and Ishai-Kushilevitz-Ostrovsky-Sahai, STOC 2008).
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1 Introduction

Many combinatorial properties of graphs and hypergraphs can be formulated as avoiding some family H of
small subgraphs. Notable examples consist of graphs that avoid short cycles or small cliques, expander graphs
(that avoid small non-expanding subgraphs) and even graphical representations of good error-correcting codes
(that avoid small “stopping sets” [17]). Motivated by the wide range of applications, the computational
problem of efficiently constructing H-free graphs has attracted a huge amount of research (e.g. [39, 25, 16,
1, 14]). In this paper, we consider several natural probabilistic variants of the construction problem.

Setup. Let Gn,m,d be the set of all (n,m, d)-hypergraphs, i.e., d-uniform hypergraphs over n vertices with
m hyperedges. We typically think of d as a constant that does not grow with n and take m = poly(n). Let
H be a family of “small” d-uniform hypergraphs of size at most t for some slowly growing function t(n).
While our setup is defined with respect to hypergraphs (to match our applications), the following problems
make sense even for simple undirected graphs (i.e., d = 2) and so, for now, the reader may safely focus on
this special case. (Indeed, we are not aware of prior solutions that handle the case of simple graphs.)

Problem 1.1 (Zero-error/negligible-error constructions). Generate an H-free hypergraph G ∈ Gn,m,d in
probabilistic poly(n)-time. The algorithm is allowed to fail with a negligible error probability that vanishes
faster from any inverse polynomial, i.e., n−ω(1). Such a construction is referred to as a negligible-error
construction. We say that this is a zero-error (or ZPP) construction if the algorithm outputs a special
failure symbol whenever it fails to find an H-free graph.

Unlike the classical de-randomization literature which typically emphasizes the distinction between de-
terministic and probabilistic construction, in Problem 1.1 we focus on the error level. We advocate the use of
negligible-error constructions as a second-best alternative when explicit constructions are unknown. Indeed,
for many applications a randomized construction that almost never fails is almost as good as a fully explicit
construction. In particular, if one is planning to plug-in G into some randomized algorithm or system then a
negligible error in the construction of G will be swallowed by the overall error probability of the algorithm.1

Following the standard cryptographic tradition, we insist on an error that is negligible (i.e., tends to zero
faster than any polynomial), in order to guarantee a tiny failure probability even after polynomially-many
repetitions.2 Throughout the paper, we typically assume that an α-fraction of all (n,m, d)-hypergraphs are
H-free, where the density α is large but not overwhelming, i.e., α(n) = 1− n−c for some constant c > 0. In
this case, the problem is non-trivial when testing H-freeness cannot be done in polynomial-time.

While Problem 1.1 is a relaxation of the explicit-construction problem, our next problem addresses the
harder task of generating a random, or pseudorandom, H-free graph.

Problem 1.2 (Quasi-random H-free graphs). Sample in expected probabilistic poly(n) time a random graph
G from some “pseudorandom” distribution over Gn,m,d conditioned on being H-free.

The general task of generating a pseudorandom object that always satisfies some given property was
first studied by Goldreich, Goldwasser and Nussboim [23].3 In this setting the property (i.e., H-freeness) is
viewed as a necessary worst-case requirement that should be satisfied by any sampled hypergraph G. Using
the terminology of [23], the implementation G must be truthful to the H-freeness specification. Conditioned
on this, G should be distributed uniformly or close to uniformly under some metric.

1This view is implicitly used in other contexts. For example, although the problem of deterministically generating n-bit
primes in poly(n)-time is wide open, there are randomized algorithms that generate such primes with negligible (or even zero)
error probability. Consequently, applications which employ prime numbers (or prime-order finite fields) rely on negligible-error
constructions.

2Observe that in our context it is not clear how to reduce the error probability from constant or even inverse polynomial
1/nΩ(1) to negligible.

3The work of [23] focuses on huge exponential-size random objects. However, the problem remains non-trivial even for
polynomial-size objects as long as the required property cannot be tested in polynomial-time. See Section 2.2 for further
discussion regarding the applicability of our results to the GGN setting.
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This combination of requirements arises when one tries to understand the behavior of an H-free random
system (e.g., in simulation) or when the hypergraph G is being used as part of a system whose analysis relies
on a random choice of G and, in addition, its validity depends on H-freeness. In such a case we cannot
use a single explicit construction of H-free hypergraphs since it may fail to achieve some other property of
pseudorandom hypergraphs. On the other hand, we cannot use a random sample from Gn,m,d since it fails
to be H-free with positive (in our case, inverse polynomial) probability.

We further mention that in some cases even a tiny positive failure probability can be problematic. This
is the case, for example, when the sampling procedure is invoked by an untrusted party who can benefit
from the existence of H-subgraphs. If our sampling algorithm has a positive failure probability, then a
cheating party can cheat by selecting “bad coins” that lead to hypergraphs with H-subgraphs. Since general
subgraph-testing seems to be computationally-hard such a cheating may be left undetected.4

The testing barrier. A natural way to sample H-free random hypergraphs is via rejected sampling.
That is, repeatedly sample G until an H-free hypergraph is chosen. Since we work in a regime where most
hypergraphs are H-free, the expected number of iterations will be polynomial. This approach reduces the
sampling problem to the subgraph testing problem. If the largest hypergraph in H is of constant size t, then
the problem can be trivially solved in time f(t)nO(t). However, we think of t as a large constant, or as a
slowly increasing function of n, and so we would like to have a running time of f(t)nc where the exponent
c is independent of t. Unfortunately, such a running time cannot be achieved for general subgraph-testing
(even for simple cases such as cliques) unless the exponential-time hypothesis (ETH) fails (cf. [18]). We refer
to this hardness-of-testing as the testing barrier. Jumping ahead, we will show that some variant of this
barrier arises if one tries to sample a hypergraph that is uniformly distributed over all H-free hypergraph in
Gn,m,d.

Summary: The problem of constructing H-free hypergraphs can be roughly ranked from easy to hard
as follows: negligible-error constructions, zero-error constructions, explicit constructions, pseudorandom
constructions.

2 Our Results

We partially resolve Problems 1.1 and 1.2. Our main results consist of two main parts. We begin by studying
pseudorandom constructions of H-free hypergraphs (Sections 2.1 and 2.2). Then we focus on the concrete
case of unbalanced expanders, describe negligible-error constructions of such graphs (Section 2.3), and use
them to derive various applications (Section 2.4).

2.1 Sampling k-Wise Independent Graphs Conditioned on H-Freeness

We show that Problem 1.2 can be solved with respect to some k-wise independent distribution over Gn,m,d.
Here k-wise independence means that every k-subset of the hyperedges are distributed uniformly over all
possible d-uniform hyperedges. The use of k-wise independent distributions as a good model for pseudo-
random graphs was advocated by Naor, Nussboim and Tromer [43] and by Alon and Nussboim [2]. These
works further show that a large family of natural graph-theoretic properties that hold whp over random
graphs (with a given edge density) also hold whp over polylog(n)-wise independent distributions with the
same density.

We bypass the “testing barrier” by designing a concrete k-wise independent probability distribution
Gn,m,d,k in a way that allows us to efficiently test whether a given sample G is H-free. That is, our distri-
bution is amenable to subgraph testing by design. To formalize this strategy, we introduce a new notion of
sampler/tester pair of algorithms. Roughly speaking, the sampler S samples an object according to some
given distribution D, and the tester T examines the coins of the tester and checks whether the corresponding

4The work of [13] provides a good example for such a case in the context of financial derivatives.
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object avoids some bad event E. The combination of the two allows us to sample the conditional distribution
[D|¬E]. (See Section 5 for more details on the sampler/tester framework.)

We prove the following key theorem. Below we define the log-density of an (n,m, d) hypergraph as
c = lognm, and define the size of a hypergraph as the sum of its vertices and hyperedges.

Theorem 2.1 (key theorem). For every log-density parameter c > 1, edge-uniformity parameter d ≥
2, subgraph-size function t(n) ≤ O( log log logn

log log log logn ) and independence parameter k(n) that satisfies k(n) ≤

O(n1/tc
′t

) where c′ is a constant that depends on c, there exists a poly(n)-time sampler/tester pair (S, T )
with the following properties:

• Given 1n, the randomized sampler S uses its internal random coins r to sample an (n,m = nc, d)
hypergraph Gr whose hyperedges are k(n)-wise independent.

• The deterministic tester takes as input a d-uniform hypergraph H of size at most t(n) and a fixed
sequence of coin tosses r and accepts the input if and only if H is a subgraph of the hypergraph Gr =
S(1n, r) that is generated by S using coin tosses r.

Although the size t of the tested subgraph is relatively small, it is still super-constant. This property will
be crucial for our applications. We further note that the independence parameter k(n) is super-logarithmic
(or even “almost” polynomial) in n and so the pseudorandomness properties established by [43, 2] hold. (A
more detailed version of Theorem 2.1 appears in Theorem 6.4.)

Sampling H-free graphs. It is important to note that our sampler S is independent of the subgraph
H, and that the tester T gets H as an input. These properties allow us to partially solve the sampling
problem (Problem 1.2) with respect to a family of small hypergraphs H. Indeed, we can use the sampler S
to sample a k-wise independent (n,m, d)-hypergraph G and use the basic tester to test that G is H-free for
all subgraphs H ∈ H. If one of the tests fails, we repeat the process from the beginning. Since H contains
at most exp(td) < poly(n) hypergraphs, the expected running time will be polynomial, assuming that a
random k-wise independent (n,m, d)-hypergraph is H-free with noticeable probability.

Corollary 2.2 (pseudorandom H-free hypergraphs). Let c, d, t(n), k(n) and m = nc be as in Theorem 2.1.
Let H be an efficiently constructible family of hypergraphs each of size at most t(n) such that a k(n)-wise
independent (n,m, d)-hypergraph is H-free with noticeable probability of 1/poly(n). Then, there exists a
probabilistic algorithm that runs in expected poly(n)-time and samples an H-free hypergraph from some k-
wise independent distribution over (n,m, d)-hypergraphs.

Remark 2.3 (Hardness of Sampling uniform H-free hypergraphs). It is natural to try and sample a uniform
H-free (n,m, d)-hypergraph, i.e., to replace the k-wise independent distribution in Corollary 2.2 with the
uniform distribution over Gn,m,d. We conjecture that sampling uniform H-free hypergraphs is computationally
infeasible and present some evidence towards this conjecture. In particular, suppose that:

(?) For some families of hypergraphs, it is infeasible to certify H-freeness over the uniform
distribution. That is, there is no 1-sided error tester that accepts most (n,m, d)-hypergraphs and
never accepts a hypergraph that is not H-free.

We show that, under the (?) assumption, sampling uniform H-free hypergraphs implies the existence of
one-way functions. Put differently, a sampler would allow us to convert average-case hardness (of testing)
to one-wayness, or, in the language of Impagliazzo [28], to move from Pessiland to Minicrypt.

The (?) assumption (hardness of certifying H-freeness) is closely related to previous intractability as-
sumptions (cf. [7, 13, 9]). We further relate this assumption to the problem of certifying that a random
low-density parity-check code has a high distance. (See Appendix A for details.)

Remark 2.4 (On k-wise independence). It is instructive to note that Theorem 2.1 employs k-wise in-
dependence in an unconventional way. Typically, the notion of k-wise independence is useful due to the
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combination of pseudorandomness with computationally-cheap and randomness-efficient implementations.
In contrast, the proof of Theorem 2.1 exploits the simple algebraic structure of k-wise independence con-
structions to force a structure on the sampled object (the hypergraph G) in a way that makes it amenable
to efficient analysis (i.e., subgraph testing). The fact that such implementation is computationally-cheap or
randomness-efficient is not really needed. (Nevertheless, these properties will be used in the next subsection.)

ZPP and explicit constructions. Corollary 2.2 immediately leads to a ZPP-construction of H-free
hypergraphs. We further observe that, under standard worst-case de-randomization assumptions, any ZPP-
construction implies an explicit construction.

Corollary 2.5 (explicit H-free hypergraphs). Let c, d, t(n), k(n) and m = nc and H be as in Corollary 2.2.
Assuming that the class of functions computable in 2O(n) uniform-time requires 2Ω(n)-size circuits, there
exists a deterministic poly(n)-time algorithm that always outputs an H-free (n,m, d)-hypergraph.

The above assumption is known to imply, for any constant a, a pseudorandom generator prg that fools
na-time algorithms with logarithmic size seed [29]. Such a generator can be used to fully de-randomize the
ZPP construction A and derive a fully explicit construction A′. (The algorithm A′ just outputs the first
seed s for which A(prg(s)) does not output “failure”.) This makes a crucial use of the ability to recognize
bad outputs (which trivially holds for ZPP samplers). We are not aware of a similar transformation that
applies to “Monte-Carlo” constructions that have a positive failure probability.5

2.2 The Succinct Setting

So far we assumed that the computational complexity of the sampler is allowed to grow polynomially in the
size of the hypergraph G. In some scenarios, it is more natural to think of the hypergraph as a huge object
and require a running time that is polynomial in log n. In particular, we say that an (n,m, d) hypergraph G
has a succinct representation if it can be represented by an identifier z of length polylog(n) such that given
z, a hyperedge e ∈ [m], and an index i ∈ [d], it is possible to compute the i-th member of the hyperedge e
in time polylog(n).6 (Here we assume that the hyperedges are ordered and can be represented by d-tuples.)
We prove a succinct version of Theorem 2.1 that applies to constant-size subgraphs H and polylog(n)-wise
independence.

Theorem 2.6. For every log-density parameter c > 1, edge-uniformity parameter d ≥ 2, constant subgraph
size t and independence parameter k(n) ≤ polylog(n), there exists a polylog(n)-time sampler/tester pair
(S, T ) with the following properties:

• Given n (in binary representation), the randomized sampler uses its internal random coins r to sample
a succinct (n,m = nc, d) hypergraph Gr whose hyperedges are k(n)-wise independent.

• The deterministic tester takes as input a d-uniform hypergraph H of size at most t and a fixed sequence
of coin tosses r and accepts the input if and only if H is a subgraph of the hypergraph Gr = S(n, r)
that is generated by S using coin tosses r.

Theorem 2.6 leads to the following succinct version of Corollary 2.2.

5There are cases in which derandomization assumptions can be easily used to turn a negligible-error construction into an
explicit construction [34]. This typically happens when one of the following holds: (1) It is “easy” to recognize a “bad” object
(i.e., to detect a violation of the desired property) in polynomial-time; or (2) There is an efficient way to combine a “bad”
instance with several “good” instances into a single “good” instance. As far as we know, in general, both conditions fail for
H-freeness.

6This is in contrast to the (more common) notion of succinctness (in the context of standard graphs), where, given a vertex
v and an index i, we can compute the i-th neighbor of v in time poly logn. Our notion of succinctness is better suited for
our applications, in which a hypergraph represents the dependencies graph of some function f : {0, 1}n → {0, 1}m (e.g., low-
biased generator) where inputs correspond to vertices, outputs correspond to hyperedges, and the i-th hyperedge contains the
vertices on which the i-th output depends. Our notion of succinctness guarantees that each output of f can be computed in
polylog(n)-time (e.g., in the RAM model).
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Corollary 2.7 (pseudorandom H-free succinct hypergraphs). Let c, d, t, k(n) and m = nc be as in The-
orem 2.6. Let H be a family of hypergraphs each of size at most t, such that a k(n)-wise independent
(n,m, d)-hypergraph is H-free with probability of 1/polylog(n). Then, there exists a probabilistic algorithm
that runs in expected polylog(n)-time and samples a succinct H-free hypergraph from some k-wise indepen-
dent distribution over (n,m, d)-hypergraphs.

As already mentioned the problem of constructing huge k-wise independent graphs that satisfy some given
property (specification) was studied in [23, 2, 43, 42]. Corollary 2.7 provides a zero-error (aka “truthful”)
solution for this problem with respect to H-free hypergraphs of given density. To the best of our knowledge,
prior to our work no solution was known even for the case of undirected graphs and concrete fixed-size
forbidden subgraphs.

