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Abstract

The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function
f can be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve
several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local;
a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean
function, can be computed by a Boolean circuit of small size. We get new and improved lower
bounds for MCSP that almost match the best-known lower bounds against several circuit models.
Specifically, we show that computing MCSP, on functions with a truth table of length N , requires

• N3−o(1)-size De Morgan formulas, improving the recent N2−o(1) lower bound by Hirahara
and Santhanam (CCC 2017),

• N2−o(1)-size formulas over an arbitrary basis or general branching programs (no non-trivial
lower bound was known for MCSP against these models), and

• 2Ω(N1/(d+1.01))-size depth-d AC0 circuits, improving the (implicit, in their work) exponential
size lower bound by Allender et al. (SICOMP 2006).

The AC0 lower bound stated above matches the best-known AC0 lower bound (for PARITY)
up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e.,
CNFs or DNFs), we get an optimal lower bound of 2Ω(N) for MCSP.

Keywords. minimum circuit size problem (MCSP), circuit lower bounds, pseudorandom genera-
tors (PRGs), local PRGs, De Morgan formulas, branching programs, constant-depth circuits

∗A preliminary version of this article was accepted for presentation in the 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019); an extended version of this article was accepted for
publication in the ACM Transactions on Computation Theory (ToCT).
†EECS Department, University of Michigan, Ann Arbor, MI, USA; mahdich@umich.edu.
‡School of Computing Science, Simon Fraser University, Burnaby, BC, Canada; kabanets@cs.sfu.ca.
§School of Computing Science, Simon Fraser University, Burnaby, BC, Canada; zhenjian lu@sfu.ca.
¶Department of Computing, Imperial College London, London, UK; d.myrisiotis17@imperial.ac.uk.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 22 (2019)



Contents

1 Introduction 3
1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 MCSP lower bounds from local PRGs . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 MCSP lower bound against De Morgan formulas . . . . . . . . . . . . . . . . 5
1.2.3 MCSP lower bounds against formulas over an arbitrary basis or branching

programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 MCSP lower bounds against AC0 . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Remainder of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 6
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Random restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Simple facts about Boolean circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The “MCSP circuit lower bounds from local PRGs” framework 9

4 Almost-cubic De Morgan formula lower bounds for MCSP 10
4.1 Almost-linear-size k-independent generators . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Almost-linear-size extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Strongly local PRG useful against sub-cubic De Morgan formulas . . . . . . . . . . . 12

5 Almost-quadratic lower bounds against arbitrary basis formulas and branching
programs 17

6 Improved AC0 lower bounds for MCSP 18
6.1 The case of depth d > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 The case of depth 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 MCSP circuit lower bounds from average-case hard functions 22
7.1 The Nisan-Wigderson generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Open problems 25

A Circuit complexity of the Nisan-Zuckerman extractor: Proof of Lemma 23 28

B The IMZ PRG is “almost strongly local” 31

2



1 Introduction

Given the truth table of some Boolean function f and a size parameter θ, the minimum circuit size
problem (MCSP) asks whether f can be computed by a circuit of size at most θ. Understanding
the exact complexity of MCSP is an important open problem in computational complexity theory,
dating back to the 1950s [Tra84].

It is easy to see that MCSP is in NP. A popular conjecture is that MCSP is also NP-hard.
However, despite serious efforts over the years, such a proof is still unknown. Given that it is difficult
to show that MCSP is hard, perhaps the problem is easy? It turns out that this cannot be the
case under some plausible cryptographic assumptions. More specifically, it is known that if one-way
functions exist, then MCSP is not in P [KC00]. As proving an unconditional lower bound for MCSP
seems far beyond the reach of currently known techniques, can we at least prove unconditional lower
bounds for MCSP against some restricted computational models?1

Two of the most studied restricted computational models in complexity theory are constant-depth
circuits (AC0) and De Morgan formulas. For AC0 circuits, the best-known lower bound is about

PARITY: PARITY on N variables requires depth-d AC0 circuits of size 2Ω(N1/(d−1)) [H̊as86]. For
De Morgan formulas, the state-of-the-art lower bound is almost cubic, namely N3−o(1), for some
polynomial-time computable function [H̊as98, Tal14, Tal17a, DM18].

Notably, there are also lower bounds against these models for MCSP. Allender et al. [ABK+06]
showed that MCSP, on functions represented as a truth table of length N , cannot be computed by
polynomial-size constant-depth AC0 circuits. In fact, by a more careful analysis of their argument,
one can get a lower bound of 2N

1/(c·d+O(1))
, for a constant c ≥ 2. However, such a lower bound still

has a worse dependence on the depth compared to the PARITY lower bound. For De Morgan
formulas, Hirahara and Santhanam [HS17] showed that computing MCSP requires De Morgan
formulas of size N2−o(1).

Given these two MCSP lower bounds and the best-known lower bounds against these two
models, it is natural to ask whether we can get MCSP lower bounds against small-depth circuits
and De Morgan formulas that match the state-of-the-art lower bounds against these models. More
specifically, can we show that computing MCSP requires depth-d AC0 circuits of size 2N

1/(d+O(1))
and

De Morgan formulas of size N3−o(1)? Furthermore, can we show lower bounds for MCSP against
some other restricted models that match their state-of-the-art lower bounds? In this paper, we
answer these questions in the affirmative.

1.1 Our results

Our first result is an almost-cubic De Morgan formula lower bound for MCSP.

Theorem 1. Any De Morgan formula computing MCSP on truth tables of length N must have size

at least N3/2O(log2/3N).

We also get almost-quadratic lower bounds against formulas over an arbitrary basis as well
as general branching programs; these almost match the best-known lower bounds against these
models [Nec66].

1A recent line of research on hardness magnification [OS18, OPS18] provides another motivation for proving
relatively weak lower bounds for restricted circuit models against certain “gap variants” of MCSP. Such lower bounds
are shown to imply much stronger (superpolynomial) lower bounds.

3



Theorem 2. Let C be either a formula over any basis or a branching program that computes MCSP

on truth tables of length N . Then C must have size at least N2/2O(
√

logN).

For small-depth circuits, we have the following improved lower bound for MCSP, whose de-
pendence on the depth matches the one in the PARITY lower bound, up to a small additive
constant.

Theorem 3. For every d > 2 and every constant γ > 0, any depth-d AC0 circuit computing MCSP

on truth tables of length N must have size 2Ω(N1/(d+1+γ)).

For the special case of depth-2 circuits, we can have an optimal lower bound.

Theorem 4. Any CNF or DNF computing MCSP on truth tables of length N must have size 2Ω(N).

Also, in this paper, we give a fine-grained analysis of the approach of obtaining MCSP lower
bounds from average-case hardness via the Nisan-Wigderson framework (see Section 7).

1.2 Our techniques

For a class C of N -variate Boolean functions, a pseudorandom generator (PRG) against C is a
deterministic efficiently-computable function G mapping short binary strings (seeds) to longer binary
strings so that every function in C accepts G’s output on a uniformly random seed with about the
same probability as that for an actual uniformly random string.

A key notion in this work is that of a local PRG. We say that a PRG is local if its N -bit output
(viewed as the truth table of some function) has small circuit complexity. More precisely, for any
fixed seed to the PRG, there exists a small circuit such that, given j ∈ [N ] as an input, the circuit
computes the j-th bit of the PRG output, where the complexity of the circuit is measured relative
to its input length, namely logN . Note that our notion of local PRGs does not require that the
PRG in question is explicit; that is, we do not require that a local PRG can be computed by some
uniform algorithm.

Local PRGs in the context of MCSP (and related problems) have been studied in previous
works (see, e.g., [ABK+06, OS17, HS17, Hir18]). In this work, we refine the previous approaches,
and obtain stronger circuit lower bounds by establishing strong locality properties of certain PRG
constructions.2

1.2.1 MCSP lower bounds from local PRGs

Suppose we have a local PRG against some class of circuits C of size s, and we want to show that
MCSP cannot be computed by any size-s circuit in C. Suppose some size-s circuit C in C computes
MCSP. Using the fact that a random function has almost maximum circuit complexity, we have
that C will output false on most of its inputs (by setting the size parameter θ to be a non-trivial
quantity that is asymptotically smaller than 2n/n, where n is the input length of the function). If
we replace the uniformly random inputs with the outputs of the local PRG, then, by the definition

2Note that, as one of our ICALP’19 reviewers pointed out, the notion of a local PRG can be also found in the
context of cryptography [CM01], where a PRG G : {0, 1}n → {0, 1}m is called k-local, for some constant k > 0, if every
output PRG bit G(x)j , for any x ∈ {0, 1}n and j ∈ [m], depends only on k input bits xi1 , . . . , xik , for i1, . . . , ik ∈ [n].
In our work, however, locality refers to the circuit complexity of the PRG at hand and the output bits of our PRGs
may depend on a super-constant number of input bits.
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of PRG, C will still output false with large probability. However, since the PRG is local, all of its
outputs have circuit complexity smaller than the size parameter θ, and hence must be accepted by
C. A contradiction.

To get a strong lower bound, we would like to make the above argument to work for large s.
Note that the local complexity of the PRG, λ(s), is a function on the size of the circuit C, and we
need this local complexity to be “non-trivial” in order to reach a contradiction. Therefore, we want
to choose s so that this local complexity remains asymptotically smaller than 2n/n. As a result, the
final lower bound (i.e., the largest s that we can choose) is determined by the local complexity λ.
So the main question we study in our paper is: What is the smallest local complexity of a PRG
against a given circuit class?

1.2.2 MCSP lower bound against De Morgan formulas

Our formula lower bound for MCSP is obtained by applying the framework described above to a
local PRG against formulas. The state-of-the-art PRG against formulas is given by Impagliazzo,
Meka, and Zuckerman [IMZ19], which we refer to as the IMZ PRG. Their PRG has a seed length of
s1/3+o(1) for size s formulas (note that such a PRG is useful against sub-cubic formulas only). If we
want to utilize the IMZ PRG to get an MCSP lower bound against formulas, we will need to argue
that the IMZ PRG is local.

