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Abstract

We investigate the computational power of an arbitrary distinguisher for (not necessarily
computable) hitting set generators as well as the set of Kolmogorov-random strings. This work
contributes to (at least) two lines of research. One line of research is the study of the limits of
black-box reductions to some distributional NP problem. We show that a black-box nonadaptive
randomized reduction to any distinguisher for (not only polynomial-time but even) exponential-
time computable hitting set generators can be simulated in AM∩ coAM; we also show an upper
bound of SNP2 even if there is no computational bound on a hitting set generator. These results
further strengthen the evidence that the recent worst-case to average-case reductions within NP
shown by Hirahara (2018, FOCS) are inherently non-black-box. As an application, we show
that GapMCSP ∈ P/poly implies that GapMCSP is low for Sp2 , which is proved by combining
our proof techniques with the non-black-box reductions.

Another line of research concerns the computational power of nonadaptive deterministic
polynomial-time reductions to the set of Kolmogorov-random strings. It was conjectured by
Allender (CiE, 2012) and others that the computational power is exactly characterized by BPP,
intuitively because nonadaptive deterministic reductions could only make use of Kolmogorov-
random strings as a source of pseudorandomness.

We present strong evidence against this conjecture by showing that every language in the
exponential-time hierarchy is reducible to the set of Kolmogorov-random strings under PH re-
ductions; in particular, the conjecture is false unless the exponential-time hierarchy collapses
to BPEXP. Moreover, our reduction cannot be regarded as a black-box reduction to avoid-
ing hitting set generators (unless the exponential-time hierarchy collapses to the second level),
thereby showing that nonadaptive deterministic efficient reductions can exploit the power of
Kolmogorov-random strings not just as a distinguisher for hitting set generators.

1 Introduction

Kolmogorov complexity enables us to quantify how a finite string looks “random” in terms of
compressibility. For a string x ∈ {0, 1}∗, its Kolmogorov complexity is the length of the shortest
program d such that running d prints x. More specifically, we fix an arbitrary universal Turing
machine U , and the Kolmogorov complexity of x is defined as KU (x) := min{ |d| | U(d) = x }. A
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string x is called random (with threshold s) if KU (x) ≥ s, i.e., x cannot be compressed into a short
program.

In this paper, we extensively study what can be reduced to the set of random strings, and its
dense subset. As a consequence, we contribute to several lines of research of complexity theory –
including average-case complexity and black-box reductions, hitting set generators, the Minimum
Circuit Size Problem, and the computational power of the set of random strings. Perhaps most
surprisingly, we present new hardness results for the set of Kolmogorov-random strings, and thereby
we refute Allender’s conjecture [All12] stating that polynomial-time nonadaptive reductions to the
set of Kolmogorov-random string can be simulated by BPP in some sense.

The underlying theme that unifies these research lines is Kolmogorov complexity. While Kol-
mogorov complexity is not computable, by either imposing a time constraint on U or taking another
“decoder” U , we are led to several important concepts of complexity theory mentioned above. Be-
low, we review these concepts through the lens of Kolmogorov complexity.

An important motivation for this work is the case when a decoder U is defined as a circuit
interpreter Gint: Let Gint denote the function that takes a description of a Boolean circuit C,
and outputs the truth table of the function computed by C. Here a truth table of a function
f : {0, 1}n → {0, 1} is the string of length 2n that can be obtained by concatenating f(x) for every
input x ∈ {0, 1}n, and we often identify a function with its truth table. Taking U = Gint, the
Kolmogorov complexity KGint(f) is approximately equal to the minimum circuit size for computing
f . Therefore, a circuit lower bound question can be seen as a question of finding a random string
f with respect to KGint . For example, one of the central open questions in complexity theory,
E 6⊆ SIZE(2εn) for some constant ε > 0, can be equivalently rephrased as the question whether
there exists a polynomial-time algorithm that, on input 1N , finds a “random” string f of length N
such that KGint(f) = NΩ(1) for infinitely many N . The problem of computing KGint(f) on input f
is called the Minimum Circuit Size Problem (MCSP) [KC00], which is intensively studied recently.

A dense subset of random strings (with respect to KGint) is also one of the important concepts
in complexity theory, named as a natural property. In the influential work of Razborov and Rudich
[RR97], they introduced the notion of natural proof, and explained the limits of current proof
techniques for showing circuit lower bounds. A natural property R ⊆ {0, 1}∗ is a polynomial-time
computable 1/poly(`)-dense subset of random strings with respect to KGint . Here, a set is called γ-
dense if Prx∈R{0,1}` [x ∈ R] ≥ γ(`) for every ` ∈ N. It is known that a natural property is equivalent
to an errorless average-case algorithm for MCSP [HS17].

More generally, a dense subset of random strings with respect to KG can be seen as an adversary
for a hitting set generator G. We consider a family of functions G = {G` : {0, 1}s(`) → {0, 1}`}`∈N.
A hitting set generator (HSG) is the notion that is used to derandomize one-sided-error randomized
algorithms. For a set R ⊆ {0, 1}∗, we say that G is a hitting set generator (with parameter γ) for
R if Prr∈R{0,1}` [r ∈ R] ≥ γ(`) implies R ∩ Im(G`) 6= ∅, for every ` ∈ N. Conversely, R is said to
γ-avoid G if G is not a hitting set generator for R, that is, (1) Prr∈R{0,1}` [r ∈ R] ≥ γ(`) for all
` ∈ N (i.e., R is γ-dense), and (2) R∩ Im(G`) = ∅ (i.e., R does not intersect with the image Im(G`)
of G`). Since Im(G`) contains all the non-random strings with respect to KG` , this definition means
that R is a γ-dense subset of random strings with respect to KG.

Now we proceed to reviewing each research line. We start with average-case complexity and
black-box reductions.
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1.1 Limits of Black-box Reductions

The security of modern cryptography is based on average-case hardness of some computational
problems in NP. It is, however, a challenging question to find a problem in NP that is hard
with respect to a random input generated efficiently. The fundamental question of average-case
complexity is to find a problem in NP whose average-case hardness is based on the worst-case
complexity of an NP-complete problem.

A line of work was devoted to understanding why resolving this question is so difficult. Given
our poor understanding of unconditional lower bounds, the most prevailing proof technique in
complexity theory for showing intractability of a problem is by means of reductions. Moreover,
almost all reduction techniques are black-box in the sense that, given two computational problems
A and B, a reduction R solves A given any oracle (i.e., a black-box algorithm) solving B. The
technique of reductions led to the discovery of tons of NP-complete problems computationally
equivalent to each other — in the worst-case sense. On the other hand, it turned out that the
power of black-box reductions is limited for the purpose of showing intractability of average-case
problems based on worst-case problems.

Building on the work of Feigenbaum and Fortnow [FF93], Bogdanov and Trevisan [BT06] showed
that if a worst-case problem L is reducible to some average-case problem in NP via a nonadap-
tive black-box randomized polynomial-time reduction, then L must be in NP/poly ∩ coNP/poly.
This in particular shows that the hardness of any average-case problem in NP cannot be based
on the worst-case hardness of an NP-complete problem via such a reduction technique (unless
the polynomial-time hierarchy collapses [Yap83]). Akavia, Goldreich, Goldwasser and Moshkovitz
[AGGM06, AGGM10] showed that, in the special case of a nonadaptive reduction to the task of
inverting a one-way function, the upper bound of [BT06] can be improved to AM ∩ coAM, thereby
removing the advice “/poly”. Bogdanov and Brzuska [BB15] showed that even a general (i.e. adap-
tive) reduction to the task of inverting a size-verifiable one-way function cannot be used for any
problem outside AM ∩ coAM. Applebaum, Barak, and Xiao [ABX08] studied black-box reductions
to PAC learning, and observed that the technique of [AGGM06] can be applied to (some restricted
type of) a black-box reduction to the task of inverting an auxiliary-input one-way function.

1.2 Non-black-box Reductions

It was very recent that the first worst-case to average-case reductions from worst-case problems
conjectured to be outside coNP to some average-case problems in NP were found: Hirahara [Hir18]
showed that approximation versions of the minimum time-bounded Kolmogorov complexity prob-
lem (MINKT [Ko91]) and MCSP admit worst-case to average-case reductions. These problems ask,
given a string x and a threshold s, whether x can be compressed by certain types of algorithms of size
s. For example, MCSP asks whether x can be compressed as a truth table of a circuit of size at most
s. For a constant ε > 0, its approximation version GapεMCSP is the problem of approximating the
minimum circuit size for a function f : {0, 1}n → {0, 1} (represented as its truth table) within a fac-
tor of 2(1−ε)n. Specifically, the Yes instances of GapεMCSP consists of (f, s) such that size(f) ≤ s,
and the No instances of GapεMCSP consists of (f, s) such that size(f) > 2(1−ε)ns. MCSP can
be defined as Gap1MCSP. It is easy to see that MCSP ∈ NP and MINKT ∈ NP, but these are
important examples of problems for which there is currently neither a proof of NP-completeness nor
evidence against NP-completeness. Allender and Das [AD17] showed that MCSP is SZK-hard, but
this hardness result is unlikely to be improved to NP-hardness using “oracle-independent” reduction
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techniques: Hirahara and Watanabe [HW16] showed that a one-query randomized polynomial-time
reduction to MCSPA for every oracle A can be simulated in AM ∩ coAM. Nonetheless, MCSP and
MINKT are (indirectly) conjectured to be outside coNP/poly by Rudich [Rud97] based on some
assumptions of average-case complexity: He conjectured that there exists a (certain type of) hitting
set generator secure even against nondeterministic polynomial-size circuits. We also mention that
the approximation version of MINKT is harder than Random 3SAT, which is conjectured by Ryan
O’Donnell (cf. [HS17]) to not be solvable by coNP algorithms.

One of the main questions addressed in this paper is whether the technique used in [Hir18]
is inherently non-black-box or not. As mentioned above, there are several results and techniques
developed in order to simulate black-box reductions by AM ∩ coAM algorithms. Why can’t we
combine these techniques with the (seemingly non-black-box) reductions of [Hir18] in order to
prove GapεMCSP ∈ coAM and refute Rudich’s conjecture? Note that refuting Rudich’s conjecture
would significantly change our common belief about average-case complexity and the power of
nondeterministic algorithms. We emphasize that while the proof of [Hir18] seems to yield only
non-black-box reductions, it does not necessarily mean that there is no alternative proof that yields
a black-box reduction.

In order to address the question, we aim at improving our understanding of the limits of black-
box reductions. We summarize a landscape around average-case complexity in Figure 1.

∃ PRG

∃ HSG

NP ⊈ BPP

DistNP ⊈ AvgBPP

DistNP ⊈ HeurBPP ∃ OWF

∃ AIOWF

Gap𝜖MCSP ∉ BPP

⟹

⟸ ⟸

⟸ ⟺

⟹
⟹

⟹

⟹

[BT06]
[AGGM06, BB15]

SZK ⊈ BPP

Figure 1: Average-case complexity and limits of black-box reductions. “A→ B” means that there
is no black-box (or oracle-independent) reduction technique showing “A ⇒ B” under reasonable
complexity theoretic assumptions. The security of all cryptographic primitives is with respect to
an almost-everywhere polynomial-time randomized adversary.

A couple of remarks about implications written in Figure 1 are in order: First, the equivalence
between the existence of a pseudorandom generator (PRG) and a one-way function (OWF) is due
to [HILL99]. Second, the implication from the existence of an auxiliary-input one-way function
(AIOWF) to GapεMCSP 6∈ BPP was implicitly proved in [ABK+06b] and explicitly in [AH17],
based on [HILL99, GGM86, RR97]. The implication from SZK 6⊆ BPP to the existence of an
auxiliary-input one-way function is due to Ostrovsky [Ost91] (see also [Vad06]). Third, building
on [CIKK16, HS17], it was shown in [Hir18, Theorem VI.5] that GapεMCSP 6∈ BPP implies the

nonexistence of natural properties, which yields a hitting set generator Gint = {G2n : {0, 1}Õ(2ε
′n) →

{0, 1}2n}n∈N defined as a “circuit interpreter”: a function that takes a description of a circuit of
size 2ε

′n and outputs its truth table (cf. [Hir18, Definition V.3]). The existence of a hitting set
generator naturally induces a hard problem in DistNP with respect to AvgBPP algorithms (cf.
[Hir18, Lemma VI.4]). Therefore, the reduction of [Hir18] can be regarded as a non-black-box (in
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fact, nonadaptive) reduction to a distinguisher for the hitting set generator Gint.
We thus continue the study of the limits of black-box reductions to a distinguisher for a hitting

set generator, initiated by Gutfreund and Vadhan [GV08]. Motivated by the question on whether
derandomization is possible under uniform assumptions (cf. [IW01, TV07]), they investigated what
can be reduced to any oracle avoiding a hitting set generator in a black-box way.1 They showed
that any polynomial-time randomized nonadaptive black-box reductions to any oracle avoiding an
exponential-time computable hitting set generator G can be simulated in BPPNP, which is a trivial
upper bound when G is polynomial-time computable.

1.3 Our Results

We significantly improve this upper bound to AM∩ coAM, thereby putting the study of hitting
set generators into the landscape of black-box reductions within NP (Figure 1). We also show a
uniform upper bound of SNP2 even if G is not computable.

Theorem 1 (Main; informal). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any (not necessarily
computable) hitting set generator such that s(`) ≤ (1−Ω(1))` for all large ` ∈ N. Let BPPR‖ denote
the class of languages solvable by a randomized polynomial-time nonadaptive machine with oracle
access to R. (The subscript ‖ stands for parallel queries.) Then,⋂

R

BPPR‖ ⊆ NP/poly ∩ coNP/poly ∩ SNP2 ,

where the intersection is taken over all oracles R that (1− 1/poly(`))-avoid G. Moreover, if G` is
computable in 2O(`), then we also have⋂

R

BPPR‖ ⊆ AM ∩ coAM.

