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Abstract

Suppose that you wish to sample a random graph G over n vertices and m edges conditioned on the
event that G does not contain a “small” t-size graph H (e.g., clique) as a subgraph. Assuming that most
such graphs are H-free, the problem can be solved by a simple rejected-sampling algorithm (that tests
for t-cliques) with an expected running time of nO(t). Is it possible to solve the problem in running time
that does not grow polynomially with nt?

In this paper, we introduce the general problem of sampling a “random looking” graph G with a
given edge density that avoids some arbitrary predefined t-size subgraph H. As our main result, we show
that the problem is solvable with respect to some specially crafted k-wise independent distribution over
graphs. That is, we design a sampling algorithm for k-wise independent graphs that supports efficient
testing for subgraph-freeness in time f(t) ·nc where f is a function of t and the constant c in the exponent
is independent of t. Our solution extends to the case where both G and H are d-uniform hypergraphs.

We use these algorithms to obtain the first probabilistic construction of constant-degree polynomially-
unbalanced expander graphs whose failure probability is negligible in n (i.e., n−ω(1)). In particular, given
constants d > c ≥ 1, we output a bipartite graph that has n left nodes, nc right nodes with right-degree
of d so that any right set of size at most nΩ(1) expands by factor of Ω(d). This result is extended to the
setting of unique expansion as well.

We observe that such a negligible-error construction can be employed in many useful settings, and
present applications in coding theory (batch codes and LDPC codes), pseudorandomness (low-bias gen-
erators and randomness extractors) and cryptography. Notably, we show that our constructions yield
a collection of polynomial-stretch locally-computable cryptographic pseudorandom generators based on
Goldreich’s one-wayness assumption resolving a central open problem in the area of parallel-time cryp-
tography (e.g., Applebaum-Ishai-Kushilevitz, FOCS 2004; and Ishai-Kushilevitz-Ostrovsky-Sahai, STOC
2008).
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1 Introduction

Many combinatorial properties of graphs and hypergraphs can be formulated as avoiding some family H of
small subgraphs. Notable examples consist of graphs that avoid short cycles or small cliques, expander graphs
(that avoid small non-expanding subgraphs) and even graphical representations of good error-correcting codes
(that avoid small “stopping sets” [18]). Motivated by the wide range of applications, the computational
problem of efficiently constructing H-free graphs has attracted a huge amount of research (e.g., [41, 26, 17,
1, 14]). In this paper, we consider several natural probabilistic variants of the construction problem.

Setup. Let Gn,m,d be the set of all (n,m, d)-hypergraphs, i.e., d-uniform hypergraphs over n vertices with
m hyperedges. We typically think of d as a constant that does not grow with n and take m = poly(n). Let
H be a family of “small” d-uniform hypergraphs of size at most t for some slowly growing function t(n).
While our setup is defined with respect to hypergraphs (to match our applications), the following problems
make sense even for simple undirected graphs (i.e., d = 2) and so, for now, the reader may safely focus on
this special case. (Indeed, we are not aware of prior solutions that handle the case of simple graphs.)

Problem 1.1 (Zero-error/negligible-error constructions). Generate an H-free hypergraph G ∈ Gn,m,d in
probabilistic poly(n)-time. The algorithm is allowed to fail with a negligible error probability that vanishes
faster than any inverse polynomial, i.e., n−ω(1). Such a construction is referred to as a negligible-error
construction. We say that this is a zero-error (or ZPP) construction if the algorithm outputs a special
failure symbol whenever it fails to find an H-free graph.

Unlike the classical de-randomization literature which typically emphasizes the distinction between de-
terministic and probabilistic construction, in Problem 1.1 we focus on the error level. We advocate the use of
negligible-error constructions as a second-best alternative when explicit constructions are unknown. Indeed,
for many applications a randomized construction that almost never fails is almost as good as a fully explicit
construction. In particular, if one is planning to plug-in G into some randomized algorithm or system then a
negligible error in the construction of G will be swallowed by the overall error probability of the algorithm.1

Following the standard cryptographic tradition, we insist on an error that is negligible (i.e., tends to zero
faster than any inverse polynomial), in order to guarantee a tiny failure probability even after polynomially-
many repetitions.2 Throughout the paper, we typically assume that an α-fraction of all (n,m, d)-hypergraphs
are H-free, where the density α is large but not overwhelming, i.e., α(n) = 1− n−c for some constant c > 0.
In this case, the problem is non-trivial when testing H-freeness cannot be done in polynomial-time.

While Problem 1.1 is a relaxation of the explicit-construction problem, our next problem addresses the
harder task of generating a random, or pseudorandom, H-free graph.

Problem 1.2 (Quasi-random H-free graphs). Sample in expected probabilistic poly(n) time a random graph
G from some “pseudorandom” distribution over Gn,m,d conditioned on being H-free.

The general task of generating a pseudorandom object that always satisfies some given property was
first studied by Goldreich, Goldwasser and Nussboim [24].3 In this setting the property (i.e., H-freeness) is
viewed as a necessary worst-case requirement that should be satisfied by any sampled hypergraph G. Using
the terminology of [24], the implementation G must be truthful to the H-freeness specification (i.e., G must
be H-free with probability 1). Conditioned on this, G should be distributed uniformly or close to uniformly
under some metric.

1This view is implicitly used in other contexts. For example, although the problem of deterministically generating n-bit
primes in poly(n)-time is wide open, there are randomized algorithms that generate such primes with negligible (or even zero)
error probability. Consequently, applications which employ prime numbers (or prime-order finite fields) rely on negligible-error
constructions.

2Observe that in our context it is not clear how to reduce the error probability from constant or even inverse polynomial
1/nΩ(1) to negligible.

3The work of [24] focuses on huge exponential-size random objects. However, the problem remains non-trivial even for
polynomial-size objects as long as the required property cannot be tested in polynomial-time. See Section 2.2 for further
discussion regarding the applicability of our results to settings of [24].
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This combination of requirements arises when one tries to understand the behavior of an H-free random
system (e.g., in simulation) or when the hypergraph G is being used as part of a system whose analysis relies
on a random choice of G and, in addition, its validity depends on H-freeness. In such a case we cannot
use a single explicit construction of H-free hypergraphs since it may fail to achieve some other property of
pseudorandom hypergraphs. On the other hand, we cannot use a random sample from Gn,m,d since it fails
to be H-free with positive (in our case, inverse polynomial) probability.

We further mention that in some cases even a tiny positive failure probability can be problematic. This
is the case, for example, when the sampling procedure is invoked by an untrusted party who can benefit
from the existence of H-subgraphs. If our sampling algorithm has a positive failure probability, then a
cheating party can cheat by selecting “bad coins” that lead to hypergraphs with H-subgraphs. Since general
subgraph-testing seems to be computationally-hard such a cheating may be left undetected.4

The testing barrier. A natural way to sample H-free random hypergraphs is via rejected sampling.
That is, repeatedly sample G until an H-free hypergraph is chosen. Since we work in a regime where most
hypergraphs are H-free, the expected number of iterations will be constant. This approach reduces the
sampling problem to the subgraph testing problem. If the largest hypergraph in H is of constant size t, then
the problem can be trivially solved in time f(t)nO(t). However, we think of t as a large constant, or as a
slowly increasing function of n, and so we would like to have a running time of f(t)nc where the exponent c is
independent of t. Unfortunately, such a running time cannot be achieved for general subgraph-testing (even
for simple cases such as cliques) unless the exponential-time hypothesis (ETH) fails (see, e.g., [19]). We refer
to this hardness-of-testing as the testing barrier. Jumping ahead, we will show that some variant of this
barrier arises if one tries to sample a hypergraph that is uniformly distributed over all H-free hypergraph in
Gn,m,d.

Summary: The problem of constructing H-free hypergraphs can be roughly ranked from easy to hard
as follows: negligible-error constructions, zero-error constructions, explicit constructions, pseudorandom
constructions.

2 Our Results

We partially resolve Problems 1.1 and 1.2. Our results consist of two main parts. We begin by studying
pseudorandom constructions of H-free hypergraphs (Sections 2.1 and 2.2). Then we focus on the concrete
case of unbalanced expanders, describe negligible-error constructions of such graphs (Section 2.3), and use
them to derive various applications (Section 2.4).

2.1 k-Wise Independent Graphs Conditioned on H-Freeness

We show that Problem 1.2 can be solved with respect to some k-wise independent distribution over Gn,m,d.
Here k-wise independence means that every k-subset of the hyperedges, e1, . . . , em, is distributed uniformly
over all k-tuples of d-uniform hyperedges. The use of k-wise independent distributions as a good model for
pseudorandom graphs was advocated by Naor, Nussboim and Tromer [45] and by Alon and Nussboim [2].
These works further show that a large family of natural graph-theoretic properties that hold with high
probability over random graphs (with a given edge density) also hold with high probability over polylog(n)-
wise independent distributions with the same density.

We bypass the “testing barrier” by designing a concrete k-wise independent probability distribution
Gn,m,d,k in a way that allows us to efficiently test whether a given sample G is H-free. That is, our distri-
bution is amenable to subgraph testing by design. To formalize this strategy, we introduce a new notion of
sampler/tester pair of algorithms. Roughly speaking, the sampler S samples an object according to some

4The work of [13] provides a good example for such a case in the context of financial derivatives.
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given distribution D, and the tester T examines the coins of the sampler and checks whether the corre-
sponding object avoids some bad event E. The combination of the two allows us to sample the conditional
distribution [D|¬E]. (See Section 5 for more details on the sampler/tester framework.)

We prove the following key theorem. Below we define the log-density of an (n,m, d) hypergraph as
c = lognm, and define the size of a hypergraph as the sum of its vertices and hyperedges.

Theorem 2.1 (key theorem). For every log-density parameter c > 1, edge-uniformity parameter d ≥
2, subgraph-size function t(n) ≤ O( log log logn

log log log logn ) and independence parameter k(n) that satisfies k(n) ≤

O(n1/tc
′t

) where c′ is a constant that depends on c, there exists a poly(n)-time sampler/tester pair (S, T )
with the following properties:

• Given 1n, the randomized sampler S uses its internal random coins r to sample an (n,m = nc, d)
hypergraph Gr from a k(n)-wise independent distribution.

• The deterministic tester takes as input a d-uniform hypergraph H of size at most t(n) and a fixed
sequence of coin tosses r and accepts the input if and only if H is a subgraph of the hypergraph Gr =
S(1n, r) that is generated by S using coin tosses r.

Although the size t of the tested subgraph is relatively small, it is still super-constant. This property will
be crucial for our applications. We further note that the independence parameter k(n) is super-logarithmic
(or even “almost” polynomial) in n and so the pseudorandomness properties established by [45, 2] hold. (See
Theorem 6.4 for a more detailed version of Theorem 2.1.)

Sampling H-free graphs. It is important to note that our sampler S is independent of the subgraph H,
and that the tester T gets H as an input. These properties allow us to partially solve the sampling problem
(Problem 1.2) with respect to a family of small hypergraphs H. Indeed, we can use the sampler S to sample
an (n,m, d)-hypergraph G from a k-wise independent distribution, and use the basic tester to test that G is
H-free for all subgraphs H ∈ H. If one of the tests fails, we repeat the process from the beginning. Since H
contains at most tt

d

< poly(n) hypergraphs, the expected running time will be polynomial, assuming that a
random k-wise independent (n,m, d)-hypergraph is H-free with noticeable probability.

Corollary 2.2 (pseudorandom H-free hypergraphs). Let c, d, t(n), k(n) and m = nc be as in Theorem 2.1.
Let H be an efficiently constructible family of hypergraphs each of size at most t(n) such that (?) every
k(n)-wise independent (n,m, d)-hypergraph is H-free with noticeable probability of 1/poly(n). Then, there
exists a probabilistic algorithm that runs in expected poly(n)-time and samples an H-free hypergraph from
some k-wise independent distribution over (n,m, d)-hypergraphs.

It is useful to note that, when t(n) ≤ k(n), in order to satisfy the (?) condition it suffices to show that
the expected number of copies of H-subgraphs in a uniformly chosen graph is at most 1−1/poly(n). Indeed,
for any k-wise independent distribution Gn,m,d,k the first-moment method implies Pr[NH(Gn,m,d,k) 6= 0] ≤
E[NH(Gn,m,d,k)], where NH(G) is the number of copies of H-subgraphs in G. Furthermore, it is not hard to
verify that t(n) ≤ k(n) implies E[NH(Gn,m,d,k)] = E[NH(Gn,m,d)], where Gn,m,d is the uniform distribution
over (n,m, d)-graphs. Therefore Pr[NH(Gn,m,d,k) 6= 0] ≤ E[NH(Gn,m,d)].

Remark 2.3 (Hardness of uniformly sampling H-free hypergraphs). It is natural to try and uniformly
sample an H-free (n,m, d)-hypergraph, i.e., to replace the k-wise independent distribution in Corollary 2.2
with the uniform distribution over Gn,m,d. We conjecture that sampling H-free hypergraphs from the uniform
distribution over Gn,m,d is computationally infeasible and present some evidence towards this conjecture. In
particular, suppose that:

(H) For some families of hypergraphs, it is infeasible to certify H-freeness over the uniform
distribution. That is, there is no 1-sided error tester that accepts most (n,m, d)-hypergraphs and
never accepts a hypergraph that is not H-free.
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We show that if one can efficiently sample H-free hypergraphs from the uniform distribution, then hypothesis
H implies the existence of one-way functions. Basing one-way functions on “hardness of certification” type
assumptions may be considered a breakthrough result in the foundations of cryptography, and so we interpret
this as an evidence against the existence of an efficient sampler for uniform H-free hypergraphs. Put
differently, a sampler would allow us to convert average-case hardness (of testing) to one-wayness, or, in the
language of Impagliazzo [30], to move from Pessiland to Minicrypt.

The H assumption (hardness of certifying H-freeness) is closely related to previous intractability assump-
tions (cf. [7, 13, 9]). We further relate this assumption to the problem of certifying that a random low-density
parity-check code has a high distance. (See Appendix A for details.)

Remark 2.4 (On k-wise independence). It is instructive to note that Theorem 2.1 employs k-wise in-
dependence in an unconventional way. Typically, the notion of k-wise independence is useful due to the
combination of pseudorandomness with computationally-cheap and randomness-efficient implementations.
In contrast, the proof of Theorem 2.1 exploits the simple algebraic structure of k-wise independence con-
structions to force a structure on the sampled object (the hypergraph G) in a way that makes it amenable
to efficient analysis (i.e., subgraph testing). The fact that such implementation is computationally-cheap or
randomness-efficient is not really needed for our main applications.

ZPP and explicit constructions. Corollary 2.2 immediately leads to a ZPP-construction of H-free
hypergraphs. We further observe that, under standard worst-case de-randomization assumptions, any ZPP-
construction implies an explicit construction.

Corollary 2.5 (explicit H-free hypergraphs). Let c, d, t(n), k(n) and m = nc and H be as in Corollary 2.2.
Assuming that the class of functions computable in 2O(n) uniform-time requires 2Ω(n)-size circuits, there
exists a deterministic poly(n)-time algorithm that always outputs an H-free (n,m, d)-hypergraph.

The above assumption is known to imply, for any constant a, a pseudorandom generator prg that fools
na-time algorithms with logarithmic size seed [31]. Such a generator can be used to fully de-randomize the
ZPP construction A and derive a fully explicit construction A′. (The algorithm A′ just outputs the first
seed s for which A(prg(s)) does not output “failure”.) This makes a crucial use of the ability to recognize
bad outputs (which trivially holds for ZPP samplers). We are not aware of a similar transformation that
applies to “Monte-Carlo” constructions that have a positive failure probability.5

2.2 The Succinct Setting

So far we assumed that the computational complexity of the sampler is allowed to grow polynomially in the
size of the hypergraph G. In some scenarios, it is more natural to think of the hypergraph as a huge object,
and require a running time that is polynomial in log n. In particular, we say that an (n,m, d) hypergraph
G has a succinct representation if it can be described by a short binary string z of length polylog(n) such
that given z, a hyperedge e ∈ [m], and an index i ∈ [d], it is possible to compute the i-th member of the
hyperedge e in time polylog(n).6 (Here we assume that the hyperedges are ordered and can be represented
by d-tuples.) Our goal is to obtain a polylog(n)-time sampler, that samples a succinct representation z of
an (n,m, d) hypergraph G from a k-wise independent distribution, as well as a polylog(n)-time tester that

5There are cases in which derandomization assumptions can be easily used to turn a negligible-error construction into an
explicit construction [36]. This typically happens when one of the following holds: (1) It is “easy” to recognize a “bad” object
(i.e., to detect a violation of the desired property) in polynomial-time; or (2) There is an efficient way to combine a “bad”
instance with several “good” instances into a single “good” instance. As far as we know, in general, both conditions fail for
H-freeness.

6This is in contrast to the (more common) notion of succinctness (in the context of standard graphs), where, given a vertex
v and an index i, we can compute the i-th neighbor of v in time poly logn (this notion is also called fully-explicit). Our notion
of succinctness is better suited for our applications, in which a hypergraph represents the dependencies graph of some function
f : {0, 1}n → {0, 1}m (e.g., low-biased generator) where inputs correspond to vertices, outputs correspond to hyperedges, and
the i-th hyperedge contains the vertices on which the i-th output depends. Our notion of succinctness guarantees that each
output of f can be computed in polylog(n)-time (e.g., in the RAM model).
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can test for small subgraphs in G. We prove a succinct version of Theorem 2.1 that applies to constant-size
subgraphs H and polylog(n)-wise independence.

Theorem 2.6. For every log-density parameter c > 1, edge-uniformity parameter d ≥ 2, constant subgraph
size t and independence parameter k(n) ≤ polylog(n), there exists a polylog(n)-time sampler/tester pair
(S, T ) with the following properties:

• Given n (in binary representation), the randomized sampler uses its internal random coins r to sample
a succinct (n,m = nc, d) hypergraph Gr from a k(n)-wise independent distribution.

• The deterministic tester takes as input a d-uniform hypergraph H of size at most t and a fixed sequence
of coin tosses r and accepts the input if and only if H is a subgraph of the hypergraph Gr = S(n, r)
that is generated by S using coin tosses r.

Theorem 2.6 leads to the following succinct version of Corollary 2.2.

Corollary 2.7 (pseudorandom H-free succinct hypergraphs). Let c, d, t, k(n) and m = nc be as in Theo-
rem 2.6. Let H be a family of hypergraphs each of size at most t, such that every k(n)-wise independent
(n,m, d)-hypergraph is H-free with probability of 1/polylog(n). Then, there exists a probabilistic algorithm
that runs in expected polylog(n)-time and samples a succinct H-free hypergraph from some k-wise indepen-
dent distribution over (n,m, d)-hypergraphs.

As already mentioned the problem of constructing huge k-wise independent graphs that satisfy some given
property (specification) was studied in [24, 2, 45, 44]. Corollary 2.7 provides a zero-error (aka “truthful”)
solution for this problem with respect to H-free hypergraphs of given density. To the best of our knowledge,
prior to our work no solution was known even for the case of undirected graphs and concrete fixed-size
forbidden subgraphs.

