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Abstract

A major open problem in proof complexity is to prove superpolyno-
mial lower bounds for AC®[p]-Frege proofs. This system is the analog of
AC°[p], the class of bounded depth circuits with prime modular count-
ing gates. Despite strong lower bounds for this class dating back thirty
years ([27),129]), there are no significant lower bounds for AC®[p]-Frege.
Significant and extensive degree lower bounds have been obtained for
a variety of subsystems of AC°[p]-Frege, including Nullstellensatz (|3]),
Polynomial Calculus ([9]), and SOS ([I4]). However to date there has
been no progress on AC°[p|-Frege lower bounds.

In this paper we study constant-depth extensions of the Polyno-
mial Calculus [I3]. We show that these extensions are much more
powerful than was previously known. Our main result is that small
depth (< 43) Polynomial Calculus (over a sufficiently large field) can
polynomially simulate all of the well-studied semialgebraic proof sys-
tems: Cutting Planes, Sherali-Adams, Sum-of-Squares (SOS), and Pos-
itivestellensatz Calculus (Dynamic SOS). Additionally, they can also
quasi-polynomially simulate AC°[q]-Frege for any prime ¢ independent
of the characteristic of the underlying field. They can also simulate
TCO-Frege if the depth is allowed to grow proportionally. Thus, prov-
ing strong lower bounds for AC®[p]-Frege would seem to require proving
lower bounds for systems as strong as TC’-Frege.

1 Introduction

Proof complexity has evolved in parallel to circuit complexity, typically with
circuit lower bound techniques being eventually used to show lower bounds
for analogous proof systems. One stubborn exception is the analogous proof
system for AC°[p], the class of bounded depth circuits with prime modu-
lar counting gates. Despite strong lower bounds for this class dating back
thirty years ([27,29]), there are no significant lower bounds for AC®[p]-Frege.
Since the only lower bounds for circuits with modular operations are via
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representations of functions by polynomials ([27, 29]), it seems natural to
use algebraic proof systems (e.g, Nullstellensatz ([3]), Polynomial Calculus
(PC) ([9]), Positivestellensatz aka Sum-of-Squares (SOS) ([14]), ideal proofs
([15])) to extend these bounds to the proof complexity case. However, de-
spite progress on these proof systems, a super-polynomial lower bound for
AC[p]-Frege remains open. This paper offers one explanation for this fail-
ure: small modifications of these algebraic proof systems to handle constant
depth overshoot and allow reasoning far beyond that possible by AC®[p] cir-
cuits.

Since lower bounds for Polynomial Calculus itself do not imply lower
bounds for AC®[p]-Frege systems, various researchers have suggested ways to
strengthen PC to create algebraic systems which do p-simulate AC®[p]-Frege
(122,13, [§]). Unfortunately, it is not clear how to extend lower bound tech-
niques for PC to these systems. As an illustration of how small extensions
can increase the power of these proof systems, consider Polynomial Calculus
where we allow changes of bases. Many strong lower bounds are known for
the size of PC proofs for tautologies like the Pigeonhole Principle [28], [18§]
and Tseitin tautologies [5]. All of the above lower bounds use a degree-size
connection, which roughly states that a linear lower bound on the degree
of any refutation translates to an exponential lower bound on its size. But
this connection is highly basis dependent. The connection only holds true
over the {0,1} basis, and even allowing a change to the {—1,1} basis im-
mediately gives a polynomial sized proof for the mod 2 Tseitin tautologies.
Grigoriev and Hirsch [I3] noted the above and in addition showed that al-
lowing for introduction of new variables which are linear transformations of
the original variables gives a short proof of the Pigeonhole principle as well.
They also generalized the notion of a linear transformation by considering
transformations obtained by applying constant depth arithmetic circuits and
arithmetic formulas to the original variables. The resulting systems turn out
to be quite powerful, and it is shown in [13] that the latter simulates Frege
systems, and the former simulates depth d AC°[p]-Frege proofs by using arith-
metic circuits of depth d' = ©(d). Raz and Tzameret [26] defined a proof
system along similar lines where the transformations are restricted such that
each line of the proof is a multilinear formula in the original variables. It
was shown that even under these restrictions, linear transformations allow
small proofs of the functional Pigeonhole principle and Tseitin tautologies.
They also showed in [25] that Polynomial Calculus with added linear trans-
formations simulates the system R(CP*) of Krajicek [19], which is stronger
than Cutting Planes with bounded coefficients.

1.1 Our Work

Here, we show that these extensions to PC are even more powerful than
previously known. Over a sufficiently large field of characteristic p, the



same extensions that allow PC to simulate depth d AC°[p] proofs also allows
it to simulate much stronger proof systems. So to prove a lower bound on
AC%[p] proofs via such systems would seem to require proving lower bounds
for systems as strong as TC°-Frege.

More precisely, consider the following additions to PC. In an additive
extension, we introduce a new variable y and a new defining equation y =
> a;x; + b where a;,b € F. In a multiplicative extension, we introduce a
new variable y and a new defining equation y = b[[(z;)¢. Depth-d-PC
allows the usual (syntactic) reasoning of Polynomial Calculus using these
extension variables (i.e. multiplying a line by the variable y is allowed), with
each line having up to d — 2 alternating layers of additive and multiplicative
extensions. (The new variables in a depth d-PC proof are equivalent to
depth d — 2 algebraic circuits, and polynomials in terms of these variables
are depth d algebraic circuits.)

All our simulation results below use the notion of effective simulation
from [24] (see Definition [f}). For the rest of the paper, ”simulate” refers to
an effective simulation.

We remove the restriction of polynomially bounded coefficients from the
result of [25] and show how to perform arithmetic with large coefficients, and
as a result effectively simulate Cutting Planes with unbounded coefficients
and the Sum-of-Squares (SOS) proof system. (Our theorem works for the
stronger system Positivestellensatz Calculus [14]).

Theorem 1. Depth-43-PC can effectively p-simulate Cutting Planes and
Positivestellensatz Calculus over Fpm for any prime p, where m is logarith-
mic in the maximum number of monomials in any proof line.

Clote and Kranakis [I0] mention a proof, due to Krajicek, of Cutting
Planes being simulated by the bounded-depth threshold logic system PTK
of Buss and Clote [7]. Since we simulate a modified version of PTK to
show Theorem [2| below, it already follows that our system simulates Cutting
Planes. However, the above proof by Krajicek is non-explicit and does not
provide a value of the depth at which the simulation happens. Determining
this value is posed as an open problem in [I0]. Theorem 1| provides an upper
bound of d < 43 through an explicit simulation. Theorem [l is proved in
section [5.41

We improve the results of Grigoriev and Hirsch in the constant depth
case in two ways. We show that AC®[p]-Frege can be simulated with a fixed
constant depth, but with a quasipolynomial blowup. Significantly, this sim-
ulation also simulates modular gates of different characteristic than the field
we are working over.

Theorem 2. Let p be an arbitrary prime and n be a positive integer. For
some m = O(poly(log(n))), depth-9-PC over Fym can effectively quasipoly-
nomially simulate AC°[q]-Frege over n variables for any prime q.



Buss et al. [6] showed that an AC®[p]-Frege proof of depth d can be
collapsed to a depth 3 AC®[p]-Frege proof with a quasipolynomial blowup.
In conjunction with [I3], this implies the above theorem for the case of ¢ = p.
Thus, apart from being more general, our result also provides an alternative
and perhaps simpler proof of the case of ¢ = p. We prove Theorem [2] in
sections £.2.1] and 5.2.2]

We also show that allowing for arbitrarily large but constant depth trans-
formations enables the simulation of TC?-Frege.

Theorem 3. A TC°-Frege proof of depth d can be effectively p-simulated by
depth-d'-PC over Fym, where d' = O(d) and m is logarithmic in the size of
the largest threshold gate, for any prime p.

The proof of Theorem [3|is shown in section [5.3

We also improve the results of Raz and Tzameret [25] to show that Poly-
nomial Calculus with linear transformations can simulate semantic Cutting
Planes with small coefficients.

Theorem 4. Depth-3-PC can effectively p-simulate semantic CP* over Q.
Theorem [ is proved in sections and

1.2 Related Work

Pitassi [22, 23] introduced powerful generalizations of the Polynomial Calcu-
lus that operate directly on formulas. Grochow and Pitassi [16] introduced
the more general IPS proof system, and proved that superpolynomial lower
bounds for IPS would imply the longstanding problem of separating VP from
VNP. However, these algebraic systems are not Cook-Reckhow proof systems
since proofs are not known to be checkable in polynomial time (but rather
in randomized polynomial-time.)

In 2003, Grigoriev and Hirsch [I3] introduced a Cook-Reckhow style al-
gebraic proof system for formulas, with derivation rules corresponding to
the ring axioms. Motivated by understanding how many basic ring identi-
ties are needed to verify polynomial identities, Hrubes and Tzameret [17]
introduced a very closely related equational proof system for proving poly-
nomial identities over a ring. Even earlier, [8] study essentially the same
proof system but where the focus is over finite fields. Finally, Raz and
Tzameret [25] introduced the Res(lin) proof system, which generalizes Res-
olution using extension variables given by linear forms, in a similar way to
our generalization of PC using extension variables. They also showed that
Res(lin) simulates the system R(CP*) (defined in [19]) and Polynomial Cal-
culus over depth 3 formulas can simulate Res(lin). Alekseev et. al. [I] also
considered generalized versions of Nullstellensatz and Sum-of-Squares over
algebraic circuits of arbitrary depth. Conditioned on the assumption that a
certain subset sum principle has a small IPS proof, they make use of bitwise



arithmetic to show that these systems are equivalent to IPS. Although we
also use bitwise arithmetic to prove Theorem [1, our work vastly differs from
theirs in the following aspects. Firstly, the proof systems considered by them
are not Cook-Reckhow systems, i.e. it is not known whether the proofs in
these systems can be verified in deterministic polynomial time. These sys-
tems are hence much more powerful than the ones we consider here, and
in particular they are not concerned with performing bitwise arithmetic in
constant depth, which is the main focus of our simulations. Secondly, while
we use the notion of effectively p-simulation [24] for all our results, they
chiefly focus on the more conventional notion of p-simulation. Effective sim-
ulation allows for a formula in the simulated system to be “pre-processed”
in a truth-preserving way before it is represented in the simulating system,
while p-simulation is only defined for two proof systems which can express
the same set of formulae.

1.3 Organization of the paper

The rest of the paper is organized as follows. In section [2.1] we discuss some
basic definitions and notations. In section we define the notions from
proof complexity and proof systems used in this paper. In section we
formalize the system of bounded depth Polynomial Calculus. In section [3]
we formally state all of our results. In section we sketch the simulation
of syntactic Cutting Planes with bounded coefficients from [25], since it is
essential for a significant part of the subsequent discussion. In section[4.2] we
extend the simulation to the semantic case, proving Theorem |4 In section
[.1] we prove an analog of the results in section over a large enough finite
field extension, for use in subsequent sections. In sections
we use techniques from this analog to prove Theorems [2| and [3] Finally in
section [5.4] we prove Theorem |1l Technical details of simulations from each
of the above sections are contained in the Appendix.

2 Preliminaries and Generalizations of Polynomial
Calculus

2.1 Preliminaries
2.1.1 Notation

Integers are represented by letters a, b, c. For an integer a, let a™ = a if
a > 0 and 0 otherwise. Define |a| to be the length in binary of a. Sets of
integers are represented by letters A, B, C. Indices to sets are represented
by letters ¢, j, k, £.

Variables are represented by x, y, z, w where x usually represents the
original variables and the others represent the extension variables. Mono-



mials are represented by upper case letters X, Y, Z. Polynomials are rep-
resented by P, @, R. Boolean formulae are represented by .

We treat all the above as one dimensional objects. Multidimensional
objects, or vectors, are represented in boldface. Constant vectors are repre-
sented by a, b, c. Vectors whose components may be variables or polyno-
mials are represented by y, z, w.

Calligraphic letters R, S are used for special expressions which are con-
textual.

Definition 1. Straight Line Program (SLP)

A SLP S over variables {x1,...,z,} and a field F is a sequence of com-

putations (yi, . .., Yx) such that each y; is equal to one of the following, where

x; for some i€ {1---n}

Zzecj agyp for some constants ay € F

ngcj Ye

We view a SLP as a directed acyclic graph where internal nodes are
labelled with either Product or Plus gates and the leaf nodes are labelled with
a variable x;. The size of a SLP is therefore the number of nodes in the
corresponding directed acyclic graph, and the depth is the mazimum number
of modes on a root to leaf path in the directed acyclic graph.

2.2 Propositional proof systems

Definition 2. Cook-Reckhow proof system
For a language L C {0,1}*, a Cook-Reckhow proof system is a polynomial
time deterministic verifier V. such that

- If x € L, there exists a proof ™ such that V(x,m) accepts.
- If & ¢ L, for all proofs m, V(x, ) rejects.

Definition 3. p-simulation

For two proof systems Vi and Vo defined over the same language L, Vo is
said to p-simulate Vi if there exists a polynomial time computable function
f such that for every x € L, if my is a proof of x for Vi, f(m1) is a proof of
x for Va.

Definition 4. Effectively p-simulation [2])]

For two proof systems Vi and Vo over languages Ly and Lo, Vs is said to
effectively p-simulate V1 if there exist polynomial time computable functions
fyg such that x1 € Ly if and only if g(x1) € Lo and if m is a proof of x1
for Vi, f(m) is a proof of g(x1) for Va.