Compared to the line of work showing limits of black-box reductions within NP, a surprising
aspect of Theorem 1 is that it generalizes to any function G that may not be computable. Indeed,
almost all the previous results [FF93, BT06, AGGM06, ABX08] crucially exploit the fact that a
verifier can check the correctness of a certificate for an NP problem; thus a dishonest prover can
cheat the verifier only for one direction, by not providing a certificate for a Yes instance. In our
situation, a verifier cannot compute G and thus cannot prevent dishonest provers from cheating in
this way. At a high level, our technical contributions are to overcome this difficulty by combining
the ideas of Gutfreund and Vadhan [GV08] with the techniques developed in [FF93, BT06].

Moreover, we present a new Sp
2-type algorithm for simulating reductions to an oracle R avoiding

G. Indeed, at the core of Theorem 1 is the following two types of algorithms simulating reductions:

One is an Sp
2 algorithm that simulates any query q

?
∈ R of length at most Θ(log n), and the other is

an AM∩ coAM algorithm that simulates any query q
?
∈ R of length at least Θ(log n). In particular,

when G is exponential-time computable, the Sp
2 algorithm can be replaced with a polynomial-time

algorithm and obtain the AM ∩ coAM upper bound.

1As a black-box reduction to any distinguisher for G, it is required in [GV08] that there exists a single machine that
computes a reduction to every oracle avoiding G. On the other hand, as stated in Theorem 1, we allow reductions to
depend on oracles, which makes our results stronger.
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We remark that Theorem 1 improves all the previous results mentioned before in some sense.
Compared to [BT06], our results show that the advice “/poly” is not required in order to simulate
black-box reductions to any oracle avoiding an exponential-time computable hitting set generator.
Compared to [AGGM06, ABX08], our results “conceptually” improve their results because the
existence of one-way functions imply the existence of hitting set generators; on the other hand, since
the implication goes through the adaptive reduction (from the task of inverting a one-way function
to a distinguisher for a PRG) of [HILL99], technically speaking, our results are incomparable
with their results.2 Similarly, our results conceptually improve the result of [HW16], but these are
technically incomparable, mainly because the implication goes through the non-black-box reduction
of [Hir18].

1.4 Why are the Reductions of [Hir18] Non-black-box?

Based on Theorem 1, we now argue that the reductions of [Hir18] are inherently non-black-box
in a certain formal sense, without relying on any unproven assumptions: The reason is that the
idea of [Hir18] can be applied to not only time-bounded Kolmogorov complexity but also any other
types of Kolmogorov complexity, including resource-unbounded Kolmogorov complexity. Therefore,
if this generalized reduction could be made black-box, then (as outlined below) by Theorem 1 we
would obtain a finite algorithm SNP2 that approximates resource-unbounded Kolmogorov complexity,
which is a contradiction, unconditionally.

To give one specific example, we briefly outline how the reductions of [Hir18] can be generalized
to the case of Levin’s Kt-complexity [Lev84]: Fix any efficient universal Turing machine U , and
the Kt-complexity of a string x is defined as

Kt(x) := min{|d|+ log t | U(d) outputs x within t steps }.

We define a hitting set generator G = {G` : {0, 1}`/2 → {0, 1}`}`∈N as G`(d, t) := U(d) for
(d, t) ∈ {0, 1}`/2 when |U(d)| = ` and U(d) halts within t steps, which is computable in exponential
time. Note that Im(G) contains all strings with low Kt-complexity. Given an efficient algorithm
D that γ-avoids G, we can approximate Kt(x) by the following algorithm: Fix any input x. Take
any list-decodable code Enc, and let NWEnc(x)(z) denote the Nisan-Wigderson generator [NW94]
instantiated with Enc(x) as the truth table of a hard function, where z is a seed of the generator.
Then check whether the distinguishing probability |Ez,w[D(NWEnc(x)(z))−D(w)]| is large or small
by sampling, whose outcome tells us whether Kt(x) is small or large, respectively. Indeed, if
the distinguishing probability is large, then by using the security proof of the Nisan-Wigderson
generator, we obtain a short description (with oracle access to D) for x. Conversely, if Kt(x) is
small, then since D γ-avoids G, the distinguishing probability is at least γ. Now, if we could make
this analysis work for any oracle that γ-avoids G, then by Theorem 1 we would put a problem of
approximating Kt(x) in AM, which is not possible unless EXP = PH. (Note that the minimization
problem of Kt is EXP-complete under NP reductions [ABK+06b].)

2 We emphasize that we concern the nonadaptivity of reductions used in the security proof of pseudorandom
generators. Several simplified constructions of pseudorandom generators Gf from one-way functions f (e.g., [Hol06,
HRV13]) are nonadaptive in the sense that Gf can be efficiently computed with nonadaptive oracle access to f ;
however, the security reductions of these constructions are adaptive because of the use of Holenstein’s uniform
hardcore lemma [Hol05]. Similarly, the reduction of [HILL99, Lemma 6.5] is adaptive. (We note that, in the special
case when the degeneracy of a one-way function is efficiently computable, the reduction of [HILL99] is nonadaptive.)
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1.5 Applications: Lowness of GapMCSP

As explained in the previous subsection, the non-black-box reductions of [Hir18] cannot be
combined with Theorem 1 unconditionally. In contrast, we show that the proof ideas of Theorem 1
can be combined with the non-black-box reductions conditionally, which leads us to a new structural
property of GapMCSP. Specifically, assuming GapMCSP is easy with respect to non-uniform
algorithms, we show that GapMCSP is low for Sp

2 .

Theorem 2. For any oracle A, any constant α > 0, if GapαMCSPA ∈ P/poly then S
GapβMCSPA

2 ⊆
Sp

2 for some constant β > 0.

The main idea of Theorem 2 is to combine the Sp
2-type algorithm for simulating reductions to

an oracle avoiding Gint (Theorem 1) with the non-black-box reductions. Recall that Sp
2 is a proof

system where two competing provers, one of which is guaranteed to be honest, try to convince a
polynomial-time verifier. In our Sp

2 simulation algorithm, for each i ∈ {0, 1}, the ith prover sends
as a polynomial-size circuit an oracle Ri avoiding Gint. Then a verifier obtains an oracle R0 ∩ R1

that avoids Gint (assuming that either R0 or R1 avoids Gint). We then invoke the non-black-box
reductions of [CIKK16, Hir18] to solve GapβMCSPA using R0 ∩R1 as an oracle.

Unfortunately, we were not able to combine our AM ∩ coAM algorithm of Theorem 1 with the
non-black-box reductions under similar conditions. We leave it as an interesting open question.

Open Question 3. Prove that NP ⊆ P/poly (or MCSP ∈ P/poly) implies GapεMCSP ∈ coAM for
some constant ε > 0.

1.6 Our Techniques

We outline our proof strategy for Theorem 1 below. Suppose that we have some reduction from
L to any oracle R that avoids a hitting set generator G. Let Q denote the query distribution that
a reduction makes. We focus on the case when the length of each query is larger than Θ(log n),
and explain the ideas of the AM ∩ coAM simulation algorithms.

As a warm-up, consider the case when the support supp(Q) of Q is small (i.e., |supp(Q) ∩
{0, 1}`| � 2` for any length ` ∈ N). In this case, we can define an oracle R1 so that R1 :=
{0, 1}∗ \ supp(Q) \ Im(G); this is a dense subset and avoids the hitting set generator G. Therefore,
we can simulate the reduction by simply answering all the queries by saying “No”; hence such a
reduction can be simulated in BPP.

In general, we cannot hope that supp(Q) is small enough. To generalize the observation above,
let us recall the notion of α-heaviness [BT06]: We say that a query q is α-heavy (with respect
to Q) if the query q is α times more likely to be sampled under Q than the uniform distribution
on {0, 1}|q|; that is, Prw∼Q[w = q] ≥ α2−|q|. Now we define our new oracle R2 := {0, 1}∗ \ { q ∈
{0, 1}∗ | q : α-heavy }\Im(G), which can be again shown to avoid G because the fraction of α-heavy
queries is at most 1/α (� 1 ).

The problem now is that it is difficult to simulate the new oracle R2; it appears that, given a

query q, we need to test whether q
?
∈ Im(G), which is not possible in AM∩coAM. However, it turns

out that we do not need to test it, as we explain next: Observe that the size of Im(G) is very small; it
is at most 2s(`)

(
� 2`

)
. Thus, the probability that a query q is in Im(G) and q is not α-heavy (i.e.,

q is rarely queried) is at most α ·2s(`)−`, where ` is the length of q. As a consequence, the reduction
cannot “distinguish” the oracle R2 and a new oracle R3 := {0, 1}∗ \ { q ∈ {0, 1}∗ | q : α-heavy };
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hence we can simulate the reduction if, given a query q, we are able to decide whether q
?
∈ R3 in

AM ∩ coAM.
This task, however, still appears to be difficult for AM∩ coAM; indeed, at this point, Gutfreund

and Vadhan [GV08] used the fact that the approximate counting is possible in BPPNP, and thereby
simulated the oracle R3 by BPPNP.

Our main technical contribution is to develop a way of simulating the reduction to R3. First,
note that the lower bound protocol of Goldwasser and Sipser [GS86] enables us to give an AM
certificate for α-heaviness; we can check, given a query q, whether q is α(1 + ε)-heavy or α-light for
any small error parameter ε > 0. Thus, we have an AM protocol for {0, 1}∗ \R3 for every query q
(except for α(1± ε)-heavy and light queries).

If, in addition, we had an AM protocol for R3, then we would be done; unfortunately, it does
not seem possible in general. The upper bound protocol of Fortnow [For89] does a similar task,
but the protocol can be applied only for a limited purpose: we need to keep the randomness used
to generate a query q ∼ Q from being revealed to the prover. When the number of queries of the
reduction is limited to 1, we may use the upper bound protocol in order to give an AM certificate for
R3; on the other hand, if the reduction makes two queries (q1, q2) ∼ Q, we cannot simultaneously
provide AM certificates of the upper bound protocol for both of q1 and q2, because the fact that
q1 and q2 are sampled together may reveal some information about the private randomness. To
summarize, the upper bound protocol works only for the marginal distribution of each query, but
does not work for the joint distribution of several queries.

That is, what we can obtain by using the upper bound protocol is information about each query.
For example, the heavy-sample protocol of Bogdanov and Trevisan [BT06] (which combines the
lower and upper bound protocol and sampling) estimates, in AM ∩ coAM, the probability that a
query q sampled from Q is α-heavy.

Our idea is to overcome the difficulty above by generalizing the Feigenbaum-Fortnow proto-
col [FF93]. Feigenbaum and Fortnow developed an AM ∩ coAM protocol that simulates a non-
adaptive reduction to an NP oracle R, given as advice the probability that a query is a positive
instance of R. We generalize the protocol in the case when the oracle {0, 1}∗ \ R3 is solvable by
AM on average (which can be done by the lower bound protocol [GS86]), and given as advice the
probability that a query q is in {0, 1}∗ \R3 (which can be estimated by the heavy-sample protocol
[BT06]):

Theorem 4 (Generalized Feigenbaum-Fortnow Protocol; informal). Suppose that M is a random-
ized polynomial-time nonadaptive reduction to oracle R whose queries are distributed according to
Q, and that R is solvable by AM on average (that is, there exists an AM protocol ΠR such that,
with probability 1 − 1/poly(n) over the choice of q ∼ Q, the protocol ΠR computes R on input q).
Then, there exists an AM ∩ coAM protocol ΠM such that, given a probability p∗ ≈ Prq∼Q[q ∈ R] as
advice, the protocol ΠM simulates the reduction M with probability at least 1− 1/poly(n).

On the Case of Adaptive Reductions. We mention that Theorem 1 cannot be extended to the
case of adaptive reductions. Indeed, Trevisan and Vadhan [TV07] constructed an exponential-time
computable pseudorandom generator based on the intractability of some PSPACE-complete prob-
lem, and its security reduction is black-box in the sense of Theorem 1 and adaptive. If Theorem 1
could be extended to the case of adaptive reductions, we would obtain PSPACE = AM, which is
unlikely to be true.
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1.7 Lower Bounds

Theorem 1 leads us to the natural question whether the upper bound is tight. We present
evidence that our two types of simulation algorithms are nearly tight.

1.7.1 On the AM ∩ coAM-type Simulation Algorithms

In Appendix A, we observe that the SZK-hardness of MCSP [AD17] also holds for an average-
case version of MCSP:

Theorem 5. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint = {Gint

n : {0, 1}nε →
{0, 1}n}n∈N. Then, SZK ⊆ BPPR.

The reduction of Theorem 5 is adaptive because of the use of [HILL99]. We conjecture that
SZK ⊆

⋂
R BPPR‖ , which implies that the AM ∩ coAM upper bound of Theorem 1 cannot be

significantly improved. While we were not able to obtain nonadaptive reductions in the general case,
we show in Appendix A that the problem of factoring the product of two primes is nonadaptively
reducible to R.

Theorem 6. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint = {Gint

n : {0, 1}nε →
{0, 1}n}n∈N. Then, factoring the product of two primes can be done in ZPPR‖ .

