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Abstract. We study the approximation of halfspaces h : {0, 1}n → {0, 1} in
the infinity norm by polynomials and rational functions of any given degree.
Our main result is an explicit construction of the “hardest” halfspace, for which
we prove polynomial and rational approximation lower bounds that match the
trivial upper bounds achievable for all halfspaces. This completes a lengthy
line of work started by Myhill and Kautz (1961).

As an application, we construct a communication problem with essentially
the largest possible gap, of n versus 2−Ω(n), between the sign-rank and discrep-
ancy. Equivalently, our problem exhibits a gap of logn versus Ω(n) between
the communication complexity with unbounded versus weakly unbounded er-
ror, improving quadratically on previous constructions and completing a line
of work started by Babai, Frankl, and Simon (FOCS 1986). Our results further
generalize to the k-party number-on-the-forehead model, where we obtain an
explicit separation of logn versus Ω(n/4n) for communication with unbounded
versus weakly unbounded error. This gap is a quadratic improvement on pre-
vious work and matches the state of the art for number-on-the-forehead lower
bounds.
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1. Introduction

Representations of Boolean functions by real polynomials play a central role
in theoretical computer science. The notion of approximating a Boolean function
f : {0, 1}n → {−1,+1} pointwise by polynomials of given degree has been particu-
larly fruitful. Formally, let E(f, d) denote the minimum error in an infinity-norm
approximation of f by a real polynomial of degree at most d:

E(f, d) = min
p
{‖f − p‖∞ : deg p 6 d}.

This quantity clearly ranges between 0 and 1 for any function f : {0, 1}n → {−1,+1}.
In more detail, we have 0 = E(f, n) 6 E(f, n − 1) 6 · · · 6 E(f, 0) 6 1, where the
first equality holds because any such f is representable exactly by a polynomial of
degree at most n. The study of the polynomial approximation of Boolean func-
tions dates back to the pioneering work in the 1960s by Myhill and Kautz [59]
and Minsky and Papert [57]. This line of research has grown remarkably over
the decades, with numerous connections discovered to other subjects in theoretical
computer science. Lower bounds for polynomial approximation have complexity-
theoretic applications, whereas upper bounds are a tool in algorithm design. In
the former category, polynomial approximation has enabled significant progress in
circuit complexity [17, 10, 48, 49, 73, 15], quantum query complexity [13, 1, 7, 23],
and communication complexity [20, 65, 22, 73, 75, 66, 52, 26, 70, 15, 79, 78]. On
the algorithmic side, polynomial approximation underlies many of the strongest re-
sults obtained to date in computational learning [82, 45, 44, 37, 61, 8], differentially
private data release [84, 25], and algorithm design in general [55, 36, 72].

1.1. The hardest halfspace. Myhill and Kautz’s work [59] six decades ago, and
many of the papers that followed [59, 58, 81, 62, 16, 33, 76, 77, 83], focused on
halfspaces. Also known as a linear threshold function, a halfspace is any function
h : {0, 1}n → {−1,+1} representable as h(x) = sgn(

∑n
i=1 zixi − θ) for some fixed

reals z1, z2, . . . , zn, θ. The fundamental question taken up in this line of research is:
how well can halfspaces be approximated by polynomials of given degree? An early
finding, due to Muroga [58], was the upper bound

E(h, 1) 6 1− 1

nΘ(n)
(1.1)

for every halfspace h in n variables. In words, every halfspace can be approximated
pointwise by a linear polynomial to error just barely smaller than the trivial bound
of 1. Many authors pursued matching lower bounds on E(h, 1) for specific halfspaces
h, culminating in an explicit construction by Håstad [33] that matches Muroga’s
bound (1.1).

The study of E(h, d) for d > 2 proved to be challenging. For a long time, es-
sentially the only result was the lower bound E(h, d) > 1 − 2−Θ(n/d2)+1 due to
Beigel [16], where h is the so-called odd-max-bit halfspace. Paturi [62] proved the
incomparable lower bound E(h,Θ(n)) > 1/3, where h is the majority function on
n bits. Much later, the bound E(h,Θ(

√
n)) > 1 − 2−Θ(

√
n) was obtained in [76]

for an explicit halfspace. This fragmented state of affairs persisted until the ques-
tion was resolved completely in [77], with an existence proof of a halfspace h such
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that E(h, d) > 1− 2−Θ(n) for d = 1, 2, . . . ,Θ(n). This result is clearly as strong as
one could hope for, since it essentially matches Muroga’s upper bound for approx-
imation by linear polynomials. The work in [77] further determined the minimum
error, denoted R(h, d), to which this h can be approximated by a degree-d ratio-
nal function, showing that this quantity too is as large for h as it can be for any
halfspace. Explicitly constructing a halfspace with these properties is our main
technical contribution:

Theorem 1.1. There is an algorithm that takes as input an integer n > 1, runs in
time polynomial in n, and outputs a halfspace hn : {0, 1}n → {−1,+1} with

E(hn, d) > 1− 2−Ω(n), d = 1, 2, . . . , bcnc,

R(hn, d) > 1− 2−Ω(n/d), d = 1, 2, . . . , bcnc,

where c > 0 is an absolute constant.

Classic bounds for the approximation of the sign function imply that for any d,
the lower bounds in Theorem 1.1 are essentially the best possible for any halfspace
on n variables (see Sections 5.1 and 5.2 for details). Thus, the construction of
Theorem 1.1 is the “hardest” halfspace from the point of view of approximation by
polynomials and rational functions.

Theorem 1.1 is not a de-randomization of the existence proof in [77], which
incidentally we are still unable to de-randomize. Rather, it is based on a new and
simpler approach, presented in detail at the end of this section. Given the role that
halfspaces play in theoretical computer science, we see Theorem 1.1 as answering a
basic question of independent interest. In addition, Theorem 1.1 has applications
to communication complexity and computational learning, which we now discuss.

1.2. Discrepancy vs. sign-rank. Consider the standard model of randomized
communication [50], which features players Alice and Bob and a Boolean function
F : X × Y → {−1,+1}. On input (x, y) ∈ X × Y, Alice and Bob receive the
arguments x and y, respectively. Their objective is to compute F on any given
input with minimal communication. To this end, each player privately holds an
unlimited supply of uniformly random bits which he or she can use in deciding
what message to send at any given point in the protocol. The cost of a protocol
is the total number of bits exchanged by Alice and Bob in a worst-case execution.
The ε-error randomized communication complexity of F , denoted Rε(F ), is the least
cost of a protocol that computes F with probability of error at most ε on every
input.

Our interest in this paper is in communication protocols with error probability
close to that of random guessing, 1/2. There are two standard ways to define the
complexity of a function F in this setting, both inspired by probabilistic polynomial
time for Turing machines [31]:

UPP(F ) = inf
06ε<1/2

Rε(F )

and

PP(F ) = inf
06ε<1/2

{
Rε(F ) + log2

(
1

1
2 − ε

)}
.
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The former quantity, introduced by Paturi and Simon [63], is called the commu-
nication complexity of F with unbounded error, in reference to the fact that the
error probability can be arbitrarily close to 1/2. The latter quantity, proposed by
Babai et al. [11], includes an additional penalty term that depends on the error
probability. We refer to PP(F ) as the communication complexity of F with weakly
unbounded error. For all functions F : {0, 1}n × {0, 1}n → {−1,+1}, one has the
trivial bounds UPP(F ) 6 PP(F ) 6 n+ 2. These two complexity measures give rise
to corresponding complexity classes in communication complexity theory, defined in
the seminal paper of Babai et al. [11]. Formally, UPP is the class of families {Fn}∞n=1

of communication problems Fn : {0, 1}n × {0, 1}n → {−1,+1} whose unbounded-
error communication complexity is at most polylogarithmic in n. Its counterpart
PP is defined analogously for the complexity measure PP.

These two models of large-error communication are synonymous with two central
notions in communication complexity: sign-rank and discrepancy, defined formally
in Sections 2.8 and 2.9. In more detail, Paturi and Simon [63] proved that the
communication complexity of any problem with unbounded error is characterized up
to an additive constant by the sign-rank of its communication matrix, [F (x, y)]x,y.
Analogously, Klauck [40, 41] showed that the communication complexity of any
problem F : {0, 1}n×{0, 1}n → {−1,+1} with weakly unbounded error is essentially
characterized in terms of the discrepancy of F . Discrepancy and sign-rank enjoy
a rich mathematical life [54, 71, 74, 56] outside communication complexity, which
further motivates the study of PP and UPP as fundamental complexity classes.

Communication with weakly unbounded error is by definition no more powerful
than unbounded-error communication, and for twenty years after the paper of Babai
et al. [11] it was unknown whether this containment is proper. Buhrman et al. [22]
and the author [71] answered this question in the affirmative, independently and
with unrelated techniques. These papers exhibited functions F : {0, 1}n×{0, 1}n →
{−1,+1} with an exponential gap between communication complexity with un-
bounded error versus weakly unbounded error: UPP(F ) = O(log n) in both works,
versus PP(F ) = Ω(n1/3) in [22] and PP(F ) = Ω(

√
n) in [71]. In complexity-

theoretic notation, these results show that PP ( UPP. A simpler alternate proof
of the result of Buhrman et al. [22] was given in [75] using the pattern matrix
method. More recently, Thaler [83] exhibited another, remarkably simple commu-
nication problem F : {0, 1}n×{0, 1}n → {−1,+1}, with communication complexity
UPP(F ) = O(log n) and PP(F ) = Ω(n/ log n)2/5.

To summarize, the strongest explicit separation of communication complexity
with unbounded versus weakly unbounded error prior to our work was the sepa-
ration of O(log n) versus Ω(

√
n) from twelve years ago [71]. The existence of a

communication problem with a quadratically larger gap, of O(log n) versus Ω(n),
follows from the work in [77]. This state of affairs parallels other instances in com-
munication complexity, such as the P versus BPP question in multiparty communi-
cation [14], where the best existential separations are much stronger than the best
explicit ones. There is considerable interest in communication complexity in ex-
plicit separations because they provide a deeper and more complete understanding
of the complexity classes, whereas the lack of a strong explicit separation indicates
a basic gap in our knowledge. As an application of Theorem 1.1, we obtain:
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Theorem 1.2. There is a communication problem Fn : {0, 1}n×{0, 1}n → {−1,+1},
defined by

Fn(x, y) = sgn

(
w0 +

n∑
i=1

wixiyi

)
(1.2)

for some explicitly given reals w0, w1, . . . , wn, such that

UPP(Fn) 6 log n+O(1),

PP(Fn) = Ω(n).

Moreover,

rk±(Fn) 6 n+ 1,

disc(Fn) = 2−Ω(n).

Theorem 1.2 gives essentially the strongest possible separation of the communica-
tion classes PP and UPP, improving quadratically on previous constructions and
matching the previous nonconstructive separation. Another compelling aspect of
the theorem is the simple form (1.2) of the communication problem in question.
The last two bounds in Theorem 1.2 state that Fn has sign-rank at most n+ 1 and
discrepancy 2−Ω(n), which is essentially the strongest possible separation. The best
previous construction [71] achieved sign-rank O(n) and discrepancy 2−Ω(

√
n).

We further generalize Theorem 1.2 to the number-on-the-forehead k-party model,
the standard formalism of multiparty communication. Analogous to two-party com-
munication, the k-party model has its own classes UPPk and PPk of problems solv-
able efficiently by protocols with unbounded error and weakly unbounded error,
respectively. Their formal definitions can be found in Section 2.8. In this setting,
we prove:

Theorem 1.3. There is a k-party communication problem Fn : ({0, 1}n)k → {−1,+1},
defined by

Fn(x1, x2, . . . , xk) = sgn

(
w0 +

n∑
i=1

wix1,ix2,i · · ·xk,i

)

for some explicitly given reals w0, w1, . . . , wn, such that

UPP(Fn) 6 log n+O(1),

PP(Fn) = Ω
( n

4k

)
,

disc(Fn) = exp
(
−Ω

( n
4k

))
.

Theorem 1.3 gives essentially the strongest possible explicit separation of the k-
party communication complexity classes UPPk and PPk for up to k 6 (0.5−ε) log n
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parties, where ε > 0 is an arbitrary constant. The previous best explicit separa-
tion [27, 80] of these classes was quadratically weaker, with communication com-
plexity Ω(

√
n/4k) for unbounded error and O(log n) for weakly unbounded error.

The communication lower bound in Theorem 1.3 reflects the state of the art in the
area, in that the strongest lower bound for any explicit communication problem
F : ({0, 1}n)k → {−1,+1} to date is Ω(n/2k) due to Babai et al. [12].

1.3. Computational learning. A sign-representing polynomial for a given func-
tion f : {0, 1}n → {−1,+1} is any real polynomial p such that f(x) = sgn p(x) for
all x. The minimum degree of a sign-representing polynomial for f is called the
threshold degree of f, denoted deg±(f). Clearly 0 6 deg±(f) 6 n for every Boolean
function f on n variables. The reader can further verify that sign-representation is
equivalent to pointwise approximation with error strictly less than, but arbitrarily
close to, the trivial error of 1. Sign-representing polynomials are appealing from a
learning standpoint because they immediately lead to efficient learning algorithms.
Indeed, any function of threshold degree d is by definition a linear combination of
N =

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
monomials and can thus be viewed as a halfspace in N

dimensions. As a result, f can be PAC learned [86] under arbitrary distributions
in time polynomial in N, using a variety of halfspace learning algorithms.

The study of sign-representing polynomials started fifty years ago with the
seminal monograph of Minsky and Papert [57], who examined the threshold de-
gree of several common functions. Since then, the threshold degree approach has
yielded the fastest known PAC learning algorithms for notoriously hard concept
classes, including DNF formulas [45] and AND-OR trees [8]. Conspicuously ab-
sent from this list of success stories is the concept class of intersections of half-
spaces. While solutions are known to several restrictions of this learning prob-
lem [18, 51, 87, 9, 44, 46, 43], no algorithm has been discovered for PAC learning
the intersection of even two halfspaces in time faster than 2Θ(n). Known hardness
results, on the other hand, only apply to polynomially many halfspaces or to proper
learning, e.g., [19, 3, 47, 39].

This state of affairs has motivated a quest to determine the threshold degree
of the intersection of two halfspaces [57, 61, 42, 76, 77]. Prior to our work, the
best lower bound was Ω(

√
n) for an explicit intersection of two halfspaces [76],

complemented by a tight but highly nonconstructive Ω(n) lower bound [77]. Using
Theorem 1.1, we prove:

Theorem 1.4. There is an (explicitly given) halfspace hn : {0, 1}n → {−1,+1}
such that

deg±(hn ∧ hn) = Ω(n).

The symbol hn∧hn above stands for the intersection of two copies of hn on disjoint
sets of variables. In other words, Theorem 1.4 constructs an explicit intersection of
two halfspaces whose threshold degree is asymptotically maximal, Ω(n). While the
nonconstructive Ω(n) lower bound of [77] already ruled out the threshold degree
approach as a way to learn intersections of halfspaces, we see Theorem 1.4 as
contributing a key qualitative piece of the puzzle. Specifically, it constructs a small
and simple family of intersections of two halfspaces that are off-limits to all known



8 ALEXANDER A. SHERSTOV

algorithmic approaches (namely, the family obtained by applying hn∧hn to different
subsets of the variables x1, x2, . . . , x4n).

1.4. Proof overview. Our solution has two main components: the construction
of a sparse set of integers that appear random modulo m, and the univariatization
of a multivariate Boolean function. We describe each of these components in detail.

Discrepancy of integer sets. Let m > 2 be a given integer. Key to our work is
the notion of m-discrepancy, which quantifies the pseudorandomness or aperiod-
icity modulo m of any given multiset of integers. It is largely unrelated to the
notion of discrepancy in communication complexity (Section 1.2). Formally, the
m-discrepancy of a nonempty multiset Z = {z1, z2, . . . , zn} is defined as

disc(Z,m) = max
k=1,2,...,m−1

∣∣∣∣∣∣ 1n
n∑
j=1

ωkzj

∣∣∣∣∣∣ ,
where ω is a primitive m-th root of unity. This fundamental quantity arises in
combinatorics and theoretical computer science, e.g., [30, 69, 2, 38, 64, 5]. The
identity 1 + ω + ω2 + · · · + ωm−1 = 0 for any m-th root of unity ω 6= 1 implies
that the set Z = {0, 1, 2, . . . ,m− 1} achieves the smallest possible m-discrepancy:
disc(Z,m) = 0. Much sparser sets with small m-discrepancy can be shown to exist
using the probabilistic method (Fact 3.3 and Corollary 3.4). Specifically, one easily
verifies for any constant ε > 0 the existence of a set Z ⊆ {0, 1, 2, . . . ,m − 1} with
m-discrepancy at most ε and cardinality O(logm), an exponential improvement in
sparsity compared to the trivial set {0, 1, 2, . . . ,m − 1}. We are aware of two effi-
cient constructions of sparse sets with small m-discrepancy, due to Ajtai et al. [2]
and Katz [38]. The approach of Ajtai et al. is elementary except for an appeal
to the prime number theorem, whereas Katz’s construction relies on deep results
in number theory. Neither work appears to directly imply the kind of optimal
de-randomization that we require, namely, an algorithm that runs in time polyno-
mial in logm and produces a multiset of cardinality O(logm) with m-discrepancy
bounded away from 1. We obtain such an algorithm by adapting the approach of
Ajtai et al. [2].