2.3 Negligible-Error Construction of Constant-Degree Unbalanced Expanders

We move back to the non-succinct setting, and consider the problem of explicitly constructing a single, not
necessarily random, expander graph. We say that an (n,m, d)-hypergraph is an (α, t)-expander if every set
S of hyperedges of size at most t “touches” at least α|S| vertices.7 Equivalently, an (α, t)-expander is an
(n,m, d)-hypergraph that avoids small “dense” subgraphs, i.e., (n′,m′, d)-hypergraphs with n′ ≤ αm′ for
m′ ≤ t.

We focus on the setting of constant-degree highly unbalanced expanders. That is, we let d be a constant,
and assume that the number of hyperedgesm is polynomially larger than n, i.e., m = nc for some constant log-
density 1 < c < d. A standard probabilistic calculation shows that in this regime most (n,m, d)-hypergraphs
achieve a good expansion factor of α = Ω(d) (or even α = d − O(1)) for polynomially-small subsets of size
at most t = n1−δ where δ is a constant that depends on α, c and d. Unfortunately, the problem of efficiently
constructing highly-unbalanced constant-degree expanders is wide open. Existing constructions either have
only linearly many hyperedges m = O(n) [16] or suffer from a super-constant (actually polylogarithmic)
degree [25]. Motivated by the numerous applications of constant-degree highly-unbalanced expanders (to be
discussed later), we present a negligible-error construction of such graphs.

We begin by giving a ZPP-construction of constant-degree highly-unbalanced hypergraphs that expand
well for small sets of super-constant size. The following theorem follows from Corollary 2.2 by instantiating
the class H of forbidden subgraphs with the class of small non-expanding hypergraphs. (See Corollary 7.6
in Section 7.2.)

Theorem 2.8 (ZPP-construction of small-set expanders). For every log-density parameter c > 1, edge-
uniformity parameter d > c, and α < d − c there exists a ZPP-construction of (n,m = nc, d)-hypergraph
with (α, t)-expansion where t = O( log log logn

log log log logn ).

Next, we show that Theorem 2.8 gives rise to a negligible-error construction of hypergraphs that expand
well for polynomial-size subsets. That is, we downgrade the level of explicitness (from zero-error construction
to negligible-error construction) and upgrade the expansion threshold t to polynomial.

Theorem 2.9 (negligible-error construction of unbalanced expanders). For every log-density parameter
c > 1, edge-uniformity parameter d > c, and α < d − c, there exists a negligible-error construction of
(n,m = nc, 2d)-hypergraph with (α, t)-expansion where t = Ω(n1−δ) and δ = (c− 1)/(d− α− 1).

Recall that a negligible-error construction guarantees the existence of a poly(n)-time randomized algo-
rithm that outputs, except with negligible probability of n−ω(1), an (α, t)-expanding (n,m, 2d)-hypergraph.
(See Theorem 7.15 for a more detailed version.)

Theorem 2.9 provides an (n,m,D = 2d)-hypergraph whose expansion parameters (α, t) match the pa-
rameters of a random (n,m, d)-hypergraph. While this factor-2 gap in the degree has a relatively minor
effect on the expansion threshold t (which is still polynomial in n), it limits the expansion factor α to be

7This formulation is equivalent to the more standard notion of bipartite expanders over n left vertices and m right vertices
where the degree of each right vertex is d, and every set S of right vertices of size at most t is connected to at least α|S| left
vertices.
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at most D/2−O(1). Such an expansion factor suffices for many applications, but in some cases it is useful
to expand by a factor larger than D/2. Notably, expansion beyond half the degree guarantees the useful
unique expansion property. Formally, a hypergraph is a (β, t)-unique expander if for every set S of at most
t hyperedges there exists a set U of at least β|S| vertices such that each vertex in U appears in a unique
hyperedge e in S.

Perhaps surprisingly, although we cannot expand by a factor better than D/2, we can still get a negligible-
error construction of unique expanders.

Theorem 2.10 (negligible-error construction of unbalanced unique-expanders). For every log-density pa-
rameter c > 1, edge-uniformity parameter d > 2c, and β < d−2c, there exists a negligible-error construction
of (n,m = Ω(nc), 2d)-hypergraph with (β, t) unique-expansion where t = Ω(n1−δ) and δ = 2(c−1)/(d−β−2).

Theorems 2.8, 2.9 and 2.10 (whose proofs appear in Section 7) provide the first negligible-error construc-
tions of highly-unbalanced constant-degree expanders.

2.4 Applications

In Section 8, we use our negligible-error construction of unbalanced expanders to obtain the first negligible-
error constructions of several useful objects including batch codes (Section 8.1), and locally-computable
k-wise independent generators, low-bias generators and randomness extractors (Section 8.3). These appli-
cations follow immediately from our expanders via standard techniques. Below we briefly describe two non-
trivial applications: high-rate low-density parity-check (LDPC) codes (Section 8.2), and locally-computable
cryptographic pseudorandom generators (PRGs) with polynomial stretch (Section 9).

2.4.1 High-Rate LDPC Codes

LDPC codes [20] (see also [37, 46, 47]) are [m, k] linear error-correcting codes whose (m−k)×m parity check
matrix is sparse in the sense that it contains only dm non-zero entries for some sparsity constant d = O(1).8

Any (n,m, d)-hypergraph G defines an [m,m − n]-binary LDPC by letting the parity-check matrix be the
n×m incidence matrix of G. The parity-check matrix has md ones, and is therefore sparse when d = O(1).
Moreover, it is well known that if, for some β > 0, the hypergraph G achieves unique-neighbor expansion of
(β, γ) then the resulting code has a distance of γ.

Theorem 2.10 leads to the first negligible-error construction of high-rate LDPC code that tolerates poly-
nomially small number of errors.9 In particular, for every constants 1 < c < d/2 we get an LDPC with
sparsity 2d that maps k bits of information into k +O(k1/c)-bit codeword with a distance of n1−O(c/d).

Sipser and Spielman showed that an LDPC code whose underlying graph has a very good expansion
factor (well beyond half the degree) can be efficiently decoded by a linear time decoding algorithm with
O(log n) parallel steps [46]. Unfortunately, the hypergraph given by Theorem 2.10 does not satisfy such a
strong expansion property. Nevertheless, we show that our construction can be tweaked in a way that still
allows for highly efficient decoding via a variant of the Sipser-Spielman decoder. In particular, we prove the
following theorem. (See also Theorem 8.3.)

Theorem 2.11. For every constant c > 1, integer d > 10c and constant 0.9d < α < d − c, there exists a
negligible-error construction of an [m,m− 2m1/c]-LDPC code with sparsity of 2d that admits a decoder that
runs in quasi-linear time O(m log2m) and O(log2m) parallel steps and corrects up to Ω(n1−δ) errors where
δ = (c− 1)/(d− α− 1).

8Recall that an [m, k]-code is a linear code with codewords of length m and information words of length k, and an [m, k,∆]-
code has, in addition, an absolute distance of ∆.

9The status of existing explicit/negligible-error constructions is the same as the status of unbalanced expanders. In fact, any
[m,m−n, t] LDPC with sparsity md implies an (n,m)-hypergraph with average rank of d such that any set of t hyperedges has
some “odd-expansion” property. We do not have better ways to construct such expanders compared to standard expanders.
The situation is similar for all the applications discussed in this paper. That is, unbalanced constant-degree hypergraphs with
some expansion property for polynomial-size subsets of hyperedges are also necessary for all these applications, and accordingly
so far we had no explicit or negligible-error constructions.
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2.4.2 Polynomial-Stretch Locally-Computable PRGs

A cryptographic pseudorandom generator stretches a short random n-bit seed into a longer m-bit pseudo-
random string that is computationally indistinguishable from a truly random string. We say that a PRG is
locally-computable if each of its output bits depends on at most d = O(1) input bits. Locally-computable
PRGs were extensively studied in the past two decades. In particular, locally-computable PRGs that poly-
nomially stretch their input (i.e., m = nc for c > 1) have shown to have remarkable applications. This
includes secure-computation with constant computational overhead [32, 8] and general-purpose obfuscation
based on constant-degree multilinear maps (cf. [35, 36]).

Unfortunately, constructing locally-computable PRGs with polynomial-stretch turns out to be a challeng-
ing task. Indeed, while there are good constructions of local PRGs with sub-linear stretch m = n+o(n) [10],
and even linear stretch m = n+ Ω(n) [11, 4, 6] under standard assumptions, we currently have only partial
solutions to the polynomial-stretch regime. In particular, in [4] the first author constructed a locally-
computable polynomial-stretch weak-PRG. Here weak means that the distinguishing advantage ε of any
polynomial-time adversary is upper-bounded by some fixed inverse polynomial 1/poly(n), whereas the stan-
dard cryptographic definition requires a negligible distinguishing advantage of n−ω(1). The construction of [4]
is based on the one-wayness of random local functions with polynomially-long output length – a variant of
Goldreich’s one-wayness assumption [21].

We show that our negligible-error construction of expanders can be used to upgrade any weak-PRG into
standard PRG while preserving constant locality and polynomial stretch.

Theorem 2.12 (local-PRG with polynomial-stretch: weak-to-strong). For every constants d ∈ N, a > 0 and
c, c′ > 1 there exists a constant d′ for which the following holds. Any ensemble of d-local PRGs that stretches
n bits to nc bits and achieves indistinguishability parameter of ε = 1/na can be converted into an ensemble
of d′-local (standard) PRGs that stretches n bits to nc

′
bits.

The term ensemble here means that, given 1n, we can sample in polynomial-time a circuit that implements
a locally computable function f from n-bits to m bits so that except with negligible probability f is a PRG.
This use of ensembles is standard in the context of parallel cryptography and typically has at most a minor
effect on the applications.

Combined with the weak-PRG of [4], Theorem 2.12 yields the first construction of local PRG with
polynomial stretch based on a one-wayness assumption, resolving an important open question in the theory
of parallel cryptography [40, 10, 32, 4]. We mention that there is a second heuristic approach for constructing
such pseudorandom generators, due to [32] (see also [40, 12] and the survey [5]). This approach also requires
the existence of explicit (or negligible-error) construction of highly-unbalanced constant degree expanders,
and one can instantiate it using our constructions as well. In fact, it is known that such expanders are
necessary for any construction of locally-computable PRG with large-stretch [11].10 Theorem 2.12 shows
that, up to some extent, such expanders are also sufficient for this task.

3 Technical Overview

We briefly sketch some of the main techniques.

3.1 Sampler/Tester for H-free hypergraphs

We present a k-wise independent distribution over (n,m, d) hypergraphs that admits efficient subgraph-
testing for hypergraphs of size t = O( log log logn

log log log logn ) (as in Theorem 2.1). For simplicity let us focus on the

case of directed graphs (d = 2). Let us further assume that the number of vertices n is prime, and that the
number of edges m is an integer power of n, i.e., m = nc for some integer c ≥ 1.

10Indeed, prior works on expander-based cryptography (cf. [3, 4, 8, 12, 21, 32, 35, 36]) assumed, either explicitly or implicitly,
the existence of explicit constant-degree unbalanced vertex-expander, or at least that such expanders can be sampled efficiently
with negligible error, even though it was unknown how to do so, cf. [32, Remark 5.7]).
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We identify every vertex with an element of the field F = GF(n), and index the edges with c-tuples of
elements of F. We sample the graph by uniformly sampling a pair (A,B) of c-variate polynomials over F of
total degree k. For every tuple h = (h1, . . . , hc) ∈ Fc, we define the h-th edge to be (A(h), B(h)). That is, h
leaves the source vertex A(h) and enters the target vertex B(h).

It is not hard to show that every set of k edges are uniformly distributed. (This follows by a simple
extension of the well-known fact that random degree-k univariate polynomials are k-wise independent.) We
reduce the problem of subgraph testing to the following polynomial satisfiability problem: Check whether a
system of O(t) polynomial equations of degree D = O(k+t) and O(t) variables over the field F has a solution.

The latter problem can be solved by an algorithm of Kayal [33, Theorem 6.1.1] in time poly(DtO(t)

t log |F|)
which is polynomial in n for our choice of parameters.11

We describe a simplified version of the reduction for the special case of detecting a directed rectangle
(4-cycle). First observe that any sequence of edges indexed by x1, x2, x3, x4 ∈ Fc that form a rectangle must
satisfy the system L1 of equations

B(X1) = A(X2), B(X2) = A(X3) B(X3) = A(X4) B(X4) = A(X1)

where the formal variables X1, X2, X3 and X4 correspond to indices of edges and so they take values from
Fc. However, a moment of inspection suggests that the system L1 can be also solved by a 2-cycle: Assign the
first edge to X1 and X3 and the second edge to X2 and X4. We therefore need a mechanism for excluding
solutions that assign the same value to different variables. Fortunately, this can be achieved by introducing
few more auxiliary variables and few more low-degree equations.

In particular, we add four new variables Y = (Y0, Y1, Y2, Y3) which take values from Fc and define a new
system L2 of four equations

3∑
j=0

YjX
j
1 = 1,

3∑
j=0

YjX
j
2 = 2,

3∑
j=0

YjX
j
3 = 3,

3∑
j=0

YjX
j
4 = 4,

where arithmetic is over the extension field GF(nc) and 1,2,3,4 represent four distinct constants from this
field. Observe that the variables Y define a degree-3 univariate polynomial PY (·), and the system is satisfiable
if this polynomial evaluates to i over the input Xi. Clearly, any solution to L1 that assigns non-distinct
values to the X variables violates L2. On the other hand, any solution to L1 that assigns distinct values to
the X variables can be extended by an assignment to Y in a way that satisfies L2. (Such an assignment can
be found via polynomial interpolation). Hence, by combining L2 with L1 we get a new system that excludes
solutions in which the same edge is being used twice.

To complete the reduction one has to deal with few additional minor technicalities. Firstly, the system
L1 is over the field F = GF(n) whereas the second system is over the extension field GF(nc). This is solved
by projecting down the second system to the base field, and checking the satisfiability of the combined
system over F. Secondly, an additional distinctness gadget should be used to further force distinct vertices.
(Otherwise, a system for detecting a 4-path will be fooled by a 4-cycle.)

The construction extends to d-uniform hypergraphs in a straightforward way (use d polynomials instead
of 2), and to the case of non-integral log-density c = lognm by working over appropriate extension fields.
(See Section 6 for full details.) Finally, observe that the sampled graph has a succinct representation: An
edge query can be implemented by evaluating a low-degree polynomial. Moreover, for polylogarithmic k and
constant t, the polynomial-satisfiability algorithm can be implemented in polylogarithmic time, and so we
get a succinct version of the theorem.

11On a high-level, Kayal’s algorithm decomposes the algebraic closed set X, defined by the input polynomials, into closed
sets Xi, such that each Xi is birational to a hypersurface Yi. If some Yi has an absolutely irreducible Fq-factor, then by
Weil’s theorem there exist rational points in Yi, and by the birational correspondence also in Xi, so the algorithm outputs
“yes”. Otherwise, if Xi contains a rational point it has to lie on a closed proper subset of Xi. The subset is computed and the
algorithm is applied on it recursively. See [33] for full details.
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3.2 Expanding the Expansion: From Small-Sets to Large Sets

Theorem 2.8 converts a zero-error construction of (n,m, d)-hypergraphs G1 with (α, t)-expansion for small
threshold t = O( log log logn

log log log logn ) into a negligible-error construction of (α, T )-expander with polynomial thresh-

old of T = n1−δ. The proof is based on two observations.
First, suppose that, in addition to G1, we are given an (n,m, d)-hypergraph G2 with the property that

any “medium-size” set S of hyperedges t ≤ |S| ≤ T expands by a factor of α. Then, we can combine G1

and G2 into a single (n,m, 2d)-hypergraph G by letting the i-th hyperedge of G be the union of the i-th
hyperedge of G1 and G2. (Both hyperedges should be viewed as d-size multisets over [n].) Every hyperedge
set S of size at most T now expands by a factor of α, either due to the expansion of G1 (when |S| ≤ t) or
due to the expansion of G2 (when t < |S| ≤ T ). As a result, the expansion factor remains unchanged, but
the overall degree doubles.

