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Abstract

We show that any nondeterministic read-once branching program that decides a satisfiable Tseitin
formula based on an n × n grid graph has size at least 2Ω(n). Then using the Excluded Grid Theorem
by Robertson and Seymour we show that for arbitrary graph G(V,E) any nondeterministic read-once

branching program that computes a satisfiable Tseitin formula based on G has size at least 2Ω(tw(G)δ)

for all δ < 1/36, where tw(G) is the treewidth of G (for planar graphs and some other classes of graphs
the statement holds for δ = 1). We also show an upper bound of O(|E|2pw(G)), where pw(G) is the
pathwidth of G.

We apply the mentioned results to the analysis of the complexity of derivations in the proof sys-
tem OBDD(∧, reordering) and show that any OBDD(∧, reordering)-refutation of an unsatisfiable Tseitin

formula based on a graph G has size at least 2Ω(tw(G)δ).

1 Introduction

This paper continues the study of representation of satisfiable Tseitin formulas by read-once branching
programs.

A Tseitin formula TSG,c [19] is defined for every undirected graph G(V,E) and labelling function c : V →
{0, 1}. We introduce a propositional variable for every edge of G. The Tseitin formula TSG,c represents a
linear system over the field GF(2) that for every vertex v ∈ V states that the sum of all edges adjacent to
v equals c(v). It is well known that a Tseitin formula is satisfiable if and only if the sum of values of the
labeling function for all vertices in every connected component is even [20].

In 2017 Itsykson et al. [12] showed that any OBDD representing satisfiable Tseitin formulas based on
d-regular expanders on n vertices has size at least 2Ω(n). Then Glinskih and Itsykson [9] extended this lower
bound to nondeterministic read-once branching programs (1-NBP).

In this paper we consider an n × n grid and study the complexity of representation of Tseitin formulas
based on it by read-once branching programs. In Theorem 3.1 we prove that any 1-NBP computing a
satisfiable Tseitin formula based on an n × n grid has size 2Ω(n). Although an n × n grid graph has some
edge-expansion properties, we could not prove the lower bound based only on these properties; our proof
requires careful analysis and we use the geometric properties of the grid.

As an important corollary we establish a connection between the complexity of 1-NBP representation of
a satisfiable Tseitin formula and the treewidth of the underlying graph. The treewidth is one of the most
important structural measures of a graph and it is one of the main parametrizations for computational graph
problems. Theorem 4.1 states that any 1-NBP computing a satisfiable Tseitin formula TSG,c has size at

least 2Ω(tw(G)δ) for all δ < 1/36, where tw(G) denotes the treewidth of the graph G. The proof is based on
the Excluded Grid Theorem by Robertson and Seymour [18]: there is a function g such that if a graph G
has treewidth at least g(t), then G contains a grid of size t × t as a minor. Recent results of Chekuri and
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Chuzhoy [4] and [5] give polynomial upper bound on the function g. Hence we know that every graph G has
a t × t grid as a minor, where t = Ω(tw(G)δ) for all δ < 1/36. For several classes of graphs it is possible
to improve the value of δ, for example, for planar graphs δ = 1 [10], [17]. Thus Theorem 4.1 is followed by
Lemma 4.3 stating that if H is a minor of G, then for every S and for every 1-NBP of size S that computes
a satisfiable Tseitin formula TSG,c there is an 1-NBP that computes a satisfiable Tseitin formula TSH,c′ of
size at most S. This lemma is proved separately for every operation: an edge deletion, a vertex deletion
and an edge contraction. We use the non-determinism in the case of an edge contraction: we replace nodes
labelled with contracted edges by guessing nodes.

In Theorem 4.5 we show that for every satisfiable Tseitin formula based on a graph G(V,E) has an
OBDD of size O(|E|2pw(G)), where pw(G) is the pathwidth of G (note that the pathwidth differs from the
treewidth by at most a logarithmic factor: tw(G) ≤ pw(G) ≤ O(tw(G) log |V |)). Since the pathwidth of an
n× n grid is O(n), our upper and lower bounds for grids match up to a constant in the exponent.

There are several known approaches to defining the treewidth of CNF formulas. Ferrara, Pan and Vardi
[7] considered a graph on variables of a CNF formula where two variables are connected iff they share a
common clause. They proved that if a graph associated with CNF formula has the treewidth t, then the
formula has an OBDD of size nO(t) (it is very similar to Theorem 4.5 but it uses another notion of treewidth).
Razgon [16] showed that this bound is tight and there is a family of CNF formulas with the treewidth at
most k that requires 1-NBP of size nΩ(k). In the case of a Tseitin formula TSG,c, the associated graph is the
edge-graph of G, where the vertices are the edges of G and two edges are connected iff they are incident to
the same vertex of G. For example, if G is a star on n + 1 vertices (a star is a tree and, hence, it has the
treewidth 1), then the edge-graph is the complete graph Kn−1 and it has the treewidth n− 2.

Applications to proof complexity. The interest of the study of Tseitin formulas comes from the propo-
sitional proof complexity; unsatisfiable Tseitin formulas are one of the basic examples of hard formulas for
many proof systems.

The study of representations of satisfiable Tseitin formulas by read-once branching program was moti-
vated by the study of proof systems based on OBDDs introduced by Atserias, Kolaitis and Vardi [2]. Itsykson
et al. [12] studied the proof system OBDD(∧, reordering); a proof of unsatisfiability of a CNF formula ϕ in
this proof system is a sequence of OBDDs: D1, D2, . . . , Ds such that Ds is a constant false OBDD and for all
i ∈ [s], Di either represents a clause of ϕ, or represents the conjunction of Dk∧D`, where k, ` < i and Di, Dk

and D` use the same order, or represents the same function as D` but using another order, where ` < i.
The paper [12] gives an exponential lower bound on size of OBDD(∧, reordering)-refutations of unsatisfiable
Tseitin formulas based on constant degree expanders. The lower bound proof is organized as follows: for
any refutation of Tseitin formula TSG,c of size S it is possible to construct an OBDD of size at most S2

representing a satisfiable Tseitin formula TSG′,c′ , where G′ is a graph obtained from G by the deletion of
several edges. Thus it is sufficient to prove lower bound on the size of OBDD representation of TSG′,c′ .
We adapt this approach and show in Theorem 5.3 that our results imply that any OBDD(∧, reordering)-

refutation of an unsatisfiable Tseitin formula TSG,c has size at least 2Ω(tw(G)δ), where δ is a constant as
above. In particular we get a lower bound 2Ω(n) on the complexity of OBDD(∧, reordering)-refutations of
Tseitin formulas based on the n× n grid.