The centerpiece of the construction of Ajtai et al. [2] is what the authors call
the iteration lemma, stated in this paper as Theorem 3.6. Its role is to reduce
the construction of a sparse set with small m-discrepancy to the construction of
sparse sets with small p-discrepancy, for primes p � m. Ajtai et al. [2] proved
their iteration lemma for m prime, but we show that their argument readily gen-
eralizes to arbitrary moduli m. By applying the iteration lemma in a recursive
manner, one reaches smaller and smaller primes. The authors of [2] continue this
recursive process until they reach primes p so small that the trivial construction
{0, 1, 2, . . . , p− 1} can be considered sparse. We proceed differently and terminate
the recursion after just two stages, at which point the input size is small enough
for brute force search based on the probabilistic method. The final set that we con-
struct has size logarithmic in m and m-discrepancy a small constant, as opposed
to the superlogarithmic size and o(1) discrepancy in the work of Ajtai et al. [2].

We note that this modified approach additionally gives the first explicit circulant
expander on n vertices of degree O(log n), which is optimal and improves on the
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previous best degree bound of (log∗ n)O(log∗ n) · O(log n) due to Ajtai et al. [2].
Background on circulant expanders, and the details of our expander construction,
can be found in Section 5.6.

Univariatization. We now describe the second major component of our proof. Con-
sider a halfspace hn(x) = sgn(

∑
zixi−θ) in Boolean variables x1, x2, . . . , xn, where

the coefficients can be assumed without loss of generality to be integers. Then the
linear form

∑
zixi − θ ranges in the discrete set {±1,±2, . . . ,±N}, for some in-

teger N proportionate to the magnitude of the coefficients. As a result, one can
approximate hn to any given error ε by approximating the sign function to ε on
{±1,±2, . . . ,±N}. This approach works for both rational approximation and poly-
nomial approximation. We think of it as the black-box approach to the approxi-
mation of hn because it uses the linear form

∑
zixi − θ rather than the individual

bits. There is no reason to expect that the black-box construction is anywhere
close to optimal. Indeed, there are halfspaces [76, Section 1.3] that can be approx-
imated to arbitrarily small error by a rational function of degree 1 but require a
black-box approximant of degree Ω(n). Surprisingly, we are able to construct a half-
space hn with exponentially large coefficients for which the black-box approximant
is essentially optimal. As a result, tight lower bounds for the rational and poly-
nomial approximation of hn follow immediately from the univariate lower bounds
for approximating the sign function on {±1,±2,±3, . . . ,±2Θ(n)}. The role of hn
is to reduce the multivariate problem taken up in this work to a well-understood
univariate question, hence the term univariatization.

The construction of hn involves several steps. First, we study the probabil-
ity distribution of the weighted sum z1X1 + z2X2 + · · · + znXn modulo m, where
z1, z2, . . . , zn are given integers and the bits X1, X2, . . . , Xn ∈ {0, 1} are chosen uni-
formly at random. We show that the distribution is exponentially close to uniform
whenever the multiset {z1, z2, . . . , zn} has m-discrepancy bounded away from 1.
For the next step, fix any multiset {z1, z2, . . . , zn} with small m-discrepancy and
consider the linear map L : {0, 1}n → Zm given by L(x) =

∑
zixi. At this point in

the proof, we know that for uniformly randomX ∈ {0, 1}n, the probability distribu-
tion of L(X) is exponentially close to uniform. This implies that the characteristic
functions of L−1(0), L−1(1), . . . , L−1(m− 1) have approximately the same Fourier
spectrum up to degree cn, for some constant c > 0. We substantially strengthen
this conclusion by proving that there are probability distributions µ0, µ1, . . . , µm−1,
supported on L−1(0), L−1(1), . . . , L−1(m − 1), respectively, such that the Fourier
spectra of µ0, µ1, . . . , µm−1 are exactly the same up to degree cn. Our proof relies
on a general tool from [77, Theorem 4.1], proved there using the Gershgorin circle
theorem.

As our final step, we use µ0, µ1, . . . , µm−1 to construct a halfspace in terms of
z1, z2, . . . , zn whose approximation by rational functions and polynomials gives cor-
responding approximants for the sign function on the discrete set {±1,±2, . . . ,±m}.
More generally, for any tuple z1, z2, . . . , zn, we define an associated halfspace and
prove a lower bound onm in terms of the discrepancy of the multiset {z1, z2, . . . , zn}.
Combining this result with the efficient construction of an integer set with small m-
discrepancy for m = 2Θ(n), we obtain an explicit halfspace hn : {0, 1}n → {−1,+1}
whose approximation by polynomials and rational functions is equivalent to the
univariate approximation of the sign function on {±1,±2,±3, . . . ,±2Θ(n)}. Theo-
rem 1.1 now follows by appealing to known lower bounds for the polynomial and
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rational approximation of the sign function. To obtain the exponential separation of
communication complexity with unbounded versus weakly unbounded error (The-
orem 1.2), we use the pattern matrix method [73, 75] to “lift” the lower bound of
Theorem 1.1 to a discrepancy bound. Finally, our result on the threshold degree of
the intersection of two halfspaces (Theorem 1.4) works by combining the rational
approximation lower bound of Theorem 1.1 with a structural result from [76] on
the sign-representation of arbitrary functions of the form f ∧ f.

A key technical contribution of this paper is the identification ofm-discrepancy as
a pseudorandom property that is weak enough to admit efficient de-randomization
and strong enough to allow the univariatization of the corresponding halfspace. The
previous, existential result in [77] used a completely different and more complicated
pseudorandom property based on affine shifts of the Fourier transform on {0, 1}n,
which we have not been able to de-randomize. Apart from the construction of a
low-discrepancy set, our proof is simpler and more intuitive than the existential
proof in [77].

2. Preliminaries

We start with a review of the technical preliminaries. The purpose of this section
is to make the paper as self-contained as possible, and comfortably readable by a
broad audience. The expert reader should therefore skim this section for notation
or skip it altogether.

2.1. Notation. There are two common arithmetic encodings for the Boolean val-
ues: the traditional encoding false ↔ 0, true ↔ 1, and the Fourier-motivated
encoding false ↔ 1, true ↔ −1. Throughout this manuscript, we use the former en-
coding for the domain of a Boolean function and the latter for the range. With this
convention, Boolean functions are mappings {0, 1}n → {−1,+1} for some n. For
Boolean functions f : {0, 1}n → {−1,+1} and g : {0, 1}m → {−1,+1}, we let f ◦ g
denote the coordinatewise composition of f with g. Formally, f ◦ g : ({0, 1}m)n →
{−1,+1} is given by

(f ◦ g)(x1, x2, . . . , xn) = f

(
1− g(x1)

2
,

1− g(x2)

2
, . . . ,

1− g(xn)

2

)
, (2.1)

where the linear map on the right-hand side serves the purpose of switching between
the distinct arithmetizations for the domain versus range. A partial function f on a
setX is a function whose domain of definition, denoted dom f, is a nonempty proper
subset of X. We generalize coordinatewise composition f ◦ g to partial Boolean
functions f and g in the natural way. Specifically, f ◦ g is the Boolean function
given by (2.1), with domain the set of all inputs (. . . , xi, . . . ) ∈ (dom g)n for which
(. . . , (1− g(xi))/2, . . . ) ∈ dom f.

We use the following two versions of the sign function:

sgnx =


−1 if x < 0,

0 if x = 0,

1 if x > 0,

s̃gnx =

{
−1 if x < 0,

1 if x > 0.
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For a subset X ⊆ R, we let sgn |X denote the restriction of the sign function to
X . A halfspace for us is any Boolean function h : {0, 1}n → {−1,+1} given by

h(x) = sgn

(
n∑
i=1

wixi − θ

)

for some reals w1, w2, . . . , wn, θ. The majority function MAJn : {0, 1}n → {−1,+1}
is the halfspace defined by

MAJn(x) = − sgn

(
n∑
i=1

xi −
n

2
− 1

4

)

=

{
−1 if x1 + x2 + · · ·+ xn > n/2,

1 otherwise.

Some authors define MAJn only for n odd, in which case the tiebreaker term 1/4
can be omitted.

The complement and the power set of a set S are denoted as usual by S and
P(S), respectively. The symmetric difference of sets S and T is S⊕T = (S ∩T )∪
(S ∩ T ). Throughout this manuscript, we use brace notation as in {z1, z2, . . . , zn}
to specify multisets rather than sets. The cardinality |Z| of a finite multiset Z
is defined as the total number of element occurrences in Z, with each element
counted as many times as it occurs. The equality and subset relations on multisets
are defined analogously, with the number of element occurrences taken into account.
For example, {1, 1, 2} = {1, 2, 1} but {1, 1, 2} 6= {1, 2}. Similarly, {1, 2} ⊆ {1, 1, 2}
but {1, 1, 2} * {1, 2}.

The infinity norm of a function f : X → R is denoted ‖f‖∞ = supx∈X |f(x)|.
For real-valued functions f and g and a nonempty finite subset X of their domain,
we write

〈f, g〉X =
1

|X |
∑
x∈X

f(x)g(x).

We will often use this notation with X a nonempty proper subset of the domain of
f and g.We let lnx and log x stand for the natural logarithm of x and the logarithm
of x to base 2, respectively. The binary entropy function H : [0, 1]→ [0, 1] is given
by H(p) = −p log p − (1 − p) log(1 − p) and is strictly increasing on [0, 1/2]. The
following bound is well known [35, p. 283]:

k∑
i=0

(
n

i

)
6 2H(k/n)n, k = 0, 1, 2, . . . ,

⌊n
2

⌋
. (2.2)

For a complex number x, we denote the real part, imaginary part, and complex
conjugate of x as usual by Re(x), Im(x), and x, respectively. We typeset the
imaginary unit i in boldface to distinguish it from the index variable i.

For an arbitrary integer a and a positive integer m, recall that a mod m denotes
the unique element of {0, 1, 2, . . . ,m − 1} that is congruent to a modulo m. For
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an integer m > 2, the symbols Zm and Z∗m refer to the ring of integers modulo
m and the multiplicative group of integers modulo m, respectively. For a multiset
Z = {z1, z2, . . . , zn} of integers, we adopt the standard notation

−Z = {−z1, . . . ,−zn}, (2.3)
aZ = {az1, . . . , azn}, (2.4)

Z + b = {z1 + b, . . . , zn + b}, (2.5)
Z mod m = {z1 mod m, . . . , zn mod m}. (2.6)

Note that the multisets in (2.3)–(2.6) each have cardinality n, the same as the orig-
inal set Z. We often use these shorthands in combination, as in (aZ + b) mod m =
{(az1 + b) mod m, . . . , (azn + b) mod m}.

For a logical condition C, we use the Iverson bracket

I[C] =

{
1 if C holds,
0 otherwise.

The following concentration inequality, due to Hoeffding [34], is well-known.

Fact 2.1 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random vari-
ables with Xi ∈ [ai, bi]. Let

p =

n∑
i=1

EXi.

Then

P

[∣∣∣∣∣
n∑
i=1

Xi − p

∣∣∣∣∣ > δ

]
6 2 exp

(
− 2δ2∑n

i=1(bi − ai)2

)
.

In Fact 2.1 and throughout this paper, we typeset random variables using capital
letters.

2.2. Number-theoretic preliminaries. For positive integers a and b that are
relatively prime, (a−1)b ∈ {1, 2, . . . , b − 1} denotes the multiplicative inverse of a
modulo b. The following fact is well-known and straightforward to verify; cf. [2].

Fact 2.2. For any positive integers a and b that are relatively prime,

(a−1)b
b

+
(b−1)a
a
− 1

ab
∈ Z. (2.7)

Proof. We have a(a−1)b+b(b
−1)a ≡ b(b−1)a ≡ 1 (mod a), and analogously a(a−1)b+

b(b−1)a ≡ a(a−1)b ≡ 1 (mod b). Thus, a(a−1)b + b(b−1)a − 1 is divisible by both a
and b. Since a and b are relatively prime, we conclude that a(a−1)b + b(b−1)a− 1 is
divisible by ab, which is equivalent to (2.7).
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Recall that the prime counting function π(x) for a real argument x > 0 evaluates
to the number of prime numbers less than or equal to x. In what follows, it will be
clear from the context whether π refers to 3.14159 . . . or the prime counting function.
The asymptotic growth of the latter is given by the prime number theorem, which
states that π(n) ∼ n/ lnn. Many explicit bounds on π(n) are known, such as the
following theorem of Rosser [68].

Fact 2.3 (Rosser). For n > 55,

n

lnn+ 2
< π(n) <

n

lnn− 4
.

The number of distinct prime divisors of a natural number n is denoted ν(n). We
will need the following first-principles bound on ν(n), which is asymptotically tight
for infinitely many n.

Fact 2.4. The number of distinct prime divisors of n obeys

(ν(n) + 1)! 6 n. (2.8)

In particular,

ν(n) 6 (1 + o(1))
lnn

ln lnn
. (2.9)

Proof. An integer n > 1 has by definition ν(n) distinct prime divisors. Letting pk
denote the k-th prime, we have

lnn > ln p1p2 . . . pν(n)

>
ν(n)∑
k=1

ln(k + 1)

>
∫ ν(n)

1

lnx dx

= ν(n) ln ν(n)− ν(n) + 1,

where the second step uses the trivial estimate pk > k + 1. The second step in this
derivation settles (2.8), whereas the last step settles (2.9).

2.3. Matrix analysis. For an arbitrary set X such as X = C or X = {−1, 1}, the
symbol Xn×m denotes the family of n×m matrices with entries in X. The symbols
In and Jn,m stand for the order-n identity matrix and the n×m matrix of all ones,
respectively. When the dimensions of the matrix are clear from the context, we
omit the subscripts and write simply I or J. The shorthand diag(d1, d2, . . . , dn)
refers to the diagonal matrix with entries d1, d2, . . . , dn on the diagonal:

diag(d1, d2, . . . , dn) =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 .
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For a matrix M = [Mi,j ], recall that its complex conjugate is given by M = [Mi,j ].
The transpose and conjugate transpose of M are denoted MT and M∗ = MT ,
respectively. The conjugation, transpose, and conjugate transpose operations apply
as a special case to vectors, which we view as matrices with a single column. We
use the familiar matrix norms ‖M‖∞ = max |Mij | and ‖M‖1 =

∑
|Mij |. Again,

these definitions carry over to vectors as a special case. A matrix M ∈ Cn×n is
called unitary if MM∗ = M∗M = I.

A circulant matrix is any matrix C ∈ Cm×m of the form

C =



c0 c1 c2 · · · cm−2 cm−1

cm−1 c0 c1 · · · cm−3 cm−2

cm−2 cm−1 c0 · · · cm−4 cm−3

...
...

...
. . .

...
...

c2 c3 c4 · · · c0 c1
c1 c2 c3 · · · cm−1 c0


(2.10)

for some c0, c1, . . . , cm−1 ∈ C. Thus, every row of C is obtained by a circular
shift of the previous row one entry to the right. We let circ(c0, c1, . . . , cm−1)
denote the right-hand side of (2.10). In this notation, circ(1, 0, . . . , 0) = I and
circ(1, 1, . . . , 1) = J. The eigenvalues and eigenvectors of a circulant matrix are
well-known and straightforward to determine. For the reader’s convenience, we
include the short derivation below in Fact 2.5 and Corollary 2.6.

Fact 2.5. Let C = circ(c0, c1, . . . , cm−1) be a circulant matrix. Then for every
m-th root of unity ω, the vector

1
ω
ω2

...
ωm−1

 (2.11)

is an eigenvector of C with eigenvalue
∑m−1
j=0 cjω

j .

