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Abstract

Probabilistically checkable proofs (PCPs) can be verified based only on a constant amount of
random queries, such that any correct claim has a proof that is always accepted, and incorrect
claims are rejected with high probability (regardless of the given alleged proof). We consider
two possible features of PCPs:

• A PCP is strong if it rejects an alleged proof of a correct claim with probability proportional
to its distance from some correct proof of that claim.

• A PCP is smooth if each location in a proof is queried with equal probability.

We prove that all sets in NP have PCPs that are both smooth and strong, are of polynomial
length, and can be verified based on a constant number of queries. This is achieved by follow-
ing the proof of the PCP theorem of Arora, Lund, Motwani, Sudan and Szegedy (JACM, 1998),
providing a stronger analysis of the Hadamard and Reed–Muller based PCPs and a refined
PCP composition theorem. In fact, we show that any set in NP has a smooth strong canonical
PCP of Proximity (PCPP), meaning that there is an efficiently computable bijection of NP wit-
nesses to correct proofs. This improves on the recent result of Dinur, Gur and Goldreich (ITCS,
2019) that constructs strong canonical PCPPs that are inherently non-smooth.

Our result implies the hardness of approximating the satisfiability of “stable” 3CNF formu-
lae with bounded variable occurrence, where stable means that the number of clauses violated
by an assignment is proportional to its distance from a satisfying assignment (in the relative
Hamming metric). This proves a hypothesis used in the work of Friggstad, Khodamoradi and
Salavatipour (SODA, 2019), suggesting a connection between the hardness of these instances
and other stable optimization problems.
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1 Introduction

A probabilistically checkable proof system (PCP) offers verification based only on a tiny amount of
random locations in an alleged proof. It is complete and sound: correct claims have a proof that is
always accepted, and incorrect claims are rejected with high probability regardless of the alleged
proof. The study of these systems culminated in the PCP theorem ([AS98; Aro+98]), stating that
membership in any set in NP can be verified by reading a constant number of random locations
from a PCP of polynomial length.

While soundness guarantees that incorrect claims are rejected with high probability, what
about incorrect proofs for correct claims? By definition, a proof of a claim is incorrect if it is not
always accepted by the probabilistic verifier. But how often is it rejected? In a strong PCP, an
alleged proof is rejected with probability proportional to its distance from a correct proof.

Strong PCPs are intuitively appealing: simply put, it is desirable to seek verification proce-
dures that are sensitive to the correctness of the given claim as well as the given proof. From the
perspective of property testing, the verifier of a strong PCP can be viewed as a (proximity obliv-
ious) tester for the property of being a correct proof. In addition, strong PCPs have been used to
construct better locally testable codes (see Section 1.3.1).

One immediately wonders if a strong PCP theorem holds as well; that is, whether any set in NP
admits a strong PCP of polynomial length and constant query complexity. Dinur et al. answer this
in the positive in a recent work [DGG19],1 however, their construction is inherently non-smooth, in
the sense that certain locations in the proof are much more likely to be read than others.

A PCP is smooth if each location in its proof is equally likely to be read by the verifier. We
expect natural PCPs to have smooth verifiers since, intuitively-speaking, we expect the verifier
to treat all parts of the proof equally. Concretely, smooth PCPs are tolerant of errors, as a few
corrupt locations in a correct proof still give high acceptance probability.2 Prior works considered
smoothness in the context of locally decodable codes (see Section 1.3.2).

Before moving on to the main result, let us motivate why smooth and strong PCPs are par-
ticularly natural in tandem. Fix a correct claim and consider two innate measures of the “incor-
rectness” of a proof: its probability of being rejected by the verifier and its distance from a correct
proof. Denoting the first by ρ and the second by δ, a strong PCP guarantees that ρ = Ω(δ). On
the other hand, the tolerance of a smooth, constant-query PCP implies that ρ = O(δ). Thus, for a
constant-query PCP that is both smooth and strong these measures coincide (up to a constant).

This work presents a construction of simultaneously smooth and strong PCPs of polynomial
length for any set in NP , verifiable by reading a constant number of bits from the proof. Specifi-
cally, we reanalyze and enhance the construction used in [AS98; Aro+98] (with proof composition
as in [Ben+06]) to obtain smooth and strong PCPs. The enhancements include the introduction of
multi-piece PCPs, a smooth and strong-preserving transformation of these to single-piece PCPs,
and a new composition theorem for smooth and strong PCPs.

Our result implies the hardness of approximating the satisfiability of stable 3CNF formulae
with bounded variable occurrence, where stability means that the number of clauses violated by an
assignment is proportional to its distance from a satisfying assignment (in the relative Hamming
metric). We believe that the hardness of approximating 3SAT even under stability guarantees is
related to the hardness of other stable optimization problems. Friggstad et al. provide evidence to
this in [FKS19], as they show that this result implies the hardness of approximating perturbation-
stable Euclidean k-means (see Section 1.3.3).

1For technical reasons, their result is stated only for the class UP ⊆ NP , but can be easily adapted to suit all of NP .
2Indeed, tolerance is (oppositely) related to strong PCPs which guarantee detection of errors in a correct proof. See

next paragraph.
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1.1 Main notions

In this section we formally define strong PCPs and smooth PCPs. But first, a reminder of standard
PCPs and their basic properties.

Definition 1.1 (PCP). A probabilistically checkable proof system (PCP) for a set S ⊆ {0, 1}∗ is a prob-
abilistic polynomial-time oracle machine V, called a verifier and denoted V, that satisfies the fol-
lowing conditions:

• Completeness: For all x ∈ S there exists a proof π ∈ {0, 1}∗ such that the verifier V accepts
explicit input x and proof oracle π with probability 1.

• Soundness: For all x /∈ S and proof oracle π ∈ {0, 1}∗, the verifier V rejects explicit input x
and proof oracle π with probability at least 1/2.3

The maximal number of random coin tosses made by verifier V on inputs of length n is its random-
ness complexity, denoted r(n). The maximal number of queries made by the verifier V on inputs of
length n is its query complexity, denoted q(n).

A PCP is nonadaptive if it determines all queries solely by its random coins and explicit input.
All PCPs in this work are nonadaptive, and furthermore, they query the same number of bits
regardless of the sampled coin sequence.

Notice that Definition 1.1 doesn’t mention the length of the proof itself. That is because the
number of possible locations the verifier might read in the proof can be upper-bounded based on
its randomness and query complexities: a nonadaptive PCP that tosses r random coins and then
makes q queries can query at most q · 2r different locations in the proof. Thus, from here on we
will ignore the proof length and focus on the randomness and query complexities.

1.1.1 Strong PCPs

Strong PCPs are PCPs that reject incorrect proofs even for correct claims with probability propor-
tional to the distance of such proofs from correct ones. Throughout this work, distance refers to the
relative Hamming distance: For a fixed alphabet Σ (one can think of {0, 1}, but we will use differ-
ent alphabets later), the relative hamming distance between strings x, y ∈ Σn equals the fraction of
locations on which they differ, and is denoted δ(x, y). If δ(x, y) < d then x is said to be d-close to y,
and if δ(x, y) ≥ d then x is d-far from y. The distance of a string x from a set T ⊆ {0, 1}∗ is defined
to be δ(x, T) := minx′∈T∩{0,1}|x| δ(x, x′), with the minimum over the empty set defined to be 1.

Definition 1.2 (Strong PCP). A strong PCP for membership in set S with strongness parameter
α ∈ (0, 1] is a probabilistic polynomial-time oracle machine, called a verifier and denoted V, that
satisfies the following conditions:

• Completeness: For all x ∈ S there exists a proof π ∈ {0, 1}∗ such that the verifier V accepts
explicit input x and proof oracle π with probability 1. Such a proof π is called a correct proof
for x.

• Strong soundness:

– If x /∈ S then x has no correct proof.

3The constant 1/2 can be replaced with any other constant α ∈ (0, 1).
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– Let P(x) denote the set of correct proofs for x. Then, the verifier rejects explicit input
x and proof oracle π with probability at least α · δ(π, P(x)).

Note that strong soundness implies standard soundness, i.e. rejection of instances x /∈ S with
constant probability regardless of the given proof oracle, because for these instances the verifier
rejects with probability α · δ(x, ∅) = α.

1.1.2 Smooth PCPs

Smoothness is a straightforward notion and is defined for any oracle Turing machine. To us, ora-
cles always have finite domains, and we associate the oracle f : [n] → {0, 1} with an n-bit string
f (1) · · · f (n).

Definition 1.3 (Smooth oracle machine). A probabilistic oracle Turing machine M is smooth if for
any explicit input and oracle, the probability that M queries each location of its oracle (in any of
its queries) is equal. That is, given access to oracle f and letting Q(j) be the event that M queries
location j of f in any of its queries, it holds that P [Q(j)] = P [Q(j′)] for every j, j′ ∈ [| f |], where
| f | denotes the length of the oracle f .

1.2 Contributions

1.2.1 Smooth and Strong PCPs for NP
The main contribution is a proof of the following result.

Theorem 1.4 (Main result). Every set in NP has a smooth and strong PCP with logarithmic randomness
and constant query complexities.

At this point one might wonder: A strong PCP rejects incorrect proofs with probability pro-
portional to their distance from correct proofs—but who are these correct proofs? In the case of Theo-
rem 1.4, we can say that the correct proofs for any fixed instance are obtained by a polynomial-time
computable bijection of NP-witnesses to correct proofs.

Theorem 1.5 (Main result, strengthened). Fix a set S ∈ NP , and let W (x) denote the set of NP-
witnesses for an instance x of S. Then, S has a PCP as in Theorem 1.4 with a polynomial-time computable
canonical proof strategy Π : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗, Π(x, ·) is a
bijection between the set W (x) and the set of correct proofs P(x).

1.2.2 Hardness of approximation

Recall that the PCP theorem implies that for some ρ ∈ (0, 1), it is NP-hard to distinguish 3CNF
formulas that are satisfiable from ones in which any assignment violates at least a ρ fraction of the
clauses. Theorem 1.4 yields a similar result for 3CNF formulas that are “stable” and have each vari-
able occurring in a bounded number of clauses. Here stability means that the number of clauses
violated by an assignment is (at least) proportional to its distance from a correct assignment (in
the relative Hamming metric). Formally,

Definition 1.6 ((α, b)-stable3SAT). A 3CNF formula ϕ is α-stable if any assignment that that is
δ-far from a satisfying assignment violates at least an αδ fraction of clauses in ϕ. A formula
has b-bounded-occurrence if any variable occurs in at most b clauses. For constants α and b, the
promise problem (α, b)-stable3SAT is distinguishing b-bounded-occurrence 3CNF formulas that
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are α-stable and satisfiable from ones in which any assignment violates at least an α fraction of the
clauses.

One motivation for our interest in stable and bounded-occurrence formulas is that they ex-
hibit an interesting structural property. For a fixed satisfiable formula, we consider two natural
measures of the “cost” (i.e., “badness”) of an assignment. The first and most common one is the
fraction of clauses violated by the assignment. The second is the fraction of variables on which the
assignment disagrees with the closest satisfying assignment (i.e. the relative Hamming distance
of the assignment from the set of satisfying assignments). We denote the first by δ and the second
by ρ. Now, stable formulas have δ = Ω(ρ), while bounded-occurrence formulas satisfy δ = O(ρ),
since changing the value of a variable affects a bounded number of clauses. Hence, these two
measures coincide for stable and bounded-occurrence formulas (up to a constant factor); the frac-
tion of clauses unsatisfied by an assignment approximately reflects its distance from a satisfying
assignment. Theorem 1.5 implies a hardness of approximation result for such formulas.

Corollary 1.7. There exist α ∈ (0, 1) and b ∈ N such that (α, b)-stable3SAT is NP-hard. Furthermore,
it is NP-hard under parsimonious Karp reductions.

The proof of Corollary 1.7 are deferred to Appendix A. We proceed with a discussion of two
of its implications.

Consider a distance oracle that, given a 3CNF formula ϕ and assignment σ, returns the (rela-
tive Hamming) distance of σ from the set of satisfying assignments of ϕ if ϕ is satisfiable, and
answers arbitrarily otherwise. Efficiently finding a satisfying assignment given such an oracle can
be done by greedily minimizing the distance returned by the oracle. What if instead we are given
access to an approximate distance oracle, which returns the distance of an assignment from the set
of satisfying assignments up to some multiplicative constant? Corollary 1.7 and the observation that
precedes it imply that an approximate distance oracle is not enough to find even an approximately
satisfying assignment; that is, that for some constant α ∈ (0, 1), finding an assignment that sat-
isfies more than an α-fraction of clauses is NP-hard even when given access to an approximate
distance oracle. This is because, as observed, the answers of an approximate distance oracle can
be efficiently emulated for stable and bounded-degree formulas, and Corollary 1.7 asserts NP-
hardness of finding an approximately satisfying assignment for such formulas.

In addition to the aforementioned intrinsic motivation for the study of stable and bounded
occurrence instances, Corollary 1.7 implies a hypothesis used in the recent work of Friggstad et al.
[FKS19, Hypothesis 1], yielding the first hardness of approximation result for perturbation-stable
Euclidean k-means. More on this in Section 1.3.3.

1.2.3 Smooth and Strong Canonical PCPs of Proximity for NP-relations

PCPs of Proximity (abbreviated PCPPs, aka assignment testers), introduced in [DR06; Ben+06], are
PCPs placed on an even tighter budget, with access to their input accounted for in their query
complexity. Since PCPPs cannot read the entirety of their input oracle, they aren’t able to distin-
guish inputs in the set from inputs close to being in the set. As such, PCPPs should satisfy a relaxed
notion of soundness that requires them to reject (with high probability) only input oracles far from
correct ones.

More generally, PCPPs verify membership of a pair (x; y) in a relation R ⊆ {0, 1}∗ × {0, 1}∗,
when given explicit (i.e. unaccounted) access to x and oracle (i.e. accounted) access to y, as well
as access to a proof oracle.
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Definition 1.8 (PCP of Proximity (PCPP)). A PCP of Proximity system (PCPP) for relation R ⊆
{0, 1}∗ × {0, 1}∗ with proximity parameter δ > 0 is a probabilistic polynomial-time oracle machine,
called a verifier and denoted V such that the following hold:

• Completeness: If (x, y) ∈ R then there exists a proof π such that the verifier V accepts explicit
input x, input oracle y and proof oracle π with probability 1.

• Soundness: If y is δ-far from {y′ : (x, y′) ∈ R}, then for any proof oracle π, the verifier rejects
explicit input x, input oracle y and proof oracle π with probability at least 1/2.

Strong canonical PCPPs. PCPP soundness is somewhat reminiscent of strong soundness, but
note that in the former rejection probability is related to the distance of the input oracle from being
correct, rather than the distance of the proof oracle from being correct (here we think of the explicit
input as fixed).4 Indeed, the adaptation of strong soundness to the setting of proximity verifica-
tion, i.e. strong PCPPs,5 combines these two requirements: a strong PCPP is required to reject with
probability proportional the maximum between the distance of the input oracle y to a correct input
oracle y′, and the proof oracle π to a correct proof oracle π′ for y′.

Actually, we won’t bother to formally define strong PCPPs, because we show the existence
of even stronger (pun intended) constructs. Our PCPPs have a canonical transformation of correct
inputs to correct proofs, meaning that for each correct input (x; y), our PCPPs have a unique
canonical proof Π(x; y) that is always accepted by the verifier, whereas all other strings are rejected
with nonzero probability.6 But with what probability? Right, the maximum between the distance
of the input oracle y to a correct input oracle y′, and the proof oracle π to the canonical proof for x
and y′ (i.e. δ(π, Π(x; y′))).

Definition 1.9 (Strong canonical PCPP). A strong canonical PCPP for relation R with strongness
parameter α ∈ (0, 1] is a probabilistic polynomial-time oracle machine, called a verifier and de-
noted V, coupled with a polynomial-time computable canonical proof strategy denoted Π : {0, 1}∗×
{0, 1}∗ → {0, 1}∗, such that when the verifier is given explicit input x and access to an input oracle
y and a proof oracle π, the following hold:

• Canonical completeness: The verifier accepts with probability 1 if and only if (x; y) ∈ R and π

is the corresponding canonical proof, i.e. π = Π(x; y).