1.7.2 On the Sp
2-type Simulation Algorithms

Our Sp
2-type simulation algorithm is in fact completely tight in a certain setting. Let G be

a universal Turing machine. We consider an exponential-time analogue of Theorem 1 when the

reduction can make only short queries. Specifically, for an oracle R, denote by EXPR
≤poly

the class

of languages that can be computed by a 2n
O(1)

-time algorithm that can query q
?
∈ R of length

≤ nO(1), on inputs of length n. (We note that all the queries of polynomial length can be asked
by an exponential-time reduction, and thus the adaptivity does not matter here.) We show that

the computational power of EXPR
≤poly

where R is an arbitrary dense subset of Kolmogorov-random
strings (i.e., R avoids G) is exactly equal to the exponential-time analogue of Sp

2 .

Theorem 7 (informal). Fix any universal Turing machine U . Then we have⋂
R : 1

2
-avoids U

EXPR
≤poly

=
⋂

R : 1
2
-avoids U

BPEXPR
≤poly

= Sexp
2 .

Here R≤poly means that the length of queries is restricted to be at most a polynomial in the input
length. We also have EXPNP ⊆

⋂
R SR2 ⊆ Sexp

2 .

Previously, Allender, Friedman and Gasarch [AFG13] showed that black-box BPP reductions to
any avoiding oracle can be simulated in EXPSPACE. Theorem 7 significantly improves their upper
bound to Sexp

2 .
Despite the fact that the set of Kolmogorov-random strings is not computable, Theorem 7 gives

a surprising connection between efficient reductions to any dense subset of Kolmogorov-random
strings and a complexity class. Such a characterization was sought after in yet another line of
work, as we review below.
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1.8 Reduction to the Set of Kolmogorov-Random Strings

There is a clear relationship between Kolmogorov-randomness and pseudorandomness, as ex-
plored by Allender, Buhrman, Koucký, van Melkebeek, and Ronneburger [ABK+06b]: Any string
generated by a computable process has low Kolmogorov complexity, and thus the set of Kolmogorov-
random strings serves as a distinguisher for any computable hitting set generator; in particular, they
proved a curious inclusion that PSPACE ⊆ PRKU . Here, RKU := {x ∈ {0, 1}∗ | KU (x) ≥ |x|/2 }
is the set of random strings with respect to KU . Similarly, Allender, Buhrman, Koucký [ABK06a]
showed that NEXP ⊆ NPRKU ; Buhrman, Fortnow, Koucký, and Loff [BFKL10] showed that

BPP ⊆ P
RKU
‖ .

Note that since the set of Kolmogorov-random strings is not computable, it is absurd to hope
that efficiently computable complexity classes could be characterized in terms of efficient reductions
to RKU . Surprisingly, it was shown by Allender, Friedman, and Gasarch [AFG13] (and later
improved by Cai, Downey, Epstein, Lempp, and Miller [CDE+14]) that when the intersection is
taken over all prefix-free universal Turing machines U , there is a computable upper bound:

Theorem 8 ([BFKL10, AFG13, CDE+14]). BPP ⊆
⋂
U P

RKU
‖ ⊆ PSPACE, where the intersection

is taken over all prefix-free universal Turing machines.

For some technical reasons, the upper bounds of [AFG13, CDE+14] are known to hold only for
prefix-free universal Turing machines. However, a similar upper bound can be obtained for usual
universal Turing machines by imposing a super-constant minimum query length restriction on
reductions [HK18].

At this point, a natural question arises: What is the exact computational power of RKU under
polynomial-time nonadaptive reductions? Intuitively, any polynomial-time nonadaptive reduction
cannot make any use of the set of Kolmogorov-random strings of length larger than O(log n),
because the Kolmogorov complexity of any query that the reduction can make on input 1n is at most
O(log n). It was argued in [ABFL14] that, intuitively, short queries to Kolmogorov-random strings
could only be used as a source of pseudorandomness. Allender [All12] thus explicitly conjectured
that the lower bound of Theorem 8 is exactly tight, and then a fair amount of effort has been made
to verify the conjecture.

Conjecture 9 ([BFKL10, All12, ADF+13, ABFL14, HK18]). BPP =
⋂
U P

RKU
‖ .

Beyond its curiosity, such a characterization might enable us to study BPP by using the tech-
niques about Kolmogorov complexity. Moreover, Conjecture 9 is interesting from the point of view
of the study of MCSP: In some technical sense, Kolmogorov complexity can be seen as the min-
imum size of a circuit with oracle access to the halting problem (cf. [ABK+06b]); thus RKU can
be regarded as a computability-theoretic analogue of MCSP. In light of this, since Conjecture 9
shows non-NP-hardness results about RKU under nonadaptive polynomial-time reductions (unless
NP ⊆ BPP), it would give us some new insights about NP-hardness of MCSP, which has been a
focus of recent work on MCSP (e.g. [MW17, HW16, HP15, AHK17, AH17]). We refer the reader
to the survey of Allender [All17] for detailed background on MCSP and RKU .

1.9 Evidence against Conjecture 9

In this work, we disprove Conjecture 9 under the assumption that the exponential-time hierarchy

does not collapse to BPEXP. Our main new insight is to consider a sparse language in
⋂
U P

RKU
‖ ,

10



or in other words, an exponential time analogue of Theorem 8; we obtain the following (the upper
bound is from [AFG13, CDE+14]).

Theorem 10. EXPH ⊆
⋂
U PHRKU ⊆ EXPSPACE.

In particular, by a simple padding argument, it implies that
⋂
U P

RKU
‖ 6= BPP unless EXPH =

BPEXP. We emphasize that Theorem 10 crucially makes use of the fact that the set of Kolmogorov-
random strings serves not just as a distinguisher for hitting set generators; indeed, otherwise, by
Theorem 7, we would obtain the unexpected collapse of EXPH to Sexp

2 . In particular, Theorem 10
shows that the intuition that nonadaptive polynomial-time reductions could exploit RKU only as a
source of pseudorandomness is wrong.

We mention that by translating Theorem 10 into a polynomial-time analogue, we obtain that
any language in PH-uniform P/poly is computable by a quasipolynomial-time algorithm with oracle
access to RKU . We leave it as an open question to improve the running time of this reduction to
polynomial time.

Organization. The rest of this paper is organized as follows. After reviewing necessary background
in Section 2, we show that a reduction only with short queries can be simulated by Sp

2 in Section 3.
We present the generalized Feigenbaum-Fortnow protocol in Section 4; then we show a proof of
Theorem 1 in Section 5. In Section 6, we show the lowness property of GapMCSP. We investigate
the computational power of the set of Kolmogorov-random strings in Section 7.

2 Preliminaries

By a string we mean a binary string, i.e., an element of {0, 1}∗, and by a language we mean a
set of strings. We identify a language L ⊆ {0, 1}∗ with its characteristic function. For a language
A and ` ∈ N, let A=` := A ∩ {0, 1}`. Let [n] := {1, . . . , n} for n ∈ N.

Interactive Proof Systems. AM is the class of languages L that can be accepted by some
polynomial-time two-round Arthur-Merlin protocol; that is, there exists a polynomial-time Turing
machine V (called an AM verifier) such that

• (Completeness) if x ∈ L then Prr[V (x, y, r) = 1 for some y] ≥ 2
3 , and

• (Soundness) if x 6∈ L then Prr[V (x, y, r) = 1 for some y] ≤ 1
3 .

For our purpose, it is convenient to use the following characterization of AM ∩ coAM.

Fact 11. Let L ⊆ {0, 1}∗. Then L ∈ AM∩coAM if and only if there exists a randomized polynomial-
time verifier V of a private-coin constant-round interactive proof system such that, for any input
x ∈ {0, 1}∗,

• (Completeness) there exists a prover P such that V outputs L(x) by communicating with P
with probability at least 2

3 , and

• (Soundness) for any prover P , V outputs L(x) or ⊥ with P with probability at least 2
3 .

That is, the verifier outputs a correct answer L(x) when interacting with an honest prover, and it
does not output the wrong answer 1−L(x) for any cheating prover, with high probability. The fact
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above follows from the transformation from public coin protocols to private coin protocols [GS86],
and the AM hierarchy collapses [Bab85].

Circuits. We will use a circuit in order to make it easy to compose several protocols3. Usually,
a circuit takes a string of some fixed length as input and outputs a string of some fixed length.
For our purpose, it is convenient to extend this usual notion of circuit: By using some encoding,
we regard circuits as taking a string of length at most l for some l ∈ N, and outputting a string
(not necessarily of fixed length). We regard a circuit as computing a function from {0, 1}∗ to
{0, 1}∗ ∪ {“undefined”} such that the function outputs “undefined” on inputs of length > l.

Nonadaptive Reductions. A polynomial-time nonadaptive reduction is a polynomial-time oracle
Turing machine whose possible queries can be computed without access to an oracle in polynomial
time. For simplicity, we assume without loss of generality that, for all inputs of the same length, the
reduction makes the same number m of queries (by adding dummy queries if necessary). For any
oracle R ⊆ {0, 1}∗, we denote by BPPR‖ the class of languages from which there exists a randomized
polynomial-time nonadaptive reduction. For a nonadaptive reduction M , we denote by MR(x) the
output of the reduction given an oracle R ⊆ {0, 1}∗ and input x ∈ {0, 1}∗.

Query Distribution. We can modify a randomized nonadaptive reduction M so that the marginal
distribution of each query of M is identical; that is, for any query q ∈ {0, 1}∗, the probability that
q is sampled as the ith query of M is the same for all i ∈ [m]. To achieve this, we simply modify M
as follows: it generates a permutation π : [m] → [m] uniformly at random, runs M(x) to make m
queries q1, . . . , qm, asks qπ(i) as the ith query to get an answer ai from an oracle, and resumes the
computation of M(x) to get the decision on x by supplying aπ−1(1), . . . , aπ−1(m) as oracle answers.
It is then easy to see that in the new query machine the ith query distribution is identical for all
i ∈ [m]. By the modification above, we can take a single query distribution Qx such that each
query of M(x) is distributed according to Qx.

Let Q be a distribution over {0, 1}∗. We use the notation q ∼ Q to indicate that a random
variable q is sampled from Q. For a set A, we use the notation a ∈R A to indicate that a random
variable a is sampled from the uniform distribution over A. For a string x ∈ {0, 1}∗, let Q(x)
denote Prq∼Q[q = x]. For any α > 0, a string q ∈ {0, 1}∗ of length ` ∈ N is called α-heavy (with
respect to Q) if Q(q) ≥ α2−`; otherwise (i.e., Q(q) < α2−`), it is called α-light.

Concentration Inequality. We will use a standard concentration inequality:

Lemma 12 (Hoeffding’s inequality [Hoe63]). For any independent random variables X1, . . . , Xn ∈
[0, 1] and any t ≥ 0, we have Pr [|

∑n
i=1(Xi − E[Xi])| ≥ nt] ≤ 2 exp(−2nt2).

Description Interpreter (Hitting Set Generator). Throughout this paper, we use ` to denote
a size parameter for discussing oracles that avoid simple strings. We consider any family of functions
G = {G` : {0, 1}s(`) → {0, 1}`}`∈N that is regarded as a generator of strings from their shorter
descriptions; here, s : N → N denotes a function that determines the seed length of the generator.
We assume that s(`) ≤ ` and, for simplicity, that ` − s(`) is nondecreasing. We call such family
G of functions a description interpreter. We measure the time complexity of G with respect to its
output length; that is, we say that G is O(tG(`))-time computable if there exists a deterministic
algorithm that computes, for any given description u ∈ {0, 1}s(`) and ` ∈ N, a length ` string

3The reader may simply regard a circuit as a Turing machine with an appropriate description to which one can
embed some additional information.
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w = G`(u) in time O(tG(`)). Let Im(G`) denote the range of G`; that is, Im(G`) = {w ∈ {0, 1}` |
w = G`(u) for some u ∈ {0, 1}s(`) }. Also let Im(G) := ∪`∈NIm(G`). We regard a description

interpreter G as a hitting set generator, and define the standard notion of breaking G as follows.

Definition 13. Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any description interpreter. For any
parameter γ : N→ [0, 1), a set R of strings is called a γ-avoiding set for G (or, R γ-avoids G) if

1. R ∩ Im(G) = ∅, and

2. Prw∈R{0,1}` [w ∈ R ] ≥ γ(`) for all ` ∈ N.

Similarly, for any fixed length ` ∈ N, we say that R is a γ-avoiding set at length ` for G if
R=` ∩ Im(G) = ∅ and Prw∈R{0,1}` [w ∈ R] ≥ γ(`).

For simplicity, we always assume that a parameter γ satisfies γ(`) ≤ 1 − 2s(`)−` for all ` ∈ N, as
otherwise γ-avoiding sets may not exist. A set R satisfying the second condition above is called
γ-dense. Thus, a γ-avoiding set for G is simply a subset of {0, 1}∗ \ Im(G) that is γ-dense. In the
context where G is fixed, we omit specifying G and simply say that R is a γ-avoiding set.

Definition 14 (Black-box reduction to γ-avoiding oracles [GV08]). Let G = {G` : {0, 1}s(`) →
{0, 1}`}`∈N be any description interpreter. Let L ⊆ {0, 1}∗ be a language. A randomized nonadaptive
oracle machine M is called a black-box reduction from L to any γ-avoiding oracle of G if, for any
γ-avoiding oracle R for G and any x ∈ {0, 1}∗, we have

Pr
[
MR(x) = L(x)

]
≥ 2

3
, (1)

where the probability is taken over the internal randomness of M .

Remark. By the standard amplification technique, the success probability 2
3 in Definition 14 can

be boosted to 1− 2−|x|
c

for any constant c.