In this paper, we are only concerned with effective simulations. The
propositional proof systems we will work with are defined below.

Definition 5. Cutting Planes

Let A = {Ay,...,An} be a set of unsatisfiable integer linear inequalities in
boolean variables x1,...,x, of the form A; = ZZ ai;jr; > by where a;; and
b; are integers. A Cutting Planes refutation of A is a sequence of lines
By, ..., Bs such that By is the inequality 0 > 1 and for every £ € {1,...,s}
By € A or is obtained through one of the following derivation rules for
g k<

Addition From B; =), cijz; > dj and By, = ), cipxy > dy, derive
Z (cij + cik)xi > Clj + dp,

i
Multiplication by a constant From B; =), ¢;jx; > dj, derive

C Z C’ijl‘i Z Cdj

i

for an integer ¢ > 0.

Division by a nonzero constant From Bj = ), c;jx; > d; and an in-
teger ¢ > 0 such that ¢ divides c;j for all i, derive

> Hay > [dy/c]

7

The semantic version of the system also has the following rule

Semantic inference IfB; =), cijjz; > dj, By =), cipx; > dj and By =
> ciexi > dj are inequalities such that every assignment to x1,...,x, that
satisfies B; and By, also satisfies By, then from lines B; and By, derive By.

The size of a line is the size of its bit representation. The size of a proof
is the sum of sizes of each line. The length of a Cutting Planes proof is
equal to the number of lines in the proof. We define the coefficient size of a
Cutting Planes proof to be equal to the maximum of the absolute values of
all the constants that appear in the proof. CP* is a subsystem of Cutting
Planes where the coefficient size is bounded by a polynomial in the number
of variables. Without loss of generality, the coefficient size can be bounded
by 20°WE) where £ is the length of the proof due to [I1].

Definition 6. Polynomial Calculus (PC)
LetT'={P1,..., Py} be a set of polynomials in variables {x1,...,x,} over
a field F such that the system of equations P, = 0,..., P, = 0 has no



solution. A Polynomial Calculus refutation of I' is a sequence of polynomials
Ry, ..., Rs where Ry =1 and for every £ in {1,...,s}, Ry € I oris obtained
through one of the following derivation rules for j, k < ¢

Ry = aRj + BRy, fora, p € F
Ry = xRy, for some i€ {1,...,n}

The size of the refutation is Y ,_, |Re|, where |Ry| is the number of mono-
mials in the polynomial Ry. The degree of the refutation is maxy deg(Ry).

The following system is known to simulate PC, SOS and Sherali-Adams.

Definition 7. Positivestellensatz Calculus/Dynamic SOS [1)]

LetI' ={Py,...,Pp} and A = {Q1,...,Qr} be two sets of polynomials over
R such that the system of equations P, =0,--- , P, =0,Q1 >0,--- ,Q, >0
is unsatisfiable. A Dynamic SOS refutation of ', A is a sequence of inequal-
ities Ry > 0,...,Rs > 0 where Ry = —1 and for every £ in {1,...,s},
Ry € T'UA or is obtained through one of the following derivation rules for
g k<t

1. From R; =0 and Ry, = 0 derive aR; + SR, =0 for a, f € R
From Ry, =0 derive x;R;, =0 for some i € {1,...,n}

From R; > 0 and Ry > 0 derive aRj+ R, >0 fora >0, >0 ¢c R

e

From R; > 0 and Ry, > 0 derive R; R, > 0
5. Derive R? > 0 for some polynomial R € Rlxy, ..., x,]

The size of a line is the size of its bit representation. The size of a Dynamic
SOS refutation is the sum of sizes of each line of the refutation.

2.3 Generalizations of Polynomial Calculus

We now define a variant of Polynomial Calculus, XII3-PC where the proof
system is additionally allowed to introduce new variables y; corresponding
to affine forms in the original variables x;. Thus, each line of the proof is
represented by a XIIX algebraic circuit.

Definition 8. XIIX-PC
LetT' = {Py,..., Py} be aset of polynomials in variables {x1,...,x,} over a
field F such that the system of equations PL = 0,..., Py, = 0 has no solution.
A YIIX-PC refutation of T' is a Polynomial Calculus refutation of a set
I =A{P,...,Py,Q1,...,Qk} of polynomials over variables {x1,...,x,}
and {y1,...,yx} where Q1,...,Qy are polynomials of the form Q; = y; —
(ajo + >, aijz;) for some constants a;; € F.

The size of a Z1I%-PC refutation is equal to the size of the Polynomial
Calculus refutation of T”.



We would now like to generalize the above proof system to an arbitrary
depth d.

Definition 9. Depth-d-PC
Let d > 2 be an integer. Let I' = {Py,..., Py} be a set of polynomials
in variables {x1,...,x,} over a field F such that the system of equations
P, =0,...,P, = 0 has no solution. Let S = (y1,...,yx) be a SLP over
{z1,...,2,} and T of depth d—2 defined by y; = Qj(x1,...,Zn, Y1, Yj—1)-
A depth-d-PC refutation of I is a Polynomial Calculus refutation of the set
I ={P,...,Pn,y1 — Q1,...,yx — Qx} of polynomials over {x1,...,x,}
and {y1,..., Yk}

The size of a depth-d-PC refutation is the size of the Polynomial Calculus
refutation of T

Viewing a refutation in depth-d-PC as a depth d algebraic circuit in
the original variables {z1,...,z,} (with each line of the refutation being a
gate in the circuit), it is easy to see that the above definition of size for a
refutation coincides with the usual notion of size for an algebraic circuit up
to polynomial factors.

Although we define the size of a proof in depth-d-PC in terms of the
number of monomials, we will be using the number of lines as a measure of
the size, since in our simulations no line contains more than a polynomial
number of monomials.

To conclude this section, we state the following result from [25], which
is the starting point of our work.

Theorem 0. [25] XIIX-PC over Q can simulate syntactic Cutting Planes
with size polynomial in n and the coefficient size.

3 Formal statement of results

We can now restate our results in terms of the proof systems defined in the
previous section.

4 Simulations over

In this section we outline how we translate inequalities into polynomials over
Q, and simulate proofs involving these inequalities into Polynomial Calculus
derivations over their translations.

Consider a line A; = > . a;jx; > b; in a CP* proof, where |a;|, |b]
are bounded logarithmically in n. We define its translation over Q as the
following

Definition 10. Translation from CP* to XI1%-PC
For a line Aj = Y, a;jx; > bj its translation in XIIX-PC is defined to be
the following pair of lines



+
2 a;;=b;

II w-v»=o0

b=0
yj =Y aizi — b
A

In addition, for all i, the equations z;i(xz; — 1) = 0 are included in the
translation.

That is, we introduce a variable y; = > . a;;x; — b; and indicate the
range of values it can take which satisfy the constraint ), a;jz; > b;. For
convenience, we will denote by z € A the equation [],.4(z —a) = 0.

The key idea is to note that given two equations z € A and z € B, we
can derive in XII3-PC the equation z € AN B. We call this the Intersection
lemma. A formal proof is provided in Appendix

4.1 Simulating syntactic CP*

We now sketch how all the derivations rules of syntactic CP* can be simu-
lated with the help of the Intersection lemma, concluding Theorem [0} For
instance, given equations y; € A and y2 € B, we derive the range of values a
variable z = y1 +y9 takes as follows. For every a; € A, we derive an equation
which states z € a1 + B OR y1 € A\ {a1} where a1 + B ={a1 +b| b € B}.
This equation is formally represented as

Mo I -a=0

c€a1+B acA\{a1}

We can multiply each of these equations by appropriate variables, so that
the part about z is the same in all of them. We would now like to eliminate
the part about y; from these equations. Noting that M; A\ {a;} = 0, we use
the Intersection lemma inductively to eliminate y;.

For simulating division by an integer ¢ given a variable z = ). ¢;z; and
an equation z € C such that ¢ divides every element of C, we first derive
z € I, where I is all possible integer values of the expression ), ¢;x;, by
using our simulation of addition. We then introduce a variable 2z’ = z/c and
from the former equation, we get a set of integer values for 2’ and from the
latter, we get a set of rational values. Using the Intersection lemma now
gives the right range for the variable 2’ = z/c.

For a formal proof, see Appendix [A.2]

4.2 Simulating semantic CP*

In this section we extend the above simulation to include semantic CP*,
hence completing the proof of Theorem Let Ly = ) ,aix; > dy, Ly =

10



>; biz; > do be two lines in a Cutting Planes proof and let Ly = ), c;x; >
d3 be a semantic consequence of Ly and L. Let y = >, a;xi, 2 = Y, bjx;
and w = Y, ciwy. Let A =1{0,...,3.a'}, B=1{0,...,),b} and C =
{0,...,>", c}. Using the simulation of addition in syntactic CP*(see Lemma
3]), we can derive the equations

[[w—a)=0

acA
[[c-v»=0
beB
H(w —¢c)=0
ceC

This restricts the values that can be taken by the tuple (y, z,w) to the
three dimensional grid Ax BxC'. Let a point (4, j, k) in the grid be infeasible
if the tuple (y, z, w) never evaluates to it for any assignment to {x;}. Our
first step is to derive infeasibility equations of the form

[My-a -0 ]]w-o=0

acA beB ceC
aFi b#j c#£k
which for (7,4, k) € A x B x C tells us that the point (i, j, k) in the grid
is infeasible for the tuple (y, z, w).

Lemmal[10} For every infeasible point (i, j, k) € Ax BxC, SIIS-PC can de-
rive an infeasibility equation of the above form in O((3"; a; )2(>; b:)* (X, ¢i7)?)
lines

The proof of this lemma is left to Appendix [A3]

The next step is to use the ranges of y and z specified in lines L1 and Lo
to narrow down the possible values that can be taken by w. Our goal will
be to get an equation of the form

H(w—c)zO

ceC’

such that each ¢ in C’ is feasible for w under the constraints L and Lo
on y and z respectively.

Let P; be the translation of L; in XII¥-PC, for i = 1,2, 3. Let Z,; denote
the set of all infeasibility equations for points of the form (a,b, k) for some
k € C. For an equation P of the form [[,c 4, (v —a) [[yep, (z—a) [[cc, (w—
a) = 0, denote by R,(P) the set Ay, that is the range of values specified
by the equation for the variable y. R, and R, are defined analogously.
We describe how to obtain the set C’ by the algorithm w-FEASIBLE which
operates on the range sets.

11



procedure w-FEASIBLE(P;,P»)
C' 0
for (a,b) € Ry(P1) x R.(P) do
S« C
for I €7, do
S+ SNRy(I)
end for
'+~ C'us
end for
return C’
end procedure

Consider a pair (a,b) € Ry(P1) x R.(F»). For any equation I € 7, ,
Ruw(I) gives a list of possible values the variable w can take when (y,z) =
(a,b). By Lemmal[l0} (y,z,w) = (a,b, c) is infeasible if and only if there is an

equation I € Z,; such that ¢ € R, (I). Therefore, [\ Ry(I) is precisely
]EIayb

the feasible set of values for w, given (y, z) = (a,b). C’ is the union of such
sets over all possible pairs (a,b) € Ry(P;) X R.(FP2) and hence is the set of
all feasible values of w.

This algorithm over range sets can be easily translated to a proof of
[locor(w —¢c) = 0 from Py and P, in XIIX-PC as follows. To simulate the
inner for loop, we use the Intersection lemma inductively over all equations

in Z, to get equations J,p such that Ry (Jap) = () Rw(l). Note that
IGIa,b

Ry(Jap) = A\ {a} and R.(J,p) = B\ {b}. Thus using the Intersection
lemma again inductively over the set {J,;} (analogous to simulation of
addition in syntactic CP* ; see Lemma [7) would give an equation free of

y and z, where w ranges over |J Ry (Jqp). Any semantic consequence P3
(a,b)
must be such that R,,(P3) 2 C” and hence is easily derived.

5 Simulations over [~

5.1 Simulating syntactic CP*

We now carry out the simulation in Section in depth-d-PC over a large
enough field extension Fjm= of a finite field F,,. This will be of use in the
next section, where we simulate AC?[p]-Frege in depth-d-PC over Fym. For
the following discussion, we set d = 5.

To represent large integers over F,m, we choose a primitive element «
and for each of the original variables x; perform the linear transformation
yi = 1+ (a — 1)z;. Since z; is boolean, y; is essentially equivalent to the
mapping x; — a”. The expression ), a;x; is thus represented as Q2 4T

12



The goal here is to show that all the steps of the simulation in section
can still be performed after this transformation.

Theorem 5. Depth-d-PC over Fym can simulate syntactic Cutting Planes
with the number of lines polynomial in n and the coefficient size, where m
1s logarithmic in n and the coefficient size.

Let s1 be the coefficient size of the Cutting Planes proof. Define s = ns;.
Choose m to be the smallest integer such that 2s?> < p™ — 1. Let o be an
arbitrary primitive element of Fym.

Definition 11. Translation of Cutting Planes to depth-d-PC' over Fpm
The translation of Y, a;x; > b; is defined as follows, where y; and y are
new variables.

y=[]v
i

(y = a¥)(y — a¥F1) o (y — aXi ) =0

An integer ¢ such that 0 < ¢ < s is represented as a¢, whereas for
—s < ¢ < 0 we represent it as o 1< = P ~D-lel Since 25 < 252 < p™ — 1,
these representations are unique.