In fact, in order to get an almost-cubic lower bound, we will need such a PRG to be strongly
local in the sense that any single output bit of the PRG (on any given fixed seed) can be computed
by a circuit of size comparable to its seed length, which is s1/3+o(1). However, by inspecting
the construction, the IMZ PRG does not seem to have such a property, and a straightforward
implementation seems to require a circuit of size at least s2/3 (see Appendix B for more details),
which yields a weaker lower bound for MCSP.

To overcome this issue, we present an alternative PRG useful against sub-cubic formulas which
is strongly local. The construction of this PRG can be viewed as a modification of the IMZ PRG.
At a high level, it is based on the Ajtai-Wigderson construction [AW89], which is a framework for
constructing PRGs against computations that can be simplified under (pseudo)random restrictions.
This framework is then combined with the ideas for reducing (recycling) random bits using an
extractor, by exploiting communication bottlenecks in computations [NZ96]. Our modification,
particularly the utilization of the Ajtai-Wigderson construction, allows us to compute any output
bit of the PRG efficiently by reducing the number of calls to the extractor. Using some crucial
observations on the circuit complexity of certain pseudorandom objects, we get a PRG that is locally
computable by a s1/3+o(1)-size circuit.3

1.2.3 MCSP lower bounds against formulas over an arbitrary basis or branching pro-
grams

The MCSP lower bounds against formulas over an arbitrary basis or branching programs are
obtained similarly to those for De Morgan formulas. The idea is to construct strongly local PRGs
against these models by modifying the PRGs in [IMZ19]. Then, by applying our “MCSP circuit
lower bounds from local PRGs” framework, we get the desired lower bounds.

3It is also possible to use the original IMZ PRG to obtain an almost-cubic formula lower bound for MCSP. We can
show that the IMZ PRG, although not fully strongly local, is “almost strongly local” in the sense that most of its
outputs have very small circuit complexity; see Appendix B.
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1.2.4 MCSP lower bounds against AC0

We use a local PRG against AC0 to get MCSP lower bounds. To get a lower bound matching the
one in Theorem 3, we can use the state-of-the-art PRG against AC0 by Trevisan and Xue [TX13],
which has a seed length of (log s)d+O(1) for size-s depth-d AC0 circuits. By a careful analysis of
the construction of this PRG, we can show that the Trevisan-Xue PRG is strongly local and can
be used to get an MCSP lower bound that is close to the one stated in Theorem 3. However, in
this paper, we will present a more direct proof of such a lower bound by using the pseudorandom
switching lemma for constant-depth circuits, which is due to Trevisan and Xue [TX13] as well, and
is a key ingredient in their PRG.

The idea is to show that for any small-depth circuit of size less than the claimed lower bound,
there is some locally computable restriction that turns the circuit into a constant function, but leaves
many variables unrestricted. However, MCSP cannot be constant under such a restriction, because
depending on the partial assignment to the unrestricted variables, the resulting input function
(which is composed of the restriction and the partial assignment) can be either easy or hard. Such
an approach based on pseudorandom restrictions can also be applied to the special case of depth-2
circuits to get optimal CNF (and DNF) lower bounds for MCSP.

1.3 Remainder of the paper

We give the necessary background in Section 2. In Section 3, we describe our framework of using
local PRGs to obtain lower bounds for MCSP. We prove the almost-cubic De Morgan formula lower
bound for MCSP (Theorem 1) in Section 4, and the almost-quadratic lower bounds against formulas
over an arbitrary basis and branching programs (Theorem 2) in Section 5. The improved AC0 lower
bounds for MCSP (Theorem 3 and Theorem 4) are proved in Section 6. In Section 7, we discuss
the framework of proving MCSP lower bounds from average-case hardness. Finally, we give some
open problems in Section 8.

2 Preliminaries

2.1 Notation

For any computational model, we use the term size to refer to its complexity measure. For example,
if the model is circuits of some fixed depth, then the size is the number of gates in the circuit.

For a positive integer n that is a power of two,4 we use the following notation:

• [n] denotes the set {1, . . . , n}. We will sometimes identify [n] with {0, 1}logn, in a natural way.

• Fn denotes the field with n elements. Again, we will sometimes identify Fn with {0, 1}logn

where the elements in Fn are represented by (log n)-bit strings.

• Un denotes the uniform distribution over {0, 1}n.

• We use Õ(·) to hide polylogarithmic factors. That is, for any f : N → N, we have that
Õ(f(n)) = O(f(n) · polylog(f(n))).

4We may sometimes implicitly assume that some quantity, such as the number of variables, or circuit size, is a
“nice” number (e.g., a power of two). This can always be made true by adding dummy variables or dummy gates,
which may change the respective quantity by a small amount, and all of our results will still hold asymptotically.
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• For a function f : {0, 1}n → {0, 1}, tt(f) ∈ {0, 1}N=2n denotes the truth table of f , and CC(f)
denotes its circuit complexity, that is, the size of the smallest Boolean circuit that computes f .

2.2 Pseudorandomness

Definition 5 (Pseudorandom generators). Let G : {0, 1}r → {0, 1}n be a function, F be a class of
Boolean functions, and 0 < ε < 1. We say that G is a pseudorandom generator of seed length r
that ε-fools F if, for every function f ∈ F , it is the case that∣∣∣∣ E

z∼{0,1}r
[f(G(z))]− E

x∼{0,1}n
[f(x)]

∣∣∣∣ ≤ ε.
A multidimensional distribution is called k-wise independent if any k coordinates of the distri-

bution are uniformly distributed.

Definition 6 (k-wise independence). A distribution X over [m]n is called k-wise independent with
parameter p if, for any 1 ≤ i1 ≤ · · · ≤ ik ≤ n and every b1, . . . , bk ∈ [m], we have

Pr[Xi1 = b1, . . . , Xik = bk] = pk.

If k = 2, then we call this distribution pair-wise independent with parameter p. If p = 1/m, then
we just refer to this distribution as k-wise independent.

We will need the following concentration bound for k-wise independent distributions, which is
an application of Cantelli’s inequality.

Proposition 7. For any 0 < p < 1, let X1, . . . , Xn be pair-wise independent variables over {0, 1}
such that Pr[Xi = 1] = p for each i ∈ [n]. Then, it is the case that

Pr[X ≤ pn/2] ≤ 4

pn
.

The following simple fact will be convenient for us.

Lemma 8. Let X and Y be two random variables that take values in {0, 1} and E be some event. If

• |E[X | E ]−E[Y | E ]| ≤ ε1 and

• Pr[¬E ] ≤ ε2,

then |E[X]−E[Y ]| ≤ ε1 + ε2.

Proof. We have

E[X] = E[X | E ] ·Pr[E ] + E[X | ¬E ] ·Pr[¬E ],

and

E[Y ] = E[Y | E ] ·Pr[E ] + E[Y | ¬E ] ·Pr[¬E ].

Then,

E[X]−E[Y ] = (E[X | E ]−E[Y | E ]) ·Pr[E ] + (E[X | ¬E ]−E[Y | ¬E ]) ·Pr[¬E ]

≤ |E[X | E ]−E[Y | E ]|+ Pr[¬E ]

≤ ε1 + ε2.

The fact E[Y ]−E[X] ≤ ε1 + ε2 can be similarly shown.
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2.3 Random restrictions

A restriction for a n-variate Boolean function f , usually denoted as ρ ∈ {0, 1, ∗}n, specifies a way
of fixing the values of some subset of variables for f . That is, if ρi is ∗, we leave the i-th variable
unrestricted and otherwise fix its value to be ρi ∈ {0, 1}. We denote by fρ the restricted function
after the variables are restricted according to ρ, and denote by ρ−1(∗) the set of unrestricted
variables. A random restriction is then a distribution over restrictions. We will often view sampling
a random restriction as a two-step process: The first step is selecting (in some random manner) a
subset of unrestricted variables (also called the “star” or “∗” variables) and the second step is fixing
(in some random manner) the values of all the other variables. Then, a random restriction over
n variables can also be specified by a pair (σ, β) ∈ {0, 1}n × {0, 1}n, where σ (as a characteristic
string) specifies the set of unrestricted variables, and β specifies the values for fixing the restricted
variables.

We say that a random restriction (or random selection) is p-regular if each variable is left
unrestricted with probability p. One way to generate a p-regular random restriction is to leave
each variable, independently, unrestricted with probability p, and otherwise assign to it a 0 or a
1, uniformly at random. Such a random restriction is called a (truly) p-random restriction. Note

that to sample such a restriction, we can first pick a string in {0, 1}n·log(1/p) ∼= [1/p]n to specify the
selection of the unrestricted variables, where a coordinate is unrestricted if and only if all of its
corresponding log(1/p) bits are 0, and then a string in {0, 1}n to specify the values assigned to each
of the restricted variables. So sampling a restriction in this way requires n · log(1/p) + n random
bits. We can also generate a restriction in a pseudorandom manner, which may use fewer random
bits. For example, one way to do this is to use a limited-independence distribution, so that each
variable is set to be unrestricted with probability p, and any k of the variables are independent.
Note that such a “pseudorandom selection” can be obtained using a k-wise independent distribution
on [1/p]n. Also, we can let each variable be assigned a 0 or a 1 uniformly at random in a way such
that any k of the variables are independent; this again can be done using a k-wise independent
distribution on {0, 1}n.

Finally, note that we can also get a restriction by combining a sequence of restrictions ρ1, . . . , ρt,
in a natural way, namely by applying the sub-restrictions one by one. In this case, we write the
final restriction as ρ1 ◦ · · · ◦ ρt.

2.4 Simple facts about Boolean circuits

We refer to a textbook as [Juk12] for a general introduction to Boolean circuits.

Proposition 9. A Boolean circuit of size s can be specified using O(s log s) bits. Hence there are
at most 2O(s log s) = sO(s) distinct circuits of size at most s.