2.3 Negligible-Error Construction of Constant-Degree Unbalanced Expanders

We move back to the non-succinct setting, and consider the problem of explicitly constructing a single, not
necessarily random, expander graph. We say that an (n,m, d)-hypergraph is an (α, t)-expander if every set
S of hyperedges of size at most t “touches” at least α|S| vertices.7 Equivalently, an (α, t)-expander is an
(n,m, d)-hypergraph that avoids small “dense” subgraphs, i.e., (n′,m′, d)-hypergraphs with n′ ≤ αm′ for
m′ ≤ t.

We focus on the setting of constant-degree highly unbalanced expanders. That is, we let d be a constant,
and assume that the number of hyperedges m is polynomially larger than n, i.e., m = nc for some constant
log-density 1 < c < d. A standard probabilistic calculation shows that in this regime most (n,m, d)-
hypergraphs achieve a good expansion factor of α = Ω(d) (or even α = d − O(1)) for polynomially-small
subsets of size at most t = n1−δ where δ is a constant that depends on α, c and d. Unfortunately, the
problem of efficiently constructing highly-unbalanced constant-degree expanders is wide open. Existing
constructions either provide only slightly unbalanced expanders (that have only linearly many hyperedges
m = O(n)) [17] or suffer from a super-constant (actually polylogarithmic) degree [26].8 In fact, it is not
even known how to achieve a negligible-error construction. The main problem with natural strategies such
as random sampling is that small sets fail to expand with non-negligible probability. Motivated by the
numerous applications of constant-degree highly-unbalanced expanders (to be discussed later), we present a
negligible-error construction of such graphs.

7This formulation is equivalent to the more standard notion of bipartite expanders over n left vertices and m right vertices
where the degree of each right vertex is d, and every set S of right vertices of size at most t is connected to at least α|S| left
vertices.

8Insisting on both constant degree and polynomially-unbalanced hypergraph, the work of [55] implicitly yields an expander
with a weak, yet non-trivial, expansion factor α < 1 that decreases polynomially with n. We thank the anonymous referee for
pointing this out.
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We begin by providing a ZPP-construction of constant-degree highly-unbalanced hypergraphs that ex-
pand well for small sets of super-constant size. The following theorem follows from Corollary 2.2 by in-
stantiating the class H of forbidden subgraphs with the class of small non-expanding hypergraphs. (See
Corollary 7.6 in Section 7.2.)

Theorem 2.8 (ZPP-construction of small-set expanders). For every log-density parameter c > 1, edge-
uniformity parameter d > c, and α < d − c there exists a ZPP-construction of (n,m = nc, d)-hypergraph
with (α, t)-expansion where t = O( log log logn

log log log logn ).

Next, we show that Theorem 2.8 gives rise to a negligible-error construction of hypergraphs that expand
well for polynomial-size subsets. That is, we downgrade the level of explicitness (from zero-error construction
to negligible-error construction) and upgrade the expansion threshold t to polynomial.

Theorem 2.9 (negligible-error construction of unbalanced expanders). For every log-density parameter
c > 1, edge-uniformity parameter d > c, and α < d − c, there exists a negligible-error construction of
(n,m = nc, 2d)-hypergraph with (α, t)-expansion where t = Ω(n1−δ) and δ = (c− 1)/(d− α− 1).

Recall that a negligible-error construction guarantees the existence of a poly(n)-time randomized algo-
rithm that outputs, except with negligible probability of n−ω(1), an (α, t)-expanding (n,m, 2d)-hypergraph.
(See Theorem 7.15 for a more detailed version.) Unfortunately, the negligible function that we obtain
decreases relatively slowly at a rate of n−Ω(t) where t = log log logn

log log log logn is the expansion parameter from
Theorem 2.8. This caveat is common to all our negligible-error constructions. We emphasize that this
limitation follows from the concrete parameters of our explicit H-free hypergraphs and we hope that future
instantiations of our framework would lead to better parameters and to smaller error rates.

Theorem 2.9 provides an (n,m,D = 2d)-hypergraph whose expansion parameters (α, t) match the pa-
rameters of a random (n,m, d)-hypergraph. While this factor-2 gap in the degree has a relatively minor
effect on the expansion threshold t (which is still polynomial in n), it limits the expansion factor α to be at
most D/2−O(1). Such an expansion factor suffices for many applications, but in some cases it is useful to
expand by a factor larger than D/2. Notably, expansion beyond half the degree guarantees the useful unique
expansion property.

Constructing unique expanders. A hypergraph is a (β, t)-unique expander if for every set S of at most
t hyperedges there exists a set U of at least β|S| vertices such that each vertex in U appears in a unique
hyperedge e in S. Perhaps surprisingly, although we cannot expand by a factor better than D/2, we can
still get a negligible-error construction of unique expanders.

Theorem 2.10 (negligible-error construction of unbalanced unique-expanders). For every log-density pa-
rameter c > 1, edge-uniformity parameter d > 2c, and β < d−2c, there exists a negligible-error construction
of (n,m = Ω(nc), 2d)-hypergraph with (β, t) unique-expansion where t = Ω(n1−δ) and δ = 2(c−1)/(d−β−2).

Theorems 2.8, 2.9 and 2.10 (whose proofs appear in Section 7) provide the first negligible-error construc-
tions of highly-unbalanced constant-degree expanders.

2.4 Applications

In Section 8, we use our negligible-error construction of unbalanced expanders to obtain the first negligible-
error constructions of several useful objects including batch codes (Section 8.1), and locally-computable
k-wise independent generators, low-bias generators and randomness extractors (Section 8.3). These appli-
cations follow immediately from our expanders via standard techniques. Below we briefly describe two non-
trivial applications: high-rate low-density parity-check (LDPC) codes (Section 8.2), and locally-computable
cryptographic pseudorandom generators (PRGs) with polynomial stretch (Section 9).
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2.4.1 High-Rate LDPC Codes

An [m, k]-code is a linear code with codewords of length m and information words of length k. Such a code
can be always represented by an (m − k) ×m parity check matrix. LDPC codes [21] (see also [39, 49, 50]
and [48]) can be represented by a sparse parity check matrix that contains only dm non-zero entries for some
sparsity constant d = O(1). Any (n,m, d)-hypergraph G defines an [m,m − n]-binary LDPC by letting
the parity-check matrix be the n × m incidence matrix of G. The parity-check matrix has md ones, and
is therefore sparse when d = O(1). Moreover, it is well known that if, for some β > 0, the hypergraph G
achieves unique-neighbor expansion of (β, γ) then the resulting code has a distance of γ.

LDPC codes have numerous applications and accordingly, such codes have been extensively studied from
various perspectives (see, e.g., [48] and references therein). Here we focus on the problem of providing a
negligible-error construction of such codes in the somewhat non-standard regime where the code’s rate is
very close to one (up to an inverse polynomial) and the relative distance is small but non-trivial (inverse
polynomial).9 Specifically, Theorem 2.10 leads to the first negligible-error construction of such codes: For
every constants 1 < c < d/2 we get an LDPC with sparsity 2d that maps k bits of information into
k +O(k1/c)-bit codeword with a distance of n1−O(c/d).

Sipser and Spielman showed that an LDPC code whose underlying graph has a very good expansion
factor (well beyond half the degree) can be efficiently decoded by a linear time decoding algorithm with
O(log n) parallel steps [49]. Unfortunately, the hypergraph given by Theorem 2.10 does not satisfy such a
strong expansion property. Nevertheless, we show that our construction can be tweaked in a way that still
allows for highly efficient decoding via a variant of the Sipser-Spielman decoder. In particular, we prove the
following theorem. (See also Theorem 8.3.)

Theorem 2.11. For every constant c > 1, integer d > 10c and constant 0.9d < α < d − c, there exists a
negligible-error construction of an [m,m− 2m1/c]-LDPC code with sparsity of 2d that admits a decoder that
runs in quasi-linear time O(m log2m) and O(logm) parallel steps and corrects up to Ω(n1−δ) errors where
δ = (c− 1)/(d− α− 1).

While the parameters of our LDPC code are somewhat not standard, it will be extremely useful as a
building block in our next application of polynomial-stretch locally computable PRGs.

2.4.2 Polynomial-Stretch Locally-Computable PRGs

A cryptographic pseudorandom generator stretches a short random n-bit seed into a longer m-bit pseudo-
random string that is computationally indistinguishable from a truly random string. We say that a PRG is
locally-computable if each of its output bits depends on at most d = O(1) input bits. Locally-computable
PRGs were extensively studied in the past two decades. In particular, locally-computable PRGs that poly-
nomially stretch their input (i.e., m = nc for c > 1) have shown to have remarkable applications. This
includes secure-computation with constant computational overhead [34, 8] and general-purpose obfuscation
based on constant-degree multilinear maps (cf. [37, 38]).

Unfortunately, constructing locally-computable PRGs with polynomial-stretch turns out to be a challeng-
ing task. Indeed, while there are good constructions of local PRGs with sub-linear stretch m = n+o(n) [10],
and even linear stretch m = n+ Ω(n) [11, 4, 6] under standard assumptions, we currently have only partial
solutions to the polynomial-stretch regime. In particular, in [4] the first author constructed a locally-
computable polynomial-stretch weak-PRG. Here weak means that the distinguishing advantage ε of any
polynomial-time adversary is upper-bounded by some fixed inverse polynomial 1/poly(n), whereas the stan-
dard cryptographic definition requires a negligible distinguishing advantage of n−ω(1). The construction of [4]

9The status of existing explicit/negligible-error constructions is the same as the status of unbalanced expanders. In fact, any
[m,m−n, t] LDPC with sparsity md implies an (n,m)-hypergraph with average rank of d such that any set of t hyperedges has
some “odd-expansion” property. We do not have better ways to construct such expanders compared to standard expanders.
The situation is similar for all the applications discussed in this paper. That is, unbalanced constant-degree hypergraphs with
some expansion property for polynomial-size subsets of hyperedges are also necessary for all these applications, and accordingly
so far we had no explicit or negligible-error constructions.
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is based on the one-wayness of random local functions with polynomially-long output length – a variant of
Goldreich’s one-wayness assumption [22].

We show that our negligible-error construction of expanders can be used to upgrade any weak-PRG into
standard PRG while preserving constant locality and polynomial stretch.

Theorem 2.12 (local-PRG with polynomial-stretch: weak-to-strong). For every constants d ∈ N, a > 0 and
c, c′ > 1 there exists a constant d′ for which the following holds. Any ensemble of d-local PRGs that stretches
n bits to nc bits and achieves indistinguishability parameter of ε = 1/na can be converted into an ensemble
of d′-local (standard) PRGs that stretches n bits to nc

′
bits.

The term ensemble here means that, given 1n, we can sample in polynomial-time a circuit that implements
a locally computable function f from n-bits to m bits so that except with negligible probability f is a PRG.
This use of ensembles is standard in the context of parallel cryptography and typically has at most a minor
effect on the applications.

Combined with the weak-PRG of [4], Theorem 2.12 yields the first construction of local PRG with
polynomial stretch based on a one-wayness assumption, resolving an important open question in the theory
of parallel cryptography [42, 10, 34, 4]. We mention that there is a second heuristic approach for constructing
such pseudorandom generators, due to [34] (see also [42, 12] and the survey [5]). This approach also requires
the existence of explicit (or negligible-error) construction of highly-unbalanced constant degree expanders,
and one can instantiate it using our constructions as well. In fact, it is known that such expanders are
necessary for any construction of locally-computable PRG with large-stretch [11].10 Theorem 2.12 shows
that, up to some extent, such expanders are also sufficient for this task.

3 Technical Overview

We briefly sketch some of the main techniques.

3.1 Sampler/Tester for H-free hypergraphs

We present a k-wise independent distribution over (n,m, d) hypergraphs that admits efficient subgraph-
testing for hypergraphs of size t = O( log log logn

log log log logn ) (as in Theorem 2.1). For simplicity let us focus on the

case of directed graphs (d = 2). Let us further assume that the number of vertices n is prime, and that the
number of edges m is an integer power of n, i.e., m = nc for some integer c ≥ 1. Later, we discuss the case
where c is non-integral.

We identify every vertex with an element of the field F = GF(n), and index the edges with c-tuples of
elements of F. We sample the graph by uniformly sampling a pair (A,B) of c-variate polynomials over F of
total degree k. For every tuple h = (h1, . . . , hc) ∈ Fc, we define the h-th edge to be (A(h), B(h)). That is, h
leaves the source vertex A(h) and enters the target vertex B(h).

It is not hard to show that every set of k edges are uniformly distributed. (This follows by a simple
extension of the well-known fact that random degree-k univariate polynomials are k-wise independent.) We
reduce the problem of subgraph testing to the following polynomial satisfiability problem: Check whether a
system of O(t) polynomial equations of degree D = O(k+t) and O(t) variables over the field F has a solution.

The latter problem can be solved by an algorithm of Kayal [35, Theorem 6.1.1] in time poly(DtO(t)

t log |F|)
which is polynomial in n for our choice of parameters.11

10Indeed, prior works on expander-based cryptography (cf. [3, 4, 8, 12, 22, 34, 37, 38]) assumed, either explicitly or implicitly,
the existence of explicit constant-degree unbalanced vertex-expander, or at least that such expanders can be sampled efficiently
with negligible error, even though it was unknown how to do so, see for example [34, Remark 5.7]).

11On a high-level, Kayal’s algorithm decomposes the algebraic closed set X, defined by the input polynomials, into closed
sets Xi, such that each Xi is birational to a hypersurface Yi. If some Yi has an absolutely irreducible Fq-factor, then by
Weil’s theorem there exist rational points in Yi, and by the birational correspondence also in Xi, so the algorithm outputs
“yes”. Otherwise, if Xi contains a rational point it has to lie on a closed proper subset of Xi. The subset is computed and the
algorithm is applied on it recursively. See [35] for full details.
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We describe a simplified version of the reduction for the special case of detecting a directed rectangle
(4-cycle). First observe that any sequence of edges indexed by x1, x2, x3, x4 ∈ Fc that form a rectangle must
satisfy the system L1 of equations

B(X1) = A(X2), B(X2) = A(X3) B(X3) = A(X4) B(X4) = A(X1)

where the formal variables X1, X2, X3 and X4 correspond to indices of edges and so they take values from
Fc. However, a moment of inspection suggests that the system L1 can be also solved by a 2-cycle: Assign the
first edge to X1 and X3 and the second edge to X2 and X4. We therefore need a mechanism for excluding
solutions that assign the same value to different variables. Fortunately, this can be achieved by introducing
few more auxiliary variables and few more low-degree equations.

In particular, we add four new variables Y = (Y0, Y1, Y2, Y3) which take values from Fc and define a new
system L2 of four equations

3∑
j=0

YjX
j
1 = 1,

3∑
j=0

YjX
j
2 = 2,

3∑
j=0

YjX
j
3 = 3,

3∑
j=0

YjX
j
4 = 4,

where arithmetic is over the extension field GF(nc) and 1,2,3,4 represent four distinct constants from this
field. Observe that the variables Y define a degree-3 univariate polynomial PY (·), and the system is satisfiable
if this polynomial evaluates to i over the input Xi. Clearly, any solution to L1 that assigns non-distinct
values to the X variables violates L2. On the other hand, any solution to L1 that assigns distinct values to
the X variables can be extended by an assignment to Y in a way that satisfies L2. (Such an assignment can
be found via polynomial interpolation). Hence, by combining L2 with L1 we get a new system that excludes
solutions in which the same edge is being used twice.

To complete the reduction one has to deal with few additional minor technicalities. Firstly, the system
L1 is over the field F = GF(n) whereas the second system is over the extension field GF(nc). This is solved
by projecting down the second system to the base field, and checking the satisfiability of the combined
system over F. Secondly, an additional distinctness gadget should be used to further force distinct vertices.
(Otherwise, a system for detecting a 4-path will be fooled by a 4-cycle.)

The construction extends to d-uniform hypergraphs in a straightforward way (use d polynomials instead
of 2), and to the case of non-integral log-density c = lognm by working over appropriate extension fields.
(See Section 6 for full details.) Finally, observe that the sampled graph has a succinct representation: An
edge query can be implemented by evaluating a low-degree polynomial. Moreover, for polylogarithmic k and
constant t, the polynomial-satisfiability algorithm can be implemented in polylogarithmic time, and so we
get a succinct version of the theorem.

3.2 Expanding the Expansion: From Small-Sets to Large Sets

Theorem 2.8 converts a zero-error construction of (n,m, d)-hypergraphs G1 with (α, t)-expansion for small
threshold t = O( log log logn

log log log logn ) into a negligible-error construction of (α, T )-expander with polynomial thresh-

old of T = n1−δ. The proof is based on two observations.
First, suppose that, in addition to G1, we are given an (n,m, d)-hypergraph G2 with the property that

any “medium-size” set S of hyperedges t ≤ |S| ≤ T expands by a factor of α. Then, we can combine G1

and G2 into a single (n,m, 2d)-hypergraph G by letting the i-th hyperedge of G be the union of the i-th
hyperedge of G1 and G2. (Both hyperedges should be viewed as d-size multisets over [n].) Every hyperedge
set S of size at most T now expands by a factor of α, either due to the expansion of G1 (when |S| ≤ t) or
due to the expansion of G2 (when t < |S| ≤ T ). As a result, the expansion factor remains unchanged, but
the overall degree doubles.

The second observation is that a random (n,m, d)-hypergraph forms a negligible-error construction of
medium-size expanders. Indeed, in our regime of parameters, the probability that a random (n,m, d)-
hypergraph contains an s-tuple of hyperedges that violate expansion (touch less than αs vertices) is n−Ω(s)

which is negligible when s ≥ t > ω(1). (The constants in the big-Omega depend on d, c = lognm and
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the exponent of the expansion threshold logn T .) Indeed, the only reason for which a random (n,m, d)-
hypergraph does not qualify as a negligible-error expander is the existence of small non-expanding sets
which appear with noticeable probability.

Unique-expansion. Unique-expansion is achieved via a similar approach except that the merging pro-
cedure is slightly different. As before we merge a pair of (n,m, d)-hypergraphs G1 and G2 into a single
hypergraph G by defining the i-hyperedge of G to be the union of the i-th hyperedge of G1 and G2. How-
ever, now we treat the vertices of G1 and the vertices of G2 as distinct sets. (E.g., the vertices of G1 are
indexed from 1 to n and the vertices of G2 are indexed by n + 1 to 2n.) As a result, G is a (2n,m, 2d)-
hypergraph. It is not hard to verify that if G1 is a (β, t) unique-expander and G2 expands by β for sets of
size t < s ≤ T , then G is a (β, T ) unique-expander.

Coding perspective. Recall that unbalanced hypergraphs can be viewed as parity-check matrices of
error-correcting codes where t-weight codewords correspond to “bad” t-size subgraphs (that violate unique
expansion). Using this terminology the above transformation defines a code by taking the intersection of the
code G1 (that has no nontrivial codewords of weight smaller than t) with the code G2 (that has no codewords
of weight s ∈ [t, T ]). The efficient decoding algorithm presented in Theorem 8.3 further exploits this view,
and shows that, in our setting, a noisy codeword of the intersection code G can be decoded by combining
the decoders of G1 and G2. In particular, the G2 decoder “reduces” the number of noisy coordinates from
T to (roughly) t, and the G1 decoder further reduces the noise from t to zero.