The technical details of the simulating the rules of CP are largely similar
to that over Q and are hence left to Appendix

5.2 Simulating AC°[q]-Frege
5.2.1 Caseofg¢g=p

For the purpose of this section, we set d = 9. We will use the simulation
of AC®[p]-Frege in [20] to show that the same can be carried out in depth-
d-PC over F,m. We fix m to be a large enough integer such that m =
O(poly(log(n))), so that the field we are working over is quasipolynomial
sized. Below we describe the proof system of [20] and their simulation of
ACO[p]-Frege.

The Proof System of Maciel and Pitassi Maciel and Pitassi [20] define
a proof system with mod p, negation, AND, OR and threshold connectives,
based on the system PTK by Buss and Clote [7] which we describe below.

Connectives Let x;---z, be boolean variables. For 0 < j < p, let
EB? (1---xy,) denote the connective which is 1 if and only if ), a; = j
mod p. For any integer ¢, let Thy(x - - - x,) denote the connective which is
1 if and only if Y, x; > t. Let A(z1---xy), V(21 x,) denote AND and
OR connectives of arity n and — denote the NOT gate.
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The proof system of Maciel and Pitassi [20]

initial sequents

© — @ for any formula ¢

= A(); V() =

@L() = for 1 <j<p;— @)
Tht() —

— Tho(p1---g) for any k>0

SA = B9 08 =

structural rules
A =1/ I —-TI/ A
Lo, A—=T" T =TI, ¢ A

Lo, 0,A=T" T =T,0,0 A
Lo, A—TY =T, 0 A

Fa@l;SOQ,A_}F, F_>F,7S017902)A,
Lo, 01, A =T T =TV, 02,1, A

weakening:

contract:

permute:

cut rule
Fp— A T/ = A
LT — AA

logical rules

=g A o, = A
—\QD,F—>A F—>—\g0,A

o1, N2 ¢x), T = A

A-left:
ANer---or), T = A
Aot =9, A T = Alp2--- @), A
T — Alp1, 02 0r), A
v_left. S017F_>A \/(SDQSOIC)?F—)A
V(pr, @2 r), I = A
V-right: L — 1, V(g2 op), A
L' — V(1 pr), A
@;-left:

o1, @) (o2 o), L = A & (pa---pr), I = 01,A
&f (o1, 02 k), I = A

@;-right:
o1, T = @) 1(p2---0r), A T — @1, @ (p2---0), A

I = &P (o1, 02 k), A

Th-left:
Thi(pz2 k) T = A o1, Thigy(pz - k), I = A
Tht(SOINPQ o Sok)vr — A

T hy-right:
I'= o1, Thi(pa---9x), A T —=Thi_1(p2---vr), A

' — Thi(p1, 02 0r), A




Formulas A formula is recursively defined as follows. Input variables
x1 - - T, are formulas of size 1 and depth 1. A formula ¢ is an expression of
the form g(¢1 - - - ), where g is any of the connectives described above and
1+ -+ i are formulas. The depth(y) is defined as Zle depth(p;) + 1. The
size(ip) is defined as Z§:1 size(p;)+k—+1 if g is not a threshold connective,
and it is defined as Y% size(p;) +t + k + 1 if g is a threshold connective
of the form Th(py - - pi).

Cedents and Sequents A cedent I is defined as a sequence of formu-
las @1 - - - . We will use capital Greek letters to denote cedents. A sequent
is an expression of the form I' — A, where I and A are cedents. The inter-
pretation of a sequent is that the AND of all the formulas in I" implies the
OR of all the formulas in A. The size and depth of a cedent are respectively
the sum of sizes and the maximum of depths of all the formulas in it. The
size of a sequent is the sum of sizes of both cedents, and the depth is the
maximum of the depths of both cedents.

Definition of a Proof A proof in this system is defined as a sequence
of sequents S ---S,, such that each S; is either an initial sequent, or is
derived from sequents S; for j < i through one of the rules listed below.
The size and depth of a proof are respectively the sum of sizes and the
maximum of depths of all sequents in it.

The initial sequents and the derivation rules are listed below.

Translating lines We will now define translations of lines in the above
proof system. For a formula ¢, we denote its translation in depth-d-PC by
tr(¢). Let 1 - - - x, be the variables of the original proof. Below we list the
translations for a formula built with each connective. The interpretation is
that for any formula ¢, tr(¢) = 0 if and only if ¢ is true.

tr(z) =1—m;

tr(V(e1---er)) = I L(tr(e:))

tr(Alpr--- k) =1 =TI tr(—p:)
tr(ef(pr--pr)) = (Xh_y oy =i~ for 0 <i < p

tr(The(pr - wr)) = (y —a') -+ (y — o)
where y = [[,((a — 1)tr(—¢;) + 1)

tr(—¢) = 1 —tr(p) if ¢ does not contain a Th; connective

tr(=The(pr- o)) = (y—1) - (y —a'™)
where y = [[,((a — 1)tr(—g;) + 1), for t > 1
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The translation ¢r(S) of a sequent S of the form
1Pk — @) - @), is given by the equation

k 74
[Ttr(=e) [T tr(#)) =0
i=1 j=1

Note that the translations of all the connectives except the threshold
connective take only boolean values over Fym.

Simulating proofs We now describe the connection between AC[p]-Frege
and the proof system of Maciel and Pitassi. By the following theorem of
Allender [2], any AC°[p] circuit can converted to a depth three circuit of a
special form.

Theorem 6. [2]

Any AC®[p] circuit can be converted to a quasipolynomial sized depth three cir-
cuit with an unweighted threshold gate at the top, MOD,, gates of quasipoly-
nomial fan-in in the middle and A gates of polylogarithmic fan-in at the
bottom

Depth three circuits with an unweighted threshold, A or V gate at the
top, MOD,, gates in the middle and A gates of polylogarithmic fan-in in the
size of the circuit at the bottom are referred to as flat circuits by [20]. For an
ACO[p] circuit ¢, its flattening fl(y) is defined as the flat circuit given by the
above theorem. Proofs in AC°[p]-Frege can be thought of as a list of sequents
such that every formula that appears in each of them is an AC®[p] circuit.
For a sequent ¢ -+ - ¢, — ¢} - - ), that appears in a AC°[p]-Frege proof, we
can define a flattening of the sequent fI(p1)--- fl(pr) = fU(¥}) - fl(¢))
in the proof system of Maciel and Pitassi. A flat proof of such a sequent
is such that every formula that appears in the proof is a flat circuit. The
simulation theorem of [20] states the following

Theorem 7. [20]

Let S be a sequent which has a depth d proof in AC°[p|-Frege. Then its
flattening fI(S) has a flat proof of size 9(logn)
Maciel and Pitassi.

in the proof system of

We will show that flat proofs can be simulated in depth-d-PC by showing
the following

Theorem 8. Let S be a sequent which has a flat proof of size s in the proof
system of Maciel and Pitassi. Then there is a proof of the equation tr(S) in
depth-d-PC from the equations z;(xz; — 1) = 0 with poly(s) lines.
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To prove the above theorem, it is sufficient to show that for each rule
that derives a sequent S3 from sequents S; and Ss, there is a derivation of
the equation ¢r(S3) from the equations tr(Sy), tr(Sz) and z;(z; — 1) =0 in
depth-d-PC. The details of how each such rule can be simulated are left to
Appendix

5.2.2 Caseof ¢g#p

We now extend the simulation of the previous section to show that AC®[q]-
Frege can be simulated in depth-d-PC over Fj,m, for distinct primes p and ¢,
hence proving Theorem 2. Using the theorem of Maciel and Pitassi (Theo-
remabove) for AC®[q]-Frege, we obtain a flat proof with @7 connectives. To
simulate it, we can reuse the lemmas of the previous section, except for the
@g connectives. To define their translation, choose m such that ¢ | p™ — 1
and let r = (p™ — 1)/q. The translation is now defined as

1
tr(@F (1 - = ((y—a™m)™"
where y = [[;((e" — 1)t7"(ﬁ802) +1) and tr(= & (p1--9x)) = 1 -
tr(®F (1 ¢r))
Simulating the rules is similar to the previous section. The proof for one
such rule is shown in Appendix

5.3 Simulating TC°-Frege

In this section, we show that a TC®-Frege proof of depth dy can be trans-
formed into a depth-d-PC proof over Fjm, where d = O(dp), proving Theo-
rem 3. In the previous section we translated Thy(y1 - - @) as

tr(Thy(pr---¢r) = (y—a') -+ (y — aP)

tr(=Thy(p1--or)) = (y—1) -+ (y— ')

where y = [[;((ow — 1)tr(—¢;) + 1). Clearly this translation requires tr(y;)
to be boolean and can itself take non-boolean values. Since there is only
one top threshold gate in a flat circuit, the formulae ¢; were threshold free
and thus tr(p;) only took on boolean values. But in a TC®-Frege proof, the
formulae @; can themselves contain threshold gates and thus tr(yp;) may be
non-boolean. To fix this problem, we redefine the translation of a threshold
gate to be the following, essentially forcing it to be boolean.

tr(Th(pr - x) = ((y— ) -+ (y — ™))" "

where y = [[,((a—1)tr(—p;)+1) and tr(=Th(e1 - - - x)) = 1—tr(The(pr - -

It is easy to derive the fact that the above translation only takes boolean
values (see Lemma . Now, note that any rule other than the Th; is
unaffected by this new translation since it only assumes that its arguments

17
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are boolean and hence we can use the lemmas of the previous section directly.
However, simulation of the T'h; rule relies on the old translation. To bridge
the gap, we only need to show that the old and new translations of Th; and
—Th; are interchangeable within the proof system. The following lemmas
are proved in Appendix [C]

Lemma 1. Given the equation

m—1

(y—a')---(y—a®)” =0

we can derive
(y—a')(y—a®) =0

and vice versa.

Lemma 2. Given the equation

L= ((y=a)--(y—af)" =0

we can derive

and vice versa.

5.3.1 Existence of Feasible Interpolation

Bonet, Pitassi and Raz [4] have shown that TC%-Frege does not have feasi-
ble interpolation unless Blum integers can be factored by polynomial sized
circuits. By the above simulation, we can state the following

Theorem 9. Depth-d-PC does not have feasible interpolation unless Blum
integers can be factored by polynomial sized circuits

5.4 Dealing with large coefficients — Simulating CP and Dy-
namic SOS

In this section, we work over a field IF,» for an arbitrary prime p, where p™
is greater than square of the number of monomials we wish to represent in
any CP/SOS proof line (See Definition [17]).

It is well-known that arbitrary threshold gates can be simulated by
simple majority gates of higher depth. In particular, a tight simulation
was proven by Goldmann, Hastad and Razborov [12] who show that depth
d+1 TCP circuits are equivalent to depth d threshold circuits with arbitrary
weights. However, the analogous result has not been proven in the propo-
sitional proof setting. In order to simulate arbitrary weighted thresholds in
our low depth extension of PC, we will we use a different simulation of high
weight thresholds by low weight ones.
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The basic idea will be to use simple, shallow formulas that compute the
iterated addition of n binary numbers, each with { = poly(n) bits [2I]. Let
aj,ag,...,a, be the set of n binary numbers, each of length { = poly(n),
where a; = a;¢, -+ ,a;1. We will break up the £ coordinates into £/log¢
blocks, each of size log &; let L;(a;) denote the j* block of a;. The high level
idea is to compute the sum by first computing the sum within each block,
and then to combine using carry-save-addition.

In more detail, let af denote the “odd” blocks of a; — so ay consists of
¢/ log € blocks, where for j odd, the j** block is L;(a;), and for j even, the
4% block is all zeroes (and similarly, af denotes the even blocks of aj). Let
S° be equal to Zie[n] aP, and similarly let S be equal to Zie[n] af. We
will give a SLP for computing the bits of S° and S¢ and then our desired
sum, S° + 5S¢, is obtained using the usual carry-save addition which can be
computed by a depth-2 SLP. The main point is that we have padded a
and af with zeroes in every other block; this enables us to compute S° (and
similarly S¢) blockwise (on the odd blocks for S° and on the even blocks
for S€), because no carries will spill over to the next nonzero block. Then
since the blocks are very small (log¢ bits), the sum within each block can
be carried out by brute-force.

Our construction below generalizes this to the case where the aj’s are
not large coefficients, but instead they are the product of a monomial and a
large coefficient. After formally describing this low-depth representation, it
remains to show how to efficiently reason about these low-depth represen-
tations in order to carry out the rule-by-rule simulation of general Cutting
Planes and SOS. We outline the main steps below, with technical details left
to Appendix [D]

5.4.1 Bit vector representations of CP/SOS proof lines
Definition 12. Derivations in depth-d-PC

To indicate that a new extension variable y; is being introduced and set
to a value a;, we write

Yi = a;
To indicate that a line P = 0 in depth-d-PC can be derived from P, = 0,
P,=0,- - ,P, =0, we write
PlaP27"' 7Pk‘}_P

To indicate that a line P = 0 can be derived just from the axioms of the

2

form x5 = x; for all boolean variables x;, we write

- P
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Below we formally define the representation of binary numbers as bit
vectors.

Definition 13. Bit vectors

We represent an integer using its bit representation by introducing a variable
for each of its bits. Let a be an integer with bits ag---a1. A bit vector
a = [ag - - - a1] representing the integer a in our system is a set of auxiliary
variables yg - - - y1 such that y; == a;. Define a(i) = y; = a;. Integers which
are represented as vectors are written in boldface.