Theorem 10 ([Sha49]). The fraction of functions on n variables that have a circuit of size less
than 2n/(3n) is o(1).

Lemma 11. For any integer t > 0, there exists a circuit C of size Õ(t) such that, given any string
x ∈ {0, 1}t, the circuit does the following:

• If x = 0t, then C outputs (0, 0log t).

• If x 6= 0t, then C outputs (1, q), where q ∈ {0, 1}log t is the index of the first bit in x that is
not 0.
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Proof. Define z(0) =
(
0, 0log t

)
and z(i), for any i = 1, . . . , t, recursively as follows:

z(i) =


z(i−1), if (z(i−1))1 = 1,

z(i−1), if (z(i−1))1 = 0 and xi = 0, and

(1, i), if (z(i−1))1 = 0 and xi = 1.

Note that each z(i) can be computed in polylog(t) size given z(i−1). Using a circuit of size Õ(t) we
can compute z(t), which is our output.

The following circuit upper bound for the addressing (storage access) function is well-known
(see, e.g., [Weg87]); we include a proof for completeness.

Lemma 12. For any integers t,m > 0, there exists a circuit of size O(t ·m) such that, given any
string y = (y1, . . . , yt), where yi ∈ {0, 1}m, for each i, and an index i ∈ {0, 1}log t, the circuit outputs
yi.

Proof. We first look at the first bit (i.e., the least significant bit in binary) of i and output either
the first half of y (i.e., y1, . . . , yt/2), if the first bit is 0, or the second half (i.e., y(t/2)+1, . . . , yt), if

the first bit is 1; denote this output as y(1). This can be done by a circuit of size c · t ·m, for some
constant c > 0. Then, we look at the second bit of i and output either the first half or the second
half of y(1), denoted as y(2). This can be done by a circuit of size c · t ·m/2. We repeat the above
process log t times, in total, until we get y(log t), which is yi. The circuit complexity of this procedure
is

log t∑
k=1

(c · t ·m)/2k−1 = O(t ·m).

3 The “MCSP circuit lower bounds from local PRGs” framework

We first describe how to use local PRGs to obtain circuit lower bounds for MCSP.

Definition 13 (Local PRGs). Let λ : N×N→ N be a size function. For any Boolean computational

model and size s > 0, we say that a function G : {0, 1}r=r(N,s) → {0, 1}N is a (N, s, λ(N, s))-local
PRG against the model if

• G 1/3-fools every device f on N variables of size s in the model; that is,∣∣∣∣∣ E
z∼{0,1}r

[f(G(z))]− E
x∼{0,1}N

[f(x)]

∣∣∣∣∣ ≤ 1/3,

and

• for any seed z ∈ {0, 1}r, the function gz : {0, 1}logN → {0, 1} defined as gz(j) = G(z)j can be
computed by a general circuit of size at most λ(N, s).

Remark 14. Definition 13 is a notable departure from earlier work on PRGs, in that there is no
requirement that a local PRG is easy to compute. Instead, the utility of the PRG is derived from the
requirement that each of the functions gz is easy to compute.
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Theorem 15. There exists a constant c > 0 such that the following holds. For any computational
model, let s be such that MCSP on truth tables of length N can be computed by a device of size s
in the model. If there exists some (N, s, λ(N, s))-local PRG, of any seed-length, against the model,
then λ(N, s) ≥ N

c logN .

Proof. Let C be a device in the computational model such that C computes MCSP on truth tables
of length N . Suppose C has size s, and let G be a (N, s, λ(N, s))-local PRG against C with some
seed length r.

For the sake of contradiction, suppose that

λ(N, s) <
N

c logN
.

On the one hand, since most functions require circuits of size greater than N
c logN (Theorem 10) and

C computes MCSP, we have

µ = Pr
tt(f)∼{0,1}N

[C(tt(f) , λ(N, s)) = 0] ≥ 1/2.

Also, since G fools C, we have

Pr
z∼{0,1}r

[C(G(z), λ(N, s)) = 0] ≥ µ− 1/3 ≥ 1/6.

On the other hand, because G is (N, s, λ(N, s))-local, we must have C(G(z), λ(N, s)) = 1, for every
z. A contradiction.

It is easy to see that a local hitting set generator (HSG) is sufficient for the above argument to
work. HSGs are a weak version of PRGs with the following property: For every function f in the
class, if f accepts many of its inputs, then a HSG outputs such an input for at least one of its seeds.

4 Almost-cubic De Morgan formula lower bounds for MCSP

In this section, we present our almost-cubic De Morgan formula lower bound for MCSP. By saying
“formula” within this section, we refer to formulas over the De Morgan basis (AND, OR, and NOT).
By the size of a formula, we mean its usual leaf complexity, i.e., the number of leaves in the tree
representation of the formula.

Theorem 16 (Theorem 1, restated). Any De Morgan formula computing MCSP on truth tables of

length N must have size at least N3/2O(log2/3N).

We will construct a strongly local PRG useful against sub-cubic formulas. That is, given as
input an index j, the j-th bit of the PRG can be computed by a circuit of size that is comparable
to its seed length, which in our case is around s1/3 for size s formulas.

Lemma 17. For any s ≥ N , there exists a
(
N, s, s1/3 · 2O(log2/3 s)

)
-local PRG against De Morgan

formulas.

Given the local PRG in Lemma 17, we can combine it with our Theorem 15 to obtain a formula
lower bound for MCSP.

10



Proof of Theorem 16. Let s ≤ N3 be such that MCSP on truth tables of length N can be computed
by some formula of size s. By Theorem 15 and Lemma 17, we have

s1/3 · 2O(log2/3 s) ≥ N/(c logN);

then, s ≥ N3/
(

2O(log2/3N)c3 log3N
)

.

The rest of this section is devoted to proving Lemma 17.

4.1 Almost-linear-size k-independent generators

The PRG in Lemma 17 will use k-wise independent distributions. Recall that a multidimensional
distribution is called k-wise independent if any k coordinates of the distribution are uniformly
distributed (see Definition 6).

A k-independent generator is a function from binary strings to binary strings that takes as input
a random seed and stretches that seed to a string that follows a k-wise independent distribution.
We will need efficient and local constructions for k-independent generators as well as some other
pseudorandom objects. These objects can be constructed using finite fields; we need the following
result, which says that finite field arithmetic can be performed by almost-linear-size circuits.

Fact 18 (See, e.g., [vzGG13, GS13]). For any integer ` > 0, let the elements in F2` be represented
by `-bit strings. Then, addition over F2` can be performed by a circuit of size O(`) and multiplication
over F2` can be performed by a circuit of size Õ(`).

We now describe an efficient construction for k-independent generators, using the fact that finite
field arithmetic can be done using almost linear-size circuits.

Lemma 19. For any integer k > 0, there exists a k-independent generator G : {0, 1}r → [m]n, with
r = k ·max{log n, logm}, such that the following holds. There exists a circuit of size

k ·max{Õ(log n), Õ(logm)}

such that, given j ∈ {0, 1}logn and a seed z ∈ {0, 1}r, the circuit computes the j-th coordinate of
G(z).

Proof. Let n′ = max{n,m} and suppose n′ = 2`. We view the elements in Fn′ as `-bit strings.
Consider the following function g : Fn′ × Fkn′ → Fn′ :

g(i, z0, . . . , zk−1) = z0 + z1 · i+ · · ·+ zk−1 · ik−1.

It is known (see [Vad12, Proposition 3.33]) that the function G : Fkn′ → Fn′n′ given as

G(z0, . . . , zk−1) =
(
g(1, z0, . . . , zk−1), . . . , g(n′, z0, . . . , zk−1)

)
,

is a k-independent generator.
Using Fact 18 it is easy to implement a circuit of size k · Õ(`) that computes g(j, z). Note

that to get an output in [m] we can simply output the first logm bits of G(z)j , since the field has
characteristic 2.

11



4.2 Almost-linear-size extractors

Our PRG will make use of randomness extractors. Here, we describe an extractor that is computable
by a circuit of size that is almost linear in the length of its input. We start by reviewing some basic
definitions regarding extractors.

Definition 20 (ε-closeness and statistical distance). Let 0 ≤ ε ≤ 1. We say two distributions X
and Y (over some universe D) are ε-close if their statistical distance, defined as

max
T :D→{0,1}

|Pr[T (X) = 1]−Pr[T (Y ) = 1]| ,

is at most ε.

Definition 21 (Min-entropy). Let X be a random variable. The min-entropy of X, denoted by
H∞(X), is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the range of X. If
X is a distribution over {0, 1}ℵ with H∞(X) ≥ k, then X is called a (ℵ, k)-source.

Definition 22 (Extractors). A function E : {0, 1}ℵ × {0, 1}d → {0, 1}m is an (k, ε)-extractor if,
for any (ℵ, k)-source X, the distribution E(X,Ud) is ε-close to Um.

We now state the extractor, which for a high min-entropy source extracts a constant fraction of
the min-entropy, using seeds of polylogarithimic length. The construction and circuit complexity of
this extractor are presented in Appendix A.

Lemma 23 (Almost-linear-size extractors, following [NZ96]). There exists some randomness extrac-
tor E : {0, 1}ℵ×{0, 1}d → {0, 1}m that is an (ℵ/2, ε)-extractor with m = Ω(ℵ) and d = polylog(ℵ/ε).
Moreover, E can be computed by a circuit of size ℵ · polylog(ℵ/ε).

4.3 Strongly local PRG useful against sub-cubic De Morgan formulas

For a formula F , let L(F ) denote the size (which is measured by the number of leaves) of F . We
need the following pseudorandom shrinkage lemma for De Morgan formulas, which says that there
exists a p-regular restriction, where the unrestricted variables are selected pseudorandomly and the
restricted variables are fixed truly-randomly, such that with high probability the size of the restricted
formula will “shrink” by a factor of p2.