3.3 Local Hardness Amplification: From weak-PRGs to strong-PRGs

Theorem 2.12 converts a weak-PRG g : {0, 1}n → {0, 1}m into a standard PRG while preserving polynomial
stretch and constant locality. Such hardness amplification theorems are typically based on a direct sum
construction: Apply g on ` independent copies of the seed and XOR the results. By Yao’s XOR-lemma
(cf. [25]), if we start with an inverse polynomial indistinguishability, it suffices to take a super-constant
number of copies ` = ω(1). Unfortunately, this leads to a super-constant growth in the locality. We
therefore take a different approach based on randomness extractors.

We generate polynomially-many pseudorandom strings (using independent seeds) and place them as rows
of a k ×m matrix. Since the rows are independent and the indistinguishability parameter is a small inverse
polynomial, one can guarantee that each column has an almost full pseudo-entropy of k−1/poly(k). Finally,
we extract the randomness from each column using randomness extractor. This approach was used by [4]
(following a more general transformation from [27]) to obtain a linear-stretch local-PRG.

The success of this approach depends, however, on the existence of a suitable locally-computable ran-
domness extractor. The extractor should take a k-bit source with an almost-full entropy of k−1/poly(k) and
a polynomially-short random seed of length k1−ε and output an almost-uniform k-bit string with negligible
statistical error. The main new observation is that such extractors exist, and a negligible-error construc-
tion can be achieved based on negligible-error construction of highly-unbalanced constant-degree expanders.
(Similar connections between expanders and locally-computable extractors were established, for a different
regime of parameters, in related contexts [11, 4]). See Sections 8.3 and 9.

4 Preliminaries

4.1 Hypergraphs

An (n,m, d) oriented hypergraph G = (V,E) is a hypergraph with a vertex set V of size n (by default,
V = [n]) that consists of a multiset of m hyperedges E. Although the order of hyperedges is not important
for us, it will be convenient to think about E as an m-tuple (e1, . . . , em). We further assume that each
hyperedge ei is fully oriented and is therefore represented by an ordered d-tuple (ei[1], . . . , ei[d]) ∈ V d. We
refer to ei as the i-th hyperedge, to ei[j] as the j-th entry of the i-th hyperedge, and to the index j ∈ [d]
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as the location of the vertex ei[j] in the i-th hyperedge. We allow repetitions both between hyperedges and
inside hyperedges. (For example, e1 may be equal to e2 and ei[1] may be equal to ei[2]). When the internal
order of the hyperedges is not important (i.e., ei is a multiset) we refer to G as an non-oriented hypergraph.
(By default, all hypergraphs are oriented.)

An (n,m,≤ d) oriented hypergraph is defined similarly except that the size of the hyperedges E =
(e1, . . . , em) can vary as long as it does not exceed d. We still assume that the hyperedges are d-oriented by
viewing each hyperedges as a d-tuple over the set V ∪ {⊥}. For example, in an (n,m,≤ 4)-hypergraph one
can have a hyperedge of arity 3 represented as (1, 5,⊥, 4).

We extend the standard notion of subgraphs to hypergraphs as follows.

Definition 4.1 (sub-hypergraphs). A pair of d-oriented hyperedges e, e′ match if for every i ∈ [d] either
e[i] = ⊥ or e′[i] = ⊥ or e[i] = e′[i] (That is, null entries are viewed as wild-chars). Let H = (V (H), E(H)) be
an (n,m,≤ d) oriented hypergraph. For a mapping π from V (H) to some set U we let π(H) = (U,E′) denote
the hypergraph obtained by replacing the i-th hyperedge ei of H with the hyperedge e′i = (π(ei[1]), . . . , π(ei[d]))
where π is extended to map ⊥ to a ⊥. We say that an (n′,m′,≤ d) oriented hypergraph H is a subgraph
of an (n,m, d) oriented hypergraph G if there exists a pair of injective mapping π : V (H) → V (G) and
σ : [m′] → [m] such that i-th hyperedge of π(H) matches to the σ(i)-th hyperedge of G. (Note that this
implies that n′ ≤ n and m′ ≤ m.)

Ensembles of hypergraphs. Let m(·) and d(·) be integer-valued functions. An efficiently samplable
(n,m(n), d(n))-hypergraph ensemble is defined by a probabilistic polynomial-time sampling algorithm S
that given 1n outputs an (n,m(n), d(n))-hypergraph using some canonical representation. When S uses
only O(log n) coins (i.e., the distribution is supported on polynomially many hypergraphs), we refer to the
corresponding sequence of hypergraphs as an efficiently constructible family of hypergraphs. Note that in
this case we can construct all hypergraphs in the family in time poly(n). A deterministic algorithm that
outputs a single hypergraph per output length is treated as a special case.

We say that the ensemble is succinct if S can be “partitioned” into two algorithms: a probabilistic
polylog(n)-time index-sampler I and a deterministic polylog(n)-time edge-evaluation algorithm G with the
following syntax.

• Given n, the algorithm I outputs a string z of length polylog(n) that represents an (n,m(n), d(n))-
hypergraph Gz.

• Given n, a graph identifier z, an index of a hyperedge e ∈ [m(n)] and an internal index i ∈ [d], the
evaluation algorithm outputs a vertex v ∈ [n] that defines the i-th entry of the hyperedge e in Gz.

In some cases we consider an intermediate setting where the evaluation algorithm runs in polylog(n)-time but
the index-sampler runs in time poly(n). In this case we say that the ensemble has a succinct representation
(and emphasize the polynomial complexity of the sampler).

4.2 Finite Fields

Let q be a prime power. We will denote the finite field of size q by Fq, and assume that we are given
a description of Fq that enables computation of field operations and sampling of field elements in time
poly(log q). We will rely on the following standard facts: (1) elements in an extension field F′ of F can be
represented as F-vectors such that arithmetic operations over F′ can be emulated by arithmetic operations
over F. (See Fact 4.2.) (2) Correspondingly, a low-degree system of equations over F′ can be represented by
a low-degree system of equations over Fq. (See Fact 4.3.)

Fact 4.2. Let q be a prime power and let c be an integer. Then, elements of the extension field Fqc can
be viewed as vectors of length c over Fq. For two elements of Fcq, a = (a1, . . . , ac) and b = (b1, . . . , bc), the
operations over Fqc are defined as follows.

• Addition: The sum of a and b over Fqc is simply the entry-wise sum of a and b over Fq.
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• Multiplication: The product, z = (z1, . . . , zc), of a and b is defined by zi = aΛib
T , for every i ∈ [c],

where Λi is a fixed c× c matrix over Fq, and the arithmetic is over Fq.

Moreover, the matrices Λ1, . . . ,Λc can be generated in time poly(c · log q).

Fact 4.3. Let q be a prime power and let c be an integer. Then, elements of the extension field Fqc can
be represented as vectors of length c over Fq such that the following holds. For any m-variate polynomial
f(X1, . . . , Xm) of total-degree D over Fqc we can generate in time poly(c ·Dm · log q) a vector, (g1, . . . , gc),
of c polynomials over Fq each with c ·m variables, ((X1,i)i∈[c], . . . , (Xm,i)i∈[c]) and total-degree of at most D
such that for any f -input (x1, . . . , xm) the corresponding f -output y = f(x1, . . . , xc) satisfies

(y1, . . . , yc) = (g1(x1,1, . . . , xm,c), . . . , gc(x1,1, . . . , xm,c)),

where xi,j (resp., yj) is the j-th component of the vector representation of xi (resp., y).

4.3 k-wise Independent Polynomials

Definition 4.4. A probability distribution F over functions f : X → Y is k-wise independent if for every
k-tuple (x1, . . . , xk) of distinct elements of X, the random variable (F(x1), . . . ,F(xk)) is uniform over Y k.

For a prime power q and positive integers ` and k < q−1, let P`,k,q denote the uniform distributions over
multivariate polynomials with ` variables and total degree at most k over the field Fq. That is, a polynomial
is chosen by sampling each coefficient uniformly and independently from Fq, and each polynomial is viewed
as a function from F`q to Fq. It is not hard to show that P`,k,q is k-wise independent.

Claim 4.5. For every prime power q and positive integers ` and k < q − 1, the distribution P`,k,q is k-wise
independent.

Proof. The truth table of a randomly chosen f ← P`,k,q is just a random code-word of a Reed-Muller code
with parameters ` and k over Fq. To prove the claim we should show that the marginal distribution of any
subset of k coordinates of such a random code-word is uniformly distributed over Fkq . Since the code is linear,
this is equivalent to showing that the dual distance of the code is k + 1. Indeed, it is known that the dual
distance of such Reed-Muller code is at least k + 1, see [47, Proposition 5.4.14].

More generally, the distance of the dual code is (ρ+ 1)qσ where ρ and σ are the reminder and quotient
obtained by dividing k+ 1 by q − 1 (that is, k+ 1 = σ(q − 1) + ρ for ρ < q − 1). In our case, k+ 1 < q, and
therefore ρ = k + 1 and σ = 0, which yields a dual distance of at least k + 1.

Note that, given the description of Fq, we can sample an element of P`,k,q in time poly(k` · log q).

5 The Sampler/Tester Framework

Let D be a probability distribution and let E be some “bad event” that happens with low-probability (e.g.,
o(1)). The following mechanism allows us to sample from the conditional distribution [D|¬E].

Definition 5.1 (Sampler/Tester). We say that a pair of algorithms (S, T ) is a sampler/tester pair for a
probability distribution D and an event E if the following holds.

1. The random variable S(r), induced by feeding S with fresh random string r ← {0, 1}s, is identically
distributed to D.

2. Given a string r ∈ {0, 1}s, the deterministic algorithm T (r) outputs 1 if and only if the sampler’s
corresponding output S(r) satisfies the event E.

Asymptotically, we consider an infinite sequence of pairs {(Dn, En)}n∈N and allow S, T to get 1n as an
additional input. In this setting, S(1n, ·), T (1n, ·) should run in polynomial-time in n and should form a
sampler/tester pair for (Dn, En) for every n ∈ N.
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Remark 5.2. We will usually relax the requirement that the family {(Dn, En)}n∈N is defined for every n ∈ N
and instead allow the family to be defined only with respect to an infinite set N of integers as long as the set
N is not too sparse, i.e., the i-th element of N is upper-bounded by some polynomial in i.

Observation 5.3. Given a sampler/tester pair (S, T ) for {(Dn, En)}n∈N, we can sample from [Dn|¬En] in
expected time poly(n)/(1− ε(n)) where ε(n) denotes the probability that a sample from Dn satisfies the event
En.

Proof. Repeatedly sample z = S(1n; r) using fresh randomness r and output the result only if T (1n, r) = 0.
The expected number of repetition is 1/(1− ε(n)) as required.

Note that by publishing the random seed r, everyone can verify that the output of the sampling algorithm
is not in E.

5.1 Explicit Constructions under De-Randomization Assumptions

Observation 5.3 implies a ZPP-sampler for elements in the distribution [D|¬E] whenever the failure proba-
bility ε(n) is upper-bounded by 1 − 1/p(n) for some polynomial p(·). In the following we show that, under
standard worst-case de-randomization assumptions, any ZPP-construction implies a fully-explicit construc-
tion.

Theorem 5.4 ([31], see also Theorem 7.63 in [53]). Assume that the class of functions computable in
2O(n) uniform-time requires 2Ω(n) size circuits. Then, for every t = t(n) there exist constants a, b and a
pseudorandom generator G : {0, 1}a·logn → {0, 1}t, computable in time tb, that (1/t)-fools every deterministic
Turing A machine running in time t, in the sense that∣∣Pr[A(Ut(n)) = 1]− Pr[A(G(Ua·logn)) = 1]

∣∣ < 1/t(n),

where U` denotes the uniform distribution over {0, 1}`.

In fact, the assumption in Theorem 5.4 implies a PRG that fools non-uniform adversaries, but all we
need is a PRG that fools (or actually hit) uniform adversaries.12

Corollary 5.5. Let D = {Dn} be a family of distributions. Let A be a ZPP construction for D. Then,
under the assumption in Theorem 5.4, there exists a polynomial time algorithm that on input 1n outputs an
element from Dn.

Proof. We show that the assumption in Theorem 5.4 implies a derandomization of the ZPP-constructions.
Let A be a ZPP construction algorithm of some distribution D = {Dn}, running in time t(n), and let
G : {0, 1}a·logn → {0, 1}t be the PRG promised in Theorem 5.4. We define an explicit construction algorithm
A′ in the following way. On input 1n the algorithm A′ iterates over all binary strings s ∈ {0, 1}a logn and
outputs the first seed s for which A(G(s)) does not output failure. The seed s represents the element A(G(S))
of Dn.

Note that since A fails with negligible probability and since G (1/t)-fools A, it follows that there exists
at least one seed s for which A(G(s)) does not output failure. Since A is a ZPP-construction it follows that
if A does not fail then it outputs an element from the distribution Dn, so A′ always outputs an element of
Dn. Finally, since there are only poly(n) binary strings in {0, 1}a logn it follows that the running time of A′

is poly(n).

12One can get such a generator under weaker uniform hardness assumptions [32, 52]. However, to the best of our knowledge,
in this setting all known generators work only for infinitely many inputs lengths. We thank Ronen Shaltiel for pointing us to
the relevant literature.
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6 k-wise Independent H-Free Hypergraphs

In the following section we present a sampler/tester for k-wise oriented hypergraphs and forbidden subgraphs.
That is, the sampler samples an oriented (n,m, d)-hypergraphs from a k-wise independent distribution, while
the tester tests whether some hypergraph H is a subgraph of the sampled graph. Recall that a distribution
over (n,m, d) oriented hypergraph is said to be k-wise independent if every set of k hyperedges (ei1 , . . . , eik)
is uniformly distributed over ([n]d)k. Extensions of the main result will be discussed in Section 6.2.

Below, we assume that n and m are both integer powers of some prime power q, and let P`,k,q denote
the uniform distribution over `-variate polynomials of total degree k over the field Fq .

Construction 6.1 (Sampler for Gq,n,m,d,k). The distribution Gq,n,m,d,k is parameterized by a prime power
q, and integers n,m, d and k, that correspond to the number of nodes, number of hyperedges, hyperedge arity,
and independence parameter. We further assume that n = qr, m = q` for some positive integers ` and r,
and that k < q− 1. Correspondingly, we index the vertices by elements from Frq and index the hyperedges by

elements in F`q.

• (Index sampler) Uniformly sample d · r independent polynomials P = (Pi,1, . . . , Pi,r)i∈[d] from P`,k,q.

• (Edge evaluation) The vector of polynomials P represents an (n,m, d) oriented hypergraph GP as
follows. Each vertex is associated with an r-tuple α ∈ Frq and each hyperedge is associated with an `-tuple

β ∈ F`q. Every hyperedge β ∈ F`q is of arity d and its i-th vertex is defined to be (Pi,1(β), . . . , Pi,r(β)).

For a first reading, it will be convenient to think of d as a constant and of c as an integer. In this case
we get ` = c and r = 1, so n = q, m = qc and there is exactly one polynomial Pi which represents the i-th
vertex of the hyperedges.

Claim 6.2. The distribution Gq,n,m,d,k over (n,m, d)-oriented hypergraphs is k-wise independent. Moreover,

the complexity of the sampling algorithm is r · d ·
(
k+`
`

)
· poly(log q), for r := logq n and ` := logqm.

Furthermore, the graph G has representation of size O(r · d ·
(
k+`
`

)
log q), and given its representation, one

can find the i-th element of the j-th hyperedge in time poly(r ·
(
k+`
`

)
· log d · log q).

Proof. Since the d · r polynomials are sampled independently from P`,k,q, Claim 4.5 implies that every k
hyperedges are distributed uniformly and independently over ([n]d)k. In order to sample a random `-variate
polynomial of degree k one has to sample at most

(
k+`
`

)
random field elements (one coefficient for each

possible monomial), which can be done in time poly(log q) per field element. Hence, the sampling algorithm
has total complexity of r · d ·

(
k+`
`

)
· poly(log q). The size of the representation of the graph follows from the

fact that a field element requires O(log q) space, and the complexity of computing the i-th element of the
j-th hyperedge follows from the fact that field operations can be computed in time poly(log q).

The following key-lemma describes a tester for H-subgraphs.

Lemma 6.3 (key-lemma). There exists an algorithm A that given an (n′,m′,≤ d) oriented hypergraph H
and an index P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) of a hypergraph GP from Gq,n,m,d,k, tests if H is a
subgraph of GP in time polynomial in

D(2`m′+2rn′)O(2`m′+2rn′)
· (dm′r + rn′ + `m′) · log q,

for D := max {k,m′, n′}.

The proof of the lemma is deferred to Section 6.1. The following theorem follows immediately from
Claim 6.2 and Lemma 6.3.

Theorem 6.4. Let d ≥ 2 be a constant positive integer and let c be a constant positive rational number,
represented in lowest terms by `/r, and let A be a positive constant. For every prime power q define n = qr

and m = nc and consider any

n′ ≤ A · log log log n

log log log log n
and m′ ≤ A · log log log n

log log log log n
.
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Then there exists a positive constant B such that for every

k ≤ min(q − 2, nA/e(n
′,m′)), where e(n′,m′) = (2m′`+ 2n′r)B·(2m

′`+2n′r),

the following holds. There is a poly(n)-time algorithm S that samples a graph G from Gq,n,m,d,k and a
poly(n)-time testing algorithm T that given an (n′,m′,≤ d) oriented hypergraph H tests for the event that
H is a subgraph of G. Moreover, if k ≤ polylog(n), the ensemble Gq,n,m,d,k is succinct, and if, in addition,
the hypergraph H is of constant size, i.e., n′ +m′ = O(1), then the tester also runs in polylog(n) time.

The first part of the theorem implies Theorem 2.1, and the “Moreover” part implies Theorem 2.6. We
further mention that if succinctness is not needed, we can take the independence parameter k to be at least
2logn/ log logn � poly(log n), and the degree d to be polynomial in n. For simplicity, we focus on d = O(1).

Let H = {Hn} be an efficiently constructible family of oriented hypergraphs, that is, there exists an
algorithm that on input 1n outputs all the hypergraphs in Hn in time poly(n). Further assume that Hn

consists of hypergraphs of size (vertices plus hyperedges) at most O( log log logn
log log log logn ). Then Theorem 6.4 implies

a sampler/tester for forbidden hypergraphs from H.

Corollary 6.5. Let c, `, r, q,m, n, d, n′,m′ and k be as in Theorem 6.4. Let H = {Hn} be a efficiently
constructible family of oriented hypergraphs, where Hn consists of hypergraphs with m′ hyperedges and n′

vertices. Then, there exists a sampler/tester pair for {Gq,n,m,d,k, En}, where En is the event that some
hypergraph in Hn is a subgraph of Gq,n,m,d,k. Consequently, we can sample from [Gq,n,m,d,k|¬En] in expected
time of poly(n)/(1− ε(n)) where ε(n) is the probability that En occurs.