• Strong canonical soundness: Let R(x) := {y′ : (x; y′) ∈ R}. Then, the verifier rejects with prob-
ability at least

α · min
y′∈R(x)

{
max

(
δ
(
y, y′

)
, δ
(
π, Π

(
x; y′

)))}

In particular, if R(x) is empty then the verifier rejects with probability α.

Again, strong canonical soundness implies standard PCPP soundness, e.g. rejection of any
input y that is 0.1-far from R(x) with constant probability, because in this case the verifier rejects
with probability at least α · min {0.1, 1}, where α is the (constant) strongness parameter.

4Furthermore, Definition 1.9 is proximity-oblivious, in the sense that rejection probability grows with the distance of
the oracles from being correct, whereas Definition 1.8 offers rejection with constant probability of inputs whose distance
from being correct is farther than some constant.

5Not to be confused with the related [GS06][Definition 5.7], which we will soon refer to as strong canonical PCPPs.
See also Footnote 7.

6This is the bijection mentioned in Theorem 1.5.
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Remark 1.10. Previously (e.g. [GS06; GGK19; DGG19]), strong canonical PCPPs were considered
only for unambiguous relations; that is, only for relations R ⊆ {0, 1}∗ × {0, 1}∗ for which |R(x)| ≤ 1
for any x. Our definition is more general as it does not place a restriction on the relation R.7

Furthermore, Definition 1.9 allows the verifier to take an explicit input (as in [Ben+06]), whereas
past works studied PCPPs that have access to input and proof oracles but no (auxiliary) explicit
input.

Smooth PCPPs. PCPP verifiers are oracle machines that have two oracles, and we say that a
PCPP is smooth if it is smooth on each of its oracle. Formally, we generalize Definition 1.3 to suit
a t-oracle Turing machine for any constant t ∈ N, which is a machine that has access to a t oracles
(where t is a constant).

Definition 1.11 (Smooth multi-oracle machine). A probabilistic t-oracle Turing machine M is
smooth if for any explicit input and oracles, the probability that M queries each location of each
of its oracle (in any of its queries) is equal. That is, given access to oracles f1, . . . , ft and letting
Qℓ(i, j) be the event that the ith query of M is to location j of fℓ, it holds that P [

⋃q
i=1 Qℓ(i, j)] =

P [
⋃q

i=1 Qℓ(i, j′)] for each ℓ ∈ [t] and every j, j′ ∈ [| fℓ|], where | fℓ| denotes the length of the ℓth
oracle fℓ.

We prove the following theorem.

Theorem 1.12. Every NP-relation has a smooth and strong canonical PCPP with logarithmic randomness
complexity and constant query complexities.

Notice that a PCPP for relation R yields a PCP for the set SR := {x : ∃y (x; y) ∈ R}: a proof
that x ∈ SR (in the PCP for SR) is composed of some y such that (x; y) ∈ R, followed a proof (in
the PCPP for R) that (x; y) ∈ R. Furthermore, the PCP for SR retains the strongness of the PCPP
for R and, under a reweighing of the input oracle (presented in Section 2), smoothness is retained
as well. Therefore, Theorem 1.5 follows from Theorem 1.12.

1.3 Related work

1.3.1 Strong (canonical) soundness

The term strong in the definition of strong PCPs is inspired by strong locally testable codes (strong
LTCs), which are codes whose local test rejects with probability proportional to the distance of the
input from the code. In fact, strong canonical PCPPs have seen numerous uses in works on strong
LTCs, as follows.

Goldreich and Sudan [GS06] defined strong canonical PCPPs in their work on strong LTCs,8and
constructed such PCPPs for certain linear codes. An extension of this initial construction saw use
by Gur and Rothblum [GR18] as they obtained strong LTCs that allow for a relaxed notion of local
decoding (of [Ben+06, Section 4.2]). Goldreich et al. [GGK19] later improved these codes, again
utilizing strong canonical PCPPs. Gur et al. [GRR18] employed strong canonical PCPPs in their

7In fact, our work is the first to make a semantic distinction between strong and strong canonical, recognizing strong
canonical PCPPs as special type of strong PCPPs in which there is an efficient canonical transformation between NP-
witnesses and proofs, in addition to strong soundness. In previous works, the terms strong PCPP and strong canonical
PCPP were used synonymously, which is consistent with our distinction, given that these works considered PCPPs
only for unambiguous relations. See Section 1.3.1 for more on previous works using strong canonical PCPPs.

8See Footnote 7 for a warning on the usage of the terms strong and strong canonical in previous works.
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work on relaxed locally correctable codes. We stress that all these works featured PCPPs for linear
subspaces (e.g. linear codes).

As mentioned, Dinur et al. [DGG19] characterized unambiguous NP (UP) in terms of strong
canonical PCPPs, under the original and more restricted definition of strong canonicality general-
ized in this work (see Remark 1.10).

In [Gol17, Section 13.2.2], strong PCPs are presented from the perspective of property testing
as locally testable proofs, in analogy to locally testable codes.

1.3.2 Smoothness

Like strongness, smoothness too has its roots in coding theory, with the work Katz and Trevisan
[KT00] examining smooth locally decodable codes. These are codes whose local decoding algorithm
reads each bit in an alleged codeword with approximately equal probability (cf. Definition 1.3,
which requires the probability to be exactly equal). Since its inception, this property has appeared
in numerous works relating to locally decodable codes, e.g. [Gol+06; Yek12; GM12]). Goldreich
and Sudan considered a similar feature for their Linear Inner Proof Systems (LIPS) [GS06, Defini-
tion 5.14], which are fundamentally different from PCPs.

To avoid possible confusion, it is worth pointing out that the smoothness referred to in this
work is as in the aforementioned works in coding theory, and not as in the smooth label cover of
Khot [Kho02].

1.3.3 Hardness of perturbation-stable Euclidean k-means

The hardness of approximating bounded-degree stable3SAT (Corollary 1.7) is the starting point of
the first hardness of approximation result for perturbation-stable instances of Euclidean k-means,
due to Friggstad et al. [FKS19]. This connection between stable3SAT (see Appendix A) and
perturbation-stable problems is an interesting direction for future research, so we provide a brief
description of this result.

The study of optimization on perturbation-stable instances was initiated by Bilu and Linial
[BL12] and Awasthi et al. [ABS10] as a way of focusing on instances that can “occur in reality”
(to quote the former). We consider the Euclidean k-means problem and its perturbation-stable in-
stances, which are defined as follows:

• An instance of the k-means problem consists of k ∈ N, dimension d ∈ N, a metric µ : R
d ×

R
d → [0, ∞), data points X ⊆ R

d, and candidate centers C ⊆ R
d. The objective is to choose

centers S ⊆ C such that |S| = k so as to minimize Px∈X [minc∈S (µ(x, c))]. An instance is
Euclidean if µ is the Euclidean metric.

• Fix γ > 1 and metric µ. A γ-perturbation of µ is a function µ′ : R
d × R

d → [0, ∞) such that
for any x 6= y ∈ R

d,

1 ≤ µ′(x, y)

µ(x, y)
≤ γ

Notice that µ′ is not necessarily a metric.

• For some fixed γ > 1, an instance (k, d, X, C, µ) of k-means is γ-perturbation-stable if it has a
unique optimal solution S∗ ⊆ C, and for any γ-perturbation µ′ of µ, S∗ is the optimal solution
of the related instance (k, d, X, C, µ′). The γ-perturbation-stable Euclidean k-means problem is
the k-means problem as previously described, under the promise that instances are Euclidean
and are γ-perturbation-stable.
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While solving (general, non-stable) Euclidean k-means is known to be NP-hard to approx-
imate [Awa+15], Awasthi et al. showed that introducing some perturbation-stability makes the
problem easy; namely, they show that (

√
2 + 3)-stable Euclidean k-means can be solved exactly in

polynomial time. Could the introduction of any amount of perturbation-stability render Euclidean
k-means easy, or even just easy to approximate? The answer is no, as demonstrated by Friggstad
et al. [FKS19]. Their result is conditioned on an hypothesis asserting hardness of approximation
of bounded-occurrence and stable3SAT (see Section 1.2.2), which is implied by Corollary 1.7.

Theorem 1.13 ([FKS19]). Assuming Corollary 1.7, there exists γ, ε > 1 such that γ-perturbation-stable
Euclidean k-means cannot be approximated within factor ε, unless RP = NP .

1.4 Proof outline

To prove Theorem 1.12 we construct a PCPP with the necessary properties for the circuit valuation
relation, denoted CIRCUITVAL, which consists of all pairs (C; y) such that circuit C accepts when
given y as input. Then, any NP-relation R has a PCPP (with the same properties) that, given
explicit input x, efficiently computes a circuit Cx such that (x; y) ∈ R if and only if Cx accepts y,
and then runs the PCPP of CIRCUITVAL on explicit input Cx and the same input and proof oracles.
Following are highlights of our smooth and strong canonical PCPP for CIRCUITVAL.

Multi-piece PCPPs (Section 2). The PCPP for CIRCUITVAL will be a variant of the PCPP pre-
sented in [AS98; Aro+98; Ben+06]. However, even a high-level inspection of this construction
reveals that it is not at all smooth: for example, one building block (the Hadamard-based PCPP,
mentioned below) consists of two “pieces” from which the verifier samples uniformly random
locations, with the first piece substantially shorter than the second (so its bits are queried far more
often). Indeed, this PCPP is not smooth when viewed as a single proof, but when partitioned into
two proof-pieces (given as two proof-piece oracles), the verifier is smooth as a three-oracle machine
(one input oracle and two proof-piece oracles). We present a transformation of multi-piece PCPPs
to single-piece ones that simultaneously preserves smoothness and strong canonicality. This is done by
replacing each proof-piece with a list of copies, so that the length of each list of copies is roughly
the same.

Composing smooth strong canonical PCPPs (Section 3). The run of a nonadaptive PCPP veri-
fier can be viewed as a two-step process: first, it tosses some random coins and generates a resid-
ual (decision) circuit and query locations based on the coins it tossed, and then it queries its oracles
and accepts or rejects according to the residual circuit’s computation of their answers. A strong
canonical and robust PCPP is such that, in expectation, the distance of its oracles’ answers from
satisfying the residual circuit reflects the distance of the oracles (in their entirety) from correct ones
(i.e. a correct input oracle and a canonical proof oracle). Our composition theorem asserts that for
a smooth strong canonical and robust PCPP, replacing the residual circuit’s computation with an
additional probabilistic verification (by an inner smooth strong canonical PCPP) yields a smooth
strong canonical PCPP.

With a composition theorem at hand, we turn to the construction of smooth strong canonical
and robust PCPPs, whose composition gives the PCPP postulated by Theorem 1.12.

The Hadamard-based smooth strong canonical PCPP (Section 4). This is the Hadamard-based
PCPP presented in [Aro+98], used as the innermost PCPP of the composition. Its proofs are based
on the Hadamard encoding of the input oracle, and its verifier checks that the proof oracle encodes
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the input oracle (a “consistency check”), and uses the structure of the Hadamard code to check that
the input oracle satisfies the (explicitly given) circuit. To show strong canonicality, we consider
three cases:

Case 1. Both the input and proof oracles are close to correct ones. That is, the input oracle y
is close to an input y′ that is accepted by the (explicitly given) circuit, and the proof oracle π is
close to its canonical proof oracle Π′ of y′. The verifier checks consistency by performing a strong
codeword test on the proof oracle, and checks that the decoding of the proof oracle agrees with the
input oracle on a random bit. Strong testability means precisely that the first check rejects with
probability Ω(π, Π′), and the local decoding of a random location rejects with probability Ω(y, y′).

Case 2. The input oracle is far from any correct input oracle. Then, standard PCPP soundness
guarantees rejection with high probability.

Case 3. The proof oracle is far from the canonical proof of the input oracle. If the proof oracle is
close to the canonical proof for some input y′ 6= y then the consistency check between the proof
oracle and the input oracle rejects with probability Ω(δ(y, y′)). Otherwise the proof oracle is far
from any canonical proof, and is therefore rejected with high probability by the strong codeword
test.

Lastly, as mentioned above, we observe that it is smooth as a two-piece PCPP, and can therefore
be transformed to a single-piece strong canonical PCPP.

The Reed–Muller-based smooth strong canonical robust PCPP (Section 5). This PCPP is used
in the outer layers of the composition, so we must show that it is smooth and robust strong canon-
ical. Again, smoothness amounts to observing that it is multi-piece smooth. The analysis of its
strong canonicality follows the same lines of the Hadamard-based PCPP, this time relying on a
generalization of the strong Reed–Muller codeword test (provided by Oded Goldreich and Madhu
Sudan in Appendix C). We first present a smooth strong canonical robust PCPP whose proofs are
over a large alphabet, and then show that alphabet reduction (encoding each letter in an error
correcting code) preserves smoothness and strong canonicality.

2 Multi-piece PCPPs

As said in Section 1.4, several of the PCPPs in the [Aro+98] construction are not smooth per se, but
they spread their queries smoothly on each of a few significant proof-pieces. Such multi-piece PCPPs
are required to satisfy a stricter form of strong canonicality, in which the rejection probability is
related to the maximum between each proof-piece oracle to its corresponding proof-piece in a correct
proof (and, as usual, the distance of the input oracle y to a satisfying input oracle y′). Motivated
by this observation, we define multi-piece strong canonical PCPPs.

Definition 2.1. For a constant t, a t-piece strong canonical PCPP system for relation R with strongness
parameter α ∈ (0, 1] is a probabilistic polynomial-time oracle machine, called a verifier and denoted
V, coupled with a sequence of polynomial-time computable canonical proof-piece strategies, denoted
Π1, . . . , Πt : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, such that when the verifier is given explicit input x and
access to an input oracle y and a proof-piece oracles π1, . . . , πt, the following hold:

• Canonical completeness: The verifier accepts with probability 1 if and only if (x; y) ∈ R and πi

is the corresponding canonical proof-piece, i.e. πi = Πi(x; y), for each i ∈ [t].
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• Strong canonical soundness: Let R(x) := {y′ : (x; y′) ∈ R}. Then, the verifier rejects with prob-
ability at least

α · min
y′∈R(x)

{
max

(
δ
(
y, y′

)
, δ
(
π1, Π1

(
x; y′

))
, . . . , δ

(
πt, Πt

(
x; y′

)))}

In particular, if R(x) is empty, then the verifier rejects with probability α.

For each i ∈ [t], the ith proof-piece length complexity, denoted ℓi(n), is the length of the ith proof
piece. The ith proof-piece query complexity, denoted qi(n), is the number of queries the verifier
issues to the ith proof-piece given an input of length n.9

2.1 From multi-piece to single-piece

We present a smoothness-preserving transformation of strong canonical multi-piece PCPPs to
strong canonical PCPPs that use a single proof oracle. This transformation is not only convenient
(for example, composition of multi-piece PCPPs gives one a multi-headache), but is also neces-
sary for Theorem 1.12 which asserts the existence of single-piece smooth strong canonical PCPPs
for every NP relation.

Lemma 2.2. Suppose that, for some constant t, a relation R has a t-piece smooth strong canonical PCPP
with strongness parameter α, randomness complexity r(n), and query complexity q(n). Then, R has
a single-piece smooth strong canonical PCPP with strongness parameter α/3, randomness complexity
O(r(n) + log q(n)) and query complexity O(q(n)).

Proof. Notice that if proof-piece lengths vary significantly, then simply concatenating the proof-
pieces will not do, because bits of shorter pieces are sampled with higher probability than bits of
longer pieces. Instead, each proof-piece is replaced with a list of copies such that each list is of
equal length (up to a factor related to the proof-piece’s query complexity). That is, the number
of copies in the ith list is proportional to qi/ℓi, which, by multi-piece smoothness, equals the
probability that a bit in the ith proof-piece is queried by the multi-piece verifier.

The single-piece verifier emulates the multi-piece verifier on a random choice of proof-pieces
(each proof-piece sampled uniformly from its list of alleged copies), and checks consistency of
the copies in each list. Some care must be taken so that the consistency check does not harm
smoothness (for example, checking consistency against a fixed copy would result in its bits being
queried more often than others).

Strong canonicality of the single-piece verifier then follows from examining two possible cases:
The first is that the given lists are noticeably inconsistent (i.e., there is a large discrepancy between
the alleged copies), in which case the consistency check rejects with good probability. Otherwise,
the lists are almost entirely consistent (i.e., each list of the given proof essentially consists of copies
of some proof-piece), and then strong canonicality follows from strong canonicality of the multi-
piece verifier.