The second observation is that a random (n,m, d)-hypergraph forms a negligible-error construction of
medium-size expanders. Indeed, in our regime of parameters, the probability that a random (n,m, d)-
hypergraph contains an s-tuple of hyperedges that violate expansion (touch less than αs vertices) is n−Ω(s)

which is negligible when s ≥ t > ω(1). (The constants in the big-Omega depend on d, c = lognm and
the exponent of the expansion threshold logn T .) Indeed, the only reason for which a random (n,m, d)-
hypergraph does not qualify as a negligible-error expander is the existence of small non-expanding sets
which appear with noticeable probability.

Unique-expansion. Unique-expansion is achieved via a similar approach except that the merging pro-
cedure is slightly different. As before we merge a pair of (n,m, d)-hypergraphs G1 and G2 into a single
hypergraph G by defining the i-hyperedge of G to be the union of the i-th hyperedge of G1 and G2. How-
ever, now we treat the vertices of G1 and the vertices of G2 as distinct sets. (E.g., the vertices of G1 are
indexed from 1 to n and the vertices of G2 are indexed by n + 1 to 2n.) As a result, G is a (2n,m, 2d)-
hypergraph. It is not hard to verify that if G1 is a (β, t) unique-expander and G2 expands by β for sets of
size t < s ≤ T , then G is a (β, T ) unique-expander.

Coding perspective. Recall that unbalanced hypergraphs can be viewed as parity-check matrices of
error-correcting codes where t-weight codewords correspond to “bad” t-size subgraphs (that violate unique
expansion). Using this terminology the above transformation defines a code by taking the intersection of the
code G1 (that has no nontrivial codewords of weight smaller than t) with the code G2 (that has no codewords
of weight s ∈ [t, T ]). The efficient decoding algorithm presented in Theorem 8.3 further exploits this view,
and shows that, in our setting, a noisy codeword of the intersection code G can be decoded by combining
the decoders of G1 and G2. In particular, the G2 decoder “reduces” the number of noisy coordinates from
T to (roughly) t, and the G1 decoder further reduces the noise from t to zero.

3.3 Local Hardness Amplification: From weak-PRGs to strong-PRGs

Theorem 2.12 converts a weak-PRG g : {0, 1}n → {0, 1}m into a standard PRG while preserving polynomial
stretch and constant locality. Such hardness amplification theorems are typically based on a direct sum
construction: Apply g on ` independent copies of the seed and XOR the results. By Yao’s XOR-lemma
(cf. [24]), if we start with an inverse polynomial indistinguishability, it suffices to take a super-constant
number of copies ` = ω(1). Unfortunately, this leads to a super-constant growth in the locality. We
therefore take a different approach based on randomness extractors.

We generate polynomially-many pseudorandom strings (using independent seeds) and place them as rows
of a k ×m matrix. Since the rows are independent and the indistinguishability parameter is a small inverse
polynomial, one can guarantee that each column has an almost full pseudo-entropy of k−1/poly(k). Finally,
we extract the randomness from each column using randomness extractor. This approach was used by [4]
(following a more general transformation from [26]) to obtain a linear-stretch local-PRG.

The success of this approach depends, however, on the existence of a suitable locally-computable ran-
domness extractor. The extractor should take a k-bit source with an almost-full entropy of k−1/poly(k) and
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a polynomially-short random seed of length k1−ε and output an almost-uniform k-bit string with negligible
statistical error. The main new observation is that such extractors exist, and a negligible-error construc-
tion can be achieved based on negligible-error construction of highly-unbalanced constant-degree expanders.
(Similar connections between expanders and locally-computable extractors were established, for a different
regime of parameters, in related contexts [11, 4]). See Sections 9 and 8.3.

4 Preliminaries

4.1 Hypergraphs

An (n,m, d) oriented hypergraph G = (V,E) is a hypergraph with a vertex set V of size n (by default,
V = [n]) that consists of a multiset of m hyperedges E. Although the order of hyperedges is not important
for us, it will be convenient to think about E as an m-tuple (e1, . . . , em). We further assume that each
hyperedge ei is fully oriented and is therefore represented by an ordered d-tuple (ei[1], . . . , ei[d]) ∈ V d. We
refer to ei as the i-th hyperedge, to ei[j] as the j-th entry of the i-th hyperedge, and to the index j ∈ [d]
as the location of the vertex ei[j] in the i-th hyperedge. We allow repetitions both between hyperedges and
inside hyperedges. (For example, e1 may be equal to e2 and ei[1] may be equal to ei[2]). When the internal
order of the hyperedges is not important (i.e., ei is a multiset) we refer to G as an non-oriented hypergraph.
(By default, all hypergraphs are oriented.)

An (n,m,≤ d) oriented hypergraph is defined similarly except that the size of the hyperedges E =
(e1, . . . , em) can vary as long as it does not exceed d. We still assume that the hyperedges are d-oriented by
viewing each hyperedges as a d-tuple over the set V ∪ {⊥}. For example, in an (n,m,≤ 4)-hypergraph one
can have a hyperedge of arity 3 represented as (1, 5,⊥, 4).

We extend the standard notion of subgraphs to hypergraphs as follows.

Definition 4.1 (sub-hypergraphs). A pair of d-oriented hyperedges e, e′ match if for every i ∈ [d] either
e[i] = ⊥ or e′[i] = ⊥ or e[i] = e′[i] (That is, null entries are viewed as wild-chars). Let H = (V (H), E(H)) be
an (n,m,≤ d) oriented hypergraph. For a mapping π from V (H) to some set U we let π(H) = (U,E′) denote
the hypergraph obtained by replacing the i-th hyperedge ei of H with the hyperedge e′i = (π(ei[1]), . . . , π(ei[d]))
where π is extended to map ⊥ to a ⊥. We say that an (n′,m′,≤ d) oriented hypergraph H is a subgraph
of an (n,m, d) oriented hypergraph G if there exists a pair of injective mapping π : V (H) → V (G) and
σ : [m′] → [m] such that i-th hyperedge of π(H) matches to the σ(i)-th hyperedge of G. (Note that this
implies that n′ ≤ n and m′ ≤ m.)

Ensembles of hypergraphs. Let m(·) and d(·) be integer-valued functions. An efficiently samplable
(n,m(n), d(n))-hypergraph ensemble is defined by a probabilistic polynomial-time sampling algorithm S
that given 1n outputs an (n,m(n), d(n))-hypergraph using some canonical representation. When S uses
only O(log n) coins (i.e., the distribution is supported on polynomially many hypergraphs), we refer to the
corresponding sequence of hypergraphs as an efficiently constructible family of hypergraphs. Note that in
this case we can construct all hypergraphs in the family in time poly(n). A deterministic algorithm that
outputs a single hypergraph per output length is treated as a special case.

We say that the ensemble is succinct if S can be “partitioned” into two algorithms: a probabilistic
polylog(n)-time index-sampler I and a deterministic polylog(n)-time edge-evaluation algorithm G with the
following syntax.

• Given n, the algorithm I outputs a string z of length polylog(n) that represents an (n,m(n), d(n))-
hypergraph Gz.

• Given n, a graph identifier z, an index of a hyperedge e ∈ [m(n)] and an internal index i ∈ [d], the
evaluation algorithm outputs a vertex v ∈ [n] that defines the i-th entry of the hyperedge e in Gz.

In some cases we consider an intermediate setting where the evaluation algorithm runs in polylog(n)-time but
the index-sampler runs in time poly(n). In this case we say that the ensemble has a succinct representation
(and emphasize the polynomial complexity of the sampler).
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4.2 Finite Fields

Let q be a prime power. We will denote the finite field of size q by Fq, and assume that we are given
a description of Fq that enables computation of field operations and sampling of field elements in time
poly(log q). We will rely on the following standard facts: (1) elements in an extension field F′ of F can be
represented as F-vectors such that arithmetic operations over F′ can be emulated by arithmetic operations
over F. (See Fact 4.2.) (2) Correspondingly, a low-degree system of equations over F′ can be represented by
a low-degree system of equations over Fq. (See Fact 4.3.)

Fact 4.2. Let q be a prime power and let c be an integer. Then, elements of the extension field Fqc can
be viewed as vectors of length c over Fq. For two elements of Fcq, a = (a1, . . . , ac) and b = (b1, . . . , bc), the
operations over Fqc are defined as follows.

• Addition: The sum of a and b over Fqc is simply the entry-wise sum of a and b over Fq.

• Multiplication: The product, z = (z1, . . . , zc), of a and b is defined by zi = aΛib
T , for every i ∈ [c],

where Λi is a fixed c× c matrix over Fq, and the arithmetic is over Fq.

Moreover, the matrices Λ1, . . . ,Λc can be generated in time poly(c · log q).

Fact 4.3. Let q be a prime power and let c be an integer. Then, elements of the extension field Fqc can
be represented as vectors of length c over Fq such that the following holds. For any m-variate polynomial
f(X1, . . . , Xm) of total-degree D over Fqc we can generate in time poly(c ·Dm · log q) a vector, (g1, . . . , gc),
of c polynomials over Fq each with c ·m variables, ((X1,i)i∈[c], . . . , (Xm,i)i∈[c]) and total-degree of at most D
such that for any f -input (x1, . . . , xm) the corresponding f -output y = f(x1, . . . , xc) satisfies

(y1, . . . , yc) = (g1(x1,1, . . . , xm,c), . . . , gc(x1,1, . . . , xm,c)),

where xi,j (resp., yj) is the j-th component of the vector representation of xi (resp., y).

4.3 k-wise Independent Polynomials

Definition 4.4. A probability distribution F over functions f : X → Y is k-wise independent if for every
k-tuple (x1, . . . , xk) of distinct elements of X, the random variable (F(x1), . . . ,F(xk)) is uniform over Y k.

For a prime power q and positive integers ` and k < `(q−1), let P`,k,q denote the uniform distributions over
multivariate polynomials with ` variables and total degree at most k over the field Fq. That is, a polynomial
is chosen by sampling each coefficient uniformly and independently from Fq, and each polynomial is viewed
as a function from F`q to Fq. It is not hard to show that P`,k,q is k-wise independent.

Claim 4.5. For every prime power q and positive integers ` and k < `(q − 1), the distribution P`,k,q is
k-wise independent.

Sketch. The truth table of a randomly chosen f ← P`,k,q is just a random code-word of a Reed-Muller code
with parameters ` and k over Fq. To prove the claim we should show that the marginal distribution of any
subset of k coordinates of such a random code-word is uniformly distributed over Fkq . Since the code is linear,
this is equivalent to showing that the dual distance of the code is k + 1. Indeed, it is known that the dual
distance of such Reed-Muller code is at least k + 1, see [45, Proposition 5.4.14].

In particular, the distance of the dual code is (ρ+ 1)qσ where ρ is the reminder after division of k+ 1 by
q− 1 with quotient σ (that is, k+ 1 = σ(q− 1) + ρ for ρ < q− 1). One can show that for every k < `(q− 1),
the dual code has distance at least k + 1.

Note that, given the description of Fq, we can sample an element of P`,k,q in time poly(k` · log q).
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5 The Sampler/Tester Framework

Let D be a probability distribution and let E be some “bad event” that happens with low-probability (e.g.,
o(1)). The following mechanism allows us to sample from the conditional distribution [D|¬E].

Definition 5.1 (Sampler/Tester). We say that a pair of algorithms (S, T ) is a sampler/tester pair for a
probability distribution D and an event E if the following holds.

1. The random variable S(r), induced by feeding S with fresh random string r ← {0, 1}s, is identically
distributed to D.

2. Given a string r ∈ {0, 1}s, the deterministic algorithm T (r) outputs 1 if and only if the sampler’s
corresponding output S(r) satisfies the event E.

Asymptotically, we consider an infinite sequence of pairs {(Dn, En)}n∈N and allow S, T to get 1n as an
additional input. In this setting, S(1n, ·), T (1n, ·) should run in polynomial-time in n and should form a
sampler/tester pair for (Dn, En) for every n ∈ N.

Remark 5.2. We will usually relax the requirement that the family {(Dn, En)}n∈N is defined for every n ∈ N
and instead allow the family to be defined only with respect to an infinite set N of integers as long as the set
N is not too sparse, i.e., the gap between the n-th is upper-bounded by some polynomial in n.

Observation 5.3. Given a sampler/tester pair (S, T ) for {(Dn, En)}n∈N, we can sample from [Dn|¬En] in
expected time poly(n)/(1− ε(n)) where ε(n) denotes the probability that a sample from Dn satisfies the event
En.

Proof. Repeatedly sample z = S(1n; r) using fresh randomness r and output the result only if T (1n, r) = 0.
The expected number of repetition is 1/(1− ε(n)) as required.

Note that by publishing the random seed r, everyone can verify that the output of the sampling algorithm
is not in E.

5.1 Explicit Constructions under De-Randomization Assumptions

Note that for ε(n) > 1 − 1/p(n) for some polynomial p(·), Observation 5.3 implies a ZPP-construction
for elements in the distribution [D|¬E]. In the following we show that, under standard worst-case de-
randomization assumptions, any ZPP-construction implies a fully-explicit construction.

Definition 5.4. Let G : {0, 1}n → {0, 1}m be a function with n < m. We say that G ε-fools probabilistic
algorithms with running T = T (n) if for every deterministic Turing-machine A of time T it holds that

|Pr[A(Um) = 1]− Pr[A(G(Un)) = 1]| < ε.

Theorem 5.5 ([29][50]). Assume that the class of functions computable in 2O(n) uniform-time requires
2Ω(n) size circuits. Then, for every t = t(n) there exist constants a, b and a pseudorandom generator G :
{0, 1}a·logn → {0, 1}t, computable in time b · t, which (1/t)-fools every deterministic algorithm running in
time t.

In fact, the assumption in Theorem 5.5 implies a PRG that fools non-uniform adversaries, but all we
need is a PRG that fools (or actually hit) uniform adversaries.12

Corollary 5.6. Let D = {Dn} be a family of distributions. Let A be a ZPP construction for D. Then,
under the assumption in Theorem 5.5, there exists a polynomial time algorithm that on input 1n outputs an
element from Dn.

12One can get such a generator under weaker uniform hardness assumptions [30, 49]. However, to the best of our knowledge,
in this setting all known generators work only for infinitely many inputs lengths. We thank Ronen Shaltiel for pointing us to
the relevant literature.
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Proof. We show that the assumption in Theorem 5.5 implies a derandomization of the ZPP-constructions.
Let A be a ZPP construction algorithm of some distribution D = {Dn}, running in time t(n), and let
G : {0, 1}a·logn → {0, 1}t be the PRG promised in Theorem 5.5. We define an explicit construction algorithm
A′ in the following way. On input 1n the algorithm A′ iterates over all binary strings s ∈ {0, 1}a logn and
outputs the first seed s for which A(G(s)) does not output failure. The seed s represents the element A(G(S))
of Dn.

Note that since A fails with negligible probability and since G (1/t)-fools A, it follows that there exists
at least one seed s for which A(G(s)) does not output failure. Since A is a ZPP-construction it follows that
if A does not fail then it outputs an element from the distribution Dn, so A′ always outputs an element of
Dn. Finally, since there are only poly(n) binary strings in {0, 1}a logn it follows that the running time of A
is poly(n).

6 k-wise Independent H-Free Hypergraphs

In the following section we present a sampler/tester for k-wise oriented hypergraphs and forbidden subgraphs.
That is, the sampler samples an oriented (n,m, d)-hypergraphs from a k-wise independent distribution, while
the tester tests whether some hypergraph H is a subgraph of the sampled graph. Recall that a distribution
over (n,m, d) oriented hypergraph is said to be k-wise independent if every set of k hyperedges (ei1 , . . . , eik)
is uniformly distributed over ([n]d)k. Extensions of the main result will be discussed in Section 6.2.

