
The Surprising Power of Constant Depth Algebraic

Proofs

Russell Impagliazzo
russell@cs.ucsd.edu

Sasank Mouli
sasankm@ucsd.edu

Toniann Pitassi
toni@cs.utoronto.edu

Abstract

A major open problem in proof complexity is to prove superpolyno-
mial lower bounds for AC0[p]-Frege proofs. This system is the analog of
AC0[p], the class of bounded depth circuits with prime modular count-
ing gates. Despite strong lower bounds for this class dating back thirty
years ([?, ?]), there are no significant lower bounds for AC0[p]-Frege.
Significant and extensive degree lower bounds have been obtained for
a variety of subsystems of AC0[p]-Frege, including Nullstellensatz ([?]),
Polynomial Calculus ([?]), and SOS ([?]). However to date there has
been no progress on AC0[p]-Frege lower bounds.

In this paper we study constant-depth extensions of the Polyno-
mial Calculus [?]. We show that these extensions are much more
powerful than was previously known. Our main result is that small
depth (≤ 43) Polynomial Calculus (over a sufficiently large field) can
polynomially simulate all of the well-studied semialgebraic proof sys-
tems: Cutting Planes, Sherali-Adams, Sum-of-Squares (SOS), and Pos-
itivestellensatz Calculus (Dynamic SOS). Additionally, they can also
quasi-polynomially simulate AC0[q]-Frege for any prime q independent
of the characteristic of the underlying field. They can also simulate
TC0-Frege if the depth is allowed to grow proportionally. Thus, prov-
ing strong lower bounds for AC0[p]-Frege would seem to require proving
lower bounds for systems as strong as TC0-Frege.

1 Introduction

Proof complexity has evolved in parallel to circuit complexity, typically with
circuit lower bound techniques being eventually used to show lower bounds
for analogous proof systems. One stubborn exception is the analogous proof
system for AC0[p], the class of bounded depth circuits with prime modu-
lar counting gates. Despite strong lower bounds for this class dating back
thirty years ([?, ?]), there are no significant lower bounds for AC0[p]-Frege.
Since the only lower bounds for circuits with modular operations are via

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 24 (2019)



representations of functions by polynomials ([?, ?]), it seems natural to
use algebraic proof systems (e.g, Nullstellensatz ([?]), Polynomial Calculus
(PC) ([?]), Positivestellensatz aka Sum-of-Squares (SOS) ([?]), ideal proofs
([?])) to extend these bounds to the proof complexity case. However, de-
spite progress on these proof systems, a super-polynomial lower bound for
AC0[p]-Frege remains open. This paper offers one explanation for this fail-
ure: small modifications of these algebraic proof systems to handle constant
depth overshoot and allow reasoning far beyond that possible by AC0[p] cir-
cuits.

Since lower bounds for Polynomial Calculus itself do not imply lower
bounds for AC0[p]-Frege systems, various researchers have suggested ways to
strengthen PC to create algebraic systems which do p-simulate AC0[p]-Frege
([?, ?, ?]). Unfortunately, it is not clear how to extend lower bound tech-
niques for PC to these systems. As an illustration of how small extensions
can increase the power of these proof systems, consider Polynomial Calculus
where we allow changes of bases. Many strong lower bounds are known for
the size of PC proofs for tautologies like the Pigeonhole Principle [?], [?]
and Tseitin tautologies [?]. All of the above lower bounds use a degree-size
connection, which roughly states that a linear lower bound on the degree of
any refutation translates to an exponential lower bound on its size. But this
connection is highly basis dependent. The connection only holds true over
the {0, 1} basis, and even allowing a change to the {−1, 1} basis immediately
gives a polynomial sized proof for the mod 2 Tseitin tautologies. Grigoriev
and Hirsch [?] noted the above and in addition showed that allowing for in-
troduction of new variables which are linear transformations of the original
variables gives a short proof of the Pigeonhole principle as well. They also
generalized the notion of a linear transformation by considering transforma-
tions obtained by applying constant depth arithmetic circuits and arithmetic
formulas to the original variables. The resulting systems turn out to be quite
powerful, and it is shown in [?] that the latter simulates Frege systems, and
the former simulates depth d AC0[p]-Frege proofs by using arithmetic cir-
cuits of depth d′ = Θ(d). Raz and Tzameret [?] defined a proof system
along similar lines where the transformations are restricted such that each
line of the proof is a multilinear formula in the original variables. It was
shown that even under these restrictions, linear transformations allow small
proofs of the functional Pigeonhole principle and Tseitin tautologies. They
also showed in [?] that Polynomial Calculus with added linear transforma-
tions simulates the system R(CP ∗) of Krajicek [?], which is stronger than
Cutting Planes with bounded coefficients.

1.1 Our Work

Here, we show that these extensions to PC are even more powerful than
previously known. Over a sufficiently large field of characteristic p, the

2



same extensions that allow PC to simulate depth d AC0[p] proofs also allows
it to simulate much stronger proof systems. So to prove a lower bound on
AC0[p] proofs via such systems would seem to require proving lower bounds
for systems as strong as TC0-Frege.

More precisely, consider the following additions to PC. In an additive
extension, we introduce a new variable y and a new defining equation y =∑
aixi + b where ai, b ∈ F. In a multiplicative extension, we introduce a

new variable y and a new defining equation y = b
∏

(xi)
ei . Depth-d-PC

allows the usual (syntactic) reasoning of Polynomial Calculus using these
extension variables (i.e. multiplying a line by the variable y is allowed), with
each line having up to d−2 alternating layers of additive and multiplicative
extensions. (The new variables in a depth d-PC proof are equivalent to
depth d − 2 algebraic circuits, and polynomials in terms of these variables
are depth d algebraic circuits.)

All our simulation results below use the notion of effective simulation
from [?] (see Definition 4). For the rest of the paper, ”simulate” refers to
an effective simulation.

We remove the restriction of polynomially bounded coefficients from the
result of [?] and show how to perform arithmetic with large coefficients, and
as a result effectively simulate Cutting Planes with unbounded coefficients
and the Sum-of-Squares (SOS) proof system. (Our theorem works for the
stronger system Positivestellensatz Calculus [?]).

Theorem 1. Depth-43-PC can effectively p-simulate Cutting Planes and
Positivestellensatz Calculus over Fpm for any prime p, where m is logarith-
mic in the maximum number of monomials in any proof line.

Clote and Kranakis [?] mention a proof, due to Kraj́ıček, of Cutting
Planes being simulated by the bounded-depth threshold logic system PTK
of Buss and Clote [?]. Since we simulate a modified version of PTK to
show Theorem 2 below, it already follows that our system simulates Cutting
Planes. However, the above proof by Kraj́ıček is non-explicit and does not
provide a value of the depth at which the simulation happens. Determining
this value is posed as an open problem in [?]. Theorem 1 provides an upper
bound of d ≤ 43 through an explicit simulation. Theorem 1 is proved in
section 5.4.

We improve the results of Grigoriev and Hirsch in the constant depth
case in two ways. We show that AC0[p]-Frege can be simulated with a fixed
constant depth, but with a quasipolynomial blowup. Significantly, this sim-
ulation also simulates modular gates of different characteristic than the field
we are working over.

Theorem 2. Let p be an arbitrary prime and n be a positive integer. For
some m = O(poly(log(n))), depth-9-PC over Fpm can effectively quasipoly-
nomially simulate AC0[q]-Frege over n variables for any prime q.

3



Buss et al. [?] showed that an AC0[p]-Frege proof of depth d can be
collapsed to a depth 3 AC0[p]-Frege proof with a quasipolynomial blowup.
In conjunction with [?], this implies the above theorem for the case of q = p.
Thus, apart from being more general, our result also provides an alternative
and perhaps simpler proof of the case of q = p. We prove Theorem 2 in
sections 5.2.1 and 5.2.2.

We also show that allowing for arbitrarily large but constant depth trans-
formations enables the simulation of TC0-Frege.

Theorem 3. A TC0-Frege proof of depth d can be effectively p-simulated by
depth-d′-PC over Fpm, where d′ = O(d) and m is logarithmic in the size of
the largest threshold gate, for any prime p.

The proof of Theorem 3 is shown in section 5.3.
We also improve the results of Raz and Tzameret [?] to show that Poly-

nomial Calculus with linear transformations can simulate semantic Cutting
Planes with small coefficients.

Theorem 4. Depth-3-PC can effectively p-simulate semantic CP* over Q.

Theorem 4 is proved in sections 4.1 and 4.2.

1.2 Related Work

Pitassi [?, ?] introduced powerful generalizations of the Polynomial Calcu-
lus that operate directly on formulas. Grochow and Pitassi [?] introduced
the more general IPS proof system, and proved that superpolynomial lower
bounds for IPS would imply the longstanding problem of separating VP from
VNP. However, these algebraic systems are not Cook-Reckhow proof systems
since proofs are not known to be checkable in polynomial time (but rather
in randomized polynomial-time.)

In 2003, Grigoriev and Hirsch [?] introduced a Cook-Reckhow style alge-
braic proof system for formulas, with derivation rules corresponding to the
ring axioms. Motivated by understanding how many basic ring identities
are needed to verify polynomial identities, Hrubes and Tzameret [?] intro-
duced a very closely related equational proof system for proving polynomial
identities over a ring. Even earlier, [?] study essentially the same proof sys-
tem but where the focus is over finite fields. Finally, Raz and Tzameret [?]
introduced the Res(lin) proof system, which generalizes Resolution using
extension variables given by linear forms, in a similar way to our general-
ization of PC using extension variables. They also showed that Res(lin)
simulates the system R(CP ∗) (defined in [?]) and Polynomial Calculus over
depth 3 formulas can simulate Res(lin). Alekseev et. al. [?] also considered
generalized versions of Nullstellensatz and Sum-of-Squares over algebraic
circuits of arbitrary depth. Conditioned on the assumption that a certain

4



subset sum principle has a small IPS proof, they make use of bitwise arith-
metic to show that these systems are equivalent to IPS. Although we also use
bitwise arithmetic to prove Theorem 1, our work vastly differs from theirs
in the following aspects. Firstly, the proof systems considered by them are
not Cook-Reckhow systems, i.e. it is not known whether the proofs in these
systems can be verified in deterministic polynomial time. These systems are
hence much more powerful than the ones we consider here, and in particu-
lar they are not concerned with performing bitwise arithmetic in constant
depth, which is the main focus of our simulations. Secondly, while we use
the notion of effectively p-simulation [?] for all our results, they chiefly fo-
cus on the more conventional notion of p-simulation. Effective simulation
allows for a formula in the simulated system to be “pre-processed” in a
truth-preserving way before it is represented in the simulating system, while
p-simulation is only defined for two proof systems which can express the
same set of formulae.

1.3 Organization of the paper

The rest of the paper is organized as follows. In section 2.1, we discuss some
basic definitions and notations. In section 2.2, we define the notions from
proof complexity and proof systems used in this paper. In section 2.3, we
formalize the system of bounded depth Polynomial Calculus. In section 3,
we formally state all of our results. In section 4.1, we sketch the simulation
of syntactic Cutting Planes with bounded coefficients from [?], since it is
essential for a significant part of the subsequent discussion. In section 4.2,
we extend the simulation to the semantic case, proving Theorem 4. In section
5.1, we prove an analog of the results in section 4.1 over a large enough finite
field extension, for use in subsequent sections. In sections 5.2.1, 5.2.2, 5.3,
we use techniques from this analog to prove Theorems 2 and 3. Finally in
section 5.4, we prove Theorem 1. Technical details of simulations from each
of the above sections are contained in the Appendix.

2 Preliminaries and Generalizations of Polynomial
Calculus

2.1 Preliminaries

2.1.1 Notation

Integers are represented by letters a, b, c. For an integer a, let a+ = a if
a > 0 and 0 otherwise. Define |a| to be the length in binary of a. Sets of
integers are represented by letters A, B, C. Indices to sets are represented
by letters i, j, k, `.

5



Variables are represented by x, y, z, w where x usually represents the
original variables and the others represent the extension variables. Mono-
mials are represented by upper case letters X, Y , Z. Polynomials are rep-
resented by P , Q, R. Boolean formulae are represented by ϕ.

We treat all the above as one dimensional objects. Multidimensional
objects, or vectors, are represented in boldface. Constant vectors are repre-
sented by a, b, c. Vectors whose components may be variables or polyno-
mials are represented by y, z, w.

Calligraphic letters R, S are used for special expressions which are con-
textual.

Definition 1. Straight Line Program (SLP)

A SLP S over variables {x1, . . . , xn} and a field F is a sequence of com-
putations (y1, . . . , yk) such that each yj is equal to one of the following, where
Cj ⊆ {1, . . . , j − 1}

xi for some i ∈ {1 · · ·n}∑
`∈Cj α`y` for some constants α` ∈ F∏
`∈Cj y`

We view a SLP as a directed acyclic graph where internal nodes are
labelled with either Product or Plus gates and the leaf nodes are labelled with
a variable xi. The size of a SLP is therefore the number of nodes in the
corresponding directed acyclic graph, and the depth is the maximum number
of nodes on a root to leaf path in the directed acyclic graph.

2.2 Propositional proof systems

Definition 2. Cook-Reckhow proof system
For a language L ⊆ {0, 1}∗, a Cook-Reckhow proof system is a polynomial
time deterministic verifier V such that

- If x ∈ L, there exists a proof π such that V (x, π) accepts.

- If x 6∈ L, for all proofs π, V (x, π) rejects.

Definition 3. p-simulation
For two proof systems V1 and V2 defined over the same language L, V2 is
said to p-simulate V1 if there exists a polynomial time computable function
f such that for every x ∈ L, if π1 is a proof of x for V1, f(π1) is a proof of
x for V2.

Definition 4. Effectively p-simulation [?]
For two proof systems V1 and V2 over languages L1 and L2, V2 is said to

6



effectively p-simulate V1 if there exist polynomial time computable functions
f, g such that x1 ∈ L1 if and only if g(x1) ∈ L2 and if π1 is a proof of x1
for V1, f(π1) is a proof of g(x1) for V2.

In this paper, we are only concerned with effective simulations. The
propositional proof systems we will work with are defined below.

Definition 5. Cutting Planes
Let ∆ = {A1, . . . , Am} be a set of unsatisfiable integer linear inequalities in
boolean variables x1, . . . , xn of the form Aj ≡

∑
i aijxi ≥ bi where aij and

bi are integers. A Cutting Planes refutation of ∆ is a sequence of lines
B1, . . . , Bs such that Bs is the inequality 0 ≥ 1 and for every ` ∈ {1, . . . , s}
B` ∈ ∆ or is obtained through one of the following derivation rules for
j, k < `

Addition From Bj ≡
∑

i cijxi ≥ dj and Bk ≡
∑

i cikxi ≥ dk, derive∑
i

(cij + cik)xi ≥ dj + dk

Multiplication by a constant From Bj ≡
∑

i cijxi ≥ dj, derive

c
∑
i

cijxi ≥ cdj

for an integer c ≥ 0.

