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Abstract

A major open problem in proof complexity is to prove superpolynomial lower bounds for
AC0[p]-Frege proofs. This system is the analog of AC0[p], the class of bounded depth circuits
with prime modular counting gates. Despite strong lower bounds for this class dating back
thirty years ([22, 24]), there are no significant lower bounds for AC0[p]-Frege. Significant
and extensive degree lower bounds have been obtained for a variety of subsystems of AC0[p]-
Frege, including Nullstellensatz ([2]), Polynomial Calculus ([8]), and SOS ([11]). However
to date there has been no progress on AC0[p]-Frege lower bounds.

In this paper we study constant-depth extensions of the Polynomial Calculus [10]. We
show that these extensions are much more powerful than was previously known. Our main re-
sult is that small depth Polynomial Calculus (over a sufficiently large field) can polynomially
simulate all of the well-studied semialgebraic proof systems: Cutting Planes, Sherali-Adams,
Sum-of-Squares (SOS), and Dynamic SOS. Additionally, they can also quasi-polynomially
simulate AC0[p]-Frege as well as TC0-Frege. Thus, proving strong lower bounds for AC0[p]-
Frege would seem to require proving lower bounds for systems as strong as TC0-Frege.
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1 Introduction

Proof complexity has evolved in parallel to circuit complexity, typically with circuit lower
bound techniques being eventually used to show lower bounds for analogous proof systems.
One stubborn exception is the analogous proof system for AC0[p], the class of bounded
depth circuits with prime modular counting gates. Despite strong lower bounds for this class
dating back thirty years ([22, 24]), there are no significant lower bounds for AC0[p]-Frege.
Algebraic proof systems (Nullstellensatz ([2]), polynomial calculus ([8]), Positivestellensatz
aka sum of squares ([11]), ideal proofs ([12])) were invented to try to transport some of
the algebraic reasoning used by Razborov and Smolensky to the proof complexity case, but
while interesting in their own right, lower bounds for these systems have not been translated
into lower bounds for AC0[p]-Frege. This paper offers one explanation for this failure: small
modifications of these algebraic proof systems to handle constant depth overshoot and allow
reasoning far beyond that possible by AC0[p] circuits.

Since lower bounds for polynomial calculus itself do not imply lower bounds for AC0[p]-
Frege systems, various researchers have suggested ways to strengthen PC to create algebraic
systems which do p-simulate AC0[p]-Frege ([18, 10, 7]). Unfortunately, it is not clear how
to extend lower bound techniques for PC to these systems. As an illustration of how small
extensions can increase the power of these proof systems, consider polynomial calculus where
we allow changes of bases. Many strong lower bounds are known for the size of PC proofs
for tautologies like the Pigeonhole Principle [23], [15] and Tseitin tautologies [4]. All of
the above lower bounds use a degree-size connection, which roughly states that a linear
lower bound on the degree of any refutation translates to an exponential lower bound on
its size. But this connection is highly basis dependent. The connection only holds true
over the {0, 1} basis, and even allowing a change to the {−1, 1} basis immediately gives a
polynomial sized proof for the mod 2 Tseitin tautologies. Grigoriev and Hirsch [10] noted
the above and in addition showed that allowing for introduction of new variables which
are linear transformations of the original variables gives a short proof of the Pigeonhole
principle as well. They also generalized the notion of a linear transformation by considering
transformations obtained by applying constant depth arithmetic circuits and arithmetic
formulas to the original variables. The resulting systems turn out to be quite powerful, and
it is shown in [10] that the latter simulates Frege systems, and the former simulates depth d
AC0[p]-Frege proofs by using arithmetic circuits of depth d′ = Θ(d). Raz [21] defined a proof
system along similar lines where the transformations are restricted such that each line of the
proof is a multilinear formula in the original variables. It was shown that even under these
restrictions, linear transformations allow small proofs of the functional Pigeonhole principle
and Tseitin tautologies.

1.1 Our Work

Here, we show that these extensions to PC are even more powerful than previously known.
Over a sufficiently large field of characteristic p, the same extensions that allow PC to
simulate depth d AC0[p] proofs also allows it to simulate much stronger proof systems. So
to prove a lower bound on AC0[p] proofs via such systems would seem to require proving
lower bounds for systems as strong as TC0-Frege.

More precisely, consider the following additions to PC. In an additive extension, we
introduce a new variable y and a new defining equation y =

∑
aixi + b where ai, b ∈ F .

In a multiplicative extension, we introduce a new variable y and a new defining equation
y = b

∏
(xi)

ei . Depth d-PC allows d−2 layers of additive and multiplicative extensions, with
the layers alternating between additive and multiplicative extensions. (The new variables
in a depth d-PC proof are equivalent to depth d − 2 algebraic circuits, and polynomials in
terms of these variables are depth d algebraic circuits.)

Theorem 1. (Informal)
Polynomial Calculus over Q where new variables defined by linear transformations are

allowed to be introduced can p-simulate semantic Cutting Planes with polynomially bounded
coefficients

We also improve the results of Grigoriev and Hirsch in the constant depth case in two
ways. We show that AC0[p]-Frege can be simulated with a fixed constant depth, but with
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a quasipolynomial blowup. Significantly, this simulation also simulates modular gates of
different characteristic than that of the field we are working over.

Theorem 2. (Informal)
There is a fixed constant d such that Polynomial Calculus over a quasipolynomial sized

extension field Fpm , where new variables defined by depth d arithmetic formulas on the
original variables are allowed to be introduced, quasipolynomially simulates AC0[q]-Frege,
for any prime q.

Buss et al. [5] showed that an AC0[p]-Frege proof of depth d can be collapsed to a depth
3 AC0[p]-Frege proof with a quasipolynomial blowup. In conjunction with [10], this implies
the above theorem for the case of q = p. Thus, apart from being more general, our result
also provides an alternative and perhaps simpler proof of the case of q = p.

We also show that allowing for arbitrarily large but constant depth transformations
enables the simulation of TC0-Frege.

Theorem 3. (Informal)
A TC0-Frege proof of depth d can be p-simulated by a Polynomial Calculus proof which

allows new variables to be introduced which are defined by depth O(d) arithmetic formulas
on original variables

Finally, we remove the restriction of polynomially bounded coefficients and show how
to perform arithmetic with large coefficients, and as a result simulate Cutting Planes with
unbounded coefficients and Sum of Squares.

Theorem 4. (Informal)
There is a fixed constant d such that Polynomial Calculus over a large enough extension field
Fpm , where new variables defined by depth d arithmetic formulas on the original variables
are allowed to be introduced, p-simulates Cutting Planes and Dynamic Sum of Squares.

1.2 Related Work

Pitassi [18, 19] introduced powerful generalizations of the Polynomial Calculus that oper-
ate directly on formulas. Grochow and Pitassi [13] introduced the more general IPS proof
system, and proved that superpolynomial lower bounds for IPS would imply the longstand-
ing problem of separating VP from VNP. However, these algebraic systems are not Cook-
Reckhow proof systems since proofs are not known to be checkable in polynomial time (but
rather in randomized polynomial-time.)

In 2003, Grigoriev and Hirsch [10] introduced a Cook-Reckhow style algebraic proof
system for formulas, with derivation rules corresponding to the ring axioms. Motivated by
understanding how many basic ring identities are needed to verify polynomial identities,
Hrubes and Tzameret [14] introduced a very closely related equational proof system for
proving polynomial identities over a ring. Even earlier, [7] study essentially the same proof
system but where the focus is over finite fields. Finally, Raz and Tzameret [20] introduced
the Res(lin) proof system, which generalizing Resolution using extension variables, in a
similar way to our generalization of PC using extension variables.

In this paper, we study the same system introduced by Grigoriev and Hirsch – proofs
operate with algebraic formulas, and with explicit rules for manipulating equivalent poly-
nomials. Over sufficiently large fields, we show that constant-depth proofs are much more
powerful than what was previously thought. Our main result is that low depth algebraic
proofs can polynomially simulate all of the well-studied semialgebraic proof systems: Cut-
ting Planes, Sherali-Adams and Sum-of-Squares proofs, and they can also simulate constant-
depth Frege proofs with mod gates and with threshold gates (AC0[p]-Frege and TC0-Frege).

The rest of the paper is organized as follows. In section 2.1, we discuss some basic
definitions. In section 2.2, we formalize the notion of transformations. In section 4.2, we
formally state and prove Theorem 1 for Cutting Planes with bounded coefficients. In section
4.3, we extend the simulation to the semantic case. In section 4.4, we prove an analog of
the results in section 4.2 over a large enough finite field extension. In sections 5 to 6, we use
this analog to prove Theorems 2 and 3. Finally in section 7, we prove Theorem 4.
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2 Preliminaries and Generalizations of Polynomial Cal-
culus

2.1 Preliminaries

2.1.1 Notation

Integers are represented by letters a, b, c. For an integer a, let a+ = a if a > 0 and 0
otherwise. Define |a| to be the length in binary of a. Sets of integers are represented by
letters A, B, C. Indices to sets are represented by letters i, j, k, `.

Variables are represented by x, y, z, w where x usually represents the original variables
and the others represent the extension variables. Monomials are represented by upper case
letters X, Y , Z. Polynomials are represented by P , Q, R. Boolean formulae are represented
by ϕ.

We treat all the above objects as scalars. Vectors are represented in boldface. Con-
stant vectors are represented by a, b, c. Vectors whose components may be variables or
polynomials are represented by y, z, w.

Calligraphic letters R, S are used for special expressions which are contextual.

Definition 1. Straight Line Program (SLP)

A SLP S over variables {x1 · · ·xn} and a field F is a sequence of computations (y1 · · · yk)
such that each yj is equal to one of the following, where Cj ⊆ {1 · · · j − 1}

xi for some i ∈ {1 · · ·n}∑
`∈Cj

α`y` for some constants α` ∈ F∏
`∈Cj

y`

We view a SLP as a directed acyclic graph where internal nodes are labelled with either
Product or Plus gates and the leaf nodes are labelled with a variable xi. The size of a SLP
is therefore the number of nodes in the corresponding directed acyclic graph, and the depth
is the maximum number of nodes on a root to leaf path in the directed acyclic graph.

Definition 2. Polynomial Calculus
Let Γ = {P1 · · · Pm} be a set of polynomials in variables {x1 · · ·xn} over a field F such
that the system of equations P1 = 0 · · · Pm = 0 has no solution. A Polynomial Calculus
refutation of Γ is a sequence of polynomials R1 · · · Rs where Rs = 1 and for every ` in
{1 · · · s}, R` ∈ Γ or is obtained through one of the following derivation rules for j, k < `

R` = αRj + βRk for α, β ∈ F
R` = xiRk for some i ∈ {1 · · ·n}

The size of the refutation is
∑s
`=1 |R`|, where |R`| is the number of monomials in the

polynomial R`. The degree of the refutation is max` deg(R`).

2.2 Generalizations of Polynomial Calculus

We now define a variant of Polynomial Calculus where the proof system is additionally
allowed to introduce new variables yj corresponding to affine forms in the original variables
xi.

Definition 3. ΣΠΣ-PC
Let Γ = {P1 · · · Pm} be a set of polynomials in variables {x1 · · ·xn} over a field F such
that the system of equations P1 = 0 · · · Pm = 0 has no solution. A ΣΠΣ-PC refutation
of Γ is a Polynomial Calculus refutation of a set Γ′ = {P1 · · ·Pm, Q1 · · ·Qk} of polynomials
over variables {x1 · · ·xn} and {y1 · · · yk} where Q1 · · ·Qk are polynomials of the form Qj =
yj − (aj0 +

∑
i aijxi) for some constants aij ∈ F.

The size of a ΣΠΣ-PC refutation is equal to the size of the Polynomial Calculus refutation
of Γ′.

Though ΣΠΣ-PC captures the effect of size reductions due to allowing linear transforma-
tions within the proof, it turns out that it is more powerful than required for our simulation
in Theorem 1, so we define the tightest restriction of it where we can still do the simulation.
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Definition 4. A Trinomial is a polynomial with at most three monomials

Definition 5. Trinomial-ΠΣ-PC
Let Γ = {P1 · · · Pm} be a set of polynomials over a field F such that each P ∈ Γ is
either an affine form or a trinomial in {x1 · · ·xn}. Let the system of equations P1 = 0
· · · Pm = 0 have no solution. Let Γ′ = {P1 · · ·Pm, Q1 · · ·Qk} be a set of polynomials
over variables {x1 · · ·xn} and {y1 · · · yk} such that Q1 · · ·Qk are polynomials of the form
Qj = yj − (aj0 +

∑
i aijxi) for some constants aij ∈ F. A Trinomial-ΠΣ-PC refutation

R1 · · ·Rs of Γ is a Polynomial Calculus refutation of Γ′, such that each R` is either an
affine form or a trinomial in {x1 · · ·xn} and {y1 · · · yk}.