The recent paper by Buss et al. [3] shows that this proof system cannot be polynomially simulated by
Resolution and even by Cutting Planes. The paper shows that any Resolution proof of Tseitin formula based
on the complete graph on log n vertices Klogn has size at least 2Ω(log2 n), while it has an OBDD(∧, reordering)-
refutation of polynomial size. It is well known that the size of the shortest regular Resolution proof of any
unsatisfiable CNF formula φ equals the size of the minimal read-once branching program for the following
search problem Searchφ: given an assignment of variables of φ, find a clause that is refuted by this assignment
[15], [14]. Our upper bound implies that satisfiable TSKlogn,c can be computed by an OBDD of size poly(n).
Thus we have that computing of SearchTSKlogn,c

for an unsatisfiable TSKlogn,c is superpolynomially harder

than computing of a satisfiable TSKlogn,c′ for read-once branching programs.
Tseitin formulas based on the grid graphs were studied in proof complexity. The first superpolynomial

lower bound for regular resolution was proved for grid graphs in 1968 by Tseitin [19]. In 1987 Urquhart
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proved a lower bound for Tseitin formulas based on expanders in unrestricted Resolution [20] but tight lower
bounds for grids were proved by Dantchev and Riis only in 2001 [6]. In the recent paper [11] Hastad proved
lower bound on Bounded depth Frege refutations for Tseitin formulas based on n×n grid graphs that implies
that polynomial size Frege proofs of such formulas should use formulas with almost logarithmic depth.

The treewidth was also studied in the context of resolution refutations of Tseitin formulas. Alekhnovich
and Razborov [1] considered a hypergraph that corresponds to every CNF formula, where variables are
vertices and clauses as sets of variables form hyperedges. For Tseitin formulas the branch-width of this
hypergraph is up to a constant factor equal to the Resolution width [1]. For constant degree graphs the
treewidth is equal to the branch-width of the hypergraph up to a multiplicative constant. Galesi, Taleban-
fard and Torán in the recent paper [8] consider cop-robber games on graphs that is very similar to games
characterising the treewidth, they used such games in an analysis of the complexity parameters of resolution
refutations of Tseitin formulas.

Further research. It is interesting to discover whether there are examples of graphs such that the Reso-
lution complexity of Tseitin formulas based on them is superpolynomially smaller than the shortest size of
1−BP of corresponding satisfiable Tseitin formulas.

2 Preliminaries

Branching programs. A deterministic branching program (BP) is a form of representation of Boolean
functions. A Boolean function f(x1, x2, . . . , xn) is represented by a directed acyclic graph with exactly one
source and two sinks. All nodes except sinks are labeled with a variable; every internal node has exactly two
outgoing edges: one is labeled with 1 and the other is labeled with 0. One of the sinks is labeled with 1 and
the other is labeled with 0. The value of the function for given values of variables is evaluated as follows: we
start a path from the source such that for every node on its path we go along the edge that is labeled with
the value of the corresponding variable. This path will end in a sink. The label of this sink is the value of
the function.

A nondeterministic branching program (NBP) differs from a deterministic in the way that we also allow
guessing nodes that are unlabeled and have two outgoing unlabeled edges. So nondeterministic branching
program may have three types of nodes: guessing nodes, nodes labeled with a variable (we call them just
labeled nodes) and two sinks; the source is either a guessing node or a labeled node. The result of a function
represented by a nondeterministic branching program for given values of variables equals 1, if there exists at
least one path from the source to the sink labeled with 1 such that for every node labeled with a variable on
its path we go along an edge that is labeled with the value of the corresponding variable (for guessing nodes
we are allowed to choose any of two outgoing edges). Note that deterministic branching programs constitute
a special case of nondeterministic branching programs.

A deterministic or nondeterministic branching program is (syntactic) read-k (k-BP or k-NBP) if every
path from the source to a sink contains at most k occurrences of each variable.

Let π be a permutation of the set {1, . . . , n} (an order). A π-ordered binary decision diagram is a 1-BP
such that on every path from the source to a sink variable xπ(i) can not appear before xπ(j) if i > j. An
ordered binary decision diagram (OBDD) is a π-ordered binary decision diagram for some π.

Lemma 2.1 ([21]). Assume that Boolean functions f1 and f2 have π-ordered OBDDs of sizes k1 and k2

respectively, then 1) f1 ∧ f2 has a π-ordered OBDD of size at most k1k2; 2) for any partial substitution ρ,
f1|ρ has a π-ordered OBDD of size at most k1.

Tseitin formulas. Let G(V,E) be an undirected graph without loops but possibly with multiple edges,
c : V → {0, 1} be a labeling function that matches every vertex with a Boolean value. We associate every
edge e ∈ E with a propositional variable xe. A Tseitin formula TSG,c based on a graph G and a labeling
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function c is the conjunction of the following conditions: for every vertex v the sum of variables xe for all

edges e that are incident to v equals c(v) modulo 2. More formally:
∧
v∈V

( ∑
e is incident to v

xe = c(v) mod 2

)
.

Usually, Tseitin formulas are written in the CNF. If the maximal degree of a graph is upper bounded by
a constant d, then a sum modulo 2 can be written as a d-CNF of size at most 2d, hence the size of CNF
representation of TSG,c is at most O(2dn).

We will use the following criterion of the satisfiability of Tseitin formulas:

Lemma 2.2 ([20]). A Tseitin formula TSG,c is satisfiable if and only if for every connected component of
the graph G the sum of values of the function c for all of the vertices is even. I.e., for every connected
component U the following holds:

∑
v∈U

c(v) = 0 mod 2.

Remark 2.3. Note that a substitution of a value to a variable xe := α transforms Tseitin formula TSG,c
to a Tseitin formula TSG′,c′ , where graph G′ is obtained from the graph G by deleting the edge e, c′ equals c
in every vertex except two vertices that are incident to edge e. On these two vertices the values of c and c′

differ by α.