We stress that the definition above requires that there exists a single machine that works for
every γ-avoiding oracle; on the other hand, Theorem 1 states that, if, for every γ-avoiding oracle
R, there exists a nonadaptive reduction MR from L to R, then L ∈ AM∩ coAM. That is, the order
of the quantifier is reversed; nonetheless, a diagonalization argument enables us to establish the
equivalence:

Proposition 15. Let G be any description interpreter, γ : N → [0, 1) be any parameter, and
L ⊆ {0, 1}∗ be a language. The following are equivalent:

1. L ∈
⋂

R : γ-avoids G

BPPR‖ .

2. There exists a randomized polynomial-time nonadaptive black-box reduction from L to any
γ-avoiding oracle of G.

Proof. The direction from the second item to the first item is obvious. We prove below the contra-
positive of the other direction.

Suppose that, for any randomized nonadaptive oracle machine M , there exists some γ-avoiding
oracle RM of G such that PrM

[
MR(x) = L(x)

]
< 2

3 for some x ∈ {0, 1}∗. We claim that there

exists some single γ-avoiding oracle R of G such that L 6∈ BPPR‖ .
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To this end, let {Me}e∈N be the set of all randomized nonadaptive oracle machines. We will
construct some γ-avoiding oracle Re and input xe (and `e ∈ N) by induction on e ∈ N, so that Me

given oracle Re+1 fails to compute L on input xe; then we will define R :=
⋃
e∈NRe. Let us start

with R0 := ∅ and `0 := 0.
At stage e ∈ N, we claim that there exists some γ-avoiding oracle R′e+1 ⊆ {0, 1}∗ and some

input xe ∈ {0, 1}∗ such that

• Pr
[
M

R′e+1
e (xe) = L(xe)

]
< 2

3 , and

• q ∈ Re if and only if q ∈ R′e+1 for any string q of length < `e.

Indeed, for any oracle Q, let Q′ := { q ∈ Q | |q| ≥ `e }∪{ q ∈ Re | |q| < `e }. Consider a randomized

nonadaptive oracle machine M ′e such that M ′Qe simulates MQ′
e ; that is, M ′e is hardwired with the

set { q ∈ Re | |q| < `e }, and simulates Me and answer any query q of length < `e by using
the hardwired information. By our assumption, there exists some γ-avoiding oracle R̂e+1 of G

such that Pr
[
M
′R̂e+1
e (xe) = L(xe)

]
< 2

3 for some xe ∈ {0, 1}∗; by the definition of M ′e, we obtain

Pr
[
M

R′e+1
e (xe) = L(xe)

]
< 2

3 for R′e+1 := { q ∈ R̂e+1 | |q| ≥ `e } ∪ { q ∈ Re | |q| < `e }, which

is again γ-avoiding G. This completes the proof of the claim above. Now define `e+1 ∈ N as a
large enough integer so that `e+1 ≥ `e and the machine Me on input xe does not query any string
of length ≥ `e+1, and define an oracle Re+1 := { q ∈ R′e+1 | |q| < `e+1 }, which completes the
construction of stage e ∈ N.

Define R :=
⋃
e∈NRe, which γ-avoids G by the construction above. By the choice of (`e)e∈N,

we have

Pr
[
MR
e (xe) = L(xe)

]
= Pr

[
MRe+1
e (xe) = L(xe)

]
<

2

3
,

for every randomized nonadaptive oracle machine Me. Thus L 6∈ BPPR‖ . �

3 Simulating Short Queries by Competitive Prover Systems

We first show that a reduction that makes only short queries can be simulated by Sp
2 .

Theorem 16 (Sp
2 Simulation of Short Queries). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any

description interpreter and γ : N → [0, 1) be a parameter such that γ(`) ≤ 1 − 2s(`)−`+1 for all
large ` ∈ N. Suppose that there exists a randomized polynomial-time black-box reduction M from
a language L to any γ-avoiding oracle for G such that the length of any query of M is at most
O(log n) for every input of length n. Then L ∈ Sp

2.

Proof. The idea is that two competitive provers send the image Im(G) of G as a certificate. Given
two possible images I0, I1 ⊆ {0, 1}∗, R := {0, 1}∗ \ I0 \ I1 is an avoiding set for G. Moreover, since
|Im(G)| is small, the set R is dense enough. We then derandomize a BPP computation by using
the power of Sp

2 .4 (Recall that BPP ⊆ Sp
2 [Can96, RS98].) Details follow.

Let c log n be an upper bound on the length of queries that M makes. Our Sp
2 algorithm is as

follows: Fix any input x of length n. We number the two competitive provers 0 and 1. The ith prover

4Alternatively, we may use the result of Russell and Sundaram [RS98] showing that S2 ·BP ·P = Sp
2 in a black-box

way.
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(i ∈ {0, 1}) sends, for each ` ≤ c log n, a subset Ii,` ⊆ {0, 1}` of size at most 2s(`); an honest prover
sets Ii,` := Im(G`). Define Ii :=

⋃
`≤c logn Ii,`. Note that such subsets can be encoded as a string of

polynomial length. Each prover also sends a list of randomness ri1, · · · , rit ∈ {0, 1}m to be used by
the reduction M , where t is a parameter chosen later, and m is the length of a coin flip used by M .
The verifier sets R := {0, 1}∗ \ I0 \ I1, and accept if and only if Prj,k∈R[t][M

R(x; r0
j ⊕ r1

k) = 1] > 1
2 ,

where MR(x; r) denotes the output of the reduction when its coin flip is r, and ⊕ denotes the
bit-wise XOR. Note that the running time of the verifier is at most a polynomial in n and t. Below
we establish the correctness of this algorithm for some t = poly(n).

We focus on the case when the 0th prover is honest; thus I0,` := Im(G`) for each ` ≤ c log n.
Since |I1,`| ≤ 2s(`), the number of strings of length ` in R(I1) := {0, 1}∗ \ I0 \ I1 is at least
2` − |I0,`| − |I1,`| ≥ 2`γ(`) (here we write R(I1) instead of R to emphasize that R depends on
I1); thus R(I1) is a γ-avoiding oracle. By the definition of the reduction, for every I1 we have
Prr∈R{0,1}m [MR(I1)(x; r) = L(x)] ≥ 2

3 .
We use the notion of cover introduced by Canetti [Can96]: A sequence r1, · · · , rt ∈ {0, 1}m is

called a cover of a subset A ⊆ {0, 1}m if for all r ∈ {0, 1}m, Prj∈R[t][rj ⊕ r ∈ A] > 1
2 . Define

A(I1) := { r ∈ {0, 1}m | MR(I1)(x; r) = L(x) }. We claim that by a probabilistic argument there
exists a sequence r1, · · · , rt ∈ {0, 1}m that covers A(I1) for every I1: Fix any I1 and r ∈ {0, 1}m.
Pick r1, · · · , rt ∈R {0, 1}m. For any j ∈ [t], the probability that rj ⊕ r ∈ A(I1) is at least 2

3 .
Thus by a concentration bound (Lemma 12), the probability that at most a 1

2 -fraction of j ∈ [t]
satisfies rj ⊕ r ∈ A(I1) is at most exp(−Ω(t)). By the union bound over all r, the probability that
a sequence r1, · · · rt does not cover A(I1) is at most 2m · exp(−Ω(t)). By the union bound over all
I1, the probability that there exists some I1 such that A(I1) is not covered by r1, · · · , rt is at most
2n

c+m · exp(−Ω(t)). Therefore, for t := Θ(nc + m), there exists a sequence r1, · · · , rt that covers
A(I1) for every I1. The 0th honest prover sends this sequence r1, · · · , rt to the verifier as r0

1, · · · , r0
t ,

in which case the verifier outputs L(x) correctly because Prj,k∈R[t][M
R(I1)(x; r0

j ⊕ r1
k) = L(x)] > 1

2 ,

for every I1 and every r1
1, · · · , r1

t . �

By a simple padding argument, Theorem 16 gives us the upper bound claimed in Theorem 7.
We defer a proof of the matching lower bound to Section 7.

Theorem 17. Take any description interpreter G and any function γ satisfying the hypothesis of
Theorem 16. Then, ⋂

R : γ-avoids G

BPEXPR
≤poly ⊆ Sexp

2 .

Here R≤poly means that the length of queries is restricted to be at most a polynomial in an input
length.

Proof. Let L ∈
⋂
R : γ-avoids G BPEXPR

≤poly
. We first note that, as in Proposition 15, the order

of quantifiers can be swapped; indeed, the proof of Proposition 15 does not rely on any specific
property of BPP‖ reductions; hence, the same proof works for other notions of reduction. Thus,
there exists some randomized t(n)-time black-box reduction M from a language L to any γ-avoiding
oracle for G such that the length of any query that M makes on input of length n is at most log t(n),

for some t(n) = 2n
O(1)

. Let L′ := {x01t(n) | x ∈ L } be a padded version of L. Applying Theorem 16
to L′, we obtain L′ ∈ Sp

2 , from which it follows that L ∈ Sexp
2 . �
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4 Generalized Feigenbaum-Fortnow Protocol

In this section, we present one of the main building blocks of our proof. Our protocol is inspired
by the protocol of Feigenbaum and Fortnow [FF93] (and its description by Bogdanov and Trevisan
[BT06]) for simulating some type of randomized nonadaptive reduction M to an NP problem R.
Suppose that for a given input x, M makes m nonadaptive queries q1, . . . , qm under a certain
distribution Q. In the Feigenbaum-Fortnow protocol, a verifier asks a prover to give witnesses to
all positive instances among them. The prover cannot give a witness to a negative instance (hence,
it cannot cheat the verifier by saying “yes” to a negative instance) while it may try to cheat the
verifier by not giving a witness to some of the positive instances of q1, . . . , qm. If, however, the verifier
knows the proportion p∗ of positive instances among queries under the distribution Q, then it may
detect wrong negative answers from the prover if the number of positive answers is much smaller
than p∗m. More specifically, the Feigenbaum-Fortnow protocol runs as follows. It first generates K
tuples of m nonadaptive queries {(qk1, . . . , qkm)}1≤k≤K by running M(x) independently K times.
By a concentration inequality, the number of positive instances among all Km queries should be

in the range of m ·
(
p∗K ±O(

√
K)
)

with high probability; thus, if the prover gives “yes” answers

(with witnesses) much smaller than m ·
(
p∗K −O(

√
K)
)

, then the verifier stops the computation

immediately, suspecting that the prover is not honest. On the other hand, if the number of positive
answers to those queries is close to p∗Km, then the number of positive instances on which the
prover can cheat is at most O(m

√
K), with high probability. We choose K large enough so that

O(m
√
K) � K; then the majority of K tuples are answered correctly by the oracle, and we can

use them to determine the result of MR(x) by taking the majority vote of the results of M(x)
computed by using prover’s answers to each tuple of queries (qk1, . . . , qkm).5

We generalize the Feigenbaum-Fortnow protocol so that a new protocol is capable of dealing
with a reduction to a distributional AM problem R; that is, we show that, given any nonadaptive
reduction to some AM problem solvable on average and the proportion p∗ of positive instances as
advice, one can simulate the reduction in AM∩ coAM. In our protocol, we use Adleman’s trick (for
proving BPP ⊆ P/poly [Adl78]) to “derandomize” AM oracle so that we obtain a new NP oracle,
and then run the original Feigenbaum-Fortnow protocol. The following is the specification of the
generalized Feigenbaum-Fortnow protocol:

Inputs. A tuple (C, V, δ, p∗) such that:

• A randomized nonadaptive reduction C is given as a probabilistic circuit such that each query
of C is identically distributed to some distribution Q over {0, 1}∗, and the reduction always
makes exactly m queries. (We assume that an input to a reduction is hardwired into the
circuit C; thus C does not take any input other than random bits.)

• An AM verifier V is given as a circuit.

• An error parameter δ ∈
(
0, 1

2

)
is given in unary, and a probability p∗ ∈ [0, 1] is given in binary.

Promise. We assume that there exist some answer a ∈ {0, 1}, some oracle R ⊆ {0, 1}∗, and some
error parameters ε0, ε1, ε2 ∈ [0, 1] satisfying the following:

5We note that taking the majority is not necessary; instead, it suffices to pick k ∈R [K] and use the result.
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• PrC [CR = a] ≥ 1 − ε0. (That is, a is supposed to be the answer of the reduction C to the
oracle R.)

• The advice p∗ satisfies |p∗ − Prq∼Q[q ∈ R]| ≤ ε1.

• The distributional problem (R,Q) is “solvable by AM on average”: that is, define6

VYes := { q ∈ {0, 1}∗ | Pr
r

[V (q, y, r) = 1 for some y] ≥ 3/4 }, and

VNo := { q ∈ {0, 1}∗ | Pr
r

[V (q, y, r) = 0 for all y] ≥ 3/4 };

then we assume that Prq∼Q[q ∈ VYes ∪ VNo] ≥ 1− ε2 and VYes ⊆ R ⊆ {0, 1}∗ \ VNo.

Protocol.

1. (Preprocess of Verifier: Adleman’s trick) Let s be sufficiently large so that s > 20|V | and
s ≥ 20 log(1/δ) where |V | denotes the circuit size of V . Pick r1, . . . rs uniformly at random,
and share the random bits with the prover. Define a new circuit W by

W (x, y1, . . . , ys) := majority
i∈[s]

V (x, yi, ri).

In what follows, we call ȳ := (y1, . . . , ys) a certificate for W .

2. (Verifier) Let K := m2(1/δ)2 log(m/δ). Run C independently K times and obtain queries
(qk1, . . . , qkm) for each kth run of C (k ∈ [K]). Send these queries to the prover.

3. (Prover) For each (k, i) ∈ [K] × [m], send a certificate ȳki for W ; an honest prover sends, if
any, some certificate ȳki such that W (qki, ȳki) = 1.