Lemma 24 (Pseudorandom shrinkage lemma, [IMZ19, Lemma 4.8]5). There exists a constant
c0 > 0 such that the following holds. For any constant c > c0, any s ≥ N , p ≥ s−1/2, and any De
Morgan formula F on N variables of size s, there exists a p-regular pseudorandom selection D over

N variables that is samplable using r = 2O(log2/3 s) random bits such that

Pr
σ∼D,x∼{0,1}N

[
L
(
F(σ,x)

)
≥ 23·c·log2/3 s · p2 · s

]
≤ s−c.

Moreover, there exists a circuit of size 2O(log2/3 s) such that, given j ∈ {0, 1}logN and a seed
z ∈ {0, 1}r, the circuit computes the j-th coordinate of D(z).

5The pseudorandom shrinkage lemma in [IMZ19] is not stated in this form, but rather selects the unrestricted
variables and fixes the restricted variables both pseudorandomly (based on limited independence). This immediately
implies the above lemma, where the restricted variables are set independently (and hence also k-wise independently,
for any k). Further, the last statement follows from the fact that the restricted variables are chosen by a k-wise
independent distribution, which can be computed locally; see Lemma 19.
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We are now ready to show our PRG in Lemma 17.

Proof of Lemma 17. The construction is as follows: We first sample a p-regular pseudorandom
selection from Lemma 24. Then, we fill the star coordinates, specified by the pseudorandom selection,
in the output string with the output of some extractor which takes a min-entropy source sample
and a short seed. (More precisely, the star coordinates are filled with the output of some limited-
independence generator that takes the output of an extractor as a seed.) We then sample another
pseudorandom selection, and fill the star coordinates specified by this pseudorandom selection but
this time only for those that have not been filled in previous steps, again with the output of the
same extractor using the same min-entropy source sample but a different short seed. We continue
this way until all the coordinates are filled.

More formally, our PRG uses the following parameters:6

• p = 1/s1/3, the expected fraction of unrestricted variables in each of the pseudorandom
selections;

• ε = 1/poly(N) and ε0 = ε/(10t), which specify the error of the PRG;

• t = ln(4N/ε)/p = s1/3 ·O (logN), the number of steps needed so that all the coordinates will
be filled with probability 1− ε/4;

• s0 = p2 · s · 2O(log2/3 s) = s1/3 · 2O(log2/3 s), the size of the formula after being simplified by a
pseudorandom restriction;

• k ≥ s0 = s1/3 · 2O(log2/3 s), the amount of independence needed to fool the simplified formula,
and rk = k · logN the seed length for the k-independent generator;

• ℵ, the length of the min-entropy source for the extractor, which is such that ℵ ≥ 2·log(1/ε0)+c·
s0 · log s0, where c > 0 is some constant, and that Ω(ℵ) ≥ rk. We can take ℵ = s1/3 ·2O(log2/3 s);

• d = polylog(ℵ/ε0) = polylog(N), the seed length of the extractor;

• ` = 2O(log2/3 s), the number of random bits for sampling a pseudorandom selection.

Construction. The PRG takes a seed (X,Y1, . . . , Yt, γ1, . . . , γt) ∈ {0, 1}r, where

• X ∈ {0, 1}ℵ is the min-entropy source sample of an extractor,

• Yi ∈ {0, 1}polylog(N), for each i ∈ [t], is the seed of an extractor, and

• γi ∈ {0, 1}`, for each i ∈ [t], is the seed for sampling a pseudorandom selection.

The construction of the PRG proceeds in the following two stages.

6In fact, there are mainly two types of parameters here. Those that are close to s1/3, which are 1/p, t, s0, k,N , and
those that are close to No(1), which are d and `.
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Stage 1. Compute a sequence of t p-regular pseudorandom selections

σ1, . . . , σt,

using Lemma 24, with the seeds γ1, . . . , γt. Below, we denote the star coordinates in σi by σ−1
i (∗).

Let S1, . . . , St ⊆ [N ] be t disjoint sets defined by

Si = σ−1
i (∗) \ (S1 ∪ · · · ∪ Si−1).

Stage 2. Define Z1, . . . , Zt ∈ {0, 1}N by

Zi = Gk(E(X,Yi)),

where E : {0, 1}ℵ × {0, 1}d → {0, 1}Ω(ℵ) is an (ℵ/2, ε0)-extractor and Gk : {0, 1}rk → {0, 1}N is a
k-independent generator. The final output of our PRG is the binary string that has the values Zi|Si
in the positions indexed by Si, for all i ∈ [t], where Zi|Si denotes the bit values of Zi projected to
the set Si. (We fix those positions that are not in any of the Si’s to be 0.) Stage 2 of the PRG
construction is depicted in Figure 1.

∨
S1

Z1

St

Zt

Zt ∧ 1StZ1 ∧ 1S1

· · ·X
Y1 Yt

E E

GkGk

G =

. . .

. . .

. . .

Figure 1: Construction of the PRG in Lemma 17, Stage 2. For each i ∈ [t], 1Si ∈ {0, 1}
N denotes

the characteristic Boolean vector of the set Si, where Si ⊆ [N ] is the set of star coordinates, in
the i-th pseudorandom selection, that did not appear in the preceding sets S1, . . . , Si−1. Also, ∧
denotes a coordinate-wise AND operation (i.e., coordinate-wise multiplication of Boolean vectors)
and

∨
is a coordinate-wise OR operation.
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Correctness. Next, we show that the above PRG ε-fools N -variate formulas of size s. First, note
that, by our choice of t, with probability 1− ε/4, S = S1 ∪ · · · ∪ St covers all N coordinates. To
proceed, we will use a hybrid argument. Let G denote the distribution given by the PRG described
above. Let U be the uniform distribution. Note that if in the above construction we replace Zi, for
all i ∈ [t], with U , then we would get a uniform distribution. Now we can start from there and we
will gradually replace U with the Zi’s step-by-step for a total of t steps. We will argue that after
each replacement step, the expected value of the function does not change by much. Let Bi be the
distribution where we have replaced U with Zi in the first i steps and S = [N ]. That is,

Bi =
(
Z1|S1

, . . . , Zi|Si , U |Si+1
, . . . , U |St

)
=
(
Z1|S1

, . . . , Zi|Si , U | Si+1∪···∪St

)
and we want to show that |E[f(U)]−E[f(G)]| = |E[f(B0)]−E[f(Bt)]| ≤ ε. Let

Ai =
(
Z1|S1

, . . . , Zi|Si , U |Si+1
, . . . , U |St , U |[N ]\S

)
=
(
Z1|S1

, . . . , Zi|Si , U | Si+1∪···∪St∪([N ]\S)

)
be the version of the distribution Bi in the case where S ( [N ]. Let C denote the event S = [N ]; by
Lemma 8, for all i, we get that

|E[f(Ai)]−E[f(Bi)]| ≤ |E[f(Ai) | C]−E[f(Bi) | C]|+ Pr[¬C] ≤ 0 + ε/4 = ε/4.

Therefore, it would suffice to establish |E[f(A0)]−E[f(At)]| ≤ ε/2 since this inequality would imply
the desired |E[f(B0)]−E[f(Bt)]| ≤ ε.

Note that using the distributions would Bi require that S = [N ] and this could result in
dependencies among the sets Si. This is the reason for introducing the distributions Ai; we shall
later make use of the fact that the selections σi, that come up in the definitions of the sets Si, are
independent.

Now, for the sake of contradiction, suppose there exists a size-s formula f on N variables such
that

|E[f(A0)]−E[f(At)]| > ε/2.

By the triangle inequality, there exists an 0 ≤ i < t such that

|E[f(Ai)]−E[f(Ai+1)]| > ε/(2t). (1)

Let us say that both the expectations in Equation (1) are over

σ1, . . . , σi+1, Y1, . . . , Yi+1, X, U,

and we remove the absolute value without loss of generality. Then, we have

E
σ1,...,σi,
Y1,...,Yi,

X

[
E

σi+1,Yi+1,U
[f(Ai)]− E

σi+1,Yi+1,U
[f(Ai+1)]

]
> ε/(2t). (2)

Denote Wi = (σ1, . . . , σi, Y1, . . . , Yi, X), and let f ′ be the random function (where the randomness
is over Wi) defined as

f ′ = f(Z1|S1 , . . . , Zi|Si , · ).
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That is, f ′ is the restricted function after the first i steps. Then, the left hand side of Equation (2)
becomes

E
Wi

[
E

σi+1,U

[
f ′(U |Si+1 , U |Si+2∪···∪St,([N ]\S))

]
− E
σi+1,Yi+1,U

[
f ′(Zi+1|Si+1 , U |Si+2∪···∪St∪([N ]\S))

] ]
. (3)

Note that, at this point, we can view ρi+1 = (σi+1, U) as a pseudorandom restriction (in the sense
of Lemma 24) applied to f ′. Next, let f ′′ be the random function defined as the restricted function
of f ′ under ρi+1 (note that the randomness is over Wi, and also the pseudorandom restriction ρi+1).
Now Equation (3) becomes

E
Wi,ρi+1

[
E
U

[
f ′′(U)

]
− E
Yi+1

[
f ′′(Zi+1)

]]
. (4)

Note that in the above, we abuse the notation and use U and Zi+1 to denote U |Si+1 and Zi+1|Si+1 ,
respectively.

Next we want to show that the difference between the two expectations in Equation (4) is at
most 3ε0 = 3ε/ (10t) ≤ ε/ (2t), which would give a contradiction, by Equation (2). The intuition is
the following. On the one hand, f ′′ is obtained by a pseudorandom restriction ρi+1, and so, with
high probability, it has size at most s0. On the other hand, Zi+1 is obtained using an extractor that
is supposed to extract enough random bits for an s0-independent generator.

The issue, however, is that f ′′ depends on X, the source sample of the extractor. Therefore, f ′′

may contain information about X, so that X is not truly random anymore. Nonetheless, being a
formula of size at most s0, f ′′ cannot contain too much information, and so cannot take too much
entropy away from X. We make this argument more formal next.