For a graph G(V,E) let kG(l) be the maximal number of connected components that can be obtained
from G by the deletion of l edges. The following lower bound on the size of 1-NBP for satisfiable Tseitin
formula is known:

Lemma 2.4 ([9], Corollary 20). For every connected graph G(V,E) and arbitrary 1 ≤ l ≤ |E| any 1-NBP
evaluating a satisfiable Tseitin formula TSG,c has size at least 2|V |−kG(l)−kG(|E|−l)+1.

Proof sketch. If a graph H(U,F ) consists of k connected components, then a satisfiable Tseitin formula
TSH,f has exactly 2|F |−|U |+k satisfying assignments ([9], Lemma 2). For every l we estimate the number of
nodes of an 1-NBP for TSG,c on the level l. The graph G is connected, hence TSG,c has exactly 2|E|−|V |+1

satisfying assignments. For every satisfying assignment of TSG,c we consider an accepting path of the 1-NBP
corresponding to it. We consider the beginnings of these paths of length l. The number of accepting paths
with the same beginning of length l is at most 2|E|−l−|V |+kG(|E|−l) (it is an upper bound on the number of
satisfying assignments for Tseitin formulas on subgraph of G with |E|−l edges). Thus, the number of different
beginnings of length l of the accepting paths is at least 2l−kG(|E|−l)+1 The number of different beginnings of
length l of accepting paths that go through a fixed vertex on the level l is at most 2l−|V |+kG(|E|−l) (it is an
upper bound on the number of satisfying assignments for Tseitin formulas on subgraph of G with l edges).
Finally, the number of vertices on the l-th level is at least 2|V |−kG(l)−kG(|E|−l)+1.

Lemma 2.5. Let G be an undirected graph, c and c′ be such that Tseitin formulas TSG,c and TSG,c′ are
satisfiable. Then sizes of minimum-size 1-NBPs (1-BPs and OBDDs) for TSG,c and TSG,c′ are equal.

Proof. We will show that the first Tseitin formula can be obtained from the second by the changing some
variables by their negations and, hence a branching program for the first Tseitin formula can be obtained
from a branching program for the second Tsetin formula just by changing labels of outgoing edges for some
nodes. Consider one connected component U of G. By Lemma 2.2 for the both Tseitin formulas the sum of
labels that correspond to this component is even:

∑
v∈U c(u) =

∑
v∈U c

′(u) = 0. Consider a set of vertices
U ′ = {v ∈ U | c(u) 6= c′(u)}, the size of U ′ is even. Assume that U = {u1, u2, . . . , u2k}. For every i ∈ [k] we
consider a path from u2i−1 to u2i and change signs to the opposite of variables corresponding to the edges
of this path in the second Tseitin formula. Such operation for u2i−1 and u2i corresponds to changing of the
value of the labeling function in vertices v u2i−1 and u2i, labels for other vertices does not change since we
change the signs for two edges. Applying this transformation for all connected components we transform the
second Tseitin formula to the first.

Treewidth, pathwidth and minors. A tree decomposition of an undirected graph G(V,E) is a tree
T = (VT , ET ) such that every vertex u ∈ VT corresponds to a set Xu ⊆ V and it satisfies the following
properties: 1. The union of Xu for u ∈ VT equals V . 2. For every edge (a, b) ∈ E there exists u ∈ VT such
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that a, b ∈ Xu. 3. If a vertex a ∈ V is in the sets Xu and Xv for some u, v ∈ VT , then it is also in Xw for
all w on the path between u and v in T .

If a tree T is a path, then this representation is a path decomposition. The width of a tree decomposition
is the maximum |Xu| for u ∈ VT minus one. A treewidth of a graph G is the minimal value of the width
among all tree decompositions of the graph G. We denote it as tw(G). The pathwidth of a graph G is the
minimal value of the width among all path decompositions of a graph G. We denote it as pw(G).

Lemma 2.6 ([13]). For every graph G on n vertices pw(G) = O(log(n) · tw(G)).

A minor of an undirected graph G is a graph that can be obtained from a graph G by a sequence of edge
contractions, edge deletions and vertex deletions.

Theorem 2.7 ([5]). For every constant δ < 1/36 every graph G contains a t × t grid as a minor, where
t = Ω(tw(G)δ).

3 Lower bound for grids

In this section we prove the following Theorem.

Theorem 3.1. Let Tn be an n × n grid graph. Then if a Tseitin formula TSTn,c is satisfiable, then every
1-NBP that computes TSTn,c has size at least 2Ω(n).

Proof. Tn contains (n+ 1)2 vertices and 2n(n+ 1) edges. In order to prove this theorem we use Lemma 2.4
for l = n(n + 1) (so l is the half of the number of edges). So we have to prove that if we delete half of

the edges of Tn, then the resulting graph will have at most (n+1)2

2 − ε · n connected components for some
constant ε > 0. Hence, by Lemma 2.4, every 1-NBP for TSTn,c has size at least 22εn+1.

We call a subgraph of Tn optimal if it contains l edges and has the maximal number of connected
components. The plan of the proof is the following. At first we show that there exists an optimal subgraph
H that has one connected component that contains all edges and all other connected components are isolated
vertices. Then we estimate the number of connected components of H.

Lemma 3.2. There is an optimal subgraph of Tn that has exactly one connected component with at least
two vertices.

Proof. Consider all optimal subgraphs of Tn. Choose among them a subgraph H that contains a connected
component M with the maximal number of edges. If M contains all edges of H, then the lemma is proved.
Further we assume that not all edges are in M .

Consider the properties of the chosen graph H.
1. All the edges of the grid Tn between vertices of M are in M . Indeed, otherwise we can delete an

edge from another connected component and add it to M . After this operation the number of connected
components does not decrease, but the number of edges in M is strictly increased. This is a contradiction
since M has the maximal number of edges among all the optimal subgraphs.

2. Every connected component, except M , is edge-biconnected (i.e. it is impossible to increase the
number of connected components by the deletion of an edge from it). Indeed, assume that for some connected
component except M it is possible to delete an edge from it such that the number of connected component
increases. Then we delete this edge and add an edge of the grid that connects M with a vertex out of M .
In this case the number of connected components is not changed but the number of edges in the maximal
component would be increased. This is a contradiction.

3. There is no vertex v of Tn such that it is not in M but there are at least two edges between v
and vertices of M in Tn. Proof by contradiction, assume that such a vertex exists. Consider a connected
component K that differs from M and has edges. Consider a set of the lowest vertices in K and let u be
the leftmost vertex among them. There are no edges to the left or down from the vertex u in the graph
H. Since the connected component K has edges, there is at least one edge that is incident to u. By the
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previous property, K is edge-biconnected, hence, u has precisely two incident edges. Let us delete the two
edges incident to u from K and add two edges that connect the vertex v and M . The number of connected
components doesn’t decrease, but the number of edges in the maximal component increases. This is a
contradiction.