Proof. Let v denote the vector in (2.11). Then for k = 1, 2, 3, . . . ,m,

(Cv)k =

m−1∑
j=0

c(j−k+1) mod m ωj

=

m−1∑
j=0

c(j−k+1) mod m ωj−k+1

 vk

=

m−1∑
j=0

c(j−k+1) mod m ω(j−k+1) mod m

 vk

=

m−1∑
j=0

cjω
j

 vk,
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where the third step uses ωm = 1.

As a corollary to Fact 2.5, one recovers the full complement of eigenvalues for
any circulant matrix C and furthermore learns that C is unitarily similar to a
diagonal matrix. In the statement below, recall that a primitive m-th root of unity
is any generator, such as exp(2πi/m), for the multiplicative group of the roots of
xm − 1 ∈ Q[x].

Corollary 2.6. Let C = circ(c0, c1, . . . , cm−1) be a circulant matrix. Let ω be a
primitive m-th root of unity. Then the matrix

W = [ωjk/
√
m]j,k=0,1,...,m−1

is unitary and satisfies

W ∗CW = diag

m−1∑
j=0

cj ,

m−1∑
j=0

cjω
j ,

m−1∑
j=0

cjω
2j , . . . ,

m−1∑
j=0

cjω
(m−1)j

 . (2.12)

In particular, the eigenvalues of C, counting multiplicities, are

m−1∑
j=0

cjω
kj , k = 0, 1, 2, . . . ,m− 1.

Proof. For k, k′ = 0, 1, . . . ,m− 1, we have

m−1∑
j=0

ωjk√
m
· ω

jk′

√
m

=
1

m

m−1∑
j=0

ωj(k−k
′)

=

{
1 if k = k′,

0 otherwise,

where the second step is valid because ω is primitive and in particular ωk 6= ωk
′
.

We conclude that

WW ∗ = W ∗W = I. (2.13)

Fact 2.5 implies that

CW = W diag

m−1∑
j=0

cj ,

m−1∑
j=0

cjω
j ,

m−1∑
j=0

cjω
2j , . . . ,

m−1∑
j=0

cjω
(m−1)j

 ,

which in light of (2.13) is equivalent to (2.12).
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2.4. Polynomial approximation. Recall that the total degree of a multivariate
real polynomial p : Rn → R, denoted deg p, is the largest degree of any monomial
of p. We use the terms “degree” and “total degree” interchangeably in this paper.
Let f : X → R be a given function with domain X ⊆ Rn. For any d > 0, define

E(f, d) = inf
p
‖f − p‖∞,

where the infimum is over real polynomials p of degree at most d. In words, E(f, d)
is the least error in a pointwise approximation of f by a polynomial of degree
no greater than d. The ε-approximate degree of f is the minimum degree of a
polynomial p that approximates f pointwise within ε:

‖f − p‖∞ 6 ε.

In this overview, we focus on the polynomial approximation of the sign function.
We start with an elementary construction of an approximant due to Buhrman et
al. [21].

Fact 2.7 (Buhrman et al.). For any N > 1 and 0 < ε < 1, the sign function can be
approximated on [−N,−1] ∪ [1, N ] pointwise to within ε by a polynomial of degree

O

(
N2 log

2

ε

)
.

The degree upper bound in Fact 2.7 is not tight. Indeed, a quadratically stronger
bound of O(N log(2/ε)) follows in a straightforward manner from Jackson’s theorem
in approximation theory [67, Theorem 1.4]. Our applications do not benefit from
this improvement, however, and we opt for the construction of Buhrman et al. [21]
because of its striking simplicity. For the reader’s convenience, we provide their
short proof below.

Proof (adapted from Buhrman et al.) For a positive integer d, consider the degree-
d univariate polynomial

Bd(t) =

d∑
i=dd/2e

(
d

i

)
ti(1− t)d−i.

In words, Bd(t) is the probability of observing at least as many heads as tails in
a sequence of d independent coin flips, each coming up heads with probability t.
By Hoeffding’s inequality (Fact 2.1) for sufficiently large d = O(N2 log(2/ε)), the
polynomial Bd sends [0, 1

2 −
1

2N ]→ [0, ε2 ] and similarly [ 1
2 + 1

2N , 1]→ [1− ε
2 , 1]. As

a result, the shifted and scaled polynomial 2Bd
(

1
2N · t+ 1

2

)
− 1 approximates the

sign function pointwise on [−N,−1] ∪ [1, N ] within ε.

On the lower bounds side, Paturi proved that low-degree polynomials cannot
approximate the majority function well. He in fact obtained analogous results for
all symmetric functions, but the special case of majority will be sufficient for our
purposes.
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Theorem 2.8 (Paturi). For some constant c > 0 and all integers n > 1,

E(MAJn, cn) >
1

3
.

The constant 1/3 in Paturi’s theorem can be replaced by any other in (0, 1). His
result is of interest to us because along with Fact 2.7, it implies a lower bound for the
approximation of the sign function on the discrete set of points {±1,±2, . . . ,±N}
for any N.

Proposition 2.9. For all positive integers N and d,

E(sgn |{±1,±2,...,±N}, d) > 1−O
(
d

N

)1/2

.

Proof. Abbreviate ε = E(sgn |{±1,±2,...,±N}, d) and fix a polynomial p of degree
at most d that approximates the sign function on {±1,±2, . . . ,±N} within ε.
Fact 2.7 gives a polynomial s of degree O(1/(1− ε)2) that sends [−1− ε,−1 + ε]→
[−4/3,−2/3] and [1 − ε, 1 + ε] → [2/3, 4/3]. Then the composition of these two
approximants obeys

max
t=±1,±2,...,±N

| sgn(t)− s(p(t))| 6 1

3
.

This in turn gives an approximant for the majority function on n = b(N − 1)/2c
bits:

max
x∈{0,1}n

∣∣∣∣∣∣MAJn(x)− s

p
2

n∑
j=1

(−1)xj + 1

∣∣∣∣∣∣
= max
x∈{0,1}n

∣∣∣∣∣∣sgn

2

n∑
j=1

(−1)xj + 1

− s
p
2

n∑
j=1

(−1)xj + 1

∣∣∣∣∣∣
6 max
t=±1,±2,...,±N

| sgn(t)− s(p(t))|

6
1

3
.

In view of Paturi’s lower bound for the majority function (Theorem 2.8), the approx-
imant s(p(2

∑
(−1)xj + 1)) must have degree Ω(n) = Ω(N). But this composition

is a polynomial in x ∈ {0, 1}n of degree deg s · deg p = O(d/(1− ε)2). We conclude
that d/(1− ε)2 > Ω(N), whence ε > 1−O(d/N)1/2.

2.5. Rational approximation. Consider a rational function r(x) = p(x)/q(x),
where p and q are polynomials on Rn. We refer to the degrees of p and q as the
numerator degree and denominator degree, respectively, of r. The degree of r is,
then, the maximum of the numerator and denominator degrees. For a function
f : X → R with domain X ⊆ Rn, we define

R(f, d0, d1) = inf
p,q

sup
x∈X

∣∣∣∣f(x)− p(x)

q(x)

∣∣∣∣ , (2.14)
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where the infimum is over multivariate polynomials p and q of degree at most d0

and d1, respectively, such that q does not vanish on X. In words, R(f, d0, d1) is
the least error in an approximation of f by a multivariate rational function with
numerator degree and denominator degree at most d0 and d1, respectively. We will
be mostly working with R(f, d0, d1) in the regimes d0 = d1 and d0 � d1. In the
former regime, we use the shorthand

R(f, d) = R(f, d, d).

As a limiting case of the latter regime, we have

E(f, d) = R(f, d, 0).

The study of the rational approximation of the sign function dates back to the
seminal work by Zolotarev [89] in the 1870s. The problem was revisited almost a
century later by Newman [60], who proved the following result.

Fact 2.10 (Newman). For any N > 1 and any integer d > 1,

R(sgn |[−N,−1]∪[1,N ], d) 6 1− 1

N1/d
.

For a recent exposition of Newman’s construction, we refer the reader to [76, Theo-
rem 2.4]. As an important special case, Newman’s work gives upper bounds for the
rational approximation of the sign function on the discrete set {±1,±2, . . . ,±N}.
Newman’s upper bounds were sharpened and complemented with matching lower
bounds in [76, Eq. (2.2) and Theorem 5.1], to the following effect.

Theorem 2.11 (Sherstov). For any positive integers N and d,

R(sgn |{±1,±2,...,±N}, d) =

{
1−N−Θ(1/d) if 1 6 d 6 logN,

2−Θ(d/ log(N/d)) if logN < d < N/2.

Among other things, Theorem 2.11 implies the following result on the rational
approximation of the majority function [76, Eq. (2.2) and Theorems 5.1, 5.9].

Theorem 2.12 (Sherstov). For any positive integers n and d,

R(MAJn, d) =

{
1− n−Θ(1/d) if 1 6 d 6 log n,

2−Θ(d/ log(n/d)) if log n 6 d < bn/4c.

2.6. Sign-representation. Let f : X → {−1,+1} be a given function, where
X ⊂ Rn is finite. The threshold degree of f, denoted deg±(f), is the least degree
of a polynomial p(x) such that f(x) ≡ sgn p(x). For functions f : X → {−1,+1}
and g : Y → {−1,+1}, we let the symbol f ∧ g stand for the function X × Y →
{−1,+1} given by (f ∧ g)(x, y) = f(x) ∧ g(y). Note that in this notation, f and
f ∧ f are completely different functions, the former having domain X and the
latter X ×X. The following ingenious observation, due to Beigel et al. [17], relates
the notions of sign-representation and rational approximation for conjunctions of
Boolean functions.
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Theorem 2.13 (Beigel et al.). Let f : X → {−1,+1} and g : Y → {−1,+1} be
given functions, where X,Y ⊆ Rn. Let d be any integer with

R(f, d) +R(g, d) < 1.

Then

deg±(f ∧ g) 6 4d.

Proof (adapted from Beigel et al.). Fix arbitrary rational functions p1(x)/q1(x) and
p2(y)/q2(y) of degree at most d such that

sup
X

∣∣∣∣f(x)− p1(x)

q1(x)

∣∣∣∣+ sup
Y

∣∣∣∣g(y)− p2(y)

q2(y)

∣∣∣∣ < 1.

Then

f(x) ∧ g(y) ≡ sgn(1 + f(x) + g(y))

≡ sgn

(
1 +

p1(x)

q1(x)
+
p2(y)

q2(y)

)
.

Multiplying through by the positive quantity q1(x)2q2(y)2 gives the desired sign-
representing polynomial: f(x) ∧ g(y) ≡ sgn{q1(x)2q2(y)2 + p1(x)q1(x)q2(y)2 +
p2(y)q2(y)q1(x)2}.

The construction of Theorem 2.13 is somewhat ad hoc, and there is no particular
reason to believe that it gives a sign-representing polynomial of asymptotically
optimal degree. Remarkably, it does. The following converse to the theorem of
Beigel et al. was established in [76, Theorem 3.16].

Theorem 2.14 (Sherstov). Let f : X → {−1,+1} and g : Y → {−1,+1} be given
functions, where X,Y ⊂ Rn are arbitrary finite sets. Assume that f and g are not
identically false. Let d = deg±(f ∧ g). Then

R(f, 4d) +R(g, 2d) < 1.

2.7. Symmetrization. Let Sn denote the symmetric group on n elements. For
σ ∈ Sn and x ∈ {0, 1}n, we denote σx = (xσ(1), . . . , xσ(n)) ∈ {0, 1}n. For x ∈
{0, 1}n, we define |x| = x1 + x2 + · · · + xn. A function φ : {0, 1}n → R is called
symmetric if φ(x) = φ(σx) for every x ∈ {0, 1}n and every σ ∈ Sn. Equivalently, φ is
symmetric if φ(x) is uniquely determined by |x|. Symmetric functions on {0, 1}n are
intimately related to univariate polynomials, as borne out by Minsky and Papert’s
symmetrization argument [57].

Proposition 2.15 (Minsky and Papert). Let p : {0, 1}n → R be a polynomial of
degree d. Then there is a univariate polynomial p∗ of degree at most d such that for
all x ∈ {0, 1}n,

E
σ∈Sn

p(σx) = p∗(|x|).
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Minsky and Papert’s result generalizes to block-symmetric functions, as pointed
out in [66, Proposition 2.3]:

Proposition 2.16 (Razborov and Sherstov). Let n1, . . . , nk be positive integers.
Let p : {0, 1}n1 × · · · × {0, 1}nk → R be a polynomial of degree d. Then there is a
polynomial p∗ : Rk → R of degree at most d such that for all x1 ∈ {0, 1}n1 , . . . , xk ∈
{0, 1}nk ,

E
σ1∈Sn1

,...,σk∈Snk
p(σ1x1, . . . , σkxk) = p∗(|x1|, . . . , |xk|).

Proposition 2.16 follows in a straightforward manner from Minsky and Papert’s
Proposition 2.15 by induction on the number of blocks k.

2.8. Communication complexity. An excellent reference on communication com-
plexity is the monograph by Kushilevitz and Nisan [50]. In this overview, we will
limit ourselves to key definitions and notation. We adopt the randomized number-
on-the-forehead model, due to Chandra et al. [24]. The model features k communi-
cating players, tasked with computing a (possibly partial) Boolean function F on
the Cartesian product X1×X2×· · ·×Xk of some finite sets X1, X2, . . . , Xk. A given
input (x1, x2, . . . , xk) ∈ X1×X2×· · ·×Xk is distributed among the players by plac-
ing xi, figuratively speaking, on the forehead of the i-th player (for i = 1, 2, . . . , k).
In other words, the i-th player knows the arguments x1, . . . , xi−1, xi+1, . . . , xk but
not xi. The players communicate by sending broadcast messages, taking turns
according to a protocol agreed upon in advance. Each of them privately holds
an unlimited supply of uniformly random bits, which he can use along with his
available arguments when deciding what message to send at any given point in
the protocol. The protocol’s purpose is to allow accurate computation of F every-
where on the domain of F . An ε-error protocol for F is one which, on every input
(x1, x2, . . . , xk) ∈ domF, produces the correct answer F (x1, x2, . . . , xk) with prob-
ability at least 1− ε. The cost of a protocol is the total bit length of the messages
broadcast by all the players in the worst case.1 The ε-error randomized communi-
cation complexity of F, denoted Rε(F ), is the least cost of an ε-error randomized
protocol for F . As a special case of this model for k = 2, one recovers the original
two-party model of Yao [88] reviewed in the introduction.

We focus on randomized protocols with probability of error close to that of
random guessing, 1/2. There are two natural ways to define the communication
complexity of a multiparty problem F in this setting. The communication com-
plexity of F with unbounded error, introduced by Paturi and Simon [63], is the
quantity

UPP(F ) = inf
06ε<1/2

Rε(F ).

The error probability in this formalism is “unbounded” in the sense that it can be
arbitrarily close to 1/2. Babai et al. [11] proposed an alternate quantity, which
includes an additive penalty term that depends on the error probability:

PP(F ) = inf
06ε<1/2

{
Rε(F ) + log

1
1
2 − ε

}
.

1 The contribution of a b-bit broadcast to the protocol cost is b rather than k · b.
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We refer to PP(F ) as the communication complexity of F with weakly unbounded
error. These two complexity measures naturally give rise to corresponding com-
plexity classes UPPk and PPk in multiparty communication complexity [11], both
inspired by Gill’s probabilistic polynomial time for Turing machines [31]. Formally,
let {Fn,k}∞n=1 be a family of k-party communication problems Fn,k : ({0, 1}n)k →
{−1,+1}, where k = k(n) is either a constant or a function. Then {Fn,k}∞n=1 ∈
UPPk if and only if UPP(Fn,k) 6 logc n for some constant c and all n > c. Analo-
gously, {Fn,k}∞n=1 ∈ PPk if and only if PP(Fn,k) 6 logc n for some constant c and
all n > c. By definition,

PPk ⊆ UPPk.

It is standard practice to abbreviate PP = PP2 and UPP = UPP2. The following
well-known fact, whose proof in the stated generality is available in [80, Fact 2.4],
gives a large class of communication problems that are efficiently computable with
unbounded error.

Fact 2.17. Let F : ({0, 1}n)k → {−1,+1} be a k-party communication problem
such that F (x) = sgn p(x) for some polynomial p with ` monomials. Then

UPP(F ) 6 dlog `e+ 2.