Let & be an upper limit on the number of monomials in any polynomial
we wish to represent and let & be an upper limit on any coefficient we
wish to represent. Set & = 10[log(&o) + log(&1)]. The bit vectors in this
simulation will all be of dimension &, i.e. all integers we represent will be
of at most £ bits. Any vector of dimension > £ generated in any operation
1s automatically truncated to dimension & by dropping the higher order bits.

The bit representation chosen is two’s complement. That is, a positive
integer is represented in binary in the usual way. Let b be a positive integer
represented by b. Let by be the vector obtained by flipping all the bits in
b. Then we define the vector —b as by @& 1, where & operation on vectors,
defined below, simulates the usual bitwise addition operation and 1 is the
vector representation of the integer 1. 0, the all zeros vector, represents the
integer 0. For any vector a, a(§) is the sign bit of a. a is said to be negative
if the sign bit is one.

In order to make correct computation using the above Two’s complement
representation of binary numbers, we need to ensure that the bit length of
all numbers represented is bounded. We therefore define the length of a
vector in our simulation, and later show that such vectors are of bounded
length.

Definition 14. Length of a vector

The length of a non-negative vector a is the highest index i such that a(i) # 0
and zero if such an i does not exist. The length of a negative vector b is the
highest index i such that b(i) # 1. Equivalently, the length of a vector a is
the highest index i such that a(i) # a(§).

We now define the usual addition operation for binary numbers, over
their vector representations. Since we work in a low depth setting, we need
to use Carry-Save addition to represent the sum and carry bits.

5.4.2 Operations on bit vectors

Definition 15. The Bitwise Addition operation &
We define below the operator on wvectors corresponding to the usual carry-
save addition. For two bits y and z, let y® z represent the XOR of the bits.
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Given two bit vectors 'y = [y¢---y1] and z = [z¢ - - - z1], the bitwise addition
operation 'y @ z produces a vector [weiq - --wi] such that

Wi =Y D2 D¢

fori < & and weyr = c¢ where

i = Vji<i(y; N zj Nj<ke<i (Yr © 21))

forl<i <& andcy:=0.
¢; are referred to as the carry bits iny ® z

Monomial terms a1 X7 in our system are represented by a “scalar multi-
plication” of X7 with the vector a;, which we define below.

Definition 16. Scalar multiplication
For a bit z and a vector y, let zy = yz represent the vector obtained by
multiplying every bit of y by z.

In order to represent a line a1 X1 4+ -+ 4+ an, X, — ag > 0 in Cutting
Planes, we define an operation S over the vectors a; X1, -+ ,a,X, such that
the resultant vector is a representation of a1 X7 + --- + a,X,, — ap and has
a low depth in X, ---,X,,. This uses the idea of representing high weight
thresholds using low depth majority gates described earlier.

Definition 17. The Set Addition operation S(.)

We will now define the representation of the bitwise addition of vectors
a1 X1, -+ ,a; Xy, where ay,--- ,a; are integer constants and X1, -+, X; are
monomials.

Let & = [&/log(&o)]. For a constant a, partition the bits of a into &
blocks of length at most log(&). Let Lj(a), j € [&] denote the j™ block
of bits, so that the bits of a can be obtained by a concatenation of the bits
L¢,(a)...Li(a). Since Lj(a) is onlylog(&y) bits long, its magnitude is at most
€. Let [Lj(a)] refer to the integer represented by the vector Lj(a). Define
a° to be the vector obtained by replacing all even numbered blocks of a with
zeroes. a® is analogously defined by zeroing out the odd numbered blocks.
For monomials X1---X; and t < &, we would like to define bit vectors
S°(a; X1, - ,aXy) and S (a1 X1, -+ ,a,Xy) to be the bit representations
of the polynomials 25:1 a?X; and 25:1 a; X;. We accomplish this using
constant depth SLPs as follows.

We define a constant depth SLP to compute the k" bit of the j™* block
of 8°, represented by L;i(S°). The important observation is that we can
compute S° two blocks at a time since for odd j, >, [L;(a2)]X; is at most &2
and thus can be represented by 2log(&y) bits or exactly two blocks. Let Cy be
the set of integers in [fg] such that the 0" bit of their binary representation
is one. Then for odd j, L;;(S°) is one if and only if
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IT (X is@xi—5) =0

BeC) 7

and for even j, Lj;(S°) is one if and only if

I (X@nx-5) =0

5€CIOg(50)+k i

Therefore, the bit L;;(S°) can be represented as a constant depth SLP
of size O(&y) by representing the left hand side of the above equations as a
SLP over a finite field extension larger than 5(2), similar to the simulation of
CP* in the earlier sections, and then raising the result of that SLP to the
order of the multiplicative group that we are working in. The bits of 8¢ are
represented analogously.

The operation S over vectors a1 X1, - -+ ,a; Xy is now defined as S°(a; X1, - - -

Se(ale, s ,anXt).

5.4.3 Representing a line from CP/SOS in depth-d-PC

We now define the translation of a line a1 X1 +- - -+ a, X —ag > 0 in Cutting
Planes/SOS, where X ... X} are monomials.

Definition 18. Representing an inequality
Let P = a1 X1 + -+ - 4+ ap X be a polynomial where the X; are monomials.
Then the line P > 0 is represented as

S(a1X17 U 7aka)(£) =0
and P =0 is represented as
S(ale, ce ,aka) =0

Let R(P) denote the vector S(a1 X1, - ,arXg).

5.4.4 Simulating Cutting Planes

Addition Before we prove the simulation for addition, we need the follow-
ing key properties of the vector representation. They are proved in Appendix
Dl

The lemma below states that our system can prove the associativity of
the operation @ over vectors.

Lemma For any three bit vectors y, z and w

Flydz)ow—yd(zdw)
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We then need to be able to interchangeably use the operations S and &
for vector addition

Lemma FS(yi1,-,yi) —S(y1,-- ,¥io1) DYy

We then extend this to show that the vector representation of the sum
of two lines is the & of the vector representations of each line.

Lemma Let P and Q be two polynomials. Then R(P + Q) = R(P) &
R(Q)-

Finally, we need to show that the as long as P and () have coefficients not
exceeding bit length &, we can derive from R(P)(§) = 0 and R(Q)(§) =0
the lines R(P+Q)(§) = 0. It is an easy observation that if the bit lengths of
the coefficients in P and ) are bounded, then the vectors R(P) and R(Q)
are of bounded length. Thus it suffices to show the following.

Lemma For any two vectors a and b of length at most £ < £ — 1

a(¢), b(§) F (a® b)(E)

This concludes simulation of the addition rule.

Multiplication by a constant In order to simulate multiplication by a
power of two, we left-shift bits of the corresponding bit vector by the required
amount, and add zero bits at the end. Multiplication by any constant can
then be simulated by the above in combination with the Addition rule.

Division by a constant To simulate the division rule in Cutting Planes
we use the following lemma.

Lemma 3. Let P = ajxy + -+ + apxy — ag where a; are non-negative,
ai---a, are even and ag s odd. Then we can derive

R(P)(&) = R(P = 1)(¢)
Proof. Tt is easy to derive

ap(l) —1F (—ap)(1)—1
Since we have - R(P) — (S(ajz1, -, an@y) ® (—ag)) by Lemma and

ai---an are even, we derive

- R(P)(1) — 1

Since —1 is represented by the all ones vector, for every carry bit ¢; in
the sum R(P) & (—1) it is easy to derive from the definition of ¢;
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Now using the definition (R(P) @ (—=1))(§) = R(P)(§) ® 1 ® c¢ and
Lemma 27 we derive

R(P)(&) FR(P = 1)(¢)
O

We can now simulate the division rule by using the above lemma and
then dropping the last bit of the vector R(P — 1) (which would be zero).

5.4.5 Simulating Dynamic SOS

Rules 1, 2 and 3 of Definition [7] follow from the above simulation of Cutting
Planes.

Multiplication of two lines To simulate the multiplication rule of SOS,
we need to define an operation which, given the vectors a; and by, produces
a vector that is equivalent to the representation of a;b;. We define it as a
shifted sum based on the grade school algorithm for binary multiplication.

Definition 19. Shifted sum

For a vector y, let 2Fy denote the vector obtained by shifting the bits of y
to the left by k positions, and padding the least significant k positions with
zeros. Given two vectors'y and z = [z¢_1--- 2] , the shifted sum of y and
z 1s defined as the vector

SS(y’ Z) = S(Zoyv o ’25_125—1},)

We then show that our system can prove that the vector obtained by
using this operation is indeed what we want.

Lemma Let P and Q) be two polynomials, represented by bit vectors yq
and z = [z¢_1 - - - 20), with at most & monomials and coefficients bounded by
&1 in absolute value. Then,

FR(PQ) — S5(yo,2)

We now extend Lemma to show that we can derive PQ > 0 from
P>0and Q >0, ie R(PQ)() =0 from R(P)(§) =0 and R(Q)(§) = 0.

Lemma Let'y and z be two non-negative vectors of length £ such that
3 <&—1. Then

y(£),2(§) F 8S(y,2)(£)

This completes the simulation of the rule which takes the product of two
lines in SOS.
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Squaring rule To simulate the rule in SOS which introduces a line P? > 0
for any polynomial P, we need the following lemmas.

The lemma below states that if the sign bit of y is one, then the sign bit
of —y is zero.

Lemma For any vector'y of length £ < & —1,

y(€) —1F (=y)()

The following lemma shows that for a vector representing a polynomial
P, the negation of it represents the polynomial —P .

Lemma Let P be a polynomial represented by a vector y. Then -
R(~P) - (-).

The rule which derives P? > 0 can now be easily simulated by branching
on the sign bit of the vector R(P). Assuming it to be zero, we can use
Lemma [36] to derive R(P?)(¢) = 0. In the other case, we can use Lemma
and Lemma (32| to derive that the sign bit of R(—P) is zero. We can now
use Lemma [36] again to derive R(P?)(¢) = 0.

5.4.6 Concluding the simulation

By simulating any refutation in Cutting Planes/SOS rule by rule using the
above lemmas, we end up with the representation of the line —1 > 0 i.e.

R(-1)() =0

Since —1 is represented by the all ones vector, this gives a contradiction.

Open Problems

The obvious open problem is to prove a lower bound for AC°[p]-Frege systems,
whether using algebraic proofs or not.

As stepping stones towards this goal, we think it would be interesting
to:

1. Find any techique for proving lower bounds on the sizes of Polynomial
Calculus proofs that doesn’t go through degrees. More precisely, prove
size lower bounds for PC proofs where we view variables as taking
values 1, —1, and replace the axioms 22 — z with 22 — 1.

2. Prove lower bounds for the system Trinomial-II13-PC.

3. Our simulations require a sufficiently large extension field. Can we
either p-simulate Polynomial Calculus over a large extension field with
Polynomial Calculus over the base field, or prove that no simulation
exists?
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Appendix A Small-weight Cutting Planes Simula-
tions

Notational Remark In depth-d-PC, we sometimes use “inline” defini-
tions to indicate the new variables y; introduced. For instance, the equation

1‘1(.%1 + 1) =0

represents the equations

z1y1 =0
y1=x1+1

Thus when we refer to the monomial corresponding to xi(z1 + 1), we are
referring to z1y;.

Though XII3-PC captures the effect of size reductions due to allowing
linear transformations within the proof, it turns out that it is more powerful
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than required for our simulation in Theorem 1, so we define the tightest
restriction of it where we can still do the simulation.

Definition 20. A Trinomial is a polynomial with at most three monomials

Definition 21. Trinomial-113-PC

Let T' = {P1,..., Py} be a set of polynomials over a field F such that
each P € T is either an affine form or a trinomial in {x1,...,x,}. Let
the system of equations P, = 0,..., P, = 0 have no solution. Let I =
{P1,...,Ppn,Q1,...,Qr} be a set of polynomials over variables {x1,...,z,}
and {y1,...,yr} such that Q1,...,Qk are polynomials of the form Q; =
yj — (ajo + >, aijx;) for some constants a;; € F. A Trinomial-1IX-PC
refutation Ry---Rs of T' is a Polynomial Calculus refutation of I', such
that each Ry is either an affine form or a trinomial in {x1,...,x,} and

{y1,-- - uet-

Trinomial-IT¥X-PC essentially allows each line in the proof to be a XII%
circuit in X with the top fan-in bounded by 3. We will measure the size of
a Trinomial-1I3-PC proof by the number of lines, which is clearly polyno-
mially equivalent to the number of monomials in X, Y. This proof system
seems quite restricted, especially since it can no longer trivially simulate
Polynomial Calculus unlike X1I3-PC. But surprisingly, the Pigeonhole Prin-
ciple and Tseitin formulas, for which we have lower bounds for Polynomial
Calculus, have small proofs in Trinomial-II3-PC.

A.1 Proof of the Intersection lemma

Here we prove the Intersection lemma and some of its variants that will be
used later.

Lemma 4. “Substitution Lemma”

Let R(z—ay) -+ (2 —ag) = 0 and Rp(z) = 0 be two equations in a depth-d'-
PC refutation, where R is any polynomial and p is a univariate polynomial
of degree d in z such that p(a;) # 0 for any i. Then, we can derive the
equation R = 0 in O(kd|R|) lines where |R| is the number of monomials in

R.