4. Every 1 × 1 square of the grid Tn contains 0, 1 or 4 edges from M . A 1 × 1 square cannot contain
exactly 3 edges because it contradicts the property 1. Let an 1× 1 square contains exactly 2 edges from M .
If these are two incident edges then we get a contradiction with the property 3 or the property 1. If these
are two opposite edges, then we get a contradiction with the property 1.

5. For every u, v ∈ M , the minimal rectangle of the grid that contains both u and v (with all interior
edges) is a subgraph of M (one of the sides of the rectangle could be of zero length, in that case it’s just a
line of the grid). It can be easily shown by the induction on the length of the shortest path between u and
v using the property 4.

6. M is a rectangle of the grid with all edges of this rectangle. Consider the maximal rectangle of the
grid that is fully contained (with all edges) in M . If there are vertices in M that are not in this rectangle,
then we could increase this rectangle using the property 5.

So M is a rectangle of the grid. We say that M can be moved one step to the left (right, down or up)
if all left (right, down or up) neighbours of the left (right, down or up) border of M are isolated vertices
in H. Such a move doesn’t change the number of connected components and the number of edges in them.
Consider some connected component K that differs from M and contains edges. We move M one step closer
to K in the way of decreasing the distance between them while it is possible. By the distance we understand
the minimal L1-distance between two vertices from M and K. After some step it is not possible anymore; it
means that one of the borders of M (w.l.o.g. it is the upper border) has upper neighbours from connected
components that consist of more than one vertex.

Let M be a rectangle x × y, where x, y are non-negative integers. That means that every horizontal
line of M contains x + 1 vertices. Assume that among upper neighbours of the upper border of M there
are m vertices that are in some connected component that consists of more than one vertex. Let these m
vertices be in k connected components. Assume that there are r edges of the graph H between x+ 1 upper
neighbours of M (see an example on the left part of Figure 1). Since every edge between upper neighbours
of M decreases the number of connected components, the following inequality holds k ≤ m− r. Obviously,
r ≤ x.

Figure 1: Example: x = 6, y = 4, r = 3, k = 3,m = 7 Figure 2: Spines

Consider the following modification of the graph H: we move the rectangle M one step up and add edges
down from r vertices on the bottom border of M (see example on the right part of Figure 1). The number
of edges after this transformation is not changed since r edges overlapped and we added r edges. Now we
estimate the number of connected components. On the bottom border we add (x + 1) − r new connected
components. On the upper border (x+ 1)−m+k connected components disappeared (were merged to one).
Finally, the number of connected components increased by m− k − r, that is at least zero since k ≤ m− r.
But the number of edges in the maximal connected component increases, this contradicts the choice of the
graph H. So we get a contradiction with the assumption that there are more than one connected components
with at least one edge.

So we may assume that there is an optimal graph H that has one connected component M with at least
two vertices and t isolated vertices. Notice that M is not necessary a rectangle now (in Lemma 3.2 we only
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show that it has to be a rectangle under the assumption that the statement of the lemma is wrong). We are
going to estimate kTn(l) = t+ 1 from the above.

For every connected component K we define a set of spines that go out of it. We assume that Tn is a
part of the infinite grid. An edge e of the infinite grid is a spine of K if it connects a vertex u from K with
a vertex out of K and u is the right or bottom endpoint of e (see Figure 2). Note that spines can go outside
of the square Tn if u is on the upper or left border of Tn. If a component is an isolated vertex, then it has
exactly two spines.

The same edge cannot be a spine for two different connected components since we choose only the edges
that go up or to the left from the component. Let h be the total number of all spines for all of the connected
components of H. Every spine is either an edge of the square Tn that is not in H or is among 2(n+ 1) edges
that go outside the square Tn. Hence, 2(n+ 1) + n(n+ 1) ≥ h.

Let X be the number of spines of the connected component M , then we get that h = 2t+X. Using the
previous inequality we estimate t as follows: t ≤ (n+1)(n+2)/2−X/2 = (n+1)2/2+(n+1−X)/2. Hence,
we need to show that X ≥ (1 + ε)n for some constant ε.

Consider the minimal grid rectangle that contains M . Assume it has size (a− 1)× (b− 1), where a, b are
natural numbers. Then there are spines of M in every of a vertical lines and in every of b horizontal lines.
Then we get that X ≥ a+ b ≥ 2

√
ab. On the other hand, the component M contains exactly n(n+ 1) edges,

they need to be embedded into a rectangle (a − 1) × (b − 1) that contains a(b − 1) + b(a − 1) edges. Then
we can estimate 2ab > a(b− 1) + b(a− 1) ≥ n(n+ 1) and we get X ≥

√
2n(n+ 1) >

√
2n.

Using the upper bound on t, the number of connected components can be estimated as: kTn(l) = t+ 1 ≤
(n+ 1)2/2− (

√
2− 1)n+ 3

2 . Then by Lemma 2.4, every 1-NBP for a satisfiable Tseitin formula TSTn,c has

size at least 22(
√

2−1)n−2.

4 Treewidth

The main goal of this section is to prove the following theorem.

Theorem 4.1. Let TSG,c be a satisfiable Tseitin formula. Then every 1-NBP for TSG,c has size at least

2Ω(tw(G)δ) for all δ < 1/36.

Lemma 4.2. Let D be a 1-NBP computing a Boolean function f : {0, 1}n → {0, 1}. If we change every
node in D labeled with the variable x1 by a guessing node and remove all labels of all its outgoing edges, then
we obtain a valid 1-NBP that computes ∃x1f(x1, x2, . . . , xn).

Proof. For every path from the source to a sink in D′ every variable occurs at most once, so D′ is a valid
1-NBP. Consider an assignment τ to the variables x2, . . . , xn. Let us consider a path in D′ from the source
to the sink labeled with 1 that is consistent with τ . Consider the same path in D, it also finishes in the sink
labeled with 1. Then there exists an assignment τ ′ that satisfies f and τ ′ extends τ on a value of the variable
x1. Now consider a satisfying assignment σ of the function ∃x1f(x1, x2, . . . , xn). For some value of x1 there
exists a path from the source to the sink labeled with 1 in the branching program D that is consistent with
this value and with σ. The copy of this path in the branching D′ is consistent with σ and reaches the sink
labeled with 1.