Let us define the set of good functions for f ′′, namely

F =

{
g | L(g) ≤ s0 and Pr

Wi,ρi+1

[f ′′ = g] ≥ ε0/s
cs0
0

}
,

where c is some constant. Let E denote the event f ′′ ∈ F . We first show the following.

Claim 25. It is the case that Pr[¬E ] ≤ 2ε0.

Proof of Claim 25. We have

Pr[¬E ] = Pr[(f ′′ /∈ F) ∧ (L(f ′′) > s0)] + Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)]

≤ Pr[(L(f ′′) > s0)] + Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)].

Note that, by the pseudorandom shrinkage lemma (Lemma 24), we have

Pr[L(f ′′) > s0] ≤ ε0;

in fact, our choices of s0 and ε0 were informed by our intention to make the above inequality hold.

Also note that under the condition that L(f ′′) ≤ s0, there can be at most s
O(s0)
0 choices for f ′′, since

a formula of size s0 can be specified using O(s0 log s0) bits (Proposition 9). Therefore,

Pr
[
(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)

]
≤ sO(s0)

0 · ε0/s
cs0
0 ≤ ε0.
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Let us now analyze Equation (4) while conditioning on the event E . We show the following.

Claim 26. It is the case that E [f ′′(U) | E ]−E [f ′′(Zi+1) | E ] ≤ ε0.

Proof of Claim 26. First note that conditioning on E , X still has a large min-entropy. More precisely,
for every g ∈ F it is the case that

H∞
(
X | f ′′ = g

)
≥ ℵ/2.

This is because, for every x, we have

Pr[X = x | f ′′ = g] ≤ Pr[X = x]

Pr[f ′′ = g]
≤ 2−ℵ

ε0/s
c·s0
0

= 2−(ℵ−log(1/ε0)−c·s0·log s0) ≤ 2−ℵ/2.

Then, by the definition of the extractor, we have

E
[
f ′′(Gk(U)) | E

]
−E

[
f ′′(Zi+1) | E

]
≤ ε0.

Finally, note that
E
[
f ′′(Gk(U)) | E

]
= E

[
f ′′(U) | E

]
,

since s0-wise independent distributions fool size-s0 formulas.

Combining Claim 25, Claim 26, and Lemma 8, we get that the quantity in Equation (4) is at
most 3ε0, which leads to a contradiction. This completes the proof of the correctness.

Locality. To see that the j-th bit of the PRG can be computed using a circuit of size s1/3·2O(log2/3 s),
we observe the following equivalent construction:

1. Compute the j-th bits of the t pseudorandom selections (σ1)j , . . . , (σt)j .

2. Retrieve Yq, where q is the smallest integer such that (σq)j is a star.

3. Compute (Zq)j = Gk(E(X,Yq))j as the j-th bit of the PRG.

Note that Step 1 can be done using a circuit of size t · 2O(log2/3 s) = s1/3 · 2O(log2/3 s), by the
pseudorandom shrinkage lemma (Lemma 24). Also, Step 2 can be done by first computing q from
the sequence ((σi)j)i∈[t] using a circuit of size Õ(t) (Lemma 11), and then outputting Yq from (Yi)i∈[t]

using a circuit of size t ·polylog(N) (Lemma 12). Finally, Step 3 can be done by a circuit of size Õ(ℵ)
using the efficient extractor (Lemma 23) and the limited-independence generator (Lemma 19).

5 Almost-quadratic lower bounds against arbitrary basis formulas
and branching programs

Here, we prove MCSP lower bounds against formulas, over an arbitrary basis, and branching
programs. These lower bounds are obtained similarly to those for De Morgan formulas in the
previous section. The idea is to construct strongly local PRGs against these models by modifying
the PRGs in [IMZ19].

The following pseudorandom shrinkage lemma for formulas over an arbitrary basis as well as
branching programs is an analogue of Lemma 24.
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Lemma 27 ([IMZ19, Lemma 4.2 and Lemma 5.3]). There exists a constant c0 > 0 such that the
following holds. For any constant c > c0 and any s ≥ N , let p = s−1/2 and F be a formula over any
basis (or a branching program) on N variables of size s; then, there exists a p-regular pseudorandom
selection D over N variables that is samplable using r = polylog(N) random bits such that

Pr
σ∼D,x∼{0,1}N

[
L
(
F(σ,x)

)
≥ 23·

√
c·log s · p · s

]
≤ 2 · s−c.

Moreover, there exists a circuit of size 2O(log2/3 s) such that, given j ∈ {0, 1}logN and a seed
z ∈ {0, 1}r, the circuit computes the j-th bit of D(z).

Using the above pseudorandom shrinkage lemma and an argument as in the proof of the strongly
local PRG against De Morgan formulas (Lemma 17), we get the following local PRGs.

Lemma 28. For any s ≥ n, there exists a
(
N, s, s1/2 · 2O(

√
log s)

)
-local PRG against size-s formulas

over an arbitrary basis (or branching programs).

The MCSP lower bound in Theorem 2 follows from Lemma 28 and Theorem 15.

6 Improved AC0 lower bounds for MCSP

In this section, we show improved lower bounds for MCSP against constant-depth circuits.

6.1 The case of depth d > 2

We first show an improved lower bound against depth-d circuits that almost matches the lower
bound for PARITY.

Theorem 29 (Theorem 3, restated). For every d > 2 and every constant γ > 0, any depth-d AC0

circuit computing MCSP on truth tables of length N must have size 2Ω(N1/(d+1+γ)).

The above result is proved using the following structural property of small-depth circuits, which
says that, for any such circuit, there exists some locally computable restriction that simplifies the
circuits to a constant while leaving many variables unrestricted.

Lemma 30. For any size-s depth-d circuit C, there exists a restriction ρ ∈ {0, 1, ∗}N such that

• Cρ is a constant function,

•
∣∣ρ−1(∗)

∣∣ ≥ N
O(log s)d−2 − log s, and

• there exists a circuit of size d · log(N) · Õ
(
log3 s

)
such that, given j ∈ {0, 1}logN , the circuit

computes the j-th coordinate of ρ.

We now prove Theorem 29 using Lemma 30.
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Proof of Theorem 29. Let C be a depth-d AC0 circuit on {0, 1}N ×{0, 1}logN such that C computes
MCSP on truth tables of length N , and let s be the size of C.

For a size parameter λ = d · log(N) · Õ
(
log3 s

)
, let C ′ = C(·, λ). Let ρ be a restriction from

Lemma 30 for C ′. By Lemma 30, we have that C ′ρ is a constant function. First, note that

C ′ρ

(
0|ρ
−1(∗)|

)
= 1.

To see this, note that

C ′ρ

(
0|ρ
−1(∗)|

)
= C (tt(f) , λ) ,

where C computes MCSP and f : {0, 1}logN → {0, 1} is the following:

f(j) =

{
0, if ρj = 0 or ρj = ∗,
1, if ρj = 1.

By Item 3 of Lemma 30, such a function f can be computed by a λ-size circuit. On the other hand,
there can be 2|ρ

−1(∗)| different functions corresponding to the different partial assignments to the
unrestricted variables. Since there are at most 2O(λ log λ) different circuits of size at most λ, in order
for C ′ρ to be constant and equal to 1, we must have

2O(λ log λ) ≥ 2|ρ
−1(∗)| = 2

N

O(log s)d−2−log s
,

which, by a simple calculation, implies s = 2Ω(N1/(d+1+γ)), for any constant γ > 0.

The proof of Lemma 30 uses the pseudorandom switching lemma due to Trevisan and Xue [TX13],
which we revisit below. The (pseudorandom) switching lemma says that a depth-2 circuit is likely
to be simplified after being hit by a (pseudo)random restriction.

Below, when we refer to the size of a DNF or CNF we mean the number of its terms or clauses,
respectively.

Lemma 31 (Pseudorandom switching lemma, [TX13, Lemma 7]). For any integers t, w > 0, s ≥ N ,
and any 0 < p, ε0 < 1, let F be an N -variate w-CNF or w-DNF of size s, and let D be a distribution
over {0, 1}N ·log(1/p) × {0, 1}N that ε0-fools

(
s0 = s · 2w·(log(1/p)+1)

)
-clause CNFs, then

Pr
ρ∼D

[Fρ does not have a depth-t decision tree] ≤ 2t+w+1 · (5pw)w + ε0 · 2(t+1)(2w+log s).

Lemma 32 (Following [TX13, Theorem 11]). For any integers d, t > 0, s ≥ N , and any

(480/N)1/(d−2) < p < 1 and 0 < ε0 < 1, there exists a distribution D over {0, 1}N ·log(1/p) × {0, 1}N
for sampling a pseudorandom restriction such that

• for any size-s depth-d circuit C on N variables, we have that

Pr
ρ∼D

[
Cρ is not a t-DNF or t-CNF

]
≤ s ·

(
22t+1 · (10p log s)t + ε0 · 2(t+1)(2t+log s)

)
,

• with probability at least 2/3 the number of unrestricted variables is pd−2

80 ·N , and
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• there exists a circuit of size d · k · Õ(logN) such that, given j ∈ {0, 1}logN and a seed

z ∈ {0, 1}d·k·O(logN), the circuit computes the j-th coordinate of ρ (as an element in {0, 1, ∗}),
where

k = O
(
(log(s) + t · log(1/p))2 + (log(s) + t · log(1/p)) · log(1/ε0)

)
.

Proof (sketch). The proof is similar to that of Theorem 11 in [TX13]. The idea is to apply the
pseudorandom switching lemma (Lemma 31) repeatedly. Each time, we sample a pseudorandom
restriction using some distribution that ε0-fools CNFs of size s0 = s · 2w·(log(1/p)+1), for w = t. By
Lemma 31, each time, with high probability, the two bottom layers can be computed by depth-t
decision trees, so we can switch them to t-DNFs or t-CNFs, and hence reduce the depth of the circuit
by one as we merge them with the layer above.