Division by a nonzero constant From Bj ≡
∑

i cijxi ≥ dj and an in-
teger c > 0 such that c divides cij for all i, derive∑

i

cij
c
xi ≥ ddj/ce

The semantic version of the system also has the following rule

Semantic inference If Bj ≡
∑

i cijxi ≥ dj, Bk ≡
∑

i cikxi ≥ dj and B` ≡∑
i ci`xi ≥ dj are inequalities such that every assignment to x1, . . . , xn that

satisfies Bj and Bk also satisfies B`, then from lines Bj and Bk, derive B`.
The size of a line is the size of its bit representation. The size of a proof

is the sum of sizes of each line. The length of a Cutting Planes proof is
equal to the number of lines in the proof. We define the coefficient size of a
Cutting Planes proof to be equal to the maximum of the absolute values of
all the constants that appear in the proof. CP∗ is a subsystem of Cutting
Planes where the coefficient size is bounded by a polynomial in the number
of variables. Without loss of generality, the coefficient size can be bounded
by 2poly(`) where ` is the length of the proof due to [?].

7



Definition 6. Polynomial Calculus (PC)
Let Γ = {P1, . . . , Pm} be a set of polynomials in variables {x1, . . . , xn} over
a field F such that the system of equations P1 = 0, . . . , Pm = 0 has no
solution. A Polynomial Calculus refutation of Γ is a sequence of polynomials
R1, . . . , Rs where Rs = 1 and for every ` in {1, . . . , s}, R` ∈ Γ or is obtained
through one of the following derivation rules for j, k < `

R` = αRj + βRk for α, β ∈ F

R` = xiRk for some i ∈ {1, . . . , n}

The size of the refutation is
∑s

`=1 |R`|, where |R`| is the number of mono-
mials in the polynomial R`. The degree of the refutation is max` deg(R`).

The following system is known to simulate PC, SOS and Sherali-Adams.

Definition 7. Positivestellensatz Calculus/Dynamic SOS [?]
Let Γ = {P1, . . . , Pm} and ∆ = {Q1, . . . , Qr} be two sets of polynomials over
R such that the system of equations P1 = 0, · · · , Pm = 0, Q1 ≥ 0, · · · , Qr ≥ 0
is unsatisfiable. A Dynamic SOS refutation of Γ,∆ is a sequence of inequal-
ities R1 ≥ 0, . . . , Rs ≥ 0 where Rs = −1 and for every ` in {1, . . . , s},
R` ∈ Γ ∪∆ or is obtained through one of the following derivation rules for
j, k < `

1. From Rj = 0 and Rk = 0 derive αRj + βRk = 0 for α, β ∈ R

2. From Rk = 0 derive xiRk = 0 for some i ∈ {1, . . . , n}

3. From Rj ≥ 0 and Rk ≥ 0 derive αRj + βRk ≥ 0 for α ≥ 0, β ≥ 0 ∈ R

4. From Rj ≥ 0 and Rk ≥ 0 derive RjRk ≥ 0

5. Derive R2 ≥ 0 for some polynomial R ∈ R[x1, . . . , xn]

The size of a line is the size of its bit representation. The size of a Dynamic
SOS refutation is the sum of sizes of each line of the refutation.

2.3 Generalizations of Polynomial Calculus

We now define a variant of Polynomial Calculus, ΣΠΣ-PC where the proof
system is additionally allowed to introduce new variables yj corresponding
to affine forms in the original variables xi. Thus, each line of the proof is
represented by a ΣΠΣ algebraic circuit.

Definition 8. ΣΠΣ-PC
Let Γ = {P1, . . . , Pm} be a set of polynomials in variables {x1, . . . , xn} over a
field F such that the system of equations P1 = 0, . . . , Pm = 0 has no solution.
A ΣΠΣ-PC refutation of Γ is a Polynomial Calculus refutation of a set

8



Γ′ = {P1, . . . , Pm, Q1, . . . , Qk} of polynomials over variables {x1, . . . , xn}
and {y1, . . . , yk} where Q1, . . . , Qk are polynomials of the form Qj = yj −
(aj0 +

∑
i aijxi) for some constants aij ∈ F.

The size of a ΣΠΣ-PC refutation is equal to the size of the Polynomial
Calculus refutation of Γ′.

We would now like to generalize the above proof system to an arbitrary
depth d.

Definition 9. Depth-d-PC
Let d > 2 be an integer. Let Γ = {P1, . . . , Pm} be a set of polynomials
in variables {x1, . . . , xn} over a field F such that the system of equations
P1 = 0, . . . , Pm = 0 has no solution. Let S = (y1, . . . , yk) be a SLP over
{x1, . . . , xn} and F of depth d−2 defined by yj = Qj(x1, . . . , xn, y1, . . . , yj−1).
A depth-d-PC refutation of Γ is a Polynomial Calculus refutation of the set
Γ′ = {P1, . . . , Pm, y1 − Q1, . . . , yk − Qk} of polynomials over {x1, . . . , xn}
and {y1, . . . , yk}.

The size of a depth-d-PC refutation is the size of the Polynomial Calculus
refutation of Γ′

Viewing a refutation in depth-d-PC as a depth d algebraic circuit in
the original variables {x1, . . . , xn} (with each line of the refutation being a
gate in the circuit), it is easy to see that the above definition of size for a
refutation coincides with the usual notion of size for an algebraic circuit up
to polynomial factors.

Although we define the size of a proof in depth-d-PC in terms of the
number of monomials, we will be using the number of lines as a measure of
the size, since in our simulations no line contains more than a polynomial
number of monomials.

To conclude this section, we state the following result from [?], which is
the starting point of our work.

Theorem 0. [?] ΣΠΣ-PC over Q can simulate syntactic Cutting Planes
with size polynomial in n and the coefficient size.

3 Formal statement of results

We can now restate our results in terms of the proof systems defined in the
previous section.

4 Simulations over Q

In this section we outline how we translate inequalities into polynomials over
Q, and simulate proofs involving these inequalities into Polynomial Calculus
derivations over their translations.

9



Consider a line Aj ≡
∑

i aijxi ≥ bj in a CP* proof, where |ai|, |b|
are bounded logarithmically in n. We define its translation over Q as the
following

Definition 10. Translation from CP* to ΣΠΣ-PC
For a line Aj ≡

∑
i aijxi ≥ bj its translation in ΣΠΣ-PC is defined to be

the following pair of lines

∑
i a

+
ij−bj∏

b=0

(yj − b) = 0

yj =
∑
i

aijxi − bj

In addition, for all i, the equations xi(xi − 1) = 0 are included in the
translation.

That is, we introduce a variable yj =
∑

i aijxi − bj and indicate the
range of values it can take which satisfy the constraint

∑
i aijxi ≥ bj . For

convenience, we will denote by z ∈ A the equation
∏
a∈A(z − a) = 0.

The key idea is to note that given two equations z ∈ A and z ∈ B, we
can derive in ΣΠΣ-PC the equation z ∈ A∩B. We call this the Intersection
lemma. A formal proof is provided in Appendix A.1.

4.1 Simulating syntactic CP*

We now sketch how all the derivations rules of syntactic CP* can be simu-
lated with the help of the Intersection lemma, concluding Theorem 0. For
instance, given equations y1 ∈ A and y2 ∈ B, we derive the range of values a
variable z = y1+y2 takes as follows. For every a1 ∈ A, we derive an equation
which states z ∈ a1 +B OR y1 ∈ A \ {a1} where a1 +B = {a1 + b | b ∈ B}.
This equation is formally represented as∏

c∈a1+B
(z − c)

∏
a∈A\{a1}

(y1 − a) = 0

We can multiply each of these equations by appropriate variables, so that
the part about z is the same in all of them. We would now like to eliminate
the part about y1 from these equations. Noting that ∩iA \ {ai} = ∅, we use
the Intersection lemma inductively to eliminate y1.

For simulating division by an integer c given a variable z =
∑

i cixi and
an equation z ∈ C such that c divides every element of C, we first derive
z ∈ I, where I is all possible integer values of the expression

∑
i cixi, by

using our simulation of addition. We then introduce a variable z′ = z/c and
from the former equation, we get a set of integer values for z′ and from the

10



latter, we get a set of rational values. Using the Intersection lemma now
gives the right range for the variable z′ = z/c.

For a formal proof, see Appendix A.2.

4.2 Simulating semantic CP*

In this section we extend the above simulation to include semantic CP*,
hence completing the proof of Theorem 4. Let L1 ≡

∑
i aixi ≥ d1, L2 ≡∑

i bixi ≥ d2 be two lines in a Cutting Planes proof and let L3 ≡
∑

i cixi ≥
d3 be a semantic consequence of L1 and L2. Let y =

∑
i aixi, z =

∑
i bixi

and w =
∑

i cixi. Let A = {0, . . . ,
∑

i a
+
i }, B = {0, . . . ,

∑
i b

+
i } and C =

{0, . . . ,
∑

i c
+
i }. Using the simulation of addition in syntactic CP*(see Lemma

3), we can derive the equations∏
a∈A

(y − a) = 0

∏
b∈B

(z − b) = 0

∏
c∈C

(w − c) = 0

This restricts the values that can be taken by the tuple (y, z, w) to the
three dimensional grid A×B×C. Let a point (i, j, k) in the grid be infeasible
if the tuple (y, z, w) never evaluates to it for any assignment to {xi}. Our
first step is to derive infeasibility equations of the form∏

a∈A
a6=i

(y − a)
∏
b∈B
b6=j

(z − b)
∏
c∈C
c6=k

(w − c) = 0

which for (i, j, k) ∈ A×B ×C tells us that the point (i, j, k) in the grid
is infeasible for the tuple (y, z, w).

Lemma 10. For every infeasible point (i, j, k) ∈ A×B×C, ΣΠΣ-PC can de-
rive an infeasibility equation of the above form in O((

∑
i a

+
i )2(

∑
i b

+
i )2(

∑
i c

+
i )2)

lines

The proof of this lemma is left to Appendix A.3.
The next step is to use the ranges of y and z specified in lines L1 and L2

to narrow down the possible values that can be taken by w. Our goal will
be to get an equation of the form∏

c∈C′
(w − c) = 0

such that each c in C ′ is feasible for w under the constraints L1 and L2

on y and z respectively.

11



Let Pi be the translation of Li in ΣΠΣ-PC, for i = 1, 2, 3. Let Ia,b denote
the set of all infeasibility equations for points of the form (a, b, k) for some
k ∈ C. For an equation P of the form

∏
a∈A1

(y−a)
∏
b∈B1

(z−a)
∏
c∈C1

(w−
a) = 0, denote by Ry(P ) the set A1, that is the range of values specified
by the equation for the variable y. Rz and Rw are defined analogously.
We describe how to obtain the set C ′ by the algorithm w-feasible which
operates on the range sets.

procedure w-feasible(P1,P2)
C ′ ← ∅
for (a, b) ∈ Ry(P1)×Rz(P2) do

S ← C
for I ∈ Ia,b do

S ← S ∩Rw(I)
end for
C ′ ← C ′ ∪ S

end for
return C ′

end procedure

Consider a pair (a, b) ∈ Ry(P1) × Rz(P2). For any equation I ∈ Ia,b ,
Rw(I) gives a list of possible values the variable w can take when (y, z) =
(a, b). By Lemma 10, (y, z, w) = (a, b, c) is infeasible if and only if there is an
equation I ∈ Ia,b such that c 6∈ Rw(I). Therefore,

⋂
I∈Ia,b

Rw(I) is precisely

the feasible set of values for w, given (y, z) = (a, b). C ′ is the union of such
sets over all possible pairs (a, b) ∈ Ry(P1)×Rz(P2) and hence is the set of
all feasible values of w.

This algorithm over range sets can be easily translated to a proof of∏
c∈C′(w − c) = 0 from P1 and P2 in ΣΠΣ-PC as follows. To simulate the

inner for loop, we use the Intersection lemma inductively over all equations
in Ia,b to get equations Ja,b such that Rw(Ja,b) =

⋂
I∈Ia,b

Rw(I). Note that

Ry(Ja,b) = A \ {a} and Rz(Ja,b) = B \ {b}. Thus using the Intersection
lemma again inductively over the set {Ja,b} (analogous to simulation of
addition in syntactic CP* ; see Lemma 7) would give an equation free of
y and z, where w ranges over

⋃
(a,b)

Rw(Ja,b). Any semantic consequence P3

must be such that Rw(P3) ⊇ C ′ and hence is easily derived.

12



5 Simulations over Fpm

5.1 Simulating syntactic CP*

We now carry out the simulation in Section 4.1 in depth-d-PC over a large
enough field extension Fpm of a finite field Fp. This will be of use in the
next section, where we simulate AC0[p]-Frege in depth-d-PC over Fpm . For
the following discussion, we set d = 5.

To represent large integers over Fpm , we choose a primitive element α
and for each of the original variables xi perform the linear transformation
yi = 1 + (α − 1)xi. Since xi is boolean, yi is essentially equivalent to the
mapping xi 7→ αxi . The expression

∑
i aixi is thus represented as α

∑
i aixi .

The goal here is to show that all the steps of the simulation in section 4.1
can still be performed after this transformation.

Theorem 5. Depth-d-PC over Fpm can simulate syntactic Cutting Planes
with the number of lines polynomial in n and the coefficient size, where m
is logarithmic in n and the coefficient size.

Let s1 be the coefficient size of the Cutting Planes proof. Define s = ns1.
Choose m to be the smallest integer such that 2s2 < pm − 1. Let α be an
arbitrary primitive element of Fpm .

Definition 11. Translation of Cutting Planes to depth-d-PC over Fpm
The translation of

∑
i aixi ≥ bi is defined as follows, where yi and y are

new variables.

yi = (αai − 1)xi + 1

y =
∏
i

yi

(y − αbi)(y − αbi+1) · · · (y − α
∑
i a

+
i ) = 0

An integer c such that 0 ≤ c ≤ s is represented as αc, whereas for
−s ≤ c < 0 we represent it as α−|c| ≡ α(pm−1)−|c|. Since 2s ≤ 2s2 < pm − 1,
these representations are unique.

The technical details of the simulating the rules of CP are largely similar
to that over Q and are hence left to Appendix A.4

5.2 Simulating AC0[q]-Frege

5.2.1 Case of q = p

For the purpose of this section, we set d = 9. We will use the simulation
of AC0[p]-Frege in [?] to show that the same can be carried out in depth-
d-PC over Fpm . We fix m to be a large enough integer such that m =
O(poly(log(n))), so that the field we are working over is quasipolynomial

13



sized. Below we describe the proof system of [?] and their simulation of
AC0[p]-Frege.

The Proof System of Maciel and Pitassi Maciel and Pitassi [?] define
a proof system with mod p, negation, AND, OR and threshold connectives,
based on the system PTK by Buss and Clote [?] which we describe below.

Connectives Let x1 · · ·xn be boolean variables. For 0 ≤ j < p, let
⊕pj (x1 · · ·xn) denote the connective which is 1 if and only if

∑
i xi = j

mod p. For any integer t, let Tht(x1 · · ·xn) denote the connective which is
1 if and only if

∑
i xi ≥ t. Let ∧(x1 · · ·xn), ∨(x1 · · ·xn) denote AND and

OR connectives of arity n and ¬ denote the NOT gate.