4. (Verifier) Let a∗ki := W (qki, ȳki) ∈ {0, 1} for each (k, i) ∈ [K]× [m]. Verify that∑
1≤k≤K
1≤i≤m

a∗ki ≥ mp∗K − m
(

(ε1 + ε2)K +
√
K log(m/δ)

)
, (2)

and if not, output ⊥ and halt. Otherwise, pick k ∈R [K] uniformly at random and output the
kth run of the reduction of C assuming that the answers from the oracle are (ak1, . . . , akm).

Theorem 18 (Correctness of the Generalized Feigenbaum-Fortnow Protocol). Suppose that the
protocol above is given inputs satisfying the promise listed above. Then, the protocol satisfies the
completeness and soundness for error ε := ε0 + 2mε1 + 3mε2 + 3δ, described below:

• (Completeness) There exists a prover such that the verifier outputs a with probability at least
1− ε.

• (Soundness) For any prover, the verifier outputs a or ⊥ with probability at least 1− ε.

We prove this theorem by a sequence of claims below. The following claim follows from a
standard fact about amplification of the success probability of a randomized machine.

6As a circuit V outputs “undefined” if an input (q, y, r) is too long, the sets VYes, VNo of strings are finite.
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Claim 19 (Amplification and Adleman’s trick). With probability at least 1 − δ over the choice of
r1, . . . , rs, the following holds. For any query q ∈ VYes ∪ VNo,

• if q ∈ VYes then W (q, ȳ) = 1 for some certificate ȳ := (y1, . . . , ys), and

• if q ∈ VNo then W (q, ȳ) = 0 for any certificate ȳ := (y1, . . . , ys).

Proof. First, note that |VYes ∪ VNo| is at most 2s/20. Indeed, the circuit size of V is less than s/20,
and hence for any input q of length ≥ s/20, V is not defined; thus q 6∈ VYes ∪ VNo. That is, the
length of every query in VYes ∪ VNo is less than s/20.

Fix any q such that q ∈ VYes or q ∈ VNo; in the former case, let aq := 1 and aq := 0 otherwise.
Our claim is that maxȳW (q, ȳ) = aq. For each i ∈ [s], let Xi ∈ {0, 1} be the random variable (over
the random choice of r1, . . . , rs) such that Xi := 1 iff V (q, yi, ri) = 1 for some yi; in other words,
Xi := maxyi V (q, yi, ri) ∈ {0, 1}. Observe that

max
ȳ
W (q, ȳ) = max

ȳ
majority

i∈[s]
V (q, yi, ri) = majority

i∈[s]
max
yi

V (q, yi, ri) = majority
i∈[s]

Xi.

By the assumption on V , we have |E[Xi] − aq| ≤ 1
4 for any i ∈ [s]; hence, majorityi∈[s]Xi 6= aq

implies |1s
∑

i(Xi − E[Xi])| ≥ 1
4 . By Hoeffding’s inequality (Lemma 12),

Pr[max
ȳ
W (q, ȳ) 6= aq] ≤ Pr

[∣∣∣∣∣
s∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ s

4

]
≤ 2 exp

(
−2s (1/4)2

)
≤ 2−s/10.

Now, by the union bound over all q ∈ VYes ∪ VNo, the probability that there exists some q ∈
VYes ∪ VNo such that maxȳW (q, ȳ) 6= aq is at most |VYes ∪ VNo| · 2−s/10 ≤ 2−s/20 ≤ δ. �

For each (k, i) ∈ [K]× [m], define aki ∈ {0, 1} as aki := 1 if and only if W (qki, ȳ) = 1 for some
certificate ȳ. The honest prover sends a certificate for W (if any), and thus aki = a∗ki; on the other
hand, when communicating with a cheating prover, we have only a∗ki ≤ aki. The next claim shows
the sum of (aki) concentrates around its mean.

Claim 20 (Concentration). Under the event of Claim 19, with probability at least 1−δ, the following
holds: ∣∣∣∣∣∣∣∣

∑
1≤k≤K
1≤i≤m

aki −mKp∗

∣∣∣∣∣∣∣∣ ≤ m
(

(ε1 + ε2)K +
√
K log(m/δ)

)
.

Proof. Fix any i ∈ [m]. By the assumption on C, the queries q1i, . . . , qKi are independent and identi-
cally distributed according to Q; hence, a1i, . . . , aKi ∈ {0, 1} are also independent random variables.
The expectation E[aki] of these random variables is equal to Prq∼Q[W (q, ȳ) = 1 for some ȳ].

We claim that, for any (k, i) ∈ [K] × [m], the expectation E[aki] is equal to p∗ up to additive
error ε1 + ε2. Under the event of Claim 19, we have q ∈ VYes =⇒ ∃ȳ. W (q, ȳ) = 1 =⇒ q 6∈ VNo

for any q ∈ {0, 1}∗; hence,

Pr[q ∈ VYes] ≤ Pr[∃ȳ. W (q, ȳ) = 1] ≤ Pr[q 6∈ VNo]. (3)
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Similarly, since VYes ⊆ R ⊆ {0, 1}∗ \ VNo, we have

Pr[q ∈ VYes] ≤ Pr[q ∈ R] ≤ Pr[q 6∈ VNo]. (4)

Combining (3) and (4), we obtain

|Pr[q ∈ R]− E[aki]| ≤ Pr[q 6∈ VNo]− Pr[q ∈ VYes] ≤ ε2.

Therefore, |E[aki]− p∗| ≤ |E[aki]− Pr[q ∈ R]|+ |Pr[q ∈ R]− p∗| ≤ ε2 + ε1.
By Hoeffding’s inequality (Lemma 12), for each i ∈ [m],

Pr

[∣∣∣∣∣
K∑
k=1

(aki − E[aki])

∣∣∣∣∣ ≥√K log(m/δ)

]
≤ 2 exp(−2K log(m/δ)/K) ≤ δ/m.

By the union bound over all i ∈ [m], with probability at least 1− δ, we have∣∣∣∣∣
m∑
i=1

K∑
k=1

aki −mKp∗
∣∣∣∣∣ ≤

∣∣∣∣∣
m∑
i=1

K∑
k=1

(aki − E[aki])

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

K∑
k=1

(E[aki]− p∗)

∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣∣
K∑
k=1

(aki − E[aki])

∣∣∣∣∣+mK(ε1 + ε2)

≤ m
√
K log(m/δ) +mK(ε1 + ε2).

�

Now we are ready to bound the probability of completeness and soundness. Let E denote any
event (which is supposed to be the event that completeness or soundness does not hold); using
Claim 19 and 20, we will bound the probability in the following way:

Pr[E] ≤ 2δ + Pr[E ∧ (the event of Claim 19 holds) ∧ (the concentration of Claim 20 occurs) ].

That is, assuming that the events of Claim 19 and 20 happens, we will analyze the probability of
completeness and soundness.

Claim 21 (Completeness). The verifier outputs a with probability at least 1 − ε when interacting
with the honest prover.

Proof. The verifier does not output a only if

• the inequality (2) does not hold, or

• for a random k ∈R [K], the kth run of C is not correct.

The honest prover sets a∗ki := aki for any (k, i) ∈ [K]× [m]. Thus, under the assumption that the
concentration of Claim 20, the inequality (2) is satisfied; that is, the verifier does not output ⊥,
and hence it remains to bound the probability that, for a random k ∈R [K], the kth run of C is
not correct.

The kth run of C is not correct only if the reduction itself makes a mistake, or there exists some
i ∈ [m] such that a∗ki 6= R(qki) (which happens only if qki 6∈ VYes ∪ VNo for the honest prover). The
former probability is at most ε0, and the latter is at most mε2.

Overall, the verifier outputs a with probability at least 1− 2δ − ε0 −mε2 ≥ 1− ε. �
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Claim 22 (Soundness). For any cheating prover, the verifier outputs a or ⊥ with probability at
least 1− ε.

Proof. The verifier outputs the wrong answer 1− a only if for a random k ∈R [K], the kth run of
C is not correct.

Recall that we have a∗ki ≤ aki for any (k, i) ∈ [K]× [m] no matter how a prover tries to cheat.
The main difference between the proof of Claim 21 is that, for a random choice k ∈R [K] of the
verifier, a prover may be cheating so that a∗ki < aki for some i ∈ [m]; as a consequence, the kth run
of C is more likely to be wrong. On the other hand, the number of (k, i) ∈ [K] × [m] such that
a∗ki < aki is small: Indeed, under the event that the verifier does not output ⊥, the inequality (2)

holds, and we also have the concentration of Claim 20; hence, we obtain
∑K

k=1

∑m
i=1(aki − a∗ki) ≤

2m
(

(ε1 + ε2)K +
√
K log(m/δ)

)
. Thus, the probability that a∗ki < aki for some i ∈ [m] over the

random choice of k ∈R [K] is at most 2m(ε1 + ε2) +m
√

log(m/δ)/K ≤ 2m(ε1 + ε2) + δ.
Overall, the probability that the verifier outputs the wrong answer is at most (2δ+ ε0 +mε2) +

(2m(ε1 + ε2) + δ) ≤ ε. �

Proof of Theorem 18. Immediate from Claim 21 and 22. �

Remark. The generalized Feigenbaum-Fortnow protocol above also works for any reduction that
does not necessarily output a Boolean value (e.g., a reduction solving a search problem), with a
suitable modification on the completeness and soundness.

5 Simulating Long Queries by AM ∩ coAM

Using the generalized Feigenbaum-Fortnow protocol, we prove our main result:

Theorem 23 (Main; the formal version of Theorem 1). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N
be any (not necessarily computable) description interpreter and γ : N→ [0, 1) be a parameter such
that

• there exists a constant ε > 0 such that s(`) ≤ (1− ε)` for all large ` ∈ N, and

• there exists a constant c > 0 such that γ(`) ≤ 1− `−c for all large ` ∈ N.

Then, ⋂
R : γ-avoids G

BPPR‖ ⊆ NP/poly ∩ coNP/poly ∩ SNP2 .

Moreover, if G can be computed in 2O(`) time, then we also have⋂
R : γ-avoids G

BPPR‖ ⊆ AM ∩ coAM.

As shown in Section 3, reductions that make only short queries can be simulated in Sp
2 . On the

other hand, in this section, we show that reductions that make only long queries can be simulated in
AM∩coAM. The advice in Theorem 23 is used in order to give the characteristic function of Im(G)
for all strings of length O(log n), under which situation the rest of reductions can be simulated in
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AM ∩ coAM ⊆ NP/poly ∩ coNP/poly. If a hitting set generator is computable in exponential time,
then the advice can be computed in polynomial time and thus can be removed. Without any advice
and without any computational bound on a hitting set generator, the reduction can be simulated
in SNP

2 , which is a complexity class that can simulate AM ∩ coAM and Sp
2 .

Therefore, the main ingredient of the main theorem is to simulate long queries in AM∩ coAM:

Theorem 24 (AM Simulation of Long Queries). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any
description interpreter. Let t, θ, α0 : N→ N be efficiently computable functions. Suppose that there
exists a randomized t(n)-time nonadaptive black-box reduction M from a language L to any γ-
avoiding oracle for G such that the length of any query that M makes on input length n is at least
θ(n). Suppose also that, for all large n ∈ N,

• α0(n) ≤ 1
16e3t(n)2

2θ(n)−s(θ(n)), and

• α0(n) ·
(
1− 2s(`)−` − γ(`)

)
≥ 1 for all ` ∈ N such that θ(n) ≤ ` ≤ t(n).

Then, there exists an AM ∩ coAM protocol running in t(n)O(1) time that decides L.

We first observe that this is sufficient to prove Theorem 23.

Proof of Theorem 23 from Theorem 24. Take any language L ∈
⋂
R : γ-avoids G BPPR‖ . By Propo-

sition 15, we have a randomized t(n)-time nonadaptive black-box reduction M from L to any
γ-avoiding oracle for G, where t(n) = nO(1). By the assumption on the seed length s, we have
ε` ≤ `− s(`) for all large ` ∈ N. For any ` ∈ N between θ(n) and t(n), we have 1− 2s(`)−` − γ(`) ≥
`−c − 2−ε` � `−c/2; hence, by defining α0(n) := 2t(n)c, we obtain α0(n) ≥

(
1− 2s(`)−` − γ(`)

)−1

for all ` between θ(n) ≤ ` ≤ t(n). On the other hand, 2θ(n)−s(θ(n))/t(n)2 ≥ 2εθ(n)/t(n)2; thus, for
θ(n) := ((c+ 2 + 1) log t(n))/ε, we obtain α0(n)� 2θ(n)−s(θ(n))/16e3t(n)2 for all large n.

The assumptions about parameters of Theorem 24 are thus satisfied for θ(n) = O(log t(n)). In
particular, we can encode the characteristic function of the set ∪`≤θ(n)Im(G`) as an advice string of

length t(n)O(1). Given such an advice, we can modify the reduction M so that M does not make any
query q of length at most θ(n): Indeed, if the original reduction makes a query q of length ≤ θ(n),
then we modify the reduction so that q is answered according to whether q ∈ {0, 1}∗ \ Im(G|q|),
which can be decided by using the advice. After this modification, by using Theorem 24, M can
be simulated in AM ∩ coAM. We thus obtain L ∈ AM/poly ∩ coAM/poly = NP/poly ∩ coNP/poly.