In the setting of k = 2 parties, Paturi and Simon [63] showed that unbounded-
error communication complexity has a natural matrix-analytic characterization.
For a matrix M without zero entries, the sign-rank of M is denoted rk±(M) and
defined as the minimum rank of a real matrix R such that sgnRi,j = sgnMi,j for
all i, j. In words, the sign-rank of M is the minimum rank of a real matrix that
has the same sign pattern as M. We extend the notion of sign-rank to commu-
nication problems F : X × Y → {−1,+1} by defining rk±(F ) = rk±(MF ), where
MF = [F (x, y)]x∈X,y∈Y is the characteristic matrix of F. The following classic re-
sult due to Paturi and Simon [63, Theorem 3] relates two-party unbounded-error
communication complexity to sign-rank.

Theorem 2.18 (Paturi and Simon). Let F : X × Y → {−1,+1} be a two-party
communication problem. Then

log rk±(F ) 6 UPP(F ) 6 log rk±(F ) + 2.

2.9. Discrepancy. A k-dimensional cylinder intersection is a function χ : X1 ×
X2 × · · · ×Xk → {0, 1} of the form

χ(x1, x2, . . . , xk) =

k∏
i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk),

where χi : X1×· · ·×Xi−1×Xi+1×· · ·×Xk → {0, 1}. In other words, a k-dimensional
cylinder intersection is the product of k functions with range {0, 1}, where the i-th
function does not depend on the i-th coordinate but may depend arbitrarily on the
other k − 1 coordinates. Introduced by Babai et al. [12], cylinder intersections are
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the fundamental building blocks of communication protocols and for that reason
play a central role in the theory. For a (possibly partial) Boolean function F on
X1 ×X2 × · · · ×Xk and a probability distribution P on X1 ×X2 × · · · ×Xk, the
discrepancy of F with respect to P is given by

discP (F ) =
∑

x/∈domF

P (x) + max
χ

∣∣∣∣∣ ∑
x∈domF

F (x)P (x)χ(x)

∣∣∣∣∣ ,
where the maximum is over cylinder intersections χ. The minimum discrepancy
over all distributions is denoted

disc(F ) = min
P

discP (F ).

Upper bounds on a function’s discrepancy give lower bounds on its randomized com-
munication complexity, a classic technique known as the discrepancy method [28,
12, 50].

Theorem 2.19. Let F be a (possibly partial) Boolean function on X1×X2×· · ·×Xk.
Then for 0 6 ε 6 1/2,

2Rε(F ) >
1− 2ε

disc(F )
.

A proof of Theorem 2.19 in the stated generality is available in [79, Theorem 2.9].
Combining this theorem with the definition of PP(F ) gives the following corollary.

Corollary 2.20. Let F be a (possibly partial) Boolean function on X1×X2×· · ·×
Xk. Then

PP(F ) > log
2

disc(F )
.

2.10. Pattern matrix method. Theorem 2.19 and Corollary 2.20 highlight the
role of discrepancy in proving lower bounds on randomized communication complex-
ity. Apart from a few canonical examples [50], discrepancy is a challenging quantity
to analyze. The pattern matrix method is a technique that gives tight bounds on
the discrepancy and communication complexity for a large class of communication
problems. The technique was developed in [73, 75] for two-party communication
complexity and has since been generalized by several authors to the multiparty
setting. We now review the strongest form [79, 78] of the pattern matrix method,
focusing our discussion on discrepancy bounds.

Set disjointness is the k-party communication problem of determining whether k
given subsets of the universe {1, 2, . . . , n} have empty intersection, where, as usual,
the i-th party knows all the sets except for the i-th. Identifying the sets with
their characteristic vectors, set disjointness corresponds to the Boolean function
DISJn,k : ({0, 1}n)k → {−1,+1} given by

DISJn,k(x1, x2, . . . , xk) = ¬
n∨
i=1

x1,i ∧ x2,i ∧ · · · ∧ xk,i . (2.15)
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The partial function UDISJn,k on ({0, 1}n)k, called unique set disjointness, is
defined as DISJn,k with domain restricted to inputs x ∈ ({0, 1}n)k such that
x1,i ∧ x2,i ∧ · · · ∧ xk,i = 1 for at most one coordinate i. In set-theoretic terms,
this restriction corresponds to requiring that the k sets either have empty intersec-
tion or intersect in a unique element.

The pattern matrix method pertains to the communication complexity of com-
posed communication problems. Specifically, let G be a (possibly partial) Boolean
function on X1×X2×· · ·×Xk, representing a k-party communication problem, and
let f : {0, 1}n → {−1,+1} be given. The coordinatewise composition f ◦G is then a
k-party communication problem on Xn

1 ×Xn
2 × · · ·×Xn

k . We are now in a position
to state the pattern matrix method for discrepancy bounds [79, Theorem 5.7].

Theorem 2.21 (Sherstov). For every Boolean function f : {0, 1}n → {−1,+1}, all
positive integers m and k, and all reals 0 < γ < 1,

disc(f ◦UDISJm,k) 6

(
e · 2kn

deg1−γ(f)
√
m

)deg1−γ(f)

+ γ .

This theorem makes it possible to prove communication lower bounds by leveraging
the existing literature on polynomial approximation. In follow-up work, the author
improved Theorem 2.21 to an essentially tight upper bound [78, Theorem 5.7].
However, we will not need this sharper version.

3. Discrepancy of integer sets

Let m > 2 be an integer modulus. Key to our work is the notion of m-
discrepancy, which quantifies the pseudorandomness or aperiodicity of any given
multiset of integers modulo m. The m-discrepancy of a nonempty multiset Z =
{z1, z2, . . . , zn} of arbitrary integers is defined as

disc(Z,m) = max
k=1,2,...,m−1

∣∣∣∣∣∣ 1n
n∑
j=1

ωkzj

∣∣∣∣∣∣ ,
where ω is a primitive m-th root of unity; the right-hand side is obviously the
same for any such ω. By way of terminology, we emphasize that the notion of m-
discrepancy just defined is unrelated to the notion of discrepancy from Section 2.9.
As a matter of convenience, we define

disc(∅,m) = 0. (3.1)

The notion of m-discrepancy has a long history in combinatorics and theoretical
computer science, e.g., [30, 69, 2, 38, 64, 5]. The m-discrepancy of an integer
multiset Z has a natural interpretation in terms of the discrete Fourier transform
on Zm. Specifically, consider the frequency vector (f0, f1, . . . , fm−1) of Z, where
fj is the total number of element occurrences in Z that are congruent to j mod-
ulo m. Applying the discrete Fourier transform to (fj)

m−1
j=0 produces the sequence

(
∑m−1
j=0 fj exp(−2πikj/m))m−1

k=0 = (
∑n
j=1 exp(−2πikzj/m))m−1

k=0 , which is a permu-
tation of (n,

∑n
j=1 ω

zj , . . . ,
∑n
j=1 ω

(m−1)zj ). Summarizing, the m-discrepancy of Z
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coincides up to a normalizing factor with the largest absolute value of a nonconstant
Fourier coefficient of the frequency vector of Z.

3.1. Basic properties. We collect a few elementary properties of m-discrepancy.
To start with, we quantify the “continuity” of disc(Z,m) in the first argument. By
way of notation, we remind the reader that the cardinality |Z| of a multiset Z is
found by summing, for each distinct element z ∈ Z, the number of times z occurs
in Z.

Proposition 3.1. Fix a natural number m > 2. Then for any nonempty finite
multisets Z,Z ′ of integers with Z ′ ⊆ Z,

1 + disc(Z ′,m) 6 (1 + disc(Z,m)) · |Z|
|Z ′|

. (3.2)

Proof. Abbreviate n = |Z| and n′ = |Z ′|, and fix an enumeration z1, z2, . . . , zn of
the elements of Z such that Z ′ = {z1, z2, . . . , zn′}. Then for a primitive m-th root
of unity ω,

ndisc(Z,m) = max
k=1,2,...,m−1

∣∣∣∣∣∣
n∑
j=1

ωkzj

∣∣∣∣∣∣
> max
k=1,2,...,m−1


∣∣∣∣∣∣
n′∑
j=1

ωkzj

∣∣∣∣∣∣−
n∑

j=n′+1

∣∣ωkzj ∣∣


= max
k=1,2,...,m−1

∣∣∣∣∣∣
n′∑
j=1

ωkzj

∣∣∣∣∣∣− (n− n′)

= n′ disc(Z ′,m)− (n− n′),

which directly implies (3.2).

The m-discrepancy of Z is invariant under a variety of operations on Z, such as
shifting the elements of Z by any given integer or multiplying the elements of Z by
an integer relatively prime to m. For our purposes, the following observation will
be sufficient.

Proposition 3.2. Fix a natural number m > 2 and a nonempty finite multiset Z
of integers. Then

disc(−Z,m) = disc(Z,m).

Proof. The claim is immediate from the definition of m-discrepancy because ω is a
primitive m-th root of unity if and only if ω−1 is.

3.2. Existential bounds. Since the m-discrepancy of a multiset remains un-
changed when one reduces its elements modulo m, we can focus without loss of
generality on multisets with elements in {0, 1, 2, . . . ,m−1}. The identity 1+ω+ω2+
· · ·+ωm−1 = 0 for anym-th root of unity ω 6= 1 implies that Z = {0, 1, 2, . . . ,m−1}
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achieves the smallest possible m-discrepancy: disc(Z,m) = 0. The problem of con-
structing sparse nonempty multisets with small discrepancy has seen considerable
work. Their existence is straightforward to verify, as follows.

Fact 3.3. Fix 0 < ε < 1 and an integer m > 2. Let Z be a random multiset
of size n whose elements are chosen independently and uniformly at random from
{0, 1, 2, . . . ,m− 1}. Then

P [disc(Z,m) > ε] 6 4m exp

(
−nε

2

8

)
.

Fact 3.3 has been proved in one form or another by many authors, e.g., [30, 69, 5].
For the reader’s convenience, we include a short proof below.

Proof of Fact 3.3. Let Z1, Z2, . . . , Zn be independent random variables, each dis-
tributed uniformly in {0, 1, 2, . . . ,m−1}. For any m-th root of unity ω 6= 1, we have
|ωZj | = 1 and EωZj = 0 for j = 1, 2, . . . , n. Hence, Re(ωZ1),Re(ωZ2), . . . ,Re(ωZn)
are independent random variables with range in [−1, 1] and expectation 0, and
likewise for Im(ωZ1), Im(ωZ2), . . . , Im(ωZn). As a result,

P

∣∣∣∣∣∣ 1n
n∑
j=1

ωZj

∣∣∣∣∣∣ > ε

 6 P

∣∣∣∣∣∣Re

 1

n

n∑
j=1

ωZj

∣∣∣∣∣∣ > ε

2


+ P

∣∣∣∣∣∣Im
 1

n

n∑
j=1

ωZj

∣∣∣∣∣∣ > ε

2


6 4 exp

(
−nε

2

8

)
,

where the second step uses Hoeffding’s inequality (Fact 2.1). Applying the union
bound across all m-th roots of unity ω 6= 1, we conclude that the probability that
disc({Z1, Z2, . . . , Zn},m) > ε is at most 4(m− 1) exp(−nε2/8).

In some applications, one is restricted to working with subsets of {0, 1, 2, . . . ,m−1}
as opposed to arbitrary multisets with possibly repeated elements. We record a
version of Fact 3.3 for this setting.

Corollary 3.4. Fix 0 < ε < 1 and an integer m > 2. Let Z be a random multiset
of size n 6 m whose elements are chosen independently and uniformly at random
from {0, 1, 2, . . . ,m− 1}. Then with probability at least

(
1− n

m

)n
− 4m exp

(
−nε

2

8

)
, (3.3)

the elements of Z are nonzero and pairwise distinct, and obey disc(Z,m) 6 ε.

Proof. The probability that Z does not contain 0 or repeated elements is easily
seen to be

∏n
i=1

m−i
m > (1− n

m )n. As a result, the claim follows from Fact 3.3.
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In all of our applications, the error parameter ε > 0 will be a small constant. In
this regime, Corollary 3.4 guarantees the existence of a set Z ⊆ {1, 2, . . . ,m−1} with
m-discrepancy at most ε and cardinality O(logm), an exponential improvement in
sparsity compared to the trivial set {0, 1, 2, . . . ,m− 1}. No further improvement is
possible: it is well known that any nonempty multiset with m-discrepancy bounded
away from 1 has cardinality Ω(logm). This classical lower bound has a remark-
able variety of proofs, e.g., using random walks [5], sphere packing arguments [29],
and diophantine approximation [53]. We include here a particularly simple and
self-contained proof, adapted from Leung et al. [53]. Unlike all other technical
statements in this paper, Fact 3.5 is not used in the proof of our main result and
is provided solely for completeness.

Fact 3.5 (Leung et al.). Fix a natural number m > 2. Let Z = {z1, z2, . . . , zn} be
a multiset of integers. Then

disc(Z,m) > 1− 2π

b(m− 1)1/nc
.

Proof (adapted from [53]). The proof is based on a classic technique from simul-
taneous diophantine approximation. For a nonnegative real number x, let frac(x)
denote the fractional part of x. Abbreviate q = b(m − 1)1/nc and consider the q
intervals

[
0,

1

q

)
,

[
1

q
,

2

q

)
,

[
2

q
,

3

q

)
, . . . ,

[
q − 1

q
, 1

)
. (3.4)

By the pigeonhole principle, there must be a pair of distinct integers k′, k′′ ∈
{0, 1, 2, . . . , qn} such that

frac

(
z1k
′

m

)
, frac

(
z2k
′

m

)
, . . . , frac

(
znk
′

m

)

are in the same intervals of (3.4) as

frac

(
z1k
′′

m

)
, frac

(
z2k
′′

m

)
, . . . , frac

(
znk
′′

m

)
,

respectively. Without loss of generality, k′ > k′′. Then the integer k = k′ − k′′

obeys

k ∈ {1, 2, . . . ,m− 1}, (3.5)∣∣∣∣zjkm − uj
∣∣∣∣ 6 1

q
, j = 1, 2, . . . , n (3.6)
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for some u1, u2, . . . , un ∈ Z. Now

disc(Z,m) >
1

n

∣∣∣∣∣∣
n∑
j=1

exp

(
2πi · kzj

m

)∣∣∣∣∣∣
> 1− 1

n

n∑
j=1

∣∣∣∣1− exp

(
2πi · kzj

m

)∣∣∣∣
= 1− 1

n

n∑
j=1

∣∣∣∣1− exp

(
2πi ·

(
kzj
m
− uj

))∣∣∣∣
> 1− 1

n

n∑
j=1

2π

∣∣∣∣kzjm − uj
∣∣∣∣

> 1− 2π

q
,

where the first step uses the definition of m-discrepancy; the second step applies
the triangle inequality; the third step is valid by periodicity; the fourth step uses
the bound |1 − exp(2πxi)| =

√
2− 2 cos(2πx) 6 2π|x| for all real x; and the final

step is immediate from (3.6).

3.3. An explicit construction. We now turn to the problem of efficiently con-
structing sparse sets with small m-discrepancy. Two such constructions are known
to date, due to Ajtai et al. [2] and Katz [38]. The approach of Ajtai et al. is ele-
mentary except for an appeal to the prime number theorem. Katz’s construction,
on the other hand, relies on deep results in number theory. Neither work appears
to directly imply the kind of optimal de-randomization that we require, namely,
an algorithm that runs in time polynomial in logm and produces a multiset of
cardinality O(logm) with m-discrepancy bounded away from 1. We obtain such
an algorithm by adapting the approach of Ajtai et al. [2]. The following technical
result plays a central role.

Theorem 3.6 (cf. Ajtai et al.). Fix an integer R > 1 and a real number P > 2.
Let m be an integer with m > P 2(R + 1). Fix a set Sp ⊆ {1, 2, . . . , p− 1} for each
prime p ∈ (P/2, P ] with p - m, such that all Sp have the same cardinality. Consider
the multiset

S = {(r + s · (p−1)m) mod m :

r = 1, . . . , R; p ∈ (P/2, P ] prime with p - m; s ∈ Sp}.

Then the elements of S are pairwise distinct and nonzero. Moreover,

disc(S,m) 6
c√
R

+
c logm

log logm
· logP

P
+ max

p
{disc(Sp, p)}

for some (explicitly given) constant c > 1 independent of P,R,m.
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Ajtai et al. [2] proved a special case of Theorem 3.6 form prime, but their argument
readily generalizes to arbitrary moduli m as just stated. For the reader’s conve-
nience, we provide a complete proof of Theorem 3.6 in Appendix A. The theorem’s
purpose is to reduce the construction of a sparse set with small m-discrepancy to
the construction of sparse sets with small p-discrepancy, for primes p� m. By ap-
plying Theorem 3.6 in a recursive manner, one reaches smaller and smaller primes.
The authors of [2] continue this recursive process until they reach primes p so small
that the trivial construction {1, 2, 3, . . . , p − 1} can be considered sparse. We pro-
ceed differently and terminate the recursion after just two stages, at which point
the input size is small enough for brute force search based on Corollary 3.4. The
final set that we construct has size logarithmic in m and m-discrepancy a small
constant, as opposed to the superlogarithmic size and o(1) discrepancy in the work
of Ajtai et al. [2]. A detailed exposition of our algorithm follows.