14



The proof system of Maciel and Pitassi [?]

initial sequents

1. ϕ→ ϕ for any formula ϕ
2. → ∧() ; ∨()→
3. ⊕pj ()→ for 1 ≤ j < p ; → ⊕p0()
4. Tht()→
5. → Th0(ϕ1 · · ·ϕk) for any k ≥ 0

structural rules

weakening:
Γ,∆→ Γ′

Γ, ϕ,∆→ Γ′
Γ→ Γ′,∆′

Γ→ Γ′, ϕ,∆′

contract:
Γ, ϕ, ϕ,∆→ Γ′

Γ, ϕ,∆→ Γ′
Γ→ Γ′, ϕ, ϕ,∆′

Γ→ Γ′, ϕ,∆′

permute:
Γ, ϕ1, ϕ2,∆→ Γ′

Γ, ϕ2, ϕ1,∆→ Γ′
Γ→ Γ′, ϕ1, ϕ2,∆

′

Γ→ Γ′, ϕ2, ϕ1,∆
′

cut rule

Γ, ϕ→ ∆ Γ′ → ϕ,∆′

Γ,Γ′ → ∆,∆′

logical rules

¬ :
Γ→ ϕ,∆

¬ϕ,Γ→ ∆

ϕ,Γ→ ∆

Γ→ ¬ϕ,∆

∧-left:
ϕ1,∧(ϕ2 · · ·ϕk),Γ→ ∆

∧(ϕ1 · · ·ϕk),Γ→ ∆

∧-right:
Γ→ ϕ1,∆ Γ→ ∧(ϕ2 · · ·ϕk),∆

Γ→ ∧(ϕ1, ϕ2 · · ·ϕk),∆

∨-left:
ϕ1,Γ→ ∆ ∨(ϕ2 · · ·ϕk),Γ→ ∆

∨(ϕ1, ϕ2 · · ·ϕk),Γ→ ∆

∨-right:
Γ→ ϕ1,∨(ϕ2 · · ·ϕk),∆

Γ→ ∨(ϕ1 · · ·ϕk),∆
⊕i-left:
ϕ1,⊕pi−1(ϕ2 · · ·ϕk),Γ→ ∆ ⊕pi (ϕ2 · · ·ϕk),Γ→ ϕ1,∆

⊕pi (ϕ1, ϕ2 · · ·ϕk),Γ→ ∆

⊕i-right:
ϕ1,Γ→ ⊕pi−1(ϕ2 · · ·ϕk),∆ Γ→ ϕ1,⊕pi (ϕ2 · · ·ϕk),∆

Γ→ ⊕pi (ϕ1, ϕ2 · · ·ϕk),∆
Tht-left:
Tht(ϕ2 · · ·ϕk),Γ→ ∆ ϕ1, Tht−1(ϕ2 · · ·ϕk),Γ→ ∆

Tht(ϕ1, ϕ2 · · ·ϕk),Γ→ ∆

Tht-right:
Γ→ ϕ1, Tht(ϕ2 · · ·ϕk),∆ Γ→ Tht−1(ϕ2 · · ·ϕk),∆

Γ→ Tht(ϕ1, ϕ2 · · ·ϕk),∆

15



Formulas A formula is recursively defined as follows. Input variables
x1 · · ·xn are formulas of size 1 and depth 1. A formula ϕ is an expression of
the form g(ϕ1 · · ·ϕk), where g is any of the connectives described above and
ϕ1 · · ·ϕk are formulas. The depth(ϕ) is defined as

∑k
i=1 depth(ϕi) + 1. The

size(ϕ) is defined as
∑k

i=1 size(ϕi)+k+1 if g is not a threshold connective,

and it is defined as
∑k

i=1 size(ϕi) + t + k + 1 if g is a threshold connective
of the form Tht(ϕ1 · · ·ϕk).

Cedents and Sequents A cedent Γ is defined as a sequence of formu-
las ϕ1 · · ·ϕk. We will use capital Greek letters to denote cedents. A sequent
is an expression of the form Γ→ ∆, where Γ and ∆ are cedents. The inter-
pretation of a sequent is that the AND of all the formulas in Γ implies the
OR of all the formulas in ∆. The size and depth of a cedent are respectively
the sum of sizes and the maximum of depths of all the formulas in it. The
size of a sequent is the sum of sizes of both cedents, and the depth is the
maximum of the depths of both cedents.

Definition of a Proof A proof in this system is defined as a sequence
of sequents S1 · · · Sm such that each Si is either an initial sequent, or is
derived from sequents Sj for j < i through one of the rules listed below.
The size and depth of a proof are respectively the sum of sizes and the
maximum of depths of all sequents in it.

The initial sequents and the derivation rules are listed below.

Translating lines We will now define translations of lines in the above
proof system. For a formula ϕ, we denote its translation in depth-d-PC by
tr(ϕ). Let x1 · · ·xn be the variables of the original proof. Below we list the
translations for a formula built with each connective. The interpretation is
that for any formula ϕ, tr(ϕ) = 0 if and only if ϕ is true.

tr(xi) = 1− xi

tr(∨(ϕ1 · · ·ϕk)) =
∏
i(tr(ϕi))

tr(∧(ϕ1 · · ·ϕk)) = 1−
∏
i tr(¬ϕi)

tr(⊕pi (ϕ1 · · ·ϕk)) = (
∑k

j=1 ϕj − i)p−1 for 0 ≤ i < p

tr(Tht(ϕ1 · · ·ϕk)) = (y − αt) · · · (y − αk)
where y =

∏
i((α− 1)tr(¬ϕi) + 1)

tr(¬ϕ) = 1− tr(ϕ) if ϕ does not contain a Tht connective

tr(¬Tht(ϕ1 · · ·ϕk)) = (y − 1) · · · (y − αt−1)
where y =

∏
i((α− 1)tr(¬ϕi) + 1), for t ≥ 1

16



The translation tr(S) of a sequent S of the form
ϕ1 · · ·ϕk → ϕ′1 · · ·ϕ′k′ is given by the equation

k∏
i=1

tr(¬ϕi)
k′∏
j=1

tr(ϕ′j) = 0

Note that the translations of all the connectives except the threshold
connective take only boolean values over Fpm .

Simulating proofs We now describe the connection between AC0[p]-Frege
and the proof system of Maciel and Pitassi. By the following theorem of
Allender [?], any AC0[p] circuit can converted to a depth three circuit of a
special form.

Theorem 6. [?]
Any AC0[p] circuit can be converted to a quasipolynomial sized depth three cir-
cuit with an unweighted threshold gate at the top, MODp gates of quasipoly-
nomial fan-in in the middle and ∧ gates of polylogarithmic fan-in at the
bottom

Depth three circuits with an unweighted threshold, ∧ or ∨ gate at the
top, MODp gates in the middle and ∧ gates of polylogarithmic fan-in in the
size of the circuit at the bottom are referred to as flat circuits by [?]. For an
AC0[p] circuit ϕ, its flattening fl(ϕ) is defined as the flat circuit given by the
above theorem. Proofs in AC0[p]-Frege can be thought of as a list of sequents
such that every formula that appears in each of them is an AC0[p] circuit.
For a sequent ϕ1 · · ·ϕk → ϕ′1 · · ·ϕ′k′ that appears in a AC0[p]-Frege proof, we
can define a flattening of the sequent fl(ϕ1) · · · fl(ϕk) → fl(ϕ′1) · · · fl(ϕ′k′)
in the proof system of Maciel and Pitassi. A flat proof of such a sequent
is such that every formula that appears in the proof is a flat circuit. The
simulation theorem of [?] states the following

Theorem 7. [?]
Let S be a sequent which has a depth d proof in AC0[p]-Frege. Then its

flattening fl(S) has a flat proof of size 2(logn)
O(d)

in the proof system of
Maciel and Pitassi.

We will show that flat proofs can be simulated in depth-d-PC by showing
the following

Theorem 8. Let S be a sequent which has a flat proof of size s in the proof
system of Maciel and Pitassi. Then there is a proof of the equation tr(S) in
depth-d-PC from the equations xi(xi − 1) = 0 with poly(s) lines.

17



To prove the above theorem, it is sufficient to show that for each rule
that derives a sequent S3 from sequents S1 and S2, there is a derivation of
the equation tr(S3) from the equations tr(S1), tr(S2) and xi(xi − 1) = 0 in
depth-d-PC. The details of how each such rule can be simulated are left to
Appendix B.1

5.2.2 Case of q 6= p

We now extend the simulation of the previous section to show that AC0[q]-
Frege can be simulated in depth-d-PC over Fpm , for distinct primes p and q,
hence proving Theorem 2. Using the theorem of Maciel and Pitassi (Theo-
rem 7 above) for AC0[q]-Frege, we obtain a flat proof with ⊕qi connectives. To
simulate it, we can reuse the lemmas of the previous section, except for the
⊕qi connectives. To define their translation, choose m such that q | pm − 1
and let r = (pm − 1)/q. The translation is now defined as

tr(⊕qi (ϕ1 · · ·ϕk)) =
(
(y − αir)

)pm−1
where y =

∏
i((α

r − 1)tr(¬ϕi) + 1) and tr(¬ ⊕qi (ϕ1 · · ·ϕk)) = 1 −
tr(⊕qi (ϕ1 · · ·ϕk))

Simulating the rules is similar to the previous section. The proof for one
such rule is shown in Appendix B.2

5.3 Simulating TC0-Frege

In this section, we show that a TC0-Frege proof of depth d0 can be trans-
formed into a depth-d-PC proof over Fpm , where d = O(d0), proving Theo-
rem 3. In the previous section we translated Tht(ϕ1 · · ·ϕk) as

tr(Tht(ϕ1 · · ·ϕk)) = (y − αt) · · · (y − αk)

tr(¬Tht(ϕ1 · · ·ϕk)) = (y − 1) · · · (y − αt−1)

where y =
∏
i((α − 1)tr(¬ϕi) + 1). Clearly this translation requires tr(ϕi)

to be boolean and can itself take non-boolean values. Since there is only
one top threshold gate in a flat circuit, the formulae ϕi were threshold free
and thus tr(ϕi) only took on boolean values. But in a TC0-Frege proof, the
formulae ϕi can themselves contain threshold gates and thus tr(ϕi) may be
non-boolean. To fix this problem, we redefine the translation of a threshold
gate to be the following, essentially forcing it to be boolean.

tr(Tht(ϕ1 · · ·ϕk)) =
(
(y − αt) · · · (y − αk)

)pm−1
where y =

∏
i((α−1)tr(¬ϕi)+1) and tr(¬Tht(ϕ1 · · ·ϕk)) = 1−tr(Tht(ϕ1 · · ·ϕk)).

It is easy to derive the fact that the above translation only takes boolean
values (see Lemma 14). Now, note that any rule other than the Tht is
unaffected by this new translation since it only assumes that its arguments

18



are boolean and hence we can use the lemmas of the previous section directly.
However, simulation of the Tht rule relies on the old translation. To bridge
the gap, we only need to show that the old and new translations of Tht and
¬Tht are interchangeable within the proof system. The following lemmas
are proved in Appendix C

Lemma 1. Given the equation(
(y − αt) · · · (y − αk)

)pm−1
= 0

we can derive
(y − αt) · · · (y − αk) = 0

and vice versa.

Lemma 2. Given the equation

1−
(
(y − αt) · · · (y − αk)

)pm−1
= 0

we can derive
(y − 1) · · · (y − αt−1) = 0

and vice versa.

5.3.1 Existence of Feasible Interpolation

Bonet, Pitassi and Raz [?] have shown that TC0-Frege does not have feasi-
ble interpolation unless Blum integers can be factored by polynomial sized
circuits. By the above simulation, we can state the following

Theorem 9. Depth-d-PC does not have feasible interpolation unless Blum
integers can be factored by polynomial sized circuits

5.4 Dealing with large coefficients – Simulating CP and Dy-
namic SOS

In this section, we work over a field Fpm for an arbitrary prime p, where pm

is greater than square of the number of monomials we wish to represent in
any CP/SOS proof line (See Definition 17).

It is well-known that arbitrary threshold gates can be simulated by
simple majority gates of higher depth. In particular, a tight simulation
was proven by Goldmann, Hastad and Razborov [?] who show that depth
d+ 1 TC0 circuits are equivalent to depth d threshold circuits with arbitrary
weights. However, the analogous result has not been proven in the propo-
sitional proof setting. In order to simulate arbitrary weighted thresholds in
our low depth extension of PC, we will we use a different simulation of high
weight thresholds by low weight ones.

19



The basic idea will be to use simple, shallow formulas that compute the
iterated addition of n binary numbers, each with ξ = poly(n) bits [?]. Let
a1,a2, . . . ,an be the set of n binary numbers, each of length ξ = poly(n),
where ai = ai,ξ, · · · , ai,1. We will break up the ξ coordinates into ξ/ log ξ
blocks, each of size log ξ; let Lj(ai) denote the jth block of ai. The high level
idea is to compute the sum by first computing the sum within each block,
and then to combine using carry-save-addition.

In more detail, let ao
i denote the “odd” blocks of ai – so ao

i consists of
ξ/ log ξ blocks, where for j odd, the jth block is Lj(ai), and for j even, the
jth block is all zeroes (and similarly, ae

i denotes the even blocks of ai). Let
So be equal to

∑
i∈[n] a

o
i , and similarly let Se be equal to

∑
i∈[n] a

e
i . We

will give a SLP for computing the bits of So and Se and then our desired
sum, So + Se, is obtained using the usual carry-save addition which can be
computed by a depth-2 SLP. The main point is that we have padded ao

i

and ae
i with zeroes in every other block; this enables us to compute So (and

similarly Se) blockwise (on the odd blocks for So and on the even blocks
for Se), because no carries will spill over to the next nonzero block. Then
since the blocks are very small (log ξ bits), the sum within each block can
be carried out by brute-force.

Our construction below generalizes this to the case where the ai’s are
not large coefficients, but instead they are the product of a monomial and a
large coefficient. After formally describing this low-depth representation, it
remains to show how to efficiently reason about these low-depth represen-
tations in order to carry out the rule-by-rule simulation of general Cutting
Planes and SOS. We outline the main steps below, with technical details left
to Appendix D

5.4.1 Bit vector representations of CP/SOS proof lines

Definition 12. Derivations in depth-d-PC

To indicate that a new extension variable yi is being introduced and set
to a value ai, we write

yi := ai

To indicate that a line P = 0 in depth-d-PC can be derived from P1 = 0,
P2 = 0, · · · ,Pk = 0, we write

P1, P2, · · · , Pk ` P

To indicate that a line P = 0 can be derived just from the axioms of the
form x2i = xi for all boolean variables xi, we write

` P

20



Below we formally define the representation of binary numbers as bit
vectors.

Definition 13. Bit vectors
We represent an integer using its bit representation by introducing a variable
for each of its bits. Let a be an integer with bits aξ · · · a1. A bit vector
a = [aξ · · · a1] representing the integer a in our system is a set of auxiliary
variables yξ · · · y1 such that yi := ai. Define a(i) = yi = ai. Integers which
are represented as vectors are written in boldface.

Let ξ0 be an upper limit on the number of monomials in any polynomial
we wish to represent and let ξ1 be an upper limit on any coefficient we
wish to represent. Set ξ = 10dlog(ξ0) + log(ξ1)e. The bit vectors in this
simulation will all be of dimension ξ, i.e. all integers we represent will be
of at most ξ bits. Any vector of dimension > ξ generated in any operation
is automatically truncated to dimension ξ by dropping the higher order bits.

The bit representation chosen is two’s complement. That is, a positive
integer is represented in binary in the usual way. Let b be a positive integer
represented by b. Let b1 be the vector obtained by flipping all the bits in
b. Then we define the vector −b as b1 ⊕ 1, where ⊕ operation on vectors,
defined below, simulates the usual bitwise addition operation and 1 is the
vector representation of the integer 1. 0, the all zeros vector, represents the
integer 0. For any vector a, a(ξ) is the sign bit of a. a is said to be negative
if the sign bit is one.