Following is a detailed description and analysis of the construction. Let V be the pos-
tulated t-piece smooth strong canonical PCPP verifier with canonical proof-piece strategies
Π1, . . . , Πt : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. We construct a single-piece PCPP V and start by de-
scribing its canonical proof strategy Π. Fixing (x, y) ∈ R, we use the following notation:

• r denotes the number of random coins tossed by V when given x as explicit input.

9Tedious comment: We require the number of queries that the verifier issues to each proof-piece to depend only on
the explicit input’s length. This requirement is met by the all PCPPs used in this work.
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• qi denotes the number of queries V makes to the ith proof-piece oracle when given x as
explicit input. The total number of queries V makes to all proof-piece oracles is q := ∑

t
i=1 qi

• Πi := Πi(x; y) denotes the ith canonical proof-piece of (x; y), and ℓi := |Πi| denotes its
length.

Now, let Πi be a list of mi := (qi + 1)∏j 6=i ℓj copies of Πi.
10 Indeed, mi is proportional to the

probability that a certain fixed bit of Πi is sampled, namely qi/ℓi.
11 The canonical proof of (x; y)

in the single-piece PCPP V is then the concatenation of all Πi’s.
We describe the run of the new verifier V given explicit input x and access to input oracle y and

proof oracle π = (π1, . . . , πt), where πi = (π1
i , . . . , π

m(i)
i ) is a list of m(i) strings, each of length ℓi:

1. Emulation: For each i ∈ [t], sample a uniformly random index ci ∈ [mi]. Next, emulate V on
explicit input x, input oracle y and proof-piece oracles πc1

1 , . . . , πct
t , rejecting if the emulation

rejected. Let Ji denote the set of locations that V queries in πci
i .

2. Consistency check: For each i ∈ [t], sample uniformly from the remaining copies c′i ∈ [mi] \
{ci} and a uniformly random ji ∈ Ji and check that π

c′i
i [ji] = πci

i [ji]. That is, check that πci
i

and π
c′i
i agree on a uniformly random location from the locations queried by the emulated

verifier V in Step 1.12

(Note that smoothness of V implies that ji is uniformly distributed in [ℓi] (as detailed in

Appendix B.2), and that only π
c′i
i [ji] needs to be queried in this step.)

The single-piece verifier V uses t more queries than the emulated (multi-piece) verifier V since
the consistency check requires querying an additional location from each list. The number of
random coins is upper-bounded by O(t2 · (r + log q)) = O(r + log q).

Canonical completeness follows by observing that a proof is accepted with probability 1 if and
only if it is formed of consistent lists (i.e. each list holds copies of some proof-piece), such that the
proof-pieces in each list form a canonical proof in the multi-piece PCPP. We prove the remaining
properties:

Smoothness. Fix a location in the proof oracle π, which is the jth location of πki
i for some i ∈ [t],

ki ∈ [m(i)] and j ∈ [ℓi]. This location is queried if and only if one of two disjoint events occur:

• In Step 1, ki = ci and ji ∈ Ji, i.e. the jth location of πci
i was queried by the emulated verifier.

By multi-piece smoothness of the emulated verifier V, this event occurs with probability
1

mi
· qi

ℓi
.

• In Step 1, ki 6= ci and ji ∈ Ji. In addition, in Step 2, ki = c′i and the jth location is chosen from
Ji (i.e. from the set of all locations queried by the verifier). This event occurs with probability
(1 − 1

mi
) · qi

ℓi
· 1

mi−1 · 1
qi
= 1

mi
· 1
ℓi

.

10The value qi + 1 is used instead of qi to account for the additional query made by the consistency check (Step 2 in
the description of V).

11Letting mi := (qi + 1)L/ℓi for any L that is a common multiple of {ℓi}i∈[t] would have worked as well.
12Indeed, the consistency check can be implemented in several other ways, for example without reusing the emu-

lation copy ci in the consistency check (i.e. checking consistency between c′i and some c′′i ), or by uniformly sampling
ji from all of [ℓi] rather than from Ji. However, other implementations require setting mi to other (less informative)
values.
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All in all, we have that the probability that this location is queried is

1

mi
· qi

ℓi
+

1

mi
· 1

ℓi
=

qi + 1

mi · ℓi
=

1

∏
t
i=1 ℓi

Therefore, each bit in π is queried with equal probability.

Strong canonical soundness. Let α be the strongness parameter of the multi-piece verifier V. We
show that the (single-piece) PCPP V has strongness parameter α/3. Fix explicit input x, input
oracle y and proof oracle π = (π1, . . . , πt), where πi is purported to contain mi copies of the ith
canonical proof-piece for (x; y). If R(x) is empty, then the emulated verifier (and therefore the
single-piece verifier) rejects with probability α · 1 for any choice of (alleged) copies ci, so we may
focus on the case that R(x) 6= ∅. Let y′ ∈ R(x) be a minimizer of ρ, defined

ρ := max
(
δ
(
y, y′

)
, δ
(
π1, Π1

(
x; y′

))
, . . . , δ

(
πt, Πt

(
x; y′

)))
≥ max

(
δ
(
y, y′

)
, δ
(
π, Π

(
x; y′

)))
(1)

It suffices to show that the verifier rejects with probability at least α
3 · ρ. Assume wlog that the

maximum in the left hand side of Equation (1) is obtained in the first proof-piece oracle, so ρ =
max (δ(y, y′), δ(π1, Π1(x; y′))). We proceed by examining the case that the first proof-piece has
noticeable inconsistency, and the case where it is almost entirely consistent.

Case 1. The first proof-piece list is noticeably inconsistent: Ec1 6=c′1∈[m1] [δ(π
c1
1 , π

c′1
1 )] ≥ ρ/3.

Smoothness of the emulated verifier implies that a uniformly random location from the set of
locations queried in π1 is distributed uniformly in [ℓi] (as detailed in Appendix B.2). Hence, the
probability that the consistency check rejects equals the expected distance between two distinct
(alleged) copies sampled uniformly, which is assumed to be at least ρ/3.

Case 2. The first proof-piece list is almost entirely consistent: Ec1 6=c′1∈[m1] [δ(π
c1
1 , π

c′1
1 )] < ρ/3.

By an averaging argument, there exists a “typical” copy such that all other (alleged) copies
in first-proof piece list are close to it in expectation; namely, there is an a ∈ [m1] such that
Ec1∈[m1] [δ(π

c1
1 , πa

1)] ≤ ρ/3. We argue that since the alleged copies are close to the typical copy (in
expectation), the multi-piece verifier rejects with probability similar to that of the strong canonical
single-piece verifier given the typical copy as proof.

For each c1, let yc1 ∈ R(x) be a minimizer of max (δ(y, yc1), δ(πc1
1 , Π

c1
1 )) where Π

c1
1 := Π1(x; yc1).

Using strong canonicality of the emulated verifier, we can lower-bound the probability that the
single-piece verifier rejects in the emulation check by

E
c1∈[m1]

[
α · max

(
δ(y, yc1), δ

(
πc1

1 , Π
c1
1

))]
≥ α · E

c1

[
max

(
δ(y, yc1), δ

(
πa

1, Π
c1
1

))]
− α · E

c1

[
δ
(
πc1

1 , πa
1

)]

≥ α · max (δ(y, ya), δ(πa
1, Πa

1))− α · ρ

3
(2)

where the second inequality used the minimality of ya, which means that for any c1 it holds that
max (δ(y, yc

1), δ(πa
1, Π

c1
1 )) ≥ max (δ(y, ya), δ(πa

1, Πa
1)). We can also lower-bound the distance of the

typical copy πa
1 from its corresponding canonical proof piece Πa

1 by

δ(πa
1, Πa

1) ≥ E
c1∈[m1]

[
δ
(
πc1

1 , Πa
1

)]
− E

c1∈[m1]

[
δ
(
πc1

1 , πa
1

)]
(3)

≥ E
c1∈[m1]

[
δ
(
πc1

1 , Πa
1

)]
− ρ

3
= δ

(
π1, Π1(x; ya)

)
− ρ

3
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Combining Equations (2) and (3), we have that the verifier rejects with probability at least

α · max
(

δ(y, ya), δ
(
π1, Π1(x; ya)

)
− ρ

3

)
− α · ρ

3
≥ α · ρ − α · 2ρ

3
= α · ρ

3

where the inequality is because ya ∈ R(x) is not necessarily the minimizer of Equation (1), i.e. it
could be that ya 6= y′ (and then max (δ(y, ya), δ(π1, Π1(x; ya))) ≥ ρ).

3 Composing smooth strong canonical PCPPs

In this section, we adapt the composition theorem of Ben-Sasson et al. [Ben+06] to the strong
canonical setting.

We can think of a run of nonadaptive PCPP verifier as a two-step process: first, it tosses some
random coins and generates a residual (decision) circuit and query locations based on the coins it
tossed, and then it queries its oracles and feeds their answers to the residual circuit, accepting
or rejecting accordingly. Hence, the verifier accepts if and only if the residual circuit and oracle
answers are in CIRCUITVAL. PCPP composition replaces the naive verification of this claim of mem-
bership (in CIRCUITVAL) by a probabilistic verification. That is, an inner verifier probabilistically
checks that the oracles’ answers satisfy the outer verifier’s residual decision circuit. The resulting
composite verifier accepts or rejects according to the inner verifier’s decision.

The strong inner verifier rejects with probability that is proportional to the distance of the
oracles’ answers from satisfying the outer residual circuit. As such, this distance should reflect
the distance of the outer oracles (in their entirety) from correct ones. In other words, if the outer
oracles are far from correct ones, the outer verifier’s queries should not only be rejected, but be far
from being accepted by its residual circuit. In such a case we say that the outer verifier is robust.

As in the composition of [Ben+06], when it comes to randomness and query complexities, the
composite verifier enjoys the best of both worlds: broadly speaking, its query complexity is inher-
ited from the inner verifier, and its randomness complexity is (mostly) determined by the outer
verifier. So, composing an outer verifier of low randomness complexity with an inner verifier
that issues a few queries yields a composite verifier with low randomness and query complexities.
The contribution of this section is in showing that, in addition, such composition can be made to
preserve smoothness and strong canonicality.

3.1 Strong canonical robust PCPPs

First, we describe the run of a nonadaptive verifier as a two-step process: first sampling random
coins, then querying its oracles and computing a decision. Formally,

Definition 3.1 (PCPPs, restated). Given explicit input x and oracle access input y and proof π, a
(nonadaptive) PCPP verifier for relation R of randomness complexity r(n) and query complexity
q(n) runs as follows:

1. Sample. The verifier uniformly samples a coin sequence c ∈ {0, 1}r(|x|). Based on x and c, the
verifier generates query locations I := Ic := (i1, . . . , iq(|x|)) and residual circuit D := Dc. Note
that I contains the locations of queries to both y and π.

2. Query and compute. The verifier queries oracles y and π according to the query locations
I. Denoting the answers to these queries by yπ[I], the verifier then computes D(yπ[I]) and
outputs 1 (“Yes”) if and only if yπ[I] satisfies D.
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The event that the verifier V accepts, i.e. “Vy,π(x) = 1”, is equal by definition to “yπ[Ic] ∈
Sat(Dc)”, where Sat(Dc) denotes the set of satisfying inputs of Dc, and the randomness in both
events being the coin sequence c. The decision complexity d(n) is the maximal size of a residual
circuit generated when the verifier is given explicit input of length n.

Strong canonical robustness guarantees that the expected distance of the oracles’ answers from
satisfying the residual circuit is proportional to the distance of these oracles from being correct,
and is formally defined as follows.

Definition 3.2 (Strong canonical robust PCPPs). A strong canonical PCPP V for relation R with
canonical proof strategy Π : {0, 1}∗ → {0, 1}∗ is a strong canonical robust PCPP (RPCPP) with
strongness parameter α ∈ (0, 1] if, in addition to the conditions of Definition 1.8, it satisfies strong
canonical robust soundness:

• For any (x; y) such that (x; y) /∈ R it holds that Π(x; y) = ∅. When given explicit input x,
input oracle y and proof oracle π, the expected distance of the bits queried by V from being
accepted by the residual circuit is at least

α · min
y′∈R(x)

{
max

(
δ
(
y, y′

)
, δ
(
π, Π

(
x; y′

)))}
(4)

That is,

E
c
[δ(yπ[Ic], Sat(Dc))] ≥

{
α · miny′∈R(x) {max (δ(y, y′), δ(π, Π(x; y′)))} if R(x) 6= ∅

α if R(x) = ∅

Remark 3.3. This definition differs from a natural adaptation of the original definition of robustness
([Ben+06, Definition 2.6]) in that it requires the expected distance to be large, rather than require the
distance be large with high probability. Markov’s inequality implies that Definition 3.2 is stronger.

3.2 The composition theorem

Following the two-step description of a run of a PCPP verifier in Definition 3.1, a PCPP verifier
accepts explicit input x, input oracle y and proof oracle π if and only if the answers received from
its proof oracle (denoted yπ[I]) satisfy its residual circuit D. In a nutshell, PCPP composition is
done by replacing the verification of the claim “yπ[I] satisfies D” with a probabilistic verification
by an inner PCPP verifier.

Before turning to the theorem and its proof, we define an additional property we require from
outer verifiers.

Definition 3.4 (Residual circuit distance). For some constant ∆ > 0, we say that a PCPP verifier
V has residual circuit distance ∆ if for any input x and coin sequence c, any two distinct inputs
satisfying the residual circuit Dc are at least ∆-far apart.

In later sections, we show that the outer PCPP whose composition yields Theorem 1.12 satisfies
this additional property for some constant ∆ > 0. Hence, it suffices to prove the composition
theorem for PCPPs with constant residual circuit distance.

Theorem 3.5. Assume there are αout, αin, ∆ ∈ (0, 1] and rout, rin, dout, din, qin : N → N such that the
following holds:
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• The relation R has a smooth strong canonical RPCPP, denoted Vout, with residual circuit distance ∆,
strongness parameter αout and randomness and decision complexities rout and dout respectively.

• CIRCUITVAL has a strong canonical PCPP, denoted Vin, with strongness parameter αin and random-
ness, query and decision complexities rin, qin and din respectively.

Then, the relation R has a strong canonical PCPP, denoted Vcomp, with the following properties:

• Randomness complexity rout + rin ◦ dout.

• Query complexity qin ◦ dout.

• Decision complexity din ◦ dout

• Strongness parameter αout · αin · ∆/4

Furthermore, if Vin is smooth then R has a smooth strong canonical PCPP with strongness shrinking
by a third (to αout · αin · ∆/12). If Vin is robust (resp. has residual circuit distance) then Vcomp is robust
(resp. has residual circuit distance).

Notice that smoothness of the outer verifier is used for strong canonicality of the composite
verifier.

Proof of Theorem 3.5. We affix the term outer, inner or composite when discussing components of
the outer, inner or composite verifiers. For example, an inner canonical proof is a proof obtained from
the canonical proof strategy of the inner PCPP.

We start by describing the canonical proof strategy of the composite PCPP, which consists of
two proof-piece oracles: an outer proof-piece denoted Π, and an inner proof-piece denoted T. For any
explicit input x and input oracle y with (x; y) ∈ R, the outer proof-piece is the outer canonical
proof that (x; y) ∈ R (for Vout), and the inner proof-piece is the concatenation (over all possible
coin sequences c of the outer verifier) of the inner canonical proof that yΠ[Ic] satisfies Dc (for Vin),
which we denote by Tc. With these in mind, we proceed by describing the composite verifier.

Algorithm 3.5.1 (PCPP composition [Ben+06, Section 2.4]). The composite PCPP system has ver-
ifier Vcomp that takes explicit input x, input oracle y, and two proof-piece oracles: an outer proof-
piece π, and an inner proof-piece τ = (τc)c, with c ranging over all possible coin sequences of the
outer verifier. It runs as follows:

1. Emulates the Sample step of the outer verifier, obtaining a coin sequence c, outer query loca-
tions Ic and outer residual circuit Dc. (Vcomp does not issue any queries yet!)

2. Emulates the inner verifier with explicit input Dc, input oracle yπ[Ic] and proof oracle τc.
Vcomp accepts if and only if the inner verifier accepted.