Recall that if k ≤ poly(log n), the ensemble Gq,n,m,d,k has succinct representation.

6.1 Proof of Lemma 6.3

Given H and P we construct a set L of at most dm′r + rn′ + `m′ polynomial equations with 2`m′ + 2rn′

variables over the field Fq where each equation is of degree at most D := max{k, n′,m′}. We show that the
system has a solution if and only if H is a subgraph of G := GP . We then employ the algorithm of Kayal [35,
Theorem 6.1.1] which determines if such a system is solvable in time

poly(D(2`m′+2rn′)O(2`m′+2rn′)
· (dm′r + rn′ + `m′) · log q).

Our system L will be composed of three sub-systems L1,L2 and L3.

The hypergraph equations L1. For every hyperedge h of H we define a tuple of `-variables xh =
(xh(1), . . . , xh(`)). For every vertex v of H define a tuple of r-variables xv = (xv(1), . . . , xv(r)). We will
sometimes think of xh and xv as “super-variables” that take values in F`q and Frq, respectively. The first part
of our system L1 consists of the following equations. For every hyperedge h of H and every i ∈ [d] for which
h[i] 6= ⊥, add r equations of the form

Pi,j(xh) = xv(j),

for every j ∈ [r], where v is the i-th vertex of h in H, i.e., h[i] = v.
Let us analyze this part of our system.

Claim 6.6. If H is a subgraph of G then L1 has a satisfying assignment that assigns distinct values to all
the vertex variables and distinct values to all the hyperedge variables, i.e., for every two distinct vertices
u and v the values assigned to xu and xv, when viewed as elements of Frq, are distinct, and for every two

distinct hyperedges h and f , the values assigned to xh and xf , when viewed as elements of F`q, are distinct.

Proof. Suppose that H is a subgraph of G, and let π : V (H) → V (G) and σ : [m′] → [m], be the injective
maps guaranteed by Definition 4.1. We define the following assignment. For every i ∈ [m′] set the variable
xhi , that corresponds to the i-th hyperedge hi of H, to xhi = eσ(i) where ej ∈ F`q is the j-th hyperedge
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of G. For every vertex v of H set xv = π(v). (Recall that we identify the vertices of G with Frq.) Since
the i-th hyperedge of π(H) matches to the σ(i)-th hyperedge of G, it follows that this assignment satisfies
L1. Moreover, note that for every two distinct vertices u and v of H, the values assigned to xu and xv are
distinct, since π is injective. Similarly, for every two distinct hyperedges h and f of H, the values assigned
to xh and xf are distinct, since σ is injective.

Claim 6.7. Suppose that L1 has a satisfying assignment that assigns distinct values to all the vertex variables
and distinct values to all the hyperedge variables (in the sense of Claim 6.6). Then H is a subgraph of G.

Proof. For every vertex v and every hyperedge h, denote the value assigned to the variable xv by av and
the value assigned to the variable xh by ah. Define the mapping π : V (H) → V (G) by π(v) = av, and the
mapping σ : [m′]→ [m] by σ(i) = j for a j ∈ [m] such that ahi = ej , where ej is the j-th edge of G.

By construction, the assignment satisfies L1 if and only if the i-th hyperedge of π(H) matches the σ(i)-th
hyperedge of G. Moreover, as all the av’s are distinct, it follows that π is injective, and as all the ah’s are
distinct, it follows that σ is injective. Hence, by Definition 4.1 it follows that H is a subgraph of G.

In order to prove that π and σ are injective, we crucially relied on the distinctness property of the
assignment. Indeed, a violation of these additional properties results in a non-injective π or σ. We solve
this problem by adding more constraints (and some auxiliary variables). Specifically, we use the following
gadget.

Claim 6.8 (Distinctness gadget). Let X = (X1, . . . , Xη) be η formal variables taking values from some finite
field F of size at least η. Let Y = (Y0, . . . , Yη−1) be additional formal variables over F, and consider the
polynomial system of η equations whose i-th equation is

η−1∑
j=0

YjX
j
i = ai, (1)

where a1, . . . , aη are some fixed distinct values from F. Then, for any fixed assignment x for X there exists
an assignment y for Y such that (x, y) satisfies the system (1) if and only if x1, . . . , xη are all distinct values
in F.

Proof of Claim. For the “if” direction, assume that the values x1, . . . , xη are all distinct. Then, using

Lagrange’s interpolation, we can construct a univariate polynomial g(Z) =
∑η−1
j=0 bjZ

j of degree at most
η− 1 over F, such that g(xi) = ai for every i ∈ [η]. Then, by taking y = (b0, . . . , bη−1), the assignment (x, y)
satisfies the system.

For the “only-if” direction, assume towards a contradiction that the assignment (x, y) satisfies the sys-
tem (1) but xi = xj for some i 6= j. In this case, the LHS of the i-th equation equals to the LHS of the j-th
equation, and therefore at least one of these equations is violated since ai 6= aj .

In the following we define two additional set of equations, L2 and L3. The former makes sure that any
assignment that satisfies L1 has distinct values for the xv’s, while the latter makes sure that any assignment
that satisfies L1 has distinct values for the xh’s. We first define those equations over an extension field, and
then show how to translate them to equations over the base field.

The vertices equations L2. Fix some arbitrary sequence a1, . . . , an′ of distinct values from Fqr , and let
y0, . . . , yn′−1 be additional formal variables over Fqr . First, we define the system L′2 as follows. For every

vertex vi of H add the equation
∑n′−1
j=0 yjx

j
vi = ai over Fqr , where we think of xvi as a formal variable

over Fqr (see Fact 4.2). Note that L′2 consists of n′ polynomial equations over Fqr , where each equation has
total-degree at most n′ and variables (xv)v∈V (H) and (yi)i∈[n′].

It remains to translate L′2 to equations over Fq. Recall that for every vertex v of H, xv is a vector of
r formal variables over Fq. Similarly, we can view each yi as a vector of r formal variables over Fq, that is
yi = (yi(1), . . . , yi(r)) for every i ∈ [n′]. Then, from Fact 4.3, there exist r · n′ equations over Fq, each of
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total degree at most n′, over the variables (xv(i))v∈V (H),i∈[r] and (yi(j))i∈[n′],j∈[r], for which the following
holds. Every assignment xv(i) and yi(j) satisfies the new set of equations if and only if it satisfies L′2, when
taking xv = (xv(1), . . . , xv(r)) and yi = (yi(1), . . . , yi(r)). We take the new set of equations to be L2.

The hyperedges equations L3. Fix some arbitrary sequence b1, . . . , bm′ of distinct values from Fq` , and
let z0, . . . , zm′−1 be additional formal variables over Fq` . First, we define the system L′3 as follows. For every

hyperedge hi of H add the equation
∑m′−1
j=0 zjx

j
hi

= bi over Fq` , where we think of xhi as a formal variable
over Fq` (see Fact 4.2). Note that L′3 consists of m′ polynomial equations over Fq` , where each equation has
total-degree at most m′ and variables (xh)h∈E(H) and (zi)i∈[m′].

It remains to translate L′3 to equations over Fq. Recall that for every hyperedge h of H, xh is a vector
of ` formal variables over Fn. Similarly, we can view each zi as a vector of ` formal variables over Fq, that
is zi = (zi(1), . . . , zi(`)) for every i ∈ [m′]. Then, from Fact 4.3, there exist ` ·m′ equations over Fq, each of
total degree at most m′, over the variables (xh(i)h∈E(H),i∈[`]) and (zi(j))i∈[m′],j∈[`], for which the following
holds. Every assignment xh(i) and zi(j) satisfies the new set of equations if and only if it satisfies L′3, when
taking xh = (xh(1), . . . , xh(`)) and zi = (zi(1), . . . , zi(`)). We take the new set of equations to be L3.

Completing the proof. We can now prove that H is a subgraph of G if and only if there exists a satisfying
assignment to the set of equations L1 ∪ L2 ∪ L3.

If direction: Suppose that we can satisfy L1 ∪ L2 ∪ L3 by some assignment σ that assigns the val-
ues (av)v∈V (H) to the vertex variables (xv)v∈V (H) and the values (ah)h∈E(H) to the hyperedge variables
(xh)h∈E(H). By Claim 6.7, it suffices to show that all the av’s are distinct, and that all the ah’s are distinct.
Indeed, since σ assigns values to the yi(j) variables that satisfy L2 (over Fq) and to the zi(j) variables
that satisfy L3 (over Fq), Fact 4.3 implies that there exists an assignment to the “super-variables” yi’s that
satisfies L′2 (over Fqr ) and to the “super-variables” zi’s that satisfies L′3 (over Fq`). We can therefore use
Claim 6.8 and conclude that the values (av)v∈V (H) are all distinct as well as the values (ah)h∈E(H).

Only-If direction: Suppose that H is a subgraph of G. Then, by Claim 6.6, L1 has a satisfying assignment
to the xv’s and xh’s, that assigns distinct values to all the vertex variables and distinct values to all the
hyperedge variables. Fix this assignment to the xv’s and the xh’s. Since the values assigned to the xv’s are
distinct, Claim 6.8 implies that there exists an assignment to the yi’s that satisfies L′2 (over Fqr ). Fact 4.3
implies that there exists an assignment to the yi(j)’s that satisfies L2 (over Fq). Fix this assignment to the
yi(j)’s. Similarly, since the values assigned to the xh’s are distinct, Claim 6.8 implies that there exists an
assignment to the zi’s that satisfies L′3 (over Fq`), and Fact 4.3 implies that there exists an assignment to
the zi(j)’s that satisfies L3 (over Fq). By fixing this assignment to the zi(j)’s, we derive an assignment that
satisfies the system L1 ∪ L2 ∪ L3.

Running time. To analyze the running time, note that we have at most dm′r + rn′ + `m′ polynomial
equations with 2`m′ + 2rn′ variables over the field Fq, where each equation is of degree at most D :=
max{k,m′, n′}. The total running-time for generating the equations, including the translation of L′2 and L′3
(see Fact 4.3), is poly(d, (m′)`, (n′)r, k`, r, log q), while, by [35, Theorem 6.1.1], checking whether the set of

equations is solvable takes time poly(D(2`m′+2rn′)O(2`m′+2rn′) · (dm′r+ rn′+ `m′) · log q). This completes the
proof of Lemma 6.3.

6.2 Extensions

6.2.1 Edge-Disjoint Homomorphism

Recall that H is a subgraph of G if the vertices of H can be renamed, using an injective mapping π :
V (H)→ V (G), such that each of the hyperedges of H matches to a unique hyperedge of G. (The mapping
between H hyperedges to G hyperedges is denoted by σ. See Definition 4.1.) A useful relaxation of this
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notion is obtained by allowing π to be non-injective. In particular, two vertices of H can be mapped to the
same vertex in G. Since the edge-mapping σ is still required to be injective, we refer to this notion as edge-
disjoint homomorphism from H to G. For example, under this notion, a k-path digraph H is edge-disjoint
homomorphic to a k-directed cycle G. The following lemma restates Lemma 6.3 to the case of edge-disjoint
homomorphism.

Lemma 6.9. There exists an algorithm A that given an (n′,m′,≤ d) oriented hypergraph H and a vector
of polynomials in P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) from P`,k,q (where k < `(q − 1)), tests if H is
edge-disjoint homomorphic to GP (defined as in Construction 6.1), and its running time is polynomial in

D(2`m′+rn′)O(2`m′+rn′)
· (dm′r + `m′) · log q,

for D := max {k,m′}.

The proof of Lemma 6.9 follows from the analysis in Section 6.1, and noting that H is edge disjoint
homomorphic to GP if and only if the set of equations L1 ∪ L3 has a solution.

Based on Claim 6.2 and Lemma 6.9 we derive the following theorem (that can be viewed as a version of
Theorem 6.4 that applies to edge-disjoint homomorphism).

Theorem 6.10. Let d ≥ 2 be a constant integer and let c be a constant positive rational number, represented
in lowest terms by `/r, and let A be a positive constant. For every prime power q define n = qr, m = nc,
and consider any

n′ ≤ A · log log n

log log log n
and m′ ≤ A · log log log n

log log log log n
.

Then there exists a positive constant B such that for every

k ≤ min(q − 2, nA/e(n
′,m′)), where e(n′,m′) = (2m′`+ n′r)B·(2m

′`+n′r),

the following holds. There is a poly(n)-time algorithm S that samples a graph G from Gq,n,m,d,k and a
poly(n)-time testing algorithm T that given an (n′,m′,≤ d) oriented hypergraph H tests for the event that H
is edge-disjoint homomorphic to G. Moreover, if k ≤ polylog(n), the ensemble Gq,n,m,d,k is succinct, and if,
in addition, the hypergraph H is of constant size, i.e., n′+m′ = O(1), then the tester also runs in polylog(n)
time.

Note that if we are not interested in succinct hypergraphs, we can even take d = poly(n) and still
get a polynomial-time testing algorithm. Observe that if d = ω(1) then the number of vertices might

be ω
(

log log logn
log log log logn

)
even if the number of edges is O

(
log log logn

log log log logn

)
. In this case, edge-disjoint homo-

morphism allows us to test for O
(

log logn
log log logn

)
vertices. (Recall that for subgraphs we can only cope with

O
(

log log logn
log log log logn

)
vertices.)

The following theorem is an adaptation of Corollary 6.5 to the case of edge-disjoint homomorphism.

Corollary 6.11. Let c, `, r, q,m, n, d, n′,m′ and k be as in Theorem 6.10. Let H = {Hn} be an efficiently
constructible family of oriented hypergraphs, where Hn consists of hypergraphs with m′ hyperedges and n′

vertices. Then, there exists a sampler/tester pair for {Gq,n,m,d,k, En}, where En is the event that some hyper-
graph in Hn is edge-disjoint homomorphic to Gq,n,m,d,k. Consequently, we can sample from [Gq,n,m,d,k|¬En]
in expected time of poly(n)/(1− ε(n)) where ε(n) is the probability that En occurs.

6.2.2 Non-Oriented Hypergraphs

Both the notion of oriented subgraph, and the notion of edge-disjoint homomorphism can be extended to
the case of non-oriented hypergraphs. In particular, we say that an (n′,m′,≤ d) non-oriented hypergraph
H is a subgraph of an (n,m, d) non-oriented hypergraph G (resp., edge-disjoint homomorphic to G) if one
can orient H and G (i.e., turn each hyperedge into a d-tuple) so that H is a subgraph of G (resp., H is
edge-disjoint homomorphic to G).

19



Observation 6.12. If a non-oriented hypergraph H is a subgraph of a non-oriented hypergraph G (resp.,
edge-disjoint homomorphic to G), then for any fixed orientation of G there exists an orientation of H such
that H is an oriented subgraph of G (resp. edge-disjoint homomorphic to G).

In the following section we will think of Gq,n,m,d,k (defined in Construction 6.1) as a distribution over
non-oriented hypergraphs, unless stated otherwise. Similarly, for a vector of polynomials

P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r))

from P`,k,q, we will think of GP (defined in Construction 6.1) as a non-oriented hypergraph, unless stated
otherwise. In order to check if a non-oriented (n′,m′,≤ d)-hypergraph H is a subgraph of GP , one can view
GP as an oriented graph G′P and check, for each of all (d!)m

′
possible orientations H ′ of H, if H ′ appears as

a subgraph of GP . A similar approach applies to the case of testing whether H is edge-disjoint homomorphic
to GP . Therefore, by combining Lemmas 6.3 and 6.9 with Observation 6.12, we derive the following lemma.

Lemma 6.13. There exists an algorithm A that given a non-oriented (n′,m′,≤ d) hypergraph H and a
vector of polynomials in P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) from P`,k,q, tests if H is a subgraph of
GP (defined as in Construction 6.1), and its running time is polynomial in

(d!)m
′
·D(2`m′+2rn′)O(2`m′+2rn′)

· (dm′r + rn′ + `m′) · log q, for D := max {k,m′, n′}.

Similarly, there exists an algorithm A that given a non-oriented (n′,m′,≤ d) hypergraph H and a vec-
tor of polynomials in P = ((P1,1, . . . , P1,r), . . . , (Pd,1, . . . , Pd,r)) from P`,k,q, tests if H is a edge-disjoint
homomorphic to GP , and its running time is polynomial in

(d!)m
′
·D(2`m′+rn′)O(2`m′+rn′)

· (dm′r + `m′) · log q, for D := max {k,m′}.

The following theorem follows immediately from Claim 6.2 and Lemma 6.13.

Theorem 6.14. Let c, `, r, q,m, n, n′,m′ and k be as in Theorem 6.4 and let d be a constant. Then, there
is a poly(n)-time algorithm S that samples Gq,n,m,d,k and a poly(n)-time testing algorithm T that given an
(n′,m′,≤ d) non-oriented hypergraph H tests for the event that H is a subgraph of G.

Let c, `, r, q,m, n, n′,m′ and k be as in Theorem 6.10 and let d be a constant. Then, there is a poly(n)-
time algorithm S that samples Gq,n,m,d,k and a poly(n)-time testing algorithm T that given an (n′,m′,≤ d)
non-oriented hypergraph H tests for the event that H is edge-disjoint homomorphic to G.

Note that in Theorem 6.14 we can no longer take d to be polynomial in q.

Corollary 6.15. Let c, `, r, q,m, n, d, n′,m′ and k be as in the first part of Theorem 6.14 (resp., the second
part of Theorem 6.14). Let H = {Hn} be a efficiently constructible family of non-oriented hypergraphs,
where Hn consists of hypergraphs with m′ hyperedges and n′ vertices. Then, there exists a sampler/tester
pair for {Gq,n,m,d,k, En}, where En is the event that some hypergraph in Hn is a subgraph of Gq,n,m,d,k (resp.,
edge-disjoint homomorphic to Gq,n,m,d,k). Consequently, we can sample from [Gq,n,m,d,k|¬En] in expected
time of poly(n)/(1− ε(n)) where ε(n) is the probability that En occurs.

7 Unbalanced Expanders

7.1 Definitions

In the following section we will be interested in the problem of sampling expanders from a k-wise independent
distribution. We will be interested in the following notions of expansion.13

13Expanders are usually presented as bipartite graphs, as discussed in Footnote 7. In the following, we will stick to the
presentation with hypergraphs.
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Let G = (V,E) be a non-oriented (n,m, d)-hypergraph. For a set S ⊆ [m] of hyperedges, let Γ(S) be the
set of all vertices that are an element of at least one hyperedge of S. Let Γ1(S) be the set of all vertices
that have multiplicity 1 in the sum of all hyperedges of S. (Recall that the sum of two multisets e and f
is a multiset g in which the multiplicity of an element x is the sum of the multiplicity of x in e with the
multiplicity of x in f .) For example, if S = {1, 2, 5} and e1 = {1, 2, 1}, e2 = {2, 3, 4} and e5 = {5, 2, 3} then
Γ(S) = {1, 2, 3, 4, 5}, and Γ1(S) = {4, 5}. Note that although 1 is contained only in e1, its multiplicity is 2,
so it is not contained in Γ1(S).