Trinomial-ΠΣ-PC essentially allows each line in the proof to be a ΣΠΣ circuit in X with
the top fan-in bounded by 3. We will measure the size of a Trinomial-ΠΣ-PC proof by the
number of lines, which is clearly polynomially equivalent to the number of monomials in
X, Y . This proof system seems quite restricted, especially since it can no longer trivially
simulate Polynomial Calculus unlike ΣΠΣ-PC. But surprisingly, the Pigeonhole Principle
and Tseitin formulas, for which we have lower bounds for Polynomial Calculus, have small
proofs in Trinomial-ΠΣ-PC.

We would now like to generalize the above proof system to an arbitrary depth d.

Definition 6. Depth-d-PC
Let d > 2 be an integer. Let Γ = {P1 · · · Pm} be a set of polynomials in variables
{x1 · · ·xn} over a field F such that the system of equations P1 = 0 · · · Pm = 0 has no
solution. Let S = (y1 · · · yk) be a SLP over {x1 · · ·xn} and F of depth d − 2 defined by
yj = Qj(x1 · · ·xn, y1 · · · yj−1). A Depth-d-PC refutation of Γ is a Polynomial Calculus refu-
tation of the set Γ′ = {P1 · · ·Pm, y1 −Q1, · · · , yk −Qk} of polynomials over {x1 · · ·xn} and
{y1 · · · yk}.

The size of a Depth-d-PC refutation is the size of the Polynomial Calculus refutation of
Γ′

Remark In Depth-d-PC, we sometimes use “inline” definitions to indicate the new vari-
ables yj introduced. For instance, the equation

x1(x1 + 1) = 0

represents the equations

x1y1 = 0

y1 = x1 + 1

Thus when we refer to the monomial corresponding to x1(x1 + 1), we are referring to x1y1.
Although we define the size of a proof in Depth-d-PC in terms of the number of mono-

mials, we will be using the number of lines as a measure of the size, since in our simulations
no line contains more than a polynomial number of monomials.

In this work, we will think of d as a large enough constant for all our simulations. A
value of d = 7 should work for Theorem 2 and d = 10 for Theorem 4.

3 Formal statement of results and Proof sketch

We can now restate our results in terms of the proof systems defined in the previous section.

Theorem 1. Trinomial-ΠΣ-PC can p-simulate semantic CP* over Q.

Theorem 1 is proved in sections 4.2 and 4.3.

Theorem 2. There is a fixed constant d such that Depth-d-PC over Fpm can quasipolyno-
mially simulate AC0[q]-Frege for any prime q.

We prove Theorem 2 in sections 5.1 and 5.2.

Theorem 3. A TC0-Frege proof of depth d can be p-simulated by Depth-d′-PC where d′ =
O(d).
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The proof of Theorem 3 is shown in section 6.

Theorem 4. There is a fixed constant d such that Depth-d-PC over Fpm can p-simulate
Cutting Planes and Dynamic Sum of Squares.

Theorem 4 is proved in section 7.

3.1 Key ideas and proof sketch

In this section we outline how we translate inequalities into polynomials, and simulate proofs
involving these inequalities into polynomial calculus derivations over their translations. Here,
we consider the somewhat simpler case when the underlying field is Q or any other charac-
teristic zero field. In section 4.4, we do the analogous translation for any sufficiently large
finite field.

Let us start by considering a line Aj ≡
∑
i aijxi ≥ bj in a CP* proof, where |ai|, |b| are

bounded logarithmically in n. We define its translation over Q as the following

Definition 7. Translation from CP* to Trinomial-ΠΣ-PC
For a line Aj ≡

∑
i aijxi ≥ bj its translation in Trinomial-ΠΣ-PC is defined to be the

following pair of lines

∑
i a

+
ij−bj∏

b=0

(yj − b) = 0

yj =
∑
i

aijxi − bj

In addition, for all i, the equations xi(xi − 1) = 0 are included in the translation.

That is, we introduce a variable yj =
∑
i aijxi−bj and indicate the range of values it can

take which satisfy the constraint
∑
i aijxi ≥ bj . For convenience, we will denote by z ∈ A

the equation
∏
a∈A(z − a) = 0.

The key idea is to note that given two equations z ∈ A and z ∈ B, we can derive in
Trinomial-ΠΣ-PC the equation z ∈ A ∩ B. We call this the Intersection lemma. We prove
this lemma formally in the next section.

Simulating syntactic CP* In section 4.2, we show how all the derivations rules of
syntactic CP* can be simulated with the help of the Intersection lemma, hence proving
Theorem 1. For instance, given equations y1 ∈ A and y2 ∈ B, we derive the range of values
a variable z = y1 +y2 takes as follows. For every a1 ∈ A, we derive an equation which states
z ∈ a1 + B OR y1 ∈ A \ {a1} where a1 + B = {a1 + b | b ∈ B}. This equation is formally
represented as ∏

c∈a1+B
(z − c)

∏
a∈A\{a1}

(y1 − a) = 0

We can multiply each of these equations by appropriate variables, so that the part about
z is the same in all of them. We would now like to eliminate the part about y1 from
these equations. Noting that ∩iA \ {ai} = ∅, we use the Intersection lemma inductively to
eliminate y1.

For simulating division by an integer c given a variable z =
∑
i cixi and an equation

z ∈ C such that c divides every element of C, we first derive z ∈ I, where I is all possible
integer values of the expression

∑
i cixi, by using our simulation of addition. We then

introduce a variable z′ = z/c and from the former equation, we get a set of integer values
for z′ and from the latter, we get a set of rational values. Using the Intersection lemma now
gives the right range for the variable z′ = z/c.

Simulating semantic CP* In section 4.3, we derive a semantic consequence y3 ∈ C
of two lines y1 ∈ A and y2 ∈ B by simulating a dynamic programming based approach to
derive an equation for every infeasible value of the tuple (y1, y2, z) in the grid I1 × I2 × I3,
where Ij is all the integer values yj can take. We then use the Intersection lemma again to
narrow down the range of values for y3 based on the constraints y1 ∈ A and y2 ∈ B.
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Simulating in Fm
p In section 4.4, we show the simulation of syntactic CP* over a finite

field extension Fmp . To represent large numbers over a finite field we use the linear transfor-
mation xi 7→ αxi for every boolean variable xi, where α is a primitive element of Fmp . The
simulation is then largely similar to section 4.2.

Simulating AC0[q]-Frege and TC0-Frege Looking at the simulations so far, it is
already clear that Depth-d-PC can express ORs of statements of the form z ∈ A. In
sections 5.1, 5.2 and 6 we show that Depth-d-PC is able to simulate a form of sequent
calculus involving threshold and modular connectives introduced in [6] and [16], from which
Theorems 2 and 3 follow.

Dealing with large coefficients In section 7, we show how large integers can be
represented as bit vectors in our system, define addition and multiplication operations over
these vectors and show that our system can prove some basic properties of them. This is
sufficient for us to complete simulations of Cutting Planes with unbounded coefficients and
Dynamic Sum of Squares.

4 Small-weight Cutting Planes Simulations

Definition 8. Cutting Planes
Let ∆ = {A1 · · ·Am} be a set of unsatisfiable integer linear inequalities in boolean variables
x1 · · ·xn of the form Aj ≡

∑
i aijxi ≥ bi where aij and bi are integers. A Cutting Planes

refutation of ∆ is a sequence of inequalities B1 · · ·Bs such that Bs is the inequality 1 ≥ 0
and for every ` ∈ {1 · · · s} B` ∈ ∆ or is obtained through one of the following derivation
rules for j, k < `

Addition From Bj ≡
∑
i cijxi ≥ dj and Bk ≡

∑
i cikxi ≥ dk, derive∑

i

(cij + cik)xi ≥ dj + dk

Multiplication by a constant From Bj ≡
∑
i cijxi ≥ dj, derive

c
∑
i

cijxi ≥ cdj

for an integer c ≥ 0.

Division by a nonzero constant From Bj ≡
∑
i cijxi ≥ dj and an integer c > 0

such that c divides cij for all i, derive∑
i

cij
c
xi ≥ ddj/ce

The length of a Cutting Planes proof is equal to the number of inequalities in the proof.
We define the coefficient size of a Cutting Planes proof to be equal to the maximum of the
absolute value of all the constants that appear in the proof. CP∗ is a subsystem of Cutting
Planes where the absolute value of each coefficient is bounded by a polynomial in the number
of variables. Without loss of generality, the sizes of the coefficients can be bounded by 2O(n2)

due to [?].

4.1 Proof of the Intersection lemma

Here we prove the Intersection lemma and some of its variants that will be used throughout
the rest of the paper.
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Lemma 1. “Substitution Lemma”
Let R(z− a1) · · · (z− ak) = 0 and Rp(z) = 0 be two equations in a Depth-d′-PC refutation,

where R is any polynomial and p is a univariate polynomial of degree d in z such that
p(ai) 6= 0 for any i. Then, we can derive the equation R = 0 in O(kd|R|) lines where |R| is
the number of monomials in R.

Proof. Consider the base case of k = 1. Starting with R(z − a1) = 0, we can successively
derive Rzi − Rai1 = 0 for i ∈ {2 · · · d} by multiplying with the appropriate polynomials in
z. This takes O(d|R|) lines in total. Then adding these equations up with the appropriate
coefficients we obtain Rp(z) − Rp(a) = 0. Since p(a) 6= 0 and Rp(z) = 0, we have R = 0.
Now, multiplying every line of the above derivation with (z − a2) · · · (z − ak), we have a
derivation of R(z − a2) · · · (z − ak) = 0 from R(z − a1) · · · (z − ak) = 0 and Rp(z) = 0. The
lemma now follows by induction over k.

Lemma 2. Let Q(z−a) = 0 and Q
∏k
i=1(z−bi) = 0 be two equations in Trinomial-ΠΣ-PC,

where Q is a monomial and a 6= bi for any i. Then we can derive Q = 0 in O(k) lines.

Proof. The proof is by induction on k. The base case, when k = 0, is trivial. Assume that
the lemma is true for some k − 1 ≥ 0. Let z1 = z − a, z2 = z − b1 and Q1 =

∏k
i=2(z − bi).

The equations are then represented as

Qz1 = 0 (1)

QQ1z2 = 0 (2)

z1 = z − a (3)

z2 = z − b (4)

Multiplying equation (1) by Q1, we have

QQ1z1 = 0 (5)

Let c = a− b. By subtracting (4) from (3) we derive

z1 − z2 + c = 0 (6)

Now multiplying the above equation by the monomial QQ1, we derive the trinomial

QQ1z1 −QQ1z2 + cQQ1 = 0

But since we already have QQ1z1 = 0 from (5) and QQ1z2 = 0 from (2), we obtain

cQQ1 = 0

Since c 6= 0, we derive QQ1 = 0. Therefore, we now have the equations

Q(z − a) = 0

Q

k∏
i=2

(z − bi) = 0

The proof of the lemma thus follows from the induction hypothesis. Since it only takes
a constant number of lines to go from the case of k to the case of k− 1, the total number of
lines in the derivation is O(k).

We now generalize this lemma as follows.

Lemma 3. “Intersection Lemma”
Let A and B be two sets of constants in F. Let

∏
a∈A(z − a) = 0 and

∏
b∈B(z − b) = 0

be two equations in Trinomial-ΠΣ-PC. Then there is a proof of
∏
c∈A∩B(z − c) = 0 in

Trinomial-ΠΣ-PC of length O(|A \B| · |B \A|)
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Proof. We will prove the lemma by induction over the size of |A \ B|. The base case when
|A \B| = 0 trivially follows since A = A ∩B.

Now for any two sets A and B such that |A \ B| > 0, let the equations be labeled as
follows ∏

a∈A
(z − a) = 0 (7)

∏
b∈B

(z − b) = 0 (8)

Let A0 = A \ B and B0 = B \ A. Choose an element a1 ∈ A0. Let A1 = A \ {a1}
and A2 = A0 \ {a1}. Let Q1 be the monomial

∏
a∈A1

(z − a) and Q2 be the monomial∏
a∈A2

(z − a). Then equation (7) can be written as

Q1(z − a1) = 0 (9)

Multiplying (8) by Q2 we get ∏
b∈B∪A2

(z − b) = 0 (10)

Note that there are no squared terms in the monomial since A2 and B are disjoint. The
above equation can be rewritten as ∏

b∈A1∪B0

(z − b) = 0 (11)

since A1 ∪ B0 = B ∪ A2. Note that A1 and B0 are also disjoint. Hence we can write the
above equation as

Q1

∏
b∈B0

(z − b) = 0 (12)

Now since a1 6∈ B0, we can apply Lemma 2 on equations (9) and (12) to get

Q1 = 0

i.e. ∏
a∈A1

(z − a) = 0 (13)

in O(|B0|) = O(|B \A|) lines.
Now we have two sets of constants A1 and B with corresponding equations (13) and (8)

such that |A1 \ B| = |A \ B| − 1. Thus the lemma follows by induction. The total number
of lines is O(|A \B| · |B \A|).

Remark It is easy to see that starting with Q
∏
a∈A(z − a) = 0 and Q

∏
b∈B(z − b) = 0,

we can still apply the Intersection Lemma to get Q
∏
c∈A∩B(z− c) = 0 for any monomial Q.