Since Algorithm 3.5.1 is the same composition used in the proof of [Ben+06, Theorem 2.7],
the composite PCPP enjoys all properties described there, and in particular it is a PCPP with the
required complexities. Canonical completeness follows from the canonical completeness of the
outer and inner verifiers, and so we turn to prove strong canonical soundness. Then, if Vin is
smooth then Vcomp is two-piece smooth, and we may apply Lemma 2.2 to obtain a smooth strong
canonical composite PCPP for R while losing an additional factor 1/3 in strongness.

Fix an explicit input x, input oracle y, and alleged proof-piece oracles and π and τ, where π

corresponds to the outer proof-piece and τ := (τc)c corresponds to the inner proof-piece. If R(x)
is empty then we may refer to the standard soundness analysis of the composite PCPP, so we
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focus on the case that R(x) is nonempty. Let y′ be a satisfying input that minimizes the maximal
distance between the given oracles and correct oracles; that is, the maximum between δ(y, y′),
δ(π, Π) and δ(τ, T), where Π and T are the canonical outer and inner proof-pieces for y′. Denote
the distance between the given oracles and the correct oracles by δy := δ(y, y′), δπ := δ(π, Π) and
δτ := δ(τ, T) = Ec [δ(τc, Tc)]. We shall show that the verifier rejects with probability αout · αin · ∆ ·
max (δy, δπ, δτ)/4. The analysis considers two cases.

Case 1. max (δy, δπ) ≥ ∆
4 · δτ. For any fixed outer coin sequence c, the strong canonical in-

ner verifier rejects the circuit Dc, input oracle yπ[Ic] and proof oracle τc with probability αin ·
δ(yπ[Ic], Sat(Dc)). The rejection probability of the composite verifier equals the expected rejection
probability of the inner verifier (over random c), therefore the composite verifier rejects with prob-
ability at least Ec [αin · δ(yπ[Ic], Sat(Dc))] which, by the robust strong canonicality of the outer
verifier, is at least αout · αin · max (δy, δπ) ≥ αout · αin · ∆

4 · max (δy, δπ, δτ).

Case 2. max (δy, δπ) <
∆
4 · δτ. As a warm-up, consider the case that δy = δπ = 0. In this case,

yπ[Ic] satisfies Dc for any outer coin sequence c. Recall that the outer verifier has constant residual
circuit distance, so all other inputs that satisfy Dc are far from yπ[Ic], and therefore the inner ver-
ifier’s strong canonicality implies that the composite verifier rejects with probability Ω(δ(τc, Tc)).
Taking expectation over the coin sequence c, we have that the composite verifier rejects with prob-
ability Ω(δτ) = Ω(max (δy, δπ, δτ)).

In the actual analysis, δy and δπ are not necessarily zero, but the general ideas of the warm-up are
still applicable: using the smoothness of the outer verifier, we can relate Ec [δ(yπ[Ic], δ(y′Π[Ic]))]
with δy and δπ. Since δy and δπ are assumed to be O(δτ), then for sufficiently many c’s it holds that
yπ[Ic] is close to y′Π[Ic]. Then, the constant residual circuit distance of the verifier implies that for
these c’s the inner verifier rejects with probability proportional to δ(τc, Tc). Details follow.

We say that a fixed coin sequence c is good if yπ[Ic] is ∆/2-close to y′Π[Ic]. Strong canonicality
of the inner verifier means that the probability it rejects circuit Dc, input oracle yπ[Ic] and proof
oracle τc is at least

αin · min
s∈Sat(Dc)

{max (δ(yπ[Ic], s), δ(τc, Tc(Dc; s)))}

The outer verifier has residual circuit distance ∆, so for good coins c, δ(yπ[Ic], s) ≥ ∆/2 for all s ∈
Sat(Dc) \ {y′Π[Ic]}. Therefore, for good c’s, max (δ(yπ[Ic], s), δ(τc, Tc(Dc; s))) is at least δ(τc, Tc)
when taking s = y′Π[Ic], and is at least ∆/2 when s satisfies Dc but differs from y′Π[Ic]. Hence,

P [Vτc
in (Dc) = 0 | c good] ≥ αin · min {∆/2, δ(τc, Tc)} ≥ αin · ∆

2
· δ(τc, Tc) (5)

Now, we show that since δy and δπ are O(δτ), then the expected distance between inner proofs over
good c’s upper-bounds the distance between all inner proofs δτ (up to constants). Smoothness of
the outer verifier implies that sampling a random coin sequence c and location j in Ic is the same
as uniformly sampling from [|yπ|] (as detailed in Appendix B.2). Therefore,

δ
(
yπ, y′Π

)
:= P

k

[
yπ[k] 6= y′Π[k]

]
= P

j,c

[
yπ[Ic][j] 6= y′Π[Ic][j]

]
= E

c

[
δ
(
yπ[Ic], y′Π[Ic]

)]

Thus,

δ
(
yπ, y′Π

)
≥ ∆

2
· P

c

[
δ
(
yπ[Ic], y′Π[Ic]

)
>

∆

2

]
=

∆

2
· P

c
[c ¬good]

16



Note that max (δy, δπ) ≥ δ(yπ, y′Π), so by the assumption that max (δy, δπ) < ∆ · δτ/4 we have
that δτ/2 ≥ P [c ¬good]. In addition,

δτ = E
c
[δ(τc, Tc)] ≤ E

c
[δ(τc, Tc) | c good] · P

c
[c good] + P

c
[c ¬good]

Which implies
E
c
[δ(τc, Tc) | c good] · P

c
[c good] ≥ δτ/2 (6)

Using Equations (5) and (6), the probability that the composite verifier rejects the given input and
proof is at least

E
c
[P [Vτc

in (x) = 0] | c good] · P
c
[c good] ≥ αin · ∆

2
· E

c
[δ(τc, Tc) | c good] · P

c
[c good] ≥ αin · ∆

4
· δτ

If Vin is a strong canonical robust PCPP, then we note that the lower bounds on the rejection
probability hold for the expected distance of the bits read from (yπ[Ic], τc) from satisfying Vcomp’s residual
circuit.13 As for residual circuit distance: any two strings satisfying the composite residual circuit
satisfy the inner residual circuit, so the residual circuit distance of the inner verifier is inherited by
the composite verifier.

3.3 Composing the construct of Theorem 1.12

Now that we know how to compose PCPPs, let’s talk about which PCPPs we compose. For now,
we postulate two smooth strong canonical (R)PCPPs of certain complexities and reckon that their
composition yields a PCPP of logarithmic randomness and constant queries (their actual construc-
tion and analysis constitutes the rest of this work).

Proposition 3.6 (Hadamard-based PCPP). There exists a smooth strong canonical PCPP for CIRCUITVAL

of quadratic randomness and constant query complexities.

Proposition 3.7 (Reed–Muller-based RPCPP). There exists a smooth strong canonical robust PCPP for
CIRCUITVAL of logarithmic randomness complexity, polylogarithmic decision complexity, and constant
residual circuit distance.

As in [Aro+98; Ben+06], the Reed–Muller-based RPCPP is composed with itself to obtain a
smooth strong canonical RPCPP of logarithmic randomness complexity, poly log log decision com-
plexity and constant residual circuit distance. The resulting RPCPP is then composed (as an outer
verifier) with an inner Hadamard-based PCPP to obtain a smooth strong canonical PCPP of loga-
rithmic randomness and constant query complexities, proving Theorem 1.12.

4 The Hadamard-based smooth strong canonical PCPP

We now turn to the actual construction of smooth strong canonical PCPPs, starting with the
Hadamard-based PCPP of [Aro+98, Section 4] as presented in [Har04, Chapter 4].

13To transform the multi-piece robust PCPP to a single-piece robust PCPP, we note that Lemma 2.2 holds for robust
PCPPs as well: for strong canonicality, rather than analyzing the rejection probability of the verifier, we can analyze the
expected distance from being accepted by the verifier (using exactly the same reasoning).
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4.1 Algebrization and the Hadamard code

A circuit and its input can be expressed as a system of quadratic equations and an assignment,
such that the input satisfies the circuit if and only if the assignment satisfies the equation system.
The Hadamard-based PCPP verifier capitalizes on this fact, with the proof for an input consisting
of the truth tables of evaluations of all (linear and) quadratic equations on the assignment cor-
responding to the input. First, let’s take a more detailed look at this correspondence, which is
sometimes called an algebrization of the combinatorial problem of circuit valuation to the algebraic
problem of quadratic equation valuation.

Definition 4.1 (Computational extension). Let C be a circuit of size n with n0 input gates and let
y ∈ {0, 1}n0 . The computational extension of y w.r.t C is the string corresponding to the values output
by each gate of C when computing y, and is denoted yC ∈ {0, 1}n. That is, yC[i] is the output of
the ith gate of C when computing input y. Assuming wlog that the first n0 gates of C are its input
gates, it holds that y = yC[1] · · · yC[n0].

Definition 4.2 (Outer product). The outer product of vectors u, v ∈ {0, 1}n, denoted u ⊗ v, is the n2

dimensional vector obtained by “flattening” the n × n matrix whose entry in the ith column and
jth row is u[i] · v[j]. That is, u ⊗ v[(i − 1)n + j] := u[i] · v[j] for all i, j ∈ [n].

Proposition 4.3. There exists a polynomial-time computable mapping that maps circuit C of size n with m
input bits to an n × n2 matrix AC and vector bC ∈ {0, 1}n such that input y ∈ {0, 1}m satisfies C if and
only if yC ∈ {0, 1}n satisfies AC(yC ⊗ yC) = bC.

Proof sketch. Let C be a circuit of size n that has n0 input gates. The reduction computes b ∈
{0, 1}n and a1, . . . , an ∈ {0, 1}n2

according to Table 1, and lets AC be the matrix whose ith row is
ai.

Table 1: Mapping of gates to equations. ei,j ∈ {0, 1}n2
is all zeroes except for coordinate (i − 1)n+ j.

Gate First input gate Second input gate Gate type Reduction output

i
j

k
AND

ai := ei,i + ej,k

bi := 0

OR
ai := ei,i + ej,j + ek,k + ej,k

bi := 0

NOT
ai := ei,i + ej,j

bi := 1

OUTPUT
ai := ei,i

bi := 1

INPUT
ai := 0

bi := 0

The Hadamard encoding of a string y ∈ {0, 1}n is the evaluation of all linear equations (over F2)
on n variables on the assignment y. Formally,

Definition 4.4. The Hadamard encoding of a vector y ∈ {0, 1}n is the function Hady : {0, 1}n →
{0, 1} given by Hady(z) := y · z = ∑

n
i=1 y[i]z[i] mod 2.
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Recall some useful facts about this encoding:

Fact 4.5. For all n ∈ N:

Distance. A function f : {0, 1}n → {0, 1} is linear if and only if there exists y ∈ {0, 1}n such that
f = Hady. For all y 6= y′ it holds that δ(Hady, Hady′) = 1/2, associating Hady with its 2n-bit-
long truth table. That is to say that the Hadamard code has relative distance 1/2.

Strong Testability. Consider a test that given f : {0, 1}n → {0, 1} uniformly samples x, x′ ∈ {0, 1}n and
accepts if and only if

f (x) + f
(
x′
)
= f

(
x + x′

)

As shown in [BLR93], if f is δ-far from all Hadamard codewords then the test rejects with probability
at least min (δ/2, 1/6). Note that the test makes three queries to f and tosses 2n random coins.

Self-correction. Consider a self-correction procedure that given f : {0, 1}n → {0, 1} and x ∈ {0, 1}n,
uniformly samples r ∈ {0, 1}n and outputs f (x + r) − f (r). It holds that if f is δ-close to the

Hadamard codeword f̃ then for all x the procedure outputs f̃ (x) with probability at least 1 − 2δ.
Note that the procedure makes two queries to f and tosses n random coins.

4.2 The PCPP and its analysis

Algorithm 4.6 (The Hadamard-based PCPP [Aro+98]). The canonical proof-piece strategies of
circuit C and satisfying input y are the Hadamard encodings of yC and yC ⊗ yC (the computational
extension of y, and the outer product of the latter with itself, respectively). That is, Π1(C; y) :=
HadyC

and Π2(C; y) := HadyC⊗yC
. The verifier takes explicit input C and is given access to input

oracle y and alleged proof-piece oracles π1 and π2. It performs the following tests, and accepts if
and only if all of them passed:

1. Strong codeword checks. Perform the strong codeword test of Fact 4.5 on both π1 and π2.

2. Oracle-oracle consistency check: Check that the assignment allegedly encoded by π2 is the outer
product of the assignment allegedly encoded by π1; that is, uniformly sample u, v ∈ {0, 1}n

and check that π1(u)π1(v) = π2(u ⊗ v), using self-correction on π2.

3. Satisfaction check. Compute the quadratic equation system (AC, bC) corresponding to circuit
C via Proposition 4.3, and check that the assignment allegedly encoded by π2 satisfies the
quadratic equation system (AC, bC) by checking that it satisfies a random linear combination
of equations; that is, uniformly sample w ∈ {0, 1}n and check that π2(w⊤AC) = HadbC

(w),
using self-correction on π2. Note that the verifier computes AC and HadbC

based only on the
circuit C, which is given explicitly.

4. Oracle-witness consistency check. Check that π1 encodes the computational extension of y; that
is, uniformly sample i ∈ [m] and check that y[i] = π1(ei) using self-correction on π1, where
ei ∈ {0, 1}m is the unit vector 0i−110n−i.

It is known that Algorithm 4.6 is a PCPP for CIRCUITVAL with polynomial randomness com-
plexity and constant query complexity (see [Aro+98] or later reformulation in [Har04, Section 4.1]).
It is smooth (as a two-piece PCPP), as only a single uniformly random location of y is queried, and
locations queried in π1 and π2 are all uniformly random. We show that it is strong canonical, and
can therefore be transformed into a single-piece smooth strong canonical PCPP for CIRCUITVAL

using Lemma 2.2, thereby proving Proposition 3.6.
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Proof. Fix circuit C, input oracle y and proof-piece oracles π1 and π2. We show that the verifier
rejects with probability at least

5

72
· min

y′∈Sat(C)

{
max

(
δ
(
y, y′

)
, δ
(
π1, Π1

(
C; y′

))
, δ
(
π2, Π2

(
C; y′

)))}
(7)

where Sat(C) denotes the set of satisfying inputs of C.
Let π̃1 and π̃2 be the Hadamard codewords closest to π1 and π2 respectively. Let z̃ ∈ {0, 1}n

and Z̃ ∈ {0, 1}n×n be the decodings of π̃1 and π̃2 respectively, so that π̃1 = Hadz̃ and π̃2 = HadZ̃.
Fact 4.5 implies that if π1 or π2 are 1/12-far from π̃1 or π̃2 (respectively) then one of the linearity
tests reject with probability at least 1/24. Hence, we may assume max (δ(π1, π̃1), δ(π2, π̃2)) ≤
1/12. Let ỹ be the n0-bit-long prefix of z̃, which corresponds to the values z̃ gives to the input
gates of C.

We start by reckoning that if π̃1, π̃2 aren’t the canonical proof-pieces for (C; ỹ) then rejection
occurs with high probability, and then show that if they were the canonical proof-pieces then the
oracle-witness consistency check (resp. strong codeword check) rejects the input oracle (resp.

proof-piece oracles) with probability proportional to δ(y, ỹ) (resp. max (δ(π1, π̃1), δ(π2, π̃2))).
Observe that π̃1, π̃2 are the canonical proof-pieces of (C; ỹ) if and only if the following condi-

tions hold:

• ỹ satisfies the circuit C. (Otherwise, ỹ has no canonical proof.)

• π̃1 is the Hadamard encoding of the computational extension of ỹ, denoted ỹC.

• π̃2 is the Hadamard encoding of ỹC ⊗ ỹC.

By Proposition 4.3, we have that π̃1, π̃2 are the canonical proof-pieces of (C; ỹ) if and only if Z̃ =
z̃ ⊗ z̃ and z̃ satisfies the equation system (AC, bC). With this observation in mind, we examine the
following cases.

Case 1. π̃1, π̃2 are not the canonical proof-pieces of ỹ.

We claim that rejection occurs with high probability. Indeed, by the foregoing observation, one of
two sub-cases must hold:

Case 1.1. Z̃ 6= z̃ ⊗ z̃.