Theorem 3.7. Let 0 < ε 6 1 be given. Then there is an algorithm that takes as
input an integer m > 2, runs in time polynomial in logm, and outputs a nonempty
set Z ⊆ {0, 1, 2, . . . ,m− 1} with

disc(Z,m) 6 ε,

|Z| 6 Cε logm,

where Cε > 1 is a constant. Moreover, the constant Cε and the algorithm are given
explicitly.

Proof. Set δ = ε/(11c), where c > 1 is the explicit constant from Theorem 3.6.
Define

P ′ =
1

δ
ln

(
1

δ
lnm

)
,

P ′′ =
1

δ
lnm.

We may assume that

P ′ >
1

δ2
, (3.7)

P ′ > 4

⌈
8 ln 8P ′

δ2

⌉2

, (3.8)

P ′′ > 2P ′2
⌈

1

δ2
+ 1

⌉
, (3.9)

m > P ′′2
⌈

1

δ2
+ 1

⌉
, (3.10)

π(P ′) > π

(
P ′

2

)
, (3.11)

π(P ′′)− π
(
P ′′

2

)
> ν(m), (3.12)
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where π is the prime counting function and ν is the number of distinct prime divisors
function. Indeed, if any of (3.7)–(3.10) is violated, then by elementary calculus m is
bounded in terms of 1/δ = O(1) and therefore the trivial set Z = {0, 1, 2, . . . ,m−1}
satisfies disc(Z,m) = 0 and |Z| = O(1). Analogously, the explicit bounds for π and
ν in Facts 2.3 and 2.4 ensure that (3.11) and (3.12) can fail only if m is bounded
in terms of 1/δ = O(1), so that we may again output Z = {0, 1, 2, . . . ,m− 1}.

Assuming (3.7)–(3.12), our construction of Z has three stages. In the first
and second stages, we construct sparse sets Sp ⊆ {1, 2, . . . , p − 1} with small p-
discrepancy for all primes p ∈ (P ′/2, P ′] and p ∈ (P ′′/2, P ′′], respectively. In the
final stage, we construct the set Z in the theorem statement. We ensure that each
stage runs in time polynomial in lnm.

Stage 1. For every prime p′ ∈ (P ′/2, P ′], Corollary 3.4 along with (3.8) guaran-
tees the existence of a set Sp′ ⊆ {1, 2, . . . , p′ − 1} with

|Sp′ | =
⌈

8 ln 8P ′

δ2

⌉
, prime p′ ∈ (P ′/2, P ′], (3.13)

disc(Sp′ , p
′) 6 δ, prime p′ ∈ (P ′/2, P ′]. (3.14)

The primes in (P ′/2, P ′] can be identified by the trivial algorithm in time polyno-
mial in P ′ = O(ln lnm). For each such prime p′, we can find a set Sp′ with the
above properties in time P ′O(|Sp′ |) = o(lnm) by trying out all candidate sets.

Stage 2. Apply the construction of Theorem 3.6 with parameters P = P ′ and
R = d1/δ2e to the sets constructed in Stage 1 to obtain a set Sp′′ ⊆ {1, 2, . . . , p′′−1}
for each prime p′′ ∈ (P ′′/2, P ′′]. This choice of parameters is legitimate by (3.9).
By (3.13), the new sets have the same cardinality, namely,

|Sp′′ | = R

⌈
8 ln 8P ′

δ2

⌉(
π(P ′)− π

(
P ′

2

))
, prime p′′ ∈ (P ′′/2, P ′′].

The prime number theorem (Fact 2.3) implies that |Sp′′ | = O(P ′) = O(ln lnm). In
view of (3.7), (3.14), and P ′′ = exp(δP ′), the new sets have

disc(Sp′′ , p
′′) 6 6cδ, prime p′′ ∈ (P ′′/2, P ′′]. (3.15)

We now show that Stage 2 runs in time polynomial in lnm. To start with, the
primes in (P ′′/2, P ′′] can be identified by the trivial algorithm in time polynomial
in P ′′ = O(lnm). For any such prime p′′, the construction of the corresponding
set Sp′′ in Theorem 3.6 amounts to O(|Sp′′ |) = O(ln lnm) arithmetic operations
in the field Fp′′ of size |Fp′′ | = O(lnm), and therefore can be carried out in time
polynomial in ln lnm.

Stage 3. Apply the construction of Theorem 3.6 with parameters P = P ′′ and
R = d1/δ2e to the sets constructed in Stage 2 to obtain a set Sm ⊆ {1, 2, . . . ,m−1}.
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This choice of parameters is legitimate by (3.10). This new set has cardinality

|Sm| = R2

⌈
8 ln 8P ′

δ2

⌉(
π(P ′)− π

(
P ′

2

))
×
∣∣∣∣{p′′ prime : p′′ ∈

(
P ′′

2
, P ′′

]
and p′′ - m

}∣∣∣∣ ,
which in view of (3.11) and (3.12) guarantees that Sm is nonempty. Simplifying,

|Sm| 6
⌈

1

δ2

⌉2 ⌈
8 ln 8P ′

δ2

⌉
· π(P ′) · π(P ′′)

= O

(
lnP ′ · P ′

lnP ′
· P ′′

lnP ′′

)
= O(lnm),

where the second step applies the prime number theorem (Fact 2.3). The multi-
plicative constant in this asymptotic bound on |Sm| can be easily recovered from
the explicit bounds in Fact 2.3. Using (3.9), (3.15), and m = exp(δP ′′), we further
obtain

disc(Sm,m) 6 11cδ.

Since δ = ε/(11c), the set Z = Sm satisfies the requirements of the theorem.
Finally, the construction of Sm in Stage 3 amounts to O(|Sm|) = O(lnm) arithmetic
operations in the ring Zm and therefore can be carried out in time polynomial in
lnm.

4. Univariatization

Consider a halfspace hn(x) = sgn(
∑
zixi−θ) in Boolean variables x1, x2, . . . , xn ∈

{0, 1}, where the coefficients can be assumed without loss of generality to be inte-
gers. Then the linear form

∑
zixi− θ ranges in the discrete set {±1,±2, . . . ,±N},

for some integer N proportionate to the magnitude of the coefficients. As a result,
one can approximate hn to any given error ε by approximating the sign function
to ε on {±1,±2, . . . ,±N}. This approach works for both rational approximation
and polynomial approximation. Needless to say, there is no reason to expect that
the degree of the approximant in this naïve construction is anywhere close to op-
timal. Perhaps the most dramatic example is the odd-max-bit function, defined
by OMBn(x) = sgn(1 +

∑n
i=1(−2)ixi). A moment’s thought reveals that OMBn

can be approximated to any given error ε > 0 by a rational function of degree 1,
whereas the naïve construction produces an approximant of degree Ω(n).

Surprisingly, we are able to construct a halfspace hn(x) = sgn(
∑
zixi − θ) with

exponentially large coefficients for which the naïve construction is essentially opti-
mal. Specifically, we show that a rational approximant for hn with given error and
given numerator and denominator degrees implies an analogous univariate rational
approximant for the sign function on {±1,±2,±3, . . . ,±2Θ(n)}. As a result, tight
lower bounds for the rational and polynomial approximation of hn follow imme-
diately from the univariate lower bounds for the sign function. The construction
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of hn, carried out in this section, is the centerpiece of our paper. The role of hn
is to reduce the multivariate problem taken up in this work to a well-understood
univariate question, whence the title of this section. We have broken down the
proof into four steps, corresponding to subsections 4.1–4.4 below.

4.1. Distribution of a linear form modulo m. We start by studying the prob-
ability distribution of the weighted sum z1X1 +z2X2 + · · ·+znXn modulo m, where
z1, z2, . . . , zn are given integers and X1, X2, . . . , Xn ∈ {0, 1} are chosen uniformly
at random. We will show that the distribution is close to uniform whenever the
multiset {z1, z2, . . . , zn} has small m-discrepancy. This result uses the following
classical fact on linear forms modulo m.

Fact 4.1 (cf. Gould [32]; Thathachar [85]). Fix a natural number m > 2 and a
multiset Z = {z1, z2, . . . , zn} of integers. Let ω be a primitive m-th root of unity.
Then

∣∣∣∣∣∣ P
X∈{0,1}n

 n∑
j=1

zjXj ≡ s (mod m)

− 1

m

∣∣∣∣∣∣
6

1

m

m−1∑
k=1

∣∣∣∣∣∣
n∏
j=1

1 + ωkzj

2

∣∣∣∣∣∣ , s ∈ Z. (4.1)

Proof (adapted from [85, Lemma 13]). The fraction of vectors X ∈ {0, 1}n that
satisfy the equation

∑n
j=1 zjXj ≡ s (mod m) can be computed directly, as follows:

P
X∈{0,1}n

 n∑
j=1

zjXj ≡ s (mod m)

 = E
X∈{0,1}n

I

 n∑
j=1

zjXj ≡ s (mod m)


= E
X∈{0,1}n

1

m

m−1∑
k=0

ωk(
∑n
j=1 zjXj−s)

= E
X∈{0,1}n

1

m

m−1∑
k=0

ω−ks
n∏
j=1

ωkzjXj

=
1

m

m−1∑
k=0

ω−ks E
X∈{0,1}n

n∏
j=1

ωkzjXj

=
1

m

m−1∑
k=0

ω−ks
n∏
j=1

1 + ωkzj

2

=
1

m
+

1

m

m−1∑
k=1

ω−ks
n∏
j=1

1 + ωkzj

2
.

This implies (4.1) because |ω−ks| = 1 for all k, s ∈ Z.
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In the original version of this manuscript, we proved (4.1) using a different, matrix-
analytic argument, which we include as Appendix B. The short and elegant proof
above was pointed out to us by T. S. Jayram, who kindly allowed us to include it.

We now simplify the right-hand side of (4.1) and relate it to m-discrepancy.

Lemma 4.2. Fix a natural number m > 2 and a multiset Z = {z1, z2, . . . , zn} of
integers. Then for all s ∈ Z,∣∣∣∣∣∣ P

X∈{0,1}n

 n∑
j=1

zjXj ≡ s (mod m)

− 1

m

∣∣∣∣∣∣ 6
(

1 + disc(Z,m)

2

)n/2
.

Proof. Let ω be a primitive m-th root of unity. For k = 1, 2, . . . ,m− 1, we have

∣∣∣∣∣∣
n∏
j=1

1 + ωkzj

2

∣∣∣∣∣∣ =

 n∏
j=1

(1 + ωkzj )(1 + ωkzj )

4

1/2

=

 n∏
j=1

1 + Re(ωkzj )

2

1/2

6

 1

n

n∑
j=1

1 + Re(ωkzj )

2

n/2

=

1

2
+

1

2
Re

 1

n

n∑
j=1

ωkzj

n/2

6

1

2
+

1

2

∣∣∣∣∣∣ 1n
n∑
j=1

ωkzj

∣∣∣∣∣∣
n/2

,

where the second step uses |ω| = 1, and the third step follows by convexity since
1 + Re(ωkzj ) > 0. Maximizing over k, we arrive at

max
k=1,2,...,m−1

∣∣∣∣∣∣
n∏
j=1

1 + ωkzj

2

∣∣∣∣∣∣ 6
1

2
+

1

2
max

k=1,2,...,m−1

∣∣∣∣∣∣ 1n
n∑
j=1

ωkzj

∣∣∣∣∣∣
n/2

=

(
1 + disc(Z,m)

2

)n/2
.

In view of Fact 4.1, the proof is complete.

4.2. Fooling distributions. Let Z = {z1, z2, . . . , zn} be a multiset with m-
discrepancy bounded away from 1. Consider the linear map L : {0, 1}n → Zm given
by L(x) =

∑
zixi. We have shown that for uniformly random X ∈ {0, 1}n, the

probability distribution of L(X) is exponentially close to uniform. This implies,
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for some constant c > 0, that the sets L−1(0), L−1(1), . . . , L−1(m − 1) cannot be
reliably distinguished by a real polynomial of degree up to cn. More precisely,
the characteristic functions of L−1(0), L−1(1), . . . , L−1(m− 1) have approximately
the same Fourier spectrum up to degree cn. We will now substantially strengthen
this conclusion by proving that there are probability distributions µ0, µ1, . . . , µm−1,
supported on L−1(0), L−1(1), . . . , L−1(m − 1), respectively, such that the Fourier
spectra of µ0, µ1, . . . , µm−1 are exactly the same up to degree cn. To use a tech-
nical term, these distributions fool any polynomial p of degree up to cn, in that
Eµ0 p = Eµ1 p = · · · = Eµm−1 p. Our proof relies on the following technical re-
sult [77, Theorem 4.1].

Theorem 4.3 (Sherstov). Let f, χ1, . . . , χk : X → {−1,+1} be given functions on
a finite set X . Suppose that

k∑
i=1

|〈f, χi〉X | <
1

2
, (4.2)

k∑
j=1
j 6=i

|〈χi, χj〉X | 6
1

2
, i = 1, 2, . . . , k. (4.3)

Then there exists a probability distribution µ on X such that

E
µ

[f(x)χi(x)] = 0, i = 1, 2, . . . , k.

By way of notation, we remind the reader that 〈f, g〉X = 1
|X |

∑
x∈X f(x)g(x) for

any real-valued functions f and g and a nonempty subset X of their domain. In
words, Theorem 4.3 states that if χ1, χ2, . . . , χk each have small correlation with f
and, in addition, have small pairwise correlations, then a distribution exists with
respect to which f is completely uncorrelated with χ1, χ2, . . . , χk. We are now in
a position to prove the existence of the promised fooling distributions. In the
statement that follows, recall that H(p) = −p log p− (1− p) log(1− p) is the binary
entropy function.

Lemma 4.4. Fix δ ∈ [0, 1/2) and a nonempty multiset Z = {z1, z2, . . . , zn} of
integers. Let m be an integer with

2 6 m 6

(
2(1− 2δ)

1 + disc(Z,m)

)( 1
2−δ)n

2−H(δ)n−2. (4.4)

Define

Xs =

x ∈ {0, 1}n :

n∑
j=1

zjxj ≡ s (mod m)

 , s ∈ Z. (4.5)
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Then each Xs is nonempty. Moreover, there is a probability distribution µs on Xs

(for each s) such that

E
X∼µs

p(X) = E
X∼µs′

p(X) (4.6)

for all s, s′ ∈ Z and all real polynomials p : {0, 1}n → R of degree at most δn.

Proof. For a subset A ⊆ {1, 2, . . . , n}, define χA : {0, 1}n → {−1,+1} by χA(x) =

(−1)
∑
i∈A xi . The centerpiece of the proof is the following claim.

Claim 4.5. For every s ∈ Z and every nonempty proper subset A ⊂ {1, 2, . . . , n},

Xs 6= ∅, (4.7)

|〈χA, 1〉Xs
| 6 2m

(
1 + disc(Z,m)

2
· n

n− |A|

)n−|A|
2

. (4.8)

We will proceed with the main proof and settle the claim after we are finished.
Fix s ∈ Z arbitrarily. Let A denote the family of nonempty subsets of {1, 2, . . . , n}
of cardinality at most δn. Recall from (2.2) that

|A | 6 2H(δ)n − 1. (4.9)

As a result,∑
A∈A

|〈χA, 1〉Xs | 6 |A | · max
16|A|6δn

|〈χA, 1〉Xs |

6 (2H(δ)n − 1) · 2m max
16k6δn

(
1 + disc(Z,m)

2
· n

n− k

)n−k
2

= (2H(δ)n − 1) · 2m
(

1 + disc(Z,m)

2(1− δ)

) (1−δ)n
2

<
1

2
, (4.10)

where the second step uses (4.9) and Claim 4.5; the third step is valid because
1 + disc(Z,m) < 2(1− δ) by (4.4); and the final step is immediate from (4.4). An
analogous calculation shows that for every A ∈ A ,∑

A′∈A \{A}

|〈χA, χA′〉Xs
| =

∑
A′∈A
A′ 6=A

|〈χA⊕A′ , 1〉Xs
|

6 (2H(δ)n − 1) · 2m
(

1 + disc(Z,m)

2(1− 2δ)

) (1−2δ)n
2

<
1

2
, (4.11)
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where the second step follows from (4.9) and Claim 4.5, and the last step uses (4.4).
Recall from Claim 4.5 that each Xs is nonempty. Applying Theorem 4.3 with

(4.10) and (4.11) to the functions χA (A ∈ A ) and f = 1, we infer the existence of
a probability distribution µs on Xs such that

E
X∼µs

χA(X) = 0, A ∈ A . (4.12)

Now that the probability distributions µs have been constructed for each s ∈ Z,
consider an arbitrary polynomial p : {0, 1}n → R of degree at most δn. Then p =∑
|A|6δn pAχA for some reals pA. As a result, (4.12) implies that Eµs p = p∅ for

all s ∈ Z, thereby settling (4.6).