4.2 Simulating syntactic CP∗ in Trinomial-ΠΣ-PC over Q
We are now ready to state and prove our simulation theorem for syntactic CP*

Theorem 4. Trinomial-ΠΣ-PC over Q can simulate syntactic Cutting Planes with the
number of lines polynomial in n and the coefficient size.

For each possible derivation rule in a Cutting Planes proof, we will now show how to
derive in Trinomial-ΠΣ-PC the translation of the result of applying the rule on a line or a
pair of lines, given their translations.
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Simulating Addition For the addition rule, given the translations of two lines
∑
i aijxi ≥

bj and
∑
i aikxi ≥ bk in CP*, we will derive the translation of their sum

∑
i (aik + aij)xi ≥

bj + bk. The following lemma suffices.

Lemma 4. Simulating addition
Let x(x−1) · · · (x−a) = 0 and y(y−1) · · · (y−b) = 0 be two equations in a Trinomial-ΠΣ-PC

refutation with a ≥ b. Then we can derive

(x+ y)(x+ y − 1) · · · (x+ y − (a+ b)) = 0

using O(ab) lines.

Proof. Let z = x+ y. We will first derive the range of values z can take when y = j, for all
j ∈ {0 · · · b}. Let xi = x− i for i ∈ {0 · · · a}, yj = y − j for j ∈ {0 · · · b} and zk = z − k for
k ∈ {0 · · · a+ b}. Also, for S ⊆ {0 · · · b}, let YS =

∏
j∈{0···b}\S yj . We denote Y{j} simply by

Yj . Note that YAYB = 0 if A ∪B = {0 · · · b}. Then we have

zj = x0 + yj

Multiplying the above equation by the monomial Yj , we have

zjYj − x0Yj − yjYj = 0

Since yjYj =
∏
j∈{0···b} yj = 0, we have

zjYj − x0Yj = 0 (14)

It is easy to derive for i ∈ {0 · · · a}

zj − zj+i − i = 0

Multiplying the above equation by the monomial Yj , we have

zjYj − zj+iYj − iYj = 0 (15)

Subtracting this from (14) we get

zj+iYj − x0Yj + iYj = 0 (16)

By the definition of xi we have

xi = x0 − i

Multiplying the above equation by the monomial Yj , we get

xiYj − x0Yj + iYj = 0

Subtracting the above equation from (16) we get

zj+1Yj − xiYj = 0

Thus, for all i ∈ {0 · · · a} we derive

zj+iYj − xiYj = 0

From the above a+ 1 equations, we can inductively derive for i ∈ {0 · · · a}

zj · · · zj+iYj − x0 · · ·xiYj = 0

as follows. For i ∈ {1 · · · a}, using

zj · · · zj+i−1Yj − x0 · · ·xi−1Yj = 0

we can derive

zj · · · zj+iYj − x0 · · ·xi−1zj+iYj = 0 (17)
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by multiplying with zj+1. Now multiplying

zj+iYj − xiYj = 0

by the monomial x0 · · ·xi−1, we derive

x0 · · ·xi−1zj+iYj − x0 · · ·xiYj = 0 (18)

Subtracting (18) from (17) we get

zj · · · zj+iYj − x0 · · ·xiYj = 0

using O(j) monomials. Therefore, we have

zj · · · zj+aYj − x0 · · ·xaYj = 0 (19)

and since x0 · · ·xa = 0, we derive

zj · · · zj+aYj = 0

We derive the above for every j ∈ {0 · · · b} using a total of O(ab) lines. Multiplying the
above line by {zk : 0 ≤ k < j} ∪ {zk : j + a < k ≤ a+ b}, we have for all j ∈ {0 · · · b}

z0 · · · za+bYj = 0

Now note that the set of monomials {Yj : j ∈ {0 · · · b}} have no common root. Therefore
we can apply the Intersection Lemma repeatedly to derive z0 · · · za+b = 0 as follows. Starting
with

z0 · · · za+bY{0···j} = 0

and
z0 · · · za+bYj+1 = 0

and applying the Intersection Lemma with A = {0 · · · b} \ {0 · · · j} and B = {0 · · · b} \
{j + 1} we get

z0 · · · za+bY{0···j+1} = 0

using O(j) lines. Thus using O(b2) lines we get

z0 · · · za+b = 0

and the total number of lines is O(ab+ b2).

Corollary 1. Given the translations of
∑
i aijxi ≥ bj and

∑
i aikxi ≥ bk, we can derive in

Trinomial-ΠΣ-PC the translation of
∑
i (aik + aij)xi ≥ bj + bk in O((

∑
i a

+
ij − bj)(

∑
i a

+
ik −

bk)) lines

Proof. Use the above lemma for x =
∑
i aijxi − bj , a =

∑
i a

+
ij − bj and y =

∑
i aikxi − bk ,

b =
∑
i a

+
ik − bk.

Simulating multiplication by a constant We use the following lemma to derive
the translation of c

∑
i cijxi ≥ cdj in Trinomial-ΠΣ-PC from the translation of

∑
i cijxi ≥ dj

Lemma 5. Let (z−a1) · · · (z−ak) = 0 be an equation in Trinomial-ΠΣ-PC. We can derive
the equation

(z′ − ca1) · · · (z′ − cak) = 0

where z′ = cz in Trinomial-ΠΣ-PC for any c ∈ Q in O(k) lines.
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Proof. The proof is by induction on k. For k = 0, the derivation is trivial. Let zi = z − ai
and z′i = z′ − cai for i ∈ {1 · · · k}. Then, for any k ≥ 1, we are given the equation

z1 · · · zk = 0

and we want to derive

z′1 · · · z′k = 0

Since, z′ = cz, we get z′1 = z′ − ca1 = cz1 and thus multiplying with z2 · · · zk we get

z′1z2 · · · zk − cz1 · · · zk = 0

But since z1 · · · zk = 0 as above, we get

z′1z2 · · · zk = 0

Now by the induction hypothesis we have a derivation of z′2 · · · z′k = 0 from z2 · · · zk =
0. By multiplying each step of this derivation by z′1, we have derived z′1 · · · z′k = 0 from
z′1z2 · · · zk = 0.

Corollary 2. Given the translation of
∑
i cijxi ≥ dj, we can derive the translation of

c
∑
i cijxi ≥ cdj in Trinomial-ΠΣ-PC in O(

∑
i c

+
ij − dj) lines

Proof. Use the above lemma for z =
∑
i cijxi − dj and

(a1 · · · ak) = (0 · · ·
∑
i c

+
ij − dj)

Simulating division by a constant Given the translation of a line c
∑
i aijxi ≥ bj

in Cutting Planes for some c > 0, we will now derive the translation of
∑
i aijxi ≥ dbj/ce

by the lemma below. We need the following corollary of Lemma 4

Corollary 3. Let z =
∑
i aijxi be an equation in Trinomial-ΠΣ-PC, where xi are boolean

variables. Then we can derive

z
(
z − 1

)
· · ·
(
z −

(∑
i

a+ij
))

= 0

in O((
∑
i a

+
i )2) lines.

Proof. Let a =
∑n
i=1 a

+
ij and let b =

∑n/2
i=1 a

+
ij . Assume that we have derived the equations

z1

(
z1 − 1

)
· · ·
(
z1 −

( n/2∑
i=1

a+i
))

= 0

z2

(
z2 − 1

)
· · ·
(
z2 −

( n∑
i=n/2+1

a+i
))

= 0

for z1 =
∑n/2
i=1 aijxi and z2 =

∑n
i=n/2+1 aijxi. We can use Lemma 4 on the above two

equations to derive the required equation in O(b(a−b)) lines. Continuing this recursively for

the above two lines, the total number of lines L(a) to derive z
(
z−1

)
· · ·
(
z−
(∑

i a
+
i

))
= 0

is given by the recurrence L(a) = L(b) + L(a− b) + O(b(a− b)), which gives L(a) = O(a2)
by an easy induction.

Lemma 6. Simulating Division by a constant
Let (cz − b)(cz − (b + 1)) · · · (cz − d) = 0 be an equation in Trinomial-ΠΣ-PC where z =∑
i aijxi such that xi are boolean variables, b < d and c > 0. We can derive

(z − db/ce)(z − (db/ce+ 1)) · · · (z − bd/cc) = 0

using O((
∑
i a

+
i )2 + (

∑
i a

+
i )(d− b)) lines.
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Proof. Using Corollary 3 we can derive the following equation in O((
∑
i a

+
i )2) lines.

z
(
z − 1

)
· · ·
(
z −

(∑
i

a+ij
))

= 0 (20)

Now, using Lemma 5 on the equation (cz − b)(cz − (b+ 1)) · · · (cz − d) = 0 with the multi-
plication constant equal to 1/c, we can derive

z(z − b/c) · · · (z − d/c) = 0 (21)

Note that the constants in parentheses in the above equation are rational, and the small-
est integer that appears is db/ce and the largest integer that appears is bd/cc. Using the
Intersection Lemma with equations (20) and (21), we see that only the integer values are
retained from (21) which gives us

(z − db/ce)(z − (db/ce+ 1)) · · · (z − bd/cc)

using O((
∑
i a

+
i )(d− b)) lines.

Corollary 4. Given the translation of a line c
∑
i aijxi ≥ bj for some c > 0, we can derive

in Trinomial-ΠΣ-PC the translation of
∑
i aijxi ≥ dbj/ce in O(c(

∑
i a

+
ij)

2)lines

Proof. Apply the above lemma for z =
∑
i aijxi.

This completes the simulation of a syntactic CP* proof in Trinomial-ΠΣ-PC with the
simulation having size polynomial in n and the coefficient size of the original proof.

4.3 Simulating semantic CP∗ in Trinomial-ΠΣ-PC over Q
In this section we extend the above simulation to include semantic CP*, hence completing
the proof of Theorem 1. Let L1 ≡

∑
i aixi ≥ d1, L2 ≡

∑
i bixi ≥ d2 be two lines in a

Cutting Planes proof and let L3 ≡
∑
i cixi ≥ d3 be a semantic consequence of L1 and L2.

Let y =
∑
i aixi, z =

∑
i bixi and w =

∑
i cixi. Let A = {0 · · ·

∑
i a

+
i }, B = {0 · · ·

∑
i b

+
i }

and C = {0 · · ·
∑
i c

+
i }. Using Lemma 3, we can derive the equations∏

a∈A
(y − a) = 0

∏
b∈B

(z − b) = 0

∏
c∈C

(w − c) = 0

This restricts the values that can be taken by the tuple (y, z, w) to the three dimensional
grid A × B × C. Let a point (i, j, k) in the grid be infeasible if the tuple (y, z, w) never
evaluates to it for any assignment to {xi}. Our first step is to derive infeasibility equations
of the form ∏

a∈A
a 6=i

(y − a)
∏
b∈B
b6=j

(z − b)
∏
c∈C
c6=k

(w − c) = 0

which for (i, j, k) ∈ A×B ×C tells us that the point (i, j, k) in the grid is infeasible for
the tuple (y, z, w).

Lemma 7. For every infeasible point (i, j, k) ∈ A×B × C, an infeasibility equation of the
above form can be derived in O((

∑
i a

+
i )2(

∑
i b

+
i )2(

∑
i c

+
i )2) lines

13



Proof. We proceed by induction on n. Let y` =
∑`
i=1 aixi and z`, w`, A`, B`, C` be defined

analogously. For the base case of n = 1, the equations defining the grid are y1(y1− a1) = 0,
z1(z1 − b1) = 0 and w1(w1 − c1) = 0. The only feasible points in the grid are (0, 0, 0) and
(a1, b1, c1), and thus for every other tuple we will derive an infeasibility equation. We show
the derivation for one such tuple (a1, 0, 0). Starting with

y1 = a1x1

z1 = b1x1

derive
z1 − b1 = b1(x1 − 1)

and multiply by y1 to derive

y1(z1 − b1) = a1b1x1(x1 − 1) = 0

Multiplying the above equation by (w1− c1), we have our required infeasibility equation.
To continue the induction and derive all possible infeasibility equations, we observe that

a point (i, j, k) for (y`, z`, w`) is infeasible if and only if the points (i, j, k) and (i − a`, j −
b`, k− c`) are infeasible for (y`−1, z`−1, w`−1). Therefore, assuming the latter, we derive the
former as follows. Given∏

a∈A`−1

a 6=i

(y`−1 − a)
∏

b∈B`−1

b 6=j

(z`−1 − b)
∏

c∈C`−1

c 6=k

(w`−1 − c) = 0

and ∏
a∈A`−1

a6=i−a`

(y`−1 − a)
∏

b∈B`−1

b 6=j−b`

(z`−1 − b)
∏

c∈C`−1

c 6=k−c`

(w`−1 − c) = 0

we will derive ∏
a∈A`
a6=i

(y` − a)
∏
b∈B`
b 6=j

(z` − b)
∏
c∈C`
c6=k

(w` − c) = 0

Starting with the equations

y` = y`−1 + a`x`

z` = z`−1 + b`x`

w` = w`−1 + c`x`

multiply each by (x` − 1) to derive

y`(x` − 1) = y`−1(x` − 1)

z`(x` − 1) = z`−1(x` − 1)

w`(x` − 1) = w`−1(x` − 1)