Below, we assume that n and m are both integer powers of some prime power q, and let P`,k,q denote
the uniform distribution over `-variate polynomials of total degree k over the field Fq .

Construction 6.1 (Sampler for Gq,n,m,d,k). The distribution Gq,n,m,d,k is parameterized by a prime power
q, and integers n,m, d and k, that correspond to the number of nodes, number of hyperedges, hyperedge arity,
and independence parameter. We further assume that n = qr, m = q` for some positive integers ` and r,
and that k < `(q − 1). Correspondingly, we index the vertices by elements from Frq and index the hyperedges

by elements in F`q.

• (Index sampler) Uniformly sample d · r independent polynomials P = (Pi,1, . . . , Pi,r)i∈[d] from P`,k,q.

• (Edge evaluation) The vector of polynomials P represent an (n,m, d) oriented hypergraph GP as follows.
Each vertex is associated with an r-tuple α ∈ Frq and each hyperedge is associated with an `-tuple β ∈ F`q.
Every hyperedge β ∈ F`q is of arity d and its i-th vertex is defined to be (Pi,1(β), . . . , Pi,r(β)).

For a first reading, it will be convenient to think of d as a constant and of c as an integer. In this case
we get ` = c and r = 1, so n = q, m = qc and there is exactly one polynomial Pi which represents the i-th
vertices of the hyperedges.

Claim 6.2. The distribution Gq,n,m,d,k over (n,m, d)-oriented hypergraphs is k-wise independent. Moreover,

the complexity of the sampling algorithm is r · d ·
(
k+`
`

)
· poly(log q), for r := logq n and ` := logqm.

Furthermore, the graph G has representation of size r · d ·
(
k+`
`

)
log q, and given its representation, one can

find the i-th element of the j-th hyperedge in time poly(r · k` · log d · log q).

Proof. The fact that every k hyperedges are distributed uniformly and independently over ([n]d)k follows
from Claim 4.5 and from the fact that the d · r polynomials are sampled independently from P`,k,q. The
complexity of the sampling algorithm follows from the fact that we can sample a field element in time
poly(log q), and that every `-variate polynomial of degree k has at most

(
k+`
`

)
monomials. The size of the

representation of the graph follows from the fact that a field element requires log q space, and the complexity
of computing the i-th element of the j-th hyperedge follows from the fact that field operations can be
computed in time poly(log q).

The following key-lemma describes a tester for H-subgraphs.
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Lemma 6.3 (key-lemma). There exists an algorithm A that given an (n′,m′,≤ d) oriented hypergraph H
and an index P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) of a hypergraph GP from Gq,n,m,d,k, tests if H is a
subgraph of GP in time polynomial in

D(2`m′+2rn′)O(2`m′+2rn′)
· (dm′r + rn′ + `m′) · log q,

for D := max {k,m′, n′}.

The proof of the lemma is deferred to Section 6.1. The following theorem follows immediately from
Claim 6.2 and Lemma 6.3.

Theorem 6.4. Let d be a constant positive integer. Let c be a constant positive rational number, represented
in lowest terms by `/r. Let q be a prime power, n = qr, m = nc, n′ = O( log log logn

log log log logn ) and m′ =

O( log log logn
log log log logn ). Let k ≤ min(`(q − 1) − 1,poly(n1/e(n′,m′))), where e(n′,m′) = (2m′` + 2n′r)O(2m′`+2n′r).

Then, there is a poly(n) algorithm S that samples a graph G from Gq,n,m,d,k and a poly(n) testing algorithm
T that given an (n′,m′,≤ d) oriented hypergraph H tests for the event that H is a subgraph of G. Moreover,
if k ≤ polylog(n), the ensemble Gq,n,m,d,k is succinct, and if, in addition, the hypergraph H is of constant
size, i.e., n′ +m′ = O(1), then the tester also runs in polylog(n) time.

Remark 6.5. If we are not interested in succinct hypergrah, then we can even take d = poly(n), and still
get a polynomial-time testing algorithm. For simplicity, we stick to a constant d.

The first part of the theorem implies Theorem 2.1, and the “Moreover” part implies Theorem 2.6. We
further mention that if succinctness is not needed, we can take the independence parameter k to be at least
2logn/ log logn � poly(log n).

Let H = {Hn} be an efficiently constructible family of oriented hypergraphs, that is, there exists an
algorithm that on input 1n outputs all the hypergraphs in Hn in time poly(n). Further assume that Hn

consists of hypergraphs of size (vertices plus hyperedges) of at most O( log log logn
log log log logn ). Then Theorem 6.4

implies a sampler/tester for forbidden hypergraphs from H.

Corollary 6.6. Let c, `, r, q,m, n, d, n′,m′ and k be as in Theorem 6.4. Let H = {Hn} be a efficiently
constructible family of oriented hypergraphs, where Hn consists of hypergraphs with m′ hyperedges and n′

vertices. Then, there exists a sampler/tester pair for {Gq,n,m,d,k, En}, where En is the event that some
hypergraph in Hn is a subgraph of Gq,n,m,d,k. Consequently, we can sample from [Gq,n,m,d,k|¬En] in expected
time of poly(n)/(1− ε(n)) where ε(n) is the probability that En occurs.

Recall that if k ≤ poly(log n), the ensemble Gq,n,m,d,k is also succinct.

6.1 Proof of Lemma 6.3

Given H and P we construct a set L of at most dm′r + rn′ + `m′ polynomial equations with 2`m′ + 2rn′

variables over the field Fq where each equation is of degree at most D := max{k, n′,m′}. We show that the
system has a solution if and only if H is a subgraph of GP (for ease of readability we will drop the subscript
P ). We then employ the algorithm of Kayal [33, Theorem 6.1.1] which determines if such a system is solvable

in time poly(D(2`m′+2rn′)O(2`m′+2rn′) · (dm′r + rn′ + `m′) · log q). Our system L will be composed of three
sub-systems L1,L2 and L3.

The hypergraph equations L1. For every hyperedge h of H we define a tuple of `-variables xh =
(xh(1), . . . , xh(`)) (intuitively, think of xh as taking values in F`q). For every vertex v of H define a tuple
of r-variables xv = (xv(1), . . . , xv(r)) (intuitively, think of xv as taking values in Frq). The first part of our
system L1 consists of the following equations. For every hyperedge h of H and every i ∈ [d] for which
h[i] 6= ⊥, add r equations of the form

Pi,j(xh) = xv(j),

for every j ∈ [r], where v is the i-th vertex of h in H, i.e., h[i] = v.
Let us analyze this part of our system.
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Claim 6.7. If H is a subgraph of G then L1 has a satisfying assignment that assigns distinct values to all
the vertex variables and distinct values to all the hyperedge variables, i.e., for every two distinct vertices
u and v the values assigned to xu and xv, when viewed as elements of Frq, are distinct, and for every two

distinct hyperedges h and f , the values assigned to xh and xf , when viewed as elements of F`q, are distinct.

Proof. Suppose that H is a subgraph of G, and let π : V (H) → V (G) and σ : [m′] → [m], be the injective
mappings guaranteed by Definition 4.1. We define the following assignment. For every i ∈ [m′] set the
variable xhi , that corresponds to the i-th hyperedge hi of H, to xhi = eσ(i) where ej ∈ F`q is the j-th
hyperedge of G. For every vertex v of H set xv = π(v). (Recall that we identify the vertices of G with
Frq.) Since the i-th hyperedge of π(H) matches to the σ(i)-th hyperedge of G, it follows that this assignment
satisfies L1. Moreover, note that for every two distinct vertices u and v of H, the values assigned to xu and
xv are distinct, since π is injective. Similarly, for every two distinct hyperedges h and f of H, the values
assigned to xh and xf are distinct, since σ is injective.

Claim 6.8. Suppose that L1 has a satisfying assignment that assigns distinct values to all the vertex variables
and distinct values to all the hyperedge variables (in the sense of Claim 6.7). Then H is a subgraph of G.

Proof. Denote the value assigned to the variable xv by av, for every vertex v, and the value assigned to the
variable xh by ah for every hyperedge h. Define the mapping π : V (H) → V (G) by π(v) = av, and the
mapping σ : [m′]→ [m] by σ(i) = j for a j ∈ [m] such that xhi = ej , where ej is the j-th edge of G.

By construction, the assignment satisfies L1 if and only if the i-th hyperedge of π(H) matches the σ(i)-th
hyperedge of G. Moreover, as all the av’s are distinct, it follows that π is injective, and as all the ah’s are
distinct, it follows that σ is injective. Hence, by Definition 4.1 it follows that H is a subgraph of G.

In order to prove that π and σ are injective, we crucially relied on the distinctness property of the
assignment. Indeed, a violation of these additional properties results in a non-injective π or σ. We solve
this problem by adding more constraints (and some auxiliary variables). Specifically, we use the following
gadget.

Claim 6.9 (Distinctness gadget). Let X = (X1, . . . , Xη) be η formal variables taking values from some finite
field F of size at least η. Let Y = (Y0, . . . , Yη−1) be additional formal variables over F, and consider the
polynomial system of η equations whose i-th equation is

η−1∑
j=0

YjX
j
i = ai,

where a1, . . . , aη are some fixed distinct values from F. Then, for any fixed assignment x for X there exists
an assignment y for Y such that (x, y) satisfies the system if and only if x1, . . . , xη are all distinct values in
F.

Proof of Claim. Let Z be a formal variable over F, let f(Z;Y ) =
∑η−1
j=0 YjZ

j be a polynomial over F, and let
x be a fixed assignment for X. For the first direction, let y be an assignment to Y such that (x, y) satisfies the
system, and assume towards contradiction that there exist i 6= j such that xi = xj . Then f(xi, y) = f(xj , y)
while f(xi, y) = ai 6= aj = f(xj , y), in contradiction. Hence all the xi’s are distinct.

For the other direction, assume that the values x1, . . . , xη are all distinct. Then, using Lagrange’s

interpolation, we can construct a univariate polynomial g(Z) =
∑η−1
j=0 bjZ

j of degree at most η − 1 over F,
such that g(xi) = ai for every i ∈ [η]. Then, by taking y = (b0, . . . , bη−1), the assignment (x, y) satisfies the
system.

In the following we define two additional set of equations, L2 and L3. The former makes sure that any
assignment that satisfies L1 has distinct values for the xv’s, while the latter makes sure that any assignment
that satisfies L1 has distinct values for the xh’s. We first define those equations over an extension field, and
then show how to translate them to equations over the base field.
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The vertices equations L2. Let a1, . . . , an′ be some fixed distinct values from Fqr , and let y0, . . . , yn′−1

be additional formal variables over Fqr . First, we define the system L′2 as follows. For every vertex vi of

H add the equation
∑n′−1
j=0 yjx

j
vi = ai over Fqr , where we think of xvi as a formal variable over Fqr (see

Fact 4.2). Note that L′2 consists of n′ polynomial equations over Fqr , where each equation has total-degree
at most n′ and variables (xv)v∈V (H) and (yi)i∈[n′].

It remains to translate L′2 to equations over Fq. Recall that for every vertex v of H, xv is a vector of
r formal variables over Fq. Similarly, we can view each yi as a vector of r formal variables over Fq, that is
yi = (yi(1), . . . , yi(r)) for every i ∈ [n′]. Then, from Fact 4.3, there exist r · n′ equations over Fq, each of
total degree at most n′, over the variables (xv(i))v∈V (H),i∈[r] and (yi(j))i∈[n′],j∈[r], for which the following
holds. Every assignment xv(i) and yi(j) satisfies the new set of equations if and only if it satisfies L′2, when
taking xv = (xv(1), . . . , xv(r)) and yi = (yi(1), . . . , yi(r)). We take the new set of equations to be L2.

The hyperedges equations L3. Let b1, . . . , bm′ be some fixed distinct values from Fq` , and let z0, . . . , zm′−1

be additional formal variables over Fq` . First, we define the system L′3 as follows. For every hyperedge hi

of H add the equation
∑m′−1
j=0 zjx

j
hi

= bi over Fq` , where we think of xhi as a formal variable over Fq` (see
Fact 4.2). Note that L′3 consists of m′ polynomial equations over Fq` , where each equation has total-degree
at most m′ and variables (xh)h∈E(H) and (zi)i∈[m′].

It remains to translate L′3 to equations over Fq. Recall that for every hyperedge h of H, xh is a vector
of ` formal variables over Fn. Similarly, we can view each zi as a vector of ` formal variables over Fq, that
is zi = (zi(1), . . . , zi(`)) for every i ∈ [m′]. Then, from Fact 4.3, there exist ` ·m′ equations over Fq, each of
total degree at most m′, over the variables (xh(i)h∈E(H),i∈[`]) and (zi(j))i∈[m′],j∈[`], for which the following
holds. Every assignment xh(i) and zi(j) satisfies the new set of equations if and only if it satisfies L′3, when
taking xh = (xh(1), . . . , xh(`)) and zi = (zi(1), . . . , zi(`)). We take the new set of equations to be L3.

Completing the proof. The following claims prove that H is a subgraph of G if and only if there exists
a satisfying assignment to the set of equations L1 ∪ L2 ∪ L3.

Claim 6.10. If H is a subgraph of G then there exists a satisfying assignment to the set of equations
L1 ∪ L2 ∪ L3.

Proof. By Claim 6.7, L1 has a satisfying assignment to the xv’s and xh’s, that assigns distinct values to all
the vertex variables and distinct values to all the hyperedge variables. Fix this assignment to the xv’s and
the xh’s.

Since the values assigned to the xv’s are distinct, Claim 6.9 implies that there exists an assignment to the
yi’s that satisfies L′2 (over Fqr ). Fact 4.3 implies that there exists an assignment to the yi(j)’s that satisfies
L2 (over Fq). Fix this assignment to the yi(j)’s.

Similarly, since the values assigned to the xh’s are distinct, Claim 6.9 implies that there exists an assign-
ment to the zi’s that satisfies L′3 (over Fq`). Fact 4.3 implies that there exists an assignment to the zi(j)’s
that satisfies L3 (over Fq). Fix this assignment to the yi(j)’s.

Altogether, we get an assignment that satisfies L1 ∪ L2 ∪ L3.

Claim 6.11. If there exists a satisfying assignment to the set of equations L1 ∪L2 ∪L3, then there exists a
satisfying assignment to L1 that assigns distinct values to all the vertex variables and distinct values to all
the hyperedge variables (in the sense of Claim 6.7).

Proof. Denote the value assigned to the variable xv by av, for every vertex v, and the value assigned to the
variable xh by ah for every hyperedge h. It is enough to show that all the av’s are distinct, and that all the
ah are distinct.

Fix the assignment (xv = av)v∈V (H). As there exists an assignment to the yi(j)’s that satisfies L2 (over
Fq), Fact 4.3 implies that there exists an assignment to the yi’s that satisfies L′2 (over Fqr ). Claim 6.9 implies
that all the av’s are distinct.
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Similarly, fix the assignment (xh = ah)h∈V (H). As there exists an assignment to the zi(j)’s that satisfies
L2 (over Fq), Fact 4.3 implies that there exists an assignment to the zi’s that satisfies L′2 (over Fq`). Claim 6.9
implies that all the ah’s are distinct.

Combining Claim 6.10 with Claim 6.11 and Claim 6.8, we get that H is a subgraph of G if and only if
there exists a satisfying assignment to the set of equations L1 ∪ L2 ∪ L3.

Finally, we need to analyze the running time. Note that we have at most dm′r + rn′ + `m′ polynomial
equations with 2`m′ + 2rn′ variables over the field Fq, where each equation is of degree at most D :=
max{k,m′, n′}. The total running-time for generating the equations, including the translation of L′2 and L′3
(see Fact 4.3), is poly(d, (m′)`, (n′)r, k`, r, log q), while, by [33, Theorem 6.1.1], checking whether the set of

equations is solvable takes time poly(D(2`m′+2rn′)O(2`m′+2rn′) · (dm′r + rn′ + `m′) · log q).
Altogether, we completed the proof of Lemma 6.3.