We begin with a formal definition of a vertex-expander and a unique-neighbor expander. We emphasize
that in the following section all hypergraphs are non-oriented.

Definition 7.1 (vertex-expander). Let G be an (n,m, d)-hypergraph. We say that a set S ⊆ [m] of hyperedges
is α-expanding if |Γ(S)| ≥ α|S|. We say that G is an (α, γ)-expander if every set S ⊆ [m] of hyperedges of
size at most γ is α-expanding.

We will usually refer to α as the expansion-factor. Note that we must have α ≤ d and γ ≤ m/α.

Definition 7.2 (unique-neighbor expander). Let G be an (n,m, d)-hypergraph. We say that a set S ⊆ [m]
of hyperedges is α-uniquely-expanding if |Γ1(S)| ≥ α|S|. Every v ∈ Γ1(S) is called a unique-neighbor in S.
We say that G is a (β, γ)-unique-neighbor expander if every set S ⊆ [m] of hyperedges of size at most γ is
β-uniquely-expanding.

Organization of the section. In Section 7.2 we show that a random (n,m, d)-hypergraph is likely to be a
good expander. In Section 7.3 we will show how to sample an (n,m, d)-hypergraph from a k-wise independent
distribution of hypergraphs, conditioned on the event that the hypergraph expands small sets. In Section 7.4
we will show how to compose the expanders that we sampled with a random (n,m, d)-hypergraph in order
get an expander that also expands large sets.

7.2 The Expansion of k-wise Independent Hypergraphs

It is well known that a random (n,m, d) hypergraph is likely to be a good expander. We extend this fact to
the case of k-wise independent (n,m, d)-hypergraphs. The proof of the claim is deferred to Appendix B.

Claim 7.3. Let c > 1 be an arbitrary constant, and let d > c be an integer. Let α < d − c be a constant,
and let m = nc. Let Gn,m,d,k be any k-wise independent distribution over (n,m, d)-hypergraphs. Let γ ≤
min{ρn1−δ, k} for sufficiently small constant ρ and δ = (c− 1)/(d− α− 1). Let s ≤ γ. Then the probability
that there exists a set of s hyperedges which is not α-expanding is at most(

aα,d ·
sd−α−1

nd−c−α

)s
,

for a constant aα,d that depends only on α and d. Consequently, the probability that the sampled graph is
not (α, γ)-expander is at most 1/2.

It is well known that vertex expansion implies unique-neighbor expansion (cf. [17]). In particular, if
α = (1 − ε)d and β = (1 − 2ε)d for some ε < 0.5, then every set which is α-expanding, is also β-uniquely-
expanding. The following claim follows.

Claim 7.4. Let c > 1 be an arbitrary constant and let d > 2c be an integer. Let β < d − 2c be a constant,
and let m = nc. Let Gn,m,d,k be any k-wise independent distribution over (n,m, d)-hypergraphs. Let γ ≤
min{ρn1−δ, k} for sufficiently small constant ρ and δ = 2(c− 1)/(d−β− 2). Let s ≤ γ. Then the probability
that there exists a set of s hyperedges which is not β-uniquely-expanding is at most(

aβ,d ·
s(d−β−2)/2

n(d−2c−β)/2

)s
,

for a constant aβ,d that depends only on β and d. Consequently, the probability that the sampled graph is
not (β, γ)-unique-neighbor expander is at most 1/2.
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7.3 k-wise Independent Small-Set Expanders

In this section we prove the following theorem.

Theorem 7.5. Let c > 1 be an arbitrary constant and let d > c be some integer. Let α < d − c be a
constant and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. There exists a poly(n)-time

sampler/tester pair with the following properties:

1. For every prime power n, the sampler samples (n,m = nc, d)-hypergraph.14

2. The tester tests if the sampled hypergraph is (α, γ)-expander. Moreover, the sampled graph passes the
test with probability 1

2 .

3. The hypergraph is sampled from a k-wise independent distribution, for k ≤ min(poly(n1/e(γ)), nε),
where e(γ) = γO(γ), the constants in the big-O notation depend on c, and ε > 0 is a constant that
depends on c. Moreover, if k ≤ poly(log n) then the sampled graph has a succinct representation.

Combining Theorem 7.5 with Observation 5.3 we get the following version of Theorem 2.8.

Corollary 7.6. Let c > 1 be an arbitrary constant and let d > c be some integer. Let α < d − c be a
constant and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. Then, for a prime power n and

k = min(poly(n1/e(γ)), nε) it is possible to sample in expected polynomial-time an (n,m = nc, d)-hypergraph
from a k-wise independent distribution, conditioned on having (α, γ)-expansion. Consequently, there is a
zero-error randomized construction of such expanders. Moreover, if k ≤ poly(logn) then the resulting graph
has a succinct representation (but polynomial-time generation algorithm).

For the case of unique-neighbor expander, we prove the following.

Theorem 7.7. Let c > 1 be some arbitrary constant and let d > 2c be some integer. Let β < d − 2c be
a constant, and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. There exists a poly(n)-time

sampler/tester pair with the following properties:

1. For every prime power n, the sampler samples (n,m = nc, d)-hypergraph.

2. The tester tests if the sampled hypergraph is (β, γ)-unique-neighbor expander. Moreover, the sampled
graph passes the test with probability 1

2 .

3. The hypergraph is sampled from a k-wise independent distribution, for k = min(poly(n1/e(γ)), nε),
where e(γ) = γO(γ), the constants in the big-O notation depend on c, and ε > 0 is a constant that
depends on c. Moreover, if k ≤ poly(log n) then the sampled graph is succinct.

Combining Theorem 7.7 with Observation 5.3 we get the following theorem.

Corollary 7.8. Let c > 1 be some arbitrary constant and let d > 2c be some integer. Let β < d − 2c be a
constant, and let γ = O( log log logn

log log log logn ) be an efficiently-computable function. Then, for a prime power n and

k = min(poly(n1/e(γ)), nε) it is possible to sample in expected polynomial-time an (n,m = nc, d)-hypergraph
from a k-wise independent distribution conditioned on have (β, γ)-unique-expansion. Consequently, there is a
zero-error randomized construction of such expanders. Moreover, if k ≤ poly(logn) then the resulting graph
has a succinct representation (but polynomial-time generation algorithm).

To prove the theorems we observe that expanders and unique-neighbor expanders occur with high prob-
ability when sampling from a k-wise independent distribution of hypergraphs. As we have already seen a
sampler for such a distribution, and an algorithm that tests for subgraphs and edge-disjoint homomorphism
(see Theorem 6.14), we will show that we can use it to construct a tester for the expansion properties of the
sampled graph.

14If nc is not an integer then m = bncc. For clarity, we always omit the floor symbol.
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7.3.1 Proof of Theorem 7.5

Let c > 1 be an arbitrary constant and let d > c be some integer. Let α < d − c be a constant and let
γ = O( log log logn

log log log logn ) be an efficiently-computable function. Let k = min(poly(n1/e(γ)), nε).
Note that we can assume without loss of generality that c is rational, as for any irrational number c and

every α < d− c, there exists a rational number c∗ > c such that α < d− c∗.
Theorem 6.14 implies a sampling algorithm S, that, given as input 1n for a prime power n, samples in time

poly(n) an (n,m = nc, d)-hypergraph G from a k-wise independent distribution. Note that if k ≤ poly(log n)
then the sampled graph is succinct, and that Claim 7.3 implies that G is an (α, γ)-expander with probability
at least 1/2.

Moreover, Theorem 6.14 implies a poly(n)-time testing algorithm T , that, given a non-oriented (n′,m′,≤
d)-hypergraph H, with n′ = O(γ) and m′ = O(γ), tests for the event that H is edge-disjoint homomorphic
to G. It remains to show that we can use T in order to construct a tester T ′ for the event that the sampled
graph is not an (α, γ)-expander.

Claim 7.9. Let G be an (n,m, d)-hypergraph. Fix some constant α. Then, there exists an (n′,m′, d)-
hypergraph H, for n′ < αm′, which is edge-disjoint homomorphic to G if and only if G has a set of m′

hyperedges which is not α-expanding.

Proof. Let H be an (n′,m′, d)-hypergraph, for n′ < αm′ that is edge-disjoint homomorphic to G. Let σ and
π be the corresponding mappings. Let S be the image of σ (recall that σ is injective, hence its image is of
size m′). Then Γ(S), corresponds to the image of π, that has at most n′ < αm′ vertices.

For the other direction, let S be a set of m′ hyperedges which is not α-expanding, and denote n′ = |Γ(S)|.
Denote the edges in S by e1, . . . , em′ and the vertices by v1, . . . , vn′ . Let H be the (n′,m′, d)-graph whose
vertices are v1, . . . , vn′ and whose edges are e1, . . . , em′ . Then H is edge-disjoint homomorphic to G.

The following observation shows that a tester for edge-disjoint homomorphism can be used for testing
expansion.

Observation 7.10. Let S be a sampling algorithm that samples an (n,m, d)-graph G from a k-wise inde-
pendent distribution, and let T be a testing algorithm that, given an (n′,m′,≤ d)-graph, test for the event
that H is edge-disjoint homomorphic to G. Then, using only γ ·αγ · (αγ)dγ applications of T on hypergraphs
with m′ ≤ γ and n′ < αγ, we can test whether the sampled graph is an (α, γ)-expander.

Proof. Iterate over all possible m′ ≤ γ and n′ < αm′. For every pair (m′, n′) we go over all (n′)dm
′

possible
(n′,m′, d)-hypergraphs. For every such (n′,m′, d)-hypergraph H, check if H is edge-disjoint homomorphic to
G using T . From Claim 7.9 it follows that there exists a set at most γ hyperedges which is not α-expanding
if and only if some H is edge-disjoint homomorphic to G.

Finally, Observation 7.10, together with the existence of T implies the existence of a poly(n)-time algo-
rithm T ′ that tests for the event that G is not an (α, γ)-expander. This concludes the proof of Theorem 7.5.

7.3.2 Proof of Theorem 7.7

The proof is very similar to the one presented in Section 7.3.1. Let c > 1 be some constant and let d > 2c be
an integer. Let β < d− 2c be a constant, and let γ = O( log log logn

log log log logn ) be an efficiently-computable function.

Let k = min(poly(n1/e(γ)), nε).
Again, we assume without loss of generality that c is rational.
Theorem 6.14 implies a sampling algorithm S, that, given as input 1n for a prime power n, samples in time

poly(n) an (n,m = nc, d)-hypergraph G from a k-wise independent distribution. Note that if k ≤ poly(log n)
then the sampled graph is succinct, and that Claim 7.4 implies that G is a (β, γ)-unique-neighbor expander
with probability at least 1/2.

Moreover, Theorem 6.14 implies a poly(n)-time testing algorithm T , that, given a non-oriented (n′,m′,≤
d)-hypergraph H, with n′ = O(γ) and m′ = O(γ), tests for the event that H is a subgraph of G. It remains
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to show that we can use T in order to construct a tester T ′ for the event that the sampled graph is not an
(β, γ)-unique-neighbor expander.

Claim 7.11. Let G be an (n,m, d)-hypergraph. Fix some constant β. Then, there exists an (n′,m′, d)-
hypergraph H, for which the set S = [m′] is not β-uniquely-expanding and H is a subgraph of G if and only
if G has a set of m′ hyperedges which is not β-uniquely-expanding.

Proof. For the first direction, let σ and π be the mappings promised in Definition 4.1, and take S to be the
image of σ. Then S is not β-uniquely-expanding in G. For the other direction, take H to be the subgraph
that contains the hyperedges of the set that is not β-uniquely-expanding.

The following observation shows that a tester for subgraphs can be used for testing unique-neighbors
expansion.

Observation 7.12. Let S be a sampling algorithm that samples an (n,m, d)-graph G from a k-wise inde-
pendent distribution, and let T be a testing algorithm that, given an (n′,m′,≤ d)-graph, test for the event
that H is a subgraph of G. Then, using only γ · (dγ) · (dγ)dγ applications of T on hypergraphs with m′ ≤ γ
and n′ ≤ dγ, we can test whether the sampled graph is a (β, γ)-unique-neighbor expander.

Proof. Iterate over all possible m′ ≤ γ and n′ ≤ dm′. For every pair (m′, n′) we go over all (n′)dm
′

possible
(n′,m′, d)-hypergraphs. For every (n′,m′, d)-hypergraph H for which the set T = [m′] is not β-uniquely
expanding, check if H is a subgraph of G. From Claim 7.11 it follows that there exists a set S of size ≤ γ in
G that is not β-uniquely-expanding if and only if some H which is not β-uniquely-expanding is a subgraph
of G.

Finally, Observation 7.12, together with the existence of T implies the existence of a poly(n)-time algo-
rithm T ′ that tests for the event that G is not an (β, γ)-unique-neighbor expander. This concludes the proof
of Theorem 7.7.

7.4 Expanding Large Sets

7.4.1 Composing Vertex-Expander with Random Graphs

The following construction shows how to compose two hypergraphs, G1 and G2, where in G1 every “small”
set is good (that is, it has a good expansion), and in G2 the “big” sets are good.

Construction 7.13. Given two (n,m, d)-hypergraphs G1 = (V1, E1) and G2 = (V2, E2) we define the
following (n,m, 2d)-hypergraph G = (V,E). For the vertices, identify both V1 and V2 with [n]. The set of
vertices of G is simply [n]. For the hyperedges, assume that E1 = (f1, . . . , fm) and E2 = (h1, . . . , hm). Then
the i-th hyperedge of G is ei = fi + hi, where fi + hi is the sum of the multisets fi and hi.

Recall that the sum of two multisets f and h is a multiset e in which the multiplicity of an element x
is the sum of the multiplicity of x in f with the multiplicity of x in h. For example, if fi = {1, 3, 5} and
hi = {1, 2, 4} then ei = {1, 1, 2, 3, 4, 5} (recall that in this context, {} represents a multiset).

Claim 7.14. Let G1 and G2 be an (n,m, d)-hypergraphs and let γ > γ′. Assume that every set S of at most
γ′ hyperedges of G1 has expansion α1 (that is, |Γ(S)| ≥ α1|S|). In addition, assume that every set S of
hyperedges of G2, of size at least γ′ and at most γ has expansion α2. Let α = min{α1, α2}.Then G, defined
as in Construction 7.13, is an (n,m, 2d)-hypergraph and an (α, γ)-expander.

Proof. It is clear that G is an (n,m, 2d)-hypergraph. For the expansion property, fix some set S of s
hyperedges from G. If s ≤ γ′ then, by the expansion property of G1 it holds that Γ(S) ≥ α1s. If γ′ ≤ s ≤ γ,
then by the expansion property of G2 it holds that Γ(S) ≥ α2s. The claim follows.

We can now prove the following version of Theorem 2.9 from the introduction.
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Theorem 7.15 (Negligible-Error Construction of Expanders). Let c > 1 be some constant, let d > c be an
integer, and let α < d − c be a constant. There exists a poly(n)-time probabilistic algorithm that, except
with negligible probability n−ω(1), samples an (n,m = nc, 2d)-hypergraph which is an (α, γ)-expander, where
γ = ρn1−δ for a sufficiently small constant ρ and δ = (c− 1)/(d− α− 1).

Proof. Let γ′ = Θ( log log logn
log log log logn ). Let G1 be the (n,m, d)-hypergraph which is a (α, γ′)-expander, promised

in Corollary 7.6. Note that G1 can be sampled in time poly(n) with negligible error.
Let G2 be a random (n,m, d) hypergraph (that is, every hyperedge is distributed uniformly and inde-

pendently over [n]d). Let γ′ ≤ s ≤ γ. By Claim 7.3, the probability that there exists a bad set of size s is
negligible. Taking union-bound over at most ρn1−δ possible assignments to s, we get that the probability
that there exists a set of size more than γ′ and at most γ which is not α-expanding is negligible. Moreover,
note that G2 can be sampled in time poly(n).

Conditioned on the events that G1 is an (α, γ′)-expander, and that in G2 every set S ⊆ [m] of size
γ′ ≤ s ≤ γ is α-expanding, Let G be as in Construction 7.13. Then, by Claim 7.14 G is a (n,m, 2d)-
hypergraph which is (α, γ)-expander, which completes the proof.

7.4.2 Composing Unique-Neighbor Expander with Random Graphs

The following construction shows how to compose two hypergraphs, G1 and G2, where in G1 every “small”
set is uniquely-expanding, while in G2 the “big” sets are uniquely-expanding.

Construction 7.16. Given two (n,m, d)-hypergraphs G1 = (V1, E1) and G2 = (V2, E2) we define the
following (2n,m, 2d)-hypergraph G = (V,E). For the vertices, assume that V1 = {v1, . . . , vn} and V2 =
{u1, . . . , un}. The vertices of G is the union of the set of vertices of G1 with the set of vertices of G2 (that
is, V = V1 ∪ V2). For the hyperedges, assume that E1 = (f1, . . . , fm) and E2 = (h1, . . . , hm). Then the i-th
hyperedge of G is ei = fi + hi, where fi + hi is the sum of the multisets fi and hi.

For example, if fi = {v1, v1, v7} and hi = {u2, u5, u7} then ei = {v1, v1, v7, u2, u5, u7} (recall that in this
context, {} represents a multiset).

Claim 7.17. Let G1 and G2 be an (n,m, d)-hypergraphs and let γ > γ′. Assume that every set S of at most
γ′ hyperedges of G1 is β-uniquely-expanding (that is, G1 is a (β, γ′)-unqiue-neighbor expander). In addition,
assume that every set S of hyperedges of G2, of size at least γ′ and at most γ, is β-uniquely-expanding. Then
G, defined as in Construction 7.16, is a (2n,m, 2d)-hypergraph and a (β, γ)-unique-neighbor expander.

Proof. It is clear that G is a (2n,m, 2d)-hypergraph. For the expansion property, fix a set S of s hyperedges
of G. First, note that if the set S has a unique neighbor v in G1 (resp., G2) then this vertex is also a unique
neighbor in G, since no hyperedge in G2 (resp., G1) touches v. Now, if s ≤ γ′, then, by the expansion
property of G1, it holds that Γ1(S) ≥ βs. If γ′ ≤ s ≤ γ then, by the expansion property of G2 it holds that
Γ1(S) ≥ βs. Hence G is a (β, γ)-unique-neighbor expander.

We can now prove the following version of Theorem 2.10.

Theorem 7.18 (Negligible-Error Construction of Unique-Neighbor Expaner). Let c > 1 be some constant,
let d > 2c be an integer and let β < d− 2c be a constant. There exists a poly(n)-time probabilistic algorithm
that, except with negligible probability n−ω(1), samples an (2n,m = nc, 2d)-hypergraph with (β, γ)-unique-
neighbor-expander, where γ = ρn1−δ for a sufficiently small constant ρ and δ = 2(c− 1)/(d− β − 2).