Moreover, if G is computable in 2O(`), then the advice can be computed in polynomial time:
Indeed, by an exhaustive search, one can compute Im(G`) in time 2O(s(`)) · 2O(`) = 2O(`) ≤ t(n)O(1)

for all ` ≤ θ(n).
Finally, we sketch an SNP2 algorithm for deciding L when G is not necessarily computable and

no advice is given: As in Theorem 16, each competitive prover sends a verifier all the strings in
Im(G) of length at most θ(n). Let I0, I1 ⊆ {0, 1}∗ be the claimed image of G. Then we modify the
reduction M so that any short query is answered according to {0, 1}∗ \ I0 \ I1. Now by applying
Theorem 24, we obtain an AM algorithm deciding L. In particular, there exists an NP machine
V such that Prr[V (x, r) = L(x)] ≥ 2

3 for every input x. This randomized computation can be
derandomized as in Theorem 16, by requesting each competitive prover to send a sequence of coin
flips r1, · · · , rs. Thus we obtain L ∈ SNP2 . �
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In the rest of this section, we show how to simulate long queries by a constant-round interactive
proof system (i.e., a proof of Theorem 24). For simplicity, we focus on the case when t(n) = nO(1).
Let M be a randomized t(n)-time nonadaptive black-box reduction to any γ-avoiding oracle for G.
Let x ∈ {0, 1}∗ be an input of length n.

We first modify the reduction so that we can assume useful properties. By the modifica-
tions explained in Section 2, we may assume that the number of queries that M makes is exactly
m(n) (≤ t(n) ) on inputs of length n. We may also assume that each query of M is identically
distributed; Let Qx be the query distribution of M on input x.

As explained in the introduction, one of the keys of our proof is that we can replace a γ-avoiding
oracle for G by an oracle defined based only on the query distribution Qx. Here we introduce such
oracles and justify the replacement. For any α > 0, define Lα, Hα and Rα by

Lα := { q ∈ {0, 1}∗ | q is α-light with respect to Qx },
Hα := {0, 1}∗ \ Lα = { q ∈ {0, 1}∗ | q is α-heavy with respect to Qx }, and

Rα := Lα \ Im(G).

For large enough α > 0, we can easily show that Rα γ-avoids G.

Claim 25. For any γ : N→ [0, 1) and α > 0 and for any length ` ∈ N, if

γ(`) + 1/α ≤ 1− 2s(`)−`,

then Rα is a γ-avoiding set at length ` for G.

Proof. Since Rα ⊆ {0, 1}∗ \ Im(G), it suffices to show that Prw∈R{0,1}` [w 6∈ Rα] ≤ 1 − γ(`). Note
that w 6∈ Rα if either w ∈ Im(G`) or w is α-heavy. The probability of the former case is at most
2−` · |Im(G`)| ≤ 2s(`)−`. Similarly, the probability of the latter case is bounded above by 2−` · |H=`

α |,
where H=`

α = { q ∈ {0, 1}` | q is α-heavy }. On the other hand, we have

|H=`
α | · α2−` ≤

∑
q∈H=`

α

Pr
w∼Qx

[w = q ] = Pr
w∼Qx

[w ∈ H=`
α ] ≤ 1.

Hence, |H=`
α | ≤ 2`/α. Thus,

Pr
w∈R{0,1}`

[w 6∈ Rα] ≤ 2s(`)−` + 1/α ≤ 1− γ(`),

proving that Prw∈R{0,1}` [w ∈ Rα] ≥ γ(`). �

Since the reduction M does not make any query q such that |q| 6∈ [θ(n), t(n)], Claim 25 guaran-
tees that the reduction M works by using Rα on inputs x of length n if γ(`) + 1/α ≤ 1− 2s(`)−` for
all ` ∈ N such that θ(n) ≤ ` ≤ t(n). As this condition is satisfied by our assumptions of Theorem 24
for any α ≥ α0(n) and any input x of length n, we have

Pr
M

[
MRα(x) = L(x)

]
≥ 15

16
. (5)

On the other hand, we can show below that M(x) cannot distinguish Rα and Lα when α is
small enough.
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Claim 26. For any α > 0 and input x ∈ {0, 1}∗ of length n, and for ε := α2s(θ(n))−θ(n) ·m(n)t(n),

Pr
M

[
MLα(x) 6= MRα(x)

]
≤ ε. (6)

Proof. Recall that Rα = Lα \ Im(G). Thus, M(x) may find the difference between Lα and Rα only
if it makes a query in Lα ∩ Im(G) in one of its m(n) nonadaptive queries. This probability is at
most m(n) · Prw∼Qx [w ∈ Lα ∩ Im(G)] by a union bound.

Here we have

Pr
w∼Qx

[w ∈ Lα ∩ Im(G) ] =
∑

q∈Lα∩Im(G)

Pr
w∼Qx

[ q = w ]

≤
∑

q∈supp(Qx)∩Im(G)

α · 2−|q|,

where supp(Qx) is the set of all possible queries asked by M(x). By our assumption on M , we have
θ(n) ≤ |q| ≤ t(n) for any q ∈ supp(Qx). Then it follows∑

q∈supp(Qx)∩Im(G)

α · 2−|q| ≤
∑

θ(n)≤`≤t(n)

α · 2−` · |Im(G`)| ≤
∑

θ(n)≤`≤t(n)

α · 2s(`)−`

because |Im(G`)| ≤ 2s(`).
Since we assumed that `− s(`) is nondecreasing for ` ∈ N, we have∑

θ(n)≤`≤t(n)

α2s(`)−` ≤ t(n) · α2s(θ(n))−θ(n) = ε/m(n).

This bound is sufficient to get the desired error bound. �

By Claim 26 and our assumptions on α0(n) of Theorem 24, for any α ≤ e3α0(n), we have

Pr
M

[
MLα(x) 6= MRα(x)

]
≤ 1

16
. (7)

From the inequalities (5) and (7), we immediately obtain the following:

Corollary 27. For any input x ∈ {0, 1}∗ of length n and any α ∈ [α0(n), e3α0(n)],

Pr
M

[
MLα(x) = L(x)

]
≥ 7

8
.

In light of this, our task is now to simulate MLα(x) for some α ∈ [α0(n), e3α0(n)] (in fact, we
will choose the threshold α randomly, as explained later). To this end, we combine the generalized
Feigenbaum-Fortnow protocol, the lower bound protocol of Goldwasser and Sipser [GS86], and the
heavy-sample protocol of Bogdanov and Trevisan [BT06]. Here we review the last two protocols.
Since these protocols are explained carefully and in detail in the paper [BT06], we simply review
their specifications and use them as a black-box tool.

Lower Bound Protocol. Recall that q 6∈ Lα if and only if q is α-heavy. The lower bound protocol
of Goldwasser and Sipser [GS86] can be used to give an AM-type witness to any α-heavy instance.
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It is an AM protocol for showing that a given set of strings has more than s elements for a given
threshold s. The specification of the lower bound protocol is as follows.

Inputs. A set of strings is given as a circuit C on {0, 1}m, which specifies the set as C−1(1) :=
{ r ∈ {0, 1}m | C(r) = 1 }. A threshold s ∈ N such that 0 ≤ s ≤ 2m. Parameters δ, ε ∈ [0, 1]
represented in unary.

Promise.

• Yes instances: |C−1(1)| ≥ s.
• No instances: |C−1(1)| ≤ (1− ε)s.

Sketch of the Protocol.

1. (Verifier) Send a random hash function h : {0, 1}m → {0, 1}m′ for some appropriate parameter
m′.

2. (Prover) Send a string y ∈ {0, 1}m claiming that y ∈ C−1(1) and h(y) = 0m
′

hold. (Such an
y is called an AM-type witness.)

3. (Verifier) Check the correctness of the prover’s claim on the witness y.

Theorem 28 (Correctness of the lower bound protocol [GS86]; see [BT06] for a proof). The lower
bound protocol stated above satisfies the following:

• (Completeness) Given an yes instance, there exists a prover that makes the verifier accept
with probability at least 1− δ.

• (Soundness) Given a no instance, for any prover, the verifier accepts with probability at most
δ.

By using the protocol above, it is easy to construct an AM verifier V that checks whether a given
query q is α-heavy.

Claim 29. For any parameter ε(n) ≥ 1/poly(n), there exists an AM verifier V such that, for any
input x ∈ {0, 1}∗ of length n and any query q ∈ {0, 1}∗,

1. if q is α-heavy with respect to Qx, then Prh[V (x, q, h, y) = 1 for some y] ≥ 3
4 , and

2. if q is (1− ε(n))α-light with respect to Qx, then Prh[V (x, q, h, y) = 1 for some y] ≤ 1
4 .

Proof. Let Qx be the circuit that samples the query distribution Qx; that is, on input r ∈ {0, 1}m,
the circuit Qx(r) outputs q so that Prr∈R{0,1}m [Qx(r) = q] = Prw∼Qx [w = q] for any q ∈ {0, 1}∗.
Given a string q ∈ {0, 1}∗ as input, construct a circuit Cq such that Cq(r) := 1 iff Qx(r) = q, on
input r ∈ {0, 1}m. Now use the lower bound protocol for the circuit Cq, the threshold s := α2−|q|2m,
and parameters δ := 1

4 and ε := ε(n). The lower bound protocol gives an AM certificate for the yes

instances such that |C−1
q (1)| ≥ s, which is equivalent to saying that Prr[Qx(r) = q] ≥ α2−|q|, that

is, q is α-heavy. On the other hand, if q is (1 − ε)α-light, then we have |C−1
q (1)| < (1 − ε)s; thus

with high probability there is no AM-type witness by the correctness of the lower bound protocol
(Theorem 28). �
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Note that there is a gap between yes instances and no instances; that is, if the probability that
q is sampled from Qx is between α and (1− ε)α, then the behavior of the lower bound protocol is
undefined. To circumvent this, we pick the threshold α randomly in the same way with Bogdanov
and Trevisan (cf. [BT06, Claim 3.2]): Consider the following set Aα0,ε of thresholds defined by
parameters α0, ε > 0, and choose the threshold α uniformly at random from Aα0,ε.

Aα0,ε := {α0(1 + 3ε)i | 0 ≤ i ≤ 1/ε }.

Observe that Aα0,ε ⊆ [α0, e
3α0]. Moreover, the following holds.

Lemma 30. For every α0 > 0 and 0 < ε < 1
3 and any constant c > 0, and for any distribution Q,

with probability at least 1− 1/c over the choice of α ∈R Aα0,ε,

Pr
q∼Q

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]
≤ cε. (8)

(Recall that Q(q) := Prw∼Q[w = q].)

Proof. For any ε ∈
(
0, 1

3

)
and q ∈ {0, 1}∗, the intervals ((1 − ε)α2−|q|, (1 + ε)α2−|q|) are pairwise

disjoint for all α ∈ Aα0,ε; hence for any real p ∈ R, the probability that p ∈ ((1 − ε)α2−|q|, (1 +
ε)α2−|q|) is at most 1/|Aα0,ε| ≤ ε over the choice of α ∈R Aα0,ε. In particular, we have

E
α∈RAα0,ε

[
Pr
q∼Q

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]]
= E
q∼Q

[
Pr

α∈RAα0,ε

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]]
≤ ε.

Therefore, by Markov’s inequality, the probability that Prq∼Q
[
Q(q) ∈ ((1± ε)α2−|q|)

]
≥ cε is at

most ε/(cε) = 1/c. �

In our simulation protocol for M , we start with picking α ∈R Aα0,ε randomly. By Lemma 30,
except for probability 1/O(1), the heaviness of almost all queries q sampled from Qx is not close
to the threshold α. As a consequence, the distributional problem (Lα,Qx) is solvable by coAM
on average; indeed, with probability at least 1 − O(ε) over the choice of q ∼ Qx, the lower bound
protocol of Claim 29 solves Lα.

Heavy-sample Protocol. Next we review the heavy-sample protocol of Bogdanov and Tre-
visan [BT06], which is an AM protocol for estimating Prq∼Qx [q is α-heavy].

Inputs. A circuit Q which samples a string according to a distribution Q on {0, 1}∗. A probability
p ∈ [0, 1] represented in binary. Parameters c > 0 and 0 < ε < 1

3 represented in unary. A threshold
α > 0 represented in binary.

Promise.

• Yes instances: Prq∼Q[Q(q) ≥ α2−|q|] = p.

• No instances:
∣∣Prq∼Q[Q(q) ≥ α2−|q|]− p

∣∣ > 16cε.

• We assume the condition (8). That is,

Pr
q∼Q

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]
≤ cε.
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Sketch of the Protocol.

1. (Verifier) Generate random queries q1, . . . , qk from the distribution Q for some sufficiently
large k, and send these queries to the prover.

2. (Prover) For each query qi, tell the verifier whether qi is α-heavy.

3. (Verifier and Prover) To check the prover’s claim, run the lower bound protocol of Goldwasser
and Sipser [GS86] and the upper bound protocol of Fortnow [For89] in parallel.

Theorem 31 (Correctness of the heavy-sample protocol [BT06]). The heavy-sample protocol spec-
ified above satisfies following:

• (Completeness) Given any yes instance, there exists a prover that makes the verifier accept
with probability at least 1−O(ε).

• (Soundness) Given any no instance, for any prover, the verifier accepts with probability at
most O(ε).

Protocol for Simulating MLα(x). Using the protocols reviewed above, we can now simulate the
reduction M to an oracle Lα on input x ∈ {0, 1}∗. Below we explain how to choose the inputs
(C, V, δ := 1

100 , p
∗) for the generalized Feigenbaum-Fortnow protocol.

The generalized Feigenbaum-Fortnow protocol requires an AM protocol for solving an oracle on

average (instead of coAM). By negating answers from the oracle, we can define a new machine M
X

which simulates the computation of M{0,1}
∗\X for any given oracle X. We thus use the generalized

Feigenbaum-Fortnow protocol for simulating M
Hα

(x) with oracle Hα := {0, 1}∗ \ Lα, which is the
set of α-heavy queries with respect to Qx; more specifically, let C be the circuit that simulates the
reduction M on input x (where the input x is hardwired into the circuit) and we give the circuit
C to the protocol as input.