Proof of Claim 4.5. By symmetry, we may assume that A = {1, 2, . . . , k} for some
0 < k < n. Let X = (X1, X2, . . . , Xn) be a random variable with uniform distribu-
tion on {0, 1}n. Then

|Xs|
2n

>
1

m
−
∣∣∣∣ |Xs|

2n
− 1

m

∣∣∣∣
=

1

m
−
∣∣∣∣PX [X ∈Xs]−

1

m

∣∣∣∣
>

1

m
−
(

1 + disc(Z,m)

2

)n/2
>

1

2m
, (4.13)
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where the last two steps follow from Lemma 4.2 and (4.4), respectively. This
settles (4.7). Moreover,

|Xs|
2n
|〈χA, 1〉Xs

|

=
∣∣∣E
X
χ{1,2,...,k}(X) · I[X ∈Xs]

∣∣∣
=

∣∣∣∣∣∣
∑

x∈{0,1}k

(−1)x1+···+xk

2k
P[x1 . . . xkXk+1 . . . Xn ∈Xs]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

x∈{0,1}k

(−1)x1+···+xk

2k

(
P[x1 . . . xkXk+1 . . . Xn ∈Xs]−

1

m

)∣∣∣∣∣∣
6

1

2k

∑
x∈{0,1}k

∣∣∣∣P[x1 . . . xkXk+1 . . . Xn ∈Xs]−
1

m

∣∣∣∣
=

1

2k

∑
x∈{0,1}k

∣∣∣∣∣∣P
 n∑
j=k+1

zjXj ≡ s−
k∑
j=1

zjxj (mod m)

− 1

m

∣∣∣∣∣∣
6

(
1 + disc({zk+1, zk+2, . . . , zn},m)

2

)(n−k)/2

6

(
1 + disc(Z,m)

2
· n

n− k

)(n−k)/2

, (4.14)

where the third step uses k > 1; the next-to-last step is legitimate by Lemma 4.2;
and the last step applies Proposition 3.1. Now (4.8) is immediate from (4.13)
and (4.14).

4.3. The univariate reduction. At last, we present a generic construction of a
halfspace whose approximation by rational functions and polynomials gives corre-
sponding approximants for the sign function on the discrete set {±1,±2, . . . ,±m}.
In more detail, let z1, z2, . . . , zn be given integers. For any such n-tuple, we define
an associated halfspace and prove a lower bound on m in terms of the discrep-
ancy of the multiset {z1, z2, . . . , zn}. The following first-principles calculation will
be helpful.

Proposition 4.6. Let a1, a2, . . . , ak ∈ R and b1, b2, . . . , bk > 0. Then

min
ai
bi

6
E ai
E bi

6 max
ai
bi
. (4.15)

Proof. Abbreviate m = min ai/bi and M = max ai/bi. Since each bi is positive, we
obtain mbi 6 ai 6 Mbi. Taking a weighted sum of these inequalities, we arrive at
mE bi 6 E ai 6M E bi, which is equivalent to (4.15).

We have:
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Theorem 4.7. Fix δ ∈ [0, 1/2) and a nonempty multiset Z = {z1, z2, . . . , zn} of
integers. Let m be an integer with

2 6 m 6

(
2(1− 2δ)

1 + disc(Z,m)

)( 1
2−δ)n

2−H(δ)n−2. (4.16)

Define f : {0, 1}n × {0, 1}n → {−1,+1} by

f(x, y) = sgn

1

2
+

n∑
j=1

(zj mod m)xj −m
n∑
j=1

yj

 .

Then

R(f, d0, d1) > R(sgn |{±1,±2,...,±m}, 2d0, 2d1)

for all d0, d1 = 0, 1, 2, . . . , bδn/2c.

Proof. Fix 0 < ε < 1 arbitrarily for the remainder of the proof, and suppose that
R(f, d0, d1) < ε for some d0, d1 6 δn/2. Our goal is to show that

R(sgn |{±1,±2,...,±m}, 2d0, 2d1) < ε. (4.17)

The proof is algorithmic and involves three steps. Given any approximant for
f , we will first manipulate it to control the sign behavior in the numerator and
denominator, then symmetrize it with respect to y, and finally—the arduous part
of the proof—symmetrize it with respect to x. The result of these manipulations
will be a univariate approximant for the sign function.

Step 1: Original approximant. Since R(f, d0, d1) < ε, there are polynomials p
and q of degree at most d0 and d1, respectively, with∣∣∣∣f(x, y)− p(x, y)

q(x, y)

∣∣∣∣ < ε

for all x, y ∈ {0, 1}n. This inequality is equivalent to

1− ε < p(x, y)

q(x, y)
f(x, y) < 1 + ε. (4.18)

Observe that for all x, y ∈ {0, 1}n, we have p(x, y) 6= 0 and q(x, y) 6= 0, where the
former is a consequence of ε < 1 and the latter follows from the definition of a
rational approximant. As a result, (4.18) gives

1− ε < p(x, y)q(x, y)f(x, y)

q(x, y)2
< 1 + ε, (4.19)

1− ε < p(x, y)2

p(x, y)q(x, y)f(x, y)
< 1 + ε. (4.20)
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Step 2: Symmetrization on y. The fractions in (4.19) and (4.20) have positive
numerators and denominators. Therefore, Proposition 4.6 implies that

1− ε < Eσ∈Sn [p(x, σy)q(x, σy)f(x, σy)]

Eσ∈Sn [q(x, σy)2]
< 1 + ε, (4.21)

1− ε < Eσ∈Sn [p(x, σy)2]

Eσ∈Sn [p(x, σy)q(x, σy)f(x, σy)]
< 1 + ε. (4.22)

Minsky and Papert’s symmetrization technique (Proposition 2.15) ensures the exis-
tence of polynomials p∗, q∗, r∗ of degree at most 2d0, 2d1, and d0 + d1, respectively,
such that for all x, y ∈ {0, 1}n,

E
σ∈Sn

[p(x, σy)2] ≡ p∗(x, |y|),

E
σ∈Sn

[q(x, σy)2] ≡ q∗(x, |y|),

E
σ∈Sn

[p(x, σy)q(x, σy)] ≡ r∗(x, |y|).

Moreover,

f(x, σy) ≡ f∗(x, |y|)

for all σ ∈ Sn, where f∗ : {0, 1}n × {0, 1, 2, . . . , n} → {−1,+1} is given by

f∗(x, t) = sgn

1

2
+

n∑
j=1

(zj mod m)xj −mt

 .

Now (4.21) and (4.22) simplify to

1− ε < r∗(x, t)f∗(x, t)

q∗(x, t)
< 1 + ε, (4.23)

1− ε < p∗(x, t)

r∗(x, t)f∗(x, t)
< 1 + ε (4.24)

for all x ∈ {0, 1}n and t = 0, 1, 2, . . . n. The numerators and denominators of these
fractions are again positive, being averages of positive numbers.

Step 3: Symmetrization on x. We have reached the most demanding part of the
proof, where we symmetrize the approximants obtained so far with respect to x.
For s ∈ Z, let Xs ⊆ {0, 1}n be given by (4.5). Then Lemma 4.4 guarantees that
each Xs is nonempty, and additionally provides a probability distribution µs on
Xs (for each s ∈ Z) such that for every polynomial P : {0, 1}n → R,

degP 6 δn =⇒ E
µs
P (x) = E

µs′
P (x) ∀s, s′ ∈ Z. (4.25)
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Now fix an integer s ∈ [−m− 1,m− 1]. On the support of µs, we have

n∑
j=1

(zj mod m)xj − s ∈ [0 · n−m+ 1, (m− 1) · n+m+ 1] ∩mZ

⊆ (−m, (n+ 1)m) ∩mZ
= {0,m, 2m, . . . , nm},

where the second step is valid because n > 2 by (4.16). It follows that on the
support of µs, the linear form

`(x, s) =
1

m

 n∑
j=1

(zj mod m)xj − s


ranges in {0, 1, 2, . . . , n}, forcing f∗(x, `(x, s)) = sgn(s+ 1

2 ). Now (4.23) and (4.24)
imply that

1− ε <
r∗(x, `(x, s)) sgn(s+ 1

2 )

q∗(x, `(x, s))
< 1 + ε,

1− ε < p∗(x, `(x, s))

r∗(x, `(x, s)) sgn(s+ 1
2 )

< 1 + ε

for all integers s ∈ [−m − 1,m − 1] and all x in the support of µs. Since the
numerators and denominators of these fractions are positive, Proposition 4.6 allows
us to pass to expectations with respect to x ∼ µs to obtain

1− ε <
Ex∼µs [r

∗(x, `(x, s))] sgn(s+ 1
2 )

Ex∼µs [q
∗(x, `(x, s))]

< 1 + ε,

1− ε < Ex∼µs [p
∗(x, `(x, s))]

Ex∼µs [r
∗(x, `(x, s))] sgn(s+ 1

2 )
< 1 + ε,

or equivalently∣∣∣∣Ex∼µs [r∗(x, `(x, s))]Ex∼µs [q
∗(x, `(x, s))]

− sgn

(
s+

1

2

)∣∣∣∣ < ε, (4.26)∣∣∣∣Ex∼µs [p∗(x, `(x, s))]Ex∼µs [r
∗(x, `(x, s))]

− sgn

(
s+

1

2

)∣∣∣∣ < ε, (4.27)

for all integers s ∈ [−m− 1,m− 1].
Consider the univariate polynomials

p∗∗(s) = E
x∼µs

[p∗(x, `(x, s))],

q∗∗(s) = E
x∼µs

[q∗(x, `(x, s))],

r∗∗(s) = E
x∼µs

[r∗(x, `(x, s))].
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Equations (4.26) and (4.27) show that r∗∗(s−1)/q∗∗(s−1) and p∗∗(s−1)/r∗∗(s−1)
approximate sgn s pointwise on {±1,±2, . . . ,±m} to error less than ε. Moreover,
(4.25) ensures that the degrees of p∗∗, q∗∗, r∗∗ are at most the degrees of p∗, q∗, r∗,
respectively. We conclude that

R(sgn |{±1,±2,...,±m}, d0 + d1, 2d1) < ε,

R(sgn |{±1,±2,...,±m}, 2d0, d0 + d1) < ε.

These complementary bounds force (4.17) and thereby complete the proof.

4.4. The master theorem. We now combine Theorem 4.7 with the efficient con-
struction, in Theorem 3.7, of an integer set with smallm-discrepancy form = 2Θ(n).
The result is an explicit halfspace hn : {0, 1}n → {−1,+1} whose approximation by
polynomials and rational functions is asymptotically equivalent to the univariate
approximation of the sign function on {±1,±2,±3, . . . ,±2Θ(n)}. We refer to this
result as our master theorem since all our main theorems are derived from it.

Theorem 4.8. For some constant c′ > 0, there is an algorithm that takes as
input an integer n > 1, runs in time polynomial in n, and outputs a halfspace
hn : {0, 1}n → {−1,+1} with

R(hn, d0, d1) > R
(

sgn |{±1,±2,±3,...,±2bc′nc}, 2d0, 2d1

)
(4.28)

for all d0, d1 = 0, 1, 2, . . . , bc′nc. Moreover, the constant c′ and the algorithm are
given explicitly.

Proof. Let

c′ = min

{
1

200
,

1

2C1/10

}
, (4.29)

where C1/10 > 1 is the constant defined in Theorem 3.7. On input n, the con-
struction of hn is as follows. For n < 1/c′, the sought property (4.28) amounts to
R(hn, 0, 0) > R(sgn |{−1,1}, 0, 0), which is in turn equivalent to R(hn, 0, 0) > 1 and
holds trivially for the halfspace hn(x) = (−1)x1 .

We now turn to the nontrivial case, n > 1/c′. Abbreviate m = 2bc
′nc. Then the

algorithm of Theorem 3.7 constructs, in time polynomial in n, a nonempty multiset
Z with m-discrepancy

disc(Z,m) 6
1

10
(4.30)

and cardinality |Z| 6 n/2. Observe that for any integer k > 1, the union of k copies
of Z is a multiset with m-discrepancy disc(Z,m) and cardinality k|Z|. Therefore,
we may assume without loss of generality that

n

4
6 |Z| 6 n

2
. (4.31)
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We let

hn(x) = sgn

1

2
+

|Z|∑
j=1

(zj mod m)xj −m
2|Z|∑

j=|Z|+1

xj

 ,

where z1, z2, z3, . . . , z|Z| denote the elements of the multiset Z. Taking δ = 1/25,
we have from (4.29) and (4.31) that

c′n 6
δ|Z|

2
. (4.32)

Moreover,

m ∈ [2, 2c
′n]

⊆ [2, 2n/200]

⊆

[
2,

(
2(1− 2δ)

1 + disc(Z,m)

)( 1
2−δ)·|Z|

2−H(δ)·|Z|−2

]
,

where the second step applies (4.29), and the third step uses (4.30), (4.31), and
n > 1/c′ > 200. As a result, Theorem 4.7 implies (4.28) for all d0, d1 6 δ|Z|/2. In
view of (4.32), the proof is complete.

5. Main results

Using the halfspace hn constructed in our master theorem, we will now establish
the main results of this paper.

5.1. Polynomial approximation. Prior to our work, the strongest lower bound
for the approximation of an explicit halfspace fn : {0, 1}n → {−1,+1} by polynomi-
als was E(fn, c

√
n) > 1− 2−c

√
n for an absolute constant c > 0, proved in [76, 77].

The result that we are about to prove is a quadratic improvement on previous work,
with respect to both degree and error. As we will discuss shortly, this new result
is essentially the best possible.

Theorem 5.1 (Polynomial approximation). Let hn : {0, 1}n → {−1,+1} be the
halfspace constructed in Theorem 4.8. Then for some constant c > 0 and all n,

E(hn, cn) > 1− 2−cn. (5.1)

Proof. Let c′ > 0 be the constant in Theorem 4.8. Then

E(hn, c
′n) > E(sgn |{±1,±2,±3,...,±2bc′nc}, 2bc

′nc)

> 1−O
( n

2c′n

)1/2

,

where the first step corresponds to taking d0 = bc′nc and d1 = 0 in Theorem 4.8,
and the second step is immediate from Proposition 2.9. This implies (5.1) for c > 0
small enough.
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Theorem 5.1 is essentially as strong as one could hope for. First of all, any function
in n Boolean variables can be approximated to zero error by a polynomial of degree
at most n, i.e., at most a constant factor larger than what is assumed in (5.1).
Moreover, a classic result due to Muroga [58] implies that for every halfspace, the
error bound in (5.1) is almost achieved by polynomials of degree 1:

Fact 5.2. There is an absolute constant c > 0 such that for every n and every
halfspace h : {0, 1}n → {−1,+1},

E(h, 1) 6 1− n−cn.

Proof. Muroga [58] showed that every halfspace h : {0, 1}n → {−1,+1} can be
represented as h(x) = sgn(

∑n
j=1 zjxj − θ) for some integers z1, z2, . . . , zn, θ whose

absolute values sum to nO(n). It follows that

E(h, 1) 6 max
x∈{0,1}n

∣∣∣∣∣∣h(x)− 1

|θ|+
∑n
j=1 |zj |

 n∑
j=1

zjxj − θ

∣∣∣∣∣∣
6 1− 1

|θ|+
∑n
j=1 |zj |

6 1− n−O(n).

5.2. Rational approximation. We now show that the halfspace hn constructed
in our master theorem cannot be approximated pointwise to any small constant
except by rational functions of degree Ω(n). This degree lower bound matches the
trivial upper bound and is a quadratic improvement on the previous best construc-
tion [76, 77]. More generally, we derive a lower bound on the approximation of hn
by rational functions of any given degree d, and this lower bound too is essentially
the best possible for any halfspace. Details follow.