Proof. Let γ′ = Θ( log log logn
log log log logn ). Let G1 be the (n,m, d)-hypergraph which is a (β, γ′)-unique-neighbor

expander, promised in Corollary 7.8. Note that G1 can be sampled in time poly(n) with negligible error.
Let G2 be a random (n,m, d) hypergraph (that is, every hyperedge is distributed uniformly and inde-

pendently over [n]d). Let γ′ ≤ s ≤ γ. By Claim 7.4, the probability that there exists a bad set of size s is
negligible. Taking union-bound over at most ρn1−δ possible assignments to s, we get that the probability
that there exists a set of size more than γ′ and at most γ which is not β-uniquely-expanding is negligible.
Moreover, note that G2 can be sampled in time poly(n).
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Conditioned on the events that G1 is a (β, γ′)-unique-neighbor expander, and that in G2 every set S ⊆ [m]
of size γ′ ≤ s ≤ γ is β-uniquey-expanding, let G be as in Construction 7.16. Then, by Claim 7.17, G is a
(2n,m, 2d)-hypergraph which is (β, γ)-unique-neighbor expander, which completes the proof.

8 Applications

8.1 Batch Codes

Batch codes, introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [33], allow us to distribute an m-bit
information word x over n devices such that every subset of γ bits of x (“batch”) can be decoded by retrieving
at most a single bit from each device while using a total space of at most M bits. Formally, an (m,M, γ, n)
batch code is a pair of deterministic algorithms (Enc,Dec) such that:

• The encoder Enc maps an information word x ∈ {0, 1}m into an n-tuple of strings, y = (y1, . . . , yn),
where yi ∈ {0, 1}∗ and the total length of the yi’s is M .

• The decoder Dec takes as an input a γ-subset S ⊂ [m] and, by querying a single bit from each yi, it
recovers (xi)i∈S .

The yi’s are called buckets, and the rate of the code is m/M .
When every bucket is simply a multiset of the bits of x, such a code is called combinatorial batch code

(CBC)[51]. If each bit is stored in precisely d buckets the code is referred to as d-uniform [51]. A CBC
can be represented by a hypergraph with n vertices (representing buckets) and m hyperedges (representing
the bits of x), where the i-th hyperedge contains all the buckets in which the i-th bit is contained in (with
multiplicity). In [33] it is noted that such a hypergraph is a batch code if and only if it has expansion factor
1. Hence, the explicitness of such codes is tighly connected to the explicitness of unbalanced expanders. By
Theorem 7.15 we get the following theorem.

Theorem 8.1. For every constant c > 1 and integer d > 1 + c, there exists a negligible-error construction
of an (m,M, γ, n)-CBC with information words of length m, codeword of length M = 2dm, n = m1/c

buckets and batch-size of Ω(n1− c−1
d−2 ) where the constant in the Omega depends on d. Moreover, the code is

2d-uniform.

Theorem 8.1 guarantees an algorithm A that outputs a description of the CBC encoder and decoder.
Since this is a CBC code, the encoding algorithm can be implemented in linear-time of O(m) in the RAM
model (assuming some initial data-independent prepossessing that can be implemented by A). Moreover,
since the code is 2d-uniform every bit-change in the information word requires only 2d modifications in the
codeword. Decoding of a γ-subset S ⊆ [m] can be done by finding a perfect matching between the required
bits S and some γ buckets, and reading exactly one bit from each of the buckets. This can be done in time
Õ(m10/7) (see [40]).

Theorem 8.1 yields the first negligible-error construction of constant-rate CBC in the regime where the
number of devices n is polynomially smaller than the length m of the information word and the batch-size
γ is polynomially smaller than n.15 Boyle, Couteau, Gilboa and Ishai [16] recently showed that such CBC’s
can be used to construct a useful cryptographic primitive (Multi-Point Function Secret Sharing) with an
optimal computational cost. Due to the lack of negligible-error constructions, they had to rely on heuristic
assumptions or to tolerate an inverse polynomial error. (See the discussion in [16, page 17].) Theorem 8.1
avoids these caveats and yields a constructive version of [16].

15As we have mentioned, batch codes require a weak notion of expansion, that is, an expansion factor 1. To the best of our
knowledge, there are no known constructions for such expanders in this regime.
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8.2 High-Rate LDPC Codes

As already mentioned, the n×m incidence matrix of an (n,m, d)-hypergraph G with (β, γ)-unique-expansion
forms a d-sparse parity-check matrix of an [m,m − n]-linear code of distance γ. Hence, by Theorem 7.18,
we get the following.

Theorem 8.2. Let c > 1 be some arbitrary constant and let d > 2c be an integer. Let m = nc and let
γ = Ω(n1−δ), where δ > 2(c−1)/(d−2) and the constants in the Ω-notation depend on d, c and δ. For every
prime power n, there exists a negligible-error construction of a 2n×m parity-check matrix with at most 2d
ones in each columns which describes an [m,m− 2n]-code of distance at least γ.

We tweak the construction in order to get efficient decoding. Formally, we prove the following theorem
(a restatement of Theorem 2.11) in Section 8.2.1.

Theorem 8.3. Let c > 1 be an arbitrary constant, let d > 10c be an integer and let 0.9d < α < d − c be
a constant. For every prime power n there exists a negligible-error construction of a 2n × m parity-check
matrix with at most 2d ones in each column where m = nc. The corresponding code has an efficient decoding

algorithm that corrects at least Ω(n1− c−1
d−α−1 ) errors within O(log n) parallel steps, where the constants in the

Ω-notation depend on d and α, and the constants in the O-notation depend on α.

The constant α provides a trade-off between the distance and the decoding complexity: A larger α
improves the number of parallel steps, but reduces the distance.

8.2.1 Proof of Theorem 8.3

As a warm-up, we start by presenting the Sipser-Spielman Decoder that works under the assumption that
the underlying graph satisfies strong expansion properties (stronger than the ones that we actually achieve).
Then, we present our construction and explain how to adopt the decoding algorithm to our setting.

The decoder relies on the following simple combinatorial lemma taken from [17]. For completeness, we
prove the lemma in Appendix C.

Lemma 8.4 ([17]). Let G be an (n,m, d)-hypergraph, let α = (1− ε)d for ε ≤ 1/2. Let δ, η > 2ε be constants
and 0 ≤ γ′ ≤ γ ≤ m be some integers. If every set S ⊆ [m] of size |S| ∈ (γ′, γ) is α-expanding, then for
every such set S it holds that:

1. At least 1− δ fraction of the hyperedges in S each have more than (1− 2ε/δ)d unique neighbors.

2. At most 2ε
η−2ε |S| hyperedges not in S each have at least ηd vertices in Γ(S), provided that |S| ∈

(γ′, (1− 2ε
η )γ).

Decoding as solving a constraint-satisfaction problem. Let G be an (n,m, d)-graph and let H be
its incidence matrix that will be used as the parity-check matrix of the code. Given a word x ∈ {0, 1}m, we
label the ith hyperedges, ei, of G by xi, the ith bit of x. We associate a linear constraint with each vertex
vi which is satisfied if the sum of all the labels of the hyperedges that contain vi (with multiplicity) is even.
By definition, x is a codeword if and only if all its constraints are satisfied (i.e., Hx = 0n).

The Sipser-Spielman decoder for good expanders. Assume that the (n,m, d)-hypergraph G is an
(α, γ)-expander where α = (1 − ε)d for ε < 0.1. The expansion-property of G implies that G is also a
(β, γ)-unique-neighbor expander, for β = (1− 2ε)d. Hence, G defines an [m,m−n, γ]-code. Let 1/2 < η < 1
and δ ≥ 2ε be some constants that satisfy

(1− 2ε/δ) > η and 1− δ > 2ε/(η − 2ε), (2)

e.g., η = 0.6 and δ = 0.5. The decoding algorithm gradually updates the noisy codeword until it reaches a
valid codeword in the following way. In each iteration, the decoder flips the value of all the hyperedges that
have at least ηd unsatisfied constraints, until all constraints are satisfied.
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The analysis proceeds as follows. Fix some noisy codeword and let S be the set of hyperedges that
correspond to the coordinates in which errors occur. We assume that S is sufficiently small (the maximal
number of errors that we can correct will be specified later). The key observation is that every unique-
neighbor in S is an unsatisfied constraint, and every unsatisfied constraint is in Γ(S). Now let us apply
Lemma 8.4 with γ′ = 0 for now. The first part of the lemma implies that in each iteration at least 1 − δ
fraction of the hyperedges in S have at least ηd unique-neighbors, which are unsatisfied constraints. Hence,
in each iteration, at least 1 − δ fraction of the hyperedges in S get the correct value. The second part of
Lemma 8.4 implies that at most 2ε/(η−2ε)|S| hyperedges outside of S (that is, hyperedges with correct value),
have at least ηd vertices in Γ(S). Since all unsatisfied constraints are in Γ(S), it follows that at each iteration
the algorithm flips the correct value of at most 2ε/(η− 2ε)|S| hyperedges. Let ξ = (1− δ)− 2ε/(η− 2ε) > 0.
It follows that at each iteration the total number of error decreases by a constant factor of (1 − ξ), and
therefore the number of iterations is O(log n). Finally, note that the decoding algorithm can fix at least
(1− 2ε/η)γ > 0.6γ errors.

Our construction. We show that a modified version of this decoder can decode our construction. Let
c > 1, d > 10c and α ∈ (0.9d, d − c) be constants as in the statement of Theorem 8.3. We sample a
hypergraph G as follows. Use Corollary 7.6 to sample an (n,m = nc, d)-hypergraph G1 = (V1, E1) which
is (α, γ′)-expander for γ′ = Θ( log log logn

log log log logn ). Let ε be a constant for which α = (1 − ε)d and note that,

by assumption, ε < 0.1. Let G2 = (V2, E2) be a random (n,m = nc, d)-hypergraph, and recall that, by
Claim 7.3, with all but negligible probability G2 α-expands every set of size s for 0.6γ′ < s < γ, for
γ = Ω(n1−δ) where δ = (c− 1)/(d−α− 1). We let G be the (2n,m, 2d)-graph defined in Construction 7.13.
Note that G can be sampled in time poly(n) with all but negligible probability.

Decoding algorithm. We describe a decoding algorithm for the [m,m − 2n]-code whose parity-check
matrix is the incidence matrix of G. Let us begin with the simplified assumption that we have an oracle
that given a noisy codeword y returns 1 if the distance of y from the closest codeword is less than 0.6γ′, and
0 otherwise. We will later show how to get rid of this assumption.

As before, fix 1/2 < η < 1 and δ ≥ 2ε for which (1 − 2ε/δ) > η and 1 − δ > 2ε/(η − 2ε). We define
the oracle-aided decoder as follows. At the beginning of each iteration, on noisy codeword y, the decoding
algorithm calls the oracle with input y. If there are less than 0.6γ′ errors, then in this iteration the decoder
considers only the restriction of G to V1 (that is, it looks at G1), and otherwise, if there are more than 0.6γ′

errors, then in this iteration the decoder considers only the restriction of G to V2 (that is, it looks at G2).
Now, when restricted to Vi, the decoder flips (in parallel) the value of every hyperedge that has more than
ηd unsatisfied constraints in Vi.

Note that, by construction, both G1 and G2 are good expanders. As before, this implies that at each
iteration the number of errors is reduced by a constant factor. Hence there are at most O(log n) iterations.

In order to get rid of the oracle calls, we observe that there is at most one transition from G2 to G1. That
is, if r · log n is a bound on the number of iterations of the oracle-aided algorithm, where r is some constant,
then there exists i ∈ {0, 1, . . . , r · log n} such that for all j > i, the oracle returns 1 in the j-th iteration. We
get rid of the oracle by trying all possible i’s, and taking the valid codeword which is closest to y.

Formally, on input x the decoding algorithm executes in parallel r log n+ 1 instances of the oracle-aided
decoder on input x, each for at most r log n+1 rounds, such that in the i-th instance (for i ∈ {0, 1, . . . , r·log n})
the oracle returns 1 in round j if and only if j > i. At the end of the simulation the decoding algorithm
discards any instance in which there are unsatisfied constraints at the end of round r log n. For all remaining
instances, let x1, . . . , x` be the corresponding codewords, for ` ≤ r log n+1. For each xi the decoder computes
the distance of xi from x (observe that this can be computed in O(log n) parallel iterations), and outputs
the codeword xi which is closest to x (again, this can be done in O(log n) parallel iterations). Finally, the
correctness of the decoding algorithm follows by observing that there exists i ∈ {0, 1, . . . , r · log n} such that
the i-th instance is executed exactly like the oracle-aided decoder.
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8.3 Local Non-Cryptographic Generators and Randomness Extractors

We rely on standard transformations to turn our negligible-error constructions of unbalanced expanders into
negligible-error constructions of locally computable functions with various pseudorandom properties. Here
“locally-computable” means that every output of the function depends on at most d inputs where d is a
constant that does not grow with the input length.

t-wise independent generators. A t-wise independent generator is a function G : {0, 1}n → {0, 1}m such
that for every subset I ⊆ [m] of size t, where I = {i1, . . . , it}, the random variable (G(Un)i1 , . . . , G(Un)it) is
uniformly distributed over {0, 1}t, where Un is the uniform distribution over {0, 1}n.

Theorem 8.5. Let c > 1 be an arbitrary constant, m = nc, and d > 2c be an integer. For every prime power
n there exists a negligible-error construction of a 2d-local function (represented as a circuit) f : {0, 1}2n →
{0, 1}m which is a t-wise independent generator for t = Ω(n1−δ), for every δ > 2(c − 1)/(d − 2), where the
constants in the Ω-notation depend on c and d.

Proof. Sample the 2d-sparse 2n×m parity-check matrix promised by Theorem 8.2, and let fH(x) : x 7→ HTx.
This mapping is 2d-local. Moreover, a standard linear-algebraic argument shows that the output is (γ − 1)-
wise independent where γ is the distance of the sampled LDPC code.

Low-bias generators. The notion of low-bias generators is due to Naor and Naor [43]. A random variable
X = (X1, . . . , Xm), distributed over {0, 1}m, is ε-biased if for every non-empty set S ⊆ [m], it holds that∣∣∣∣Pr

[
⊕
i∈S

Xi = 0

]
− 1

2

∣∣∣∣ ≤ ε.
The set S is called a linear test.

A function f : {0, 1}n → {0, 1}m with m > n is an ε-biased generator if the random variable f(Un) is
ε-biased, where Un is the uniform distribution over {0, 1}n.

Theorem 8.6. Let c > 1 be an arbitrary constant and let d > 4c2 + 8c + 1 be an integer. For every
prime power n there exists a negligible-error construction of a d-local function (represented as a circuit)

f : {0, 1}3n → {0, 1}nc which is an ε-biased generator for ε = e−Ω(nξ), for any ξ < r−2c
(r−2)(2c+1) for r =

(d− (2c+ 1)2)/2.

Proof. Let d1 > 2c and let f1 : {0, 1}2n → {0, 1}nc be the 2d1-local t-wise independent generator promised
in Theorem 8.5, for t = Ω(n1−δ), for every δ > 2(c − 1)/(d1 − 2). Next, we employ [42, Lemma 23] that

provide, for every integers p and `, an `2-local generator G : {0, 1}p2 → {0, 1}m for m =
(
p
`

)
so that for

every linear test S the bias is at most exp(−|S|1/`/2`). We instantiate their construction with p = b
√
nc

and an integer ` ∈ (2c, 2c + 1], and obtain a low-bias generator f2 : {0, 1}n → {0, 1}nc whose locality d2

satisfies (2c)2 < d2 ≤ (2c + 1)2, and its output length is nc. (Lemma 23 of [42] gives an output length of(
p
`

)
> nc but we can always omit some output bits if needed.) For a linear test S, the bias of f2 is at most

exp
(
−|S|1/(2c+1)

/22c+1
)

.

Let d = 2d1 + d2, and let f : {0, 1}3n → {0, 1}nc be the d-local function that is defined by f(x, y) =
f1(x) ⊕ f2(y), for x ∈ {0, 1}2n and y ∈ {0, 1}n. Note that since f1 is t-wise independent, f perfectly fools
every linear test of size at most t. For every larger linear test, the bias is at most ε by the low-bias property
of f2. Hence f is an ε-biased generator.

Randomness extractors [46]. Let X be a random variable, distributed over {0, 1}N . Define the min-
entropy of X by H∞(X) := log 1

maxx Pr[X=x] . Let Ext : {0, 1}N × {0, 1}s → {0, 1}m be a function. We

say that Ext is a (`, µ)-extractor if for every distribution X with min-entropy at least ` it holds that

∆(Ext(X,Us), Um) ≤ µ, that is, the statistical distance between the random variable Ext(X,Us) and Um
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is at most µ. We refer to the first entry of Ext as the source and to the second entry as the seed. We show
that one can locally extract N bits with negligible statistical error from an N -bit source with “almost full”
min-entropy using a polynomially-small seed.

Theorem 8.7. Let c > 1 be an arbitrary constant, and let d > 4c2 + 8c+ 1 be an integer. Let r = r(c, d) =
(d− (2c+ 1)2)/2, and let 0 < ξ < r−2c

(r−2)(2c+1) and γ > 0 be a positive constants. For a prime power n there

exists a negligible-error construction of a local function Ext (represented as a circuit) that takes a source of
length N = nc and a seed of length 3n and outputs an N -bit string which forms an (`, µ)-extractor, for

` = (1− nξ−c−γ)nc and µ = exp(−Ω(nξ)).

Moreover, each bit of the output depends on exactly one bit of the input and d bits of the seed.

The theorem is meaningful since r−2c
(r−2)(2c+1) is positive. (This follows by noting that r > 2c > 2 which is

implied by the constraint d > 4c2 + 8c + 1.) Also observe that ξ < 1 < c and so the entropy gap nc − ` is
inverse polynomial in the source length N = nc.

Remark 8.8. In the next section, we will use the following setting of parameters. Given a constant c > 1,
take d to be a sufficiently large constant for which r−2c

(r−2)(2c+1) >
1

4c+2 where r = r(c, d). (Such a d exists

since r = Θ(d).) Take ξ = 1
4c+2 and γ = ξ/2 = 1

8c+4 . Then, we obtain an (`, µ)-extractor that extracts
N = nc bits from a source of length N and a seed of length 3n for

` =
(

1−N−(1−Ωc(1))
)
N and µ = negl(N).

We continue with the proof of Theorem 8.7.

Proof. Let f : {0, 1}3n → {0, 1}nc be the d-local generator whose bias is e−Ω(nξ) that is promised by
Theorem 8.6. Our extractor Ext takes a source X of bit-length nc and a 3n-bit seed S and outputs f(S)⊕X.
For the analysis, we employ [11, Lemma 5.7] that guarantees the following: for every α, β > 0, every
integers p, q, every α-biased generator g : {0, 1}p → {0, 1}q, and every random variable Xq taking values
in {0, 1}q that has min-entropy at least (1 − β)q, the statistical distance between g(Up) ⊕Xq and Uq is at
most α · 2β·q/2−1/2. This immediately implies that Ext is an (`, µ)-extractor with ` = (1 − nξ−c−γ)nc and

µ = e−Ω(nξ) · 2nξ−c−γnc/2 = exp(−Ω(nξ)), as required.