To solve Hα on average by an AM protocol, we use the lower bound protocol. That is, we build
a circuit Vx that simulates the AM verifier stated in Claim 29 on input x and on all the queries
q ∈ {0, 1}∗ that M(x) can make. Then we give the circuit Vx to the protocol as input.

We also need to give as advice a probability p∗ that approximates Prq∼Qx [q ∈ Hα], which can
be estimated by using the heavy-sample protocol. We require the prover to send p∗ first, and then
we verify the prover’s claim by running the heavy-sample protocol; if the test passes, then we give
p∗ to the generalized Feigenbaum-Fortnow protocol as input.

Summarizing the discussion above, our whole simulation algorithm is given below.

Inputs. A string x ∈ {0, 1}∗ of length n.

Promise. Let α0 := α0(n). Then, for any α ∈ [α0, e
3α0], we assume that

Pr
M

[MLα(x) = L(x)] ≥ 7

8
,

(which is guaranteed by Corollary 27).

Protocol.

26



1. (Preprocess) Set an error parameter ε := 1/c0m(n) for a sufficiently large constant c0 (repre-
sented in unary).

2. (Verifier) Pick a threshold α ∈R Aα0,ε ⊆ [α0, e
3α0] randomly. Send α to the prover.

3. (Prover) Send p∗ ∈ [0, 1] to the verifier. An honest prover sends p∗ := Prq∼Qx [q ∈ Hα].

4. (Verifier and Prover) Run the heavy-sample protocol in order to verify that p∗ ≈ Prq∼Qx [q ∈
Hα] for the distribution Qx and error parameter ε and parameter c := 100; if the test does
not pass, output ⊥ and halt.

5. (Verifier and Prover) Build a circuit C simulatingM on the hardwired input x, and a circuit Vx
simulates the AM verifier for α-heaviness. Run the generalized Feigenbaum-Fortnow protocol
on input (C, Vx, δ := 1

100 , p
∗), and output the result of the protocol.

Now we argue that our simulation protocol is correct:

Claim 32. The simulation protocol stated above satisfies the following: for any x ∈ {0, 1}∗,
• (Completeness) there exists a prover such that the verifier outputs L(x) with probability at

least 3/4, and

• (Soundness) for any prover, the verifier outputs L(x) or ⊥ with probability at least 3/4.

Proof. Fix any input x ∈ {0, 1}∗. By Lemma 30, with probability at least 1 − 1
100 over the choice

of α ∈R Aα0,ε, the condition (8) holds for c := 100 and Q := Qx; that is,

Pr
q∼Qx

[
Qx(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]
≤ 100ε.

In what follows, we assume this event happens and analyze the probability of the completeness and
soundness.

Suppose that a prover sends p∗. If the prover is honest then we have p∗ = Prq∼Qx [q ∈ Hα].
Hence the completeness of the heavy-sample protocol implies that, with probability at least 1 −
O(ε) � 1 − 1

100 , the protocol accepts. On the other hand, if a cheating prover sends p∗ such that
|p∗ − Prq∼Qx [q ∈ Hα]| > 16cε, then with probability at least 0.99 the cheat can be caught by the
soundness of the heavy-sample protocol.

Thus, at the point that the generalized Feigenbaum-Fortnow protocol starts, for any prover,
with probability at least 0.98, we have |p∗ − Prq∼Qx [q ∈ Hα]| ≤ 16cε and moreover the condition (8)
holds. Under this event, the promise of the generalized Feigenbaum-Fortnow protocol is satisfied:

• Define a := L(x), ε0 := 1
8 , and R := Hα. Then we have PrC [CR = a] ≥ 1− ε0 by the promise

of our simulation protocol (Corollary 27).

• The advice p∗ satisfies |p∗ − Prq∼Qx [q ∈ R]| ≤ ε1 for ε1 := 16cε.

• By Claim 29 and (8), we have Prq∼Qx [q 6∈ VYes ∪ VNo] ≤ Prq∼Qx [Qx(q) 6∈ (1± ε)α2−|q|] ≤ ε2
for ε2 := 100ε.

Therefore, from the correctness of the generalized Feigenbaum-Fortnow protocol (Theorem 18), our
simulation protocol satisfies the completeness and soundness with probability at least 1 − 0.02 −
(1

8 + 2m(n)ε1 + 3m(n)ε2 + 3δ) ≥ 3
4 , where the last inequality holds for some large constant c0. �

This completes the proof of Theorem 24.
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6 GapMCSP is Low for Sp
2 if GapMCSP is in P/poly

In this section, we present an application of our proof techniques. We show that our Sp
2 pro-

tocol can be combined with the non-black-box reduction of [Hir18], under the assumption that
GapMCSP ∈ P/poly.

Theorem 33. Let A,R be any oracles such that R ∈ PA/poly. Let α > 0 be any constant. If

GapαMCSPA ∈ PR/poly, then S
GapβMCSPA

2 ⊆ SR2 for some constant β > 0.

Prior to our work, it was shown by Cai, Chakaravarthy, Hemaspaandra, and Ogihara [CCHO05]
that any downward self-reducible language L ∈ P/poly is low for Sp

2 . Before proving Theorem 33, we
generalize their results to any language that has a selector, and explain a general proof strategy for
showing lowness for Sp

2 . Roughly speaking, a selector for L is an efficient algorithm that computes
L given two oracles one of which is guaranteed to be equal to L.

Definition 34 (Selector [Hir15]). A selector for a language L is a randomized polynomial-time
oracle machine S such that, for any input x ∈ {0, 1}∗ and oracles A0, A1 ⊆ {0, 1}∗, if L = A0 or
L = A1 then PrS

[
SA0,A1(x) = L(x)

]
≥ 2

3 .

It was shown in [Hir15] that any downward self-reducible language admits a selector. Thus the
following generalizes [CCHO05].

Theorem 35. Let L be a language with a selector S and R be any oracle. If L ∈ PR/poly then
SL2 ⊆ SR2 .

Proof. The idea is as follows: We request two competing provers of SR2 to send R-oracle circuits

C0, C1 that compute L. Then, for every query q of L, one can decide whether q
?
∈ L by running S

and using CR0 and CR1 as oracles. Details follow.
Take any A ∈ SL2 , and let V be an SL2 -machine that witnesses A ∈ SL2 . Take some constants c, d

such that V runs in time nc and S runs in time nd on inputs of length n.
Now we describe an S2 ·BP ·PR algorithm that computes A: Given an input x ∈ {0, 1}∗ of length

n, for each i ∈ {0, 1}, the ith competing prover sends an S2-type certificate yi for M . Moreover, each
prover sends a polynomial-size R-oracle circuit Ci; an honest prover sends a circuit Ci such that
CRi computes L on every input of length at most ncd. Then simulate V using the two certificates

(i.e., run V on input (x, y0, y1)), where each query q that V makes is answered with SC
R
0 ,C

R
1 (q). It

is easy to see the correctness of this algorithm.
Therefore, we have A ∈ S2 · BP · PR, and by [RS98], we can derandomize the randomized

computation by using the power of S2 and obtain L ∈ S2 · BP · PR = SR2 . �

In light of Theorem 35, at the core of Theorem 33 is the existence of a “non-black-box” selector.
That is, we claim that one can efficiently compute GapβMCSPA given two polynomial-size circuits

one of which is guaranteed to compute GapαMCSPA.

Lemma 36. Let A,R be any oracles such that R ∈ PA/poly. Let α, c > 0 be any constants. Then,
there exist a randomized polynomial-time algorithm S and a constant β such that, for any n ∈ N
and any R-oracle circuits C0, C1 of size nc such that one of them computes GapαMCSPA on every
input of length at most n, for any instance x ∈ {0, 1}n of GapβMCSPA, SR(x,C0, C1) decides x
correctly with high probability.
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We call S a “non-black-box” selector because the algorithm makes use of the property that two
candidate algorithms solving GapαMCSPA are modeled as polynomial-size circuits instead of or-
acles. The non-black-box property prevents us from generalizing Theorem 33 for every R unlike
Theorem 35. We leave it as an interesting open question whether Theorem 33 holds for any oracles
R and A.

The non-black-box selector S uses the property that GapMCSPA is reducible to any polynomial-
size oracle avoiding Gint,A, as captured in the following lemma.

Lemma 37 (GapMCSPA Reduces to Natural Properties). Let A,R be any oracles. Let α > 0 be
any constant. Let D = {Dm}m∈N be a family of R-oracle polynomial-size circuits DR

m on 2m inputs

that 7
8 -avoids Gint,A : {0, 1}Õ(2αm) → {0, 1}2m. Then, there exist a constant β > 0 and a polynomial-

time computable function G that takes a size parameter s ∈ N, a truth table of a Boolean function
f : {0, 1}n → {0, 1} and a string z and returns a string Gfs (z) of length m = m(n, s) ≤ 2n such
that:

1. if sizeA(f) ≤ s, then D(Gfs (z)) = 0 for every z, and

2. if sizeR(f) ≥ 2(1−β)ns, then Prz[D(Gfs (z)) = 1] ≥ 3
4 .

In the case when A = ∅, Lemma 37 follows from the work of Carmosino, Impagliazzo, Kabanets
and Kolokolova [CIKK16]. Indeed, they implicitly showed that the search version of GapβMCSP is
reducible to D; using the fact that MCSP ∈ NP, one can reduce the decision problem GapβMCSP to

its search version (see [Hir18]). However, an efficient decision-to-search reduction for GapβMCSPA

may not exist for a general oracle A, and thus we need a more direct proof.

Proof. Let f : {0, 1}n → {0, 1} be a Boolean function. We define G as the Nisan-Wigderson
generator [NW94] instantiated with a hardness-amplified version of f as an underlying function.
Specifically, let k be a parameter chosen later. We define a hardness-amplified version of f as
f⊕k(x1, · · · , xk) = f(x1)⊕ · · · ⊕ f(xk) for (x1, · · · , xk) ∈ {0, 1}nk.

We proceed to the definition of the Nisan-Wigderson generator NW: Let p be an arbitrary
prime such that kn ≤ p ≤ 2kn and m ∈ N be a parameter chosen later. For each string q ∈ {0, 1}m,
we associate a polynomial q′ of degree m over the field Fp defined as q′(a) =

∑m
i=1 qia

i for any
a ∈ Fp. Take an arbitrary subset D ⊆ Fp of size kn, and define Sq := { (a, q′(a)) | a ∈ D } ⊆ (Fp)2.

For a string z ∈ {0, 1}p2 , denote by zSq ∈ {0, 1}kn the string obtained by concatenating the ith

bit of z for every i ∈ Sq, identifying i ∈ (Fp)2 with i ∈ [p2]. The function Gfs (z) is defined as

NWf⊕k(z) := (f(zSq) | q ∈ {0, 1}m) ∈ {0, 1}2m , that is, the truth table of the Boolean function that
maps q 7→ f(zSq). (We will choose k and m depending on the size parameter s.)

Consider any f such that sizeA(f) ≤ s. From the construction, it is easy to see that

sizeA(NWf⊕k(z)) ≤ poly(sizeA(f),m, k, n) ≤ poly(s,m, k, n)

for every z ∈ {0, 1}p2 . For a sufficiently large m, this can be bounded above by 2αm. Thus we can
take m as the smallest integer such that poly(s,m, k, n) ≤ 2αm. Since D avoids Gint,A, we obtain

the first condition of Lemma 37 (i.e., Dm(NWf⊕k(z)) = 0).

Next, we prove the contrapositive of the second condition. We assume Prz[D
R
m(NWf⊕k(z)) =

1] < 3
4 . Since DR

m is 7
8 -dense, we have Prw∈R{0,1}m [DR

m(w) = 1] ≥ 7
8 . In particular, DR

m distinguishes
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NWf⊕k from the uniform distribution with advantage 7
8−

3
4 = 1

8 . By the security proof of the Nisan-

Wigderson generator [NW94], we obtain an oracle circuit C such that Prx̄∈R{0,1}nk [CD
R
m(x̄) =

f⊕k(x̄)] ≥ 1
2 + Ω( 1

2m ) and the size of C is poly(2m). Since the size of the circuit Dm is at most a
polynomial in the input length 2m, we can replace oracle gates of C with Dm and obtain an R-oracle
circuit C1 of size poly(2m) such that CR1 computes f⊕k with probability 1

2 + Ω( 1
2m ). By Yao’s XOR

lemma (cf. [GNW11]), we obtain a circuit C2 of size poly(2m, 1/δ) such that Prx∈R{0,1}n [CR2 (x) =

f(x)] ≥ 1 − δ, where δ is an arbitrary parameter that satisfies (1 − δ)k ≤ Ω( 1
2m ). We define

k := Θ(m/δ) so that this inequality is satisfied, and we take δ := 2−βns/2n for some sufficiently
small constant β > 0. Finally, we correct the error of C2 in a trivial way: Let ϕ be a DNF formula
of size at most δn2n such that ϕ(x) = 1 if and only if CR2 (x) 6= f(x). Then a circuit CR3 := CR2 ⊕ϕ
is a circuit of size poly(2m, 1/δ) + δn2n that computes f exactly. By the definition of m, we have
2m = Θ(poly(s, n, 1/δ)), and thus poly(2m, 1/δ) ≤ poly(s, n, 1/δ) ≤ (sn/δ)c for some constant c.
Therefore, sizeR(f) ≤ 2cβn(2n)2c + 2(1−β)n−1s < 2(1−β)ns for β < 1/(c+ 1) and a sufficiently large
n. �

Now we construct a non-black-box selector S for GapMCSP.