From the above equations, it is easy to derive (see Lemma 4)

(x` − 1)
∏

a∈A`−1

a 6=i

(y` − a)
∏

b∈B`−1

b6=j

(z` − b)
∏

c∈C`−1

c6=k

(w` − c) (22)

= (x` − 1)
∏

a∈A`−1

a 6=i

(y`−1 − a)
∏

b∈B`−1

b 6=j

(z`−1 − b)
∏

c∈C`−1

c 6=k

(w`−1 − c) (23)

= 0 (24)

Similarly, we derive from the three starting equations
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y` − a` = y`−1 + a`(x` − 1)

z` − b` = z`−1 + b`(x` − 1)

w` − c` = w`−1 + c`(x` − 1)

Multiplying by x` we have

(y` − a`)x` = y`−1x`

(z` − b`)x` = z`−1x`

(w` − c`)x` = w`−1x`

Analogous to the above we can derive

x`
∏

a∈A`−1

a 6=i−a`

(y` − (a+ a`))
∏

b∈B`−1

b 6=j−b`

(z` − (b+ b`))
∏

c∈C`−1

c6=k−c`

(w` − (c+ c`)) (25)

= x`
∏

a∈A`−1

a 6=i−a`

(y`−1 − a)
∏

b∈B`−1

b 6=j−b`

(z`−1 − b)
∏

c∈C`−1

c 6=k−c`

(w`−1 − c) (26)

= 0 (27)

As A`−1 ∪ {a + a` : a ∈ A`−1} ⊆ A` (similarly for B` and C`), we have from equations
(22) and (25)

(x` − 1)
∏
a∈A`
a 6=i

(y` − a)
∏
b∈B`
b6=j

(z` − b)
∏
c∈C`
c6=k

(w` − c) = 0 (28)

x`
∏
a∈A`
a 6=i

(y` − a)
∏
b∈B`
b6=j

(z` − b)
∏
c∈C`
c 6=k

(w` − c) = 0 (29)

Adding the above two equations, we derive the required one.

The next step is to use the ranges of y and z specified in lines L1 and L2 to narrow down
the possible values that can be taken by w. Our goal will be to get an equation of the form∏

c∈C′
(w − c) = 0

such that each c in C ′ is feasible for w under the constraints L1 and L2 on y and z
respectively.

Let Pi be the translation of Li in Trinomial-ΠΣ-PC, for i = 1, 2, 3. Let Ia,b denote
the set of all infeasibility equations for points of the form (a, b, k) for some k ∈ C. For an
equation P of the form

∏
a∈A1

(y− a)
∏
b∈B1

(z− a)
∏
c∈C1

(w− a) = 0, denote by Ry(P ) the
set A1, that is the range of values specified by the equation for the variable y. Rz and Rw
are defined analogously. We describe how to obtain the set C ′ by the algorithm w-feasible
which operates on the range sets.

Consider a pair (a, b) ∈ Ry(P1)×Rz(P2). For any equation I ∈ Ia,b , Rw(I) gives a list of
possible values the variable w can take when (y, z) = (a, b). By Lemma 7, (y, z, w) = (a, b, c)
is infeasible if and only if there is an equation I ∈ Ia,b such that c 6∈ Rw(I). Therefore,⋂
I∈Ia,b

Rw(I) is precisely the feasible set of values for w, given (y, z) = (a, b). C ′ is the union

of such sets over all possible pairs (a, b) ∈ Ry(P1)×Rz(P2) and hence is the set of all feasible
values of w.

This algorithm over range sets can be easily translated to a proof of
∏
c∈C′(w − c) = 0

from P1 and P2 in Trinomial-ΠΣ-PC as follows. To simulate the inner for loop, we use
the Intersection lemma inductively over all equations in Ia,b to get equations Ja,b such that
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procedure w-feasible(P1,P2)
C ′ ← ∅
for (a, b) ∈ Ry(P1)×Rz(P2) do

S ← C
for I ∈ Ia,b do

S ← S ∩Rw(I)
end for
C ′ ← C ′ ∪ S

end for
return C ′

end procedure

Rw(Ja,b) =
⋂

I∈Ia,b

Rw(I). Note that Ry(Ja,b) = A \ {a} and Rz(Ja,b) = B \ {b}. Thus

using the Intersection lemma again inductively over the set {Ja,b} analogous to Lemma 4
would give an equation free of y and z, where w ranges over

⋃
(a,b)

Rw(Ja,b). Any semantic

consequence P3 must be such that Rw(P3) ⊇ C ′ and hence is easily derived.

4.4 Simulating syntactic CP∗ in Depth-5-PC over Fpm

We will now carry out the simulation in Section 4.2 in Depth-d-PC over a large enough field
extension Fpm of a finite field Fp. This will be of use in the next section, where we simulate
AC0[p]-Frege in Depth-d-PC over Fpm . For the following discussion, we set d = 5

To represent large integers over Fpm , we choose a primitive element α and for a boolean
xi perform the linear transformation xi 7→ αxi .

∑
i aixi is thus represented as α

∑
i aixi . We

will show that all the steps of the simulation in section 4.2 can still be performed after this
transformation.

Theorem 5. Depth-d-PC over Fpm can simulate syntactic Cutting Planes with the num-
ber of lines polynomial in n and the coefficient size, where m is logarithmic in n and the
coefficient size.

Let s1 be the coefficient size of the Cutting Planes proof. Define s = ns1. Choose m to
be the smallest integer such that 2s2 < pm − 1. Let α be an arbitrary primitive element of
Fpm .

Definition 9. Translation of Cutting Planes to Depth-d-PC over Fpm
Given a line

∑
i aixi ≥ bi in Cutting Planes, the translation of the above line is defined

as the following lines, where yi and y are new variables.

yi = (αai − 1)xi + 1

y =
∏
i

yi

(y − αbi)(y − αbi+1) · · · (y − α
∑

i a
+
i ) = 0

An integer c such that 0 ≤ c ≤ s is represented as αc, whereas for −s ≤ c < 0 we
represent it as α−|c| ≡ α(pm−1)−|c|. Since 2s ≤ 2s2 < pm − 1, these representations are
unique.

The following lemmas will be largely similar to the ones in the previous section.

Simulating Addition To simulate the addition rule, it suffices to show the following

Lemma 8. Let A and B be two sets of constants in any field and let C = {ab | a ∈ A, b ∈ B}.
Let

∏
a∈A(x − a) = 0 and

∏
b∈B(x − b) = 0 be two equations in Depth-d-PC. Let z = xy.

Then the equation ∏
c∈C

(z − c) = 0
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can be derived in O(|A||B|) lines.

Proof. Let A = {ai}, B = {bi}, xi = x − ai and yi = y − bi. Note that x1 · · ·x|A| = 0 =
y1 · · · y|B|. Let Xj =

∏
i6=j xi. Starting with

z = xy

we can derive
z = (x− aj)y + ajy

Now multiplying the above equation by Xj , we have

zXj = x1 · · ·x|A|y + ajyXj = ajyXj

Subtracting ajbiXj on both sides we can derive for every i the equation

(z − ajbi)Xj = aj(y − bi)Xj

Now, similar to Lemma 4, we can derive from the |B| equations above the equation

(z − ajb1) · · · (z − ajb|B|)Xj = ajy1 · · · y|B|Xj = 0

Thus for every j we have the equation

(z − ajb1) · · · (z − ajb|B|)Xj = 0

Multiplying each of the above |A| equations with the missing terms, we can obtain for
every j, ∏

c∈C
(z − c)Xj = 0

Using the Intersection Lemma inductively as in Lemma 4, we obtain the required equa-
tion.

Corollary 5. Given the translations of
∑
i aijxi ≥ bj and

∑
i aikxi ≥ bk in Depth-d-PC over

Fpm , we can derive the translation of
∑
i (aik + aij)xi ≥ bj + bk in O((

∑
i aij− bj)(

∑
i aik−

bk)) lines

Proof. Use the above lemma for y1 =
∏
i((α

aij − 1)xi + 1), y2 =
∏
i((α

aik − 1)xi + 1),

A = {αbj , αbj+1 · · ·α
∑

i a
+
ij}, B = {αbk , αbk+1 · · ·α

∑
i a

+
ik}

Simulating Multiplication

Lemma 9. Let A be a set of constants in any field and let c be a positive integer. Let
Ac = {ac | a ∈ A}. Let

∏
a∈A(x − a) = 0 be an equation in the Depth-d-PC. Then we can

derive the equation ∏
a∈Ac

(xc − a) = 0

in O(|A|) lines.

Proof. Let xi = x − ai and x′i = xci . Then the given equation becomes x1 · · ·x|A| = 0, and
we want to derive x′1 · · ·x′|A| = 0. The proof is by induction on |A|. If |A| = 0 then we

have nothing to prove. Assume that the statement is true for |A| ≤ k − 1 for some k ≥ 1.
Consider an expression of the form

∏
a∈A(x − a) = 0, where |A| = k. If |Ac| < k, then

clearly there exists a set A1 ⊂ A such that Ac1 = Ac, and the required equation follows from
the induction hypothesis. If |Ac| = k, from the given equation, it is easy to derive

xx2 · · ·xk − a1x2 · · ·xk = 0

Multiplying the above equation with x, we have
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x2x2 · · ·xk − a1xx2 · · ·xk = 0

Adding a1 times the former equation to the latter, we have

x2x2 · · ·xk − a21x2 · · ·xk = 0

Proceeding in a similar way, we can derive

xcx2 · · ·xk − ac1x2 · · ·xk = 0

or equivalently

x′1x2 · · ·xk = 0

Now by the induction hypothesis, we have a proof of x′2 · · ·x′k = 0 from x2 · · ·xk = 0.
Multiplying each line of the proof by x′1 we arrive at a proof of the required equation.

Corollary 6. Given the translation of
∑
i aijxi ≥ bj in Depth-d-PC over Fpm and an integer

c < pm − 1, we can derive the translation of
∑
i caijxi ≥ cbj in O((

∑
i aij − bj)) lines

Proof. Use the above lemma for y =
∏
i((α

aij − 1)xi + 1), A = {αbj , αbj+1 · · ·α
∑

i a
+
ij}

Note that previous two lemmas hold over any field. For the following lemma, we will use
the fact that we are working over Fpm where s2 < pm − 1.

Simulating Division The proof of the following corollary is analogous to Corollary 3.

Corollary 7. Let x =
∏
i((α

bij − 1)xi + 1) be a variable where xi are boolean. We can
derive

(x− 1)(x− α) · · · (x− α
∑

i b
+
ij ) = 0

in O((
∑
i b

+
ij)

2) lines

Lemma 10. Let (xc − αca1) · · · (xc − αcak) = 0 be an equation in Depth-d-PC over Fpm ,
where ai are distinct and x is of the form

∏
i((α

bij − 1)xi + 1) where xi are boolean. There
is a proof of the equation

(x− αa1) · · · (x− αak) = 0

in O((
∑
i a

+
i )2) lines

Proof. Using Corollary 7, we can derive

(x− 1)(x− α) · · · (x− α
∑

i b
+
ij ) = 0 (30)

in O((
∑
i b

+
ij)

2) lines. Since
∑
i |bij | < s, any term (x − αb) that appears in the above

equation is such that b ∈ [0, s] or b ∈ [pm − 1− s, pm − 2].
The proof is by induction on k. Consider the case of k = 1, when we have the equation

xc − αca1 = 0 where a1 ≤ s without loss of generality. If c - pm − 1, then it has a unique
root αa1 . If c | pm − 1, then the roots are of the form αai+j(p

m−1)/c for j ∈ {0 · · · c − 1}.
But since 2s2 < pm − 1,

c ≤ s < (pm − 1)/2s ≤ (pm − 1)/2c (31)

Therefore any root αb such that b 6= a1 is such that b ≥ ai + (pm − 1)/c > s. Also, we
have

b ≤ ai + (pm − 1)(c− 1)/c

= pm − 1− ((pm − 1)/c− ai)
< pm − 1− ((pm − 1)/c− s)
< pm − 1− s
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where the last inequality is due to (31). Therefore the only root αb to the equation xc−αca1 =
0 such that b ∈ [0, s] or b ∈ [pm−1−s, pm−2] is αa1 . Starting with the equation xc−αca1 = 0
it is easy to derive

(x− αa1)Q(x) = 0 (32)

where Q(x) = xc−1 + αxc−2 + · · ·+ αc−1, just by expanding the above equation into its
monomials. Now by our discussion above, for any term (x−αb) that appears in the equation
(30), Q(αb) 6= 0. Therefore, using the Substitution lemma with equations (30) and (32) we
derive x− αa1 = 0 if this term appears in (30), else we derive 1 = 0. Therefore, this gives a
derivation of x− αa1 = 0 from the equation xc − αca1 = 0.

For the induction step, by multiplying every step in the above derivation with
(xc − αca2) · · · (xc − αcak), we obtain a derivation of

(x− αa1)(xc − αca2) · · · (xc − αcak) = 0

from
(xc − αca1) · · · (xc − αcak) = 0

The lemma now follows by induction.