6.2 Extensions

6.2.1 Edge-Disjoint Homomorphism

Recall that H is a subgraph of G if the vertices of H can be renamed, using an injective mapping π :
V (H)→ V (G), such that each of the hyperedges of H matches to a unique hyperedge of G. (The mapping
between H hyperedges to G hyperedges is denoted by σ. See Definition 4.1.) A useful relaxation of this
notion is obtained by allowing π to be non-injective. In particular, two vertices of H can be mapped to the
same vertex in G. Since the edge-mapping σ is still required to be injective, we refer to this notion as edge-
disjoint homomorphism from H to G. For example, under this notion, a k-path digraph H is edge-disjoint
homomorphic to a k-directed cycle G. The following lemma restates Lemma 6.3 to the case of edge-disjoint
homomorphism.

Lemma 6.12. There exists an algorithm A that given an (n′,m′,≤ d) oriented hypergraph H and a vector
of polynomials in P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) from P`,k,q (where k < `(q − 1)), tests if H is
edge-disjoint homomorphic to GP (defined as in Construction 6.1), and its running time is polynomial in

D(2`m′+rn′)O(2`m′+rn′)
· (dm′r + `m′) · log q,

for D := max {k,m′}.

The proof of Lemma 6.12 follows from the analysis in Section 6.1, and noting that H is edge disjoint
homomorphic to GP if and only if the set of equations L1 ∪ L3 has a solution.

Based on Claim 6.2 and Lemma 6.12 we derive the following theorem (that can be viewed as a version
of Theorem 6.4 that applies to edge-disjoint homomorphism).

Theorem 6.13. Let d be a constant. Let c be a constant positive rational number, represented in lowest
terms by `/r. Let q be a prime power, n = qr, m = nc, n′ = O( log logn

log log logn ), and m′ = O( log log logn
log log log logn ).

Let k ≤ min(`(q − 1) − 1,poly(n1/e(n′,m′))), where e(n′,m′) = (2m′` + n′r)O(2m′`+n′r). Then, there is a
poly(n) algorithm S that samples a graph G from Gq,n,m,d,k and a poly(n) testing algorithm T that given an
(n′,m′,≤ d) oriented hypergraph H tests for the event that H is edge-disjoint homomorphic to G. Moreover,
if k ≤ polylog(n), the ensemble Gq,n,m,d,k is succinct, and if, in addition, the hypergraph H is of constant
size, i.e., n′ +m′ = O(1), then the tester also runs in polylog(n) time.

Note that if we are not interested in succinct hypergraphs, we can even take d = poly(n) and still get
a polynomial-time testing algorithm. (See Remark 6.5.) In this case, with edge-disjoint homomorphism we
can test for more vertices in comparison to the notion of subgraph.

The following theorem is an adaptation of Corollary 6.6 to the case of edge-disjoint homomorphism.

Corollary 6.14. Let c, `, r, q,m, n, d, n′,m′ and k be as in Theorem 6.13. Let H = {Hn} be an efficiently
constructible family of oriented hypergraphs, where Hn consists of hypergraphs with m′ hyperedges and n′
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vertices. Then, there exists a sampler/tester pair for {Gq,n,m,d,k, En}, where En is the event that some hyper-
graph in Hn is edge-disjoint homomorphic to Gq,n,m,d,k. Consequently, we can sample from [Gq,n,m,d,k|¬En]
in expected time of poly(n)/(1− ε(n)) where ε(n) is the probability that En occurs.

6.2.2 Non-Oriented Hypergraphs

Both the notion of oriented subgraph, and the notion of edge-disjoint homomorphism can be extended to
the case of non-oriented hypergraphs. In particular, we say that an (n′,m′,≤ d) non-oriented hypergraph
H is a subgraph of an (n,m, d) non-oriented hypergraph G (resp., edge-disjoint homomorphic to G) if one
can orient H and G (i.e., turn each hyperedge into a d-tuple) so that H is a sub-graph of G (resp., H is
edge-disjoint homomorphic to G).

Observation 6.15. If a non-oriented hypergraph H is a subgraph of a non-oriented hypergraph G (resp.,
edge-disjoint homomorphic to G), then for any fixed orientation of G there exists an orientation of H such
that H is an oriented subgraph of G (resp. edge-disjoint homomorphic to G).

In the following section we will think of Gq,n,m,d,k (defined in Construction 6.1) as a distribution over
non-oriented hypergraphs, unless stated otherwise. Similarly, for a vector of polynomials

P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r))

from P`,k,q, we will think of GP (defined in Construction 6.1) as a non-oriented hypergraph, unless stated
otherwise. Observation 6.15 together with Lemma 6.3 and Lemma 6.12 imply Lemma 6.16.

Lemma 6.16. There exists an algorithm A that given a non-oriented (n′,m′,≤ d) hypergraph H and a
vector of polynomials in P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) from P`,k,q (where k < `(q − 1)), tests if
H is a subgraph of GP (defined as in Construction 6.1), and its running time polynomial in

(d!)m
′
·D(2`m′+2rn′)O(2`m′+2rn′)

· (dm′r + rn′ + `m′) · log q,

for D := max {k,m′, n′}.
Similarly, there exists an algorithm A that given a non-oriented (n′,m′,≤ d) hypergraph H and a vector

of polynomials in P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) from P`,k,q (where k < `(q − 1)), tests if H is a
edge-disjoint homomorphic of GP , and its running time is polynomial in

(d!)m
′
·D(2`m′+rn′)O(2`m′+rn′)

· (dm′r + `m′) · log q,

for D := max {k,m′}.

Proof. From Observation 6.15 it follows that the non-oriented hypergraph H is a subgraph of the non-
oriented hypergraph GP (resp., edge-disjoint homomorphic to GP ) if and only if there exists an orientation
of H such that the oriented hypergraph H is a subgraph of the oriented hypergraph GP (resp., edge-disjoint
homomorphic to GP ), where GP has it’s natural orientation (that is, the orientation that was defined in
Construction 6.1).

Fix the natural orientation for GP , and iterate over all (d!)m
′

possible orientations of H. From Lemma 6.3
(resp., Lemma 6.12) it follows that for every such orientation we can check whether H is a subgraph of GP

(resp., edge-disjoint homomorphic to GP ) in time poly(D(2`m′+2rn′)O(2`m′+2rn′) · (dm′r + rn′ + `m′) · log q)

for D := max {k,m′, n′} (resp., poly(D(2`m′+rn′)O(2`m′+rn′) · (dm′r+ `m′) · log q) for D := max {k,m′}). The
claim follows.

The following theorem follows immediately from Claim 6.2 and Lemma 6.16.

Theorem 6.17. Let c, `, r, q,m, n, n′,m′ and k be as in Theorem 6.4 and let d be a constant. Then, there is
a poly(n) algorithm S that samples Gq,n,m,d,k and a poly(n) testing algorithm T that given an (n′,m′,≤ d)
non-oriented hypergraph H tests for the event that H is a subgraph of G.

19



Let c, `, r, q,m, n, n′,m′ and k be as in Theorem 6.13 and let d be a constant. Then, there is a poly(n)
algorithm S that samples Gq,n,m,d,k and a poly(n) testing algorithm T that given an (n′,m′,≤ d) non-oriented
hypergraph H tests for the event that H is edge-disjoint homomorphic to G.

Note that in Theorem 6.17 we can no longer take d to be polynomial in q.

Corollary 6.18. Let c, `, r, q,m, n, d, n′,m′ and k be as in the first part of Theorem 6.17 (resp., the second
part of Theorem 6.17). Let H = {Hn} be a efficiently constructible family of non-oriented hypergraphs,
where Hn consists of hypergraphs with m′ hyperedges and n′ vertices. Then, there exists a sampler/tester
pair for {Gq,n,m,d,k, En}, where En is the event that some hypergraph in Hn is a subgraph of Gq,n,m,d,k (resp.,
edge-disjoint homomorphic to Gq,n,m,d,k). Consequently, we can sample from [Gq,n,m,d,k|¬En] in expected
time of poly(n)/(1− ε(n)) where ε(n) is the probability that En occurs.

7 Unbalanced Expanders

7.1 Definitions

In the following section we will be interested in the problem of sampling k-wise independent expanders. We
will be interested in the following notions of expansion.13

Let G = (V,E) be a non-oriented (n,m, d)-hypergraph. For a set S ⊆ [m] of hyperedges, let Γ(S) be
the set of all vertices that are contained in at least one hyperedge of S. Let Γ1(S) be the set of all vertices
that have multiplicity 1 in the sum of all hyperedges of S. (Recall that the sum of two multisets e and f
is a multiset g in which the multiplicity of an element x is the sum of the multiplicity of x in e with the
multiplicity of x in f .)

For example, if S = {1, 2, 5} and e1 = {1, 2, 1}, e2 = {2, 3, 4} and e5 = {5, 2, 3} then Γ(S) = {1, 2, 3, 4.5},
and Γ1(S) = {4, 5}. Note that although 1 is contained only in e1, its multiplicity is 2, so it is not contained
in Γ1(S).

We emphasize that in the following section all hypergraphs are non-oriented.

Definition 7.1 (vertex-expander). Let G be an (n,m, d)-hypergraph. We say that a set S ⊆ [m] of hyperedges
is α-expanding if |Γ(S)| ≥ α|S|. We say that G is an (α, γ)-expander if every set S ⊆ [m] of hyperedges of
size at most γ is α-expanding.

We will usually refer to α as the expansion-factor. Note that we must have α ≤ d and γ ≤ m/α.

Definition 7.2 (unique-neighbor expander). Let G be an (n,m, d)-hypergraph. We say that a set S ⊆ [m]
of hyperedges is α-uniquely-expanding if |Γ1(S)| ≥ α|S|. Every v ∈ Γ1(S) is called a unique-neighbor in S.
We say that G is a (β, γ)-unique-neighbor expander if every set S ⊆ [m] of hyperedges of size at most γ is
β-uniquely-expanding.

Organization of the section. In Section 7.2 we show that a random (n,m, d)-hypergraph is likely to be a
good expander. In Section 7.3 we will show how to sample an (n,m, d)-hypergraph from a k-wise independent
distribution of hypergraphs, conditioned on the event that the hypergraph expands small sets. In Section 7.4
we will show how to compose the expanders that we sampled with a random (n,m, d)-hypergraph in order
get an expander that also expands large sets.

7.2 The Expansion of k-wise Independent Hypergraphs

It is well known that a random (n,m, d) hypergraph is likely to be a good expander. We extend this fact to
the case of k-wise independent (n,m, d)-hypergraphs. The proof of the claim is deferred to Appendix B.

13Expanders are usually presented as bipartite graphs. In the following, we will stick to the presentation with hypergraphs.
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Claim 7.3. Let c > 1 be an arbitrary constant, and let d > c be an integer. Let α < d − c be a constant,
and let m = nc. Let Gn,m,d,k be any k-wise independent distribution over (n,m, d)-hypergraphs. Let γ ≤
min{ρn1−δ, k} for sufficiently small constant ρ and δ = (c− 1)/(d− α− 1). Let s ≤ γ. Then the probability
that there exists a set of s hyperedges which is not α-expanding is at most(

aα,d ·
sd−α−1

nd−c−α

)s
,

for a constant aα,d that depends only on α and d. Consequently, the probability that the sampled graph is
not (α, γ)-expander is at most 1/2.

It is well known that vertex expansion implies unique-neighbor expansion (cf. [16]). In particular, if
α = (1 − ε)d and β = (1 − 2ε)d for some ε < 0.5, then every set which is α-expanding, is also β-uniquely-
expanding. The following claim follows.

Claim 7.4. Let c > 1 be an arbitrary constant and let d > 2c be an integer. Let β < d − 2c be a constant,
and let m = nc. Let Gn,m,d,k be any k-wise independent distribution over (n,m, d)-hypergraphs. Let γ ≤
min{ρn1−δ, k} for sufficiently small constant ρ and δ = 2(c− 1)/(d−β− 2). Let s ≤ γ. Then the probability
that there exists a set of s hyperedges which is not β-uniquely-expanding is at most(

aβ,d ·
s(d−β−2)/2

n(d−2c−β)/2

)s
,

for a constant aβ,d that depends only on β and d. Consequently, the probability that the sampled graph is
not (β, γ)-unique-neighbor expander is at most 1/2.

7.3 k-wise Independent Small-Set Expanders

In this section we prove the following theorem.

Theorem 7.5. Let c > 1 be an arbitrary constant and let d > c be some integer. Let α < d − c be a
constant and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. There exists a poly(n)-time

sampler/tester pair with the following properties:

1. For every prime power n, the sampler samples (n,m = nc, d)-hypergraph.

2. The tester tests if the sampled hypergraph is (α, γ)-expander. Moreover, the sampled graph passes the
test with probability 1

2 .

3. The hypergraph is sampled from a k-wise independent distribution, for k ≤ min(poly(n1/e(γ)), nε),
where e(γ) = γO(γ), the constants in the big-O notation depend on c, and ε > 0 is a constant that
depends on c. Moreover, if k ≤ poly(log n) then the sampled graph has a succinct representation.

Combining Theorem 7.5 with Observation 5.3 we get the following version of Theorem 2.8.

Corollary 7.6. Let c > 1 be an arbitrary constant and let d > c be some integer. Let α < d − c be a
constant and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. Then, for a prime power n and

k = min(poly(n1/e(γ)), nε) it is possible to sample in expected polynomial-time an (n,m = nc, d)-hypergraph
from a k-wise independent distribution, conditioned on having (α, γ)-expansion. Consequently, there is a
zero-error randomized construction of such expanders. Moreover, if k ≤ poly(logn) then the resulting graph
has a succinct representation (but polynomial-time generation algorithm).

For the case of unique-neighbor expander, we prove the following.

Theorem 7.7. Let c > 1 be some arbitrary constant and let d > 2c be some integer. Let β < d − 2c be
a constant, and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. There exists a poly(n)-time

sampler/tester pair with the following properties:
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1. For every prime power n, the sampler samples (n,m = nc, d)-hypergraph.

2. The tester tests if the sampled hypergraph is (β, γ)-unique-neighbor expander. Moreover, the sampled
graph passes the test with probability 1

2 .

3. The hypergraph is sampled from a k-wise independent distribution, for k = min(poly(n1/e(γ)), nε),
where e(γ) = γO(γ), the constants in the big-O notation depend on c, and ε > 0 is a constant that
depends on c. Moreover, if k ≤ poly(log n) then the sampled graph is succinct.

Combining Theorem 7.7 with Observation 5.3 we get the following theorem.

Corollary 7.8. Let c > 1 be some arbitrary constant and let d > 2c be some integer. Let β < d − 2c be a
constant, and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. Then, for a prime power n and

k = min(poly(n1/e(γ)), nε) it is possible to sample in expected polynomial-time an (n,m = nc, d)-hypergraph
from a k-wise independent distribution conditioned on have (α, γ)-unique-expansion. Consequently, there
is a zero-error randomized construction of such expanders. Moreover, if k ≤ poly(log n) then the resulting
graph has a succinct representation (but polynomial-time generation algorithm).

To prove the theorems we observe that expanders and unique-neighbor expanders occur with high prob-
ability when sampling from a k-wise independent distribution of hypergraphs. As we have already seen a
sampler for such a distribution, and an algorithm that tests for subgraphs and edge-disjoint homomorphism
(see Theorem 6.17), we will show that we can use it to construct a tester for the expansion properties of the
sampled graph.

7.3.1 Proof of Theorem 7.5

Let c > 1 be an arbitrary constant and let d > c be some integer. Let α < d − c be a constant and let
γ = O( log log logn

log log log logn ) be an efficiently-computable function. Let k = min(poly(n1/e(γ)), nε).
Note that we can assume without loss of generality that c is rational, as for any irrational number c and

every α < d− c, there exists a rational number c∗ > c such that α < d− c∗.
Theorem 6.17 implies a sampling algorithm S, that, given as input 1n for a prime power n, samples in time

poly(n) an (n,m = nc, d)-hypergraph G from a k-wise independent distribution. Note that if k ≤ poly(log n)
then the sampled graph is succinct, and that Claim 7.3 implies that G is an (α, γ)-expander with probability
at least 1/2.