One difference here from the argument in [TX13] is that we only apply the pseudorandom
switching lemma d− 1 times, instead of d times, since we only need the final restricted circuit to
be a t-DNF or t-CNF (rather than a depth-t decision tree as in the original statement of [TX13],
which requires an additional application of the pseudorandom switching lemma). Note that we use
parameter p = 1/40 for the first iteration. Another difference is that, to sample a pseudorandom
restriction, we use a k-wise independent distribution (say over [1/p]2N ), instead of using the PRG
against depth-2 circuits in [DETT10], where

k = O (log(s0/ε0) · log s0) = O
(
(log(s) + t · log(1/p))2 + (log(s) + t · log(1/p)) · log(1/ε0)

)
,

and we use the fact that such a k-wise independent distribution ε0-fools s0-clause CNFs [Tal17b,
Theorem 22].7

Note that the expected number of unrestricted variables is pd−2

40 ·N . Then Item 2 follows from
the fact that the random restriction is pair-wise independent and Proposition 7.

Finally, it is easy to get Item 3 using Lemma 19.

We are now ready to show Lemma 30.

Proof of Lemma 30. By Lemma 32, using the parameters t = O(log s), p = 1/O(log s), and ε0 =

1/2O(log2 s), we get a restriction ρ0 such that the circuit restricted by ρ0 is a width-O(log s) DNF or
CNF, with probability at least 1− 1/poly(N). Note that, by Item 2 of Lemma 32, ρ0 leaves at least

N
O(log s)d−2 variables unrestricted, with constant probability. Therefore, by a union bound, with some

constant probability, we get a restriction ρ0 that both simplifies the circuit to be a width-(log s) DNF
or CNF and that leaves N

O(log s)d−2 variables unrestricted. Note that once we have such a restriction,

we can make the restricted circuit constant by further fixing at most log s variables; denote this
restriction by ρ1. The final restriction is ρ = ρ0 ◦ ρ1.

We now show the last item. Note that our final restriction consists of two parts, ρ0 and ρ1,
where ρ0 is a restriction from Lemma 32 and ρ1 is a restriction that fixes log s variables. To compute
the final restriction, given an index j ∈ {0, 1}logN , we can first check if the j-th variable is fixed by
ρ1 and output the fixing value if it is the case. This can be done by hard-wiring the log s variables
that are fixed by ρ1 and their corresponding fixing values. It is easy to see that the above can be
done using a circuit of size at most O(log s · logN). Otherwise, we can output the j-th coordinate
of ρ0, which can be done with a circuit of size d · log(N) · Õ

(
log3 s

)
, by Item 3 of Lemma 32.

7The PRG in [DETT10] is based on a small-biased distribution. While it has smaller seed length, compared to a
k-wise independent distribution, it does not seem to offer any advantage in terms of the local circuit complexity of
computing the PRG.
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6.2 The case of depth 2

Here, we show that computing MCSP requires depth-2 circuits of almost maximum size.8

Theorem 33 (Theorem 4, restated). Any CNF or DNF computing MCSP on truth tables of length
N must have size 2Ω(N).

To prove Theorem 33, we will utilize the following lemma and corollary.

Lemma 34. Let 0 < δ < 1. Any N -variate CNF or DNF of width s ≤ 2δN can be fixed to a constant

by applying a restriction that sets O
(√

δN
)

variables.

Proof. We will show the lemma for the case of DNFs. The proof can be easily adapted to the
case of CNFs. Fix a constant A := 1/

√
δ. We choose the restriction in question in two phases. In

Phase 1, we show that we can set at most O
(√

δN
)

variables to get the width of the DNF down to

A log s =
√
δN . In Phase 2, we can easily set any term of the remaining DNF to fix the function.

Since Phase 2 is trivial, let us henceforth focus on Phase 1.
To this end, imagine that we choose a uniformly random input variable xi (for some i) and set

it to a random value. If T is any term in the DNF of size greater than A log s, then T is set to 0
with probability at least

A log s

2N
.

Repeating this process t := 2
√
δN times, we see that the probability that T survives is at most(

1− A log s

2N

)t
=

(
1− log s

2
√
δN

)2
√
δN

≤ exp(− log s) <
1

s
.

By a union bound over the (at most) s terms of the DNF in question, there is a restriction ρ that

restricts O
(√

δN
)

variables such that ρ sets all the terms of width greater than A log s to 0. This

completes Phase 1.

Corollary 35. For any size-s depth-2 circuit C, there exists a restriction ρ ∈ {0, 1, ∗}N such that

• Cρ is a constant function,

•
∣∣ρ−1(∗)

∣∣ ≥ Ω(N), and

• there exists a circuit of size log s/Ω(log log s) such that, given j ∈ {0, 1}logN , the circuit
computes the j-th coordinate of ρ.

Proof. By Lemma 34. We shall verify that all of three properties of Corollary 35 hold for the
restriction ρ that is proved to exist by Lemma 34. Items 1 and 2 trivially hold, as Cρ is a constant

by the construction of ρ and
∣∣ρ−1({0, 1})

∣∣ = O
(√

δN
)

, respectively. Item 3 follows by a result of

Lupanov [GII+19, Theorem 2.2] for the (biased) Boolean function that sets all the unrestricted
variables to 0.

We are now able to prove the main result of this subsection (Theorem 33) by using Corollary 35.

Proof of Theorem 33 (sketch). One may prove Theorem 33 by using Corollary 35 exactly as we did
in the proof of Theorem 29 with Lemma 30.

8The results of this subsection exactly follow the guidelines of one of our ToCT reviewers.
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7 MCSP circuit lower bounds from average-case hard functions

7.1 The Nisan-Wigderson generator

It is well known in the field of derandomization that, if we have a function that is average-case
hard against some circuit class C, we can get a PRG for C by plugging the hard function into the
Nisan-Wigderson framework [NW94] (provided that the hard function is not too hard to compute
and that C satisfies some mild conditions). The construction involves computing some combinatorial
design with some suitably chosen parameters; a design is a list of subsets (over some universe) that
have some combinatorial properties (see Definition 36). Also, to compute a single bit of such a PRG,
we need to compute the corresponding subset of the design. There are known design constructions
such that any single subset of the design can be computed efficiently and locally (without computing
the whole design). Therefore, using such a local design, we can get a locally computable PRG which
can be used to obtain an MCSP lower bound against C.

The idea of using Nisan-Wigderson PRGs to study MCSP and related problems has been
explored before (e.g. [ABK+06, OS17, Hir18]). However, the previous works were content with the
fact that the output of a PRG has circuit complexity at most polynomial in the seed length. Here,
we provide a more fine-grained analysis of the local complexity of the Nisan-Wigderson PRG, which
depends on the parameters that we choose for the design, and in turn will depend on the “usefulness”
of the average-case hard function. This allows us to turn average-case hardness against some circuit
class C into a lower bound for MCSP against the same class, where such a lower bound is more
quantitatively linked to the average-case hardness.

We first review the Nisan-Wigderson framework.

Definition 36 (Designs [NW94]). Let N, r, `, α be positive integers. A family of sets S1, . . . , SN is
a (N, r, `, α)-design if

• ∀j ∈ [N ] : Sj ⊆ [r],

• ∀j ∈ [N ] : |Sj | = `, and

• ∀j, k ∈ [s], such that j 6= k, it is the case that |Sj ∩ Sk| ≤ α.

Lemma 37 (Local designs). For any positive integers N and α, there exists a (N, r, `, α)-design
such that r = N2/(α+1) and ` = N1/(α+1). Moreover, given any z ∈ {0, 1}r, and any j ∈ {0, 1}logN ,
z|Sj ∈ {0, 1}

` can be computed by a circuit of size

O
(
N2/(α+1)

)
+N1/(α+1) · Õ(logN).

Proof. Consider the field F` with ` elements. We identify the universe [r] with F` × F` of size `2.
Let {e1, . . . , e`} be the ` elements of the field (in lexicographic order). For each j ∈ {0, 1}logN , we
view j as an element in [`]α+1 and identify it with a degree-α polynomial pj ∈ F`[x]. Let

Sj = {(e1, pj(e1)) , . . . , (e`, pj(e`))} .

Note that, for all j, the set Sj is a subset of F` × F`, the set Sj has size `, and for two different sets
Sj and Sk we have that |Sj ∩ Sk| ≤ α, as the difference pj − pk is a polynomial of degree at most α,
and thus has at most α roots.
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Note that we can hard-wire
(
ek, e

2
k, . . . , e

α
k

)
into some circuit, for all k ∈ [`], by using size

` · α · log ` = Õ(`). Then computing pj(ek), for any k, can be done with a circuit of size α · Õ(log `)
(using Fact 18). As a result, Sj can be computed in size

` · α · Õ(log `) = N1/(α+1) · Õ(logN).

Once we have the set Sj , we can divide the input z into ` equal-size blocks. For each element (a, b)
in Sj , we output the b-th bit of the a-th block, using Lemma 12, in O(`) size. Then, computing z|Sj
takes size ` ·O(`) = O

(
N2/(α+1)

)
.

Definition 38 (Average-case hardness). Let C be a class of circuits on N variables. We say that a
function f is (s, ε)-hard against C if, for every C ∈ C of size s, it is the case that

Pr
x∼{0,1}N

[f(x) = C(x)] ≤ 1

2
+ ε.

Let DNFα denote the class of DNF circuits on α variables. Note that every α-variate Boolean
function can be computed by a DNF of size at most 2α.

Theorem 39 (Nisan-Wigderson generator [NW94]). Let C be a class of circuits on N variables
of size s. Let S1, . . . , SN be a (N, r, `, α)-design, and let f : {0, 1}` → {0, 1} be a function that is
(s+N · 2α, ε/N)-hard against C ◦ DNFα. Then, the Nisan-Wigderson generator NWf : {0, 1}r →
{0, 1}N , defined as

NWf (z) =
(
f
(
z|S1

)
, . . . , f

(
z|SN

))
,

is a PRG that ε-fools C.

Combining Theorem 39 with the design construction in Lemma 37, we immediately get the
following.