Proof. Consider the base case of k = 1. Starting with R(z — a1) = 0,
we can successively derive Rz! — Ra} = 0 for i € {2---d} by multiplying
with the appropriate polynomials in z. This takes O(d|R|) lines in total.
Then adding these equations up with the appropriate coefficients we obtain
Rp(z) — Rp(a) = 0. Since p(a) # 0 and Rp(z) = 0, we have R = 0. Now,
multiplying every line of the above derivation with (z — ag)--- (2 — ag), we
have a derivation of R(z —ag)---(z—ax) =0 from R(z—a1)---(z—ag) =0
and Rp(z) = 0. The lemma now follows by induction over k. O
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Lemma 5. Let Q(z —a) = 0 and QHle(z —b;) = 0 be two equations in
Trinomial-11X-PC, where Q) is a monomial and a # b; for any i. Then we
can derive @ =0 in O(k) lines.

Proof. The proof is by induction on k. The base case, when k = 0, is trivial.
Assume that the lemma is true for some k—1 > 0. Let 21 = z2—a, 290 = 2—b;
and Q1 = Hf:g(z — b;). The equations are then represented as

Qz1 =0 (1)
QQ1z2 =0 (2)
2n=z—a (3)
z9=2z—b (4)

Multiplying equation by @1, we have

QQ121 =0 (5)
Let ¢ = a — b. By subtracting from we derive

z1—204+¢c=0 (6)

Now multiplying the above equation by the monomial QQ1, we derive
the trinomial

Q21 — Q22 +cQQ1 =0

But since we already have QQ1z; = 0 from and Q@122 = 0 from ,
we obtain

cQQ1 =0

Since ¢ # 0, we derive QQ1 = 0. Therefore, we now have the equations
Qz—a)=0
k
QJ¢z-bt) =0
i=2

The proof of the lemma thus follows from the induction hypothesis. Since
it only takes a constant number of lines to go from the case of k to the case
of k — 1, the total number of lines in the derivation is O(k).

O]

We now generalize this lemma as follows.

Lemma 6. “Intersection Lemma”

Let A and B be two sets of constants in F. Let [[,c4(z —a) = 0 and
[I,cp(z —b) = 0 be two equations in Trinomial-IIS-PC. Then there is a
proof of [ [.canp(z—¢) = 0 in Trinomial-IIS-PC of length O(|A\ B|-|B\ Al)
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Proof. We will prove the lemma by induction over the size of |A\ B|. The
base case when |A\ B| = 0 trivially follows since A = AN B.
Now for any two sets A and B such that |A\ B| > 0, let the equations
be labeled as follows
[[G-a)=0 (7)

acA
[[G-v»=0 (8)
beB

Let Ag = A\ B and By = B\ A. Choose an element a; € Ag. Let
Ar = A\ {a1} and Az = Ag \ {a1}. Let @1 be the monomial [[,. 4, (z — a)
and Q2 be the monomial [[,c4,(z — a@). Then equation can be written
as

Qi(z—a1)=0 (9)
Multiplying by Q2 we get

I] z-v=0 (10)

be BUA>

Note that there are no squared terms in the monomial since Ay and B
are disjoint. The above equation can be rewritten as

II z-»=0 (11)

be A1UBy
since Ay UBy = BU Ay = (AU B) \ {ao}. Note that A; and By are also

disjoint. Hence we can write the above equation as

Q [[Gz-b =0 (12)

beBy

Now since a1 € By, we can apply Lemma [5| on equations @D and to
get

Q1=0

l.e.

[[z-a)=0 (13)
a€A;

in O(|Bo|) = O(|B \ A|) lines.

Now we have two sets of constants A; and B with corresponding equa-
tions and (8) such that |A; \ B| = |A\ B| — 1. Thus the lemma follows
by induction. The total number of lines is O(|A \ B| - |B \ A)).

O
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Remark It is easy to see that starting with QJ],c4(z —a) = 0 and
QIlpep(z —b) = 0, we can still apply the Intersection Lemma to get

QIl.canp(z — ¢) = 0 for any monomial Q.
A.2 Simulating syntactic CP* in Trinomial-II>-PC over Q

We are now ready to state and prove Theorem 0, which first appeared in
[25].

For each possible derivation rule in a Cutting Planes proof, we will now
show how to derive in Trinomial-II3-PC (See Definition the translation
of the result of applying the rule on a line or a pair of lines, given their
translations.

Simulating Addition For the addition rule, given the translations of two
lines >, a;jz; > bj and ), a;jpx; > by in CP*, we will derive the translation
of their sum ), (a;; + aij)x; > bj + by. The following lemma suffices.

Lemma 7. Simulating addition
Let x(x —1)---(z—a)=0and y(y —1)--- (y — b) =0 be two equations in
a Trinomial-11%-PC refutation with a > b. Then we can derive

(z+y)(z+y—1)-(z+y—(a+bd)=0
using O(ab) lines.

Proof. Let z = x+y. We will first derive the range of values z can take when
y=j,forall j€{0,...,b}. Let 2, =z —iforie{0,...,a}, yj =y —j for
j€{0,...,b} and 2, = z—k for k € {0,...,a+b}. Also, for S C {0,...,b},

Zj = xo + Y
Multiplying the above equation by the monomial Y}, we have
zjYj — x0Yj —y;¥; =0
Since y;Y; = Hje{O---b} yj = 0, we have
zjYj —xo¥; =0 (14)
It is easy to derive for i € {0---a}

Zj—Zj_H‘—i:O

Multiplying the above equation by the monomial Y}, we have

5 = 24— i¥; =0 (15)
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Subtracting this from we get
ZjJri}/j — CL‘()Y} + ZY} =0
By the definition of x; we have
T; =Xy — 1
Multiplying the above equation by the monomial Y}, we get
x;Y; —xoY; +iY; =0
Subtracting the above equation from we get
zjp1Yj —2Y; =0
Thus, for all i € {0---a} we derive

zj+iY; —xiY; =0

(16)

From the above a+1 equations, we can inductively derive fori € {0---a}

ijj+ZY7_m0'rZY7:0

as follows. For i € {1---a}, using

we can derive
Zjo ZjyiYj — Xo - Ti12j44Y; =0
by multiplying with z;41. Now multiplying
zj+iY; —aiY; =0
by the monomial xg - - - x;_1, we derive

Zo - Ti—1254iY; —xo -2 Y; =0
Subtracting from we get

using O(j) monomials. Therefore, we have

Zj..-z‘j_’_a}/j—xo-..xay‘lj:o

and since xg - - - x, = 0, we derive
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S 2l = 0
We derive the above for every j € {0---b} using a total of O(ab) lines.
Multiplying the above line by {zx : 0 < k < j}U{zt : j+a < k < a+ b},
we have for all j € {0---b}
20" Za+bY; =0

Now note that the set of monomials {Y; : j € {0---b}} have no common
root. Therefore we can apply the Intersection Lemma repeatedly to derive
20+ Za+p = 0 as follows. Starting with

20 ZatbY10.53 = 0

and
20 Za+bYj+1 =0

and applying the Intersection Lemma with A = {0---b} \ {0---j} and
B={0---b}\ {j + 1} we get
20" Za+bY{0---j+1} =0

using O(j) lines. Thus using O(b?) lines we get

ZO'..Z(,Ier:O

and the total number of lines is O(ab + b?). O

Corollary 1. Given the translations of El ai;r; > bj and EZ a;px; > b, we
can derive in Trinomial-IIX-PC the translation of Y, (aix + aij)x; > bj+ by,
in O(( ia;; —b;) (> afy — bi)) lines

Proof. Use the above lemma for z = ) a;z; — bj, a = Z-a;; —b; and

y=>aiz; — by, b=>,a} — by O

Simulating multiplication by a constant We use the following lemma
to derive the translation of ¢) . ¢;jx; > cd; in Trinomial-IIX-PC from the
translation of ), ¢;jx; > dj

Lemma 8. Let (z—aq)---(z—ag) = 0 be an equation in Trinomial-1I%-PC.
We can derive the equation

(2 —cay) -+ (2 —car) =0

where 2’ = cz in Trinomial-IIS-PC for any ¢ € Q in O(k) lines.
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Proof. The proof is by induction on k. For k = 0, the derivation is trivial.
Let z; = z —a; and 2} = 2/ — ca; for i € {1---k}. Then, for any k > 1, we
are given the equation

Zl...zkzo

and we want to derive

Zl"'Z]:;:O

Since, 2’ = ¢z, we get z] = 2/ — ca1 = cz; and thus multiplying with
Z9 -+ 2 We get

ANzg iz —czozy =0

But since z;1 - - - 2z = 0 as above, we get

Now by the induction hypothesis we have a derivation of zj--- 2z, = 0
from zg---zp = 0. By multiplying each step of this derivation by 27, we
have derived 2] - - - z;, = 0 from 2j2z9--- 2 = 0.

]

Corollary 2. Given the translation of ), cijx; > d;, we can derive the
translation of ¢y, cijx; > cdj in Trinomial-IIX-PC in O( Zc;'; — dj) lines
Proof. Use the above lemma for z =), ¢;;x; — d;j and

(ag -+ ag) = (0 --- icz_‘;_dj) ]
Simulating division by a constant Given the translation of a line
¢y, ayx; > by in Cutting Planes for some ¢ > 0, we will now derive the
translation of ), a;;x; > [b;/c| by the lemma below. We need the following
corollary of Lemma [7]

Corollary 3. Let z =), a;jz; be an equation in Trinomial-IIX-PC, where
x; are boolean variables. Then we can derive

z(zfl)---(zf (Za;)) =0
in O((3; a)?) lines.

2 .
ZL:/ 1 a;} Assume that we have derived

Proof. Let a =", a;; and let b=
the equations

n/2

zl<zl—1>--~(zl— (;a;r» =0
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n
z2<22—1) (zz— ( Z a;r)) =
i=n/2+1
for z; = Z?:/? a;jz; and zp = Z?:n/2+1 a;jz;. We can use Lemma El on
the above two equations to derive the required equation in O(b(a — b)) lines.
Continuing this recursively for the above two lines, the total number of lines
L(a) to derive z(z — 1) (z 0 a:r)) = 0 is given by the recurrence
L(a) = L(b) + L(a — b) + O(b(a — b)), which gives L(a) = O(a?) by an easy
induction. O

Lemma 9. Simulating Division by a constant

Let (cz—b)(cz—(b+1))--- (cz—d) = 0 be an equation in Trinomial-IIX-PC
where z =), a;jx; such that x; are boolean variables, b < d and ¢ > 0. We
can derive

(z = [b/el)(z = ([b/c] + 1)) -+ (z = |d/c]) =0

using O((>_; a;r)2 + (0, aj')(d —b)) lines.

Proof. Using Corollarywe can derive the following equation in O((}_; a;)?)
lines.

z(z—l)-~<z—(;a;;)):0 (20)

Now, using Lemma [§| on the equation (cz —b)(cz — (b+1))---(cz—d) =0
with the multiplication constant equal to 1/¢, we can derive

z2(z=b/c)-+-(z—d/c) =0 (21)

Note that the constants in parentheses in the above equation are rational,
and the smallest integer that appears is [b/c| and the largest integer that
appears is |d/c|. Using the Intersection Lemma with equations and

, we see that only the integer values are retained from which gives
us

(z = [b/c])(z = ([b/c] +1))--- (2 = |d/c])
using O((3>°; a;7)(d — b)) lines. -

Corollary 4. Given the translation of a line ¢ ; a;jx; > b; for some ¢ > 0,
we can derive in Trinomial-IIX-PC the translation of ), ajjx; > [bj/c| in
O(c(>; a;;)2)lines

Proof. Apply the above lemma for z =), a;jz;. O

This completes the simulation of a syntactic CP* proof in Trinomial-
II3-PC with the simulation having size polynomial in n and the coefficient
size of the original proof.
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A.3 Simulating semantic CP* in Trinomial-II>-PC over Q

Lemma 10. For every infeasible point (i,j,k) € Ax B x C, an infeasibility
equation of the above form can be derived in O((Y; ai )2(>_;07)%(>,; ¢ )?)

lines

Proof. We proceed by induction on n. Let y, = Zle a;x; and zp, wy, Ay,
By, Cy be defined analogously. For the base case of n = 1, the equations
defining the grid are y;(y1 —a1) =0, z1(21 — b1) = 0 and wy(w; — ¢1) = 0.
The only feasible points in the grid are (0,0,0) and (a1, b1,c1), and thus
for every other tuple we will derive an infeasibility equation. We show the
derivation for one such tuple (a1,0,0). Starting with

Y1 = a1
zZ1 = bll‘l

derive
Z1 — b1 = b1($1 — 1)

and multiply by y; to derive
yl(zl - bl) = alblxl(:vl — 1) =0

Multiplying the above equation by (w; — ¢1), we have our required in-
feasibility equation.