Moreover, Theorem 6.17 implies a poly(n)-time testing algorithm T , that, given a non-oriented (n′,m′,≤
d)-hypergraph H, with n′ = O(γ) and m′ = O(γ), tests for the event that H is edge-disjoint homomorphic
to G. It remains to show that we can use T in order to construct a tester T ′ for the event that the sampled
graph is not an (α, γ)-expander.

Claim 7.9. Let G be an (n,m, d)-hypergraph. Fix some constant α. Then, there exists an (n′,m′, d)-
hypergraph H, for n′ < αm′, which is edge-disjoint homomorphic to G if and only if G has a set of m′

hyperedges which is not α-expanding.

Proof. Let H be an (n′,m′, d)-hypergraph, for n′ < αm′ that is edge-disjoint homomorphic to G. Let σ and
π be the corresponding mappings. Let S be the image of σ (recall that σ is injective, hence its image is of
size m′). Then Γ(S), corresponds to the image of π, that has at most n′ < αm′ vertices.

For the other direction, let S be a set of m′ hyperedges which is not α-expanding, and denote n′ = |Γ(S)|.
Denote the edges in S by e1, . . . , em′ and the vertices by v1, . . . , vn′ . Let H be the (n′,m′, d)-graph whose
vertices are v1, . . . , vn′ and whose edges are e1, . . . , em′ . Then H is edge-disjoint homomorphic to G.

The following observation shows that a tester for edge-disjoint homomorphism can be used for testing
expansion.
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Observation 7.10. Let S be a sampling algorithm that samples a k-wise independent (n,m, d)-graph G,
and let T be a testing algorithm that, given an (n′,m′,≤ d)-graph, test for the event that H is edge-disjoint
homomorphic to G. Then, using only γ · αγ · (αγ)dγ applications of T on hypergraphs with m′ ≤ γ and
n′ < αγ, we can test whether the sampled graph is an (α, γ)-expander.

Proof. Iterate over all possible m′ ≤ γ and n′ < αm′. For every pair (m′, n′) we go over all (n′)dm
′

possible
(n′,m′, d)-hypergraphs. For every such (n′,m′, d)-hypergraph H, check if H is edge-disjoint homomorphic to
G using T . From Claim 7.9 it follows that there exists a set at most γ hyperedges which is not α-expanding
if and only if some H is edge-disjoint homomorphic to G.

Finally, Observation 7.10, together with the existence of T implies the existence of a poly(n)-time algo-
rithm T ′ that tests for the event that G is not an (α, γ)-expander. This concludes the proof of Theorem 7.5.

7.3.2 Proof of Theorem 7.7

The proof is very similar to the one presented in Section 7.3.1. Let c > 1 be some constant and let d > 2c be
an integer. Let β < d− 2c be a constant, and let γ = O( log log logn

log log log logn ) be an efficiently-computable function.

Let k = min(poly(n1/e(γ)), nε).
Again, we assume without loss of generality that c is rational.
Theorem 6.17 implies a sampling algorithm S, that, given as input 1n for a prime power n, samples in time

poly(n) an (n,m = nc, d)-hypergraph G from a k-wise independent distribution. Note that if k ≤ poly(log n)
then the sampled graph is succinct, and that Claim 7.4 implies that G is a (β, γ)-unique-neighbor expander
with probability at least 1/2.

Moreover, Theorem 6.17 implies a poly(n)-time testing algorithm T , that, given a non-oriented (n′,m′,≤
d)-hypergraph H, with n′ = O(γ) and m′ = O(γ), tests for the event that H is a subgraph of G. It remains
to show that we can use T in order to construct a tester T ′ for the event that the sampled graph is not an
(β, γ)-unique-neighbor expander.

Claim 7.11. Let G be an (n,m, d)-hypergraph. Fix some constant β. Then, there exists an (n′,m′, d)-
hypergraph H, for which the set S = [m′] is not β-uniquely-expanding and H is a subgraph of G if and only
if G has a set of m′ hyperedges which is not β-uniquely-expanding.

Proof. For the first direction, let σ and π be the mappings promised in Definition 4.1, and take S to be the
image of σ. Then S is not β-uniquely-expanding in G. For the other direction, take H to be the subgraph
that contains the hyperedges of the set that is not β-uniquely-expanding.

The following observation shows that a tester for subgraphs can be used for testing unique-neighbors
expansion.

Observation 7.12. Let S be a sampling algorithm that samples a k-wise independent (n,m, d)-graph G,
and let T be a testing algorithm that, given an (n′,m′,≤ d)-graph, test for the event that H is a subgraph of
G. Then, using only γ · (dγ) · (dγ)dγ applications of T on hypergraphs with m′ ≤ γ and n′ ≤ dγ, we can test
whether the sampled graph is a (β, γ)-unique-neighbor expander.

Proof. Iterate over all possible m′ ≤ γ and n′ ≤ dm′. For every pair (m′, n′) we go over all (n′)dm
′

possible
(n′,m′, d)-hypergraphs. For every (n′,m′, d)-hypergraph H for which the set T = [m′] is bad for β, check
if H is a subgraph of G. From Claim 7.11 it follows that there exists a set S of size ≤ γ in G that is not
β-uniquely-expanding if and only if some H which is not β-uniquely-expanding is a subgraph of G.

Finally, Observation 7.12, together with the existence of T implies the existence of a poly(n)-time algo-
rithm T ′ that tests for the event that G is not an (β, γ)-unique-neighbor expander. This concludes the proof
of Theorem 7.7.
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7.4 Expanding Large Sets

7.4.1 Composing Vertex-Expander with Random Graphs

The following construction shows how to compose two hypergraphs, G1 and G2, where in G1 every “small”
set is good (that is, it has a good expansion), and in G2 the “big” sets are good.

Construction 7.13. Given two (n,m, d)-hypergraphs G1 = (V1, E1) and G2 = (V2, E2) we define the
following (n,m, 2d)-hypergraph G = (V,E). For the vertices, identify both V1 and V2 with [n]. The set of
vertices of G is simply [n]. For the hyperedges, assume that E1 = (f1, . . . , fm) and E2 = (h1, . . . , hm). Then
the i-th hyperedge of G is ei = fi + hi, where fi + hi is the sum of the multisets fi and hi.

Recall that the sum of two multisets f and h is a multiset e in which the multiplicity of an element x
is the sum of the multiplicity of x in f with the multiplicity of x in h. For example, if fi = {1, 3, 5} and
hi = {1, 2, 4} then ei = {1, 1, 2, 3, 4, 5} (recall that in this context, {} represents a multiset).

Claim 7.14. Let G1 and G2 be an (n,m, d)-hypergraphs and let γ > γ′. Assume that every set S of at most
γ′ hyperedges of G1 has expansion α1 (that is, |Γ(S)| ≥ α1|S|). In addition, assume that every set S of
hyperedges of G2, of size at least γ′ and at most γ has expansion α2. Let α = min{α1, α2}.Then G, defined
as in Construction 7.13, is an (n,m, 2d)-hypergraph and an (α, γ)-expander.

Proof. It is clear that G is an (n,m, 2d)-hypergraph.
For the expansion property, fix some set S of s hyperedges from G. If s ≤ γ′ then, by the expansion

property of G1 it holds that Γ(S) ≥ α1s. If γ′ ≤ s ≤ γ, then by the expansion property of G2 it holds that
Γ(S) ≥ α2s. The claim follows.

We can now prove the following version of Theorem 2.9 from the introduction.

Theorem 7.15 (Negligible-Error Construction of Expanders). Let c > 1 be some constant, let d > c be an
integer, and let α < d − c be a constant. There exists a poly(n)-time probabilistic algorithm that, except
with negligible probability n−ω(1), samples an (n,m = nc, 2d)-hypergraph which is an (α, γ)-expander, where
γ = ρn1−δ for a sufficiently small constant ρ and δ = (c− 1)/(d− α− 1).

Proof. Let γ′ = Θ( log log logn
log log log logn ). Let G1 be the (n,m, d)-hypergraph which is a (α, γ′)-expander, promised

in Corollary 7.6. Note that G1 can be sampled in time poly(n) with negligible error.
Let G2 be a random (n,m, d) hypergraph (that is, every hyperedge is distributed uniformly and inde-

pendently over [n]d). Let γ′ ≤ s ≤ γ. By Claim 7.3, the probability that there exists a bad set of size s is
negligible. Taking union-bound over at most ρn1−δ possible assignments to s, we get that the probability
that there exists a set of size more than γ′ and at most γ which is not α-expanding is negligible. Moreover,
note that G2 can be sampled in time poly(n).

Conditioned on the events that G1 is an (α, γ′)-expander, and that in G2 every set S ⊆ [m] of size
γ′ ≤ s ≤ γ is α-expanding, Let G be as in Construction 7.13. Then, by Claim 7.14 G is a (n,m, 2d)-
hypergraph which is (α, γ)-expander, which completes the proof.

7.4.2 Composing Unique-Neighbor Expander with Random Graphs

The following construction shows how to compose two hypergraphs, G1 and G2, where in G1 every “small”
set is uniquely-expanding, while in G2 the “big” sets are uniquely-expanding.

Construction 7.16. Given two (n,m, d)-hypergraphs G1 = (V1, E1) and G2 = (V2, E2) we define the
following (2n,m, 2d)-hypergraph G = (V,E). For the vertices, assume that V1 = {v1, . . . , vn} and V2 =
{u1, . . . , un}. The vertices of G is the union of the set of vertices of G1 with the set of vertices of G2 (that
is, V = V1 ∪ V2). For the hyperedges, assume that E1 = (f1, . . . , fm) and E2 = (h1, . . . , hm). Then the i-th
hyperedge of G is ei = fi + hi, where fi + hi is the sum of the multisets fi and hi.

For example, if fi = {v1, v1, v7} and hi = {u2, u5, u7} then ei = {v1, v1, v7, u2, u5, u7} (recall that in this
context, {} represents a multiset).
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Claim 7.17. Let G1 and G2 be an (n,m, d)-hypergraphs and let γ > γ′. Assume that every set S of at most
γ′ hyperedges of G1 is β-uniquely-expanding (that is, G1 is a (β, γ′)-unqiue-neighbor expander). In addition,
assume that every set S of hyperedges of G2, of size at least γ′ and at most γ, is β-uniquely-expanding. Then
G, defined as in Construction 7.16, is a (2n,m, 2d)-hypergraph and a (β, γ)-unique-neighbor expander.

Proof. It is clear that G is a (2n,m, 2d)-hypergraph.
For the expansion property, fix a set S of s hyperedges of G. First, note that if the set S has a unique

neighbor v in G1 (resp., G2) then this vertex is also a unique neighbor in G, since no hyperedge in G2

(resp., G1) touches v. Now, if s ≤ γ′, then, by the expansion property of G1, it holds that Γ1(S) ≥ βs. If
γ′ ≤ s ≤ γ then, by the expansion property of G2 it holds that Γ1(S) ≥ βs. Hence G is a (β, γ)-unique-
neighbor expander.

We can now prove the following version of Theorem 2.10.

Theorem 7.18 (Negligible-Error Construction of Unique-Neighbor Expaner). Let c > 1 be some constant,
let d > 2c be an integer and let β < d− 2c be a constant. There exists a poly(n)-time probabilistic algorithm
that, except with negligible probability n−ω(1), samples an (2n,m = nc, 2d)-hypergraph with (β, γ)-unique-
neighbor-expander, where γ = ρn1−δ for a sufficiently small constant ρ and δ = 2(c− 1)/(d− β − 2).

Proof. Let γ′ = Θ( log log logn
log log log logn ). Let G1 be the (n,m, d)-hypergraph which is a (β, γ′)-unique-neighbor

expander, promised in Corollary 7.8. Note that G1 can be sampled in time poly(n) with negligible error.
Let G2 be a random (n,m, d) hypergraph (that is, every hyperedge is distributed uniformly and inde-

pendently over [n]d). Let γ′ ≤ s ≤ γ. By Claim 7.4, the probability that there exists a bad set of size s is
negligible. Taking union-bound over at most ρn1−δ possible assignments to s, we get that the probability
that there exists a set of size more than γ′ and at most γ which is not β-uniquely-expanding is negligible.
Moreover, note that G2 can be sampled in time poly(n).

Conditioned on the events that G1 is a (β, γ′)-unique-neighbor expander, and that in G2 every set S ⊆ [m]
of size γ′ ≤ s ≤ γ is β-uniquey-expanding, let G be as in Construction 7.16. Then, by Claim 7.17, G is a
(2n,m, 2d)-hypergraph which is (β, γ)-unique-neighbor expander, which completes the proof.

8 Applications

8.1 Batch Codes

Batch codes, introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [31], allow us to distribute an m-bit
information word x over n devices such that every subset of γ bits of x (“batch”) can be decoded by retrieving
at most a single bit from each device while using a total space of at most M bits. Formally, an (m,M, γ, n)
batch code is a pair of deterministic algorithms (Enc,Dec) such that:

• The encoder Enc maps an information word x ∈ {0, 1}m into an n-tuple of strings, y = (y1, . . . , yn),
where yi ∈ {0, 1}∗ and the total length of the yi’s is M .

• The decoder Dec takes as an input a γ-subset S ⊂ [n] and, by querying a single bit from each yi, it
recovers (xi)i∈S .

The yi’s are called buckets, and the rate of the code is m/M .
When every bucket is simply a multiset of the bits of x, such a code is called combinatorial batch code

(CBC)[48]. If each bit is stored in precisely d buckets the code is referred to as d-uniform [48]. A CBC
can be represented by a hypergraph with n vertices (representing buckets) and m hyperedges (representing
the bits of x), where the i-th hyperedge contains all the buckets in which the i-th bit is contained in (with
multiplicity). In [31] it is noted that such a hypergraph is a batch code if and only if it has expansion factor
1. Hence, the explicitness of such codes is tighly connected to the explicitness of unbalanced expanders. By
Theorem 7.15 we get the following theorem.
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Theorem 8.1. For every constant c > 1 and integer d > 1 + c, there exists a negligible-error construction
of an (m,M, γ, n)-CBC with information words of length m, codeword of length M = 2dm, n = m1/c

buckets and batch-size of Ω(n1− c−1
d−2 ) where the constant in the Omega depends on d. Moreover, the code is

2d-uniform.

The algorithm A outputs a description of the CBC encoder and decoder. Since this is a CBC code, the
encoding algorithm can be implemented in linear-time of O(m) in the RAM model (assuming some initial
data-independent prepossessing that can be implemented by A). Moreover, since the code is 2d-uniform
every bit-change in the information word requires only 2d modifications in the codeword. Decoding of a
γ subset S ⊆ [n] can be done by finding a perfect matching between the required bits S and the some γ
buckets, and reading exactly one bit from each of the buckets. This can be done in time Õ(m10/7) (see [38]).

Theorem 8.1 yields the first negligible-error construction of constant-rate CBC in the regime where the
number of devices n is polynomially smaller than the length m of the information word and the batch-size
γ is polynomially smaller than n.14 Boyle, Couteau, Gilboa and Ishai [15] recently showed that such CBC’s
can be used to construct a useful cryptographic primitive (Multi-Point Function Secret Sharing) with an
optimal computational cost. Due to the lack of negligible-error constructions, they had to rely on heuristic
assumptions or to tolerate an inverse polynomial error. (See the discussion in [15, page 17].) Theorem 8.1
avoids these caveats and yields a constructive version of [15].

8.2 High-Rate LDPC Codes

As already mentioned, the n×m incidence matrix of an (n,m, d)-hypergraph G with (β, γ)-unique-expansion
forms a d-sparse parity-check matrix of an [m,m − n, γ]-linear code. Hence, by Theorem 7.18, we get the
following.