In this case, oracle-oracle consistency check rejects with high probability: The inequation
π̃1(u)ṽ 6= π̃2(u ⊗ v) holds for at least a quarter of possible u, v ∈ {0, 1}n,14 therefore
π1(u)π1(u) 6= π̃2(u ⊗ v) with probability at least 1/4 − 2 · δ(π1, π̃1) ≥ 1/12. The self-
corrected query to π2 gives the value of π̃2 with probability 1 − 2 · (δ(π2, π̃2)) ≥ 5/6, so we
have that π1(u)π(v) 6= π2(u ⊗ v) occurs with probability at least (1/12) · (5/6) = 5/72.

Case 1.2. Z̃ = z̃ ⊗ z̃ but z̃ does not satisfy the quadratic equation system (AC, bC).

In this case, it is the satisfaction check that rejects with high probability: By Proposition 4.3 it
holds that ACZ̃ 6= bC, and notice that HadZ̃(w

⊤AC)(w) = HadAC Z̃(w) for all w ∈ {0, 1}n.

Therefore, the inequation π̃2(w⊤AC)(w) 6= HadbC
(w) holds with probability 1/2 over the

choice of a uniformly random w, as the Hadamard code has relative distance 1/2. Accounting
for a single self-corrected query, the satisfaction test rejects with probability at least (1/2) ·
(1 − 2δ(π2, π̃2)) ≥ 5/12.

14This follows from the fact that for two distinct n × n matrices A and B, the inequation u⊤Av 6= u⊤Bv for at least a
quarter of all possible u, v ∈ {0, 1}n.
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Case 2. π̃1, π̃2 are the canonical proof-pieces of ỹ.

In particular, ỹ is a satisfying input for circuit C. By definition of the Hamming distance and ac-
counting for self-correction, the oracle-witness test rejects with probability δ(y, ỹ)(1 − 2δ(π1, π̃1)) ≥
5δ(y, ỹ)/6. Additionally the linearity tests reject with probability greater than both δ(π1, π̃1)/2
and δ(π2, π̃2)/2. All in all, in this case the verifier rejects with probability at least

max

(
5

6
· δ(y, ỹ),

1

2
· δ(π1, π̃1),

1

2
· δ(π2, π̃2)

)
≥

5

72
· min

y′∈Sat(C)

{
max

(
δ
(
y, y′

)
, δ
(
π1, Π1

(
C; y′

))
, δ
(
π2, Π2C; y′

))}

where the inequality is justified by the fact that ỹ satisfies circuit C (however it does not necessarily
minimize the expression on the right hand side).

5 The Reed–Muller-based smooth strong canonical robust PCPP

The construction of the Reed–Muller-based RPCPP is more involved than that of the Hadamard-
based PCPP. We follow its presentation in [Har04, Part 1] (a reorganization of [Ben+06]), noting
that some components mentioned therein appeared in prior works (for example [AS98; Aro+98]).
We find this presentation appealing as it breaks the construction down to four bite-sized steps.
Essentially, we prove that the first step yields a PCPP that is smooth and strong canonical, and
that the transition between each step preserves smoothness and strong canonicality. Along the
way, we will also keep track of the residual circuit distance (see Definition 3.4) and observe that it
is constant.

So how do we go about proving this? First, it’s worth noting that the intermediate PCPPs are
multi-piece and, more importantly, issue queries to oracles of larger, non-binary alphabets. Don’t
worry, eventually (Section 5.4) we show how to reduce alphabet size back to binary, and of course
our old friend Lemma 2.2 will reduce the number of pieces to one.15 Anyways, the first step
is constructing a smooth and strong canonical RPCPP for the algebraic problem of determining
whether a function is a low-degree polynomial that is identically zero on a subcube (Section 5.1).
This problem is closely related to circuit satisfiability: fixing a circuit, inputs can be encoded in a
way such that the input satisfies the circuit if and only if its encoding is Zero on Subcube. Sec-
tion 5.2 capitalizes on this to derive an RPCPP for the problem of circuit satisfiability, which is
then transformed to an RPCPP for CIRCUITVAL by adding a consistency test (Section 5.3).

PCPPs over larger alphabets. Though the final result of this section is a (Boolean) smooth and
strong canonical RPCPP, the PCPPs used along the way are non-Boolean, meaning that their
queries are answered not with bits but with elements of an alphabet of larger size. Furthermore,
the intermediate multi-piece PCPPs may have different alphabets for different pieces.

So far, we did not explicitly mention which alphabet was used (indeed, it was always binary)
so the previously introduced notions and definitions need not be changed, except for replacing
relative Hamming distance with the generalized relative Hamming distance.

15As in Section 3, to transform the multi-piece robust PCPP to a single-piece robust PCPP we note that Lemma 2.2
holds for robust PCPPs as well: for strong canonicality, rather than analyzing the rejection probability of the verifier, we
can analyze the expected distance from being accepted by the verifier (using exactly the same reasoning exactly).
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Definition 5.1 (Generalized relative Hamming metric). Fix sets Σ1, . . . , Σk and let x = (x1, . . . , xk)
and y = (y1, . . . , yk) such that xi, yi ∈ Σi for all i ∈ [k]. The generalized (relative) Hamming distance
between x and y is the fraction of locations in which x and y differ, that is δ(x, y) := Pi [xi 6= yi]
for a uniformly random i ∈ [k].

Note that some of the sets Σ1, . . . , Σk may not be distinct. In particular, if Σ1 = · · · = Σk,
then the generalized relative Hamming distance coincides with the relative Hamming distance as
defined way back in Section 1.1.1.

Remark 5.2. A letter in the alphabet Σi can be represented by log |Σi| bits. However, the size of Σi

is (deliberately) not accounted for in the generalized Hamming distance, therefore the generalized
Hamming distance between x and y is not necessarily the same as the Hamming distance between
the binary representation of x and y (in which xi and yi are each replaced with log |Σi| bits for each
i ∈ [k]).

All distances referred to in Section 5 are in the generalized Hamming metric.

5.1 A smooth strong canonical RPCPP for Zero on Subcube

In this section we follow [Har04, Section 5.3.2] in constructing an RPCPP for the algebraic problem
of determining whether a function is (close to) a low-degree polynomial that is identically zero on
a subcube (formalized in Definition 5.9). Before we turn to the main construction, we present a
generalization of a property tester for low-degree polynomials to sequences (vectors) of functions,
which will be used in the RPCPP construction. Specifically, given oracle access to a function f :
F

m → F
k, we test whether it is close to a sequence (vector) of k low-degree polynomials (see

Definition 5.3 quoted below).

Definition 5.3 (Vector-valued low-degree polynomial). A function f : F
m → F

k is a vector-valued
multivariate polynomial of degree at most d if for all i ∈ [k] the projection of f to the ith coordinate is a
multivariate polynomial of (total) degree at most d, where the projection of f to the ith coordinate
is denoted fi : F

m → F and defined by fi(x) := f (x)i for all x ∈ F
m.

The distance between such vector-valued functions is measured according to the generalized
Hamming metric of Definition 5.1; that is, f : F

m → F
k is δ-far from being a low-degree vector-

valued polynomial if Px [ f (x) 6= f̃ (x)] > δ for any vector-valued polynomial f̃ of degree at most

d. We stress that f (x) 6= f̃ (x) when there exists i such that fi(x) 6= f̃i(x).
Recall that the line L through F

m with intercept x ∈ F
m and slope h ∈ F

m is the set of points
L := {x + ih : i ∈ F}. A uniformly random line (through F

m) is obtained by sampling x, h ∈ F
m

uniformly at random and letting L be the line with slope h and intercept x. Throughout this
section we will use f [L] to denote the restriction of f to the line L.

Algorithm 5.4 (PL-VLDT). The point-line vector-valued low-degree test (PL-VLDT) is given access to
an oracle f : F

m → F
k and a “lines” proof oracle g that maps line L to vector-valued univariate

polynomial gL : L → F
k of degree at most d. It samples a uniformly random line L through F

m

and uniformly random point x ∈ L, and accepts if and only if f (x) = gL(x).

PL-VLDT uses 2m log |F| random coins and makes a single query to each of its two oracles. Its
soundness proof is due to Oded Goldreich and Madhu Sudan and can be found in Appendix C.
We quote the relevant proposition:

Proposition 5.5 (Proposition C.4). Assuming |F| > 25k, if the input oracle f : F
m → F

k is δ-far from
being a vector-valued polynomial of degree at most d then for any lines oracle g, PL-VLDT rejects f and g
with probability at least δ/40.
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We will use a variant of PL-VLDT that has higher query complexity, but does not require an
auxiliary “lines” oracle; instead, it queries f on an entire line. As shown in Proposition 5.7, this test
has robust soundness, meaning that the expected distance of answers to its queries from agreeing
with a univariate low-degree polynomial (and therefore being accepted by the test) is proportional
to the distance of the input function from being low-degree.

Algorithm 5.6 (VLDT). The vector-valued low-degree test is given explicit inputs F, m and d and
access to an input oracle f : F

m → F
k. It samples a uniformly random line L through F

m, queries
f on all points in L, and accepts if and only if the obtained values (describing the restriction of f
to L) agree with a univariate vector-valued polynomial of degree at most d.

Algorithm 5.6 uses 2m log |F| random coins and makes |F| queries to its input. Its robust
soundness is asserted in Proposition 5.7.

Proposition 5.7. Assuming |F| > 25k, if the input f is δ-far from being a vector-valued polynomial
of degree at most d, then the expected distance of answers to the queries of VLDT from agreeing with a
univariate low-degree polynomial (and therefore being accepted by the test) is at least β · δ, for β = 1/40.

Proof. Given a function f , we define a lines oracle g that assigns each line L the (univariate,
vector-valued) low-degree polynomial gL closest to f [L]. By definition, when line L is sampled by
VLDT, the distance of answers received from f (namely f [L]) from being accepted is δ( f [L], gL).
On the other hand, PL-VLDT rejects input oracle f and the lines oracle g := (gL)L with probabil-
ity EL [Px∈L [ f (x) 6= gL(x)]] = EL [δ( f [L], gL)] which, invoking Proposition 5.5, is at least δ/40.
Therefore, the expected distance of the answers that VLDT receives from being accepted is at least
δ/40.

Finally, we recall a basic and important property of low-degree polynomials.

Fact 5.8 (The Schwartz-Zippel Lemma). For any finite field F and integers m and d, if P : F
m → F is

a nonzero polynomial of degree at most d, then Px [P(x) = 0] ≤ d/|F| for x ∈ F
m sampled uniformly at

random.

With these tools in hand, the construction can commence. We analyze the smoothness and
strongness of a robust PCPP for Zero on Subcube [Har04, Section 5.3.2], an algebraic analogue of
CIRCUITVAL, starting with a formal definition of this property.

Definition 5.9 (ZOS). Fix a finite field F, positive integers m and d and set H ⊆ F. A degree d
polynomial f : F

m → F is Zero on the Subcube Hm (Zero on Subcube for short) if its restriction to
Hm is identically 0. We denote the set of all Zero on the Subcube polynomials by ZOS(F, m, d, H).
When the parameters are obvious from context, the shorthand ZOS is used instead.

We quote a useful characterization of Zero on Subcube polynomials that gives rise to a natural
robust PCPP for the set ZOS.

Fact 5.10 ([Har04, Proposition 5.3.4]). For any field F, positive integers m and d and set H ⊆ F,
a polynomial f : F

m → F of degree at most d is zero on the subcube Hm if and only if there exists a
sequence of polynomials P1, . . . , Pm : F

m → F each of degree at most d, and a sequence of polynomials
Q1, . . . , Qm : F

m → F each of degree at most d − |H|, such that for all x1, . . . , xm ∈ F and i ∈ [m]:

Pi−1(x1, . . . , xm) = η(xi) · Qi(x1, . . . , xm) + Pi(x1, . . . , xm) (8)

Pm(x1, . . . , xm) = 0
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where P0 := f , and η is a univariate polynomial of degree |H| that vanishes on H which we define by
η(x) := ∏h∈H (x − h).

The vector-valued polynomials P = (P1, . . . , Pm) and Q = (Q1, . . . , Qm) are called the division
witnesses of f .16

Algorithm 5.11 (ZOS-RPCPP). The canonical proof-pieces for f ∈ ZOS are the division witnesses
of f , denoted P( f ) := (P1( f ), . . . , Pm( f )) and Q( f ) := (Q1( f ), . . . , Qm( f )), as guaranteed by
Fact 5.10. For input field F, dimension m and degree d, given oracle access to input f : F

m → F

and proof-pieces p : F
m → F

m and q : F
m → F

m, the verifier samples a random line L through
F

m, queries f , p and q on each point in L, and performs the following checks:

1. Low-degree checks. Check that the restrictions of f and p to the line L, denoted f [L] and
p[L], are vector-valued univariate polynomials of degree at most d.17 Check that q[L] is a
vector-valued univariate polynomial of degree at most d − |H|.

2. “Unbundle” the answers received from p and q to obtain pi(x) and qi(x) for each i ∈ [m] and
x ∈ L. Check the following:

(a) Division checks. For each i ∈ [m] and (x1, . . . , xm) ∈ L, check that

pi−1(x1, . . . , xm) = η(xi) · qi(x1, . . . , xm) + pi(x1, . . . , xm)

where p0 := f , and η is a univariate polynomial of degree |H| that vanishes on H,
defined η(x) := ∏h∈H (x − h).

(b) Identity check. For each (x1, . . . , xm) ∈ L, check that

pm(x1, . . . , xm) = 0

The verifier accepts if and only if all the above checks passed.

ZOS-RPCPP is piecwise-smooth, makes |F| queries to each of its three oracles and uses
2m log |F| random coins. Its residual circuit distance (Definition 3.4) is 1/2 as any satisfying
input to its residual circuit is composed of three univariate polynomials of degree at most d, each
occupying a third of the input. As such, any two different satisfying inputs agree on at most a
2/3 · d/|F| ≤ 1/2 fraction of locations.

Lemma 5.12. Suppose ZOS-RPCPP is given field F and degree d such that 1− β ≥ 4d/|F|, and access to
oracles f , p and q. Then the expected distance (over a random line) of the answers to ZOS-RPCPP’s queries
from being accepted is at least

β

12
· min

f ′∈ZOS(F,m,d,H)

{
max

(
δ
(

f , f ′
)
, δ
(

p, P
(

f ′
))

, δ
(
q, Q

(
f ′
)))}

(9)

where β is the constant of Proposition 5.7, and P( f ′) and Q( f ′) are the canonical proof-pieces of f ′ as
described in Algorithm 5.11.

16This ad-hoc term alludes to the proof of Fact 5.10: an iterative process that starts with the polynomial f = P0, and
in the ith iteration divides Pi−1 by η(xi) to obtain quotient Qi and remainder Pi.

17Indeed the term “vector-valued” is degenerate for f : F
m → F as its range is one-dimensional.
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Proof. Fix input oracle p0 := f : F
m → F and proof oracles p = (p1, . . . , pm) and q = (q1, . . . , qm)

with pi, qi : F
m → F. Let f̃ and p̃ be the vector-valued polynomials of degree at most d closest

to f and p, and q̃ be the polynomial of degree at most d − |H| closest to q. Let p̃i and q̃i be the

projections of p and q to their ith coordinate. Note that p0 := f and so p̃0 := f̃ .

We start by showing that unless f̃ is Zero on Subcube and p̃, q̃ are its canonical proof-pieces,
then the expected distance is Ω(1).

Case 1. Either f , p or q are 1/4-far from f̃ , p̃ or q̃. Assume wlog that p is 1/4-far from p̃. By
Proposition 5.7, the expected distance of p[L] from a univariate polynomial of degree at most d is
at least β/4. However the answers of p are just a third of the answers received by all oracles, so

the expected distance of ( f [L], p[L], q[L]) from satisfying the low-degree checks is at least 1
3 ·

β
4 .

Case 2. f , p and q are close to low-degree polynomials that do not satisfy Equation (8); that is,

f , p and q are 1/4-close to f̃ , p̃ and q̃ but for some i it holds that p̃i−1, p̃i and q̃i don’t satisfy
Equation (8). By Fact 5.8, either p̃i−1, p̃i or q̃i do not satisfy Equation (8) on at least a fraction of
1 − d/|F| of points in F

m. Since pi−1, pi and qi are 1/4-close to p̃i−1, p̃i and q̃i respectively,18 then
pi−1, pi and qi do not satisfy Equation (8) on at least a fraction of 1 − d/|F| − 3/4 = 1/4 − d/|F|
points in F

m. Therefore the expected distance of ( f [L], p[L], q[L]) from satisfying the division
checks is at least 1/3 · (1/4 − d/|F|) ≥ β/12.