To continue the induction and derive all possible infeasibility equations,
we observe that a point (i, 7, k) for (yg, z¢, wy) is infeasible if and only if the
points (i, 7, k) and (i — ag,j — by, k — ¢;) are infeasible for (ys—1, 2z¢—1, wp—1)-
Therefore, assuming the latter, we derive the former as follows. Given

H (yéfl - G) H (Zg,l - b) H (wg,1 — C) =0

a€Ap_1 beBy_1 ceCy_1
aFi b#j c#k
and
I We-1-a) J] zee1-0) J] (wer—e¢)=0
a€Ay_1 beEBy_1 ceCp_1
a#i—ay b#j—by c#k—cy

we will derive

T o) [T Ge—b) [ Gwr—c)=0

acAy beBy ceCy
aFi b#£j c#£k

Starting with the equations

Yo = Ye—1 + agxy

Zy = Z¢p—1 + ngg
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Wy = Wyp—1 + C¢Ty

multiply each by (xzy — 1) to derive

Ye(re —1) = yo_1(we — 1)
zo(xg—1) = zp—1(xg — 1)
wg(:Eg — 1) = ’wg_l(:b'g — 1)

From the above equations, it is easy to derive (see Lemma |7

(@e=1) I we—a) II =0 JI (we—e) (22)
a€Ay_1 beEBy_q ceCy_1
aF#i b#j c#k
=@ -1 [[ wr-a) J] Gei=0) J] (wer—c¢) (23)
a€Ay_q beBy_q ceCp_1
aFi b#j c#k
=0 (24)

Similarly, we derive from the three starting equations

Yo —ag = yr—1+ ag(ze — 1)
20 —bp=2zp_1 +be(xg— 1)
wy — ¢pg = wp—1 + ce(xg — 1)

Multiplying by x; we have

(yr — ag)xe = Yo—1%4
(z¢ — be)xp = zp—174
(we — cp)ze = we—qxp

Analogous to the above we can derive

v [[ We—(a+a)) [ Ge=®+b0)) [ (we—(c+e)) (25)

a€Ap_1 beBy_1 ceCyp_1
a#i—ay b#j—by c#k—cy
=z [[ wer—a) J] Gea=0) J] (wer—c (26)
a€Ap_q beBy_1 ceCy_q
aFi—ay b£j—by cEk—cy
=0 (27)

As Ay yU{a+ap:a€ Ay} C Ay (similarly for By and Cy), we have

from equations and
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(@e=1) J] we—a) [T ze=0) [T (we—¢) =0 (28)
a€Ay beBy ceCly
aFi b#j c#k

v [[we—a) [](ze—=0) [J (we—c)=0 (29)

a€Ay beBy ceCy
aFi b#£j c#k
Adding the above two equations, we derive the required one. O

A.4 Simulating syntactic CP* in depth-5-PC over F,

The following lemmas will be largely similar to the ones in Appendix

Simulating Addition To simulate the addition rule, it suffices to show
the following

Lemma 11. Let A and B be two sets of constants in any field and let
C={ab|lacAbe B}. Let [[,ca(x —a) =0 and [[,cz(x —b) = 0 be two
equations in depth-d-PC. Let z = xy. Then the equation

H(z—c):()

ceC
can be derived in O(|A||B]) lines.

Proof. Let A = {a;},B = {b;}, ©; = © — a; and y; = y — b;. Note that
ryxp = 0=y yp- Let X; = H#]‘ x;. Starting with

z=2xy

we can derive
z=(r —aj)y + a;y

Now multiplying the above equation by X, we have
ZXj =T1 - T|AY + ajij = ajij
Subtracting a;b; X; on both sides we can derive for every i the equation

(z —a;jbi)X; = a;(y — b)) X;

Now, similar to Lemma [7} we can derive from the |B| equations above
the equation

(z —ajb) - (z — ajbp) Xj = ajy1- -y X; =0
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Thus for every j we have the equation

(= —ajby) - (= — ajbp) X; = 0

Multiplying each of the above |A| equations with the missing terms, we
can obtain for every j,

H(Z—C)Xj =0

ceC

Using the Intersection Lemma inductively as in Lemma |7 we obtain the
required equation. O

Corollary 5. Given the translations of Y, ajjx; > bj and Y, ajpz; > by, in
depth-d-PC over Fym, we can derive the translation of Y, (aik + aij)x; >
bj + bk m O((ZZ aij - b])(Zz il — bk)) lines

Proof. Use the above lemma for y; = [[,((a* — 1)x; + 1), y2 = [[,((a%* —
Dai+1), A= {ab abitl...q%i a;‘}, B = {a abstl... a2 “:Gc} O

Simulating Multiplication

Lemma 12. Let A be a set of constants in any field and let ¢ be a positive
integer. Let A° = {a®|a € A}. Let [[,c4(x —a) =0 be an equation in the
depth-d-PC. Then we can derive the equation

H(xc—a):()

acAc
in O(|A|) lines.

Proof. Let z; = © — a; and 2} = af

7. Then the given equation becomes
xy-- x4 = 0, and we want to derive ) -"xTA‘ = 0. The proof is by
induction on |A|. If |A| = 0 then we have nothing to prove. Assume that
the statement is true for |A| < k—1 for some k > 1. Consider an expression
of the form [[,c 4(z — a) = 0, where |A| = k. If |A°| <k, then clearly there
exists a set A7 C A such that A = A€, and the required equation follows
from the induction hypothesis. If |A¢| = k, from the given equation, it is

easy to derive

Txy T —arTa---Tp =20

Multiplying the above equation with z, we have

22xy -z —a1xae -z =0

Adding a; times the former equation to the latter, we have
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m2x2--~xk—a%m2~--mk:0

Proceeding in a similar way, we can derive

xxe - xp —ajre - x)p =0

or equivalently

xax2...xk:0

Now by the induction hypothesis, we have a proof of & - - -z} = 0 from
xg9 -z = 0. Multiplying each line of the proof by &) we arrive at a proof
of the required equation. ]

Corollary 6. Given the translation of )", a;jx; > b; in depth-d-PC over Fym
and an integer ¢ < p™ — 1, we can derive the translation of ), ca;jx; > cb;

in O((>_; aij — bj)) lines

Proof. Use the above lemma for y = [[,((a%i —1)z;+1), A = {abi,abitl... ok “jﬂ}
O

Note that previous two lemmas hold over any field. For the following
lemma, we will use the fact that we are working over Fj,» where s < pm—1.

Simulating Division The proof of the following corollary is analogous to
Corollary [3]

Corollary 7. Let z = [[;((ai —1)z;+1) be a variable where x; are boolean.
We can derive

(m—l)(m—a)---(az—azl'bjf) =0
in O((>; b;;-)z) lines

Lemma 13. Let (xz¢—a®) ... (z¢—a %) =0 be an equation in depth-d-PC
over Fym, where a; are distinct and = is of the form [[;((a® — 1)z; + 1)
where x; are boolean. There is a proof of the equation

(x—a) - (z—a™)=0
in O((3; a)?) lines
Proof. Using Corollary [7, we can derive

(z—1)(z—a) - (z—aZi¥)=0 (30)

in O((3; b;;)z) lines. Since Y, |b;;j| < s, any term (x — o) that appears
in the above equation is such that b € [0,s] or b € [p™ — 1 — s,p™ — 2].
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The proof is by induction on k. Consider the case of k = 1, when we
have the equation z¢ — a®! = 0 where a; < s without loss of generality. If
ctp™ —1, then it has a unique root a®. If ¢ | p"™ — 1, then the roots are of
the form o TI@E" -1/ for j ¢ {0---c—1}. But since 2s% < p™ — 1,

c<s<(pP"-=1)/2s < (p" —1)/2¢c (31)

Therefore any root o such that b # a; is such that b > a;+ (p™ —1)/c >
s. Also, we have

b<a;+ (" —-1)(c—1)/c
=p" =1 (" - 1/c—w)
<p"=1-((p"=1)/c—s)
<p"—-1-s

where the last inequality is due to (31). Therefore the only root a® to the
equation ¢ — a“® = 0 such that b € [0,s] or b€ [p™ —1—s,p"™ — 2] is a™
Starting with the equation z¢ — @ = 0 it is easy to derive

(z —a™)Q(x) =0 (32)

where Q(z) = 27! + a2 2 + .- + a1, just by expanding the above
equation into its monomials. Now by our discussion above, for any term
(r — a’) that appears in the equation , Q(a’) # 0. Therefore, using
the Substitution lemma with equations and we derive x —a™ =0
if this term appears in , else we derive 1 = 0. Therefore, this gives a
derivation of x — a®' = ( from the equation z¢ — a“* = 0.

For the induction step, by multiplying every step in the above derivation
with
(¢ — a2) ... (x° — @), we obtain a derivation of

(x _ aal)(xc _ aCG,Q) . (xc _ acak) — 0

from
(l,c _ acal) . (xc . acak) —0
The lemma now follows by induction.
O

Corollary 8. Given the translation of ¢, a;jx; > bj in depth-d-PC over
Fym for an integer ¢ < p™ — 1, we can derive the translation of ), a;jx; >

[b Jc] in O((e) >, a ;;) ) lines
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Proof. Let the equation
(v —ab) - (= a*=%) =0 (33)

be obtained from the translation of ¢ ), a;jz; > b;, where y = [ [, (a7 —
1)x; + 1). We first use Corollary [7| to derive

=Dy —a)-(y—a>) =0

in (3, a;)? lines. Using Lemma [12/on the above equation, we get

(v = (" —a)- (y° —a>i%) =0 (34)

in ), a;;. lines. Using the Intersection Lemma on equations and
, we get

(yc _ O[C’Vb]'/d) e (yc — aCZlG;;) =0
We now use the previous lemma to derive

which is the required equation.

This completes the proof of Theorem

Appendix B Simulating AC°[q]-Frege in depth-9-PC
over [,

B.1 Caseofg=p

Simulating Initial sequents
Here we will show how to derive translations of the initial sequents from
xi(l — I‘Z) = 0.

Lemma 14. Let ¢ be any formula of depth three which only contains the
&Y, =, A and V connectives. Then the equation tr(¢)(1 —tr(y)) =0 can be

17

derived from x;(x; — 1) = 0 in depth-d-PC

Proof. Easily follows from repeated application of Lemmas [7] [11] and [I2] at
each level. ]

Lemma 15. The translation of the initial sequent ¢ — @ can be derived
from x;(x; — 1) = 0 in depth-d-PC for any flat circuit ¢
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Proof. If ¢ is a flat circuit without threshold gates, this follows by Lemma
since the translation of the sequent ¢ — ¢ is simply tr(p)(1—tr(p)) = 0.
If ¢ contains a top threshold gate, the translation of the given sequent
states that a variable y such that y = Hle((a — D)tr(—¢g;) + 1) satisfies
(y—1)---(y — a¥) = 0, where g; are formulas without threshold gates.
Thus we can derive tr(—;)(1 — tr(—y;)) = 0 as in Lemma [14] and then use

Lemma m to derive (y —1)---(y — a¥) = 0. O

The initial sequents 2,3 and 4 are dummies and do not require trans-
lating. The initial sequent 5 can be derived using Lemma [7] since in a flat
proof each of the inputs to the threshold connective do not contain threshold
connectives.

Simulating structural rules

The simulation of the weakening rule just involves multiplying the given
equation by the translation of the new formula ¢ that appears. The per-
mutation rule is trivial since the translation of a sequent is invariant under
application of the permutation rule. To simulate the contraction rule, we
need to show that for every formula ¢, we can derive from (tr(p))% = 0 the
equation tr(p) = 0. When ¢ is a formula which does not involve a threshold
connective, this is can be done by using Lemma When ¢ is a flat circuit
with a threshold gate at the top, the following lemma suffices.

Lemma 16. Let (y — a®)?---(y — a®)? = 0 be an equation in depth-
d-PC where a; are distinct integers less than p™ — 1 and y = Hle((a -
D)tr(—g;) + 1) such that @; are flat formulas with no threshold gates. The
equation (y — a®)---(y —a%') =0 can be derived in O(max(k’,k?)) lines.

Proof. The proof is by induction on k’. The case of k' = 0 is trivial. Using
Lemmal7] we can derive the range of values of the variable y, i.e. an equation
of the form

(y—=1) - (y—a*)=0 (35)

Let Q@ = (y —a™)(y —a®)?---(y —a™)? and Q1 = (y — a™)?--- (y —
a“k’)Q. Then the given equation can be written as

Qly—a™)=0 (36)

Multiplying equation with @ if it does not contain the term (y—a®),
else multiplying it with @)1, we arrive at

Q J[ w-a)

1<i<k | i#ay

Using Lemma [5| with equations and , we get Q = 0. The
lemma now follows by induction since assuming there is a derivation of
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(y—a®)---(y—a™) =0 from (y —a®)?--- (y—a™ )2, this derivation can

be multiplied by (y —a®!) = 0 to get the required equation from @ = 0. [

Simulating the cut rule

Let Q = tr(—-D)tr(A) and Q' = tr(=I")tr(A’). Let y = tr(p) if ¢ does
not contain threshold gates, else let y = Hle((a — D)tr(—p;) + 1) where
@ = Thi(p1---¢k). Then the cut rule can be translated to the following

statement

Lemma 17. Given the equations Q(y —a1)---(y —ax) = 0 and Q'(y —
bi) - (y—br) =0 where ay ---ap and by - - - by are disjoint sets of constants
from the field, derive QQ' =0

Proof. Multiply the first equation by @’ and the second equation by @, and
use the contraction rule to make sure the resulting equations are square free.
Then required equation now follows easily from the Intersection Lemma. [J

Simulating A,V, ®¥ and - rules

The rules for =, A-left and V-right are trivially simulated since the trans-
lation remains invariant. For the A-right and V-left, the simulation reduces
to the following lemma, where @ = tr(=I)tr(A).

Lemma 18. Given the equations Qy1 = 0 and Qy = 0 where y1 and y take
boolean values, derive the equation Qyy; = 0

Proof. Follows from Lemma O

For the A-right rule, the above lemma can be instantiated with y; =
tr(p1) and y = tr(A(p2 - - - pr)). Since A(¢1 - - - @) is being derived, each of
the formulas ¢; must be free of threshold gates. Thus the fact that y and
y1 are boolean is easily derived from Lemma[T4 A similar simulation works
for the V-left rule.

The simulation for ©F gates is analogous to the above. Let Q = ¢r(—I')tr(A),
and z; = tr(p;). The &f-left rule then translates to the following lemma.
The simulations for the other ¢¥ rules are similar.