Theorem 5.3 (Rational approximation). Let hn : {0, 1}n → {−1,+1} be the half-
space constructed in Theorem 4.8. Then for some constant c > 0 and all n,

R(hn, d) > 1− exp
(
−cn
d

)
, d = 1, 2, . . . , bcnc. (5.2)

Proof. Let c′ > 0 be the constant in Theorem 4.8. Then for d = 1, 2, . . . , bc′nc, we
have

R(hn, d) > R(sgn |{±1,±2,±3,...,±2bc′nc}, 2d)

> 1− exp
(
−Θ

(n
d

))
,

where the first step corresponds to taking d0 = d1 = d in Theorem 4.8, and the
second step is immediate from Theorem 2.11. This implies (5.2) for c > 0 small
enough.

We now show that the lower bounds on the approximation error in Theorem 5.3
are essentially the best possible for any halfspace.



THE HARDEST HALFSPACE 43

Fact 5.4. There exists an absolute constant c > 0 such that for every n and every
halfspace h : {0, 1}n → {−1,+1},

R(h, d) 6 1− exp

(
−cn log n

d

)
, d = 1, 2, . . . , n.

Proof. As already mentioned, Muroga [58] showed that h(x) ≡ sgn p(x) for some
linear polynomial p(x) that ranges in [−N,−1] ∪ [1, N ], where N = exp(cn log n)
for some absolute constant c > 0. This makes it possible to obtain a rational
approximant for h(x) by taking any rational approximant for the sign function on
[−N,−1] ∪ [1, N ] and composing it with p(x). We conclude that for any integer d,

R(h, d) 6 R(sgn |[−N,−1]∪[1,N ], d)

6 1− 1

N1/d

= 1− exp

(
−cn log n

d

)
,

where the second step uses Newman’s rational approximation (Fact 2.10).

5.3. Threshold degree. Here, we use the halfspace hn constructed in our master
theorem to study the degree required to sign-represent intersections of halfspaces.
Our result is a lower bound of Ω(n) for the intersection hn ∧hn of two independent
copies of hn. This result improves quadratically on the previous best construc-
tion [76, 77] and matches the trivial upper bound of O(n) for sign-representing any
Boolean function in n variables.

Theorem 5.5. Let hn : {0, 1}n → {−1,+1} be the halfspace constructed in Theo-
rem 4.8. Then

deg±(hn ∧ hn) = Ω(n).

Proof. Abbreviate Dn = deg±(hn∧hn). Taking f = g = hn in Theorem 2.14 shows
that R(hn, 4Dn) < 1/2, which by Theorem 5.3 forces Dn = Ω(n).

Theorem 5.5 should be contrasted with the result of Beigel et al. [17] that the
conjunction of any constant number of majority functions on {0, 1}n has threshold
degree O(log n). We now derive a lower bound of Ω(

√
n log n) on the threshold

degree of the intersection of an explicitly given halfspace and a majority function,
improving quadratically on the previous best construction [76, 77]. As we discuss
shortly, the new construction is optimal up to a logarithmic factor.

Theorem 5.6. Let hn : {0, 1}n → {−1,+1} be the halfspace constructed in Theo-
rem 4.8. Then

deg±(hn ∧MAJn) = Ω(
√
n log n). (5.3)

Proof. Abbreviate Dn = deg±(hn∧MAJn). Then R(hn, 4Dn)+R(MAJn, 2Dn) < 1
by Theorem 2.14. The lower bounds for the rational approximation of hn and MAJn
in Theorems 2.12 and 5.3 now imply that Dn = Ω(

√
n log n).
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Remark 5.7. The construction of Theorem 5.6 is essentially the best possible, in
that

deg±(h ∧MAJn) = O(
√
n log n) (5.4)

for every halfspace h : {0, 1}n → {−1,+1}. Indeed, taking d = C
√
n log n in Theo-

rem 2.12 and Fact 5.4 for a large enough constant C > 1 yields R(h,C
√
n log n) +

R(MAJn, C
√
n log n) < 1, which in turn implies (5.4) in view of Theorem 2.13.

5.4. Threshold density. In addition to threshold degree, several other complex-
ity measures are of interest when sign-representing Boolean functions by real poly-
nomials. One such complexity measure is threshold density, defined as the least
k for which a given function can be sign-represented by a linear combination of k
parity functions. Formally, for a given function f : {0, 1}n → {−1,+1}, its thresh-
old density dns(f) is the minimum size |S | of a family S ⊆P({1, 2, . . . , n}) such
that

f(x) ≡ sgn

(∑
S∈S

wS(−1)
∑
j∈S xj

)

for some reals wS . It is clear from the definition that dns(f) 6 2n for all functions
f : {0, 1}n → {−1,+1}, and we will now construct a pair of halfspaces whose inter-
section has threshold density 2Θ(n). Prior to our work, the best construction [76]
had threshold density 2Θ(

√
n).

To proceed, we recall a technique due to Krause and Pudlák [48] that transforms
Boolean functions with high threshold degree into Boolean functions with high
threshold density. Their transformation works in a black-box manner and sends
a function f : {0, 1}n → {−1,+1} to the function fKP : ({0, 1}n)3 → {−1,+1}
defined by

fKP(x, y, z) = f(. . . , (zi ∧ xi) ∨ (zi ∧ yi), . . . ).

The threshold degree of f and the threshold density of fKP are related as follows [48,
Proposition 2.1].

Theorem 5.8 (Krause and Pudlák). For every function f : {0, 1}n → {−1,+1},

dns(fKP) > 2deg±(f).

We are now in a position to obtain the claimed density results.

Theorem 5.9. There is an (explicit) algorithm that takes as input an integer n > 1,
runs in time polynomial in n, and outputs a halfspace Hn : {0, 1}n → {−1,+1} such
that

dns(Hn ∧Hn) = 2Ω(n), (5.5)

dns(Hn ∧MAJn) = 2Ω(
√
n logn). (5.6)



THE HARDEST HALFSPACE 45

Proof. For any function f : {0, 1}n → {0, 1}, standard arithmetization gives

fKP(x, y, z) = f

(
. . . ,

1

2
(xi + yi + xi ⊕ zi − yi ⊕ zi), . . .

)
, (5.7)

where a⊕ b ∈ {0, 1} denotes as usual the XOR of a and b. Similarly, one has

MAJKP
n (x, y, z) = MAJ4n(x, y, x⊕ z, y ⊕ z), (5.8)

where the XOR and complement operations are applied bitwise.
Let hn : {0, 1}n → {−1,+1} be the halfspace from Theorem 5.5, so that hn ∧ hn

has threshold degree Ω(n). By Theorem 5.8, the function (hn∧hn)KP = hKP
n ∧hKP

n

has threshold density 2Ω(n). Observe from (5.7) that hKP
n ∧ hKP

n is the result of
starting with the intersection H4n ∧ H4n of two explicitly given halfspaces in 4n
variables each, and replacing their input variables with appropriately chosen parity
functions. This replacement cannot increase the threshold density because the
parity of several parity functions is another parity function. We conclude that
dns(H4n ∧H4n) = 2Ω(n). This completes the proof of (5.5).

The proof of (5.6) is closely analogous. Specifically, recall from Theorem 5.6
that hn ∧ MAJn has threshold degree Ω(

√
n log n). By Theorem 5.8, the func-

tion (hn ∧ MAJn)KP = hKP
n ∧ MAJKP

n has threshold density exp(Ω(
√
n log n)).

It follows from (5.7) and (5.8) that hKP
n ∧ MAJKP

n is the result of starting with
the intersection H4n ∧ MAJ4n for an explicit halfspace H4n in 4n variables, and
replacing the input variables with appropriately chosen parity functions or their
negations. This replacement cannot increase the threshold density because the
parity of several parity functions is another parity function. We conclude that
dns(H4n ∧MAJ4n) = exp(Ω(

√
n log n)). This completes the proof of (5.6).

Both lower bounds in Theorem 5.9 are essentially the best possible for any halfspace
Hn : {0, 1}n → {−1,+1}. Indeed, the first lower bound is tight by definition, while
the second lower bound nearly matches the upper bound of exp(O(

√
n log2 n)) that

follows from Remark 5.7.

5.5. Communication complexity. Using the pattern matrix method, we will
now “lift” the approximation lower bound of Theorem 5.1 to communication com-
plexity. As a result, we will obtain an explicit separation of k-party communica-
tion complexity with unbounded and weakly unbounded error (which for k = 2 is
equivalent to a separation of sign-rank and discrepancy). Our application of the
pattern matrix method is based on the fact that the unique set disjointness function
UDISJm,k has an exact representation on its domain as a polynomial with a small
number of monomials; cf. [75, Section 10], [83, Section 4.2.3], and [80, Section 3.1].
Specifically, define UDISJ∗m,k : ({0, 1}m)k → R by

UDISJ∗m,k(x) = −1 + 2

m∑
i=1

x1,ix2,i · · ·xk,i .

Then

UDISJm,k(x) = UDISJ∗m,k(x), x ∈ domUDISJm,k. (5.9)
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Theorem 5.10. For some constant C > 1 and all positive integers n and k, there is
an (explicitly given) k-party communication problem Fn,k : ({0, 1}n)k → {−1,+1}
such that

UPP(Fn,k) 6 log n+ 4, (5.10)

PP(Fn,k) >
⌊ n

C · 4k
⌋
, (5.11)

disc(Fn,k) 6 exp
(
−
⌊ n

C · 4k
⌋)
. (5.12)

Moreover,

Fn,k(x1, x2, . . . , xk) = sgn

(
w0 +

n∑
i=1

wix1,ix2,i · · ·xk,i

)
(5.13)

for some explicitly given reals w0, w1, . . . , wn.

Proof. Let hn : {0, 1}n → {−1,+1} be the halfspace constructed in Theorem 4.8.
Then by definition, hn(x) = sgn pn(x) for a linear polynomial pn : Rn → R. More-
over, Theorem 5.1 ensures that

deg1−2−cn(hn) > cn (5.14)

for some constant c > 0 independent of n. Abbreviatem = d2k+1e/ce2 and consider
the k-party communication problem F ′n,k : ({0, 1}nm)k → {−1,+1} given by

F ′n,k = s̃gn pn

(
1−UDISJ∗m,k

2
,

1−UDISJ∗m,k
2

, . . . ,
1−UDISJ∗m,k

2

)
,

(5.15)

where the right-hand side features the coordinatewise composition of the polynomial
pn with n independent copies of the polynomial (1 − UDISJ∗m,k)/2. The identity
(5.9) implies that F ′n,k coincides with hn ◦ UDISJm,k on the domain of the latter.
Therefore,

disc(F ′n,k) 6 disc(hn ◦UDISJm,k)

6 2−cn + 2−cn

= 2 · 2−cn, (5.16)

where the second step uses (5.14) and the pattern matrix method (Theorem 2.21).
Applying the discrepancy method (Corollary 2.20), we obtain

PP(F ′n,k) > log
2

disc(F ′n,k)

> cn. (5.17)
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To complete the proof, define the functions Fn,k for any positive integers n and
k by

Fn,k =

{
F ′bn/d2k+1e/ce2c,k if n > d2k+1e/ce2,
0 otherwise.

Then (5.11)–(5.13) are immediate from (5.15)–(5.17), whereas (5.10) is a conse-
quence of (5.13) and Fact 2.17.

Theorem 5.10 gives an explicit separation PPk ( UPPk for up to k 6 (0.5− ε) log n
parties, where ε > 0 is an arbitrary constant. The special case k = 2 can be
equivalently stated as an explicit separation of sign-rank and discrepancy:

Corollary 5.11. There is an (explicitly given) family {Fn}∞n=1 of communication
problems Fn : {0, 1}n × {0, 1}n → {−1,+1} with

rk±(Fn) 6 n+ 1, (5.18)

disc(Fn) = 2−Ω(n), (5.19)
UPP(Fn) 6 log n+ 4, (5.20)

PP(Fn) = Ω(n). (5.21)

Moreover,

Fn(x, y) = sgn

(
w0 +

n∑
i=1

wixiyi

)
(5.22)

for some explicitly given reals w0, w1, . . . , wn.

Proof. Equations (5.19)–(5.22) result from setting k = 2 in Theorem 5.10. The new
item, (5.18), is immediate from (5.22).

Theorem 5.10 and Corollary 5.11 settle Theorems 1.3 and 1.2, respectively, from
the introduction.

5.6. A circulant expander. Consider a d-regular undirected graph G on n ver-
tices, with adjacency matrix A. Since A is symmetric, it has n real eigenvalues
(counting multiplicities). We denote these eigenvalues by λ1(G) > λ2(G) > · · · >
λn(G) and define λ(G) = max{|λ2(G)|, |λ3(G)|, . . . , |λn(G)|}. It is well known and
straightforward to verify that λ1(G) = d and |λi(G)| 6 d for i = 2, 3, . . . , n. We
say that G is an ε-expander if λ(G) 6 εd. This spectral notion is intimately related
to key graph-theoretic and stochastic properties of G, such as vertex expansion
and the convergence rate of a random walk on G to the uniform distribution. One
is typically interested in ε-expanders that are d-regular for d as small as possible,
where 0 < ε < 1 is a constant. The existence of expanders with strong parameters
can be verified using the probabilistic method [6], and explicit constructions are
known as well.

In this section, we study the problem of constructing circulant expanders. For-
mally, a graph is circulant if its adjacency matrix is circulant. It is clear that a
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circulant graph is d-regular for some d, meaning that every vertex has out-degree
d and in-degree d. We focus on circulant graphs that are undirected and have no
self-loops, which corresponds to adjacency matrices that are symmetric and have
zeroes on the diagonal. It is well known [5] that for any 0 < ε < 1 and all large
enough n, there exists a circulant ε-expander on n vertices of degree O(log n). This
degree bound is asymptotically optimal [5, 29, 53], and the problem of constructing
such circulant expanders explicitly has been studied by several authors [4, 2, 5].
The best construction prior to our work, due to Ajtai et al. [2], achieves degree
(log∗ n)O(log∗ n) log n. In this section, we construct a circulant ε-expander of opti-
mal degree, O(log n), for any constant 0 < ε < 1. By way of terminology, recall that
the adjacency matrix of a circulant graph on n vertices is circ(1S) for some subset
S ⊆ {0, 1, 2, . . . , n − 1}. With this in mind, we say that an algorithm constructs a
circulant graph on n vertices in time T (n) if the algorithm outputs in time T (n)
the elements of the associated subset S. The formal statement of our result follows.

Theorem 5.12. Let 0 < ε < 1 be given. Then there is an (explicitly given) algo-
rithm that takes as input an integer n > 2 and constructs in time polynomial in
log n an undirected simple d-regular circulant graph Gn on n vertices, where

1 6 d 6 O(log n), (5.23)

λ(Gn) 6 max

{
ε,

1

n− 1

}
d. (5.24)

Proof. Let Cε be the constant from Theorem 3.7. We first consider the trivial case
when 2(Cε log n)2 > n, which means that n is bounded by an explicit constant.
In this case, we take Gn to be the complete graph on n vertices. It is clear that
Gn is a d-regular circulant graph for d = n − 1. The adjacency matrix of Gn is
circ(0, 1, 1, . . . , 1), whose eigenvalues by Corollary 2.6 are n− 1,−1,−1, . . . ,−1. In
particular, λ(Gn) = 1 = d/(n−1). This settles (5.24), whereas (5.23) holds trivially
because d and n are bounded by a constant.

We now turn to the nontrivial case when 2(Cε log n)2 < n. The algorithm of
Theorem 3.7 constructs, in time polynomial in log n, a set Z ⊆ {0, 1, 2, . . . , n− 1}
with

disc(Z, n) 6 ε, (5.25)
1 6 |Z| 6 Cε log n. (5.26)

For any z, z′ ∈ Z, the linear congruence z + ∆ ≡ −(z′ + ∆) (mod n) has at most
two solutions ∆ ∈ {0, 1, 2, . . . , n − 1}. Recalling that 2|Z|2 < n in the case under
consideration, we conclude that there exists ∆ ∈ {0, 1, 2, . . . , 2|Z|2} with

z + ∆ 6≡ −(z′ + ∆) (mod n), z, z′ ∈ Z. (5.27)

Moreover, such ∆ can clearly be found by brute force search in time polynomial in
|Z| = O(log n). Equation (5.27) now implies that no two elements of the multiset
(Z ∪∆)∪ (−Z−∆) are congruent modulo n, and in particular no element of Z ∪∆
is congruent to 0 modulo n.