In order to make correct computation using the above Two’s complement
representation of binary numbers, we need to ensure that the bit length of
all numbers represented is bounded. We therefore define the length of a
vector in our simulation, and later show that such vectors are of bounded
length.

Definition 14. Length of a vector
The length of a non-negative vector a is the highest index i such that a(i) 6= 0
and zero if such an i does not exist. The length of a negative vector b is the
highest index i such that b(i) 6= 1. Equivalently, the length of a vector a is
the highest index i such that a(i) 6= a(ξ).

We now define the usual addition operation for binary numbers, over
their vector representations. Since we work in a low depth setting, we need
to use Carry-Save addition to represent the sum and carry bits.

5.4.2 Operations on bit vectors

Definition 15. The Bitwise Addition operation ⊕
We define below the operator on vectors corresponding to the usual carry-
save addition. For two bits y and z, let y⊕ z represent the XOR of the bits.

21



Given two bit vectors y = [yξ · · · y1] and z = [zξ · · · z1], the bitwise addition
operation y ⊕ z produces a vector [wξ+1 · · ·w1] such that

wi := yi ⊕ zi ⊕ ci
for i ≤ ξ and wξ+1 := cξ where

ci := ∨j<i(yj ∧ zj ∧j<k<i (yk ⊕ zk))

for 1 < i ≤ ξ and c1 := 0.
ci are referred to as the carry bits in y ⊕ z

Monomial terms a1X1 in our system are represented by a “scalar multi-
plication” of X1 with the vector a1, which we define below.

Definition 16. Scalar multiplication
For a bit z and a vector y, let zy = yz represent the vector obtained by
multiplying every bit of y by z.

In order to represent a line a1X1 + · · · + anXn − a0 ≥ 0 in Cutting
Planes, we define an operation S over the vectors a1X1, · · · ,anXn such that
the resultant vector is a representation of a1X1 + · · · + anXn − a0 and has
a low depth in X1, · · · , Xn. This uses the idea of representing high weight
thresholds using low depth majority gates described earlier.

Definition 17. The Set Addition operation S(.)
We will now define the representation of the bitwise addition of vectors
a1X1, · · · ,atXt, where a1, · · · ,at are integer constants and X1, · · · , Xt are
monomials.

Let ξ2 = dξ/ log(ξ0)e. For a constant a, partition the bits of a into ξ2
blocks of length at most log(ξ0). Let Lj(a), j ∈ [ξ2] denote the jth block
of bits, so that the bits of a can be obtained by a concatenation of the bits
Lξ2(a)...L1(a). Since Lj(a) is only log(ξ0) bits long, its magnitude is at most
ξ0. Let [Lj(a)] refer to the integer represented by the vector Lj(a). Define
ao to be the vector obtained by replacing all even numbered blocks of a with
zeroes. ae is analogously defined by zeroing out the odd numbered blocks.
For monomials X1 · · ·Xt and t < ξ0, we would like to define bit vectors
So(a1X1, · · · ,atXt) and Se(a1X1, · · · ,anXt) to be the bit representations
of the polynomials

∑t
i=1 a

o
iXi and

∑t
i=1 a

e
iXi. We accomplish this using

constant depth SLPs as follows.
We define a constant depth SLP to compute the kth bit of the jth block

of So, represented by Ljk(So). The important observation is that we can
compute So two blocks at a time since for odd j,

∑
i [Lj(a

o
i )]Xi is at most ξ20

and thus can be represented by 2 log(ξ0) bits or exactly two blocks. Let C` be
the set of integers in [ξ20 ] such that the `th bit of their binary representation
is one. Then for odd j, Ljk(So) is one if and only if

22



∏
β∈Ck

(∑
i

[Lj(a
o
i )]Xi − β

)
= 0

and for even j, Ljk(So) is one if and only if∏
β∈Clog(ξ0)+k

(∑
i

[Lj−1(a
o
i )]Xi − β

)
= 0

Therefore, the bit Ljk(So) can be represented as a constant depth SLP
of size O(ξ0) by representing the left hand side of the above equations as a
SLP over a finite field extension larger than ξ20, similar to the simulation of
CP* in the earlier sections, and then raising the result of that SLP to the
order of the multiplicative group that we are working in. The bits of Se are
represented analogously.

The operation S over vectors a1X1, · · · ,atXt is now defined as So(a1X1, · · · ,atXt)⊕
Se(a1X1, · · · ,anXt).

5.4.3 Representing a line from CP/SOS in depth-d-PC

We now define the translation of a line a1X1+· · ·+anXk−a0 ≥ 0 in Cutting
Planes/SOS, where X1 . . . Xk are monomials.

Definition 18. Representing an inequality
Let P = a1X1 + · · · + akXk be a polynomial where the Xi are monomials.
Then the line P ≥ 0 is represented as

S(a1X1, · · · ,akXk)(ξ) = 0

and P = 0 is represented as

S(a1X1, · · · ,akXk) = 0

Let R(P ) denote the vector S(a1X1, · · · ,akXk).

5.4.4 Simulating Cutting Planes

Addition Before we prove the simulation for addition, we need the follow-
ing key properties of the vector representation. They are proved in Appendix
D.

The lemma below states that our system can prove the associativity of
the operation ⊕ over vectors.

Lemma 25. For any three bit vectors y, z and w

` (y ⊕ z)⊕w − y ⊕ (z⊕w)

23



We then need to be able to interchangeably use the operations S and ⊕
for vector addition

Lemma 27. ` S(y1, · · · ,yi)− S(y1, · · · ,yi−1)⊕ yi

We then extend this to show that the vector representation of the sum
of two lines is the ⊕ of the vector representations of each line.

Lemma 29. Let P and Q be two polynomials. Then R(P +Q) = R(P )⊕
R(Q).

Finally, we need to show that the as long as P and Q have coefficients not
exceeding bit length ξ, we can derive from R(P )(ξ) = 0 and R(Q)(ξ) = 0
the lines R(P +Q)(ξ) = 0. It is an easy observation that if the bit lengths of
the coefficients in P and Q are bounded, then the vectors R(P ) and R(Q)
are of bounded length. Thus it suffices to show the following.

Lemma 35. For any two vectors a and b of length at most ` < ξ − 1

a(ξ),b(ξ) ` (a⊕ b)(ξ)

This concludes simulation of the addition rule.

Multiplication by a constant In order to simulate multiplication by a
power of two, we left-shift bits of the corresponding bit vector by the required
amount, and add zero bits at the end. Multiplication by any constant can
then be simulated by the above in combination with the Addition rule.

Division by a constant To simulate the division rule in Cutting Planes
we use the following lemma.

Lemma 3. Let P = a1x1 + · · · + anxn − a0 where ai are non-negative,
a1 · · · an are even and a0 is odd. Then we can derive

R(P )(ξ) ` R(P − 1)(ξ)

Proof. It is easy to derive

a0(1)− 1 ` (−a0)(1)− 1

Since we have ` R(P )−
(
S(a1x1, · · · ,anxn)⊕(−a0)

)
by Lemma 27, and

a1 · · · an are even, we derive

` R(P )(1)− 1

Since −1 is represented by the all ones vector, for every carry bit ci in
the sum R(P )⊕ (−1) it is easy to derive from the definition of ci

24



` ci − 1

Now using the definition (R(P ) ⊕ (−1))(ξ) = R(P )(ξ) ⊕ 1 ⊕ cξ and
Lemma 27 we derive

R(P )(ξ) ` R(P − 1)(ξ)

We can now simulate the division rule by using the above lemma and
then dropping the last bit of the vector R(P − 1) (which would be zero).

5.4.5 Simulating Dynamic SOS

Rules 1, 2 and 3 of Definition 7 follow from the above simulation of Cutting
Planes.

Multiplication of two lines To simulate the multiplication rule of SOS,
we need to define an operation which, given the vectors a1 and b1, produces
a vector that is equivalent to the representation of a1b1. We define it as a
shifted sum based on the grade school algorithm for binary multiplication.

Definition 19. Shifted sum
For a vector y, let 2ky denote the vector obtained by shifting the bits of y
to the left by k positions, and padding the least significant k positions with
zeros. Given two vectors y and z = [zξ−1 · · · z0] , the shifted sum of y and
z is defined as the vector

SS(y, z) = S(z0y, · · · , zξ−12ξ−1y)

We then show that our system can prove that the vector obtained by
using this operation is indeed what we want.

Lemma 41. Let P and Q be two polynomials, represented by bit vectors y0

and z = [zξ−1 · · · z0], with at most ξ0 monomials and coefficients bounded by
ξ1 in absolute value. Then,

` R(PQ)− SS(y0, z)

We now extend Lemma 35 to show that we can derive PQ ≥ 0 from
P ≥ 0 and Q ≥ 0, i.e. R(PQ)(ξ) = 0 from R(P )(ξ) = 0 and R(Q)(ξ) = 0.

Lemma 36. Let y and z be two non-negative vectors of length ` such that
3` < ξ − 1. Then

y(ξ), z(ξ) ` SS(y, z)(ξ)

This completes the simulation of the rule which takes the product of two
lines in SOS.

25



Squaring rule To simulate the rule in SOS which introduces a line P 2 ≥ 0
for any polynomial P , we need the following lemmas.

The lemma below states that if the sign bit of y is one, then the sign bit
of −y is zero.

Lemma 31. For any vector y of length ` < ξ − 1,

y(ξ)− 1 ` (−y)(ξ)

The following lemma shows that for a vector representing a polynomial
P , the negation of it represents the polynomial −P .

Lemma 32. Let P be a polynomial represented by a vector y. Then `
R(−P )− (−y).

The rule which derives P 2 ≥ 0 can now be easily simulated by branching
on the sign bit of the vector R(P ). Assuming it to be zero, we can use
Lemma 36 to derive R(P 2)(ξ) = 0. In the other case, we can use Lemma
31 and Lemma 32 to derive that the sign bit of R(−P ) is zero. We can now
use Lemma 36 again to derive R(P 2)(ξ) = 0.

5.4.6 Concluding the simulation

By simulating any refutation in Cutting Planes/SOS rule by rule using the
above lemmas, we end up with the representation of the line −1 ≥ 0 i.e.

R(−1)(ξ) = 0

Since −1 is represented by the all ones vector, this gives a contradiction.

Open Problems

The obvious open problem is to prove a lower bound for AC0[p]-Frege systems,
whether using algebraic proofs or not.

As stepping stones towards this goal, we think it would be interesting
to:

1. Find any techique for proving lower bounds on the sizes of Polynomial
Calculus proofs that doesn’t go through degrees. More precisely, prove
size lower bounds for PC proofs where we view variables as taking
values 1,−1, and replace the axioms x2 − x with x2 − 1.

2. Prove lower bounds for the system Trinomial-ΠΣ-PC.

3. Our simulations require a sufficiently large extension field. Can we
either p-simulate Polynomial Calculus over a large extension field with
Polynomial Calculus over the base field, or prove that no simulation
exists?

26



Acknowledgements

The authors would like to thank Paul Beame, Lijie Chen, Srikanth Srinivasan
and Iddo Tzameret for helpful discussions. Part of this research took place at
the Simons Institute at UC Berkeley, and we are thankful for their support.

Appendix A Small-weight Cutting Planes Simula-
tions

Notational Remark In depth-d-PC, we sometimes use “inline” defini-
tions to indicate the new variables yj introduced. For instance, the equation

x1(x1 + 1) = 0

represents the equations

x1y1 = 0

y1 = x1 + 1

Thus when we refer to the monomial corresponding to x1(x1 + 1), we are
referring to x1y1.

Though ΣΠΣ-PC captures the effect of size reductions due to allowing
linear transformations within the proof, it turns out that it is more powerful
than required for our simulation in Theorem 1, so we define the tightest
restriction of it where we can still do the simulation.

Definition 20. A Trinomial is a polynomial with at most three monomials

Definition 21. Trinomial-ΠΣ-PC
Let Γ = {P1, . . . , Pm} be a set of polynomials over a field F such that

each P ∈ Γ is either an affine form or a trinomial in {x1, . . . , xn}. Let
the system of equations P1 = 0, . . . , Pm = 0 have no solution. Let Γ′ =
{P1, . . . , Pm, Q1, . . . , Qk} be a set of polynomials over variables {x1, . . . , xn}
and {y1, . . . , yk} such that Q1, . . . , Qk are polynomials of the form Qj =
yj − (aj0 +

∑
i aijxi) for some constants aij ∈ F. A Trinomial-ΠΣ-PC

refutation R1 · · ·Rs of Γ is a Polynomial Calculus refutation of Γ′, such
that each R` is either an affine form or a trinomial in {x1, . . . , xn} and
{y1, . . . , yk}.

Trinomial-ΠΣ-PC essentially allows each line in the proof to be a ΣΠΣ
circuit in X with the top fan-in bounded by 3. We will measure the size of
a Trinomial-ΠΣ-PC proof by the number of lines, which is clearly polyno-
mially equivalent to the number of monomials in X, Y . This proof system
seems quite restricted, especially since it can no longer trivially simulate

27



Polynomial Calculus unlike ΣΠΣ-PC. But surprisingly, the Pigeonhole Prin-
ciple and Tseitin formulas, for which we have lower bounds for Polynomial
Calculus, have small proofs in Trinomial-ΠΣ-PC.

A.1 Proof of the Intersection lemma

Here we prove the Intersection lemma and some of its variants that will be
used later.

Lemma 4. “Substitution Lemma”
Let R(z−a1) · · · (z−ak) = 0 and Rp(z) = 0 be two equations in a depth-d′-

PC refutation, where R is any polynomial and p is a univariate polynomial
of degree d in z such that p(ai) 6= 0 for any i. Then, we can derive the
equation R = 0 in O(kd|R|) lines where |R| is the number of monomials in
R.

Proof. Consider the base case of k = 1. Starting with R(z − a1) = 0,
we can successively derive Rzi − Rai1 = 0 for i ∈ {2 · · · d} by multiplying
with the appropriate polynomials in z. This takes O(d|R|) lines in total.
Then adding these equations up with the appropriate coefficients we obtain
Rp(z) − Rp(a) = 0. Since p(a) 6= 0 and Rp(z) = 0, we have R = 0. Now,
multiplying every line of the above derivation with (z − a2) · · · (z − ak), we
have a derivation of R(z−a2) · · · (z−ak) = 0 from R(z−a1) · · · (z−ak) = 0
and Rp(z) = 0. The lemma now follows by induction over k.

Lemma 5. Let Q(z − a) = 0 and Q
∏k
i=1(z − bi) = 0 be two equations in

Trinomial-ΠΣ-PC, where Q is a monomial and a 6= bi for any i. Then we
can derive Q = 0 in O(k) lines.

Proof. The proof is by induction on k. The base case, when k = 0, is trivial.
Assume that the lemma is true for some k−1 ≥ 0. Let z1 = z−a, z2 = z−b1
and Q1 =

∏k
i=2(z − bi). The equations are then represented as

Qz1 = 0 (1)

QQ1z2 = 0 (2)

z1 = z − a (3)

z2 = z − b (4)

Multiplying equation (1) by Q1, we have

QQ1z1 = 0 (5)

Let c = a− b. By subtracting (4) from (3) we derive

z1 − z2 + c = 0 (6)

28



Now multiplying the above equation by the monomial QQ1, we derive
the trinomial

QQ1z1 −QQ1z2 + cQQ1 = 0

But since we already have QQ1z1 = 0 from (5) and QQ1z2 = 0 from (2),
we obtain

cQQ1 = 0

Since c 6= 0, we derive QQ1 = 0. Therefore, we now have the equations

Q(z − a) = 0

Q
k∏
i=2

(z − bi) = 0

The proof of the lemma thus follows from the induction hypothesis. Since
it only takes a constant number of lines to go from the case of k to the case
of k − 1, the total number of lines in the derivation is O(k).