Lemma 19. Given the equations
p—1y _
z1(1—25)=0

and
(1—z)(1=(1=2)P")=0

derive (1 — (1 —2)P~Y) =0, where 21 =21+ -2y , 20 = T2 + - -, and
x; are boolean variables.
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Proof. Starting with the equation
21 =21+ 22
Multiply by (1 — 1) on both sides and subtract (1 — z1) to get
(z1—1)(1—z1)=21(1 —21)+ (22— 1)1 — 1) = (22 — 1)(1 — x1)

Now, we can raise both sides of the equation to the exponent p — 1, and
use the fact that (1—xz1)?~! = (1 —x1) (which is easily derived using Lemma

12)) to get
g

(21 — 1)p—1(1 — xl) = (22 — l)p_l(l — .,”Ul)

But since from the second equation of our hypothesis, (2o — 1)P71(1 —
x1) = (1 — x1) and thus

(1= (z1 =P (L = 1) (37)
Now consider the equation
znn—1=x—14 2

obtained by subtracting one from z; = x1 + 23
Multiplying by = on both sides, we get
(z1 — Dy =z(x — 1) + 200 = 201

Again, raising to the exponent p — 1 and noting that a:lf_l = x; and

-1
zg r1 = r1 we have

(z1 — 1)p_1:r:1 = zgflzz:l =x
and thus
(1— (21 —1)P Nz =0
Adding equation to the above we get the required equation

Simulating Th; rules
Let Q = tr(-I")tr(A), and z; = tr(—y;). The Thy-left rule translates to
the following lemma. The case of T'h-right is similar.

Lemma 20. Given the equations

(z2—1)- (g — ) =0
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and
r1(zg— 1) (20— a') =0

derive
(z1=1)--- (21—t =0

where z1 = Hle((oz— Da;i+1), 20 = Hf:2((a— 1)z +1) and x; are boolean
variables.

Proof. 1t is easy to derive the equation

21 = (ax1 +1—21)20

Multiplying the above equation with (1 — 1) we get

Zl(l — .%'1) = (1 — $1)222 = (1 — 1'1)22

since z; is boolean. Subtracting a‘(1 — x1) on both sides we get

(z1 — ai)(l —x1) = (22 — ai)(l — 1)

for every i in {0---¢+ 1}. From these ¢t + 1 equations it is easy to derive
(see Lemma [7)

(z1—=1)-(z1 =™ —21) = (20— 1) (22 — &™) (1 —z1) =0 (38)
Multiplying the equation z; = (ax; + 1 — x1)z with 21 we get

21x1 = aw%zz = Qaxri22

Again, subtracting a’*!

r1 we get
(21 — Oéi—H)ZL'l = (22 — ai)xl
for every ¢ in {0---t}. Once again, we combine them to derive
(z1—a)(z1 =™z = (20— 1) (22 —a)z1 =0

Multiplying the above equation with z; — 1 and adding it to equation
(138), we get the required equation. ]

This completes the simulation of flat proofs in depth-d-PC.
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B.2 Case of ¢ #p

Lemma 21. Given the equations
21— (g2 = 1" 1) =0

and
1—z)(1—(g2—a")’" 1) =0
derive

(I—(p—a")P" 1) =0

where 1, = Hle((o/’ —Dax;+ 1), yo = Hfzg((of — Dx; + 1) and z; are
boolean variables

Proof. 1t is easy to derive

y1 = (@"z1+ 1 —x1)y2

Multiplying the above equation with x; we have

yi1ry = o"yoat = oyaws
since z1 is boolean. By subtracting a"z; we can now derive
(Y1 —a")z1 =a"z1(y2 — 1)
Raising the above equation to the power p™™ — 1, we get
( — " ey =2y (yp — 1P

since x1 is boolean. Subtracting the above equation from z1, we get

(1= (=P Nz =1~ (2= )" a1 =0 (39)

By multiplying with 1 — 21 we can derive from y; = (a"x; + 1 — z1)y2
the equation

yi(z1 — 1) = ya(z1 — 1)

Carrying out a derivation similar to the above, we get

L= —a P a1 -1 =1~ (—a")" a1 -1)=0 (40

Adding equations and we get the required equation. O
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Appendix C Simulating TC°-Frege in depth-d-PC
over [,

Lemma 22. Given the equation
((y=a")--(y—ah)" =0
we can derive
(y—a') - (y—a®) =0

and vice versa.

Proof. In the forward direction, the required equation is easily derived by
repeated application of the contraction rule. The other direction is trivial.
O

Lemma 23. Given the equation

1—((y—a')(y—af)" =0

we can derive

and vice versa.

Proof. In the forward direction, since y is a threshold gate with k£ arguments,
we can derive
(y—1)(y—a"=0
and thus
((y=1) - (y— )" =0
But since we have ((y —a®) - (y — ak))pmfl = 1 from the given equation,
we get,
(=1 (y—a))" " =0

Using the contraction rule repeatedly gives the required equation.

In the reverse direction, Let y1 = ((y — o) -+ (y — a¥))” ~'. Then as

mentioned earlier, we can derive using Lemma
yi(l—y1) =0
Using the contraction rule on the above equation, we get

(y—a) - (y—a®)(1l—y)=0 (41)

Multiplying the given equation (y —1)---(y —a’~!) =0 by (1 —y;) and
using the Intersection Lemma with equation , we get 1 — y; = 0, which
is the required equation. ]
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Appendix D Dealing with large coefficients

D.1 Properties of addition

In this section we derive some basic properties of addition.
The following lemma shows that our system can prove the associativity
of &.

Lemma 24. For bits y, z, w, let H(y,z) := y A z and let H(y,z,w) :=
(yAz)V(zAw)V (wAy) which is one if and only if y + z + w > 2.
H(.) denotes the carry bit generated by adding together up to three bits.
The following are easily proved since they involve only a constant number of
variables.

FH(y,z,w) — H(y,z®w) ® H(z,w) (42)
21+ w1 — (22 +we2) F H(y, z1,w1) — H(y, 22, w2) (43)
= H(H(y,z®©w), H(z,w)) (44)

If ¢; are carry bits in'y @ z, then

[ Ci+1 — H(yi,zi,cz-) (45)
For bits a,b,c,d, e,

F H(a,b,c)+ Ha®b®c,d,e) — H(a,b,d) — Hla®b® d,c,e)  (46)

Lemma 25. For any three bit vectors 'y, z and w

Fy®z)ow—yo(zdw)

Proof. Let yiep := (y ®2) @ w and ypign ==y ® (z D w). Let d)” be
the carry bit to the i** position in y @ z. Let d be the carry bit to the
i" position in (y @ z) ® w. Similarly define d:" and dY. We will derive
inductively for every 1%

Fdy? +dY — (d7Y +dY) (47)

= Yiept(1) — Yright (1)

This is easily derived for ¢ = 1. Suppose for some ¢ > 1 the above lines
have been derived.

By of Lemma we derive
= dl — H(y(i), 2(i),d7")
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Fdy — H(y(i) @ 2(i) & d) %, w(i), d}Y)
since y @ z(i) = y (i) ® z(i) ® d}"*. Adding these lines we get
= dl + i — (H(y(i),2(i), d)") + H(y(i) @ 2(i) ® d)*, w(i), d}))
Using of Lemma, we make the derivation
= H(y(i),z(i),dY*) + H(y (i) ® (i) ® &Y%, w(i), d})
— (H(y(i),2(i), w(i)) + H(y (i) © z(i) ® w(i),d}"*, d}"))

Adding this to the line above, we get

-+

— (H(y(i),2(:), w(i)) + H(y (i) @ z(i) & w(i), d]"*, d}"))

In a similar fashion, we make the derivation

it i
— (H(y (i), 2(i), w(i)) + H(y(i) & 2(i) & w(i), d; ™, dY))
Now, using our induction hypothesis and of Lemma ﬂ we

derive

FH(y(i) ®z(i) @ w(i),d)”, &) — H(y(i) ® z(i) & w(i),d;™",dY)

The derivation
F Y+ i — (R + )
is now easily obtained from the three previous lines.

To derive yef:(i+1) = yright(i+1), we first make the following derivation
a5+ A — (d7 + &) F &S e d - (4 e d)

since this involves only a constant number of boolean variables. Now, by

definition, yjep (i +1) =y(i+ 1) ®z(i+ 1) dw(i+ 1) ®d)]] ®dY, and by

the above two lines this is equal to y (i+1)®z(i+1)dw(i+1)dd. ] Dd)

i+1 i+1
which is equal to ypign(i + 1).
]

The following lemmas show that the addition operations & and & can
be used interchangeably.

Lemma 26. Fori <n,
Sy yic) @y; — Sy ya)

FS(y1- - yi-1) @y; —S(y1---yi)
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Proof. We are going to prove the statement block wise. For odd j, let w; =

2_:11 [L;(y7)]- Note that the pair of blocks (4,7 + 1) in S°(yy---y;) only
depend on the corresponding pair of blocks in S°(y1---yi—1) and L;(y?).
Therefore, restricted to the blocks (j,j+1), the statement of the lemma just
depends on w; and L;(y?¢). Since w; only takes on &2 values and L;(y?) only
takes on &y values, there is a polynomial sized proof by completeness. ]

Lemma 27. - S(y1---yi) = S(y1--¥i-1) Dyi
Proof. Since S(y1---yi—1) =S°(y1---¥i—1)®S°(y1---yi—1) and y; =y P
y? by definition, we have

FS(y1--yi-1) ®yi =S (y1--yi-1) @S°(y1---yi-1) @y; DYy;

From Lemma we have

FS(y1yic) @y @yl — (i @S°(y1- - yie1) B y7)
Combining the above two derivations, we have
FS(y1yic1) ©yi =S (v yi-1) Oy ©8°(y1e o yi-1) D Y7
Now, using the previous lemma, we are done.

O

The following corollary easily follows from repeated application of the
above lemma.

Corollary 9. For j < i,

FS(y1yi) =Sy y) @Sy i)

Lemma 28. For every t

FS(yi X1y Xe) @ S(z Xy -2 Xy)
—S((y1®21) X1 (yt ® z4) Xy)

Proof. Assume by induction that we have made the above derivation until
t =i — 1. Then we have

F1 S(y1 X1y Xs) @ S(z1 Xy - - 2X5)

—Sy1 X1 yi1 X)) @yiXi ©S(z21 X121 Xi1) Dz X,
Fo S(y1 X1+ yiXi) © S(z1 X1 -2 X5)

—Sy1 X1 yic1 Xic1) @S(z X121 X)) Oy X Dz X,
Fs S(y1 X1 yiXs) @ S(z1 X1 -2 X;)

—S(y1®21) X1 (Yim1©2i-1)Xi—1) © (yi ©24) X5
o S(y1 Xy yiXy) © S(z1 X1 -+ -2 X;)

= S((y1 @ 21) X1 (ye ®z) Xe)
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where Fq and k4 follow by Lemma ko follows by Lemma and F3
follows by the induction hypothesis. O

Finally, we show how to derive the representation of the sum of two
polynomials.

Lemma 29. Let P and Q) be two polynomials. Then R(P + Q) = R(P) &
R(Q).

Proof. Let X7 -+ X; be monomials that occur in both P and @, such that
P=aXi+  +aX;+Pand Q = 01 X1+ + Xy + Q1. Then from
the definition of R and Corollary [0 we have

F R(P) — S(a1X1 oo atXt) D R(Pl)
FR(Q) — S(b1 X1+ bXy) ®R(Q1)

Using the above, we now have

FR(P)® R(Q)

—S(a1 X1 aXy) 8R(P)@S(b1 X1 - b Xy) & R(Q1)
1 R(P) & R(Q)

—S(a1 X1 aXy) @S(b1 X1 b Xy) ®R(P1) @ R(Q1)
Fo R(P) & R(Q)

—S((a1®b1) X1 - (ar @by Xy) DR(P1) ® R(Q1)
F3 R(P) @ R(Q)

—R(P+Q)

where 1 is by Lemma and o is by the previous lemma. Fj3 is by
Corollary [0] and the definition of R.
O

Lemma 30. For two vectorsy and z, —(y ®z) = (-y) ® (—z).