Case 3. pm is 1/4-close to p̃m but p̃m 6≡ 0. By Fact 5.8, pm(x) 6= 0 on at least a fraction of
1/4 − d/|F| of points x ∈ F

m. As the answers of p are a third of the answers received by all
oracles, the expected distance of ( f [L], p[L], q[L]) from satisfying the identity check is at least
1/3 · (1/4 − d/|F|) ≥ β/12.

If all three previous cases are are false, then the input oracle is close to a Zero on Subcube polyno-
mial, and the given proof-piece oracles are close to the canonical proof-pieces for that polynomial.
These proof-pieces are low-degree polynomials, therefore the distance of the given oracles from
proving that the input is Zero on Subcube is exactly their distance from being low-degree polyno-
mials (similarly, the distance of the input from being Zero on Subcube is its distance from being
low-degree), and VLDT rejects with probability proportional to this distance. Details follow.

As we said, in this case f̃ is zero on the subcube Hm, and p̃, q̃ are its canonical proof-pieces.

Since δ( f , f̃ ) < 1/4 then f̃ is the only low-degree polynomial 1/4-close to f , and since f̃ ∈ ZOS

it must be that f̃ is function from ZOS(F, m, d, H) closest to f . We conclude the proof by showing
that the expected distance of all answers from satisfying is greater than Expression 9: Assume
that δ(q, q̃) maximizes Expression 9. The expected distance of answers to queries made by VLDT
to oracle q from satisfying is at least β · δ(q, q̃). But as the answers of q account for a third of the
all answers received, we have that the expected distance of all answers on a random line from

satisfying is at least β · δ(q, q̃)/3 = β · δ(q, Q( f̃ ))/3. If f or p maximized Expression 9 then similar
arguing gives the required result.

5.2 A smooth strong canonical RPCP for CIRCUITSAT

To construct a robust PCP for CIRCUITSAT, we first recall an algebrization (i.e. algebraic descrip-
tion) of circuits and their inputs such that an input satisfies the circuit if and only if an encoding
of the input is zero on a certain (fixed) subcube.

18Indeed, notice that δ(pi, p̃i) ≤ δ(p, p̃) for all i ∈ [m] and similarly for q and q̃.
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Definition 5.13 (Low-degree extension). Let z : Hm → F. The low-degree extension of z to F
m is the

unique polynomial ẑ : F
m → F of degree at most m|H| that agrees with z on Hm.19

We loosely summarize the algebrization of [Har04, Section 5.4.1]. A circuit C of size n is as-
sociated with a function C′ : [n]3 × {0, 1}3 → {0, 1} such that C′(i1, i2, i3, b1, b2, b3) = 1 if and
only if assigning gates i1, i2 and i3 the values ¬b1, ¬b2 and ¬b3 necessarily results in an invalid or
unsatisfying computation of the circuit. The interested reader is referred to [Har04] for a formal
definition of these,20 and we will describe them by example: if gate 5 is the output gate of C then
C′(5, 1, 2, 1, 0, 0) = 1 because (by definition) a satisfying computation does not have the output
gate outputting the value 0. As another example, suppose that the 7th gate is an OR gate taking
input from gates 2 and 4, then C′(2, 4, 7, 1, 1, 0) = 1 because in a valid computation an OR gate
taking two 0 inputs cannot output 1.

So, C′ indicates when an assignment to C’s gates results in an invalid or unsatisfying com-
putation. Thus for any alleged computational extension z (see Definition 4.1), the product F′ =
C′(i1, i2, i3, b1, b2, b3) · (z[i1]− b1)(z[i2]− b2)(z[i3]− b3) will be zero if and only if z is a computa-
tional extension of a satisfying input. Another key observation is that replacing C′ by its low-
degree extension Ĉ and z by its low-degree extension ẑ results in a product F that has low-degree.
Conversely, F is Zero on Subcube (and in particular low-degree) only if z was a satisfying assign-
ment.

We refer the reader to [Har04, Section 5.4.1] for a deeper discussion, which is summarized in
the following statement.

Fact 5.14 (Algebrization of CIRCUITSAT). There exists a polynomial reduction that maps a circuit C of
size n to a polynomial Ĉ : F

3m+3 → F of degree at most d where m := log n/ log log n, H := [n1/m],
d = (3m + 3)|H| and |F| = O((d + 3m|H|)3), such that Ĉ satisfies the following:

• For any e : F
m → F, let FC,e : F

3m+3 → F be given by

FC;e(x1, . . . , x3m+3) :=Ĉ(x1, . . . , x3m+3) · (e(x1, . . . , xm)− x3m+1)

· (e(xm+1, . . . , x2m)− x3m+2) · (e(x2m+1, . . . , x3m)− x3m+3)

Then, for any polynomial e : F
m → F of degree at most m|H|, the function FC;e is identically zero on

H3m+3 if and only if e is the low-degree extension of a computational extension of an assignment that
satisfies C.

Algorithm 5.15 (CIRCUITSAT-RPCP). For any circuit C and satisfying input y the canonical proof
consists of four pieces: the low-degree extension of the computational extension of y denoted ŷC,
the polynomial FC;ŷC

as defined in Fact 5.14, followed by the proof-pieces (for ZOS-RPCPP) that

FC;ŷC
is zero on the subcube H3m+3, namely its division witnesses (of Fact 5.10) denoted P(C; y) and

Q(C; y). Given explicit access to circuit C of size n, and oracle access to e : F
m → F, f : F

m′ → F,
p : F

m′ → F
m′

and q : F
m′ → F

m′
where |F| = O((d + 1m|H|)3) and m′ := 3m + 3, the verifier

samples a uniformly random line L′ through F
m′

and performs the following checks:

19We will only use the uniqueness and low-degree properties of the extension, but if you insist, know that it is given
by

ẑ(x) := ∑
h∈Hm

z(h) · ∏
i∈[m]

h′∈H\{hi}

xi − h′

hi − h′

20In [Har04] these notions are both referred to as invalid configurations.
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1. Zero on Subcube check. Check that f is a polynomial of degree at most d′ that is zero on the
subcube Hm′

using ZOS-RPCPP with the random line L′, p and q as its proof-piece oracles,
and with d′ := m′|H| and H = [n1/m].

2. Low-degree check. Check that e is a polynomial of degree at most d using VLDT where d =
m|H|, with the projection of L′ onto its first m coordinates used as the random line. That is,
check that {e(x1, . . . , xm) : (x1, . . . , xm, . . . , xm′) ∈ L′} agrees with a univariate polynomial of
degree at most d.

3. Satisfaction check. For each x = (x1, . . . , xm′) ∈ L′, check that

f (x1, . . . , x3m+3) :=Ĉ(x1, . . . , x3m+3) · (e(x1, . . . , xm)− x3m+1) (10)

· (e(xm+1, . . . , x2m)− x3m+2) · (e(x2m+1, . . . , x3m)− x3m+3)

where Ĉ is as guaranteed by the algebrization of CIRCUITSAT (Fact 5.14).

The verifier accepts if and only if all the above checks passed.

CIRCUITSAT-RPCP tosses m′ log |F| = O(m log |F|) random coins. It issues a total of 6|F|
queries to all of its oracles. Namely, for each x ∈ L′ it issues the following queries:

f (x), p(x), q(x), e(x1, . . . , xm), e(xm+1, . . . , x2m), e(x2m+1, . . . , x3m)

It has constant residual circuit distance (Definition 3.4), as any answer string that satisfies its deci-
sion circuit consists of 6 univariate low-degree polynomials, each composing a sixth of the entire
string. Thus, two different strings satisfying its decision circuit agree on at most a 5

6 · d
|F| ≤ 1/2

fraction of locations.

Lemma 5.16. Suppose CIRCUITSAT-RPCP is given satisfiable circuit C and access to proof-piece oracles
e : F

m → F, f : F
m′ → F, and p, q : F

m′ → F
m′

, with 1 − β ≥ 5d′/|F| where β is the constant of
Proposition 5.7. Then the expected distance of the answers to CIRCUITSAT-RPCP’s queries from satisfying
is at least

β

30
· min

y′∈Sat(C)

{
max

(
δ
(

e, ŷ′C
)

, δ
(

f , F
C;ŷ′C

)
, δ
(

p, P
(
C; y′

))
, δ
(
q, Q

(
C; y′

)))}
(11)

where Sat(C) denotes the set of satisfying inputs of C, and ŷ′C, F
C;ŷ′C

, P(C; y′) and Q(C; y′) are the canon-

ical proof-pieces of y′ as described in Algorithm 5.15.

Proof. Fix circuit C and oracles e, f , p and q. Let ẽ be the closest polynomial to e of degree at most

d, and let f̃ , p̃, q̃, p̃i and q̃i be the closest low-degree polynomials (as in Lemma 5.12). Consider the
following cases:

Case 1. Either of the oracles are 1/5-far from their closest low-degree polynomial. By Proposi-
tion 5.7, at least β/5 of the points read on a random line must be changed in order to satisfy
VLDT. The answers to queries made by the low-degree checks (either of Step 2 or Step 1) make
up for at least a sixth of the all answers received, therefore the expected distance of all received
answers from satisfying is at least β/30.

Case 2. All oracles are 1/5-close to low-degree polynomials, but p̃, q̃ are not the canonical proof-

pieces (for ZOS-RPCPP) that f̃ is Zero on Subcube. Just like in the proof of Lemma 5.12, the
answers to queries made in Step 1 are β/5-far from satisfying. These answers are a half of answers
to all queries, therefore the expected distance of all received answers from satisfying is at least
β/10.
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Case 3. All oracles are 1/5-close to low-degree polynomials, but ẽ and f̃ do not satisfy Equa-
tion (10). Then the expected number of points (on a random line) on which e and f violate Equa-
tion (10) is at least 1 − d′/F − 4 · 1/5 = 1/5 − d′/F, which is larger than β/5. Since the answers
to queries made in Step 3 make up for at least two-thirds of answers to all queries, the expected
distance of all answers from satisfying is at least 2β/15.

If all of the above are false, then the given oracles are close to proof-pieces proving that C is
satisfiable. These proof-pieces are low-degree polynomials, therefore the distance of the given
oracles from proving that C is satisfiable is exactly their distance from being low-degree, and
VLDT rejects with probability proportional to this distance. Details follow.

In this case, ẽ is a low-degree extension of a computational extension of a satisfying assignment

to C, and f̃ , p̃ and q̃ are its canonical proof-pieces. Since δ(e, ẽ) < 1/5 then ẽ is the only low-degree

polynomial 1/5-close to e, so it must be that ẽ = ŷ′C (where y′ is the minimizer of Expression 11).
Assume that q maximizes Expression 11. The expected distance of answers to queries made by
VLDT to q from satisfying is at least β · δ(q, q̃). But as the answers of q account for a sixth of all
answers received, the expected distance of all answers from satisfying is at least βδ(q, q̃)/6. If the
maximizers were e, f or p the claim follows using similar reasoning.

5.3 A smooth strong canonical RPCPP for CIRCUITVAL

In this section we transform CIRCUITSAT-RPCP to an RPCP of proximity for CIRCUITVAL. The
RPCPP is constructed by (additionally) testing consistency of the input oracle (an allegedly satis-
fying input to the circuit) with the proof-piece oracle corresponding to the alleged low-degree ex-
tension of its computational extension (see Definition 4.1). Low degree extension is systematic, in
the sense that the extended function is embedded in its extension, so consistency may be checked
by testing that the input oracle agrees with the systematic part of its alleged low-degree extension
on a uniformly random location. However, the systematic part of the proof-piece oracle is only
a tiny fraction of it (as n = o(|Fm|)), so a particularly nasty proof-piece oracle could be close to
an arbitrary low-degree polynomial (therefore passing the low-degree check), whose systematic
part was changed to match the input oracle (therefore passing the consistency check)—causing
the verifier to accept a proof that’s extremely far from the canonical one. This is resolved via self-
correction: the verifier checks that the proof-piece oracle is a low-degree univariate polynomial on
a random line through the location queried in the systematic part.

Algorithm 5.17 (CIRCUITVAL-RPCPP). The canonical proof of a circuit and its satisfying input
consists of the same four proof-pieces as in Algorithm 5.15. Given explicit access to circuit C of
size n with n0 input gates, and oracle access to input y : [n0] → {0, 1} and proof-pieces e : F

m → F,
f : F

m′ → F, p : F
m′ → F

m′
and q : F

m′ → F
m′

where m′ := 3m + 3, the verifier performs the
following checks:

1. Satisfiability check. Check that C is satisfiable using CIRCUITSAT-RPCP with e, f , p and q as
proof-piece oracles.

2. Consistency check. Sample a location in the input oracle by uniformly sampling x ∈ [n0] ≡
Hm, and a random line L through F

m with intercept x.21 Do the following:

(a) Check that e[L] is a univariate polynomial of degree at most d.

21A uniformly random line L through Fm with intercept x is obtained by sampling h ∈ F
m uniformly at random and

letting L := (x + ih : i ∈ F).
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(b) Check that y(x) = e(x), giving the query y(x) a weight of |L| = |F|.22

The verifier accepts if and only if the above checks passed.

CIRCUITVAL-RPCPP tosses (m + m′) log |F| = O(m log |F|) random coins. It issues a total
of 8|F| (weighted) queries to its oracles: in addition to the 6|F| queries of CIRCUITSAT-RPCP, it
queries e on the line L in Step 2a, and issues a query of weight |F| to w. It has constant resid-
ual circuit distance (Definition 3.4), which is shown by an application of Fact 5.8, just as with
ZOS-RPCPP and CIRCUITSAT-RPCP.

Lemma 5.18. Suppose CIRCUITVAL-RPCPP is given a satisfiable circuit C, input oracle y : [n0] → {0, 1}
and proof-piece oracles e : F

m → F, f : F
m′ → F, and p, q : F

m′ → F
m′

, with 1 − β ≥ d/|F|. Then the
expected distance of the answers to CIRCUITVAL-RPCPP’s queries from satisfying is at least

β

64
min

y′∈Sat(C)

{
max

(
δ
(
y, y′

)
δ
(

e, ŷ′C
)

, δ
(

f , FC;ŷ′

)
, δ
(

p, P
(
C; y′

))
, δ
(
q, Q

(
C; y′

)))}
(12)

where Sat(C) denotes the set of satisfying inputs of C, β is the constant of Proposition 5.7, and ŷ′C, F
C;ŷ′C

,

P(C; y′) and Q(C; y′) are the canonical proof-pieces of y′ as described in Algorithm 5.15.

Proof. Fix input C and oracles y, e, f , p and q. Let ẽ, f̃ , p̃, q̃, p̃i and q̃i as in the proof of Lemma 5.16,
and let y′ be the minimizer of Expression 12.

Following the analysis of CIRCUITSAT-RPCP, if f̃ , p̃ and q̃ are not the canonical proof-pieces
of ẽ proving that it is the low-degree extension of a satisfying assignment to C, then the expected
distance of answers to queries issued to e , f , p and q from satisfying is at least β/30. Since these
answers account for 6/8 of all answers, then the expected distance of answers to queries issued to
all oracles is at least 6/8 · β/30.

Otherwise f̃ , p̃ and q̃ are the canonical proofs proving that ẽ encodes a satisfying assignment
denoted ỹ. Again using the analysis of CIRCUITSAT-RPCP we have that the expected distance of
answers to queries issued to all oracles is at least

6

8
· β

30
· max

(
δ
(

e, ŷ′C
)

, δ
(

f , F
C;ŷ′C

)
, δ
(

p, P
(
C; y′

))
, δ
(
q, Q

(
C; y′

)))

We now argue that the expected distance is proportional also to δ(y, y′). With probability
Ω(δ(y, y′)), either the query from w must be changed (and it has a constant fraction of the weight
of all queries), or e must be changed on a constant fraction of locations on the line L (due to
self-correction). Details follow.