We now generalize this lemma as follows.

Lemma 6. “Intersection Lemma”
Let A and B be two sets of constants in F. Let

∏
a∈A(z − a) = 0 and∏

b∈B(z − b) = 0 be two equations in Trinomial-ΠΣ-PC. Then there is a
proof of

∏
c∈A∩B(z−c) = 0 in Trinomial-ΠΣ-PC of length O(|A\B| · |B\A|)

Proof. We will prove the lemma by induction over the size of |A \ B|. The
base case when |A \B| = 0 trivially follows since A = A ∩B.

Now for any two sets A and B such that |A \ B| > 0, let the equations
be labeled as follows ∏

a∈A
(z − a) = 0 (7)

∏
b∈B

(z − b) = 0 (8)

Let A0 = A \ B and B0 = B \ A. Choose an element a1 ∈ A0. Let
A1 = A \ {a1} and A2 = A0 \ {a1}. Let Q1 be the monomial

∏
a∈A1

(z − a)
and Q2 be the monomial

∏
a∈A2

(z − a). Then equation (7) can be written
as

Q1(z − a1) = 0 (9)

Multiplying (8) by Q2 we get∏
b∈B∪A2

(z − b) = 0 (10)

29



Note that there are no squared terms in the monomial since A2 and B
are disjoint. The above equation can be rewritten as∏

b∈A1∪B0

(z − b) = 0 (11)

since A1 ∪ B0 = B ∪ A2 = (A ∪ B) \ {a0}. Note that A1 and B0 are also
disjoint. Hence we can write the above equation as

Q1

∏
b∈B0

(z − b) = 0 (12)

Now since a1 6∈ B0, we can apply Lemma 5 on equations (9) and (12) to
get

Q1 = 0

i.e. ∏
a∈A1

(z − a) = 0 (13)

in O(|B0|) = O(|B \A|) lines.
Now we have two sets of constants A1 and B with corresponding equa-

tions (13) and (8) such that |A1 \B| = |A \B| − 1. Thus the lemma follows
by induction. The total number of lines is O(|A \B| · |B \A|).

Remark It is easy to see that starting with Q
∏
a∈A(z − a) = 0 and

Q
∏
b∈B(z − b) = 0, we can still apply the Intersection Lemma to get

Q
∏
c∈A∩B(z − c) = 0 for any monomial Q.

A.2 Simulating syntactic CP∗ in Trinomial-ΠΣ-PC over Q

We are now ready to state and prove Theorem 0, which first appeared in
[?].

For each possible derivation rule in a Cutting Planes proof, we will now
show how to derive in Trinomial-ΠΣ-PC (See Definition 21) the translation
of the result of applying the rule on a line or a pair of lines, given their
translations.

Simulating Addition For the addition rule, given the translations of two
lines

∑
i aijxi ≥ bj and

∑
i aikxi ≥ bk in CP*, we will derive the translation

of their sum
∑

i (aik + aij)xi ≥ bj + bk. The following lemma suffices.

30



Lemma 7. Simulating addition
Let x(x− 1) · · · (x− a) = 0 and y(y − 1) · · · (y − b) = 0 be two equations in

a Trinomial-ΠΣ-PC refutation with a ≥ b. Then we can derive

(x+ y)(x+ y − 1) · · · (x+ y − (a+ b)) = 0

using O(ab) lines.

Proof. Let z = x+y. We will first derive the range of values z can take when
y = j, for all j ∈ {0, . . . , b}. Let xi = x− i for i ∈ {0, . . . , a}, yj = y − j for
j ∈ {0, . . . , b} and zk = z−k for k ∈ {0, . . . , a+ b}. Also, for S ⊆ {0, . . . , b},
let YS =

∏
j∈{0,...,b}\S yj . We denote Y{j} simply by Yj . Then we have

zj = x0 + yj

Multiplying the above equation by the monomial Yj , we have

zjYj − x0Yj − yjYj = 0

Since yjYj =
∏
j∈{0···b} yj = 0, we have

zjYj − x0Yj = 0 (14)

It is easy to derive for i ∈ {0 · · · a}

zj − zj+i − i = 0

Multiplying the above equation by the monomial Yj , we have

zjYj − zj+iYj − iYj = 0 (15)

Subtracting this from (14) we get

zj+iYj − x0Yj + iYj = 0 (16)

By the definition of xi we have

xi = x0 − i

Multiplying the above equation by the monomial Yj , we get

xiYj − x0Yj + iYj = 0

Subtracting the above equation from (16) we get

zj+1Yj − xiYj = 0

Thus, for all i ∈ {0 · · · a} we derive

zj+iYj − xiYj = 0

31



From the above a+1 equations, we can inductively derive for i ∈ {0 · · · a}

zj · · · zj+iYj − x0 · · ·xiYj = 0

as follows. For i ∈ {1 · · · a}, using

zj · · · zj+i−1Yj − x0 · · ·xi−1Yj = 0

we can derive

zj · · · zj+iYj − x0 · · ·xi−1zj+iYj = 0 (17)

by multiplying with zj+1. Now multiplying

zj+iYj − xiYj = 0

by the monomial x0 · · ·xi−1, we derive

x0 · · ·xi−1zj+iYj − x0 · · ·xiYj = 0 (18)

Subtracting (18) from (17) we get

zj · · · zj+iYj − x0 · · ·xiYj = 0

using O(j) monomials. Therefore, we have

zj · · · zj+aYj − x0 · · ·xaYj = 0 (19)

and since x0 · · ·xa = 0, we derive

zj · · · zj+aYj = 0

We derive the above for every j ∈ {0 · · · b} using a total of O(ab) lines.
Multiplying the above line by {zk : 0 ≤ k < j} ∪ {zk : j + a < k ≤ a + b},
we have for all j ∈ {0 · · · b}

z0 · · · za+bYj = 0

Now note that the set of monomials {Yj : j ∈ {0 · · · b}} have no common
root. Therefore we can apply the Intersection Lemma repeatedly to derive
z0 · · · za+b = 0 as follows. Starting with

z0 · · · za+bY{0···j} = 0

and
z0 · · · za+bYj+1 = 0

and applying the Intersection Lemma with A = {0 · · · b} \ {0 · · · j} and
B = {0 · · · b} \ {j + 1} we get

32



z0 · · · za+bY{0···j+1} = 0

using O(j) lines. Thus using O(b2) lines we get

z0 · · · za+b = 0

and the total number of lines is O(ab+ b2).

Corollary 1. Given the translations of
∑

i aijxi ≥ bj and
∑

i aikxi ≥ bk, we
can derive in Trinomial-ΠΣ-PC the translation of

∑
i (aik + aij)xi ≥ bj + bk

in O((
∑

i a
+
ij − bj)(

∑
i a

+
ik − bk)) lines

Proof. Use the above lemma for x =
∑

i aijxi − bj , a =
∑

i a
+
ij − bj and

y =
∑

i aikxi − bk , b =
∑

i a
+
ik − bk.

Simulating multiplication by a constant We use the following lemma
to derive the translation of c

∑
i cijxi ≥ cdj in Trinomial-ΠΣ-PC from the

translation of
∑

i cijxi ≥ dj
Lemma 8. Let (z−a1) · · · (z−ak) = 0 be an equation in Trinomial-ΠΣ-PC.
We can derive the equation

(z′ − ca1) · · · (z′ − cak) = 0

where z′ = cz in Trinomial-ΠΣ-PC for any c ∈ Q in O(k) lines.

Proof. The proof is by induction on k. For k = 0, the derivation is trivial.
Let zi = z − ai and z′i = z′ − cai for i ∈ {1 · · · k}. Then, for any k ≥ 1, we
are given the equation

z1 · · · zk = 0

and we want to derive

z′1 · · · z′k = 0

Since, z′ = cz, we get z′1 = z′ − ca1 = cz1 and thus multiplying with
z2 · · · zk we get

z′1z2 · · · zk − cz1 · · · zk = 0

But since z1 · · · zk = 0 as above, we get

z′1z2 · · · zk = 0

Now by the induction hypothesis we have a derivation of z′2 · · · z′k = 0
from z2 · · · zk = 0. By multiplying each step of this derivation by z′1, we
have derived z′1 · · · z′k = 0 from z′1z2 · · · zk = 0.

33



Corollary 2. Given the translation of
∑

i cijxi ≥ dj, we can derive the
translation of c

∑
i cijxi ≥ cdj in Trinomial-ΠΣ-PC in O(

∑
i c

+
ij − dj) lines

Proof. Use the above lemma for z =
∑

i cijxi − dj and
(a1 · · · ak) = (0 · · ·

∑
i c

+
ij − dj)

Simulating division by a constant Given the translation of a line
c
∑

i aijxi ≥ bj in Cutting Planes for some c > 0, we will now derive the
translation of

∑
i aijxi ≥ dbj/ce by the lemma below. We need the following

corollary of Lemma 7

Corollary 3. Let z =
∑

i aijxi be an equation in Trinomial-ΠΣ-PC, where
xi are boolean variables. Then we can derive

z
(
z − 1

)
· · ·
(
z −

(∑
i

a+ij
))

= 0

in O((
∑

i a
+
i )2) lines.

Proof. Let a =
∑n

i=1 a
+
ij and let b =

∑n/2
i=1 a

+
ij . Assume that we have derived

the equations

z1

(
z1 − 1

)
· · ·
(
z1 −

( n/2∑
i=1

a+i
))

= 0

z2

(
z2 − 1

)
· · ·
(
z2 −

( n∑
i=n/2+1

a+i
))

= 0

for z1 =
∑n/2

i=1 aijxi and z2 =
∑n

i=n/2+1 aijxi. We can use Lemma 7 on
the above two equations to derive the required equation in O(b(a− b)) lines.
Continuing this recursively for the above two lines, the total number of lines

L(a) to derive z
(
z − 1

)
· · ·
(
z −

(∑
i a

+
i

))
= 0 is given by the recurrence

L(a) = L(b) + L(a− b) +O(b(a− b)), which gives L(a) = O(a2) by an easy
induction.

Lemma 9. Simulating Division by a constant
Let (cz−b)(cz− (b+1)) · · · (cz−d) = 0 be an equation in Trinomial-ΠΣ-PC
where z =

∑
i aijxi such that xi are boolean variables, b < d and c > 0. We

can derive

(z − db/ce)(z − (db/ce+ 1)) · · · (z − bd/cc) = 0

using O((
∑

i a
+
i )2 + (

∑
i a

+
i )(d− b)) lines.

34



Proof. Using Corollary 3 we can derive the following equation inO((
∑

i a
+
i )2)

lines.
z
(
z − 1

)
· · ·
(
z −

(∑
i

a+ij
))

= 0 (20)

Now, using Lemma 8 on the equation (cz − b)(cz − (b+ 1)) · · · (cz − d) = 0
with the multiplication constant equal to 1/c, we can derive

z(z − b/c) · · · (z − d/c) = 0 (21)

Note that the constants in parentheses in the above equation are rational,
and the smallest integer that appears is db/ce and the largest integer that
appears is bd/cc. Using the Intersection Lemma with equations (20) and
(21), we see that only the integer values are retained from (21) which gives
us

(z − db/ce)(z − (db/ce+ 1)) · · · (z − bd/cc)

using O((
∑

i a
+
i )(d− b)) lines.

Corollary 4. Given the translation of a line c
∑

i aijxi ≥ bj for some c > 0,
we can derive in Trinomial-ΠΣ-PC the translation of

∑
i aijxi ≥ dbj/ce in

O(c(
∑

i a
+
ij)

2)lines

Proof. Apply the above lemma for z =
∑

i aijxi.

This completes the simulation of a syntactic CP* proof in Trinomial-
ΠΣ-PC with the simulation having size polynomial in n and the coefficient
size of the original proof.

A.3 Simulating semantic CP∗ in Trinomial-ΠΣ-PC over Q

Lemma 10. For every infeasible point (i, j, k) ∈ A×B×C, an infeasibility
equation of the above form can be derived in O((

∑
i a

+
i )2(

∑
i b

+
i )2(

∑
i c

+
i )2)

lines

Proof. We proceed by induction on n. Let y` =
∑`

i=1 aixi and z`, w`, A`,
B`, C` be defined analogously. For the base case of n = 1, the equations
defining the grid are y1(y1 − a1) = 0, z1(z1 − b1) = 0 and w1(w1 − c1) = 0.
The only feasible points in the grid are (0, 0, 0) and (a1, b1, c1), and thus
for every other tuple we will derive an infeasibility equation. We show the
derivation for one such tuple (a1, 0, 0). Starting with

y1 = a1x1

z1 = b1x1

35



derive
z1 − b1 = b1(x1 − 1)

and multiply by y1 to derive

y1(z1 − b1) = a1b1x1(x1 − 1) = 0

Multiplying the above equation by (w1 − c1), we have our required in-
feasibility equation.

To continue the induction and derive all possible infeasibility equations,
we observe that a point (i, j, k) for (y`, z`, w`) is infeasible if and only if the
points (i, j, k) and (i− a`, j − b`, k − c`) are infeasible for (y`−1, z`−1, w`−1).
Therefore, assuming the latter, we derive the former as follows. Given∏

a∈A`−1
a6=i

(y`−1 − a)
∏

b∈B`−1
b 6=j

(z`−1 − b)
∏

c∈C`−1
c 6=k

(w`−1 − c) = 0

and ∏
a∈A`−1
a6=i−a`

(y`−1 − a)
∏

b∈B`−1
b6=j−b`

(z`−1 − b)
∏

c∈C`−1
c 6=k−c`

(w`−1 − c) = 0

we will derive ∏
a∈A`
a6=i

(y` − a)
∏
b∈B`
b6=j

(z` − b)
∏
c∈C`
c 6=k

(w` − c) = 0

Starting with the equations

y` = y`−1 + a`x`

z` = z`−1 + b`x`

w` = w`−1 + c`x`

multiply each by (x` − 1) to derive

y`(x` − 1) = y`−1(x` − 1)

z`(x` − 1) = z`−1(x` − 1)

w`(x` − 1) = w`−1(x` − 1)

From the above equations, it is easy to derive (see Lemma 7)

36



(x` − 1)
∏

a∈A`−1
a6=i

(y` − a)
∏

b∈B`−1
b6=j

(z` − b)
∏

c∈C`−1
c 6=k

(w` − c) (22)

= (x` − 1)
∏

a∈A`−1
a6=i

(y`−1 − a)
∏

b∈B`−1
b 6=j

(z`−1 − b)
∏

c∈C`−1
c 6=k

(w`−1 − c) (23)

= 0 (24)

Similarly, we derive from the three starting equations

y` − a` = y`−1 + a`(x` − 1)

z` − b` = z`−1 + b`(x` − 1)

w` − c` = w`−1 + c`(x` − 1)

Multiplying by x` we have

(y` − a`)x` = y`−1x`

(z` − b`)x` = z`−1x`

(w` − c`)x` = w`−1x`

Analogous to the above we can derive

x`
∏

a∈A`−1
a6=i−a`

(y` − (a+ a`))
∏

b∈B`−1
b6=j−b`

(z` − (b+ b`))
∏

c∈C`−1
c 6=k−c`

(w` − (c+ c`)) (25)

= x`
∏

a∈A`−1
a6=i−a`

(y`−1 − a)
∏

b∈B`−1
b 6=j−b`

(z`−1 − b)
∏

c∈C`−1
c 6=k−c`

(w`−1 − c) (26)

= 0 (27)

As A`−1 ∪ {a + a` : a ∈ A`−1} ⊆ A` (similarly for B` and C`), we have
from equations (22) and (25)

(x` − 1)
∏
a∈A`
a6=i

(y` − a)
∏
b∈B`
b6=j

(z` − b)
∏
c∈C`
c 6=k

(w` − c) = 0 (28)

x`
∏
a∈A`
a6=i

(y` − a)
∏
b∈B`
b 6=j

(z` − b)
∏
c∈C`
c6=k

(w` − c) = 0 (29)

Adding the above two equations, we derive the required one.