Corollary 8. Given the translation of c
∑
i aijxi ≥ bj in Depth-d-PC over Fpm for an

integer c < pm − 1, we can derive the translation of
∑
i aijxi ≥ dbj/ce in O((c

∑
i a

+
ij)

2)
lines

Proof. Let the equation

(yc − αbj ) · · · (yc − αc
∑

i a
+
ij ) = 0 (33)

be obtained from the translation of c
∑
i aijxi ≥ bj , where y =

∏
i((α

aij − 1)xi + 1). We
first use Corollary 7 to derive

(y − 1)(y − α) · · · (y − α
∑

i a
+
ij ) = 0

in (
∑
i a

+
ij)

2 lines. Using Lemma 9 on the above equation, we get

(yc − 1)(yc − αc) · · · (yc − αc
∑

i a
+
ij ) = 0 (34)

in
∑
i a

+
ij lines. Using the Intersection Lemma on equations (33) and (34), we get

(yc − αcdbj/ce) · · · (yc − αc
∑

i a
+
ij ) = 0

We now use the previous lemma to derive

(y − αdbj/ce) · · · (y − α
∑

i a
+
ij ) = 0

which is the required equation.

This completes the proof of Theorem 5

5 Simulating AC0[q]-Frege in Depth-7-PC over Fpm

5.1 Case of q = p

For the purpose of this section, we set d = 7. We will use the simulation of AC0[p]-Frege in
[16] to show that the same can be carried out in Depth-d-PC over Fpm . Below we describe
the proof system of [16] and their simulation of AC0[p]-Frege.

5.1.1 The Proof System of Maciel and Pitassi

Maciel and Pitassi [16] define a proof system with mod p, negation, AND, OR and threshold
connectives, based on the system PTK by Buss and Clote [6] which we describe below.
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Connectives Let x1 · · ·xn be boolean variables. For 0 ≤ j < p, let ⊕pj (x1 · · ·xn) denote
the connective which is 1 if and only if

∑
i xi = j mod p. For any integer t, let Tht(x1 · · ·xn)

denote the connective which is 1 if and only if
∑
i xi ≥ t. Let ∧(x1 · · ·xn), ∨(x1 · · ·xn) denote

AND and OR connectives of arity n and ¬ denote the NOT gate.

Formulas A formula is recursively defined as follows. Input variables x1 · · ·xn are for-
mulas of size 1 and depth 1. A formula ϕ is an expression of the form g(ϕ1 · · ·ϕk), where g is
any of the connectives described above and ϕ1 · · ·ϕk are formulas. The depth(ϕ) is defined

as
∑k
i=1 depth(ϕi)+1. The size(ϕ) is defined as

∑k
i=1 size(ϕi)+k+1 if g is not a threshold

connective, and it is defined as
∑k
i=1 size(ϕi) + t + k + 1 if g is a threshold connective of

the form Tht(ϕ1 · · ·ϕk).

Cedents and Sequents A cedent Γ is defined as a sequence of formulas ϕ1 · · ·ϕk. We
will use capital Greek letters to denote cedents. A sequent is an expression of the form
Γ→ ∆, where Γ and ∆ are cedents. The interpretation of a sequent is that the AND of all
the formulas in Γ implies the OR of all the formulas in ∆. The size and depth of a cedent
are respectively the sum of sizes and the maximum of depths of all the formulas in it. The
size of a sequent is the sum of sizes of both cedents, and the depth is the maximum of the
depths of both cedents.

Definition of a Proof A proof in this system is defined as a sequence of sequents
S1 · · · Sm such that each Si is either an initial sequent, or is derived from sequents Sj for
j < i through one of the rules listed below. The size and depth of a proof are respectively
the sum of sizes and the maximum of depths of all sequents in it.

The initial sequents and the derivation rules are listed below.
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The proof system of Maciel and Pitassi [16]

initial sequents

1. ϕ→ ϕ for any formula ϕ
2. → ∧() ; ∨()→
3. ⊕pj ()→ for 1 ≤ j < p ; → ⊕p0()
4. Tht()→
5. → Th0(ϕ1 · · ·ϕk) for any k ≥ 0

structural rules

weakening:
Γ,∆→ Γ′

Γ, ϕ,∆→ Γ′
Γ→ Γ′,∆′

Γ→ Γ′, ϕ,∆′

contract:
Γ, ϕ, ϕ,∆→ Γ′

Γ, ϕ,∆→ Γ′
Γ→ Γ′, ϕ, ϕ,∆′

Γ→ Γ′, ϕ,∆′

permute:
Γ, ϕ1, ϕ2,∆→ Γ′

Γ, ϕ2, ϕ1,∆→ Γ′
Γ→ Γ′, ϕ1, ϕ2,∆

′

Γ→ Γ′, ϕ2, ϕ1,∆
′

cut rule

Γ, ϕ→ ∆ Γ′ → ϕ,∆′

Γ,Γ′ → ∆,∆′

logical rules

¬ :
Γ→ ϕ,∆

¬ϕ,Γ→ ∆

ϕ,Γ→ ∆

Γ→ ¬ϕ,∆

∧-left:
ϕ1,∧(ϕ2 · · ·ϕk),Γ→ ∆

∧(ϕ1 · · ·ϕk),Γ→ ∆

∧-right:
Γ→ ϕ1,∆ Γ→ ∧(ϕ2 · · ·ϕk),∆

Γ→ ∧(ϕ1, ϕ2 · · ·ϕk),∆

∨-left:
ϕ1,Γ→ ∆ ∨(ϕ2 · · ·ϕk),Γ→ ∆

∨(ϕ1, ϕ2 · · ·ϕk),Γ→ ∆

∨-right:
Γ→ ϕ1,∨(ϕ2 · · ·ϕk),∆

Γ→ ∨(ϕ1 · · ·ϕk),∆

⊕i-left:
ϕ1,⊕pi−1(ϕ2 · · ·ϕk),Γ→ ∆ ⊕pi (ϕ2 · · ·ϕk),Γ→ ϕ1,∆

⊕pi (ϕ1, ϕ2 · · ·ϕk),Γ→ ∆

⊕i-right:
ϕ1,Γ→ ⊕pi−1(ϕ2 · · ·ϕk),∆ Γ→ ϕ1,⊕pi (ϕ2 · · ·ϕk),∆

Γ→ ⊕pi (ϕ1, ϕ2 · · ·ϕk),∆

Tht-left:
Tht(ϕ2 · · ·ϕk),Γ→ ∆ ϕ1, Tht−1(ϕ2 · · ·ϕk),Γ→ ∆

Tht(ϕ1, ϕ2 · · ·ϕk),Γ→ ∆

Tht-right:
Γ→ ϕ1, Tht(ϕ2 · · ·ϕk),∆ Γ→ Tht−1(ϕ2 · · ·ϕk),∆

Γ→ Tht(ϕ1, ϕ2 · · ·ϕk),∆

5.1.2 Translating lines

We will now define translations of lines in the above proof system. For a formula ϕ, we denote
its translation in Depth-d-PC by tr(ϕ). Let x1 · · ·xn be the variables of the original proof.
Below we list the translations for a formula built with each connective. The interpretation
is that for any formula ϕ, tr(ϕ) = 0 if and only if ϕ is true.

tr(xi) = 1− xi



tr(∨(ϕ1 · · ·ϕk)) =
∏
i(tr(ϕi))

tr(∧(ϕ1 · · ·ϕk)) = 1−
∏
i tr(¬ϕi)

tr(⊕pi (ϕ1 · · ·ϕk)) = (
∑k
j=1 ϕj − i)p−1 for 0 ≤ i < p

tr(Tht(ϕ1 · · ·ϕk)) = (y − αt) · · · (y − αk)
where y =

∏
i((α− 1)tr(¬ϕi) + 1)

tr(¬ϕ) = 1− tr(ϕ) if ϕ does not contain a Tht connective

tr(¬Tht(ϕ1 · · ·ϕk)) = (y − 1) · · · (y − αt−1)
where y =

∏
i((α− 1)tr(¬ϕi) + 1), for t ≥ 1

The translation tr(S) of a sequent S of the form ϕ1 · · ·ϕk → ϕ′1 · · ·ϕ′m is given by the
equation

k∏
i=1

tr(¬ϕi)
m∏
j=1

tr(ϕ′j) = 0

Note that the translations of all the connectives except the threshold connective take
only boolean values over Fpm .

5.1.3 Simulating proofs

We now describe the connection between AC0[p]-Frege and the proof system of Maciel and
Pitassi. By the following theorem of Allender [1], any AC0[p] circuit can converted to a
depth three circuit of a special form.

Theorem 6. [1]
Any AC0[p] circuit can be converted to a quasipolynomial sized depth three circuit with an
unweighted Threshold gate at the top, MODp gates of quasipolynomial fan-in in the middle
and ∧ gates of polylogarithmic fan-in at the bottom

Depth three circuits with an unweighted Threshold, ∧ or ∨ gate at the top, MODp gates
in the middle and ∧ gates of polylogarithmic fan-in in the size of the circuit at the bottom
are referred to as flat circuits by [16]. For an AC0[p] circuit ϕ, its flattening fl(ϕ) is defined
as the flat circuit given by the above theorem. Proofs in AC0[p]-Frege can be thought of as
a list of sequents such that every formula that appears in each of them is an AC0[p] circuit.
For a sequent ϕ1 · · ·ϕk → ϕ′1 · · ·ϕ′m that appears in a AC0[p]-Frege proof, we can define a
flattening of the sequent fl(ϕ1) · · · fl(ϕk)→ fl(ϕ′1) · · · fl(ϕ′m) in the proof system of Maciel
and Pitassi. A flat proof of such a sequent is such that every formula that appears in the
proof is a flat circuit. The simulation theorem of [16] states the following

Theorem 7. [16]
Let S be a sequent which has a depth d proof in AC0[p]-Frege. Then its flattening fl(S) has

a flat proof of size 2(logn)
O(d)

in the proof system of Maciel and Pitassi.

We will show that flat proofs can be simulated in Depth-d-PC by showing the following

Theorem 8. Let S be a sequent which has a flat proof of size s in the proof system of Maciel
and Pitassi. Then there is a proof of the equation tr(S) in Depth-d-PC from the equations
xi(xi − 1) = 0 with poly(s) lines.

To prove the above theorem, it is sufficient to show that for each rule that derives a
sequent S3 from sequents S1 and S2, there is a derivation of the equation tr(S3) from the
equations tr(S1), tr(S2) and xi(xi − 1) = 0 in Depth-d-PC. Below we show how each such
rule can be simulated.

Simulating Initial sequents
Here we will show how to derive translations of the initial sequents from xi(1− xi) = 0.

Lemma 11. Let ϕ be any formula of depth three which only contains the ⊕pi , ¬, ∧ and ∨
connectives. Then the equation tr(ϕ)(1 − tr(ϕ)) = 0 can be derived from xi(xi − 1) = 0 in
Depth-d-PC

Proof. Easily follows from repeated application of Lemmas 4, 8 and 9 at each level.
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Lemma 12. The translation of the initial sequent ϕ→ ϕ can be derived from xi(xi−1) = 0
in Depth-d-PC for any flat circuit ϕ

Proof. If ϕ is a flat circuit without Threshold gates, this follows by Lemma 11 since the
translation of the sequent ϕ → ϕ is simply tr(ϕ)(1 − tr(ϕ)) = 0. If ϕ contains a top
Threshold gate, the translation of the given sequent states that a variable y such that
y =

∏k
i=1((α−1)tr(¬ϕi)+1) satisfies (y−1) · · · (y−αk) = 0, where ϕi are formulas without

Threshold gates. Thus we can derive tr(¬ϕi)(1 − tr(¬ϕi)) = 0 as in Lemma 11 and then
use Lemma 7 to derive (y − 1) · · · (y − αk) = 0.

The initial sequents 2,3 and 4 are dummies and do not require translating. The initial
sequent 5 can be derived using Lemma 7 since in a flat proof each of the inputs to the
Threshold connective do not contain Threshold connectives.

Simulating structural rules
The simulation of the weakening rule just involves multiplying the given equation by

the translation of the new formula ϕ that appears. The permutation rule is trivial since
the translation of a sequent is invariant under application of the permutation rule. To
simulate the contraction rule, we need to show that for every formula ϕ, we can derive
from (tr(ϕ))2 = 0 the equation tr(ϕ) = 0. When ϕ is a formula which does not involve a
Threshold connective, this is can be done by using Lemma 11. When ϕ is a flat circuit with
a Threshold gate at the top, the following lemma suffices.

Lemma 13. Let (y − αa1)2 · · · (y − αam)2 = 0 be an equation in Depth-d-PC where ai are

distinct integers less than pm − 1 and y =
∏k
i=1((α − 1)tr(¬ϕi) + 1) such that ϕi are flat

formulas with no Threshold gates. The equation (y − αa1) · · · (y − αam) = 0 can be derived
in O(max(m, k2)) lines.