Theorem 8.2. Let c > 1 be some arbitrary constant and let d > 2c be an integer. Let m = nc and let
γ = Ω(n1−δ), where δ > 2(c− 1)/(d− 2) and the constants in the Ω-notation depend on d and c. For every
prime power n, there exists a negligible-error construction of a 2n×m parity-check matrix with at most 2d
ones in each columns which describes an [m,m− 2n, γ]-code.

We tweak the construction in order to get efficient decoding. Formally, we prove the following theorem
(a restatement of Theorem 2.11).

Theorem 8.3. Let c > 1 be an arbitrary constant, let d > 10c be an integer and let 0.9d < α < d − c
be a constant. Let m = nc and let γ = Ω(n1−δ) where δ = (c − 1)/(d − α − 1) and the constants in the
Ω-notation depend on d and α. For every prime power n there exists a negligible-error construction of a
2n ×m parity-check matrix with at most 2d ones in each column, which represents an [m,m − 2n, γ]-code.
Moreover, the sampled code has a decoding algorithm that corrects at least 0.6γ errors with O(log2 n) parallel
steps, where the constants in the O-notation depend on α.

(A larger constant α improves the number of parallel steps, but reduces the distance.) We sketch the
proof of Theorem 8.3 in Section 8.2.1.

8.2.1 Proof of Theorem 8.3

First, we present some notation. Then, to gain intuition, we present a decoding algorithm for an LDPC code
which is defined by a good vertex-expander. Finally, we show how to sample a code for which Theorem 8.3
holds.

14As we’ve mentioned, batch codes implies a weak notion of expansion, that is, an expansion factor 1. To the best of our
knowledge, there are no known constructions for such expanders in this regime.
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Notation. Let G be an (n,m, d)-graph and let H be its incidence matrix that will be used as the parity-
check matrix of the code. Given a word x ∈ {0, 1}m, we think of the hyperedges of G as representing the
word, where the value of the i-th hyperedge ei is xi. We think of the vertices as constraints, where the value
of the i-th vertex vi is the parity bit of all the hyperedges that contain it (with multiplicity). We say that a
constraint is satisfied if its value is 0, and otherwise we say that it is not satisfied. Note that the vector of
values of the vertices is exactly Hx. This implies that x is a codeword if and only if all its constraints are
satisfied.

The analysis of the decoder will relies on the following lemma.

Lemma 8.4 ([16]). Let G be an (n,m, d)-hypergraph, let α = (1 − ε)d for ε ≤ 1/2, and assume that every
set S ⊆ [m], where γ′ ≤ |S| ≤ γ, is α-expanding. Then for every such subset S we have:

1. For every δ ≥ 2ε at least 1− δ fraction of the hyperedges in S each have more than (1− 2ε/δ)d unique
neighbors.

2. For every η ≥ 2ε, at most 2ε/(η − 2ε)|S| hyperedges not in S each have at least ηd vertices in Γ(S),
provided that γ′ ≤ |S| ≤ (1− 2ε/η)γ.

One can show that for every ε < 0.1, one can efficiently compute 1/2 < η < 1 and δ ≥ 2ε for which

(1− 2ε/δ) > η and 1− δ > 2ε/(η − 2ε). (1)

The Sipser-Spielman Decoder for Good Expander. Let G be an (n,m, d)-hypergraph, let α = (1−ε)d
for ε < 0.1, and assume that G is an (α, γ)-expander. First, recall that the expansion-property of G implies
that G is also a (β, γ)-unique-neighbor expander, for β = (1 − 2ε)d, hence G defines an [m,m − n, γ]-code.
Let 1/2 < η < 1 and δ ≥ 2ε be some constants that satisfy Eq. (1). The decoding algorithm gradually
updates the noisy codeword until it reaches a valid codeword. In each iteration, the decoder flips the value
of all the hyperedges that have at least ηd unsatisfied constraints.

The analysis proceeds as follows. Fix some noisy codeword and let S be the set of hyperedges that
correspond to the coordinates in which errors occur. We assume that S is sufficiently small (the maximal
number of errors that we can correct will be specified later). The key observation is that every unique-
neighbor in S is an unsatisfied constraint, and every unsatisfied constrained is in Γ(S). The first part of
Lemma 8.4 implies that in each iteration at least 1 − δ fraction of the hyperedges in S have at least ηd
unique-neighbors, which are unsatisfied constraints. Hence, in each iteration, at least 1 − δ fraction of the
hyperedges in S get the correct value. The second part of Lemma 8.4 implies that at most 2ε/(η − 2ε)|S|
hyperedges outside of S (that is, hyperedges with correct value), have at least ηd vertices in Γ(S). Since all
unsatisfied constraints are in Γ(S), it follows that at each iteration the algorithm flips the correct value of
at most 2ε/(η − 2ε)|S| hyperedges. Let ξ = (1 − δ) − 2ε/(η − 2ε) > 0. It follows that at each iteration the
total number of error decreases by a constant factor of ξ, and therefore the number of iterations is O(log n).
Finally, note that the decoding algorithm can fix at least (1− 2ε/η)γ > 0.6γ errors.

We show that a modified version of this decoder can decode our construction. But first, we have to
slightly modify the sampling algorithm.

Sampling Algorithm. Fix some constants c, d so that 10c < d and choose some constant ε < 0.1 for
which (1 − ε)d < d − c. Set α = (1 − ε)d and m = nc. Let γ = Ω(n1−δ) where δ = (c − 1)/(d − α − 1),
and γ′ = Θ( log log logn

log log log logn ). Use Corollary 7.6 to get a negligible-error construction of an (α, γ′)-expanding

(n,m, d)-hypergraph G1 = (V1, E1). Sample a random (n,m, d)-hypergraph G2 = (V2, E2) and note that,
by Claim 7.3, with all but negligible probability, G2 α-expands every set of size s for 0.6γ′ < s < γ. We let
G be the (2n,m, 2d)-graph defined in Construction 7.13. Note that G can be sampled in time poly(n) with
all but negligible probability.

Distance of Sampled Code. To prove that G defines an [m,m− 2n, γ]-code, it suffices to show that G
is (β, γ)-expander for some β > 0. This follows from the fact that if a set S is α-expanding for α = (1− ε)d,
then it is also β-uniquely-expanding for β = (1− 2ε)d, and from Claim 7.17.
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Decoding Algorithm. First, for simplicity, assume that the decoding algorithm has an oracle that given
a noisy codeword c returns 1 only if the distance of c from the closest codeword is less than 0.6γ′. As before,
fix 1/2 < η < 1 and δ ≥ 2ε for which (1 − 2ε/δ) > η and 1 − δ > 2ε/(η − 2ε). We define the decoding
algorithm with an oracle call as follows. At the beginning of each iteration, on noisy codeword c, the decoding
algorithm calls the oracle to check if c has less than 0.6γ′ errors. If so, it looks only at the restriction of G
to V1 (that is, it looks at G1), and otherwise it looks only at the restriction of G to V2 (that is, it looks at
G2). Then, when restricted to Vi, it flips (in parallel) the value of every hyperedge that has more than ηd
unsatisfied constraints in Vi.

Note that, by construction, both G1 and G2 are good expanders. As before, this implies that at each
iteration the number of errors is reduced by a constant factor. Hence there are at most O(log n) iterations,
and there is at most one transition from G2 to G1

Finally, since the decoding algorithm does not have an oracle, we do not know in which of the O(log n)
iterations the transition from G2 to G1 occurs. Hence we simply try all O(log n) possibilities, thus having
O(log2 n) parallel steps.

8.3 Local Non-Cryptographic Generators and Randomness Extractors

We rely on standard transformations to turn our negligible-error constructions of unbalanced expanders into
negligible-error constructions of locally computable functions with various pseudorandom properties. Here
“locally-computable” means that every output of the function depends on at most d inputs where d is a
constant that does not grow with the input length.

t-wise independent generators. A t-wise independent generator is a function G : {0, 1}n → {0, 1}m such
that for every subset I ⊆ [m] of size t, where I = {i1, . . . , it}, the random variable (G(Un)i1 , . . . , G(Un)it) is
uniformly distributed over {0, 1}t, where Un is the uniform distribution over {0, 1}n.

Theorem 8.5. Let c > 1 be an arbitrary constant, m = nc, and d > 2c be an integer. For every prime power
n there exists a negligible-error construction of a 2d-local function (represented as a circuit) f : {0, 1}n →
{0, 1}Ω(m) which is a t-wise independent generator for t = Ω(n1−δ), for every δ > 2(c − 1)/(d − 2), where
the constants in the Ω-notation depend on c and d.

Proof. Sample the 2d-sparse n×m parity-check matrix promised by Theorem 8.2, and let fH(x) : x 7→ HTx.
This mapping is 2d-local. Moreover, a standard linear-algebraic argument shows that the output is (γ − 1)-
wise independent where γ is the distance of the sampled LDPC code.

Low-bias generators. The notion of low-bias generators is due to Naor and Naor [41]. A random variable
X = (X1, . . . , Xm), distributed over {0, 1}m, is ε-biased if for every non-empty set S ⊆ [m], it holds that∣∣∣∣Pr

[
⊕
i∈S

Xi = 0

]
− 1

2

∣∣∣∣ ≤ ε.
The set S is called a linear test.

A function f : {0, 1}n → {0, 1}m with m > n is an ε-biased generator if the random variable f(Un) is
ε-biased, where Un is the uniform distribution over {0, 1}n.

Theorem 8.6. Let c > 1 be an arbitrary constant and let d > 4c2 + 8c + 1 be an integer. For every
prime power n there exists a negligible-error construction of a d-local function (represented as a circuit)

f : {0, 1}3n → {0, 1}nc which is an ε-biased generator for ε = e−Ω(nδ), for any δ < r−2c
(r−2)(2c+1) for r =

(d− (2c+ 1)2)/2.

Proof. Let d′ > 2c and let f1 : {0, 1}2n → {0, 1}nc be the 2d′-local t-wise independent generator promised in
Theorem 8.5, for t = Ω(n1−ξ), for every ξ > 2(c− 1)/(d′ − 2). Let f2 be a (2c+ 1)2-local low-bias generator

promised in [40, Lemma 23], where, for a linear test S, the bias is at most exp
(
−|S|1/(2c+1)

/22c+1
)

. Let
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d = 2d′ + (2c + 1)2, and let f : {0, 1}3n → {0, 1}nc be the d-local function that is defined by f(x, y) =
f1(x) ⊕ f2(y), for x ∈ {0, 1}2n and y ∈ {0, 1}n. Note that since f1 is t-wise independent, f perfectly fools
every linear test of size at most t. For every larger linear test, the bias is at most ε by the low-bias property
of f2. Hence f is an ε-biased generator.

Randomness extractors [44]. Let X be a random variable, distributed over {0, 1}n. Define the min-
entropy of X by H∞(X) := log 1

maxx Pr[X=x] . Let Ext : {0, 1}n × {0, 1}` → {0, 1}m be a function. We

say that Ext is a (k, ε)-extractor if for every distribution X with min-entropy at least k it holds that

∆(Ext(X,Uk), Um) ≤ ε, that is, the statistical distance between the random variable Ext(X,Uk) and Um is
at most ε.

Theorem 8.7. Let c, d be constants such that d > 4c2 +8c+1. Let δ = δ(n) < 1. For a prime power n there
exists a negligible-error construction of a local function (represented as a circuit) Ext : {0, 1}nc ×{0, 1}3n →
{0, 1}nc which is a (k, ε)-extractor, for k = (1− δ)nc and ε = e−Ω(nξ) · 2δ·nc/2−1/2, for any ξ < r−2c

(r−2)(2c+1) ,

for r = (d− (2c+ 1)2)/2. Moreover, each bit of the output depends on exactly one bit of the input and d bits
of the seed.

Proof. The proof follows immediately from Theorem 8.6 and [11, Lemma 5.7].

9 Local PRG with Polynomial Stretch

9.1 Definitions

Indistinguishability. We say that a pair of distribution ensembles Y = {Yn} and Z = {Zn} are ε-
indistinguishable if for every efficient adversary A, the distiguishability-gap

|Pr[A(1n, Yn) = 1]− Pr[A(1n, Zn) = 1]|

is at most ε(n). If ε = neg(n) we say that the two ensembles are computationally-indistinguishable.
If the above holds for computationally unbounded adversaries, we say that the ensembles are ε-statistically-

close, and in the case that ε = neg(n) we say that the ensembles are statistically-indistinguishable.

Collection of Functions. Let s = s(n) and m = m(n) be integer-valued functions. A collection of
functions {Fk} is formally defined via a mapping F : {0, 1}s × {0, 1}n → {0, 1}m which takes an index
k ∈ {0, 1}s and an input point x ∈ {0, 1}n, and outputs the evaluation Fk(x) of the point x under the k-th
function in the collection. We always assume that the collection is equipped with two efficient algorithms:
and index-sampling algorithm K which given 1n samples a index k ∈ {0, 1}s, and an evaluation algorithm
that given (1n, k, x) outputs Fk(x). We say that the collection is in NC0 if there exists a constant d (which
does not grow with n), such that for every fixed k the function Fk has output locality of d.

As we will always be interested in collections in NC0, it will be convenient to think of the index-sampling
algorithm K as an algorithm that samples a circuit that implements a locally computable function f from
n bits to m bits, and of the evaluation algorithm as the evaluation of the sampled circuit on input x.

Pseudorandom and Unpredictability Generators. Let m = m(n) > n be a length parameter. A
collection of functions F : {0, 1}s × {0, 1}n → {0, 1}m is ε-pseudorandom generator (PRG) if the ensem-
ble (K(1n), FK(1n)(Un)) is ε indistinguishable from the ensemble (K(1n), Um), where Un is the uniform
distribution over {0, 1}n. When ε is negligible, we refer to F as a pseudorandom generator.

The collection F is ε-unpredictable generator if for every efficient adversary A and efficiently samplable
family of indices {in}, where in ∈ [m(n)], we have that

Pr
k←K(1n),x←{0,1}n

[A(k, Fk(x)[1...in−1]) = Fk(x)in ] < ε(n)
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for all sufficiently large n’s.
We will only be interested in the case where m = nc for some c > 1. In this case we will refer to F as a

polynomial pseudorandom generator (PPRG) when ε is negligible, and as a weak-PPRG in the case that ε
is not negligible but ε < 1/na for some positive constant a.

We will always assume that the adversary that tries to break the generator gets the collection index
(which we think of as a circuit) as a public parameter.

Fact 9.1 ([51]). A ( 1
2 + ε)-unpredictable generator of output length m(n) is an (m · ε)-PRG.

9.2 Proof of Theorem 2.12

Proof strategy. Given a weak-PPRG Gt : {0, 1}n → {0, 1}m, where t is the index of the function, we

apply it on k uniform strings U
(1)
n , . . . , U

(k)
n , to get a k ×m matrix Y , whose i-th row is Gt(U

(i)
n ). We show

that, even conditioned on all previous columns, the j-th column has high pseudo-entropy, for every j ∈ [m].
Hence, the j-th column is computationally-indistinguishable from a distribution with high min-entropy. We
then apply the locally-computable extractor from Theorem 8.7 on each column of Y to get a distribution
which is computationally-indistinguishable from uniform. We proceed with a formal proof.

Let G : {0, 1}s × {0, 1}n → {0, 1}m be a local weak-PPRG with m = nc and distinguishability-gap
ε′ = n−a. Then G is ( 1

2 + ε)-unpredictable for ε = n−b for b = c− a, and without loss of generality we may
assume that a, b > 1 are sufficiently large (see, [4, Fact 6.5]).

We present the index-sampling algorithm K, which will sample a local circuit. First, K samples a circuit
Gt, for t ∈ {0, 1}s using the index-sampling algorithm of G. As we always assume that t is known to the
adversary, then, for ease of read, we omit the subscript t. Let Ext : {0, 1}k × {0, 1}3kα → {0, 1}k be the

local extractor promised at Theorem 8.7 with required min-entropy (1− δ)k and error e−Ω(kα/4) · 2O(δk), for
some α < 1. Think of k = poly(n) and δ = 4mε and note that K can sample Ext with all but negligible
probability. Finally, K outputs circuit of the following construction.