Notice that if e is 1/4-far from ẽ then by Proposition 5.7 and a similar weighting argument, the
distance of all answers from satisfying is at least 1/4 · β · 1/8,23 so what’s left is to show that the
expected distance is proportional to δ(y, ỹ). Indeed, if the sampled location x in Step 2 is one on
which y and ỹ differ, i.e. such that y(x) 6= ẽ(x), then either the value of y(x) must be changed or
e[L] must be changed to the closest univariate degree d polynomial whose value at x is y(x). Even
with x fixed, all points in L \ {x} are marginally uniform, so by linearity of expectation,

E
Random L with intercept x

[δ(e[L \ {x}], ẽ[L \ {x}])] = δ(e, ẽ) ≤ 1/4

22Reweighting is achieved by repeating the input gate corresponding to w(x) in the verifier’s residual circuit.
23Due to Step 2, but in fact low-degree tests occur in Step 1 as well.
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By Markov’s inequality, for any x ∈ F
m and random line L with intercept x, with probability at

least 1/2 it holds that e[L \ {x}] is 1/2-close to ẽ[L \ {x}], which means that e[L] is 2/3-close to
ẽ[L]. Conditioned on this event, it holds that δ(e[L], ẽ[L]) ≥ 1 − d/|F| − 2/3, which is greater
than 1/4.

All in all, we have that with probability at least δ(y, ỹ)/2, at least a quarter of the answers
received either from y or from e (in Step 2) must be changed so that Step 2 does not reject. As
these account for an eighth of all answers received, we have that the expected distance is at least
δ(y, ỹ)/64.

5.4 Alphabet Reduction

So we have an RPCPP for CIRCUITVAL, but we aren’t done just yet: CIRCUITVAL-RPCPP is non-
Boolean, meaning that it’s proofs are written using non-binary symbols. It’s time to show how
to transform it to a Boolean RPCPP. Actually, we will show how to transform any non-Boolean
RPCPP to a Boolean one of comparable complexities—provided its symbols are not much larger
than the number of queries it issues. Most importantly, we prove that this transformation pre-
serves smoothness and strong canonicality.

We show this even for multi-piece RPCPPs that have different-sized alphabets for different
pieces. That is, letting the ith proof-piece oracle answers its queries with symbols in the alphabet
Σi = {0, 1}σi it could be that not all σi’s are equal. We call σi the ith proof-piece answer-length
complexity of the RPCPP.

Lemma 5.19. Suppose CIRCUITVAL has a smooth and strong canonical multi-piece RPCPP with constant
residual circuit distance, ith answer complexity σi and query complexity q, and the additional property that
the verifier makes the same amount of queries to each of its oracles up to a constant multiplicative factor ρ.24

Then, CIRCUITVAL has a Boolean smooth and strong canonical multi-piece RPCPP with query complexity
O(q · maxi∈[k] σi), decision complexity growing by an additive factor of Õ(q · maxi∈[k] σi), and strongness
parameter shrinking by a constant factor.

Following [Har04, Section 5.4.3], the Boolean PCP is obtained by replacing each letter of the
non-Boolean PCP with its encoding in an error correcting code of constant relative distance. Since
each proof-piece may have different answer complexity, we choose a different code for each proof-
piece. Starting with a good code (i.e., of constant relative distance and rate) for the proof-piece
with maximal answer-length complexity, we take the other codes to have equal distance and block
length, increasing the rate if necessary using code repetition. Equal block length is necessary so
that the generalized Hamming distance between two non-Boolean proofs is reflected accurately
by their corresponding Boolean proofs (and is not scaled with differences in answer complexities
as in Remark 5.2).

The Boolean verifier emulates the non-Boolean one: for each symbol the non-Boolean verifier
queries, the Boolean verifier queries all bits in the corresponding block and answers the emulated
verifier with their decoding (rejecting if the block was not decodable). We then prove that any
Boolean proof is either far from being composed of codewords (therefore far from being accepted
by the Boolean verifier in expectation), or its expected distance from satisfying the Boolean verifier
is similar to the expected distance of its decoding from satisfying the non-Boolean verifier, where
its decoding refers to the non-Boolean string obtained by decoding each of its blocks. Since the

24That is, for any two oracles, the ratio between the number of queries that the verifier makes to each oracle is at least
ρ.
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distance of the Boolean proof from the canonical proof (for the Boolean verifier) is proportional to
the distance of the decoded proof from the canonical proof (for the non-Boolean verifier), strong
canonicality of the non-Boolean verifier implies strong canonicality of the Boolean one. A formal
proof follows.

Proof of Lemma 5.19. Let V̂ be the smooth strong canonical RPCPP for CIRCUITVAL with cor-
responding proof-piece strategies Π1, . . . , Πt, with Πi answering its queries with symbols in the
alphabet Σi = {0, 1}σi . For each i ∈ [t] let ℓi denote the length complexity of the ith proof-piece
oracle, and let ECCi : Σi → {0, 1}b with b = O(maxi∈[t] σi) be an error correcting code of constant

minimal distance 2c > 0, decodable using circuits of size Õ(b). The ith canonical proof-piece of
circuit C and input y is Γi(C; y), where Γi(C; y)[j] := ECCi(Πi(C; y)) is a binary string of length
b.25

The Boolean RPCPP verifier, denoted V, expects circuit C, input oracle y and proof-piece ora-
cles γ1, . . . , γt. It emulates V̂ on circuit C and input oracle y as follows:

• When V̂ queries the jth location of the ith proof-piece oracle, issue b queries to γi to receive
a binary string γi[j] of length b. Decode γi[j] using the decoding algorithm of ECCi. If
decoding failed then reject, and otherwise answer V̂’s query with the decoded string.

• When V̂ queries its input oracle, answer it according to the input oracle y, giving the query
weight b.

Smoothness of V follows immediately from the smoothness of V̂: for each proof-piece, a bit is
queried if and only if the emulated verifier queried the location which it allegedly encodes, and
the the probability that the latter is queried is the same for all locations.

We show that V is a strong canonical RPCPP for CIRCUITVAL. Fix circuit C, input oracle y
and alleged proof-piece oracles γ1, . . . , γt. For each i ∈ [t] and j ∈ [ℓi], let π̂i[j] ∈ Σi be the “best
decoding” of γi[j], namely, the string x ∈ Σi that minimizes the expression δ(ECCi(x), γi[j]). Let
γ̂i[j] be the encoding of π̂i[j], that is γ̂i[j] := ECCi(π̂i[j]).

Claim 5.19.1. For all i ∈ [t], the expected distance of answers to V’s queries from being accepted is greater
than

ρ

t + 1
· δ(γi, γ̂i)

Proof of Claim 5.19.1. Fix i ∈ [t] and denote by J the locations that V queries in γi. To satisfy
V, the answers of γi to V’s queries (denoted γi[J]) must be codewords, therefore the expected
distance of γi[J] from satisfying V (over J generated according to V’s random coins) is at least the
expected distance of γi[J] from being codewords; that is, at least

E
J
[δ(γi[J], γ̂i[J])] = E

J, j∈J
[δ(γi[j], γ̂i[j])] (13)

Smoothness of V implies that a uniformly random element of j ∈ J is distributed uniformly at
random in [ℓi] (as detailed in Appendix B.2). Thus,

eq. (13) = E
k∈[ℓi ]

[γi[k], γ̂i[k]] = δ(γi, γ̂i)

The distance shrinks by ρ/(t + 1) because γi[J] make up for only (at least) a ρ/(t + 1) fraction
of all bits read by V.

25To be clear, Πi(C; y) is a string of length ℓi over alphabet Σi = {0, 1}σi , and Γi(C; y) is a string of length ℓi · b over
the binary alphabet.
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Claim 5.19.2. Fix a random coin sequence and suppose that the Boolean verifier V received answers s =
s1 · · · sq from the oracles y, γ1, . . . , γt. Let ŝ = ŝ1 · · · ŝ1 denote the answers that the non-Boolean verifier V̂
received from oracles y, π̂1, . . . , π̂t when it samples the same coin sequence; in other words, letting sk = γi[j]
for some i and j, we denote ŝk = π̂i[j].

Let D and D̂ be the residual circuits generated by V and V̂ upon sampling the fixed random coin
sequence. It holds that δ(s, Sat(D)) ≥ c · δ(ŝ, Sat(D̂)), where Sat(·) denotes the set of satisfying inputs
of a circuit, and 2c is the distance of the error correcting codes ECCi.

Proof of Claim 5.19.2. The proof follows from the Markov bound and a triangle inequality. Sup-
pose there is s′ = s′1 · · · s′q that satisfies D such that δ(s, s′) = ∆. For at least a 1 − ∆/c fraction of
k ∈ [q] it holds that sk is c-close to s′k. For these k’s, s′k is the closest codeword to sk, because distinct
codewords are 2c-far apart, and s′k is a codeword for it satisfies D. Therefore, for a 1− ∆/c fraction

of k’s it holds that s′k encodes ŝk, and it follows that ŝ is ∆/c-close to satisfying V̂.

Concluding the proof of Lemma 5.19. Fix y′ ∈ Sat(C) such that maxi∈[t] {δ(y, y′), δ(π̂i, Πi(C; y′))}
is minimal, and let Π′

i := Πi(C; y′) and Γ′
i := Γi(C; y′). Suppose we give V̂ oracle access to

y, π̂1, . . . , π̂t. Robust strong canonicality means that the expected distance of locations it reads
from satisfying its residual circuit is at least

α · max
i∈[t]

(
δ
(
y, y′

)
, δ
(
π̂i, Π′

i

))

By Claim 5.19.2, this implies that when the Boolean verifier V is given y, γ1, . . . , γt, the expected
distance of locations it reads from satisfying its residual circuit is at least

α · c · max
i∈[t]

(
δ
(
y, y′

)
, δ
(
π̂i, Π′

i

))

Noticing that δ(π̂i, Π′
i) = 2c · δ(γ̂i, Γ′

i), this is at least

αc · 2c · max
i∈[t]

(
δ
(
y, y′

)
, δ
(
γ̂i, Γ′

i

))
(14)

Claim 5.19.1 means that the expected distance of answers to V from satisfying is lower
bounded not merely by Expression 14, but by

2αc2 · max
i∈[t]

(
δ
(
y, y′

)
, δ
(
γ̂i, Γ′

i

)
,

ρ

t + 1
· δ(γi, γ̂i)

)
(15)

For each i ∈ [t], if δ(γi, γ̂i) ≤ δ(γ̂i, Γ′
i)/2 then by the triangle inequality δ(γ̂i, Γ′

i) ≥ δ(γi, Γ′
i)/2, and

otherwise δ(γi, γ̂i) > δ(γ̂i, Γ′
i)/2, so Expression 15 is at least

2αc2 · ρ

2(t + 1)
· max

i∈[t]

(
δ
(
y, y′

)
, δ
(
γi, Γ′

i

))
≥ αρc2

(t + 1)
· min

y′′∈Sat(C)

{
max
i∈[t]

(
δ
(
y, y′′

)
, δ
(
γi, Γi

(
x; y′′

)))}

where the inequality is because y′ is a satisfying input for C, but not necessarily a minimizer of
the above quantity. Thus, V is robust strongly canonical.

If V̂ has residual circuit distance c′ (Definition 3.4), then V has residual circuit distance c · c′,
because an answer string that satisfies the decision circuit of V must be formed of encodings of an
answer string that satisfies V̂.

32



5.5 Putting it all together

Because CIRCUITVAL-RPCPP is the Reed–Muller-based RPCPP of [Har04, Section 5.4], it enjoys
the (standard) soundness analysis presented in that work. Paired with the strong canonical sound-
ness of Lemma 5.18, we have a non-Boolean smooth strong canonical RPCPP for CIRCUITVAL of
logarithmic randomness complexity, polylogarithmic query complexity and constant residual cir-
cuit distance. Decision complexity is also polylogarithmic (though we did not keep track of it
explicitly). Using Lemma 5.19 we get a Boolean RPCPP for CIRCUITVAL of similar properties, and
a final application of Lemma 2.2 reduces the number of oracles to one—proving Proposition 3.7.
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A Hardness of approximating bounded-occurrence stable3SAT

To see the connection between our PCP result (i.e. Theorem 1.5) and the hardness of approxi-
mating bounded-occurrence stable3SAT (i.e. Corollary 1.7), first recall the connection between
standard PCPs and constraint satisfaction problems (CSPs).27 At its heart stands a correspon-
dence between the probability that a nonadaptive PCP verifier V for a set S accepts an input x and
proof π, and the fraction of simultaneously satisfiable constraints in a CSP ΦV,x over |π| variables.
Consider the CSP ΦV,x of 2r constraints that express the verifier’s decision after tossing r random
coins and querying its proof oracle in q locations. These are constraints over |π| variables, with
each constraint depending on the q variables corresponding to locations that the verifier queries
(i.e., ΦV,x is a qCSP). A proof π is an assignment to these variables; completeness means that if
x ∈ S then there is an assignment that satisfies all constraints in ΦV,x, and soundness means that
if x /∈ S then no assignment satisfies more than half of the constraints in ΦV,x simultaneously.

Now, what can be said about the CSP ΦV,x if the PCP verifier V was also strong and smooth?

• A strong PCP verifier with strongness parameter α yields a stable CSP ΦV,x, in the sense
that an assignment that is δ-far from all satisfying assignments violates an α · δ fraction of
constraints. Like strong soundness, this property holds both when ΦV,x is satisfiable (i.e.
when inputs x ∈ S) and when ΦV,x is unsatisfiable (i.e. when x /∈ S). We note that in the
latter case, ΦV,x cannot have more than an α fraction of constraints satisfied simultaneously.

• A smooth PCP verifier yields a CSP such that each variable occurs in the same number of
constraints.

Thus, Theorem 1.5 implies that for any set S ∈ NP there is an efficient parsimonious reduction
from S to α-stable bounded-arity qCSPs with equal variable occurrence. To prove Corollary 1.7, we
show a polynomial-time computable parsimonious reduction of α-stable qCSPs with equal variable
occurrence to Ω(α)-stable qCNFs with bounded variable occurrence (Proposition A.1), and then reduce
the latter to Ω(α)-stable 3CNFs with bounded variable occurrence (Proposition A.2).

Recall that a formula has b-bounded-occurrence if any variable appears in at most b clauses,
and that the promise problem (α, b)-stableqSAT is distinguishing b-bounded-occurrence qCNF
formulas that are α-stable and satisfiable from ones in which any assignment violates at least an α

fraction of the clauses.

Proposition A.1. For any q ∈ N there is b ∈ N such that there is a polynomial-time computable parsi-
monious reduction from α-stable qCSPs with equal variable occurrence to (α/qb, b)-stableqSAT.

Proof. We will show a reduction to α/qb′-stable qCSPs with b′-bounded variable occurrence for
some constant b′ ∈ N (independent of q, actually). Then, q-arity of the resulting CSP implies that
each of its constraints can be expressed as the conjunction of at most 2q disjunctive clauses, and
conjuncting all these clauses gives a CNF formula that is α/qb′2q-stable and b′2q-bounded variable
occurrence. Setting b := b′2q gives the required result.

The reduction, taken from [PY91], replaces the occurrence of each variable in a constraint with
a copy of that variable, and adds consistency (i.e. equality) constraints between copies based on
an expander graph of constant degree. We stress that the stability of the obtained CNF crucially
relies on the equal variable occurrence of the reduced CSP so that each variable is replaced with

27A CSP Φ of size m over ℓ variables is a set of m functions (called constraints) Φ = {C1, . . . , Cm} with Ci : {0, 1}ℓ →
{0, 1}. An assignment A : [ℓ] → {0, 1} satisfies constraints Ci if Ci(A(1), . . . , A(ℓ)) = 1. We say that Φ has arity q (is a
qCSP) if each Ci depends on at most q variables. If constraint Ci depends on variable v then we say that v occurs in Ci.
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the same number of consistency checks, and that the new instance is not necessarily stable without
this property (see [FKS19, Appendix D]).

Fix an α-stable CSP Φ consisting of m constraints over ℓ variables, such that each constraint
depends on exactly q variables and each variable occurs in exactly mq/ℓ constraints.