THE HARDEST HALFSPACE 49

We define Gn to be the undirected graph with vertex set {0, 1, 2, . . . , n − 1} in
which (i, j) is an edge if and only if i − j is congruent modulo n to an element
of (Z + ∆) ∪ (−Z − ∆). The roles of i and j in this definition are symmetric,
making Gn an undirected graph. It is obvious that the adjacency matrix of Gn is
circulant. Furthermore, Gn has no self-loops because by construction no element
of Z ∪∆ is congruent to 0 modulo n. Since the elements of (Z + ∆) ∪ (−Z −∆)
are pairwise distinct modulo n, the degree of Gn is |(Z + ∆) ∪ (−Z −∆)| = 2|Z|.
Now (5.23) follows from (5.26). To settle the remaining property (5.24), observe
that the first row of the adjacency matrix of Gn is the characteristic vector of the set
((Z+∆)∪(−Z−∆)) mod n. As a result, Corollary 2.6 implies that the eigenvalues
of the adjacency matrix of Gn are∑

z∈Z+∆

ωkz +
∑

z∈−Z−∆

ωkz, k = 0, 1, 2, . . . , n− 1,

where ω is a primitive n-th root of unity. Setting k = 0 yields the largest eigenvalue,
2|Z|. The other eigenvalues are bounded by

λ(Gn) = max
k=1,2,...,n−1

∣∣∣∣∣ ∑
z∈Z+∆

ωkz +
∑

z∈−Z−∆

ωkz

∣∣∣∣∣
6 max
k=1,2,...,n−1

∣∣∣∣∣ ∑
z∈Z+∆

ωkz

∣∣∣∣∣+ max
k=1,2,...,n−1

∣∣∣∣∣ ∑
z∈−Z−∆

ωkz

∣∣∣∣∣
= 2|Z|disc(Z, n).

Along with (5.25), this proves (5.24).
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Fix a set Sp ⊆ {1, 2, . . . , p − 1} for each prime p ∈ (P/2, P ] with p - m, such that
all Sp have the same cardinality. Consider the multiset
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Then the elements of S are pairwise distinct and nonzero. Moreover,

disc(S,m) 6
c√
R

+
c logm

log logm
· logP

P
+ max

p
{disc(Sp, p)} (A.1)

for some (explicitly given) constant c > 1 independent of P,R,m.

This result is a slight generalization of the iteration lemma of Ajtai et al. [2], which
corresponds to the special case for m prime. We closely follow their proof but
provide ample detail to make it more accessible. We have structured the presenta-
tion around five key milestones, corresponding to Sections A.1–A.5 below. Before
proceeding, the reader may wish to review the number-theoretic preliminaries in
Section 2.2.

A.1. Shorthand notation. In the remainder of this manuscript, we adopt the
shorthand

e(x) = exp(2πxi),

where i is the imaginary unit. We will need the following bounds, illustrated in
Figure A.1:

|1− e(x)| 6 2πx, 0 6 x 6 1, (A.2)
|1− e(x)| > 4 min(x, 1− x), 0 6 x 6 1. (A.3)

To verify these bounds, write |1 − e(x)| = |1 − exp(2πxi)| =
√

2− 2 cos(2πx) and
apply elementary calculus.

We let P denote the set of prime numbers p ∈ (P/2, P ] with p - m. In this
notation, the multiset S is given by

S = {(r + s · (p−1)m) mod m : p ∈P, s ∈ Sp, r = 1, 2, . . . , R}.

There are precisely π(P ) − π(P/2) primes in (P/2, P ], of which at most ν(m) are
prime divisors of m. Therefore,

|P| > π(P )− π
(
P

2

)
− ν(m). (A.4)

A.2. Elements of S are nonzero and distinct. As our first step, we verify that
the elements of S are nonzero modulo m. Consider any r ∈ {1, 2, . . . , R}, any prime
p ∈ (P/2, P ] with p - m, and any s ∈ Sp. Then pr + s ∈ [1, PR + P − 1] ⊆ [1,m).
This means that pr+ s 6≡ 0 (mod m), which in turn implies that r+ s · (p−1)m 6≡ 0
(mod m).

We now show that the multiset S contains no repeated elements. For this,
consider any r, r′ ∈ {1, 2, . . . , R}, any primes p, p′ ∈ P, and any s ∈ Sp and
s′ ∈ Sp′ such that

r + s · (p−1)m ≡ r′ + s′ · (p′−1)m (mod m). (A.5)
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Figure A.1: A graph of |1− e(x)| and its approximations by piecewise linear
functions.

Our goal is to show that p = p′, r = r′, s = s′. To this end, multiply (A.5) through
by pp′ to obtain

r · pp′ + s · p′ ≡ r′ · pp′ + s′ · p (mod m). (A.6)

The left-hand side and right-hand side of (A.6) are integers in [1, RP 2 +(P−1)P ] ⊆
[1,m), whence

r · pp′ + s · p′ = r′ · pp′ + s′ · p. (A.7)

This implies that p | s · p′, which in view of s < p and the primality of p and p′

forces p = p′. Now (A.7) simplifies to

r · p+ s = r′ · p+ s′, (A.8)

which in turn yields s ≡ s′ (mod p). Recalling that s, s′ ∈ {1, 2, . . . , p − 1}, we
arrive at s = s′. Finally, substituting s = s′ in (A.8) gives r = r′.

A.3. Correlation for k small. So far, we have shown that the elements of S are
distinct and nonzero. Recall that our objective is to bound the m-discrepancy of
this set. Put another way, we must bound the exponential sum∣∣∣∣∣∑

s∈S
e

(
k

m
· s
)∣∣∣∣∣ (A.9)

for all k = 1, 2, . . . ,m−1. This subsection and the next provide two complementary
bounds on (A.9). The first bound, presented below, is preferable when k is close to
zero modulo m.
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Claim A.1. Let k ∈ {1, 2, . . . ,m− 1} be given. Then∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣

6

(
2πmin(k,m− k)

m
+ max
p∈P
{disc(Sp, p)}+

ν(k) + ν(m− k)

|P|

)
|S|.

Proof. Let P ′ be the set of those primes in P that do not divide k or m−k. Then
clearly

|P \P ′| 6 ν(k) + ν(m− k). (A.10)

We have∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣

=

∣∣∣∣∣∣
R∑
r=1

∑
p∈P

∑
s∈Sp

e

(
k

m
· (r + s · (p−1)m

)∣∣∣∣∣∣
6

R∑
r=1

∑
p∈P

∣∣∣∣∣∣
∑
s∈Sp

e

(
k

m
· (r + s · (p−1)m

)∣∣∣∣∣∣
= R

∑
p∈P

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
6 R

∑
p∈P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣+R
∑

p∈P\P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
6 R

∑
p∈P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣+R
∑

p∈P\P′
|Sp|. (A.11)

We proceed to bound the two summations in (A.11). Bounding the second
summation is straightforward:

R
∑

p∈P\P′
|Sp| = R · |P \P ′|

|P|
∑
p∈P

|Sp|

=
|P \P ′|
|P|

· |S|

6
ν(k) + ν(m− k)

|P|
· |S|, (A.12)

where the first step is valid because all sets Sp have the same cardinality, and the
last step uses (A.10).
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The other summation in (A.11) requires more work. For p ∈ P ′ and K ∈
{k, k −m}, we have

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈Sp

e

(
Ks · (p−1)m

m

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)
e

(
Ks

pm

)∣∣∣∣∣∣
6

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)(
e

(
Ks

pm

)
− 1

)∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)∣∣∣∣∣∣
6

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)(
e

(
Ks

pm

)
− 1

)∣∣∣∣∣∣+ disc(Sp, p) · |Sp|

6
∑
s∈Sp

∣∣∣∣e(Kspm
)
− 1

∣∣∣∣+ disc(Sp, p) · |Sp|

=
∑
s∈Sp

∣∣∣∣e( |K|spm

)
− 1

∣∣∣∣+ disc(Sp, p) · |Sp|

6 |Sp| ·
2π|K|
m

+ disc(Sp, p) · |Sp|,

where the second step uses Fact 2.2 and the relative primality of p and m; the third
step applies the triangle inequality; the fourth step follows from p - |K|, and the
last step is valid by (A.2) and s < p. We have shown that

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣ 6 2πmin(k,m− k)

m
· |Sp|+ disc(Sp, p) · |Sp|
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for p ∈P ′. Summing over P ′,

R
∑
p∈P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
6 R

∑
p∈P′

(
2πmin(k,m− k)

m
· |Sp|+ disc(Sp, p) · |Sp|

)

6 R
∑
p∈P

(
2πmin(k,m− k)

m
· |Sp|+ disc(Sp, p) · |Sp|

)

6

(
2πmin(k,m− k)

m
+ max
p∈P
{disc(Sp, p)}

)
R
∑
p∈P

|Sp|

=

(
2πmin(k,m− k)

m
+ max
p∈P
{disc(Sp, p)}

)
|S|. (A.13)

By (A.11)–(A.13), the proof of the claim is complete.

A.4. Correlation for k large. We now present an alternative bound on the
exponential sum (A.9), which is preferable to the bound of Claim A.1 when k is far
from zero modulo m.

Claim A.2. Let k ∈ {1, 2, . . . ,m− 1} be given. Then∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣ 6 m

2Rmin(k,m− k)
· |S|.

Proof: ∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p∈P

∑
s∈Sp

R∑
r=1

e

(
k

m
· (r + s · (p−1)m)

)∣∣∣∣∣∣
6
∑
p∈P

∑
s∈Sp

∣∣∣∣∣
R∑
r=1

e

(
k

m
· (r + s · (p−1)m)

)∣∣∣∣∣
=
∑
p∈P

∑
s∈Sp

∣∣∣∣∣
R∑
r=1

e

(
kr

m

)∣∣∣∣∣
=
∑
p∈P

∑
s∈Sp

|1− e(kR/m)|
|1− e(k/m)|

6
∑
p∈P

∑
s∈Sp

2

|1− e(k/m)|

6
∑
p∈P

∑
s∈Sp

m

2 min(k,m− k)

=
m

2Rmin(k,m− k)
· |S|,
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where the last two steps use (A.3) and |S| = R
∑
p∈P |Sp|, respectively.

A.5. Finishing the proof. Facts 2.3 and 2.4 imply that

π(P )− π
(
P

2

)
>

P

C logP
(P > C), (A.14)

max
k=1,2,...,m

ν(k) 6
C logm

log logm
, (A.15)

where C > 1 is a constant independent of R,P,m. Moreover, C can be easily
calculated from the explicit bounds in Facts 2.3 and 2.4. We will show that the
theorem conclusion (A.1) holds with c = 4C2. We may assume that

P > C, (A.16)
C logm

log logm
6

P

2C logP
, (A.17)

since otherwise the right-hand side of (A.1) exceeds 1 and the theorem is trivially
true. By (A.4), (A.14), (A.15), and (A.17), we obtain

|P| > P

2C logP
,

which along with (A.15) gives

max
k=1,2,...,m−1

ν(k) + ν(m− k)

|P|
6

2C logm

log logm
· 2C logP

P

=
c logm

log logm
· logP

P
. (A.18)

Claims A.1 and A.2 ensure that for every k = 1, 2, . . . ,m− 1,∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣ 6

(
min

(
2πmin(k,m− k)

m
,

m

2Rmin(k,m− k)

)
+ max
p∈P
{disc(Sp, p)}+

ν(k) + ν(m− k)

|P|

)
|S|

6

(√
π

R
+ max
p∈P
{disc(Sp, p)}+

ν(k) + ν(m− k)

|P|

)
|S|

6

(
c√
R

+ max
p∈P
{disc(Sp, p)}+

ν(k) + ν(m− k)

|P|

)
|S|.

Substituting the estimate from (A.18), we conclude that

max
k=1,2,...,m−1

∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣

6

(
c√
R

+ max
p∈P
{disc(Sp, p)}+

c logm

log logm
· logP

P

)
|S|.

This conclusion is equivalent to (A.1). The proof of Theorem 3.6 is complete.
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Appendix B. An alternate proof of Fact 4.1

The purpose of this appendix is to give an alternate, matrix-analytic proof of
Fact 4.1.

Fact (restatement of Fact 4.1). Fix a natural number m > 2 and a multiset Z =
{z1, z2, . . . , zn} of integers. Let ω be a primitive m-th root of unity. Then∣∣∣∣∣∣ P

X∈{0,1}n

 n∑
j=1

zjXj ≡ s (mod m)

− 1

m

∣∣∣∣∣∣
6

1

m

m−1∑
k=1

∣∣∣∣∣∣
n∏
j=1

1 + ωkzj

2

∣∣∣∣∣∣ , s ∈ Z. (B.1)

Proof. For any integer z, consider the circulant matrix

Tz =
1

2
circ(1, 0, . . . , 0︸ ︷︷ ︸

m

) +
1

2
circ(

z mod m︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

m

).

By Corollary 2.6, the matrix W = [ωjk/
√
m]j,k=0,1,...,m−1 obeys

WW ∗ = I, (B.2)

W ∗TzW = diag

(
1,

1 + ωz

2
,

1 + ω2z

2
, . . . ,

1 + ω(m−1)z

2

)
, z ∈ Z. (B.3)

In particular,

W ∗T−znT−zn−1
· · ·T−z1W

= (W ∗T−znW )(W ∗T−zn−1
W ) · · · (W ∗T−z1W )

=

n∏
j=1

diag

(
1,

1 + ω−zj

2
,

1 + ω−2zj

2
, . . . ,

1 + ω−(m−1)zj

2

)

= diag

1,

n∏
j=1

1 + ω−zj

2
,

n∏
j=1

1 + ω−2zj

2
, . . . ,

n∏
j=1

1 + ω−(m−1)zj

2

 ,

where the first two steps use (B.2) and (B.3), respectively. Applying (B.2) yet
again, we arrive at

T−znT−zn−1 · · ·T−z1

= W diag

1,

n∏
j=1

1 + ω−zj

2
,

n∏
j=1

1 + ω−2zj

2
, . . . ,

n∏
j=1

1 + ω−(m−1)zj

2

W ∗

=
1

m
J +

m−1∑
k=1

n∏
j=1

1 + ω−kzj

2
WkW

∗
k ,
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whereW1,W2, . . . ,Wm−1 denote the lastm−1 columns ofW. Since the components
of each Wk are bounded in absolute value by 1/

√
m, we conclude that

∥∥∥∥T−znT−zn−1
· · ·T−z1 −

1

m
J

∥∥∥∥
∞

6
1

m

m−1∑
k=1

∣∣∣∣∣∣
n∏
j=1

1 + ω−kzj

2

∣∣∣∣∣∣ . (B.4)

We are now in a position to prove (B.1). Let X = (X1, X2, . . . , Xn) be a
random variable distributed uniformly in {0, 1}n. Consider the random variables
Y0, Y1, Y2, . . . , Yn given by Yk = (z1X1 + z2X2 + · · ·+ zkXk) mod m. The sequence
Y0, Y1, Y2, . . . , Yn has a natural interpretation in terms of an n-step random walk in
Zm. Specifically, the random walk starts at Y0 = 0 and evolves according to

Yk =

{
Yk−1 with probability 1/2,

(Yk−1 + zk) mod m with probability 1/2.

In particular, the k-th step of the random walk has transition probability matrix

1

2



1
1

1
1

. . .
1

1


+

1

2

−zk mod m︷ ︸︸ ︷

1
1

. . .
1

1
. . .

1


,

where the unspecified entries are zero, and the rows and columns correspond in
the usual manner to the values 0, 1, . . . ,m − 1. In the notation of the opening
paragraph of the proof, this matrix is precisely T−zk . Letting p0, p1, . . . , pn be the
m-dimensional vectors that represent the probability distributions of Y0, Y1, . . . , Yn,
respectively, we obtain the recursive relations pk = T−zkpk−1. Therefore,

pn = T−znT−zn−1
· · ·T−z1p0.
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Now ∥∥∥∥∥pn −
[

1

m

1

m
· · · 1

m

]T∥∥∥∥∥
∞

=

∥∥∥∥T−znT−zn−1
· · ·T−z1p0 −

1

m
Jp0

∥∥∥∥
∞

6

∥∥∥∥T−znT−zn−1 · · ·T−z1 −
1

m
J

∥∥∥∥
∞
‖p0‖1

=

∥∥∥∥T−znT−zn−1 · · ·T−z1 −
1

m
J

∥∥∥∥
∞

6
1

m

m−1∑
k=1

∣∣∣∣∣∣
n∏
j=1

1 + ω−kzj

2

∣∣∣∣∣∣
=

1

m

m−1∑
k=1

∣∣∣∣∣∣
n∏
j=1

1 + ωkzj

2

∣∣∣∣∣∣ ,
where the next-to-last step uses (B.4). This conclusion is obviously equivalent
to (B.1).
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