Proof. The proof is by induction on m. The case of m = 0 is trivial. Using Lemma 7 we
can derive the range of values of the variable y, i.e. an equation of the form

(y − 1) · · · (y − αk) = 0 (35)

Let Q = (y−αa1)(y−αa2)2 · · · (y−αam)2 and Q1 = (y−αa2)2 · · · (y−αam)2. Then the
given equation can be written as

Q(y − αa1) = 0 (36)

Multiplying equation (35) withQ if it does not contain the term (y−αa1), else multiplying
it with Q1, we arrive at

Q
∏

1≤i≤k , i 6=a1

(y − αi)

Using Lemma 2 with equations (35) and (36), we get Q = 0. The lemma now follows
by induction since assuming there is a derivation of (y − αa2) · · · (y − αam) = 0 from (y −
αa2)2 · · · (y − αam)2, this derivation can be multiplied by (y − αa1) = 0 to get the required
equation from Q = 0.

Simulating the cut rule
Let Q = tr(¬Γ)tr(∆) and Q′ = tr(¬Γ′)tr(∆′). Let y = tr(ϕ) if ϕ does not contain

Threshold gates, else let y =
∏k
i=1((α− 1)tr(¬ϕi) + 1) where ϕ = Tht(ϕ1 · · ·ϕk). Then the

cut rule can be translated to the following statement

Lemma 14. Given the equations Q(y − a1) · · · (y − ak) = 0 and Q′(y − b1) · · · (y − bm) = 0
where a1 · · · ak and b1 · · · bm are disjoint sets of constants from the field, derive QQ′ = 0

Proof. Multiply the first equation by Q′ and the second equation by Q, and use the con-
traction rule to make sure the resulting equations are square free. Then required equation
now follows easily from the Intersection Lemma.
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Simulating ∧,∨, ⊕p
i and ¬ rules

The rules for ¬, ∧-left and ∨-right are trivially simulated since the translation remains
invariant. For the ∧-right and ∨-left, the simulation reduces to the following lemma, where
Q = tr(¬Γ)tr(∆).

Lemma 15. Given the equations Qy1 = 0 and Qy = 0 where y1 and y take boolean values,
derive the equation Qyy1 = 0

Proof. Follows from Lemma 7

For the ∧-right rule, the above lemma can be instantiated with y1 = tr(ϕ1) and y =
tr(∧(ϕ2 · · ·ϕk)). Since ∧(ϕ1 · · ·ϕk) is being derived, each of the formulas ϕi must be free of
Threshold gates. Thus the fact that y and y1 are boolean is easily derived from Lemma 11.
A similar simulation works for the ∨-left rule.

The simulation for ⊕pi gates is analogous to the above. Let Q = tr(¬Γ)tr(∆), and
xi = tr(ϕi). The ⊕p1-left rule then translates to the following lemma. The simulations for
the other ⊕pi rules are similar.

Lemma 16. Given the equations

x1(1− zp−12 ) = 0

and
(1− x1)(1− (1− z2)p−1) = 0

derive (1 − (1 − z1)p−1) = 0, where z1 = x1 + · · ·xn , z2 = x2 + · · ·xn and xi are boolean
variables.

Proof. Starting with the equation
z1 = x1 + z2

Multiply by (1− x1) on both sides and subtract (1− x1) to get

(z1 − 1)(1− x1) = x1(1− x1) + (z2 − 1)(1− x1) = (z2 − 1)(1− x1)

Now, we can raise both sides of the equation to the exponent p−1, and use the fact that
(1− x1)p−1 = (1− x1) (which is easily derived using Lemma 9) to get

(z1 − 1)p−1(1− x1) = (z2 − 1)p−1(1− x1)

But since from the second equation of our hypothesis, (z2−1)p−1(1−x1) = (1−x1) and
thus

(1− (z1 − 1)p−1)(1− x1) (37)

Now consider the equation
z1 − 1 = x− 1 + z2

obtained by subtracting one from z1 = x1 + z2
Multiplying by x on both sides, we get

(z1 − 1)x1 = x(x− 1) + z2x = z2x

Again, raising to the exponent p − 1 and noting that xp−11 = x1 and zp−12 x1 = x1 we
have

(z1 − 1)p−1x1 = zp−12 x1 = x1

and thus

(1− (z1 − 1)p−1)x1 = 0

Adding equation (37) to the above we get the required equation
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Simulating Tht rules
Let Q = tr(¬Γ)tr(∆), and xi = tr(¬ϕi). The Tht-left rule translates to the following

lemma. The case of Tht-right is similar.

Lemma 17. Given the equations

(z2 − 1) · · · (z2 − αt+1) = 0

and
x1(z2 − 1) · · · (z2 − αt) = 0

derive
(z1 − 1) · · · (z1 − αt+1) = 0

where z1 =
∏k
i=1((α− 1)xi + 1), z2 =

∏k
i=2((α− 1)xi + 1) and xi are boolean variables.

Proof. It is easy to derive the equation

z1 = (αx1 + 1− x1)z2

Multiplying the above equation with (1− x1) we get

z1(1− x1) = (1− x1)2z2 = (1− x1)z2

since x1 is boolean. Subtracting αi(1− x1) on both sides we get

(z1 − αi)(1− x1) = (z2 − αi)(1− x1)

for every i in {0 · · · t+ 1}. From these t+ 1 equations it is easy to derive (see Lemma 4)

(z1 − 1) · · · (z1 − αt+1)(1− x1) = (z2 − 1) · · · (z2 − αt+1)(1− x1) = 0 (38)

Multiplying the equation z1 = (αx1 + 1− x1)z2 with x1 we get

z1x1 = αx21z2 = αx1z2

Again, subtracting αi+1x1 we get

(z1 − αi+1)x1 = (z2 − αi)x1

for every i in {0 · · · t}. Once again, we combine them to derive

(z1 − α) · · · (z1 − αt+1)x1 = (z2 − 1) · · · (z2 − αt)x1 = 0

Multiplying the above equation with z1 − 1 and adding it to equation (38), we get the
required equation.

This completes the simulation of flat proofs in Depth-d-PC.

5.2 Case of q 6= p

We now extend the simulation of the previous section to show that AC0[q]-Frege can be
simulated in Depth-d-PC over Fpm , for distinct primes p and q, hence proving Theorem 2.
Using the theorem of Maciel and Pitassi (Theorem 7 above) for AC0[q]-Frege, we obtain a flat
proof with ⊕qi connectives. To simulate it, we can reuse the lemmas of the previous section,
except for the ⊕qi connectives. To define their translation, choose m such that q | pm − 1
and let r = (pm − 1)/q. The translation is now defined as

tr(⊕qi (ϕ1 · · ·ϕk)) =
(
(y − αir)

)pm−1
where y =

∏
i((α

r − 1)tr(¬ϕi) + 1) and tr(¬ ⊕qi (ϕ1 · · ·ϕk)) = 1− tr(⊕qi (ϕ1 · · ·ϕk))
The proof of the main lemma below simulating one of the rules is quite similar to the

one in the previous section.
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Lemma 18. Given the equations

x1(1− (y2 − 1)p
m−1) = 0

and
(1− x1)(1− (y2 − αr)p

m−1) = 0

derive
(1− (y1 − αr)p

m−1) = 0

where y1 =
∏k
i=1((αr−1)xi+ 1), y2 =

∏k
i=2((αr−1)xi+ 1) and xi are boolean variables

Proof. It is easy to derive

y1 = (αrx1 + 1− x1)y2

Multiplying the above equation with x1 we have

y1x1 = αry2x
2
1 = αry2x1

since x1 is boolean. By subtracting αrx1 we can now derive

(y1 − αr)x1 = αrx1(y2 − 1)

Raising the above equation to the power pm − 1, we get

(y1 − αr)p
m−1x1 = x1(y2 − 1)p

m−1

since x1 is boolean. Subtracting the above equation from x1, we get

(1− (y1 − αr)p
m−1)x1 = (1− (y2 − 1)p

m−1)x1 = 0 (39)

By multiplying with 1− x1 we can derive from y1 = (αrx1 + 1− x1)y2 the equation

y1(x1 − 1) = y2(x1 − 1)

Carrying out a derivation similar to the above, we get

(1− (y1 − αr)p
m−1)(x1 − 1) = (1− (y2 − αr)p

m−1)(x1 − 1) = 0 (40)

Adding equations (39) and (40) we get the required equation.

6 Simulating TC0-Frege in Depth-d-PC over Fpm

In this section, we show that a TC0-Frege proof of depth d0 can be transformed into a
Depth-d-PC proof over Fpm , where d = O(d0), proving Theorem 3. In the previous section
we translated Tht(ϕ1 · · ·ϕk) as

tr(Tht(ϕ1 · · ·ϕk)) = (y − αt) · · · (y − αk)

tr(¬Tht(ϕ1 · · ·ϕk)) = (y − 1) · · · (y − αt−1)

where y =
∏
i((α − 1)tr(¬ϕi) + 1). Clearly this translation requires tr(ϕi) to be boolean

and can itself take non-boolean values. Since there is only one top Threshold gate in a flat
circuit, the formulae ϕi were threshold free and thus tr(ϕi) only took on boolean values.
But in a TC0-Frege proof, the formulae ϕi can themselves contain Threshold gates and thus
tr(ϕi) may be non-boolean. To fix this problem, we redefine the translation of a Threshold
gate to be the following, essentially forcing it to be boolean.

tr(Tht(ϕ1 · · ·ϕk)) =
(
(y − αt) · · · (y − αk)

)pm−1
where y =

∏
i((α− 1)tr(¬ϕi) + 1) and tr(¬Tht(ϕ1 · · ·ϕk)) = 1− tr(Tht(ϕ1 · · ·ϕk)).

It is easy to generalize Lemma 11 to derive the fact that the above translation only
takes boolean values. Now, note that any rule other than the Tht is unaffected by this new
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translation since it only assumes that its arguments are boolean and hence we can use the
lemmas of the previous section directly. However, simulation of the Tht rule relies on the
old translation. To bridge the gap, we only need to show that the old and new translations
of Tht and ¬Tht are interchangeable within the proof system.

Lemma 19. Given the equation(
(y − αt) · · · (y − αk)

)pm−1
= 0

we can derive
(y − αt) · · · (y − αk) = 0

and vice versa.

Proof. In the forward direction, the required equation is easily derived by repeated applica-
tion of the contraction rule. The other direction is trivial.

Lemma 20. Given the equation

1−
(
(y − αt) · · · (y − αk)

)pm−1
= 0

we can derive
(y − 1) · · · (y − αt−1) = 0

and vice versa.

Proof. In the forward direction, since y is a Threshold gate with k arguments, we can derive

(y − 1) · · · (y − αk) = 0

and thus
((y − 1) · · · (y − αk))p

m−1 = 0

But since we have
(
(y − αt) · · · (y − αk)

)pm−1
= 1 from the given equation, we get(

(y − 1) · · · (y − αt−1)
)pm−1

= 0

Using the contraction rule repeatedly gives the required equation.

In the reverse direction, Let y1 =
(
(y−αt) · · · (y−αk)

)pm−1
. Then as mentioned earlier,

we can derive using Lemma 11
y1(1− y1) = 0

Using the contraction rule on the above equation, we get

(y − αt) · · · (y − αk)(1− y1) = 0 (41)

Multiplying the given equation (y − 1) · · · (y − αt−1) = 0 by (1 − y1) and using the
Intersection Lemma with equation (41), we get 1−y1 = 0, which is the required equation.

6.1 Existence of Feasible Interpolation

Bonet, Pitassi and Raz [3] have shown that TC0-Frege does not have feasible interpolation
unless Blum integers can be factored by polynomial sized circuits. By the above simulation,
we can state the following

Theorem 9. Depth-d-PC does not have feasible interpolation unless Blum integers can be
factored by polynomial sized circuits

7 Dealing with large coefficients

In this section, we show how our proof system can work with polynomial inequalities that
may have large coefficients. We first mention how they will be represented, and then define
addition and multiplication operations over these representation. We then show that some
basic properties of addition and multiplication can be derived within the system. This will
be sufficient to carry out simulations of SOS and CP with large coefficients.
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7.1 High Level Idea

It is well-known that arbitrary threshold gates can be simulated by simple majority gates
of higher depth. In particular, a tight simulation was proven by Goldmann, Hastad and
Razborov [9] who show that depth d + 1 TC0 circuits are equivalent to depth d threshold
circuits with arbitrary weights. However, the analogous result has not been proven in the
propositional proof setting. In order to simulate arbitrary weighted thresholds in our low
depth extension of PC, we will we use a different simulation of high weight thresholds by
low weight ones.

The basic idea will be to use simple, shallow formulas that compute the iterated addition
of n binary numbers, each with m = poly(n) bits [17]. Let a1,a2, . . . ,an be the set of n
binary numbers, each of length m = poly(n), where ai = ai,m, . . . , ai,1. We will break up
the m coordinates into m/ logm blocks, each of size logm; let Lj(ai) denote the jth block
of ai. The high level idea is to compute the sum by first computing the sum within each
block, and then to combine using carry-save-addition.