Proof. Let w =y @z and let y1, z1 be vectors obtained by flipping the bits
of y, z respectively. Let w1 = y1 ® z1. It is easy to derive for every i,

Fy(i) @z(i) —y1(i) 21 (i) (48)

For j < & let by = (Aicj (v(3) @ #(0))) A ~(y(j) & 2(})) and be =
Ni<e(y (1) @z(1)) be a boolean variable indicating the least index iy such that
y(io) ® z(ip) = 0. Let ¢; be the carry bits in y @ z. We translate boolean
formulas into polynomials using the operator ¢r() defined in Section
We first derive for every j and ¢ < j,
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F tT’(bj — (Ci = O))

This is done by noting that ¢; = 0 and by of Lemma c =
H(y(i —1),z(i — 1),¢;—1) for i > 1. Assuming by induction that we have
derived for some j > i >1

F tT‘(bj — (Ci = O))

it is easy to derive

Ftr(b; — y(i) ® z(7))
Now using the above two derivations with the identity of Lemma
and the observation -y (i) @ z(i) — —H(y(i),z(i)), we have
= tr(cipr — H(ci, y(i) @ z(i) & H(y (i), z(i)))

=tr(bj = (i1 = 0))

Since w(i) = y(i)®z(i) D¢, for every j and ¢ < j, we have the derivation

Ftr(by — (w(i) = wi(i)))

We now want to inductively derive for every j and i > j

Ftr(b; — (w(i) = wi(i) @ 1)) (49)

Let ¢, indicate the carry bits in y; & z;. Due to the derivation (48)), we
only need to derive for every i > j

Ftr(b; — ¢ @)

If y(i — 1) ®z(i — 1) = 0 (this includes the base case of i = j + 1), it is

easy to derive the following identity independent of the values of ¢;_1 and

/
Cl—l'

Ftr((y(i— 1)@z —1)=0) > ¢ )
Assuming now that we have derived F ¢; @ ¢, for some ¢ > j, for the case
where y(i — 1) @ z(i — 1) = 1, it is easy to derive
Fir((ci @ c) A (y(i) @z(i) =0) = ciy1 D chyq)

Now consider the vector wi @ 1. By the definition of b; we have the
derivation for all ¢ < j



and
Etr(b; — (w(j) = 0))

Thus it is easy to derive for i < j
Fitr(b; = (W 1(i) =w(i) & 1))
and for ¢ > j
Fitr(b; — (W 1(i) = w(i)))
Combining the above two derivations with , we have for all ¢ and j

Fir(b; = (Wwo1(i) = w(i) © 1))

Since b; are mutually exclusive, we can eliminate them using techniques
similar to Lemma [6l and obtain

Fwal(l)—w(i)@l

Hence w1 @1 the vector obtained by flipping all the bits of w. Therefore,
using the definition of —w and Lemma

F(-w)— y1®z1©91®1
F(=w) = (~y) ® (~2)

Lemma 31. For any vector'y of length £ < £ — 1,
y(&) —1F (=y)(&)

Proof. Since y is of length ¢, we have for ¢ < j < ¢
y()—1Fky(j) -1

Let y1 be the vector obtained by flipping the bits of y. Then we have
the derivation for £ < j <¢

y(&) —1F y1(j)
Now, using the identity of Lemma we have for £+ 1 < j <¢

y(€) —1F (y1& 1))

Since —y = y; @ 1, the lemma follows.
O

Lemma 32. Let P be a polynomial represented by a wvector y. Then F
R(=P) = (=y)-

95



Proof. Let P = a1 X1 + --- + a; X;. We derive the above by induction on
t. Let P, = a1X1 + -+ + a;X; for i < t. Then since by Lemma -
R(P) — (R(Pi—1) ® a; X;), we have by Lemma

F(=R(P)) = (-R(Pi-1)) ® (—ar Xy)

The lemma now follows from the induction hypothesis and Lemma [27]
O

D.2 Non-negative vectors are closed under addition

In this section we show that non-negative vectors of bounded length are
closed under the addition ¢. This will be used to show that the vector
representations of all the lines of the simulation are bounded in length.
Note that some of these claims need not be provable in our proof system.

We first show that given two vectors y and z of length ¢, y & z is of
length at most ¢ + 1.

Lemma 33. Given two vectors'y and z of length at most {, w =y @ z is
of length at most £ + 1

Proof. Let d; be the carry to the i*® position in y @ z. We branch on the
value of dgyq. If dgy1 = 0, then all the bits at positions greater than ¢ in w
are equal to s @ so and thus the length of w is at most ¢. If dyy1 = 1, then
if s1Vsa=0,w(l+1)=1and w(j) =0 for j > ¢+ 1. Thus the length of
w is at most £+ 1. If 51V so = 1, then it is easy to see that d; = 1 and thus
w(j) =51 P sa®1 for j > ¢+ 1 and thus the length of w is at most ¢. [

Lemma 34. Lety; - -y be vectors of length £ such that [logk]+/¢ < £—1.
Then S(y1---yk) is of length at most [logk] + £.

Proof. Assume that the statement is true for up to k/2 vectors. Then by
Corollary [9]

Sy yr) —Sy1-- 'Yk/2) e93(3’1;/%1 V)

Now by the induction  hypothesis, S(y1-++yr2) and
S(Yk/241- - yk) are of length at most [logk] — 1 + £. Using the previous
lemma, we are done. ]

Using the observation that for a constant a; with bit complexity ¢, a; X3
is a vector of length ¢, we have the following corollary.

Corollary 10. Let P = a1 X1 + -+ a; X; be a polynomial with coefficients
of bit length at most £. Then R(P) is a vector of length at most £ + [logt]

Lemma 35. For any two vectors a and b of length at most £ < & — 1

a(¢),b(&) - (a @ b)(E)
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Proof. Since a and b are of length at most ¢ we have for £ > j > ¢
a(¢) Fa(j)

b(¢) Fb(j)

Thus there is no carry beyond position £ +1 < £ in a & b due to our
assumptions and thus using identity of Lemma, it is easy to derive

a(§),b(&) - (a® b)(E)
O

Since by Lemma [34} the vectors R(P;) and R(P) are of length at most
¢ =[log&] + [log&] < € —1 and by Lemma 29] = R(Py + P») — R(P1) @
R(P,), we have the following corollary.

Corollary 11. For any two polynomials Py and Py with at most & mono-
mials and coefficients of magnitude at most &1,

R(P1)(€), R(P2)(§) = R(PL + P2)(€)

The following corollary now follows easily from Lemma [27] and the pre-
vious lemma.

Corollary 12. Let y1---yr be non-negative vectors of length £ such that
[logk]|+¢ <& —1. Then

yi(8), - ye(§) F S(y1---yr)(§)

Lemma 36. Let y and z be two non-negative vectors of length £ such that
3 <&—1. Then

y(£),2(§) F SS(y,2)(§)

Proof. Since z is non-negative of length ¢, for £ +1 < < ¢

z(§) - z(i)
Therefore,
SS(y.z) = S(z(0)y - z(§ — 1)2y) = S(2(0)y - - - z(£)2"y)

Since each of the vectors z(0)y, --- z(¢)2% is of length at most 2/ and
there are £ of them, by the previous corollary, we are done.
O
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D.3 Properties of multiplication

Here we show that multiplication is distributive and can be treated as re-
peated addition.

Lemma 37. Distributivity of R
Let P, Py, Py, Q be polynomials such that P = P, + P». Then

R(PQ) = R(P1Q) ® R(Q)
Proof. Easily follows from Corollary [9] O
The following lemmas show that multiplication is repeated addition.

Lemma 38. Let y, z be two bits and let w be a vector. Then,

Fyw @ zw — (y @ z2)w & H(y, z)2w

Proof. Let w1 = (y @ z)w and wo = H(y, 2)2w. Let e; be the carry bit to
the ith position in w1 @ wo and let ¢; be the carry bit to the ith position in
yw @ zw. We will derive by induction that for every i,

F(yw @ z2w) (i) — (w1 © wa)(4)
Feir1 — H(ci,yw(i) & zw(i))

This is easy to derive for the case of i = 1 since wa(1) = 0 and thus
the first bit on both sides is equal to (y @ z)w(1). Also by of Lemma
eg = 0 is derived since wa(1) = 0 and therefore there is no carry to the
second position. Since ¢; =0, H(c1,yw(l) ® zw(1l)) = e2 = 0. Now assume
that we have derived it up to ¢ — 1 for some ¢ > 1. Then we have

e — H(ci1,yw(i—1) @ zw(i — 1))
and from the definition of wq it is easy to derive
Fwo(i) — H(yw(i — 1), zw(i — 1))
Therefore by using Identities and

Fe1 ®wa(i) — H(ci—1,yw(i —1),2w(i — 1)) (50)
Fel & WQ(Z) — G
And by Identity

F H(e1, wa(i)) (51)

From the above derivations, we now have
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Fei @ wi(i) ®wa(i) —yw(i) @ zw(i) ® ¢

which derives that the i*" bits on both sides are equal.
Also, we have by of Lemma

= eiv1 — H(e;, wi(i), wa(i))
By identity we have

Feir1 — H(ei,WQ(i)) D H(Wl(l), e; D WQ(Z))
and by and

Feipr — H(yw(i) © zw(i), ¢;)

which continues the induction.

O]

Lemma 39. Lety = [yx—1---yo] and z = [zx_1 - - - 20] be two bit vectors of
dimension k, let w =y @z and let di be a constant and X1 be a monomial.
Then,

= SS(lel,W) — SS(lel,y) D SS(lel, Z)

Proof. For the base case where y and z are of dimension one, the above
derivation follows easily from the previous lemma. Assume that the state-
ment is derived when y and z are vectors of dimension & — 1 . Let yx_1,
Zr_1, Wi_1 denote the corresponding vectors truncated to dimension k — 1
by dropping the element(s) with the highest index. Let e; be the carry to
the i*" position in y @ z, i.e. W(i) =yi_1 ® 21 D e;.

By the definition of SS(.) and Lemma |27, we derive

F S8S(di1X1,y) © SS(d1 X1, 2)
—S8S8(d1 X1, yh1) Dyr_12" 1 X1 @ SS(d1 X1,z 1) @ 212811 X,

By using associativity (Lemma , we have

[ SS(lel,y) ©® SS(lel,Z)
—8S8(d1 X1, y5-1) ®SS(d1 X1, 25-1) D yp—12" " d1 X1 ® 25128 11 Xy

Now using the previous lemma and the induction hypothesis we derive

[ SS(lel,y)EBSS(lel,z)
—SS(d1 X1, ¥k 1D 2r1) ® (Y1 ® 21-1)2" i X1 @ H(yn—1, 26-1)2°d1 Xy
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By the definition of wj_1, it is easy to derive
Fyk—1Dzp—1 — W1 © ek2k_11
Now by Lemma 27 and the definition of SS(.) we have
F 8S(d1Xy,y) ®SS(d1X1,2)

— (SS(dix1, W)

@ ep21di Xy

D (Yr—1 ® 2p-1)2"'d1 Xy

® H(yg-1, zk,1)2kd1X1)

By the previous lemma, we can derive

Fer2 i Xy @ (yho1 @ 25-1)2" 1y Xy
— (Yhe1 @ 251 @ e)2" My Xy © H(yp—1 © 251, e)28d1 X

Combining this with the above derivation, we have

F SS(lel,y) @SS(lel,Z)
- (83(d1X1,W1@71)

D (Yr—1 D 2p—1 ® ek)Qk_llel
& H(yk—1 9 zi—1, ex)2"d1 X3
@ H(

Yk—1, Zkfl)de1X1>

Now from identities and of Lemma

F SS(di X1, y) ® SS(d1X1,2)
- (SS(dlxl,wk,l)
D (Yro1 D 21 @ e)2" 11 Xy
® H(yr—1, Zkfhek)zklel)

Noting that (yx—1 @ zx—1 ® e) and H (yr_1, 2k—1, €x) are equal to w(k)
and w(k + 1) respectively, and using the definition of SS(.) and Lemma
we have
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F SS(lel,y) D SS(lel,Z) — SS(lel,W)
]

Lemma 40. Let Q = a} X + -+ + a}, X}, be represented by a bit vector
z = [2e_1- - 20] and let apXo be a monomial such that the bit length of apa
s at most £ — 1. Then

FR(aoXoQ) — SS(aoXo, z)

Proof. Let Q; = a1 X1 + -+ + @ X; for j < k and let z; = [zg_l . ~zé] be
the equal to R(Q;). Assume that we have proved the above statement for
Qj, j < k. Then by Lemma -2z — 2,1 @ a, Xy. Therefore by Lemma
39 we have

- 8S(apXo,z) — SS(agXo, zx—1) ® SS(apXo, ay X})

Since the bit length of aga is at most {—1, SS(apXo, a), Xi) = R(aoa, XoXy)
by definition and by induction,

FS8S(apXo, z2p—1) — R(aoXoQxr—1)
Therefore we have
~ SS(aOXO7 Z) — R(aoXoQkfﬁ D ’R(aoa;chXk)

which is equal to R(agXoQy) by the Distributivity of R.
]

Lemma 41. Let P and Q) be two polynomials, represented by bit vectors yq
and z = [z¢_1 - - - 20], with at most o monomials and coefficients bounded by
&1 in absolute value. Then,

FR(PQ) — 8S(yo,2)

Proof. Let P = a1 X1 + -+ + ap Xy, Q = a/ X + --- 4+ a}, X}, and let P; be
the sum of the first j < k terms of P . Let y; denote the bit vector 2°R(P).
Then SS(y,z) = S(20¥0 "+ ze-1ye-1)-

It is easy to derive for vectors a and b and any

F2(a®b) - 2'a® 2'b

Now by a simple induction using Lemma [27] we derive

H QiS(ale s aka) - S(2ia1X1 s 2iaka)
|— yi: — S(Qiale e 2iaka)
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- Let y{ = S(Qia1X1~--2ianj) for j < k. By Lemma yi = yffl D
2'a;, Xj,. Therefore we have

= S(20y0- - ze—1Ye-1)
k-1 k-1 e—1
—S(20y0 D r0akXk - ze1ye ) D212 apXy)

By repeated applications of Lemma [27] we can derive

= S(z0y0 - ze—1¥e-1)
— S(zoyt ' Zg—lylg:ll) © S(z0ar X - - 2e125 Ly Xy,)
By the definition of SS(.) we have
SS(ap Xy, z) = S(zoap Xy - - - 25_125_1aka) and by Lemma 40| we have
- SS(ap Xk, 2) — R(ax Xk Q)

and by induction on k£ we have

FSS(yh !, 2z) — R(Py1Q)

Thus we derive

= S(z0y0- - ze—1ye—1) — R(Pr1Q) © R(ap Xz Q)

The lemma now follows from Distributivity of R. 0
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