Construction 9.2. Given a PRG G and an extractor Ext as above, we construct the following function
G∗:

• Input: k independent seeds x = (x(1), . . . , x(k)) ∈ ({0, 1}n)k for the generator, and m independent seeds
for the extractor z = (z(1), . . . , z(m)) ∈ ({0, 1}3kα)m.

• Output: compute the k×m matrix Y whose ith row is G(x(i)), let Yi denote the ith column of Y , and
output (Ext(Y1; z(1)), . . . , Ext(Ym; z(m))).

Notice that the locality of G∗ is at most the multiplication of the localities of G and Ext, and so it is
constant.

First, we show that every column of Y has high pseudo-entropy, even conditioned on all previous columns.
To do this, we need to show a strong unpredictability property of every row of Y .

Let r = blogmc+ 1 be the number of bits required to represent an index in [m], and let ` = n+ r. Define
the following functions

PRE : {0, 1}` → {0, 1}m+r, PRE(i, x) = i, G(x)1,...,i−10m−i+1,

N : {0, 1}` → {0, 1}, N(i, x) = G(x)i.

Note that both PRE and N are efficiently computable algorithms, and from G’s unpredictability it follows
that for every PPT A and all sufficiently large n,

Pr
i←[m]

x←{0,1}n
[A(PRE(i, x)) = N(i, x)] ≤ 1

2
+ ε.
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From the hardcore lemma (see [26, Proposition 4.7]) it follows that for every oracle-aided P running in time
TP = poly(n) and all sufficiently large n, there exists L`,P ⊆ {0, 1}` of density at least 1− 2ε such that

Pr
(i,x)←L`,P

[
PχL(·)(PRE(i, x)) = N(i, x)

]
≤ 1

2
+ neg(n), (2)

where χL is the characteristic function of L, provided that the queries of P to χL are computed independently
of the input PRE(i, x).

For every set L ⊆ {0, 1}` define the probabilistic function RL by

RL(i, x) =

{
N(i, x) if (i, x) /∈ L
random bit if (i, x) ∈ L

.

Lemma 9.3 (Proposition 4.8 at [26]). For every oracle-aided distinguisher D running in time TD = poly(n),
there is a set L`,D ⊆ {0, 1}` of density at least 1− 2ε for which the following holds. Define the probabilistic
function RL`,D by

RL`,D (i, x) =

{
N(i, x) if (i, x) /∈ L`,D
random bit if (i, x) ∈ L`,D

.

Then, given an oracle O that samples according to the joint distribution (PRE(i, x),N(i, x),RL`,D (i, x)), the
distinguisher DO cannot distinguish

(PRE(U`),N(U`)) from (PRE(U`),RL`,D (U`))

with more then negligible advantage.

Proof. Assume that there exists a distinguisher D of time TD = poly(n) such that for infinitely many n’s,∣∣∣∣ Pr
(i,x)←{0,1}`

[DO(PRE(i, x),N(i, x)) = 1]− Pr
(i,x)←{0,1}`

[DO(PRE(i, x),RL(i, x)) = 1]

∣∣∣∣ > 1/p(n),

for every L of density 1− 2ε and some polynomial p(·). Since both terms are equal for (i, x) /∈ L, we have∣∣∣∣ Pr
(i,x)←L

[DO(PRE(i, x),N(i, x)) = 1]− Pr
(i,x)←L

[DO(PRE(i, x),RL(i, x)) = 1]

∣∣∣∣ > 1/p(n).

Since RL(i, x) is uniformly distributed for (i, x) ∈ L, by the standard distinguishing to predicting reduction,
there exists a predictor P with oracle call to χL and time TP = TD + O(1) = poly(n) (note that P can
simulate the oracle calls of D efficiently, using χL) such that for every L of density at least 1− 2ε,

Pr
(i,x)←L

[
PχL(·)(PRE(i, x)) = N(i, x)

]
≥ 1

2
+

1

p(n)
,

in contradiction to Equation 2.

Now, we show that even condintioned on all previous columns, one cannot distinguish the i-th column
of Y from a distribution with high min-entropy. For this we need the following definitions. Let L ⊆ {0, 1}`.
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Define

PREk : {0, 1}r+n×k → {0, 1}(r+m)×k, PREk(i, x1, . . . , xk) =

 PRE(i, x1)
...

PRE(i, xk)

 ,

Nk : {0, 1}r+n×k → {0, 1}k, Nk(i, x1, . . . , xk) =

 N(i, x1)
...

N(i, xk)

 ,

RkL : {0, 1}r+n×k → {0, 1}k, RkL(i, x1, . . . , xk) =

 RL(i, x1)
...

RL(i, xk)

 .

For every algorithm D with input of length (r+m+ 1)× k, define the oracle-aided algorithm AD in the
following way. On input i, y, z, for i ∈ [m], y ∈ {0, 1}m and z ∈ {0, 1}, the algorithm outputs

D



PRE(i, x1),N(i, x1)
...

PRE(i, xj−1),N(i, xj−1)
i, y, z

PRE(i, xj+1),RL`,AD (i, xj+1)
...

PRE(i, xk),RL`,AD (i, xk)


for j ← [k] and x1, . . . , xk ← {0, 1}n×k, and AD samples RL`,AD (x) using the oracle call to O which samples
from (PRE,N,RL`,AD ). Note that if D is polynomial-time algorithm then so is AD.

Claim 9.4. Every polynomial-time algorithm D cannot distinguish

(PREk(Ur+nk),Nk(Ur+nk)) from (PREk(Ur+nk),RkL`,AD
(Ur+nk))

with more than negligible advantage. Consequently, for every polynomial-time algorithm D and every i ∈ [m],
D cannot distinguish (PREk(i, Unk),Nk(i, Unk)) from (PREk(i, Unk),RkL`,AD

(i, Unk)) with more than negligible

advantage.

Proof. Assume towards contradiction that there exists a PPT D that distinguishes the above distributions
with advantage 1/p(n) for some polynomial p(·). Then by a standard hybrid argument AD distinguishes
(PRE(U`),N(U`)) from (PRE(U`),NL`,AD (U`)) with advantage 1/(p(n)k), in contradiction to Lemma 9.3.

It remains to show that the random variable (RkL`,AD
(Ur+n×k)|PREk(Ur+n×k)) has high min-entropy.

Claim 9.5. Except for probability e−Ω(mεk) over (i, x1, . . . , xk)← {0, 1}r+nk, for every z ∈ {0, 1}k and every
PPT D,

Pr[RkL`,AD
(i, x1, . . . , xk) = z|PREk(i, x1, . . . , xk)] ≤ 2−k(1−δ).

Proof. Fix some PPT D. First, note that if L is of density 1− 2ε then for every i there is at least (1− 2εm)
fraction of the x’s for which (i, x) ∈ L. Say that the sample (i, x1, . . . , xk) is “good” if |{j : (i, xj) /∈ L`,AD}| <
4kmε = kδ. Note that the expected size of the set {j : (i, xj) /∈ L`,AD} is at most 2kmε, and since the xj ’s
are independent, by multiplicative Chernoff bound Pr[(i, x1, . . . , xk) is “bad”] ≤ e−Ω(mεk).
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Finally, for a “good” (i, x1, . . . , xk) and every z we have

Pr[RkL`,AD
(i, x1, . . . , xk) = z|PREk(i, x1, . . . , xk)] ≤ 2−k(1−4mε) = 2−k(1−δ).

since RkL`,AD
(i, x1, . . . , xk) has at least k(1− 4mε) random bits.

Set ε = 1/(m · n8/α) and k = log2(n) · n8/α. Note that G∗ has polynomial expansion. Furthermore, both
the error of Ext and the probability that Claim 9.5 does not hold are negligible.

It follows that the distributions (PREk(Ur+nk), Ext(RkL`,AD
(Ur+nk); r)) and (PREk(Ur+nk), Uk) are sta-

tistically indistinguishable, where r is the random seed for the extractor (of length 3kα). This implies that
for every i ∈ [m], the the distributions (PREk(i, Unk), Ext(RkL`,AD

(i, Unk); r)) and (PREk(i, Unk), Uk) are

statistically indistinguishable.
Denote by Y [i : j] for j ≥ i the submatrix of Y that includes columns i to j. We claim that for every

efficiently samplable family of indices {in}, the distributions (Y [1 : in−1], Ext(Yin ; r)) and (Y [1 : in−1], Uk)
are indistinguishable.

Assume towards contradiction that there exists some polynomial-time adversary B that for infinitely
many n’s distinguishes the above two distributions with non-negligible advantage. Construct adversary C
that distinguishes the distribution (PREk(in, Unk),Nk(in, Unk)) from (PREk(in, Unk),RkL`,AD

(in, Unk)) in the

following way. On input (PREk(in, x1, . . . , xk), u) return B(PREk(in, x1, . . . , xk)[1 : in− 1], Ext(u; r)). If u is
sampled from Nk(in, Unk) then the input to B is distributed according to (Y [1 : in − 1], Ext(Yin ; r)). If u is
sampled from RkL`,AD

(in, Unk) then the input to B is statistically indistinguishable from (Y [1 : in − 1], Uk).

Hence C distinguishes (PREk(in, Unk),Nk(in, Unk)) from (PREk(in, Unk),RkL`,AD
(in, Unk)) in contradiction to

Claim 9.4.
Hence, for every family {in}, the distribution G∗(Unk)[1 : in] is indistinguishable from (G∗(Unk)[1 :

in − 1], U1). Therefore G∗ is unpredictable, and from Yao’s theorem it follows that G∗ is a PRG.
Finally, we use [4, Fact 6.5], to get a local-PPRG with output of length nc

′
. The completes the proof of

Theorem 2.12.
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A On Sampling Uniform H-free Hypergraphs

An interesting question is whether one can extend the results of this paper to random (n,m, d) hypergraphs,
i.e., hypergraphs where each edge is uniformly distributed over [n]d and the hyperedges are independent. In
particular, is it possible to sample a random (n,m, d)-hypergraph which is H-free for general family H of
small hypergraphs?

Clearly, this problem can be solved with the aid of an efficient tester algorithm that determines whether
an (n,m, d)-hypergraph is H-free or not. Unfortunately, the testing problem seems hard over the uniform
distribution. In fact, we conjecture that even the seemingly easier task of certifying H-freeness is hard, and
show that, under this assumption, the existence of a sampler for H-free hypergraphs implies the existence
of one-way functions. Before stating this formally, we need the following definitions.
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Certification and sparsity. Fix some distribution D over some objects (without loss of generality strings)
and let P be some property of strings which is common over D in the sense that Pr[D /∈ P ] < 0.1. A
certification algorithm for P over D is an algorithm that, given a string, either outputs “good” or “I don’t
know”. The algorithm should never err (i.e., it can output “good” only on inputs that satisfy P ) and should
output “good” with probability at least half on a sample from D.

In our context, D will be the uniform distribution over (n,m, d)-hypergraphs, for some constant d and
function m = m(n). The property P will be H-freeness where H is some family of forbidden subgraphs.
That is, a certification algorithm provides a certificate for H-freeness for at least half of the hypergraphs. To
guarantee that H-freeness is common over random (n,m, d)-hypergraphs, we introduce the following notion
of sparsity. Let H = {Hi}i∈N be a family of hypergraphs where Hi is a set of ≤ d-uniform hypergraphs.
Let h : N → N. We say that the family H is h-sparse over (n,m, d)-hypergraphs if for every n and every
t ≤ h(n), a randomly chosen hypergraph G← Gn,m(n),d is Ht-free with probability at least 0.9.

Theorem A.1. Let d be a constant, m = m(n) be a polynomial, and let H = {Hi}i∈N be a family of d-
uniform hypergraphs. Assume that H is h-sparse over (n,m, d)-hypergraphs for some sparsity function h(n),
and suppose that the following conditions hold for some function t(n) ≤ h(n).

1. (H-freeness is hard to certify): There is no poly(n)-time algorithm that, for infinitely many n’s, certifies
Ht(n)-freeness over (n,m(n), d)-hypergraphs.

2. (Random H-free graphs are easy to sample): There exists a poly(n)-time algorithm S that samples
a random (n,m(n), d)-hypergraph conditioned on the event that the graph is Ht(n)-free (and outputs
“Error” with negligible probability).

Then, one-way functions exist.

Proof. Let fn be the function that maps the random coins r consumed by S(1n) to the output of the sampler,
i.e., a string that represents an (n,m, d)-hypergraph G or a special failure symbol. We claim that f = {fn}
cannot be inverted with probability more than 2/3 by an efficient adversary. (Such a weak one-wayness
property can be amplified to strong one-wayness via standard transformations, cf. [22]).

Assume, towards a contradiction, that there exists a poly(n)-time adversary A and an infinite set of
integer N such that, for all n ∈ N , the adversary A inverts fn with probability at least 2/3 where the
probability is taken over the random input r and the internal coins of A. We construct an efficient algorithm
R that certifies Ht(n)-freeness for all n ∈ N , in contradiction to our assumption. The certification algorithm
R is given an (n,m(n), d)-hypergraph G as an input, and asks the inverter A to find a preimage of G under
fn. Given the result r, the algorithm R outputs “free” if and only if fn(r) = G. Otherwise, R outputs “I
don’t know”.

Since Ht is h-sparse and A inverts f with probability at least 2/3, it follows that, on a random (n,m, d)-
hypergraph, R outputs “I don’t know” with probability at most 1/3 + 0.1 < 1/2. Furthermore, R outputs
“free” only if G is in the support of S, and since S samples only Ht-free hypergraphs, it follows that G must
be Ht-free, and R never errs. The theorem follows.

Hardness of certifying H-free. We propose a candidate for a family H for which H-freeness is hard to
certify based on the following coding-related assumption:

Assumption A.2 (random LDPC’s distance is hard to certify). For every polynomial n < m(n) ≤ poly(n),
constant d > 2 lognm and every super-constant function t(n) > ω(1), there is no efficient algorithm A that
given a random n×m(n) binary parity-check matrix M with d ones in each column, certifies that the distance
of the corresponding code is at least t(n). That is, a poly(n)-time algorithm fails on all sufficiently large n’s.

It is known that for d > 2 lognm , such a random LDPC code is likely to have a minimal-distance of
h = nε, where ε is a constant that depends on d and 2 lognm. Using graph-theoretic terminology, we can
think of M as the incidence matrix of a random (n,m, d)-hypergraph GM . The distance of the code is (at
least) t if and only if GM is Ht-free where Ht is the family of all d-uniform hypergraphs with at most t
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hyperedges that each of their vertices have even degree. Since most codes have a distance of at least h, the
family H is h-sparse over (n,m(n), d)-hypergraphs.

Assumption A.2 therefore yields a family H that satisfies the first condition of Theorem A.1. We mention
that related worst-case problems (e.g., computing the minimal-distance of a linear code or approximating it
within a multiplicative constant) are known to be NP-hard [27, 19]. Closely related average-case hardness
assumptions were also used in [7, 13, 9].

B Proof of Claim 7.3

Let S ⊆ [m] be a set of s hyperedges, and let T ⊆ [n] be a set of α ·s vertices. The probability that Γ(S) ⊆ T
is exactly (αs/n)ds. Taking union bound over all S of size s and T of size α · s, the probability that there
exists a set S of size s which is not α-expanding is at most(

nc

s

)(
n

αs

)(αs
n

)ds
≤
(
enc

s

)s ( en
αs

)αs (αs
n

)ds
=

(
aα,d

sd−α−1

nd−c−α

)s
,

where we used the known inequality
(
n
k

)
≤ (en/k)k and aα,d is a constant that depends on α and d.

Finally, for sufficiently small ρ (e.g. ρ = 1/3aα,d), by taking union-bound we get that the probability the
sampled graph is not (α, γ)-expander is at most 1/2.
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