Lemma 4.3. Let H be a minor of an undirected graph G and Tseitin formulas TSG,c and TsH,c′ be satisfiable.
Then for every S and every 1-NBP of size S that computes TSG,c, there is a 1-NBP that computes TSH,c′

of size at most S.

Proof. It suffices to prove the statement of the lemma for the case when H is obtained from G by the
application of one operation. Let us consider all types of operations separately.

1. H is obtained from G by the deletion of an edge e. Let σ be a satisfying assignment of TSG,c. We
apply the partial assignment xe := σ(xe) to TSG,c and get the satisfiable formula TSH,c′′ . It is well known
that the application of a substitution does not increase size of the 1-NBP. By Lemma 2.5, sizes of the
minimal 1-NBPs for TSH,c′′ and TSH,c′ are equal.

7



2. H is obtained from G by the deletion of a vertex v. Since all the variables of Tseitin formulas are
associated with edges, this case can be considered as a sequence of edge deletions.

3. A graph H(VH , EH) is obtained from a graph G(V,E) by the contraction of an edge e = (u, v). Let
us define a labeling function c′′ : VH → {0, 1} as follows: for all the vertices that differ from the joined
vertex {u, v} it has the same value as in the labeling function c and c′′({u, v}) = c(u) + c(v) mod 2. By the
construction, every connected component U of H corresponds to a connected component U ′ of G with the
same sum of the labeling functions:

∑
w∈U c

′′(w) =
∑
w∈U ′ c(w) mod 2. Hence, by Lemma 2.2, TSH,c′′ is

satisfiable.

Lemma 4.4. Formulas TSH,c′′ and ∃xe TSG,c define the same function.

Proof. Formulas TSH,c′′ and ∃xe TSG,c depended on the same set of variables X = {xl | l ∈ E \ {e}},
since H is obtained from G by the contraction of the edge e. Consider some assignment of these variables
σ : X → {0, 1}. Assume that σ satisfies TSH,c′′ . Consider an assignment σ′ : X ∪ {xe} → {0, 1} such that
for every x ∈ X, σ′(x) = σ(x) and σ′(xe) =

∑
t∈Eu σ(xt) + c(u) mod 2, where Eu is a set of edges that are

incident to the vertex u in G except for the edge e. We need to check that σ′ satisfies TSG,c. All conditions
that are not related to vertices u and v are satisfied automatically, because they do not contain the edge e.
The condition in the vertex u is satisfied because of the choice of the value of the variable xe in σ′. Let Ev
be a set of edges that are incident to the vertex v in G except for the edge e. To check the condition in the
vertex v we should compute σ′(xe) +

∑
t∈Ev σ(xt). By the definition of the value σ′(xe) we get that the sum

equals
∑
t∈Eu∪Ev σ(xt) + c(u) that is equal to c(v), because σ satisfies the condition in the vertex {u, v} in

the formula TSH,c′′ .
Now let σ be an assignment that satisfies ∃xe TSG,c. σ can be extended to an assignment σ′ that satisfies

TSG,c. Let us check that σ satisfies TSH,c′′ . We should check the condition only for the vertex {u, v}:∑
t∈Eu∪Ev σ(xt) = (

∑
t∈Eu σ(xt) + σ′(xe)) + (

∑
t∈Ev σ(xt) + σ′(xe)) = c(u) + c(v).

By Lemma 4.2, the minimal size of a 1-NBP for ∃xe TSG,c (that is by Lemma 4.4 equivalent to TSH,c′′)
is at most the minimal size of a 1-NBP for TSG,c. By Lemma 2.5, minimal sizes of 1-NBPs for TSH,c′′ and
for TSH,c′ are equal.

Proof of Theorem 4.1. By Theorem 2.7, the graph G contains a t × t grid graph as a minor, where t =
Ω(tw(G)δ). The theorem follows from Theorem 3.1 and Lemma 4.3.

We also obtain an upper bound:

Theorem 4.5. Every satisfiable Tseitin formula TSG,c can be represented as OBDD of size |E|2pw(G)+1 +2.

Proof. Consider a path decomposition of the graph G: X1, X2, . . . , Xs such that |Xi| ≤ pw(G)+1 for i ∈ [s].
We split the set of edges into disjoint (maybe empty) parts: E1, E2, . . . , Es. E1 is a set of edges between
vertices X1, if i > 1, then Ei is a set of edges between vertices in Xi that did not appear earlier (it is enough
to require that no one of these edges is between vertices from Xi−1, since a vertex can not disappear and
then appear again). Since every edge occurs in at least one Xi, every edge will be in some set Ej .

We fix some order of edges in which the first are edges from E1, then edges from E2, . . . and in the end
there are edges from Es. Let ei be ith edge in this order.

Consider a complete decision tree T that computes TSG,c and such that in every path from the root of T
to a leaf variables are requested in the order: e1, e2, . . . , e|E|. We define the following equivalence relation on
the nodes of T : two nodes of T are equivalent if partial substitutions corresponding to them either falsify a
clause of TSG,c or equally modify TSG,c. Nodes of the constructing OBDD are the equivalence classes of the
defined relation. The source is the equivalent class of the root of T , the sink labeled with 0 is the equivalent
class of nodes of T that falsify a clause of TSG,c and the sink labeled with 1 is the equivalent class of leaves
of T labeled with 1. It is easy to verify that two nodes of T from the same equivalence class except the sink 0
have the same distance from the root and they are labeled with the same edge of G. A label of an equivalence
class in OBDD is the label of any of its representative. If (u, v) is an edge of T labeled with a ∈ {0, 1}, then
we introduce an edge labeled with a between equivalence classes of u and v. It is straightforward that we get
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a correct OBDD that computes TSG,c. Consider a level l of T and let us estimate the number of equivalent
classes of vertices from the level l (except the sink 0). Let el ∈ Ej . Consider a vertex v ∈ V \ Xj and let
v ∈ Xi. If i < j, then all incident edges of v are among e1, e2, . . . , el, hence the parity condition in the vertex
v is either falsified by the substitution (and then the current node is from the equivalence class of the sink 0)
or is satisfied by the substitution. If i > j, then edges e1, e2, . . . , el are not incident to v. Thus equivalence
classes for nodes of T (except the sink 0) on the level l differ only on how they modify the labeling function
for vertices from Xi. Since |Xi| ≤ pw(G) + 1, then the number of equivalence classes for nodes on level l
(except the sink 0) is at most 2pw(G)+1. There are |E| levels and we also have two sinks, thus size of the
constructed OBDD is at most |E|2pw(G)+1 + 2.