37



A.4 Simulating syntactic CP∗ in depth-5-PC over Fpm

The following lemmas will be largely similar to the ones in Appendix A.2.

Simulating Addition To simulate the addition rule, it suffices to show
the following

Lemma 11. Let A and B be two sets of constants in any field and let
C = {ab | a ∈ A, b ∈ B}. Let

∏
a∈A(x− a) = 0 and

∏
b∈B(x− b) = 0 be two

equations in depth-d-PC. Let z = xy. Then the equation∏
c∈C

(z − c) = 0

can be derived in O(|A||B|) lines.

Proof. Let A = {ai}, B = {bi}, xi = x − ai and yi = y − bi. Note that
x1 · · ·x|A| = 0 = y1 · · · y|B|. Let Xj =

∏
i 6=j xi. Starting with

z = xy

we can derive
z = (x− aj)y + ajy

Now multiplying the above equation by Xj , we have

zXj = x1 · · ·x|A|y + ajyXj = ajyXj

Subtracting ajbiXj on both sides we can derive for every i the equation

(z − ajbi)Xj = aj(y − bi)Xj

Now, similar to Lemma 7, we can derive from the |B| equations above
the equation

(z − ajb1) · · · (z − ajb|B|)Xj = ajy1 · · · y|B|Xj = 0

Thus for every j we have the equation

(z − ajb1) · · · (z − ajb|B|)Xj = 0

Multiplying each of the above |A| equations with the missing terms, we
can obtain for every j, ∏

c∈C
(z − c)Xj = 0

Using the Intersection Lemma inductively as in Lemma 7, we obtain the
required equation.

38



Corollary 5. Given the translations of
∑

i aijxi ≥ bj and
∑

i aikxi ≥ bk in
depth-d-PC over Fpm, we can derive the translation of

∑
i (aik + aij)xi ≥

bj + bk in O((
∑

i aij − bj)(
∑

i aik − bk)) lines

Proof. Use the above lemma for y1 =
∏
i((α

aij − 1)xi + 1), y2 =
∏
i((α

aik −
1)xi + 1), A = {αbj , αbj+1 · · ·α

∑
i a

+
ij}, B = {αbk , αbk+1 · · ·α

∑
i a

+
ik}

Simulating Multiplication

Lemma 12. Let A be a set of constants in any field and let c be a positive
integer. Let Ac = {ac | a ∈ A}. Let

∏
a∈A(x− a) = 0 be an equation in the

depth-d-PC. Then we can derive the equation∏
a∈Ac

(xc − a) = 0

in O(|A|) lines.

Proof. Let xi = x − ai and x′i = xci . Then the given equation becomes
x1 · · ·x|A| = 0, and we want to derive x′1 · · ·x′|A| = 0. The proof is by

induction on |A|. If |A| = 0 then we have nothing to prove. Assume that
the statement is true for |A| ≤ k−1 for some k ≥ 1. Consider an expression
of the form

∏
a∈A(x− a) = 0, where |A| = k. If |Ac| < k, then clearly there

exists a set A1 ⊂ A such that Ac1 = Ac, and the required equation follows
from the induction hypothesis. If |Ac| = k, from the given equation, it is
easy to derive

xx2 · · ·xk − a1x2 · · ·xk = 0

Multiplying the above equation with x, we have

x2x2 · · ·xk − a1xx2 · · ·xk = 0

Adding a1 times the former equation to the latter, we have

x2x2 · · ·xk − a21x2 · · ·xk = 0

Proceeding in a similar way, we can derive

xcx2 · · ·xk − ac1x2 · · ·xk = 0

or equivalently

x′1x2 · · ·xk = 0

Now by the induction hypothesis, we have a proof of x′2 · · ·x′k = 0 from
x2 · · ·xk = 0. Multiplying each line of the proof by x′1 we arrive at a proof
of the required equation.

39



Corollary 6. Given the translation of
∑

i aijxi ≥ bj in depth-d-PC over Fpm

and an integer c < pm − 1, we can derive the translation of
∑

i caijxi ≥ cbj
in O((

∑
i aij − bj)) lines

Proof. Use the above lemma for y =
∏
i((α

aij−1)xi+1), A = {αbj , αbj+1 · · ·α
∑
i a

+
ij}

Note that previous two lemmas hold over any field. For the following
lemma, we will use the fact that we are working over Fpm where s2 < pm−1.

Simulating Division The proof of the following corollary is analogous to
Corollary 3.

Corollary 7. Let x =
∏
i((α

bij−1)xi+1) be a variable where xi are boolean.
We can derive

(x− 1)(x− α) · · · (x− α
∑
i b

+
ij ) = 0

in O((
∑

i b
+
ij)

2) lines

Lemma 13. Let (xc−αca1) · · · (xc−αcak) = 0 be an equation in depth-d-PC
over Fpm, where ai are distinct and x is of the form

∏
i((α

bij − 1)xi + 1)
where xi are boolean. There is a proof of the equation

(x− αa1) · · · (x− αak) = 0

in O((
∑

i a
+
i )2) lines

Proof. Using Corollary 7, we can derive

(x− 1)(x− α) · · · (x− α
∑
i b

+
ij ) = 0 (30)

in O((
∑

i b
+
ij)

2) lines. Since
∑

i |bij | < s, any term (x−αb) that appears
in the above equation is such that b ∈ [0, s] or b ∈ [pm − 1− s, pm − 2].

The proof is by induction on k. Consider the case of k = 1, when we
have the equation xc − αca1 = 0 where a1 ≤ s without loss of generality. If
c - pm − 1, then it has a unique root αa1 . If c | pm − 1, then the roots are of
the form αai+j(p

m−1)/c for j ∈ {0 · · · c− 1}. But since 2s2 < pm − 1,

c ≤ s < (pm − 1)/2s ≤ (pm − 1)/2c (31)

Therefore any root αb such that b 6= a1 is such that b ≥ ai+(pm−1)/c >
s. Also, we have

b ≤ ai + (pm − 1)(c− 1)/c

= pm − 1− ((pm − 1)/c− ai)
< pm − 1− ((pm − 1)/c− s)
< pm − 1− s

40



where the last inequality is due to (31). Therefore the only root αb to the
equation xc − αca1 = 0 such that b ∈ [0, s] or b ∈ [pm − 1− s, pm − 2] is αa1 .
Starting with the equation xc − αca1 = 0 it is easy to derive

(x− αa1)Q(x) = 0 (32)

where Q(x) = xc−1 + αxc−2 + · · · + αc−1, just by expanding the above
equation into its monomials. Now by our discussion above, for any term
(x − αb) that appears in the equation (30), Q(αb) 6= 0. Therefore, using
the Substitution lemma with equations (30) and (32) we derive x−αa1 = 0
if this term appears in (30), else we derive 1 = 0. Therefore, this gives a
derivation of x− αa1 = 0 from the equation xc − αca1 = 0.

For the induction step, by multiplying every step in the above derivation
with
(xc − αca2) · · · (xc − αcak), we obtain a derivation of

(x− αa1)(xc − αca2) · · · (xc − αcak) = 0

from
(xc − αca1) · · · (xc − αcak) = 0

The lemma now follows by induction.

Corollary 8. Given the translation of c
∑

i aijxi ≥ bj in depth-d-PC over
Fpm for an integer c < pm − 1, we can derive the translation of

∑
i aijxi ≥

dbj/ce in O((c
∑

i a
+
ij)

2) lines

Proof. Let the equation

(yc − αbj ) · · · (yc − αc
∑
i a

+
ij ) = 0 (33)

be obtained from the translation of c
∑

i aijxi ≥ bj , where y =
∏
i((α

aij−
1)xi + 1). We first use Corollary 7 to derive

(y − 1)(y − α) · · · (y − α
∑
i a

+
ij ) = 0

in (
∑

i a
+
ij)

2 lines. Using Lemma 12 on the above equation, we get

(yc − 1)(yc − αc) · · · (yc − αc
∑
i a

+
ij ) = 0 (34)

in
∑

i a
+
ij lines. Using the Intersection Lemma on equations (33) and

(34), we get

(yc − αcdbj/ce) · · · (yc − αc
∑
i a

+
ij ) = 0

We now use the previous lemma to derive

41



(y − αdbj/ce) · · · (y − α
∑
i a

+
ij ) = 0

which is the required equation.

This completes the proof of Theorem 5.

Appendix B Simulating AC0[q]-Frege in depth-9-PC
over Fpm

B.1 Case of q = p

Simulating Initial sequents
Here we will show how to derive translations of the initial sequents from

xi(1− xi) = 0.

Lemma 14. Let ϕ be any formula of depth three which only contains the
⊕pi , ¬, ∧ and ∨ connectives. Then the equation tr(ϕ)(1− tr(ϕ)) = 0 can be
derived from xi(xi − 1) = 0 in depth-d-PC

Proof. Easily follows from repeated application of Lemmas 7, 11 and 12 at
each level.

Lemma 15. The translation of the initial sequent ϕ → ϕ can be derived
from xi(xi − 1) = 0 in depth-d-PC for any flat circuit ϕ

Proof. If ϕ is a flat circuit without threshold gates, this follows by Lemma
14 since the translation of the sequent ϕ→ ϕ is simply tr(ϕ)(1− tr(ϕ)) = 0.
If ϕ contains a top threshold gate, the translation of the given sequent
states that a variable y such that y =

∏k
i=1((α − 1)tr(¬ϕi) + 1) satisfies

(y − 1) · · · (y − αk) = 0, where ϕi are formulas without threshold gates.
Thus we can derive tr(¬ϕi)(1− tr(¬ϕi)) = 0 as in Lemma 14 and then use
Lemma 7 to derive (y − 1) · · · (y − αk) = 0.

The initial sequents 2,3 and 4 are dummies and do not require trans-
lating. The initial sequent 5 can be derived using Lemma 7 since in a flat
proof each of the inputs to the threshold connective do not contain threshold
connectives.

Simulating structural rules
The simulation of the weakening rule just involves multiplying the given

equation by the translation of the new formula ϕ that appears. The per-
mutation rule is trivial since the translation of a sequent is invariant under
application of the permutation rule. To simulate the contraction rule, we
need to show that for every formula ϕ, we can derive from (tr(ϕ))2 = 0 the

42



equation tr(ϕ) = 0. When ϕ is a formula which does not involve a threshold
connective, this is can be done by using Lemma 14. When ϕ is a flat circuit
with a threshold gate at the top, the following lemma suffices.

Lemma 16. Let (y − αa1)2 · · · (y − αak′ )2 = 0 be an equation in depth-
d-PC where ai are distinct integers less than pm − 1 and y =

∏k
i=1((α −

1)tr(¬ϕi) + 1) such that ϕi are flat formulas with no threshold gates. The
equation (y − αa1) · · · (y − αak′ ) = 0 can be derived in O(max(k′, k2)) lines.

Proof. The proof is by induction on k′. The case of k′ = 0 is trivial. Using
Lemma 7 we can derive the range of values of the variable y, i.e. an equation
of the form

(y − 1) · · · (y − αk) = 0 (35)

Let Q = (y − αa1)(y − αa2)2 · · · (y − αak′ )2 and Q1 = (y − αa2)2 · · · (y −
αak′ )2. Then the given equation can be written as

Q(y − αa1) = 0 (36)

Multiplying equation (35) with Q if it does not contain the term (y−αa1),
else multiplying it with Q1, we arrive at

Q
∏

1≤i≤k , i 6=a1

(y − αi)

Using Lemma 5 with equations (35) and (36), we get Q = 0. The
lemma now follows by induction since assuming there is a derivation of
(y−αa2) · · · (y−αak′ ) = 0 from (y−αa2)2 · · · (y−αak′ )2, this derivation can
be multiplied by (y−αa1) = 0 to get the required equation from Q = 0.

Simulating the cut rule
Let Q = tr(¬Γ)tr(∆) and Q′ = tr(¬Γ′)tr(∆′). Let y = tr(ϕ) if ϕ does

not contain threshold gates, else let y =
∏k
i=1((α − 1)tr(¬ϕi) + 1) where

ϕ = Tht(ϕ1 · · ·ϕk). Then the cut rule can be translated to the following
statement

Lemma 17. Given the equations Q(y − a1) · · · (y − ak) = 0 and Q′(y −
b1) · · · (y−bk′) = 0 where a1 · · · ak and b1 · · · bk′ are disjoint sets of constants
from the field, derive QQ′ = 0

Proof. Multiply the first equation by Q′ and the second equation by Q, and
use the contraction rule to make sure the resulting equations are square free.
Then required equation now follows easily from the Intersection Lemma.

43



Simulating ∧,∨, ⊕pi and ¬ rules
The rules for ¬, ∧-left and ∨-right are trivially simulated since the trans-

lation remains invariant. For the ∧-right and ∨-left, the simulation reduces
to the following lemma, where Q = tr(¬Γ)tr(∆).

Lemma 18. Given the equations Qy1 = 0 and Qy = 0 where y1 and y take
boolean values, derive the equation Qyy1 = 0

Proof. Follows from Lemma 7

For the ∧-right rule, the above lemma can be instantiated with y1 =
tr(ϕ1) and y = tr(∧(ϕ2 · · ·ϕk)). Since ∧(ϕ1 · · ·ϕk) is being derived, each of
the formulas ϕi must be free of threshold gates. Thus the fact that y and
y1 are boolean is easily derived from Lemma 14. A similar simulation works
for the ∨-left rule.

The simulation for⊕pi gates is analogous to the above. LetQ = tr(¬Γ)tr(∆),
and xi = tr(ϕi). The ⊕p1-left rule then translates to the following lemma.
The simulations for the other ⊕pi rules are similar.

Lemma 19. Given the equations

x1(1− zp−12 ) = 0

and
(1− x1)(1− (1− z2)p−1) = 0

derive (1 − (1 − z1)p−1) = 0, where z1 = x1 + · · ·xn , z2 = x2 + · · ·xn and
xi are boolean variables.