Theorem 40 (Local Nisan-Wigderson generator). Let C be a class of circuits on N variables of
size s. For any α = α(N, s), if there exists a function f : {0, 1}` → {0, 1}, where ` = N1/(α+1), that
is (s+N · 2α, 1/(3N))-hard against C ◦ DNFα, then there exists a (N, s, λ(N, s))-local PRG against
C, with

λ(N, s) = O
(
N2/(α+1)

)
+N1/(α+1) · Õ(logN) + CC(f) .

We remark that the above local Nisan-Wigderson generator has local complexity that is compa-
rable to its seed length (for this particular local design and modulo the circuit complexity of the
hard function).

7.2 Applications

Next we demonstrate the use of such local PRGs in obtaining lower bounds for MCSP from
average-case hardness results.

One of the restricted circuit classes that have been well studied in circuit complexity is the class
of constant-depth circuits augmented with few SYM (symmetric) or THR (linear threshold) gates
(see, e.g., [LVW93, Vio07, LS11, ST18]). A SYM gate computes a symmetric function, which is a
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Boolean function whose output depends only on the sum of its input variables. A THR gate computes
a linear threshold function, which is a Boolean function defined as the sign of some linear form,
over Boolean variables, with real coefficients. We will combine the above local Nisan-Wigderson
framework with the following average-case lower bounds against the class of constant-depth circuits
augmented with a few (sublinearly many) symmetric and linear threshold gates.

Theorem 41 ([ST18, Theorem 4]). There exists a constant τ > 0 such that the following hold. For
any `, there exists a function f : {0, 1}` → {0, 1} that is

(
`τ log `, exp

(
−Ω(`0.499)

))
-hard against AC0

circuits of size `τ log ` with at most `0.249 SYM or THR gates. Moreover f can be computed by a
circuit of size O(`).

As a result, we get a local PRG against such circuits.

Corollary 42. There exists some constant τ > 0 such that, for any s ≥ N , there exists a
(N, s, λ(N, s))-local PRG against AC0 circuits of size s = `τ log `, for some ` > 0, with at most `0.249

SYM or THR gates and λ(N, s) = 2O(
√

log s).

Proof. Let C be the class of AC0 circuits of size `τ log `, for some constant τ > 0, with at most `0.249

SYM or THR gates. Choose

α = τ ′ · logN√
log s

,

where τ ′ > 0 is some sufficiently small constant. Then, for ` = N1/(α+1), if we can show the existence
of some efficiently computable function f : {0, 1}` → {0, 1} that is (s+N · 2α, 1/(3N))-hard against
C ◦ DNFα, then the result follows from Theorem 40. The existence of such a function is given by
Theorem 41, by noting that for our choice of α we have

`τ log ` ≥ s+N · 2α,

and
exp

(
−Ω(`0.249)

)
≤ 1/(3N).

We remark that the above example does not take advantage of the fact that the local complexity
of the Nisan-Wigderson PRG is almost the same as its seed length. This is because, in this case,
the seed length has some arbitrary constant in the exponent.

Combining Corollary 42 with Theorem 15, we get the following.

Theorem 43. There exists a constant γ > 0 such that the following hold. Let C be the class of
constant-depth AC0 circuits augmented with at most 2γ

√
logN SYM or THR gates. Then, any circuit

in C computing MCSP on truth tables of length N must have size NΩ(logN).

As another application of our framework, combined with the Nisan-Wigderson generator, we
show that separating P/poly (non-uniform circuits of polynomial size) from some restricted circuit
class, such as TC0 (non-uniform constant-depth polynomial-size circuits with threshold gates) or
NC1 (non-uniform polynomial-size logarithmic-depth circuits), implies MCSP lower bounds against
the same class of circuits. More precisely, we show that if there exists some function in P/poly
that is mildly hard against TC0 (resp. NC1), then MCSP cannot be computed by TC0 (resp. NC1)
circuits.
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Theorem 44. If there exists a function in P/poly that requires size-s TC0 (resp. NC1) circuits
to compute within error 1/poly(n), for some superpolynomial size function s, then MCSP requires
superpolynomial size TC0 (resp. NC1) circuits.

Proof (sketch). Let s(n) = nω(1) and let f = {fn}n, with fn : {0, 1}n → {0, 1}, be a function that
requires size-s(n) TC0 circuits to compute with error at most 1/poly(n). Using standard hardness
amplification tools, such as the direct product theorem and the XOR lemma (see, e.g., [CIKK16,
Section 4]), we can amplify f to a strongly hard on average function within P/poly. By plugging f
into the Nisan-Wigderson construction (Theorem 39) we get a local PRG against TC0; this implies
that MCSP /∈ TC0 by Theorem 15.

8 Open problems

Our De Morgan formula lower bound for MCSP is still slightly weaker than the state-of-the-art De
Morgan formula lower bound due to Tal [Tal17a], which is Ω

(
N3/

(
logN · (log logN)2

))
. Can the

MCSP lower bound be improved? Are there better constructions of local PRGs against formulas?
Or, are there alternative proofs that do not rely on local PRGs?

What are other restricted models of computation against which we can show MCSP lower bounds
using local PRGs? The recent “random walk PRG” by Chattopadhyay, Hatami, Hosseini, and
Lovett [CHHL18] is also local and can be used to get MCSP lower bounds. However, as a general
PRG that can be used to fool a variety of restricted models, it has sub-optimal usefulness (which is
determined by its seed length) compared to the best-known lower bounds for most of those models.

Acknowledgements

We would like to thank the anonymous ICALP’19 and ToCT reviewers for their excellent comments
and suggestions. In particular, we would like to address special thanks to one of our ToCT reviewers
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A Circuit complexity of the Nisan-Zuckerman extractor: Proof of
Lemma 23

In this section, we will describe the construction of the Nisan-Zuckerman extractor [NZ96], and
show that it can be computed by a circuit of almost-linear size.

Lemma 45 (Lemma 23, restated). There exists an extractor E : {0, 1}n × {0, 1}d → {0, 1}m that
is an (n/2, ε)-extractor with m = Ω(n) and d = polylog(n/ε). Moreover, E can be computed by a
circuit of size n · polylog(n/ε).

In proving Lemma 23, we start with some definitions. The extractor works for sources of high
min-entropy.

Definition 46 (Dense source). We say that a distribution over {0, 1}n is a δ-source if it has
min-entropy at least δ · n.

Definition 47 (Block-wise source). A distribution X = (X1, . . . , Xs) over {0, 1}`1 × · · · × {0, 1}`s
is called a block-wise δ-source if, for every x1, . . . , xi−1, Xi|X1=x1,...,Xi−1=xi−1 is a δ-source (i.e., has
min-entropy at least δ · `i).

The extractor will make use of universal hashing, which we define below.

Definition 48 (k-wise independent hashing). A family of hash functions H = {h : {0, 1}n →
{0, 1}m} is called k-wise independent if, for any x1, . . . , xk ∈ {0, 1}n, where x1, . . . , xk are distinct,
and y1, . . . , yk ∈ {0, 1}m, we have

Pr
h∼H

[h(x1) = y1 ∧ · · · ∧ h(xk) = yk] = (1/2m)k .

H is also called a universal hash family if it is 2-wise independent.

It is easy to see that any k-wise independent hashing family can be defined using some k-wise
independent distribution. As a result, by Lemma 19, we have the following construction of k-wise
independent hash families.

Lemma 49. There exists a k-wise independent hash family H = {h : {0, 1}n → {0, 1}m} such
that, given any h ∈ H, as a kn-bit string, the function h can be computed by a circuit of size
k · Õ(max{n,m}).

The Nisan-Zuckerman extractor consists of two parts. The first part, block-wise source conversion,
takes the source of high min-entropy and converts it into an almost block-wise source by building
a list of “blocks.” The second part, block-wise source extraction, takes the resulting block-wise
source of the previous part and extracts the randomness “block-by-block,” using some hash-based
extractor. Next, we describe some basic component functions as well as how they are combined to
perform the respective task of each part. The main focus here is around the circuit complexity of
these procedures and we will not get into details about their correctness. Interested readers are
referred to [NZ96, Section 5] for details on the correctness.

In the following, we only work with δ-sources and block-wise δ′-sources where δ and δ′ are
constants.
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Block-wise source converter D. This function has the following parameters:

• n, the size of the original input;

• δ, the quality of the input source;

• `1 ≤ · · · ≤ `s ≤ n, the size of each block; and

• k, the amount of independence used.

We first describe how to build one block using a function that we call B. To build the i-th block,
on input x ∈ {0, 1}n and yi ∈ {0, 1}k logn, the function B first divides x into `i contiguous disjoint
sets A1, . . . , A`i , each of size mi = n/`i. It then uses the (k log n)-bit string yi to pick, k-wise
independently, j1, . . . , j`i , where jq ∈ [mi], for each q ∈ [`i], and outputs the `i-bit vector(

(A1)j1 , . . . , (A`i)j`i

)
.

The block-wise source converter D works as follows.

1. Input: x ∈ {0, 1}n and y1, . . . , ys ∈ {0, 1}k logn.

2. Output: (B(x, y1), . . . , B(x, ys)) ∈ {0, 1}`1 × · · · × {0, 1}`s .

Nisan and Zuckerman [NZ96] showed that if the input x is from a δ-source and k = O (log(1/ε)),
then, for all but at most a ε/4 fraction of the seeds y1, . . . , ys, the output of the function D is
(ε/4)-close to a block-wise δ′-source, where δ′ = Ω(δ/ log(1/δ)).

Claim 50. The function D can be computed using a circuit of size s · k · Õ(n).

Proof. It is sufficient to show that outputting the i-th block takes a circuit of size k · Õ(n). On
input yi ∈ {0, 1}k·logn, we can compute, using Lemma 19, (j1, . . . , j`i) ∈ [mi]

`i with a circuit of size

`i · k · Õ(log(mi · `i)) = k · Õ(n).

Then, for each index jq, with q ∈ [`i], we can compute (Aq)jq using a circuit of size O(mi) (by
Lemma 12).