Corollary 4.6. Any satisfiable Tseitin formula based on a graph G(V,E) can be represented as OBDD of
size O(|E||V |O(tw(G))).

Proof. Follows from Theorem 4.5 and Lemma 2.6.

5 Lower bound in the proof system OBDD(∧, reordering)
In this section we show that any refutation of an unsatisfiable Tseitin formula TSG,c in the proof system

OBDD(∧, reordering) has size at least 2Ω(tw(G)δ) for all δ < 1/36.
If F is a formula in CNF, we say that a sequence D1, D2, . . . , Dt of OBDDs is an OBDD(∧, reordering)-

refutation of F if Dt is an OBDD that represents the constant false function, and for all 1 ≤ i ≤ t, Di is
an OBDD that represents a clause of F or can be obtained from the previous Dj ’s by one of the following
inference rules: (conjunction or join) Di is an OBDD with order π, that represents Dk ∧Dl for 1 ≤ l, k < i,
where Dk, Dl have the same order π; (reordering) Di is an OBDD that is equivalent to an OBDD Dj with
j < i (note that Di and Dj may have different orders).

We say that a graph H is t-good if H is connected and every OBDD-representation of any satisfiable
Tseitin formula TSH,c has size at least t. The following theorem can be proved using ideas from [12]:

Theorem 5.1. [cf. [12]] Let G(V,E) be a connected graph and degrees of all vertices of G be bounded by a
constant. Assume that the graph G has the following properties: 1) if we delete any vertex from G, we get a
t-good graph; 2) for every two vertices u and v of G there is a path p between them such that if we delete all
vertices from p, we get a t-good graph. And if we delete from G vertices u and v and the edges of the path
p, we also get a connected graph.
Then any OBDD(∧, reordering)-refutation of an unsatisfiable Tseitin formula TSG,c has size at least Ω(

√
t).

We start with the idea of the proof. We consider the last step of the OBDD(∧, reordering)-refutation:
the conjunction of OBDDs F1 and F2 is the identically false function but both F1 and F2 are satisfiable.
Both F1 and F2 are conjunctions of several clauses of TSG,c.

Since G remains connected after removing of any single vertex, F1 and F2 together contain all clauses
of TSG,c. Assume that there are two nonadjacent vertices u and v such that F1 does not contain a clause
Cu that corresponds to the vertex u and F2 does not contain a clause Cv that corresponds to v (if this
assumption is false, the proof is rather straightforward). We consider two partial substitutions ρ1 and ρ2

that are both defined on the edges adjacent to u and v and on the edges of the path p between u and v. The
substitutions ρ1 and ρ2 assign opposite values to edges of the path p and are consistent on all other edges.
The substitution ρ1 satisfies Cv and refutes Cu and ρ2 satisfies Cu and refutes Cv.

By the construction F1|ρ1 ∧ F2|ρ2 is almost a satisfiable Tseitin formula based on the graph that is
obtained from G by deletion of the vertices u and v and all edges from the path p. However, it is also
possible that this formula does not contain some clauses for the vertices from p. Thus we make additional
partial substitution τ that substitute values from a satisfying assignment for all remaining edges for vertices
from p. (F1|ρ1 ∧F2|ρ2)|τ is satisfiable Tseitin formula based on the graph that is obtained from G by deletion
of all vertices from the path p. The size of an OBDD representation of such a formula is at least t by the
condition of the theorem. Hence by Lemma 2.1 we get that either F1 or F2 has size at least Ω(

√
t) in the

given order.
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Proof of Theorem 5.1. Consider the last step of the proof: conjunction of OBDDs F1 and F2 is the identically
false function but F1 and F2 are satisfiable. Both F1 and F2 are conjunctions of several clauses of TSG,c.
Every clause of TSG,c is either in F1 or in F2 since otherwise F1 ∧ F2 is satisfiable by Lemma 5.2. Our goal
is to prove that either F1 or F2 has size at least

√
t.

Lemma 5.2. Suppose Φ denotes the formula that can be obtained from TSG,c by removing one arbitrary
clause. Then Φ is satisfiable and every OBDD representation of Φ has size at least t.

Proof. Assume that TSG,c = Φ ∧ C, where C is a clause that corresponds to the equation in a vertex v.
Let H be the result of the removing of the vertex v from G. H is t-good and hence graph H is connected.
Suppose we make a substitution to all variables of the clause C that falsifies C. Let Φ′ denote the result
of this substitution applied to Φ. Since the substitution falsifies the parity condition at the vertex v, Φ′

corresponds to a satisfiable Tseitin formula based on H, hence the size of every OBDD for Φ′ is at least t.
Φ′ is the result of the substitution applied to Φ, hence by Lemma 2.1 the size of every OBDD representing
Φ is at least t.

We consider two cases:

1. There exist two non-adjacent vertices u and v from G such that F1 does not include some clause Cv
that corresponds to vertex v and F2 does not include some clause Cu for vertex u.

Consider a path p from v to u that exists by the property 2 from the conditions of the theorem. Let ev
be the first edge of p and eu be the last edge (ev 6= eu since u and v are non-adjacent). Consider two
substitutions ρ1 and ρ2 with the same support: all edges that are incident to vertices u and v and all
edges from the path p. Substitutions ρ1 and ρ2 are consistent on edges that are out of p: all edges that
are adjacent to u or v but not in p have values that do not satisfy Cu and Cv (this is possible since
u and v are non-adjacent). ρ1 substitutes zeros to all edges from p except eu and ev and substitute a
value to ev that does not satisfy Cv and a value to eu that satisfies Cu. ρ2 substitute ones to all edges
from p except eu and ev and substitute a value to ev that satisfies Cv and a value to eu that does
not satisfy Cu. So edges from p have different values in ρ1 and ρ2; ρ1 satisfies u and refutes v and ρ2

refutes u and satisfies v.

Consider the graph G′ that can be obtained from G by removing u, v and all edges from the path p.
The graph G′ is connected by the property 2 from the conditions of the theorem.