Proof. Starting with the equation

z1 = x1 + z2

Multiply by (1− x1) on both sides and subtract (1− x1) to get

(z1 − 1)(1− x1) = x1(1− x1) + (z2 − 1)(1− x1) = (z2 − 1)(1− x1)

Now, we can raise both sides of the equation to the exponent p− 1, and
use the fact that (1−x1)p−1 = (1−x1) (which is easily derived using Lemma
12) to get

(z1 − 1)p−1(1− x1) = (z2 − 1)p−1(1− x1)

But since from the second equation of our hypothesis, (z2 − 1)p−1(1 −
x1) = (1− x1) and thus

(1− (z1 − 1)p−1)(1− x1) (37)

44



Now consider the equation

z1 − 1 = x− 1 + z2

obtained by subtracting one from z1 = x1 + z2
Multiplying by x on both sides, we get

(z1 − 1)x1 = x(x− 1) + z2x = z2x

Again, raising to the exponent p − 1 and noting that xp−11 = x1 and

zp−12 x1 = x1 we have

(z1 − 1)p−1x1 = zp−12 x1 = x1

and thus

(1− (z1 − 1)p−1)x1 = 0

Adding equation (37) to the above we get the required equation

Simulating Tht rules
Let Q = tr(¬Γ)tr(∆), and xi = tr(¬ϕi). The Tht-left rule translates to

the following lemma. The case of Tht-right is similar.

Lemma 20. Given the equations

(z2 − 1) · · · (z2 − αt+1) = 0

and
x1(z2 − 1) · · · (z2 − αt) = 0

derive
(z1 − 1) · · · (z1 − αt+1) = 0

where z1 =
∏k
i=1((α−1)xi+1), z2 =

∏k
i=2((α−1)xi+1) and xi are boolean

variables.

Proof. It is easy to derive the equation

z1 = (αx1 + 1− x1)z2
Multiplying the above equation with (1− x1) we get

z1(1− x1) = (1− x1)2z2 = (1− x1)z2
since x1 is boolean. Subtracting αi(1− x1) on both sides we get

(z1 − αi)(1− x1) = (z2 − αi)(1− x1)

45



for every i in {0 · · · t+ 1}. From these t+ 1 equations it is easy to derive
(see Lemma 7)

(z1 − 1) · · · (z1 − αt+1)(1− x1) = (z2 − 1) · · · (z2 − αt+1)(1− x1) = 0 (38)

Multiplying the equation z1 = (αx1 + 1− x1)z2 with x1 we get

z1x1 = αx21z2 = αx1z2

Again, subtracting αi+1x1 we get

(z1 − αi+1)x1 = (z2 − αi)x1

for every i in {0 · · · t}. Once again, we combine them to derive

(z1 − α) · · · (z1 − αt+1)x1 = (z2 − 1) · · · (z2 − αt)x1 = 0

Multiplying the above equation with z1 − 1 and adding it to equation
(38), we get the required equation.

This completes the simulation of flat proofs in depth-d-PC.

B.2 Case of q 6= p

Lemma 21. Given the equations

x1(1− (y2 − 1)p
m−1) = 0

and
(1− x1)(1− (y2 − αr)p

m−1) = 0

derive
(1− (y1 − αr)p

m−1) = 0

where y1 =
∏k
i=1((α

r − 1)xi + 1), y2 =
∏k
i=2((α

r − 1)xi + 1) and xi are
boolean variables

Proof. It is easy to derive

y1 = (αrx1 + 1− x1)y2
Multiplying the above equation with x1 we have

y1x1 = αry2x
2
1 = αry2x1

since x1 is boolean. By subtracting αrx1 we can now derive

(y1 − αr)x1 = αrx1(y2 − 1)

Raising the above equation to the power pm − 1, we get

46



(y1 − αr)p
m−1x1 = x1(y2 − 1)p

m−1

since x1 is boolean. Subtracting the above equation from x1, we get

(1− (y1 − αr)p
m−1)x1 = (1− (y2 − 1)p

m−1)x1 = 0 (39)

By multiplying with 1 − x1 we can derive from y1 = (αrx1 + 1 − x1)y2
the equation

y1(x1 − 1) = y2(x1 − 1)

Carrying out a derivation similar to the above, we get

(1− (y1 − αr)p
m−1)(x1 − 1) = (1− (y2 − αr)p

m−1)(x1 − 1) = 0 (40)

Adding equations (39) and (40) we get the required equation.

Appendix C Simulating TC0-Frege in depth-d-PC
over Fpm

Lemma 22. Given the equation(
(y − αt) · · · (y − αk)

)pm−1
= 0

we can derive
(y − αt) · · · (y − αk) = 0

and vice versa.

Proof. In the forward direction, the required equation is easily derived by
repeated application of the contraction rule. The other direction is trivial.

Lemma 23. Given the equation

1−
(
(y − αt) · · · (y − αk)

)pm−1
= 0

we can derive
(y − 1) · · · (y − αt−1) = 0

and vice versa.

Proof. In the forward direction, since y is a threshold gate with k arguments,
we can derive

(y − 1) · · · (y − αk) = 0

47



and thus
((y − 1) · · · (y − αk))pm−1 = 0

But since we have
(
(y − αt) · · · (y − αk)

)pm−1
= 1 from the given equation,

we get (
(y − 1) · · · (y − αt−1)

)pm−1
= 0

Using the contraction rule repeatedly gives the required equation.

In the reverse direction, Let y1 =
(
(y − αt) · · · (y − αk)

)pm−1
. Then as

mentioned earlier, we can derive using Lemma 14

y1(1− y1) = 0

Using the contraction rule on the above equation, we get

(y − αt) · · · (y − αk)(1− y1) = 0 (41)

Multiplying the given equation (y− 1) · · · (y−αt−1) = 0 by (1− y1) and
using the Intersection Lemma with equation (41), we get 1− y1 = 0, which
is the required equation.

Appendix D Dealing with large coefficients

D.1 Properties of addition

In this section we derive some basic properties of addition.
The following lemma shows that our system can prove the associativity

of ⊕.

Lemma 24. For bits y, z, w, let H(y, z) := y ∧ z and let H(y, z, w) :=
(y ∧ z) ∨ (z ∧ w) ∨ (w ∧ y) which is one if and only if y + z + w ≥ 2.
H(.) denotes the carry bit generated by adding together up to three bits.
The following are easily proved since they involve only a constant number of
variables.

` H(y, z, w)−H(y, z ⊕ w)⊕H(z, w) (42)

z1 + w1 − (z2 + w2) ` H(y, z1, w1)−H(y, z2, w2) (43)

` H(H(y, z ⊕ w), H(z, w)) (44)

If ci are carry bits in y ⊕ z, then

` ci+1 −H(yi, zi, ci) (45)

For bits a, b, c, d, e,

` H(a, b, c) +H(a⊕ b⊕ c, d, e)−H(a, b, d)−H(a⊕ b⊕ d, c, e) (46)

48



Lemma 25. For any three bit vectors y, z and w

` (y ⊕ z)⊕w − y ⊕ (z⊕w)

Proof. Let yleft := (y ⊕ z) ⊕ w and yright := y ⊕ (z ⊕ w). Let dy,zi be
the carry bit to the ith position in y ⊕ z. Let dwi be the carry bit to the
ith position in (y ⊕ z) ⊕ w. Similarly define dz,wi and dyi . We will derive
inductively for every i

` dy,zi + dwi − (dz,wi + dyi ) (47)

` yleft(i)− yright(i)

This is easily derived for i = 1. Suppose for some i ≥ 1 the above lines
have been derived.

By (45) of Lemma 24, we derive

` dy,zi+1 −H(y(i), z(i), dy,zi )

` dwi+1 −H(y(i)⊕ z(i)⊕ dy,zi ,w(i), dwi )

since y ⊕ z(i) = y(i)⊕ z(i)⊕ dy,zi . Adding these lines we get

` dy,zi+1 + dwi+1 −
(
H(y(i), z(i), dy,zi ) +H(y(i)⊕ z(i)⊕ dy,zi ,w(i), dwi )

)
Using (46) of Lemma 24, we make the derivation

` H(y(i), z(i), dy,zi ) +H(y(i)⊕ z(i)⊕ dy,zi ,w(i), dwi )

−
(
H(y(i), z(i),w(i)) +H(y(i)⊕ z(i)⊕w(i), dy,zi , dwi )

)
Adding this to the line above, we get

` dy,zi+1 + dwi+1

−
(
H(y(i), z(i),w(i)) +H(y(i)⊕ z(i)⊕w(i), dy,zi , dwi )

)
In a similar fashion, we make the derivation

` dz,wi+1 + dyi+1

−
(
H(y(i), z(i),w(i)) +H(y(i)⊕ z(i)⊕w(i), dz,wi , dyi )

)
Now, using our induction hypothesis (47) and (43) of Lemma 24, we

derive

` H(y(i)⊕ z(i)⊕w(i), dy,zi , dwi )−H(y(i)⊕ z(i)⊕w(i), dz,wi , dyi )

49



The derivation
` dy,zi+1 + dwi+1 − (dz,wi+1 + dyi+1)

is now easily obtained from the three previous lines.
To derive yleft(i+1) = yright(i+1), we first make the following derivation

dy,zi+1 + dwi+1 − (dz,wi+1 + dyi+1) ` d
y,z
i+1 ⊕ d

w
i+1 − (dz,wi+1 ⊕ d

y
i+1)

since this involves only a constant number of boolean variables. Now, by
definition, yleft(i+ 1) = y(i+ 1)⊕ z(i+ 1)⊕w(i+ 1)⊕ dy,zi+1 ⊕ dwi+1 and by
the above two lines this is equal to y(i+1)⊕z(i+1)⊕w(i+1)⊕dz,wi+1⊕d

y
i+1,

which is equal to yright(i+ 1).

The following lemmas show that the addition operations S and ⊕ can
be used interchangeably.

Lemma 26. For i ≤ n,

` So(y1 · · ·yi−1)⊕ yoi − So(y1 · · ·yi)

` Se(y1 · · ·yi−1)⊕ yei − Se(y1 · · ·yi)

Proof. We are going to prove the statement block wise. For odd j, let wj =∑i−1
k=1 [Lj(y

o
k)]. Note that the pair of blocks (j, j + 1) in So(y1 · · ·yi) only

depend on the corresponding pair of blocks in So(y1 · · ·yi−1) and Lj(y
o
i ).

Therefore, restricted to the blocks (j, j+1), the statement of the lemma just
depends on wj and Lj(y

o
i ). Since wj only takes on ξ20 values and Lj(y

o
i ) only

takes on ξ0 values, there is a polynomial sized proof by completeness.

Lemma 27. ` S(y1 · · ·yi)− S(y1 · · ·yi−1)⊕ yi

Proof. Since S(y1 · · ·yi−1) = Se(y1 · · ·yi−1)⊕So(y1 · · ·yi−1) and yi = yei ⊕
yoi by definition, we have

` S(y1 · · ·yi−1)⊕ yi − Se(y1 · · ·yi−1)⊕ So(y1 · · ·yi−1)⊕ yei ⊕ yoi

From Lemma 25, we have

` So(y1 · · ·yi−1)⊕ yei ⊕ yoi − (yei ⊕ So(y1 · · ·yi−1)⊕ yoi )

Combining the above two derivations, we have

` S(y1 · · ·yi−1)⊕ yi − Se(y1 · · ·yi−1)⊕ yei ⊕ So(y1 · · ·yi−1)⊕ yoi

Now, using the previous lemma, we are done.

The following corollary easily follows from repeated application of the
above lemma.

50



Corollary 9. For j < i,

` S(y1 · · ·yi)− S(y1 · · ·yj)⊕ S(yj+1 · · ·yi)

.

Lemma 28. For every t

` S(y1X1 · · ·ytXt)⊕ S(z1X1 · · · ztXt)

− S((y1 ⊕ z1)X1 · · · (yt ⊕ zt)Xt)

Proof. Assume by induction that we have made the above derivation until
t = i− 1. Then we have

`1 S(y1X1 · · ·yiXi)⊕ S(z1X1 · · · ziXi)

− S(y1X1 · · ·yi−1Xi−1)⊕ yiXi ⊕ S(z1X1 · · · zi−1Xi−1)⊕ ziXi

`2 S(y1X1 · · ·yiXi)⊕ S(z1X1 · · · ziXi)

− S(y1X1 · · ·yi−1Xi−1)⊕ S(z1X1 · · · zi−1Xi−1)⊕ yiXi ⊕ ziXi

`3 S(y1X1 · · ·yiXi)⊕ S(z1X1 · · · ziXi)

− S((y1 ⊕ z1)X1 · · · (yi−1 ⊕ zi−1)Xi−1)⊕ (yi ⊕ zi)Xi

`4 S(y1X1 · · ·yiXi)⊕ S(z1X1 · · · ziXi)

− S((y1 ⊕ z1)X1 · · · (yt ⊕ zt)Xt)

where `1 and `4 follow by Lemma 27, `2 follows by Lemma 25 and `3
follows by the induction hypothesis.

Finally, we show how to derive the representation of the sum of two
polynomials.

Lemma 29. Let P and Q be two polynomials. Then R(P +Q) = R(P )⊕
R(Q).

Proof. Let X1 · · ·Xt be monomials that occur in both P and Q, such that
P = a1X1 + · · · + atXt + P1 and Q = b1X1 + · · · + btXt + Q1. Then from
the definition of R and Corollary 9 we have

` R(P )− S(a1X1 · · ·atXt)⊕R(P1)

` R(Q)− S(b1X1 · · ·btXt)⊕R(Q1)

Using the above, we now have

51



` R(P )⊕R(Q)

− S(a1X1 · · ·atXt)⊕R(P1)⊕ S(b1X1 · · ·btXt)⊕R(Q1)

`1 R(P )⊕R(Q)

− S(a1X1 · · ·atXt)⊕ S(b1X1 · · ·btXt)⊕R(P1)⊕R(Q1)

`2 R(P )⊕R(Q)

− S((a1 ⊕ b1)X1 · · · (at ⊕ bt)Xt)⊕R(P1)⊕R(Q1)

`3 R(P )⊕R(Q)

−R(P +Q)

where `1 is by Lemma 25 and `2 is by the previous lemma. `3 is by
Corollary 9 and the definition of R.

Lemma 30. For two vectors y and z, −(y ⊕ z) = (−y)⊕ (−z).

Proof. Let w = y⊕z and let y1, z1 be vectors obtained by flipping the bits
of y, z respectively. Let w1 = y1 ⊕ z1. It is easy to derive for every i,

` y(i)⊕ z(i)− y1(i)⊕ z1(i) (48)

For j < ξ, let bj =
(
∧i<j (y(i) ⊕ z(i))

)
∧ ¬(y(j) ⊕ z(j)) and bξ =

∧i≤ξ(y(i)⊕z(i)) be a boolean variable indicating the least index i0 such that
y(i0) ⊕ z(i0) = 0. Let ci be the carry bits in y ⊕ z. We translate boolean
formulas into polynomials using the operator tr() defined in Section 5.2.1.
We first derive for every j and i ≤ j,

` tr(bj → (ci = 0))

This is done by noting that c1 = 0 and by (45) of Lemma 24, ci =
H(y(i − 1), z(i − 1), ci−1) for i > 1. Assuming by induction that we have
derived for some j > i ≥ 1

` tr(bj → (ci = 0))

it is easy to derive

` tr(bj → y(i)⊕ z(i))

Now using the above two derivations with the identity (42) of Lemma
24 and the observation ` y(i)⊕ z(i)→ ¬H(y(i), z(i)), we have

` tr(ci+1 −H(ci,y(i)⊕ z(i))⊕H(y(i), z(i)))

52



` tr(bj → (ci+1 = 0))

Since w(i) = y(i)⊕z(i)⊕ci, for every j and i ≤ j, we have the derivation

` tr(bj → (w(i) = w1(i)))

We now want to inductively derive for every j and i > j

` tr(bj → (w(i) = w1(i)⊕ 1)) (49)

Let c′i indicate the carry bits in y1 ⊕ z1. Due to the derivation (48), we
only need to derive for every i > j

` tr(bj → ci ⊕ c′i)

If y(i− 1)⊕ z(i− 1) = 0 (this includes the base case of i = j + 1), it is
easy to derive the following identity independent of the values of ci−1 and
c′i−1.