9 Local PRG with Polynomial Stretch

In this section we prove Theorem 2.12, and show how to convert a local weak-PRG with polynomial-stretch to
a local strong-PRG with polynomial-stretch. Combined with the weak-PRG of [4], Theorem 2.12 yields the
first construction of local PRG with polynomial stretch based on a one-wayness assumption. In Section 9.1
we present the required cryptographic preliminaries, and prove the theorem in Section 9.2.

9.1 Cryptographic Preliminaries

The following is taken, with minor changes, from [4].

Indistinguishability. We say that a pair of distribution ensembles Y = {Yn} and Z = {Zn} are ε-
indistinguishable if for every efficient adversary A, the distiguishability-gap

|Pr[A(1n, Yn) = 1]− Pr[A(1n, Zn) = 1]|

is at most ε(n). If ε = negl(n) we say that the two ensembles are computationally-indistinguishable.16

If the above holds for computationally unbounded adversaries, we say that the ensembles are ε-statistically-
close, and in the case that ε = negl(n) we say that the ensembles are statistically-indistinguishable.

16 A more traditional definition (see, e.g., [23, Definition 3.2.2]), asserts that Y and Z are computationally-indistinguishable
if for every efficient adversary A the distiguishability-gap is bounded by some negligible function εA. In [15] it is shown that
this variant is equivalent to our variant (in which εA is replaced with a universal negligible quantity).
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Collection of functions. Let s = s(n) and m = m(n) be integer-valued functions. A collection of
functions {Fσ} is formally defined via a mapping F : {0, 1}s × {0, 1}n → {0, 1}m which takes an index
σ ∈ {0, 1}s and an input point x ∈ {0, 1}n, and outputs the evaluation Fσ(x) of the point x under the σ-th
function in the collection. We always assume that the collection is equipped with two efficient algorithms:
and index-sampling algorithm K which given 1n samples a index σ ∈ {0, 1}s, and an evaluation algorithm
that given (1n, σ, x) outputs Fσ(x). We say that the collection is in NC0 if there exists a constant d (which
does not grow with n), such that for every fixed σ the function Fσ has output locality of d.

As we will always be interested in collections in NC0, it will be convenient to think of the index-sampling
algorithm K as an algorithm that samples a circuit that implements a locally computable function f from
n bits to m bits, and of the evaluation algorithm as the evaluation of the sampled circuit on input x.

Pseudorandom and unpredictability generators. Let m = m(n) > n be a length parameter. A
collection of functions F : {0, 1}s × {0, 1}n → {0, 1}m is ε-pseudorandom generator (PRG) if the ensemble
(K(1n), FK(1n)(Un)) is ε-indistinguishable from the ensemble (K(1n), Um), where Un is the uniform distri-
bution over {0, 1}n. When ε is negligible, we refer to F as a pseudorandom generator.

The collection F is ε-unpredictable generator (UG) if for every efficient adversary A and every sequence
of indices {in}, where in ∈ [m(n)], we have that

Pr
σ←K(1n),x←{0,1}n

[A(σ, Fσ(x)[1...in−1]) = Fσ(x)in ] < ε(n)

for all sufficiently large n’s.

Remark 9.1. Note that we quantified over all index sequences {in}, and so our notion of unpredictability is
somewhat non-uniform. One may think of a uniform variant, in which {in} must be efficiently samplable.
However, it is known that the two notions are essentially equivalent, see [4, Remark 3.2]. We continue with
the non-uniform variant which is easier to work with.

We will only be interested in the case where m = nc for some c > 1. In this case we will refer to F as a
polynomial pseudorandom generator (PPRG) when ε is negligible, and as a weak-PPRG in the case that ε
is not negligible but ε < 1/na for some positive constant a.

We will always assume that the adversary that tries to break the generator gets the collection index
(which we think of as a circuit) as a public parameter.

It is well known that an ε-PRG is also an (1
2 + ε)-UG. For the other direction, Yao [54] proved that a

( 1
2 + ε)-unpredictable generator of output length m(n) is an (m · ε)-PRG.

9.2 Proof of Theorem 2.12

In this section we prove Theorem 2.12 (restated here for ease of reading).

Theorem 9.2 (Theorem 2.12 restated). For every constants d ∈ N, a > 0 and c, c′ > 1 there exists a
constant d′ for which the following holds. Any ensemble of d-local PRGs that stretches n bits to nc bits and
achieves indistinguishability parameter of ε = 1/na can be converted into an ensemble of d′-local (standard)
PRGs that stretches n bits to nc

′
bits.

The proof of the theorem follows the analysis of [4] which is a special case of [27]. As Theorem 2.12
presents a uniform reduction, its proof is somewhat technical and lengthy (see Sections 9.2.1–9.2.4). For
ease of reading, we first present a detailed proof sketch for a non-uniform reduction, that conveys the main
ideas of the proof.

Proof sketch. For simplicity, let us focus on the task of constructing a local PRG G∗ with some polynomial
stretch.17 The first ingredient of the construction is a weak PPRG G : {0, 1}n → {0, 1}m with constant

17This is, in fact, without loss of generality, since by using standard unpredictability and stretch amplification techniques, we
may amplify the stretch to an arbitrary polynomial, at the expanse of increasing the locality, see, e.g., [4, Fact 6.5].

31



locality d, output-length m = poly(n) and indistinguishability-gap ε = 1/poly(n), where, by using standard
unpredictability and stretch amplification techniques, we may assume without loss of generality that ε is a
sufficiently small inverse polynomial. The second ingredient is the locally-computable ((1− δ(n))n, negl(n))-
extractor Ext : {0, 1}n × {0, 1}nα → {0, 1}n from Theorem 8.7 and Remark 8.8, for δ(n) = 1/n1−Ω(1) and
some constant 0 < α < 1. We construct G∗ in the following way: First, we apply G on n uniform strings

U
(1)
n , . . . , U

(n)
n , to obtain an n×m matrix Y , whose ith row is G(U

(i)
n ), and then apply Ext to each column

of Y , each time with a fresh random seed of length nα, to obtain the output of G∗. Overall, the input length
of G∗ is n2 + m · nα, and the output length is mn, and therefore G∗ has polynomial stretch. In addition,
since both G and Ext are locally computable, so is G∗.

To prove that the output of G∗ is indistinguishable from uniform, we proceed in three steps: First, for
each row of Y , which is just the output of G on a random seed, we prove that for every index j ∈ [m], the
jth output-bit of G is computationally-indistinguishable from a random variable that has high min-entropy
even conditioned on the first j − 1 output bits of G. We then show that this implies that the jth column of
Y is computationally-indistinguishable from a random variable that has high min-entropy even conditioned
on the first j − 1 columns of Y . We conclude that the output of the jth extractor is computationally-
indistinguishable from uniform even conditioned on the outputs of the first j−1 extractors, which completes
the proof.

In more details, let S(n) be a circuit-size bound that is polynomial in n and let p(n) be some poly-
nomial in n. Fix some n and let S = S(n) and m = m(n). For the first step, let j ∈ [m] be an
index, and observe that G is a (1/2 + ε)-UG, and therefore, for every adversary A of size S, we have
Prx←{0,1}n

[
A(G(x)[1,...,j−1]) = G(x)j

]
≤ 1

2 + ε. By the (non-uniform) hardcore lemma of Impagliazzo [30]
as appears in [28], there exists a set LS,p ⊆ {0, 1}n of density 1− 2ε so that

Pr
x←LS,p

[
A(G(x)[1,...,j−1]) = G(x)j

]
≤ 1

2
+

1

p(n)
(3)

for every adversary A of size S′ := S/(100n · p(n)2). Let Rj(x) be the probabilistic function that returns a
random bit if x ∈ LS,p, and G(x)j otherwise. We claim that∣∣∣∣ Pr

x←{0,1}n
[A(G(x)[1,...,j]) = 1]− Pr

x←{0,1}n
[A(G(x)[1,...,j−1], Rj(x)) = 1]

∣∣∣∣ ≤ 1/p(n) (4)

for every adversary A of size S′/n. Indeed, conditioned on x /∈ LS,p both terms are equal, and therefore it
is enough to analyse them conditioned on x ∈ LS,p, for which the claim follows from Equation (3) and a
standard unpredictability-to-indistinguishability argument.

We move on to the second step. For an input (x1, . . . , xn) ∈ ({0, 1}n)n, let Y be the n × m matrix
defined by G∗(x1, . . . , xn) and let Y [1, . . . , j] denote the first j columns of Y . We also define the randomized
function Cj(x1, . . . , xn) that returns a column-vector in {0, 1}n whose ith entry is a random bit if xi ∈ LS,p,
and G(xi)j otherwise. By Equation (4) and a standard hybrid argument, we have that∣∣∣∣ Pr

x1,...,xn←{0,1}n
[A(Y [1, . . . , j]) = 1]− Pr

x1,...,xn←{0,1}n
[A(Y [1, . . . , j − 1], Cj(x1, . . . , xn)) = 1]

∣∣∣∣ ≤ 1/(np(n))

for every adversary A of size S′/n.
We continue by proving that for all but a negligible fraction of the tuples (x1, . . . , xn), the random vari-

able Cj(x1, . . . , xn) has very high entropy even conditioned on (x1, . . . , xn). Indeed, since LS,p has density
1−2ε, the expected number of xi’s that do not belong to LS,p is 2εn. Assuming that ε is sufficiently small so
that 2ε ≤ δ/2, a standard concentration bound implies that the probability that δ-fraction of the xi’s do not
belong to LS,p is at most exp(−Ω(δn)) = exp(−nΩ(1)) = negl(n). Since for every i ∈ [m] for which xi ∈ LS,p
the ith bit of Cj(x1, . . . , xn) is a random bit, we conclude that for all but a negligible fraction of the tuples
(x1, . . . , xn) the random variable Cj(x1, . . . , xn) has min-entropy of at least (1 − δ)n even conditioned on
(x1, . . . , xn). As a consequence, the random variable (x1, . . . , xn,Ext(Cj(x1, . . . , xn), Unα)) is statistically-
indistinguishable from (x1, . . . , xn, Un), where x1, . . . , xn are uniformly distributed over ({0, 1}n)n. As the
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matrix Y is just a deterministic function of x1, . . . , xn, we conclude that (Y [1, . . . , j−1],Ext(Cj(x1, . . . , xn), Unα))
is statistically-indistinguishable from (Y [1, . . . , j − 1], Un). We therefore conclude that the term∣∣∣∣ Pr

x1,...,xn←{0,1}n
[A(Y [1, . . . , j − 1],Ext(Y [j], Unα)) = 1]− Pr

x1,...,xn←{0,1}n
[A(Y [1, . . . , j − 1], Un) = 1]

∣∣∣∣
is at most 1/(np(n)) + negl(n) for every adversary A of size S′/(nq(n)), where q(n) is some fixed polynomial
that depends on the computational complexity of Ext. This immediately implies that the term∣∣∣∣ Pr
x1,...,xn←{0,1}n

[A(Ext(Y [1]), . . . ,Ext(Y [j])) = 1]− Pr
x1,...,xn←{0,1}n

[A(Ext(Y [1]), . . . ,Ext(Y [j − 1]), Un) = 1]

∣∣∣∣
is at most 1/(np(n))+negl(n) for every adversary A of size S′/(nmq(n)). Since this is true for every choice of
polynomials S(n) and p(n), we conclude that (Ext(Y [1]), . . . ,Ext(Y [j])) is computationally indistinguishable
from (Ext(Y [1]), . . . ,Ext(Y [j − 1]), Un). Since this is true for every choice of j ∈ [m], we conclude that the
output of G∗ is computationally indistinguishable from uniform, and the claim follows. In the next sections
we proceed with a formal proof of a uniform reduction.

9.2.1 The Construction

Let G : {0, 1}s × {0, 1}n → {0, 1}m be a local weak-PPRG with m = nc and distinguishability-gap ε = n−a.
Then G is ( 1

2 + ε)-unpredictable, and without loss of generality we may assume that a, c > 1 are sufficiently
large constants, at the expense of increasing the locality d to some larger constant (this follows by a standard
unpredictability and stretch amplification argument, e.g., [4, Fact 6.5]). We begin by presenting the index-
sampling algorithm K.

The index-sampling algorithm. The index-sampling algorithm K first uses the index-sampling algo-
rithm of G to sample an index σ which defines a weak PPRG Gσ. Since we always assume that σ is known to
the adversary, we typically omit the subscript σ for ease of notation. In addition, based on Theorem 8.7 and
Remark 8.8, the index-sampler K samples a local extractor Ext : {0, 1}k × {0, 1}3kα → {0, 1}k that extracts
from sources with min-entropy (1 − δ)k with negligible error of negl(k), for some constant 0 < α < 1 and
δ(k) = k−(1−Ω(1)). We set k = n. Moreover, we assume that δ ≥ 4mε which can be guaranteed by amplifying
the pseudorandomness parameter ε to be sufficiently small inverse polynomial (at the expense of increasing
the locality d). Throughout, we condition on the event that K sampled Ext successfully, which occurs with
all but negligible probability. The new PRG is defined via the following evaluation algorithm.

Construction 9.3. Given a PRG G = Gσ and an extractor Ext, we define the function G∗ as follows:

• Input: k independent seeds x = (x(1), . . . , x(k)) ∈ ({0, 1}n)k for the generator, and m independent seeds
for the extractor z = (z(1), . . . , z(m)) ∈ ({0, 1}3kα)m.

• Output: compute the k×m matrix Y whose i-th row is G(x(i)), let Yi denote the ith column of Y , and
output (Ext(Y1; z(1)), . . . ,Ext(Ym; z(m))).

Notice that the locality of G∗ is at most the multiplication of the localities of G and Ext, and so it
is constant. Furthermore, G∗ has polynomial stretch. Indeed, the output length of G∗ (which is mk) is
polynomial in the input length (which is nk + 3kαm).

We continue the proof according to the following steps. First, we show a strong unpredictability property
of every row of Y , and use this property to show that every column of Y is indistinguishable from a random
variable with high min-entropy, even conditioned on all previous columns. Then, we show that this implies
that G∗ is a local-UG, and so, by Yao’s theorem, G∗ is a local-PRG. Finally, a standard unpredictability
and stretch amplification argument (see, e.g., [4, Fact 6.5]) implies a local-PPRG with output of length nc

′
.
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9.2.2 Unpredictability in a row

Let r = blogmc+ 1 be the number of bits required to represent an index in [m], and let ` = n+ r. Observe
that r = r(n) and ` = `(n) are functions of n, but throughout the proof we stick to the notation ` and r for
ease of read. Define the following functions

PRE : {0, 1}` → {0, 1}r+m, PRE(i, x) = i, G(x)1,...,i−10m−i+1,

N : {0, 1}` → {0, 1}, N(i, x) = G(x)i.

That is, PRE(i, x) outputs the index i and the prefix of length i−1 of G(x) (padded by zeroes), while N(i, x)
outputs the i-th bit of G(x). Note that both PRE and N are efficiently computable. From G’s unpredictability
it follows that for every PPT A and all sufficiently large n,

Pr
i←[m]

x←{0,1}n
[A(PRE(i, x)) = N(i, x)] ≤ 1

2
+ ε.

From the hardcore lemma (see [27, Proposition 4.7]) it follows that for every polynomial p(·) and every
oracle-aided P running in time TP = poly(n) and all sufficiently large n, there exists a set L`,P ⊆ {0, 1}` of
density at least 1− 2ε such that

Pr
(i,x)←L`,P

[
PχL`,P (·)(PRE(i, x)) = N(i, x)

]
≤ 1

2
+

1

p(n)
, (5)

where χL`,P is the characteristic function of L`,P , provided that the queries of P to χL`,P are computed
independently of the input PRE(i, x).

For every set L ⊆ {0, 1}` define the probabilistic function RL by

RL(i, x) =

{
N(i, x) if (i, x) /∈ L
random bit if (i, x) ∈ L

.

The following lemma shows that for every adversary D there is a set L of density 1 − 2ε such that
(PRE(U`),N(U`)) is indistinguishable from the distribution (PRE(U`),RL(U`)). The lemma follows from
the hardcore lemma, similarly to [27, Proposition 4.8]. We prove it here for completeness.

Lemma 9.4. For every polynomial p(·) and every oracle-aided distinguisher D running in time TD =
poly(n), and for all sufficiently large n, there is a set L`,D ⊆ {0, 1}` of density at least 1 − 2ε for which
the following holds. Let O be an oracle that samples i ← [m] and x ← {0, 1}n and returns a sample from
(PRE(i, x),N(i, x),RL`,D (i, x)). Then, given an oracle access to O, the distinguisher DO cannot distinguish

(PRE(U`),N(U`)) from (PRE(U`),RL`,D (U`))

with more then 1/p(n) advantage.

Proof. Assume that there exists a distinguisher D of time TD = poly(n) and a polynomial p(·), such that
for infinitely many n’s, and every L of density 1− 2ε,∣∣∣∣ Pr

(i,x)←{0,1}`
[DO(PRE(i, x),N(i, x)) = 1]− Pr

(i,x)←{0,1}`
[DO(PRE(i, x),RL(i, x)) = 1]

∣∣∣∣ > 1/p(n).

Since both terms are equal for (i, x) /∈ L, we have∣∣∣∣ Pr
(i,x)←L

[DO(PRE(i, x),N(i, x)) = 1]− Pr
(i,x)←L

[DO(PRE(i, x),RL(i, x)) = 1]

∣∣∣∣ > 1/p(n).

Since RL(i, x) is uniformly distributed for (i, x) ∈ L, by the standard distinguishing to predicting reduction,
there exists a predictor P with oracle call to χL and time TP = poly(TD) = poly(n) (note that P can
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simulate the oracle calls of D efficiently, using χL) such that for infinitely many n’s, and every set L of
density at least 1− 2ε,

Pr
(i,x)←L

[
PχL(·)(PRE(i, x)) = N(i, x)

]
≥ 1

2
+

1

p(n)
,

in contradiction to Equation 5.

9.2.3 Indistinguishability in columns

In this section we prove that, even conditioned on the first i − 1 columns of Y , the output of the i-th
extractor is indistinguishable from uniform (Lemma 9.8). In order to prove this, we first show that, even
conditioned on all previous columns, the i-th column of Y is indistinguishable from a random variable with
high min-entropy (Claim 9.5 and Corollary 9.7).

We denote the first i− 1 columns of Y by Y [1 : i− 1], and as before, we denote the i-th column of Y by
Yi. We begin with the following definitions. For any S ⊆ {0, 1}` define

PREk : {0, 1}r+n×k → {0, 1}k×(r+m), PREk(i, x1, . . . , xk) =

 PRE(i, x1)
...

PRE(i, xk)

 ,

Nk : {0, 1}r+n×k → {0, 1}k, Nk(i, x1, . . . , xk) =

 N(i, x1)
...

N(i, xk)

 ,

RkS : {0, 1}r+n×k → {0, 1}k, RkS(i, x1, . . . , xk) =

 RS(i, x1)
...

RS(i, xk)

 .