Let c′ be a labeling function of the result of the substitution ρ1 applied to TSG,c and c′′ be a restriction
of c′ on V \{u, v}. Note that ρ2 corresponds to the same c′′ since ρ1 and ρ2 identically change the value
of the labelling function for all vertices except u and v. We claim that TSG′,c′′ is satisfiable. Indeed if
we make a substitution ρ1 to TSG,c the vertex v would be refuted, the vertex u would be satisfied, all
other vertices are marked according c′. Thus the sum of values of c′′ is even and TSG′,c′′ is satisfiable
since G′ is connected.

We consider the conjunction F1|ρ1 ∧ F2|ρ2 . Any satisfying assignment of TSG′,c′′ satisfies both F1|ρ1
and F2|ρ2 , hence F1|ρ1 ∧ F2|ρ2 is satisfiable. Suppose we represent F1|ρ1 ∧ F2|ρ2 as a conjunction of
clauses. For every vertex w that is not in p, the union of clauses of F1 and F2 contains all clauses
that correspond to the equation at vertex w, substitutions ρ1 and ρ2 are consistent for all variables
from this equation, hence F1|ρ1 ∧ F2|ρ2 contains all clauses that correspond to the equation of vertex
w in formula TSG′,c′′ . Consider a partial substitution τ that substitutes values to edges of G′ that
are incident to vertices of p according some satisfying assignment of TSG′,c′′ . If we delete all vertices
of the path p from G′ we get a graph G′′ that is connected by the property 2 of conditions of the
theorem. Since τ is consistent with a satisfying assignment of TSG′,c′′ , then the application of the
substitution τ converts TSG′,c′′ to a satisfiable Tseitin formula TSG′′,c′′′ . And TSG′′,c′′′ coincides with
(F1|ρ1 ∧ F2|ρ2)|τ .

Size of any OBDD representation of the formula TSG′′,c′′′ is at least t since G′′ is t-good. Then any
OBDD representing (F1|ρ1 ∧ F2|ρ2)|τ has size at least t, hence by Lemma 2.1 any OBDD representing
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F1|ρ1 ∧ F2|ρ2) has size at least t. Thus, by Lemma 2.1 for every given order of variables π either F1|ρ1
or F2|ρ2 has size of the minimal π-OBDD at least

√
t. Hence, the minimal π-OBDD for F1 or F2 has

size at least
√
t.

2. In the second case there are no such non-adjacent vertices. Since F1 is not identically false, there exists
a vertex u such that F1 does not include a clause that corresponds to a vertex u and by the assumption
F2 does not include clauses only for the vertex v and its neighbours. Since G is a constant-degree
graph, F2 differs from a Tseitin formula without one clause by the constant number of clauses that
depend on the constant number of variables. Any function that depends only on the constant number
of variables may be represented by OBDD of constant size. Thus any OBDD representation of F2 by
Lemmas 5.2 and 2.1 has size at least Ω(t).

Theorem 5.1 is used in the proof of the main result of this section:

Theorem 5.3. Let G be a connected graph and TSG,c be an unsatisfiable formula. Then every

OBDD(∧, reordering)-refutation of TSG,c has size at least 2Ω(tw(G)δ) for all δ < 1/36.

We will need the following lemmas.

Lemma 5.4. Let φ be an unsatisfiable CNF formula that has a refutation in the proof system
OBDD(∧, reordering) of size S. Let ρ be a partial substitution of values of the formula φ. Then φ|ρ has an
OBDD(∧, reordering)-refutation of size at most S.

Proof. Let D1, D2, . . . , Ds be a refutation of the formula φ, then D1|ρ, D2|ρ, . . . , Ds|ρ is a refutation of the
formula φ|ρ, where Di|ρ is a result of a substitution ρ to OBDD Di. By Lemma 2.1, the application of a
substitution does not increase the size of OBDD.

Lemma 5.5. Let G(V,E) be a connected graph and G′(V ′, E′) be a connected subgraph of G with E′ 6= ∅
that is obtained from G by the deletion of some vertices and edges. For every unsatisfiable Tseitin formula
TSG,c there exists a substitution ρ on variables E \ E′, such that ρ does not falsify any clause of TSG,c.

Proof. We substitute one-by-one values of variables that correspond to edges from E\E′ (and correspondingly
modify the Tseitin formula) and we maintain the following invariant while deleting edges of G: a Tseitin
formula corresponding to every connected component that doesn’t contain vertices from V ′ is satisfiable.
The invariant holds at the beginning, since the graph G′ is connected and thus there are no such connected
components. Suppose we assign an edge e, if e is from an unsatisfiable connected component (i.e. a part
of Tseitin formula corresponding to this component is unsatisfiable) and it is not a bridge of G, then we
assign it with the value 0, after this transformation the component stays unsatisfiable. If e is a bridge of
an unsatisfiable component, then we assign it with a value such that the new connected component that
is obtained after the deletion of e and that does not contain vertices from V ′ would be satisfiable (such
value exists by Lemma 2.2). If e is from a satisfiable connected component, then we assign a value from
the satisfying assignment of this connected component. In the end the invariant implies that the resulting
substitution does not falsify any clause of TSG,c.

Proof of Theorem 5.3. By Theorem 2.7 the graph G contains a s× s grid minor H, where s = Ω
(
tw(G)δ

)
.

Consider a process of obtaining the minor H from the graph G such that this process contains the minimal
possible number of operations of edge contractions. Since operations of edge and vertex deletions and edge
contractions commute, we denote by G′ a graph that is obtained from G after the application of all edge
and vertex deletions. Then H can be obtained from G′ by the application of only edge contractions. We
assume that if during a step of edge contractions we get parallel edges, then all of them except one should
be deleted.

In Lemmas 5.6, 5.7, 5.8 and 5.9 we verify that G′ satisfies the conditions of Theorem 5.1. And then we
conclude the proof by the application of Lemma 5.5 and Lemma 5.4.
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Lemma 5.6. All vertices in the graph G′ have degree at most 4.

Proof. Note that after the application of an edge contraction the degree of a vertex cannot decrease, since
otherwise it is possible to replace an edge contraction by a vertex deletion. Since all vertices in H have
degrees at most 4, it must also be true for G′.

Lemma 5.7. After the deletion of any vertex from the graph G′ we get a connected graph.