In more detail, let ao
i denote the “odd” blocks of ai – so ao

i consists of m/ logm blocks,
where for j odd, the jth block is Lj(ai), and for j even, the jth block is all zeroes (and
similarly, ae

i denotes the even blocks of ai). Let So be equal to
∑
i∈[n] a

o
i , and similarly

let Se be equal to
∑
i∈[n] a

e
i . We will give a SLP for computing the bits of So and Se and

then our desired sum, So +Se, is obtained using the usual carry-save addition which can be
computed by a depth-2 SLP. The main point is that we have padded ao

i and ae
i with zeroes

in every other block; this enables us to compute So (and similarly Se) blockwise (on the odd
blocks for So and on the even blocks for Se), because no carries will spill over to the next
nonzero block. Then since the blocks are very small (logm bits), the sum within each block
can be carried out by brute-force.

Our construction below generalizes this to the case where the ai’s are not large coeffi-
cients, but instead they are the product of a monomial and a large coefficient. After formally
describing this low-depth representation, it remains to show how to efficiently reason about
these low-depth representations in order to carry out the rule-by-rule simulation of general
Cutting Planes and SOS.

Notions from Earlier Simulations. From the previous sections, it is clear that our
system is capable of the following.

1. Express a boolean formula ϕ using an extension variable y, and derive y(y − 1) = 0.

2. Derive a statement by branching on the value of a boolean variable y. That is, to
consider the case of y = b, we multiply each line of the premise by y − (1− b), derive
the required statement and then combine these cases using the Intersection Lemma.

Thus, the steps of our simulations in this section are of the above two types. The exact
details of the simulation should easily follow.

7.2 Definitions

We first lay down some definitions which will be used throughout the simulation.

Definition 10. Bit vectors
We represent an integer using its bit representation by introducing a variable for each of
its bits. A bit vector a = [am · · · a1] representing an integer a in our system is therefore a
vector of variables which equal the bits of a, ordered from the most significant to the least
significant bit. Define a(i) = ai.

Let m0 be an upper limit on the number of monomials in any polynomial we wish to
represent and let m1 be an upper limit on any coefficient we wish to represent. Set m =
10dlog(m0) + log(m1)e. The bit vectors in this simulation will all be of dimension m. Any
vector of dimension > m generated in any operation is automatically truncated to dimension
m by dropping the higher order bits.

The bit representation chosen is Two’s complement. That is, a positive integer is repre-
sented in binary in the usual way. Let b be a positive integer represented by b. Let b1 be the
vector obtained by flipping all the bits in b. Then −b is represented by the vector b1 ⊕ 1,
where ⊕ is the usual bitwise addition operation defined below. 0 is represented by the all
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zeros vector. For any vector a, a(m) is the sign bit of a. a is said to be negative if the sign
bit is one.

Definition 11. Length of a vector
The length of a non-negative vector a is the highest index i such that a(i) 6= 0 and zero if
such an i does not exist. The length of a negative vector b is the highest index i such that
b(i) 6= 1.

Definition 12. Bitwise addition ⊕
We define below the operator corresponding to the usual carry-save addition. For two bits
y and z, let y ⊕ z represent the XOR of the bits. Given two bit vectors y = [ym · · · y1] and
z = [zm · · · z1], the bitwise addition operation y⊕z produces a vector [wm+1 · · ·w1] such that

wi = yi ⊕ zi ⊕ ci
for i ≤ m and wm+1 = cm where

ci = ∨j<i(yj ∧ zj ∧j<k<i (yk ⊕ zk))

for 1 < i ≤ m and c1 = 0.
For bits y, z, w, let H(y, z) = y∧z and let H(y, z, w) = 1 if and only if y+z+w ≥ 2. H

denotes the carry bit generated by adding together up to three bits. The following identities
are easily derived in the proof system

H(y, z, w) = H(y, z ⊕ w)⊕H(z, w) (42)

H(H(y, z ⊕ w), H(z, w)) = 0 (43)

If ci are as defined above, then

ci+1 = H(yi, zi, ci) (44)

Definition 13. Scalar multiplication
For a bit z and a vector y, let zy = yz represent the vector obtained by multiplying every
bit of y by z.

Definition 14. Set addition
Let m2 = m/ log(m0). For a constant a, partition the bits of a into m2 blocks of length
log(m0). Let Lj(a), j ∈ [m2] denote the jth block of bits, so that the bits of a can be
obtained by a concatenation of the bits Lm2

(a)...L1(a). Since Lj(a) is only log(m0) bits
long, its magnitude is at most m0. Therefore by Lj(a) we interchangeably refer to the bits
or the integer represented by them. Define ao to be the number obtained by replacing all
even numbered blocks of a with zeroes. ae is analogously defined by zeroing out the odd
numbered blocks. For monomials X1 · · ·Xt and t < m0, we would like to define bit vectors
So(a1X1 · · ·atXt) and Se(a1X1 · · ·anXt) to be the bit representations of the polynomials∑t
i=1 a

o
iXi and

∑t
i=1 a

e
iXi. We accomplish this using constant depth SLPs as follows.

We define a constant depth SLP to compute the kth bit of the jth block of So, represented
by Ljk(So). The important observation is that we can compute So two blocks at a time since
for odd j,

∑
i Lj(a

o
i )Mi is at most m2

0 and thus can be represented by 2 log(m0) bits or
exactly two blocks. Let C` be the set of integers in [m2

0] such that the `th bit of their binary
representation is one. Then for odd j, Ljk(So) is one if and only if∏

β∈Ck

(∑
i

Lj(a
o
i )Xi − β

)
= 0

and for even j, Ljk(So) is one if and only if∏
β∈Clog(m0)+k

(∑
i

Lj−1(aoi )Xi − β
)

= 0

Therefore, the bit Ljk(So) can be represented as a constant depth SLP of size O(m0) by
representing the left hand side of the above equations as a SLP, similar to the simulation
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of CP* in the earlier sections, and then raising the result of that SLP to the order of the
multiplicative group that we are working in.

The bits of Se are represented analogously.

Definition 15. Shifted sum
For a vector y, let 2ky denote the vector obtained by shifting the bits of y to the left by
k positions, and padding the first k positions with zeros. Given two vectors y and z =
[zm−1 · · · z0] , the shifted sum of y and z is defined as

SS(y, z) = S(z0y · · · zm−12m−1y)

Definition 16. Representing a line
Let P = a1X1 + · · · + akXk be a polynomial where the Xi are monomials. Then the line
P ≥ 0 is represented as

S(a1X1 · · ·akXk)(m) = 0

and P = 0 is represented as
S(a1X1 · · ·akXk) = 0

Let R(P ) denote the vector S(a1X1 · · ·akXk).

7.3 Properties of addition

In this section we derive some basic properties of addition.
The following lemma shows that our system can prove the associativity of ⊕.

Lemma 21. Given three bit vectors y, z and w, Depth-d-PC can prove the following

(y ⊕ z)⊕w = y ⊕ (z⊕w)

Proof. Let dy,zi be the carry bit to the ith position in y⊕ z. Let dwi be the carry bit to the
ith position in (y ⊕ z) ⊕ w. Similarly define dz,wi and dyi . We will derive inductively that
the total carry received in both cases is equal, i.e. dy,zi + dwi = dz,wi + dyi . Note that the
plus sign in this expression denotes the usual integer addition. This is clearly true for i = 1.
Suppose for some i ≥ 1 we have derived that the first i − 1 bits of the left and right hand
side are equal and the total carrys to the first i positions are equal. The ith bit on the left
is equal to y(i) ⊕ z(i) ⊕w(i) ⊕ dy,zi ⊕ dwi and by the induction hypothesis this is equal to
y(i)⊕z(i)⊕w(i)⊕dz,wi ⊕dyi , which is the ith bit on the right. Now, dy,zi+1 = H(y(i), z(i), dy,zi )
and dwi+1 = H(y(i)⊕z(i)⊕dy,zi ,w(i), dwi ). For bits a, b, c, d, e, it is easy to derive the identity

H(a, b, c) +H(a⊕ b⊕ c, d, e) = H(a, b, d) +H(a⊕ b⊕ d, c, e)

Using the above identity, dy,zi+1 + dwi+1 = H(y(i), z(i),w(i)) +H(y(i)⊕ z(i)⊕w(i), dy,zi , dwi )
and since H is a symmetric function this is equal to H(y(i), z(i),w(i)) + H(y(i) ⊕ z(i) ⊕
w(i), dz,wi , dyi ). By the above identity, this is equal to dz,wi+1 + dyi+1.

The following lemmas show that the addition operations S and ⊕ can be used inter-
changeably.

Lemma 22. For i ≤ n, So(y1 · · ·yi−1)⊕ yoi = So(y1 · · ·yi)

Proof. We are going to prove the statement block wise. For odd j, let wj =
∑i−1
k=1 Lj(y

o
k).

Note that the pair of blocks (j, j+ 1) in So(y1 · · ·yi) only depend on the corresponding pair
of blocks in So(y1 · · ·yi−1) and Lj(y

o
i ). Therefore, restricted to the blocks (j, j + 1), the

statement of the lemma just depends on wj and Lj(y
o
i ). Since wj only takes on n2 values

and Lj(y
o
i ) only takes on n values, there is a polynomial sized proof by completeness.

Lemma 23. S(y1 · · ·yi) = S(y1 · · ·yi−1)⊕ yi
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Proof.

S(y1 · · ·yi−1)⊕ yi = Se(y1 · · ·yi−1)⊕ So(y1 · · ·yi−1)⊕ yei ⊕ yoi

= Se(y1 · · ·yi−1)⊕ yei ⊕ So(y1 · · ·yi−1)⊕ yoi

The last equation follows from Lemma 21. So(y1 · · ·yi−1) ⊕ yoi = So(y1 · · ·yi) and
Se(y1 · · ·yi−1)⊕yei = Se(y1 · · ·yi) by the previous lemma and this completes the proof.

Corollary 9. For j < i, S(y1 · · ·yi) = S(y1 · · ·yj)⊕ S(yj+1 · · ·yi).

Lemma 24.

S(y1X1 · · ·ytXt)⊕ S(z1X1 · · · ztXt) = S((y1 ⊕ z1)X1 · · · (yt ⊕ zt)Xt)

Proof. Assume by induction that we have proved the theorem until t = i − 1. Then, by
Lemma 23,

S(y1X1 · · ·yiXi)⊕ S(z1X1 · · · ziXi)

= S(y1X1 · · ·yi−1Xi−1)⊕ yiXi ⊕ S(z1X1 · · · zi−1Xi−1)⊕ ziXi

= S(y1X1 · · ·yi−1Xi−1)⊕ S(z1X1 · · · zi−1Xi−1)⊕ yiXi ⊕ yiXi

= S((y1 ⊕ z1)X1 · · · (yi−1 ⊕ zi−1)Xi−1)⊕ (yi ⊕ zi)Xi

Now by using Lemma 23, the last line is equal to S((y1 ⊕ z1)X1 · · · (yi ⊕ zi)Xi).

Finally, we show how to derive the representation of the sum of two polynomials.

Lemma 25. Let P and Q be two polynomials. Then R(P +Q) = R(P )⊕R(Q).

Proof. Let X1 · · ·Xt be monomials that occur in both P and Q, such that P = a1X1 + · · ·+
atXt + P1 and Q = b1X1 + · · ·+ btXt +Q1. Then we have

R(P )⊕R(Q) = S(a1X1 · · ·atXt)⊕R(P1)⊕ S(b1X1 · · ·btXt)⊕R(Q1)

= S(a1X1 · · ·atXt)⊕ S(b1X1 · · ·btXt)⊕R(P1)⊕R(Q1)

= S((a1 ⊕ b1)X1 · · · (at ⊕ bt)Xt)⊕R(P1)⊕R(Q1)

= R(P +Q)

where the last two equalities follow from the previous two lemmas.

Lemma 26. For two vectors y and z, −(y ⊕ z) = (−y)⊕ (−z).

Proof. Let w = y ⊕ z and let y1, z1 be vectors obtained by flipping the bits of y, z
respectively. Let w1 = y1⊕z1. Note that for every index i , y(i)⊕z(i) = y1(i)⊕z1(i). Let
i0 be the least index such that y(i0)⊕ z(i0) = 0. Note that w(i) = w1(i) for all i ≤ i0. We
first derive that for every i > i0, w1(i) = w(i)⊕1. At position i0, a carry is generated exactly
in one of the sums y ⊕ z or y1 ⊕ z1. This clearly implies that w1(i0 + 1) = w(i0 + 1)⊕ 1.
Now assume that up to some i > i0 the previous statement is true. If y(i)⊕ z(i) = 1, then
the carry propagates and the statement continues to hold. Else, a carry is again generated
in exactly one of the sums and hence the statement continues to hold.

Now consider the vector w1 ⊕ 1. Since w(i0) = 0, w1 ⊕ 1 flips all the bits of w1 up to
i0 and hence is the vector obtained by flipping all the bits of w. Therefore,

−(w) = y1 ⊕ z1 ⊕ 1⊕ 1 = (−y)⊕ (−z)
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7.4 Non-negative vectors are closed under addition

In this section we show that non-negative vectors of bounded length are closed under addi-
tion.