` tr((y(i− 1)⊕ z(i− 1) = 0)→ ci ⊕ c′i)

Assuming now that we have derived ` ci⊕ c′i for some i > j, for the case
where y(i− 1)⊕ z(i− 1) = 1, it is easy to derive

` tr((ci ⊕ c′i) ∧ (y(i)⊕ z(i) = 0)→ ci+1 ⊕ c′i+1)

Now consider the vector w1 ⊕ 1. By the definition of bj we have the
derivation for all i < j

` tr(bj → (w(i) = 1))

and
` tr(bj → (w(j) = 0))

Thus it is easy to derive for i ≤ j

` tr(bj → (w ⊕ 1(i) = w(i)⊕ 1))

and for i > j

` tr(bj → (w ⊕ 1(i) = w(i)))

Combining the above two derivations with (49), we have for all i and j

` tr(bj → (w ⊕ 1(i) = w(i)⊕ 1))

Since bj are mutually exclusive, we can eliminate them using techniques
similar to Lemma 6 and obtain

53



` w ⊕ 1(i)−w(i)⊕ 1

Hence w1⊕1 the vector obtained by flipping all the bits of w. Therefore,
using the definition of −w and Lemma 25

` (−w)− y1 ⊕ z1 ⊕ 1⊕ 1

` (−w)− (−y)⊕ (−z)

Lemma 31. For any vector y of length ` < ξ − 1,

y(ξ)− 1 ` (−y)(ξ)

Proof. Since y is of length `, we have for ` < j ≤ ξ

y(ξ)− 1 ` y(j)− 1

Let y1 be the vector obtained by flipping the bits of y. Then we have
the derivation for ` < j ≤ ξ

y(ξ)− 1 ` y1(j)

Now, using the identity (45) of Lemma 24, we have for `+ 1 < j ≤ ξ

y(ξ)− 1 ` (y1 ⊕ 1)(j)

Since −y = y1 ⊕ 1, the lemma follows.

Lemma 32. Let P be a polynomial represented by a vector y. Then `
R(−P )− (−y).

Proof. Let P = a1X1 + · · · + atXt. We derive the above by induction on
t. Let Pi = a1X1 + · · · + atXi for i < t. Then since by Lemma 27, `
R(P )− (R(Pt−1)⊕ atXt), we have by Lemma 30

` (−R(P ))− (−R(Pt−1))⊕ (−atXt)

The lemma now follows from the induction hypothesis and Lemma 27.

54



D.2 Non-negative vectors are closed under addition

In this section we show that non-negative vectors of bounded length are
closed under the addition ⊕. This will be used to show that the vector
representations of all the lines of the simulation are bounded in length.
Note that some of these claims need not be provable in our proof system.

We first show that given two vectors y and z of length `, y ⊕ z is of
length at most `+ 1.

Lemma 33. Given two vectors y and z of length at most `, w = y ⊕ z is
of length at most `+ 1

Proof. Let di be the carry to the ith position in y ⊕ z. We branch on the
value of d`+1. If d`+1 = 0, then all the bits at positions greater than ` in w
are equal to s1⊕ s2 and thus the length of w is at most `. If d`+1 = 1, then
if s1 ∨ s2 = 0, w(`+ 1) = 1 and w(j) = 0 for j > `+ 1. Thus the length of
w is at most `+ 1. If s1 ∨ s2 = 1, then it is easy to see that dj = 1 and thus
w(j) = s1 ⊕ s2 ⊕ 1 for j ≥ `+ 1 and thus the length of w is at most `.

Lemma 34. Let y1 · · ·yk be vectors of length ` such that dlog ke+` < ξ−1.
Then S(y1 · · ·yk) is of length at most dlog ke+ `.

Proof. Assume that the statement is true for up to k/2 vectors. Then by
Corollary 9,

` S(y1 · · ·yk)− S(y1 · · ·yk/2)⊕ S(yk/2+1 · · ·yk)

Now by the induction hypothesis, S(y1 · · ·yk/2) and
S(yk/2+1 · · ·yk) are of length at most dlog ke − 1 + `. Using the previous
lemma, we are done.

Using the observation that for a constant a1 with bit complexity `, a1X1

is a vector of length `, we have the following corollary.

Corollary 10. Let P = a1X1 + · · ·+ atXt be a polynomial with coefficients
of bit length at most `. Then R(P ) is a vector of length at most `+ dlog te

Lemma 35. For any two vectors a and b of length at most ` < ξ − 1

a(ξ),b(ξ) ` (a⊕ b)(ξ)

Proof. Since a and b are of length at most ` we have for ξ ≥ j > `

a(ξ) ` a(j)

b(ξ) ` b(j)

Thus there is no carry beyond position ` + 1 < ξ in a ⊕ b due to our
assumptions and thus using identity (45) of Lemma 24, it is easy to derive

55



a(ξ),b(ξ) ` (a⊕ b)(ξ)

Since by Lemma 34, the vectors R(P1) and R(P2) are of length at most
` = dlog ξ0e+ dlog ξ1e < ξ − 1 and by Lemma 29, ` R(P1 + P2)−R(P1)⊕
R(P2), we have the following corollary.

Corollary 11. For any two polynomials P1 and P2 with at most ξ0 mono-
mials and coefficients of magnitude at most ξ1,

R(P1)(ξ),R(P2)(ξ) ` R(P1 + P2)(ξ)

The following corollary now follows easily from Lemma 27 and the pre-
vious lemma.

Corollary 12. Let y1 · · ·yk be non-negative vectors of length ` such that
dlog ke+ ` < ξ − 1. Then

y1(ξ), · · · ,yk(ξ) ` S(y1 · · ·yk)(ξ)

Lemma 36. Let y and z be two non-negative vectors of length ` such that
3` < ξ − 1. Then

y(ξ), z(ξ) ` SS(y, z)(ξ)

Proof. Since z is non-negative of length `, for `+ 1 ≤ i ≤ ξ

z(ξ) ` z(i)

Therefore,

SS(y, z) = S(z(0)y · · · z(ξ − 1)2ξ−1y) = S(z(0)y · · · z(`)2`y)

Since each of the vectors z(0)y, · · · z(`)2`y is of length at most 2` and
there are ` of them, by the previous corollary, we are done.

D.3 Properties of multiplication

Here we show that multiplication is distributive and can be treated as re-
peated addition.

Lemma 37. Distributivity of R
Let P, P1, P2, Q be polynomials such that P = P1 + P2. Then

R(PQ) = R(P1Q)⊕R(P2Q)

Proof. Easily follows from Corollary 9

56



The following lemmas show that multiplication is repeated addition.

Lemma 38. Let y, z be two bits and let w be a vector. Then,

` yw ⊕ zw − (y ⊕ z)w ⊕H(y, z)2w

Proof. Let w1 = (y ⊕ z)w and w2 = H(y, z)2w. Let ei be the carry bit to
the ith position in w1 ⊕w2 and let ci be the carry bit to the ith position in
yw ⊕ zw. We will derive by induction that for every i,

` (yw ⊕ zw)(i)− (w1 ⊕w2)(i)

` ei+1 −H(ci, yw(i)⊕ zw(i))

This is easy to derive for the case of i = 1 since w2(1) = 0 and thus
the first bit on both sides is equal to (y ⊕ z)w(1). Also by (45) of Lemma
24, e2 = 0 is derived since w2(1) = 0 and therefore there is no carry to the
second position. Since c1 = 0, H(c1, yw(1)⊕ zw(1)) = e2 = 0. Now assume
that we have derived it up to i− 1 for some i > 1. Then we have

` ei −H(ci−1, yw(i− 1)⊕ zw(i− 1))

and from the definition of w2 it is easy to derive

` w2(i)−H(yw(i− 1), zw(i− 1))

Therefore by using Identities (42) and (45)

` e1 ⊕w2(i)−H(ci−1, yw(i− 1), zw(i− 1)) (50)

` e1 ⊕w2(i)− ci
And by Identity (44)

` H(e1,w2(i)) (51)

From the above derivations, we now have

` ei ⊕w1(i)⊕w2(i)− yw(i)⊕ zw(i)⊕ ci
which derives that the ith bits on both sides are equal.
Also, we have by (45) of Lemma 24

` ei+1 −H(ei,w1(i),w2(i))

By identity (42) we have

` ei+1 −H(ei,w2(i))⊕H(w1(i), ei ⊕w2(i))

and by (50) and (51)

57



` ei+1 −H(yw(i)⊕ zw(i), ci)

which continues the induction.

Lemma 39. Let y = [yk−1 · · · y0] and z = [zk−1 · · · z0] be two bit vectors of
dimension k, let w = y⊕ z and let d1 be a constant and X1 be a monomial.
Then,

` SS(d1X1,w)− SS(d1X1,y)⊕ SS(d1X1, z)

Proof. For the base case where y and z are of dimension one, the above
derivation follows easily from the previous lemma. Assume that the state-
ment is derived when y and z are vectors of dimension k − 1 . Let yk−1,
zk−1, wk−1 denote the corresponding vectors truncated to dimension k − 1
by dropping the element(s) with the highest index. Let ei be the carry to
the ith position in y ⊕ z, i.e. w(i) = yi−1 ⊕ zi−1 ⊕ ei.

By the definition of SS(.) and Lemma 27, we derive

` SS(d1X1,y)⊕ SS(d1X1, z)

− SS(d1X1,yk−1)⊕ yk−12k−1d1X1 ⊕ SS(d1X1, zk−1)⊕ zk−12k−1d1X1

By using associativity (Lemma 25), we have

` SS(d1X1,y)⊕ SS(d1X1, z)

− SS(d1X1,yk−1)⊕ SS(d1X1, zk−1)⊕ yk−12k−1d1X1 ⊕ zk−12k−1d1X1

Now using the previous lemma and the induction hypothesis we derive

` SS(d1X1,y)⊕ SS(d1X1, z)

− SS(d1X1,yk−1 ⊕ zk−1)⊕ (yk−1 ⊕ zk−1)2k−1d1X1 ⊕H(yk−1, zk−1)2kd1X1

By the definition of wk−1, it is easy to derive

` yk−1 ⊕ zk−1 −wk−1 ⊕ ek2k−11

58



Now by Lemma 27 and the definition of SS(.) we have

` SS(d1X1,y)⊕ SS(d1X1, z)

−
(
SS(d1X1,wk−1)

⊕ ek2k−1d1X1

⊕ (yk−1 ⊕ zk−1)2k−1d1X1

⊕H(yk−1, zk−1)2kd1X1

)

By the previous lemma, we can derive

` ek2k−1d1X1 ⊕ (yk−1 ⊕ zk−1)2k−1d1X1

− (yk−1 ⊕ zk−1 ⊕ ek)2k−1d1X1 ⊕H(yk−1 ⊕ zk−1, ek)2kd1X1

Combining this with the above derivation, we have

` SS(d1X1,y)⊕ SS(d1X1, z)

−
(
SS(d1X1,wk−1)

⊕ (yk−1 ⊕ zk−1 ⊕ ek)2k−1d1X1

⊕H(yk−1 ⊕ zk−1, ek)2kd1X1

⊕H(yk−1, zk−1)2
kd1X1

)

Now from identities (42) and (44) of Lemma 24

` SS(d1X1,y)⊕ SS(d1X1, z)

−
(
SS(d1X1,wk−1)

⊕ (yk−1 ⊕ zk−1 ⊕ ek)2k−1d1X1

⊕H(yk−1, zk−1, ek)2
kd1X1

)

Noting that (yk−1 ⊕ zk−1 ⊕ ek) and H(yk−1, zk−1, ek) are equal to w(k)
and w(k + 1) respectively, and using the definition of SS(.) and Lemma 27
we have

` SS(d1X1,y)⊕ SS(d1X1, z)− SS(d1X1,w)

59



Lemma 40. Let Q = a′1X1 + · · · + a′kXk be represented by a bit vector
z = [zξ−1 · · · z0] and let a0X0 be a monomial such that the bit length of a0a

′
i

is at most ξ − 1. Then

` R(a0X0Q)− SS(a0X0, z)

Proof. Let Qj = a′1X1 + · · · + a′jXj for j < k and let zj = [zjξ−1 · · · z
j
0] be

the equal to R(Qj). Assume that we have proved the above statement for
Qj , j < k. Then by Lemma 27, ` z − zk−1 ⊕ a′kXk. Therefore by Lemma
39 we have

` SS(a0X0, z)− SS(a0X0, zk−1)⊕ SS(a0X0,a
′
kXk)

Since the bit length of a0a
′
i is at most ξ−1, SS(a0X0,a

′
kXk) = R(a0a

′
kX0Xk)

by definition and by induction,

` SS(a0X0, zk−1)−R(a0X0Qk−1)

Therefore we have

` SS(a0X0, z)−R(a0X0Qk−1)⊕R(a0a
′
kX0Xk)

which is equal to R(a0X0Qk) by the Distributivity of R.

Lemma 41. Let P and Q be two polynomials, represented by bit vectors y0

and z = [zξ−1 · · · z0], with at most ξ0 monomials and coefficients bounded by
ξ1 in absolute value. Then,

` R(PQ)− SS(y0, z)

Proof. Let P = a1X1 + · · · + akXk, Q = a′1X
′
1 + · · · + a′kX

′
k and let Pj be

the sum of the first j < k terms of P . Let yi denote the bit vector 2iR(P ).
Then SS(y, z) = S(z0y0 · · · zξ−1yξ−1).

It is easy to derive for vectors a and b and any i

` 2i(a⊕ b)− 2ia⊕ 2ib

Now by a simple induction using Lemma 27 we derive

` 2iS(a1X1 · · ·akXk)− S(2ia1X1 · · · 2iakXk)

` yi − S(2ia1X1 · · · 2iakXk)

Let yji = S(2ia1X1 · · · 2iajXj) for j < k. By Lemma 27, yi = yk−1i ⊕
2iakXk. Therefore we have

60



` S(z0y0 · · · zξ−1yξ−1)
− S(z0y

k−1
0 ⊕ z0akXk · · · zξ−1yk−1ξ−1 ⊕ zξ−12

ξ−1akXk)

By repeated applications of Lemma 27 we can derive

` S(z0y0 · · · zξ−1yξ−1)
− S(z0y

k−1
0 · · · zξ−1yk−1ξ−1)⊕ S(z0akXk · · · zξ−12ξ−1akXk)

By the definition of SS(.) we have
SS(akXk, z) = S(z0akXk · · · zξ−12ξ−1akXk) and by Lemma 40 we have

` SS(akXk, z)−R(akXkQ)

and by induction on k we have

` SS(yk−10 , z)−R(Pk−1Q)

Thus we derive

` S(z0y0 · · · zξ−1yξ−1)−R(Pk−1Q)⊕R(akXkQ)

The lemma now follows from Distributivity of R.

61

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