Proof. Suppose that we delete a vertex v from the graph G′ and get a graph with at least two connected
components K1 and K2. We know that we can obtain the s × s grid H from the graph G′ by several edge
contractions. Suppose the vertex v is transformed to the vertex v′ of H after the application of these edge
contractions. Since H remains connected after the deletion of the vertex v′, it is not possible that some
vertex a ∈ K1 and some vertex b ∈ K2 are transformed to vertices a′ and b′ from H − v′. Indeed, H − v′ is
connected, hence there is a path in H connecting a′ and b′ that does not contain v′, hence there is a path
in G′ connecting a and b that does not contain v; this is a contradiction since a and b are from different
connected components of G′ − v. Thus for some i ∈ {1, 2} the component Ki is fully transformed to the
vertex v′. It means that we could just delete all vertices of Ki and do not contract anything, it decreases
the number of contractions and contradicts the choice of the graph G′.

Consider the s× s grid square H and for every two vertices u and v of H we define a path p′u,v between
them. If at least one of u and v is not on the border of the square H, then p′u,v consists of two parts connected
at an endpoint, one of whose is horizontal and the other is vertical. If u and v belong to the border of H,
then p′u,v is the shortest path between u and v that only passes through vertices on the border. In both cases
it can be easily verified that the s × s graph remains connected after the deletion of vertices u and v and
edges of p′u,v, and also after the deletion of all vertices of p′u,v. Notice the following property: if two vertices
of p′u,v are connected by and edge of the grid, then they are consequent in the path p′u,v.

Consider two arbitrary vertices u and v of the graph G′, suppose that after the application of edge
contractions they are transformed to the vertices u′ and v′ (u′ and v′ might coincide) of the s × s grid H.
Let pu,v be a path between u and v in the graph G′ that is transformed to p′u′,v′ . If u = v, we assume that
pu,u is a path with the only one vertex u.

Lemma 5.8. For every two vertices u, v of the graph G′ if we delete u and v and edges of pu,v from G′ we
obtain a connected graph. And if we delete all of the vertices of pu,v we also obtain a connected graph.

Proof. At first we note that it is impossible that G′ has two adjacent vertices a and b out of the path pu,v
such that a and b are transformed to different pair of distinct vertices a′ and b′ of path p′u′,v′ . Indeed, since
we do not delete edges, a′ and b′ are connected by an edge in H, hence a′ and b′ are two consecutive vertices
of p′u′,v′ . Since pu,v is transformed to p′u,v, there are vertices s and t from pu,v that are transformed to a′

and b′. Vertices s and t are connected by edges of pu,v, hence there is an edge of pu,v that is transformed to
an edge between a′ and b′. The edge between a and b is also transformed to an edge between a′ and b′. This
is a contradiction, since we get two edges between a′ and b′ that come from different edges of G′, hence one
of them should be deleted but we assume that there are no more deletions.

We claim that the graph G′ remains connected if we delete from it vertices u, v and edges of the path
pu,v. Proof by contradiction. Suppose that after the deletion we will get a graph with at least two connected
components K1 and K2. Since H remains connected after deletions of vertices u′, v′ and edges of the path
p′u′,v′ , then it is not possible that some vertices a ∈ K1 and b ∈ K2 are transformed to vertices a′,b′ from
H − {v′, u′}, because they are connected in H − {v′, u′} and thus there is a path between them that does
not go through vertices u, v and edges of the path pu,v in the initial graph G′. Thus, for some i ∈ {1, 2}
every vertex of the component Ki is transformed to v′ or to u′. We have already shown that it is impossible
that some vertices from Ki are transformed to v′ and some to u′ (otherwise there are two adjacent vertices
with such property). Hence we may just delete all vertices from Ki and do not contract anything and this
decreases the number of contractions. And we get a contradiction with the choice of the graph G′.

By similar arguments the graph G′ remains connected if we delete from it all vertices of pu,v.
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Lemma 5.9. For every two vertices u, v of the graph G′ the graph that is obtained from G′ by the deletion
of all vertices of pu,v contains a bs/3c × bs/3c grid as a minor.

Proof. Consider some vertices u and v of the the s× s square. We show that if we delete all vertices of the
path p′u,v from the s × s square, then there is a sub-square of the size bs/3c × bs/3c that does not contain
any deleted edge or vertex. Indeed, there are 9 squares of the size bs/3c × bs/3c that are fully contained in
the square s× s and do not have common 1× 1 squares. If the path goes only by the border of the square
then it does not touch the central square bs/3c×bs/3c. In the other case the path has two straight segments
(may be of the zero length): vertical and horizontal. It is easy to see that such paths can have common
vertices with at most 8 chosen squares, hence there is at least one bs/3c × bs/3c square that is not touched.

Suppose we deleted the path pu,v between two vertices u and v from the graph G′. We find in the square
H a square Tbs/3c of the size bs/3c × bs/3c such that it does not intersect with vertices u′, v′ and vertices
of the path p′u′,v′ . Let U be the set of vertices of the graph G′ that is contracted to vertices of Tbs/3c. The
set of vertices U does not intersect with u, v and vertices of the path pu,v, since in the other case the square
Tbs/3c would also intersect u′, v′ or p′. Thus Tbs/3c is a minor of a subgraph G′ that is induced be vertices
from U , and, hence, a minor of the graph G′.

Let K be a graph obtained from G′ by the deletion of a vertex u or by the deletion of vertices from a path
pu,v for some u, v. Lemma 5.9 and Lemma 4.3 imply that size of 1-NBP for every satisfiable Tseitin formula
TSK,c is at least the minimal size of 1-NBP for a satisfiable Tseitin formula TSTbs/3c,c′ that by Theorem 3.1

is at least 2Ω(s). Using this and Lemmas 5.6,5.7,5.8 we get that G′ satisfies the condition of Theorem 5.1 for
t = 2Ω(s).

By Lemma 5.5 there exists a substitution ρ of variables that correspond to edges of the graph G that
are not in G′ that does not falsify clauses of the formula TSG,c. The application of ρ to the formula
TSG,c transforms it to the formula TSG′,c′ (other clauses are satisfied). By Theorem 5.1 the size of ev-
ery OBDD(∧, reordering)-refutation of the formula TSG,c is 2Ω(s). Then by Lemma 5.4 the size of every
OBDD(∧, reordering)-refutation of the formula TSG,c is 2Ω(s).
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[14] Jan Kraj́ıček. Bounded arithmetic, propositional logic and complexity theory. Cambridge University
Press, 1995.
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