Fix a d-regular, explicit28 graph G over mq/ℓ vertices, with an expansion property guarantee-
ing that for any set of vertices T that consists of at most a half of the vertices, there are 2|T| edges
crossing from T to its complement (for example, the expanders of [BL06]). The variables of Φ′ are
{vC} for each variable v of Φ and each constraint C ∈ Φ in which v occurs. There are two types of
constraints in Φ′:

• For each constraint C ∈ Φ, a primal constraint C′ is added, which is simply C but with vari-
ables replaced by their corresponding (alleged) copies. For example, if C = (x ∨ y ∨ z ∨ w)∧
(w ∨ x ∨ u), then C′ = (xC ∨ yC ∨ zC ∨ wC) ∧ (wC ∨ xC ∨ uC).

• For each variable v of Φ,
mq
ℓ
· d

2 consistency constraints are added to Φ′: letting {C1, . . . , Cmq/ℓ}
be the set of constraints in which v occurs, for each edge {i, j} in G we add a constraint that
is satisfied if and only if vCi

equals vCj
.

All in all, Φ′ has ℓ · mq/ℓ = mq variables and m + ℓ · mq
ℓ
· d

2 = (1 + qd/2)m constraints.
Each variable of Φ′ occurs in d + 1 constraints, and the reduction is indeed parsimonious since

any assignment that satisfies Φ′ must be consistent and therefore gives a satisfying assignment to
Φ (and vice-versa). We show that Φ′ is α

qd -stable. The case that Φ is unsatisfiable follows from

[PY91], so we focus on the case that Φ is satisfiable (and then so is Φ′). Let A′ be an assignment
to Φ′ that violates a γ′ fraction of its constraints. Let AMaj be an assignment to Φ that gives each
variable a value according to the majority value that A′ gives to its (alleged) copies; that is, for
each variable v, AMaj(v) := MajC(A′(vC)). Let A′

Maj be the extension of AMaj back to the variables

of Φ′; that is, A′
Maj(vC) := AMaj(v) for each variable v and constraint C that depends on v. Let γMaj

denote the fraction of constraints in Φ unsatisfied by AMaj.

Claim A.1.1.

γ′ ≥
γMaj + δ(A′, A′

Maj)

qd

Proof. To prove the claim, we show that whatever primal constraints may be satisfied by A′ but
not by A′

Maj (which works against the lower bound we need) are “made up for” in consistency

clauses unsatisfied by A′. It will be nicer to deal with whole numbers rather than fractions, so we
let a′ (resp. aMaj) denote the number of constraints of Φ′ (resp. Φ) unsatisfied by A′ (resp. AMaj),
and notice that the claim follows from showing that

a′ ≥ aMaj +
∣∣∣
{

vC : A′(vC) 6= A′
Maj(vC)

}∣∣∣

Fix a variable v, and let k be the number of constraints C such that A′ disagrees with A′
Maj on

the value assigned to vC. Then v occurs in at most k constraints of Φ that are unsatisfied by AMaj

but whose corresponding primal constraint is satisfied by A′. But by the expansion property of the
graph G, each of the k inconsistencies result in 2k consistency constraints unsatisfied by A′.

28I.e. there is an algorithm that constructs G in polynomial time when given mq/ℓ as input.
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Now, let B be the closest satisfying assignment to AMaj. Note that the extension of B to the
variables of Φ′, denoted B′, is a satisfying assignment to Φ′, and that δ(AMaj, B) = δ(A′

Maj, B′).
Using Claim A.1.1 and stability of Φ, we have

γ′ ≥
γMaj + δ(A′, A′

Maj)

qd
≥

αδ(AMaj, B) + δ(A′
Maj, B′)

qd
≥ α

qd
· δ
(

A′, B′)

Proposition A.2. For any α ∈ (0, 1] and b, q ∈ N there is α′ ∈ (0, 1] such that there is a polynomial-time
computable parsimonious reduction from (α, b)-stableqSAT to (α′, b)-stable3SAT.

Friggstad et al. show a similar reduction in [FKS19][Section 4]. Furthermore, their reduction
yields CNFs that have exactly three literals per clause.

Proof. We use the standard parsimonious reduction of qSAT to 3SAT to transform a formula ϕ

to a formula ϕ′. The reduction operates clause-by-clause according to the following recurrence
relation: for each clause C := (x1 ∨ · · · ∨ xk) in ϕ (where k ≤ q),

• If k < 4, add the clause C to ϕ′ and halt.

• Otherwise, introduce a “fresh” auxiliary variable z, add the clauses (x1 ∨ x2 ∨ z), (x1 ∨ z) and
(x2 ∨ z) to ϕ′, and then recurse on C′ := (z ∨ x3 ∨ · · · ∨ xk).

If ϕ is not satisfiable then no assignment satisfies more than an α/3q fraction of the clauses of
ϕ′ (by the standard soundness of this reduction), so we focus on the case that ϕ (and therefore ϕ′)
is satisfiable. Let A be some assignment for ϕ′, given as an assignment X to the original variables
(i.e. to ϕ) and an assignment Z to the auxiliary variables. Let X∗ be a satisfying assignment to
ϕ closest to X. By parsimony of the reduction, there is a unique assignment Z∗ to the auxiliary
variables such that A∗ := (X∗, Z∗) is a satisfying assignment.

Again, it would be more convenient for us to deal with absolute quantities rather than relative
quantities, so let VA denote the number of clauses violated by A, and ∆(A, A∗) denote the number
of variables on which A and A∗ disagree. Similarly define VX, ∆(X, X∗) and ∆(Z, Z∗). Since ϕ′

has b-bounded variable occurrence then the ratio between its number of variables and number of
clauses is at least 1/b, therefore it suffices to show that VA = Ω(α · ∆(A, A∗)).

Now, on the one hand, α-stability of ϕ means that VX ≥ α
b ∆(X, X∗) (using the assumption that

ϕ has b-bounded variable occurrence to transition from fractional to absolute quantities, just like
in the previous paragraph). Additionally, VA ≥ VX/3q because if X doesn’t satisfy a clause in ϕ

then A doesn’t satisfy at least one of the corresponding clauses in ϕ′. Therefore,

VA ≥ α

3qb
· ∆(X, X∗) (16)

On the other hand, the parsimony of the reduction implies that, for any clause C of ϕ, if X and
X∗ agree on all q variables occurring in C, and A satisfies all clauses introduced by C (in ϕ′), then
it must be that Z and Z∗ agree on all of the auxiliary variables introduced by C. That is, for any
clause C, if Z and Z∗ disagree on any of the auxiliary variables introduced by C, then either X and
X∗ disagree on some of the q variables occurring in C, or A violates some of the clauses introduced
by C. Therefore,

q · ∆(X, X∗) + VA ≥ ∆(Z, Z∗) (17)

Combining Equations (16) and (17), we have that VA ≥ α
4qb · max (∆(X, X∗), ∆(Z, Z∗)), and since

∆(A, A∗) = ∆(X, X∗) + ∆(Z, Z∗) we have VA ≥ α
8qb ∆(A, A∗).
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B Tedious notes regarding smoothness

B.1 On uniform sampling

Recall that probabilistic Turing machines (and PCP verifiers in particular) obtain their randomness
by tossing random coins. It is clear how this ability enables uniform sampling from sets of size that
is a power of 2, but throughout this work we allow verifiers to sample uniformly random elements
from sets of arbitrary (finite) size. Since the technical implementation of such sampling may affect
the smoothness of the verifier, a clarification on this matter is due.

To implement a PCP verifier that uses its randomness only to sample a uniformly random el-
ement from a set [N], rejection sampling may be employed while losing a constant factor in sound-
ness: the verifier samples a uniformly random element i ∈ [2⌈log N⌉]; if i > N the verifier immedi-
ately accepts, and otherwise it proceeds as intended. Soundness is halved because the sampled i is
in [N] with probability N/2⌈log N⌉ ≥ 1/2.

PCP verifiers in this work use their randomness only to sample uniformly random elements
from a constant number of sets, and are implemented using rejection sampling on the product of
sets from which they sample. Namely, a verifier that uniformly samples from sets Ω1, . . . , Ωk is
implemented using rejection sampling on the set Ω1 × · · · ×Ωk. Still, this (only) halves soundness,
and adds at most k random coin tosses (as the randomness complexity r := ∑

k
i=1 log |Ωi| grows to

∑
k
i=1 ⌈log |Ωi|⌉ ≤ r + k).

B.2 Smoothness and uniformity

Without loss of generality, we may require that PCP verifiers query each bit in their proof with
some positive probability and never query the same location more than once. Any verifier that
doesn’t satisfy these simplifying assumptions can be transformed into one that does: we add
a single uniformly random query, and then modify the verifier so that whenever it attempts to
query the same location twice, it uniformly samples from the remaining unqueried locations in
the proof instead.

Now here’s a thought: Suppose we have a smooth verifier that issues q queries to a proof oracle
of length ℓ. We claim that if we look at a set of query locations I ⊆ [ℓ] generated by this verifier
(based on its random coins), and subsequently choose a uniformly random element i ∈ I from
this set, then i is uniformly distributed in [ℓ]. Why? Well, smoothness means that the probability
that the verifier queries a certain location in the proof oracle in any of its q queries is equal for any
certain location (it’s equal to q/ℓ, if you must know). By the previous paragraph, we can assume
all queries of the verifier are distinct, so if a certain location is queried by the verifier it’s queried
exactly once. Therefore, a uniformly random element from the set of query locations is distributed
uniformly in the proof.

Smoothness and marginal uniformity. It may seem natural to define smooth PCPs to be those
whose queries are marginally uniform. That is, that the first query of the verifier is distributed
uniformly in the proof, and so is the second, third, and so on. We claim that there’s almost no
difference between this notion and ours (Definition 1.3): by the observation made in the previous
paragraph, any nonadaptive PCP satisfying Definition 1.3 can be transformed into one that satis-
fies marginal uniformity by randomly permuting the order of its queries. Actually, even a random
cyclic shift would suffice, and only incurs a log q additive overhead in randomness complexity—
exponentially smaller than the original randomness complexity in the constructions used through-
out this work.
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C The vector-valued low-degree polynomial test

This section was kindly contributed by Oded Goldreich and Madhu Sudan. It sees the general-
ization of the Point-line low-degree polynomial test ([Aro+98, Section 7.2]) to the vector-valued
setting.

Definition C.1 (Definition 5.3 restated). A function f : F
m → F

k is a vector-valued multivariate
polynomial of degree at most d if for all i ∈ [k] the projection of f to the ith coordinate is a multivariate
polynomial of (total) degree at most d, where the projection of f to the ith coordinate, denoted
fi : F

m → F, is defined fi(x) := f (x)i for all x ∈ F
m.

Algorithm C.2 (Algorithm 5.4 restated). The point-line vector-valued low-degree test (PL-VLDT) is
given access to an oracle f : F

m → F
k and a “lines” proof oracle g that maps line L to vector-

valued univariate polynomial gL : L → F
k of degree at most d. It samples a uniformly random

line L through F
m and uniformly random point x ∈ L, and accepts if and only if f (x) = gL(x).

Fact C.3. For k = 1, PL-VLDT is the low degree test of [Aro+98, Theorem 65], therefore if input oracle
f : F

m → F is δ-far from being a polynomial of degree at most d then PL-VLDT rejects with probability at
least δ/2 for any lines oracle g.

Proposition C.4 (Proposition 5.5 restated). Assuming |F| > 25k, if input oracle f : F
m → F

k is δ-far
from being a vector-valued polynomial of degree at most d then for any lines oracle g, PL-VLDT rejects f
and g with probability at least δ/40.

The proof follows three main cases. If a projection of the input is far from being a (scalar-
valued) low-degree polynomial then we are done due to Fact C.3. If δ = Ω(1/|F|) then the
distance of the restriction f [L] from being a univariate low-degree univariate polynomial is pro-
portional to the distance of f from being a low-degree polynomial (i.e. δ) with high probability,
and assuming gL is the closest low-degree polynomial to f [L], rejection occurs with this very
probability. The third case is when δ = O(1/|F|), and then we capitalize on δ being very small to
show that with probability Θ(|F|δ) the restriction f [L] is low-degree except for exactly one point,
which is sampled with probability 1/|F|. A formal proof follows.

Proof. Throughout this proof, low-degree means of degree at most d. For each i ∈ [k] let fi : F
m → F

be the projection of f onto its ith coordinate, and let gi be a mapping of lines through F
m to low-

degree univariate polynomials given by gL,i(x) := gL(x)i ∈ F for each line L and point x ∈ L.

Let f̃i : F
m → F be a low-degree polynomial closest to fi, and notice that f̃ := ( f̃1, . . . , f̃k) is a

vector-valued low-degree polynomial closest to f . Let δ and δi be the distances of f from f̃ and fi

from f̃i respectively.
First, note that if fi(x) 6= gL,i(x) for the sampled L and x then the test rejects, therefore the

probability that PL-VLDT rejects f and g is greater than the probability that it rejects input oracle
fi and lines oracle (gL,i)L. Hence, if there exists i such that δi ≥ 1/5 then by Fact C.3 rejection
occurs with probability at least 1/10. Therefore, we may assume that δi < 1/5 for all i ∈ [k].
We proceed with a partial analysis that assumes that δ ≤ 2/5, and later show how the remaining
possibilities follow.

Case 1. δ > 5/|F|. Points on a randomly sampled line L are pairwise independent and
marginally uniform, so the Chebyshev inequality implies that the relative distance between

f [L] and f̃ [L] is at least δ/2 and at most 3δ/2 with probability greater than 1 − δ(1−δ)
(δ/2)2|F| ≥ 1/5.

Conditioned on this event, one of two cases must hold:
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Case 1.1. There is i such that gL,i 6= f̃i[L]. Note that gL,i and f̃i[L] are distinct (univariate)
polynomials of degree at most d so they agree on at most d points in L. Since fi[L] disagrees

with f̃i[L] on at most 3δ|F|/2 ≤ 3|F|/5 points, it holds that f [L] and gL agree on at most
d + 3|F|/5 ≤ 4|F|/5 points. Therefore rejection occurs with probability at least 4/5 ≥ δ/2.

Case 1.2. For all i it holds that gL,i = f̃i[L]. Then rejection occurs if and only if f [L] and f̃ [L]
disagree on the sampled x ∈ L, which occurs with probability at least δ/2.

All in all, rejection occurs with probability at least 1
5 · δ

2 = δ
10 .

Case 2. δ < 1/2|F|. We claim that f [L] and f̃ [L] agree on exactly 1 point with probability at least
|F|δ/2. Again we use pairwise independence and marginal uniformity of points on a random
line, this time served with a side of inclusion-exclusion. Let each line L have a fixed ordering
L = {x1, . . . , x|F|}. Then,

P
L

[
∃! x ∈ L f (x) 6= f̃ (x)

]
≥ ∑

i∈[|F|]
P
xi

[
f (xi) 6= f̃ (xi)

]
− ∑

j∈[|F|\{i}]
P

xi ,xj

[
f (xi) 6= f̃ (xi), f

(
xj

)
6= f̃

(
xj

)]

≥ |F|
(
δ − |F|δ2

)
= |F|δ(1 − |F|δ) ≥ |F|δ/2

As in Case 1, conditioned on this event rejection occurs with probability at least 4/5 ≥ 1/|F| or

1/|F|, depending on whether g and f̃ agree on the random line L. All in all, rejection occurs with

probability at least |F|δ
2 · 1

|F| =
δ
2 .

Now, if δ > 2/5 we show that there exists k′ < k such that the distance of f[k′ ] := ( f1, . . . , fk′)
from being a vector-valued low-degree polynomial, denoted δ[k′], is greater than 1/5 ≥ 5/|F|
and less than 2/5, and since the rejection probability of f and g is greater than that of f[k′ ] and
g[k′] := (g1, . . . , gk′) we may then apply Case 1 to f[k′ ]. Indeed, δ[k′ ] − δ[k′−1] ≤ δk′ ≤ 1/5 and
δ[k] = δ ≥ 2/5, so by a greedy argument there must exist k′ ≤ k such that δ[k′ ] ∈ [1/5, 2/5].

Finally, we tend to the case that δ ∈ [1/2|F|, 5/|F|]. If there exists i such that δi ≥ 1/4|F|
then by Fact C.3 rejection occurs with probability at least 1/8|F| ≥ δ/40. Otherwise, by a greedy
argument there exists k′ ≤ k such that δ[k′] ∈ [1/4|F|, 1/2|F|]. Applying Case 2 to f[k′], we have
that rejection occurs with probability at least δ[k′]/2 ≥ 1/8|F| ≥ δ/40.
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