That is, PREk(i, x1, . . . , xk) corresponds to the first i − 1 columns of Y (padded with zeroes), and Nk

corresponds to the i-th column of Y . Also, each entry of RkS(i, x1, . . . , xk) uses independent internal
randomness. The following claim shows that for every adversary D there exists a set S of high density such
that (PREk(Ur+nk),Nk(Ur+nk)) is indistinguishable from (PREk(Ur+nk),RkS(Ur+nk)).

Claim 9.5. For every polynomial p(·), every probabilistic polynomial-time algorithm D and all sufficiently
large n, there is a set S`,D ⊆ {0, 1}` of density at least 1− 2ε, such that D cannot distinguish

(PREk(Ur+nk),Nk(Ur+nk)) from (PREk(Ur+nk),RkS`,D (Ur+nk))

with more than 1/p(n) advantage.

Proof. Assume towards contradiction that there exists a polynomial p(·) and a distinguisher D such that
for infinitely many n’s, and any S ⊆ {0, 1}` of density at least 1 − 2ε, the adversary D distinguishes
(PREk(Ur+nk),Nk(Ur+nk)) from (PREk(Ur+nk),RkS(Ur+nk)) with more than 1/p(n) advantage. We will
show that this implies a violation of Lemma 9.4.

Define the following oracle-aided adversary AD. Let O be an oracle that samples i← [m] and x← {0, 1}n
and returns a sample from (PRE(i, x),N(i, x),RL), where L will be determined later. On input (i, y, z) ∈
[m] × {0, 1}m × {0, 1}, the algorithm AD samples m2k2 triples {(PRE(ij , xj),N(ij , xj),RL(ij , xj))}j∈[m2k2]

using the oracle calls to O. If the number of indices j such that ij = i is less than k, then AD fails.
Otherwise, denote the corresponding triples by {(PRE(i, xj),N(i, xj),RL(i, xj))}j∈[k]. Then AD samples

35



j ← [k], simulates D on input 

PRE(i, x1),N(i, x1)
...

PRE(i, xj−1),N(i, xj−1)
i, y, z

PRE(i, xj+1),RL(i, xj+1)
...

PRE(i, xk),RL(i, xk)


,

and outputs the same value as D. Set L to be the set L`,AD promised in Lemma 9.4, with respect to the
polynomial 2p(n)k. By Chernoff bound the probability that AD fails is negligible, and so, by a standard
hybrid argument AD distinguishes (PRE(U`),N(U`)) from (PRE(U`),RL`,AD (U`)) with advantage 1/(p(n)k)−
negl(n) > 1/(2p(n)k), in contradiction to Lemma 9.4.

Next, we prove that for any set S of density 1−2ε, the random variable RkS(Ur+nk) has high min-entropy

even conditioned on PREk(Ur+nk).

Claim 9.6. For every n, every set S ⊆ {0, 1}` of density 1 − 2ε, and every i ∈ [m], there exists a set
BAD ⊆ {0, 1}k×n such that

• Pr[(x1, . . . , xk) ∈ BAD] ≤ e−Ω(kδ) = negl(n),

• If (x1, . . . , xk) /∈ BAD then the random variable RkS(i, x1, . . . , xk) has min-entropy at least k(1 − δ)
even conditioned on x1, . . . , xk.

Proof. Since S is of density 1 − 2ε then for every i ∈ [m] there is at least (1 − 2εm) fraction of the x’s
for which (i, x) ∈ S. Say that the sample (i, x1, . . . , xk) is “good” if |{j : (i, xj) /∈ S}| < kδ. Note that
the expected size of the set {j : (i, xj) /∈ S} is at most 2kmε ≤ kδ/2, and since the xj ’s are independent,

by multiplicative Chernoff bound Pr[(i, x1, . . . , xk) is “bad”] ≤ e−Ω(kδ) = e−k
Ω(1)

= negl(n). Finally, for a
“good” (i, x1, . . . , xk), the random variable RkS(i, x1, . . . , xk) has at least k(1 − δ) random bits, and so its
min-entropy is at least k(1− δ), as required.

The following corollary follows immediately from Claim 9.6 and the properties of our extractor. (From
now on, we omit the uniform seed from the extractor’s description and, for a k-bit source X, write Ext(X)
as a shorthand for Ext(X,U3kα).)

Corollary 9.7. For every set S of density 1−2ε and every i ∈ [m], the random variables (PREk(i, Unk), Uk)
and (PREk(i, Unk),Ext(RkS(i, Unk))) are statistically indistinguishable.

Finally, we show that for every i ∈ [m], the output of the i-th extractor is indistinguishable from uniform,
even conditioned on the first i− 1 columns of Y .

Lemma 9.8. For every polynomial p(·), probabilistic polynomial-time adversary D, (non-uniform) family of
indices {in} and all sufficiently large n, D cannot distinguish (Y [1 : in−1],Ext(Yin)) from (Y [1 : in−1], Uk)
with more than 1/p(n) advantage.

Proof. Assume towards contradiction that there exist polynomial p(·) and adversary D such that for infinitely
many n’s D distinguishes (Y [1 : in − 1],Ext(Yin)) from (Y [1 : in − 1], Uk) with advantage at least 1/p(n),
where {in} is a non-uniform sequence of indices. For each i ∈ [m] let

µ(i) := Pr[D(Y [1 : i− 1],Ext(Yi)) = 1]− Pr[D(Y [1 : i− 1], Uk) = 1],

and note that, without loss of generality, µ(in) > 1/p(n). We show that this implies a violation Claim 9.5.
Consider the following adversary A. On input (i, g, u) ∈ [m] × {0, 1}k×m × {0, 1}k, the adversary A

first approximates µ(i) within additive error 1/4p(n) and confidence of 1− negl(n). By a standard Chernoff
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bound, this can be done efficiently. Denote the approximation by µ̃(i). If µ̃(i) > 3/4p(n) then A simulates
D on input (g[1 : i− 1],Ext(u)) and outputs the same bit as D. Otherwise A outputs a random bit.

We claim that A distinguishes (PREk(Ur+nk),Nk(Ur+nk)) from (PREk(Ur+nk),RkS`,A(Ur+nk)) with more

than 1/2mp(n) advantage, where S`,A is the set promised in Claim 9.5 with respect to adversary A and the
polynomial 1/2mp(n).

Let us condition on the event that the approximation of A does not fail, i.e., µ̃(i) ∈ [µ(i)± 1/4p(n)]. Fix
some i. First, observe that if (i, g, u) ← (PREk(i, Unk),Nk(i, Unk)), then (g[1 : i − 1],Ext(u)) is distributed
according to (Y [1 : i− 1],Ext(Yi)), and if (i, g, u) ← (PREk(i, Unk),RkS`,A(i, Unk)), then (g[1 : i− 1],Ext(u))

is statistically indistinguishable from (Y [1 : i − 1], Uk) by Corollary 9.7. Next, let us distinguish between
three cases depending on the value of µ(i). If µ(i) > 1/p(n), the adversary A always calls to D, and so the
advantage of A is at least 1/p(n)− negl(n) > 0, and indeed, for i = in, the adversary A gets this advantage.
If 1/2p(n) < µ(i) < 1/p(n), the adversary might either output a random bit or call to D. Since this choice
depends only on i (and is independent of the other inputs of A), the adversary has an advantage of 0 in the
former case, and of µ(i)− negl(n) in the latter case, and overall the advantage is non-negative in any case.
Finally, if µ(i) < 1/2p(n), the adversary always returns a random bit, and so its advantage is 0.

Since the total advantage of A is a uniform mixture of the above terms, we conclude that the total
advantage is at least 1/mp(n)− negl(n) > 1/2mp(n). This contradicts Claim 9.5.

9.2.4 From Columns Indistinguishability to PRG

We show that the above notion of columns indistinguishability implies that G∗ is indeed a UG. Recall that
m = m(n) and k = k(n) are functions of n, let n′(n) := nk + 3kαm be the input-length of G∗, and let
m′(n) := mk be the output-length of G∗.

Lemma 9.9. For every polynomial p(·), probabilistic polynomial-time predictor A, non-uniform sequence
{in}, and all sufficiently large n,

Pr
x←{0,1}n′

[A(G∗(x)[1...in−1]) = G∗(x)in ] < 1/2 + 1/p(n).

Proof. Assume towards contradiction that there exists a polynomial p(·), a predictor A and a non-uniform
sequence {in} such that for infinitely many n’s, Pr[A(G∗(x)[1...in−1]) = G∗(x)in ] > 1/2 + 1/p(n). Let

µ(i) := Pr[A(G∗(x)[1...i−1]) = G∗(x)i],

and note that µ(in) > 1/2 + 1/p(n). Let {jn} be a non-uniform sequence of columns’ indices, so that in
corresponds to the jn-th column of Y (that is, k · (jn − 1) < in ≤ k · jn). We show that there exists an
adversary B that violates Lemma 9.8.

Given an input (g, u), where g = (g1, . . . , gjn−1) is a k × (jn − 1) matrix and u is a vector of length
k, the adversary B first approximates µ(i) for each k · (jn − 1) < i ≤ k · jn, within additive error 1/4p(n)
and confidence of 1 − negl(n). (By standard Chernoff bounds, this can be done efficiently.) Denote the
approximation by µ̃(i). If there exists k · (jn − 1) < i∗ ≤ k · jn such that µ̃(i∗) > 1/2 + 3/4p(n), then B
computes w := (Ext(g1), . . . ,Ext(gjn−1), u), and z := A(w[1...i∗−1]), and outputs 1 if z is equal to wi∗ , and 0
otherwise. If there is no such i∗ then B outputs a random bit.

Observe that when (g, u) is sampled from (Y [1 : jn − 1], Uk), then the probability that A predicts the i∗

bit is exactly 1/2. Therefore, when the input is sampled from (Y [1 : jn−1], Uk) the output of B is uniformly
distributed. It remains to show that when (g, u) is sampled from (Y [1 : jn − 1],Ext(Yjn)) then B outputs 1
with probability at least 1/2 + 1/poly(n).

When (g, u)← (Y [1 : jn − 1],Ext(Yjn)), the random variable w is distributed exactly like G∗(x)[1...k·jn].
Condition on the event that the approximation of B does not fail, and observe that (1) if there exists i∗

such that µ̃(i∗) > 1/2 + 3/4p(n) then necessarily µ(i∗) > 1/2 + 1/2p(n); and (2) such i∗ necessarily exists
since µ̃(in) > 1/2 + 3/4p(n). Therefore, B outputs 1 with probability at least 1/2 + 1/2p(n). We conclude
that B has advantage of at least 1/2 + 1/2p(n) − 1/2 = 1/2p(n) in distinguishing (Y [1 : jn − 1], Uk) from
(Y [1 : jn − 1],Ext(Yjn)), in contradiction to Lemma 9.8.
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By Yao’s theorem [54] that unpredicatability implies pseudorandomness, we conclude that for every
polynomial p(·), probabilistic polynomial-time distinguisher A, and all sufficiently large n,

|Pr[A(G∗(Un′)) = 1]− Pr[A(Um′) = 1]| < 1/p(n).

Finally, by Footnote 16, we conclude that there exists a negligible function ν(·) so that G∗ is ν-PRG. This
completes the proof of Theorem 2.12.
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A On Uniformly Sampling H-free Hypergraphs

It is interesting to ask whether one can extend the results of this paper to random (n,m, d) hypergraphs,
i.e., hypergraphs where each edge is uniformly distributed over [n]d and the hyperedges are independent. In
particular, is it possible to sample a random (n,m, d)-hypergraph which is H-free for general family H of
small hypergraphs?

Clearly, this problem can be solved with the aid of an efficient tester algorithm that determines whether
an (n,m, d)-hypergraph is H-free or not. Unfortunately, the testing problem seems hard over the uniform
distribution. In fact, we conjecture that even the seemingly easier task of certifying H-freeness is hard, and
show that, under this assumption, the existence of a sampler for H-free hypergraphs implies the existence
of one-way functions. Before stating this formally, we need the following definitions.

Certification and sparsity. Fix some distribution D over some objects (without loss of generality strings)
and let P be some property of strings which is common over D in the sense that Pr[D /∈ P ] < 0.1. A
certification algorithm for P over D is an algorithm that, given a string, either outputs “good” or “I don’t
know”. The algorithm should never err (i.e., it can output “good” only on inputs that satisfy P ) and should
output “good” with probability at least half on a sample from D.

In our context, D will be the uniform distribution over (n,m, d)-hypergraphs, for some constant d and
function m = m(n). The property P will be H-freeness where H is some family of forbidden subgraphs.
That is, a certification algorithm provides a certificate for H-freeness for at least half of the hypergraphs. To
guarantee that H-freeness is common over random (n,m, d)-hypergraphs, we introduce the following notion
of sparsity. Let H = {Hi}i∈N be a family of hypergraphs where Hi is a set of ≤ d-uniform hypergraphs.
Let h : N → N. We say that the family H is h-sparse over (n,m, d)-hypergraphs if for every n and every
t ≤ h(n), a randomly chosen hypergraph G← Gn,m(n),d is Ht-free with probability at least 0.9.
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Theorem A.1. Let d be a constant, m = m(n) be a polynomial, and let H = {Hi}i∈N be a family of d-
uniform hypergraphs. Assume that H is h-sparse over (n,m, d)-hypergraphs for some sparsity function h(n),
and suppose that the following conditions hold for some function t(n) ≤ h(n).

1. (H-freeness is hard to certify): There is no poly(n)-time algorithm that, for infinitely many n’s, certifies
Ht(n)-freeness over (n,m(n), d)-hypergraphs.

2. (Random H-free graphs are easy to sample): There exists a poly(n)-time algorithm S that samples
a random (n,m(n), d)-hypergraph conditioned on the event that the graph is Ht(n)-free (and outputs
“Error” with negligible probability).

Then, one-way functions exist.

Proof. Let fn be the function that maps the random coins r consumed by S(1n) to the output of the sampler,
i.e., a string that represents an (n,m, d)-hypergraph G or a special failure symbol. We claim that f = {fn}
cannot be inverted with probability more than 2/3 by an efficient adversary. (Such a weak one-wayness
property can be amplified to strong one-wayness via standard transformations, cf. [23]).

Assume, towards a contradiction, that there exists a poly(n)-time adversary A and an infinite set of
integer N such that, for all n ∈ N , the adversary A inverts fn with probability at least 2/3 where the
probability is taken over the random input r and the internal coins of A. We construct an efficient algorithm
R that certifies Ht(n)-freeness for all n ∈ N , in contradiction to our assumption. The certification algorithm
R is given an (n,m(n), d)-hypergraph G as an input, and asks the inverter A to find a preimage of G under
fn. Given the result r, the algorithm R outputs “free” if and only if fn(r) = G. Otherwise, R outputs “I
don’t know”.

Since Ht is h-sparse and A inverts f with probability at least 2/3, it follows that, on a random (n,m, d)-
hypergraph, R outputs “I don’t know” with probability at most 1/3 + 0.1 < 1/2. Furthermore, R outputs
“free” only if G is in the support of S, and since S samples only Ht-free hypergraphs, it follows that G must
be Ht-free, and R never errs. The theorem follows.

Hardness of certifying H-free. We propose a candidate for a family H for which H-freeness is hard to
certify based on the following coding-related assumption:

Assumption A.2 (random LDPC’s distance is hard to certify). For every polynomial n < m(n) ≤ poly(n),
constant d > 2 lognm and every super-constant function t(n) > ω(1), there is no efficient algorithm A that
given a random n×m(n) binary parity-check matrix M with d ones in each column, certifies that the distance
of the corresponding code is at least t(n). That is, a poly(n)-time algorithm fails on all sufficiently large n’s.

It is known that for d > 2 lognm , such a random LDPC code is likely to have a minimal-distance of
h = nε, where ε is a constant that depends on d and 2 lognm. Using graph-theoretic terminology, we can
think of M as the incidence matrix of a random (n,m, d)-hypergraph GM . The distance of the code is (at
least) t if and only if GM is Ht-free, where Ht is the family of all d-uniform hypergraphs with at most t
hyperedges in which each vertex has an even degree. Since most codes have a distance of at least h, the
family H is h-sparse over (n,m(n), d)-hypergraphs.

Assumption A.2 therefore yields a family H that satisfies the first condition of Theorem A.1. We mention
that related worst-case problems (e.g., computing the minimal-distance of a linear code or approximating it
within a multiplicative constant) are known to be NP-hard [29, 20]. Closely related average-case hardness
assumptions were also used in [7, 13, 9].

B Proof of Claim 7.3

Let S ⊆ [m] be a set of s hyperedges, and let T ⊆ [n] be a set of α ·s vertices. The probability that Γ(S) ⊆ T
is exactly (αs/n)ds. Taking union bound over all S of size s and T of size α · s, the probability that there
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exists a set S of size s which is not α-expanding is at most(
nc

s

)(
n
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)(αs
n

)ds
≤
(
enc

s

)s ( en
αs

)αs (αs
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)ds
=
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)s
,

where we used the known inequality
(
n
k

)
≤ (en/k)k and aα,d is a constant that depends on α and d.

Finally, for sufficiently small ρ (e.g. ρ = (1/3aα,d)
1/(d−α−1)), by taking union-bound we get that the

probability the sampled graph is not (α, γ)-expander is at most 1/2.

C Proof of Lemma 8.4

Let G be an (n,m, d) hypergraph, α = (1 − ε)d for ε < 1/2, and assume that every set S ⊆ [m], where
γ′ ≤ |S| ≤ γ is α-expanding.

• For the first part, assume that there exist δ > 2ε and a set S for which the claim does not hold. We
will prove that the set S is not α-expanding, in contradiction. Indeed, since there are less than (1− δ)
fraction of the vertices of S that have at least (1 − 2ε/δ)d unique neighbors, we conclude that the
maximal number of neighbors of S is

|Γ(S)| < d · (1− δ)|S|+ (1− 2ε/δ)d · δ|S| = (1− 2ε)d|S| < α|S|,

in contradiction to the expanding property of S.

• For the second part, assume that there exist η > 2ε and a set S for which the claim does not hold. Let
F be the set of hyperedges not in S that have at least ηd vertices in Γ(S), so that |F | ≥ (2ε/(η−2ε))|S|.
Let F ′ ⊆ F be a subset of F of size (2ε/(η − 2ε))|S|. Observe that

γ′ ≤ |S ∪ F ′| = |S|+ 2ε

η − 2ε
|S| = η

η − 2ε
|S| ≤ η

η − 2ε
· η − 2ε

η
· γ = γ.

We conclude that S ∪ F ′ is α-expanding, so |Γ(S ∪ F ′)| ≥ (1 − ε)d · |S ∪ F ′| = (1 − ε)d · η
η−2ε |S|. On

the other hand |Γ(S)| ≤ d|S| and |Γ(F ′) \ Γ(S)| ≤ d|F ′| − ηd|F ′| = (1 − η)d|F ′| = (1 − η)d · 2ε
η−2ε |S|.

We conclude that

(1− ε)d · η

η − 2ε
|S| ≤ Γ(S ∪ F ′) ≤ d|S|+ (1− η)d · 2ε

η − 2ε
|S|,

which contradicts the fact that ε and η are both positive.

This concludes the proof of Lemma 8.4.

43

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