We first show that given two vectors y and z of length `, we can derive that y ⊕ z is of
length at most `+ 1.

Lemma 27. Given two vectors y and z of length at most `, w = y⊕ z is of length at most
`+ 1

Proof. Let the bit s1 denote the sign of y and s2 denote the sign of z. Let di be the carry
to the ith position in y ⊕ z. We branch on the value of d`+1. If d`+1 = 0, then all the bits
at positions greater than ` in w are equal to s1 ⊕ s2 and thus the length of w is at most
`. If d`+1 = 1, then if s1 ∨ s2 = 0, w(` + 1) = 1 and w(j) = 0 for j > ` + 1. Thus the
length of w is at most ` + 1. If s1 ∨ s2 = 1, then it is easy to derive that dj = 1 and thus
w(j) = s1 ⊕ s2 ⊕ 1 for j ≥ `+ 1 and thus the length of w is at most `.

Lemma 28. Let y1 · · ·yk be vectors of length ` such that dlog ke + ` < m − 1. Then
S(y1 · · ·yk) is of length at most dlog ke+ `.

Proof. Assume that the statement is true for up to k/2 vectors. Then by Corollary 9,

S(y1 · · ·yk) = S(y1 · · ·yk/2)⊕ S(yk/2+1 · · ·yk)

Now by the induction hypothesis, S(y1 · · ·yk/2) and S(yk/2+1 · · ·yk) are of length at
most dlog ke − 1 + `. Using the previous lemma, we are done.

We now show that non-negative vectors according to our definition are closed under
addition, as long as the total length does not exceed m.

Lemma 29. Let y and z be two non-negative vectors of length ` < m− 1. Then the vector
w = y ⊕ z is non-negative.

Proof. Since y and z are non-negative, y(i) = z(i) = 0 for ` + 1 ≤ i ≤ m. Therefore the
carry to the position `+ 2 is zero and thus w(`+ 2) = · · · = w(m) = 0.

The following corollary now follows easily from the previous two lemmas.

Corollary 10. Let y1 · · ·yk be non-negative vectors of length ` such that dlog ke+` < m−1.
Then S(y1 · · ·yk) is non-negative.

Lemma 30. Let y and z be two non-negative vectors of length ` such that 3` < m − 1.
Then SS(y, z) ≥ 0

Proof. Since z is non-negative of length `, z(i) = 0 for `+ 1 ≤ i ≤ m. Therefore,

SS(y, z) = S(b0y · · · bm−12m−1y) = S(b0y · · · b`2`y)

Since each of the vectors b0y, · · · b`2`y is of length at most 2` and there are ` of them,
by the previous corollary, their set addition is non-negative.

7.5 Properties of multiplication

Here we show that multiplication is distributive and can be treated as repeated addition.

Lemma 31. Distributivity of R
Let P, P1, P2, Q be polynomials such that P = P1 + P2. Then

R(PQ) = R(P1Q)⊕R(P2Q)

Proof. Easily follows from Corollary 9

The following lemmas show that multiplication is repeated addition.
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Lemma 32. Let y, z be two bits and let w be a vector. Then,

yw ⊕ zw = (y ⊕ z)w ⊕H(y, z)2w

Proof. Let w1 = (y⊕z)w and w2 = H(y, z)2w. Let ei be the carry bit to the ith position in
w1⊕w2 and let ci be the carry bit to the ith position in yw⊕zw. We will derive by induction
that for every i, the ith bit on both sides is the same, and ei+1 = H(ci, yw(i)⊕ zw(i)).

It is true for the case of i = 1 since w2(1) = 0 and thus the first bit on both sides is
equal to y ⊕ z. Also e2 = 0 since w2(1) = 0 and therefore there is no carry to the second
position. Since c1 = 0, H(c1, yw(1) ⊕ zw(1)) = e2 = 0. Now assume that we have derived
it up to i− 1 for some i > 1. Note that

ei = H(ci−1, yw(i− 1)⊕ zw(i− 1))

and
w2(i) = H(yw(i− 1), zw(i− 1))

Therefore by using Identities (42) and (44)

e1 ⊕w2(i) = H(ci−1, yw(i− 1), zw(i− 1)) = ci (45)

And by Identity (43)

H(e1,w2(i)) = 0 (46)

Thus the ith bit on the right hand side is given by

ei ⊕w1(i)⊕w2(i) = yw(i)⊕ zw(i)⊕ ci
which is equal to the corresponding bit on the left hand side.
Also, the carry to the (i+ 1)th bit on the right hand side is equal to H(ei,w1(i),w2(i))

which by the identity (42) is equal to H(ei,w2(i))⊕H(w1(i), ei ⊕w2(i)), and by (45) and
(46) this is equal to H(yw(i)⊕ zw(i), ci)

Lemma 33. Let y = [yk−1 · · · y0] and z = [zk−1 · · · z0] be two bit vectors, let w = y⊕ z and
let d1X1 be a monomial. Then,

SS(d1X1,w) = SS(d1X1,y)⊕ SS(d1X1, z)

Proof. Assume that the statement is derived for vectors of dimension k−1. Let yk−1, zk−1,
wk−1 denote the corresponding vectors truncated to dimension k − 1. Let ei be the carry
to the ith position in y ⊕ z. Then,

SS(d1X1,y)⊕ SS(d1X1, z)

= SS(d1X1,yk−1)⊕ yk−12k−1d1X1 ⊕ SS(d1X1, zk−1)⊕ zk−12k−1d1X1

= SS(d1X1,yk−1 ⊕ zk−1)⊕ (yk−1 ⊕ zk−1)2k−1d1X1 ⊕H(yk−1, zk−1)2kd1X1

= SS(d1X1,wk−1)⊕ ek2k−1d1X1 ⊕ (yk−1 ⊕ zk−1)2k−1d1X1 ⊕H(yk−1, zk−1)2kd1X1

=1 SS(d1X1,wk−1)⊕ (yk−1 ⊕ zk−1 ⊕ ek)2k−1d1X1 ⊕H(yk−1, zk−1, ek)2kd1X1

=2 SS(d1X1,w)

where =1 follows from Lemma 23 and the definition of SS and =2 follows from Identities
(42) and (43).

Lemma 34. Let Q = a′1X1 + · · ·+a′kXk be represented by a bit vector z = [zm−1 · · · z0] and
let a0X0 be a monomial such that the bit length of a0a

′
i is at most m− 1. Then

R(a0X0Q) = SS(a0X0, z)
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Proof. Let Qj = a′1X1 + · · ·+ a′jXj for j < k and let zj = [zjm−1 · · · z
j
0] be the bit vector for

Qj . Assume that we have proved the above statement for Qj , j < k. Then by Lemma 23,
z = zk−1 ⊕ a′kXk. Therefore by Lemma 33 we have

SS(a0X0, z) = SS(a0X0, zk−1)⊕ SS(a0X0,a
′
kXk)

Since the bit length of a0a
′
i is at most m − 1, SS(a0X0,a

′
kXk) = a0a

′
kX0Xk and by

induction, SS(a0X0, zk−1) = R(a0X0Qk−1). Therefore,

SS(a0X0, z) = R(a0X0Qk−1)⊕ a0a
′
kX0Xk

which is equal to R(a0X0Qk) by the Distributivity of R.

Lemma 35. Let P and Q be two polynomials, represented by bit vectors y0 and z =
[zm−1 · · · z0], with at most m0 monomials and coefficients bounded by m1 in absolute value.
Then,

R(PQ) = SS(y0, z)

Proof. Let P = a1M1 + · · · + akMk, Q = a′1M1 + · · · + a′kMk and let Pj be the sum of
the first j < k terms of P . Let yi denote the bit vector corresponding to 2iP . Then
SS(y, z) = S(z0y0 · · · zm−1ym−1). Now, note that

yi = 2iy0 = 2iS(a1M1 · · ·akMk) = S(2ia1M1 · · · 2iakMk)

Let yji = S(2ia1M1 · · · 2iajMj) for j < k. By Lemma 23, yi = yk−1i ⊕2iakMk. Therefore,

S(z0y0 · · · zm−1ym−1) = S(z0(yk−10 ⊕ akMk) · · · zm−1(yk−1m−1 ⊕ 2m−1akMk))

= S(z0y
k−1
0 ⊕ z0akMk · · · zm−1yk−1m−1 ⊕ zm−12m−1akMk)

=1 S(z0y
k−1
0 · · · zm−1yk−1m−1)⊕ S(z0akMk · · · zm−12m−1akMk)

=2 SS(yk−10 , z)⊕ SS(akMk, z)

=3 SS(yk−10 , z)⊕R(akMkQ)

where =1 follows from Lemma 23, =2 follows from the definition of SS and =3 follows
by Lemma 34. By induction on k, SS(yk−10 , z) = R(Pk−1Q). The lemma now follows by
Distributivity of R.

Lemma 36. Let P be a polynomial represented by a vector y. Then R(−P ) = −y.

Proof. Let P = a1X1 + · · · + atXt. We derive the above by induction on t. Let Pi =
a1X1 + · · ·+ atXi for i < t. Then we have

−y = −R(P ) = −(R(Pt−1)⊕atXt) = (−R(Pt−1))⊕(−atXt) = (R(−Pt−1))⊕(−atXt) = R(−P )

where the last two equalities follow by Lemma 26 and the induction hypothesis.

7.6 Simulating CP with large coefficients

The addition rule of CP is easily simulated using Lemma 25 and Lemma 29. Multiplication
of a vector A by a constant c is equivalent to SS(A, c) and thus the rule easily follows from
Lemmas 35 and 30. The following lemma shows how to simulate the division rule.

Lemma 37. Let P = a1x1 + · · ·+ anxn − a0 where ai are non-negative, a1 · · · an are even
and a0 is odd. Then we can derive R(P − 1) ≥ 0 from R(P ) ≥ 0

Proof. R(P ) = S(a1x1 · · ·anxn)⊕(−a0). Since a1 · · ·an are even and a0 is odd, the leftmost
bit of R(P ) is one. Since −1 is represented by the all ones vector, the sum R(P ) ⊕ (−1)
generates a carry at the leftmost bit and propagates it till the mth bit. As R(P ) ≥ 0, the
mth bit of the sum is equal to zero.

The division rule can now be implemented easily by first using the above lemma if a0 is
odd and then dropping the last bit of the resultant vector.
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7.7 Simulating Dynamic Sum of Squares

Definition 17. Dynamic Sum of squares (SOS)
Let Γ = {P1 · · · Pm} and ∆ = {Q1 · · ·Qr} be two sets of polynomials over R such that the
system of equations P1 = 0 · · · Pm = 0, Q1 ≥ 0 · · · Qr ≥ 0 is unsatisfiable. A Dynamic
SOS refutation of Γ,∆ is a sequence of inequalities R1 ≥ 0 · · · Rs ≥ 0 where Rs = −1 and
for every ` in {1 · · · s}, R` ∈ Γ ∪ ∆ or is obtained through one of the following derivation
rules for j, k < `

1. From Rj = 0 and Rk = 0 derive αRj + βRk = 0 for α, β ∈ R
2. From Rk = 0 derive xiRk = 0 for some i ∈ {1 · · ·n}
3. R2 ≥ 0 for some polynomial R ∈ R[x1 · · ·xn]

4. From Rj ≥ 0 and Rk ≥ 0 derive αRj + βRk ≥ 0 for α ≥ 0, β ≥ 0 ∈ R
5. From Rj ≥ 0 and Rk ≥ 0 derive RjRk ≥ 0

Rules 1 and 4 above are easily simulated by Lemmas 25 and 35. For rules 2,3 and 5, we
have the following lemma.

Lemma 38. For two polynomials P and Q with at most m0 monomials and coefficients
bounded by m1 in absolute value, given R(P ) ≥ 0 and R(Q) ≥ 0, we can derive R(PQ) ≥ 0

Proof. Let y and z be bit vectors representing P and Q. Note that by the choice of m, the
length ` of y and z is less than m− 1. By Lemma 35, R(PQ) = SS(y, z). And by Lemma
30, we can derive SS(y, z) ≥ 0 given y ≥ 0 and z ≥ 0

Corollary 11. For any polynomial P as above, we can derive P 2 ≥ 0

Proof. Let Q = −P . Consider cases based on the sign bit of R(P ). Assuming it is zero, we
have that P ≥ 0 and by the above theorem we get P 2 ≥ 0. Else by Lemma 36 we have that
Q ≥ 0 and by the above theorem we again derive P 2 ≥ 0.

Open Problems

The obvious open problem is to prove a lower bound for AC0[p]-Frege systems, whether using
algebraic proofs or not.

As stepping stones towards this goal, we think it would be interesting to:

1. Find any techique for proving lower bounds on the sizes of polynomial calculus proofs
that doesn’t go through degrees. More precisely, prove size lower bounds for PC proofs
where we view variables as taking values 1,−1, and replace the axioms x2 − x with
x2 − 1.

2. Prove lower bounds for the system Trinomial-ΠΣ-PC.

3. Our simulations require a sufficiently large extension field. Can we either p-simulate
polynomial calculus over a large extension field with polynomial calculus over the base
field, or prove that no simulation exists?
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