Block-wise source extractor C. This function has s+ 1 parameters:

• δ′, the quality of the block source, and

• `1, . . . , `s, the block sizes. Here, `i−1

`i
= 1 + δ′

4 , for all 1 < i ≤ s.

The way the block-wise source extractor C works is described below.

1. Input: x1 ∈ {0, 1}`1 , . . . , xs ∈ {0, 1}`s and y0 ∈ {0, 1}2`s .

2. For each i, we consider a universal family of hash functions,

Hi =
{
h : {0, 1}`i → {0, 1}δ

′`i/2
}
h
,

given by Lemma 49, and each function in Hi is by 2`i bits.
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3. hs ← y0.

4. For i← s down to 1: hi−1 ← hi ◦ hi(xi), where “◦” denotes string concatenation.

5. Output: h0, excluding the bits in hs. Note that this output is a string in {0, 1}m.

It was shown in [NZ96] that if x1, . . . , xs are chosen from a block-wise δ′-source and y0 is uniform,

then the output of the function C is
(

2 · 2−δ′`s/4
)

-close to uniform.

Claim 51. The function C can be computed using a circuit of size s · Õ(`1).

Proof. Note that, given hi ∈ {0, 1}2`i and xi ∈ {0, 1}`i , we can compute hi(xi) using a circuit of
size Õ(`i) (by Lemma 49). Then, to compute h0, we need to compute hi for i = s− 1, . . . , 0, which
takes a circuit of size

s∑
i=1

Õ(`i).

The above is at most s · Õ(`1), since `1 is the largest among `1, . . . , `s.

The final extractor E. The parameters are:

• n, the size of the input source;

• δ, where 1/n ≤ δ ≤ 1/2, the quality of the input source;

• ε, where 2−δn ≤ ε ≤ 1/n, the quality of the output distribution;

• δ′ = Θ(δ/ log(1/δ));

• `0 = Θ(δ2n/ log(1/δ)); `i = `i−1/(1 + δ′/4) for each 0 < i < s, with s = O(log(n) log(1/δ)/δ);
therefore, `s = log(1/ε) log(1/δ)/δ;

• k = O(log(1/ε)).

The following is a description of the extractor E:

1. Input: x1 ∈ {0, 1}n, y1, . . . , ys ∈ {0, 1}k logn, y0 ∈ {0, 1}2`s .

2. Output: C(D(x, y1, . . . , ys), y0). (Here, D and C are used with the parameters specified
above.)

It was shown in [NZ96] that if x is from a δ-source and the y’s are uniform, then the output of the
function E is ε-close to a uniform m-bit string, where m = Ω(δ2n/ log(1/δ)).

Claim 52. The function E can be computed using a circuit of size n · polylog(n/ε).

Proof. This follows easily from Claim 50 and Claim 51.
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B The IMZ PRG is “almost strongly local”

Here, we show that the IMZ PRG [IMZ19] is “almost strongly local,” in the sense that, for most of
its seeds, the output of the PRG can be computed by some circuit of size comparable to its seed
length.

Lemma 53. For any s ≥ N , there exists a PRG G : {0, 1}r → {0, 1}N that 1/poly(N)-fools De

Morgan formulas in N variables of size s, where r = s1/3 · 2O(log2/3 s). Moreover, for at least a
fraction of 1− 1/poly(N) of the seeds z ∈ {0, 1}r, the function defined as

gz(j) = G(z)j

can be computed by a circuit of size s1/3 · 2O(log2/3 s).

It is easy to see that such a PRG is sufficient to obtain MCSP lower bounds using our framework
(see Theorem 15).

We first need a version of the pseudorandom shrinkage lemma, in which we select and fix
the variables both in a pseudorandom manner (note that in Lemma 24 we select the variables
pseudorandomly and then fix the variables in a truly-random manner). Such a pseudorandom
shrinkage lemma is provided in [IMZ19].

Lemma 54 (Pseudorandom shrinkage lemma, [IMZ19, Lemma 4.8]). There exists a constant c0 > 0
such that the following hold. For any constant c > c0, any s ≥ N , p ≥ s−1/2, and any De Morgan
formula F on N variables of size s, there exists a p-regular pseudorandom restriction D over

{0, 1, ∗}N , that is samplable using r = 2O(log2/3 s) random bits, such that

Pr
ρ∼D

[L(Fρ) ≥ 23·c·log2/3 s · p2 · s] ≤ s−c.

Moreover, there exists a circuit of size 2O(log2/3 s) such that, given j ∈ {0, 1}logN and a seed
z ∈ {0, 1}r, the circuit computes the j-th coordinate of D(z).

We are now ready to show Lemma 53.

Proof of Lemma 53. The construction is essentially that of [IMZ19]. We use the same parameters
as those in the proof of Lemma 17.

The PRG first samples t independent pseudorandom restrictions using Lemma 54. For each of
the restrictions, the PRG replaces the ∗ coordinates with the output of some extractor (in fact, it is
the output of some limited-independence generator that takes the output of the extractor as a seed).
After the ∗ coordinates are replaced in each restriction, the PRG XORs, coordinate-wisely, the t
binary strings.

More formally, the PRG takes as input a seed

(X,Y1, . . . , Yt, γ1, . . . , γt) ∈ {0, 1}r ,

where

• X ∈ {0, 1}ℵ is the min-entropy source sample of an extractor,

• Yi ∈ {0, 1}polylog(N), for each i ∈ [t], is the seed of an extractor, and
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• γi ∈ {0, 1}`, for each i ∈ [t], is the seed for sampling a pseudorandom restriction.

Then, the j-th bit of the PRG is the XOR of a sequence of bits (U1)j , . . . , (Ut)j , where for each i ∈ [t]
the value of (Ui)j depends on the value of (ρi)j , where ρi is a p-regular pseudorandom restriction
sampled from Lemma 54 with seed γi. Specifically,

(Ui)j =

{
(ρi)j , if (ρi)j 6= ∗, and

(Zi)j = Gk(E(X,Yi))j , if (ρi)j = ∗,

where E : {0, 1}ℵ × {0, 1}d → {0, 1}Ω(ℵ) is an (ℵ/2, ε)-extractor and Gk : {0, 1}rk → {0, 1}N is a
k-independent generator. It was shown in [IMZ19] that the PRG constructed as above ε-fools De
Morgan formulas of size s.

Note that, for each i ∈ [t] and j ∈ [N ], (ρi)j can be computed by a circuit of size M1 = 2O(log2/3 s)

(Lemma 54). Also, using Lemma 23 and Lemma 19, (Zi)j can be computed by a circuit of size

M2 = Õ(ℵ) = s1/3+o(1).
To compute the j-th bit of the PRG, we need to have the values (U1)j , . . . , (Ut)j . It seems

that we need to compute both (ρi)j (which is cheap to compute) and (Zi)j (which is expensive to
compute) for all i ∈ [t], which seems to require size at least t ·M2 ≥ s2/3. However, we want to
compute this with a circuit of size s1/3. The key observation here is that we do not need to compute
(Zi)j for all the i values; we only need to compute (Zi)j for those i’s such that the j-th coordinate
of the i-th pseudorandom restriction is a star (i.e., (ρi)j = ∗). Since the j-th coordinate is a star
with probability p, we can expect to see only p · t ≤ O(logN) stars in the sequence ((ρi)j)i∈[t]. In
fact, since the t pseudorandom restrictions are independently sampled, by a standard concentration
bound, with very high probability, we only see polylog(N) stars in the sequence. Then, a union
bound over the N coordinates yields that, with high probability over the ρ’s, we only have polylog(N)
stars in ((ρi)j)i∈[t], for all j ∈ [N ]. Therefore, for each of these “good” seeds, to compute the j-th bit

of the PRG, we can first compute the sequence ((ρi)j)i∈[t] (which can be done with a circuit of size

t ·M1). Then, for each i such that the j-th coordinate of the i-th restriction is a star (there are only
polylog(N) such i values), we compute (Zi)j . This can be done by a circuit of size polylog(N) ·M2.

We provide a sketch of how to implement a circuit performing the above task. First, we need to

compute the sequence ((ρi)j)i∈[t], which can be done by a circuit of size t · 2O(log2/3 s). Then, we

need to find the i’s for which we need to compute (Zi)j and select the corresponding Yi’s. This can
be done by using divide and conquer and t “bins” with fixed polylog(N) “slots,” each of size log t,
to store those indices i. Here, each slot is a set of gates that hold the bits of an index i and each
bin is a set of slots.

More specifically, we will look through (ρi)j for i ∈ [t] and “copy” to the bin those i’s for which
(ρi)j = ∗. For the first step, we store the index “1” to the leftmost slot of the bin iff (ρ1)j = ∗.
At the next step, we look at the current bin and the next index, say i′. We then create a new
bin which holds all the indices in the previous bin and also i′ iff (ρ1)j = ∗; here, the indices are
stored in the leftmost slots and the rest of the slots are marked as “empty.” Since each bin is of size
polylog(N) and merging the current bin with a new index can be done in polynomial time (which
implies that it can be done by a polylog(N)-size circuit), each step can be done by a circuit of size
at most polylog(N). After t steps, we will have a bin that stores all of the star indices (some of the
slots in the bin can be empty). Therefore, the whole procedure can be done by a circuit of size
O(t) · polylog(N).
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Once we have the indices, we retrieve the corresponding Yi’s (using Lemma 12). We then
compute the extractor on each of these Yi’s (with the same min-entropy source sample X) and
apply the limited-independence generator on the output of the extractor to get the j-th bit for each
of those i’s. We also need to make sure that we produce only 0 for those i’s that come from the
“empty” slots, in the bin where the indices are stored. Once we have those bits, we XOR them and
then we XOR the resulting bit with the non-star values in ((ρi)j)i∈[t]. The XOR of the non-star

values can be obtained by taking the XOR of the values in ((ρi)j)i∈[t] and by treating the stars as
0’s.
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