Proof of Lemma 36. The idea is exactly the same with Theorem 16. Namely, given two oracles
R0, R1 such that one of them is guaranteed to be a dense subset of random strings, R0 ∩R1 is also
a dense subset of random strings. We apply this idea to the case of GapMCSP. In our case, by a
“random string” we mean a truth table that cannot be compressed into a small circuit.

Let f : {0, 1}n → {0, 1} and s ∈ N be an instance of GapβMCSPA, and m = m(n, s) be as in

Lemma 37. Let C0, C1 be R-oracle circuits one of which computes GapαMCSPA for every instance
of length 2m (≤ 2n ). For each i ∈ {0, 1}, we fix the size parameter of the inputs to Ci to 2αn/2; that
is, define C ′Ri (g) := CRi (g, 2αn/2). When the ith circuit is correct, C ′Ri accepts every g ∈ {0, 1}2m

such that sizeA(g) ≤ 2αn/2, and rejects every g such that sizeA(g) > 2(1−α)n+αn/2 = 2(1−α/2)n.
In particular, for a random g ∈R {0, 1}2

m
, we have Pr[C ′Ri (g) = 1] ≤ o(1) by a simple counting

argument.
Here is the algorithm S for solving GapβMCSPA: For each i ∈ {0, 1}, we verify that Ci has

a small number of Yes instances by sampling. Specifically, we pick g ∈R {0, 1}2
m

, verify that
C ′Ri (g) = 0, and repeat this test O(1) times. If one of these tests fails, it means that C ′i is not likely

to compute GapαMCSPA correctly; thus we redefine C ′i := 0. In particular, if Prg∈R{0,1}2m [C ′Ri (g) =

1] ≥ 1
16 , then with high probability C ′i is redefined. We then define a circuit D so that DR(g) :=

¬(C ′R0 (g) ∨ C ′R1 (g)) for g ∈ {0, 1}2m . By the test above, with high probability, DR is dense, that
is, Prg[D

R(g) = 1] ≥ 7
8 . Now let G be the function of Lemma 37. Pick a random z and accept if

and only if D(Gfs (z)) = 0.
We claim the correctness of the algorithm S described above. We verify that the hypothesis

of Lemma 37 for R = A is satisfied with high probability. Since R ∈ PA/poly, the R-oracle
polynomial-size circuit D can be simulated by an A-oracle polynomial-size circuit. Moreover, DR

avoids Im(Gint,A) since every g ∈ {0, 1}2αn/2 is rejected, and DR is 7
8 -dense with high probability.

Applying Lemma 37, the algorithm accepts every instance (f, s) such that sizeA(f) ≤ s and rejects
every instance (f, s) such that sizeA(f) ≥ 2(1−β)ns, with high probability. �

Proof of Theorem 33. Let S be the algorithm of Lemma 36. Let c be a constant such that there

exists a R-oracle circuit C of size nc such that CR computes GapαMCSPA. Let L ∈ S
GapβMCSPA

2 ,
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and V be an S2-type verifier for L. We present an S2 · BP · PR algorithm W : For each i ∈ {0, 1},
the ith competing prover sends a polynomial-size R-oracle circuit Ci of size nc and a certificate
for V . Using the two certificates, W simulates V , and each query q that V makes is answered
by running SR(q, C0, C1). The correctness of W follows from Lemma 36. Therefore, we have
L ∈ S2 · BP · PR = SR2 . �

7 Power of Kolmogorov Random Strings

In this section, we show that every language in the exponential-time hierarchy is reducible to
the set of Kolmogorov-random strings under PH reductions.

Theorem 38. EXPH ⊆ PHRKU for any universal Turing machine U .

Combining our results with [CDE+14, AFG13], we obtain the following:

Corollary 39. EXPH ⊆
⋂
U PHRKU ⊆ EXPSPACE.

Proof. The lower bound follows from Theorem 38. For the upper bound, by the results of [CDE+14,

AFG13], we have
⋂
U P

RKU
‖ ⊆ PSPACE. By a standard padding argument, we obtain

⋂
U EXP

RKU
‖ ⊆

EXPSPACE, from which the upper bound follows since PHRKU ⊆ EXP
RKU
‖ . �

Theorem 38 immediately disproves Conjecture 9 under the assumption that the exponential-
time hierarchy does not collapse to the exponential-time analogue of BPP.

Corollary 40.
⋂
U P

RKU
‖ 6⊆ BPP unless EXPH ⊆ BPEXP.

Proof. Assume that
⋂
U P

RKU
‖ ⊆ BPP. Then by a padding argument, we also obtain

⋂
U EXP

RKU
‖ ⊆

BPEXP. It follows from Theorem 38 that EXPH ⊆ BPEXP. �

Now we proceed to a proof of Theorem 38. Let H denote the halting problem. We first observe
that, given H as oracle, one can compute any decidable language with oracle access to H in PH .

Lemma 41. Let k be any positive constant. Let M be any oracle machine that, on every input x,
halts eventually and makes a query of length at most |x|k. Then the language decided by M is in
PH .

Proof Sketch. The proof is essentially the same with [ABK+06b, Theorem 27], and thus we just
sketch a proof. The idea is to decide M in the following two steps: First, by using a binary search
and the oracle access to H, one can decide the number of all the strings in H of length at most nk

in polynomial time. Then, given the number of strings in H of length at most nk as advice, the
computation of MH becomes now computable, and hence it reduces to H. �

We also recall that the halting problem is reducible to the set of random strings under P/poly
reductions, which was established by exploiting the fact that the set of random strings can be
distinguisher for any computable pseudorandom generator.

Theorem 42 ([ABK+06b]). H ∈ PRKU /poly for any universal Turing machine U .
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While the ingredients above are enough to obtain EXP reductions, in order to obtain PH reduc-
tions, we make use of the efficient proof system of PH given by Kiwi, Lund, Spielman, Russell, and
Sundaram [KLS+00]. For simplicity, we state their results in the case of the number of alternation
is 2, but their results hold for every constant number of alternation. We also state their results in
terms of ΣEXP

2 instead of ΣP
2 .

Theorem 43 (Kiwi, Lund, Spielman, Russell, and Sundaram [KLS+00]). For every language L in
ΣEXP

2 , there exists a randomized polynomial-time verifier such that,

1. for every input x ∈ L, there exists an oracle A such that for any oracle B, V A,B(x) accepts
with probability 1, and

2. for every input x 6∈ L, for all oracles A, there exists an oracle B, V A,B(x) accepts with
probability at most 1

2 .

We are now ready to present a proof of Theorem 38.

Proof of Theorem 38. The main idea is that, given oracle access to the set of random strings,
Theorem 42 tells us that there is a succinct witness for any exponential-time computation. We
abbreviate RKU as R in this proof. We only give a detailed proof for ΣEXP

2 ⊆ PHR, since it is
straightforward to extend the proof.

First, we present a proof that ΣEXP
2 ⊆ EXPR. Let V be an exponential-time verifier for L ∈ ΣEXP

2 ,
and c be a constant such that for every input x of length n, it holds that x ∈ L if and only if there
exists a certificate y of length 2n

c
such that V (x, y, z) accepts for all z of length 2n

c
; V runs in time

2n
O(1)

. We regard the computation as a game between the first player A and the second player B.
Here is our exponential-time algorithm solving L with oracle access to R: Let sA(n) and sB(n)

be some polynomials specified later. Given input x of length n, the algorithm accepts if and only if
there exists an oracle circuit A of size sA(n) such that V (x, tt(AR), tt(BR)) accepts for all oracle
circuits B of size sB(n), where tt(AR) denotes the truth table of the function computed by AR;
the algorithm checks this condition by an exhaustive search. Since there are at most exponentially
many circuits of polynomial size, this algorithm runs in exponential time.

We claim the correctness of the algorithm. Fix any input x ∈ L of length n. In this case,
the correctness readily follows from the fact that there exists a succinct witness under the oracle
R: Indeed, let yx be the lexicographically minimum certificate for x ∈ L. Since each bit of
yx is decidable (in the sense that the language { (x, i) | the ith bit of yx is 1 } is decidable), by
Theorem 42, there exists an oracle circuit A of size sA(n) := poly(n, log |yx|) = poly(n, nc) such
that tt(AR) = yx. Thus our EXPR algorithm accepts no matter how the adversarial circuit B is
chosen.

Now fix any input x 6∈ L of length n. This case requires a more delicate argument. Here
we need to claim that, for every circuit A of size sA, there exists a circuit B that encodes a
strategy that beats the strategy of AR. The point is that, given any circuit A, the lexicograph-
ically first strategy against the strategy of AR is computable with oracle access to H. Indeed,
let zx,A denote the lexicographically first string such that V (x, tt(AR), z) rejects. Consider the
language L′ := { (x,A, i) | the ith bit of zx,A is 1 }. Since R is reducible to H, the language
L′ is computable with oracle access to H. By Lemma 41, L′ ∈ PH ; thus by Theorem 42, we
obtain L′ ∈ PR/poly. This means that for every circuit A there exists a circuit BA of size
poly(n, |A|, log |zx,A|) = poly(n, sA(n), nc) such that tt(BR

A) = zx,A. Thus our algorithm rejects.
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In order to extend the proof above to ΣEXP
2k for every constant k, we modify the EXPR algorithm

so that it checks whether, given input x of length n, ∃ a circuit C1 of size s1(n), ∀ a circuit C2 of
size s2(n), · · · , ∀ a circuit C2k of size s2k(n) such that a verifier V (x, tt(CR1 ), · · · , tt(CR2k)) accepts,
where s1(n), · · · , s2k(n) are some appropriately chosen polynomials.

We now explain how to reduce the complexity of the EXP reduction to PH. For simplicity,
we again focus on a proof of ΣEXP

2 ⊆ PHR. Note that, in the proof above, the bottleneck of the
computation is the evaluation of V (x, tt(AR), tt(BR)), where V is an exponential-time verifier.
We replace V with the randomized polynomial-time verifier of Theorem 43; then we obtain the
following ΣR

2 algorithm: Existentially guess a circuit A of size at most sA(n), and universally guess
a circuit B of size at most sB(n) as well as a coin flip for V , Then accept if and only if V A,B(x)
accepts on the guessed coin flip sequence. �

A similar technique gives the exact characterization of Sexp
2 in terms of black-box reductions to

a dense subset of Kolmogorov-random strings.

Theorem 44 (The formal version of Theorem 7). Let s : N → N be a function such that `ε ≤
s(`) ≤ ` − 2 for some constant ε > 0 and every large `. Let γ : N → [0, 1

2 ] be a function such that
γ(`) ≥ 1/`c for some constant c > 0 and every large `. Fix any universal Turing machine U . Let
G` : {0, 1}s(`) → {0, 1}` be a function such that G`(d) = U(d) for every d ∈ {0, 1}s(`) such that
|U(d)| = `. Then we have⋂

R : γ-avoids G

EXPR
≤poly

=
⋂

R : γ-avoids G

BPEXPR
≤poly

= Sexp
2 .

Proof. By Theorem 17, we have
⋂
R BPEXPR

≤poly ⊆ Sexp
2 , and it is obvious that EXPR

≤poly ⊆
BPEXPR

≤poly
; thus it remains to prove Sexp

2 ⊆ EXPR
≤poly

for every R that γ-avoids G.
First, observe that Theorem 42 can be generalized to any dense subset R of Kolmogorov-random

strings. Indeed, the proof of [ABK+06b] only exploits the property that the set of Kolmogorov-
random strings can be used as a distinguisher for a computable hitting set generator. Thus we have
H ∈ PR/poly. In particular, relative to the oracle R, there exists a succinct witness for Sexp

2 .

Let L ∈ Sexp
2 and V be an exponential-time verifier associated with L running in time 2n

k
for

some constant k: That is, for every input x of length n,

1. if x ∈ L then ∃y ∈ {0, 1}2n
k

,∀z ∈ {0, 1}2n
k

, V (x, y, z) = 1, and

2. if x 6∈ L then ∃z ∈ {0, 1}2n
k

, ∀y ∈ {0, 1}2n
k

, V (x, y, z) = 0.

Our EXPR
≤poly

algorithm is as follows: Instead of doubly exponentially many certificates y, z ∈
{0, 1}2n

k

, we exhaustively search all possible oracle circuits Y, Z of size at most poly(n) that take
nk inputs, check the condition that ∃Y,∀Z, V (x, tt(Y R), tt(ZR)) = 1, and accept if and only if this
condition is satisfied. The correctness follows from the fact that each bit of the lexicographically
first witness can be computed by a polynomial-size circuit with oracle access to R. �

We mention that the reducibility notion of Theorem 44 can be significantly improved by using
some efficient proof system:
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Theorem 45. For any G and γ satisfying the same condition with Theorem 44, we have

EXPNP ⊆
⋂

R : γ-avoids G

SR2 ⊆ Sexp
2 .

The proof follows from the following result and Theorem 35.

Lemma 46 ([Hir15]). For any EXPNP-complete language L, there exists a selector for L. That is,
there exists a randomized polynomial-time oracle machine S such that, for any input x ∈ {0, 1}∗
and oracles A0, A1 ⊆ {0, 1}∗, if L ∈ {A0, A1} then PrS

[
SA0,A1(x) = L(x)

]
≥ 2

3 .

Proof of Theorem 45. Under any dense subset R of Kolmogorov-random strings, we have EXPNP ⊆
PR/poly (by Theorem 42). Thus by taking any EXPNP-complete problem L, we obtain EXPNP ⊆
SL2 ⊆ SR2 by combining Lemma 46 and Theorem 35. �

Finally, we mention that in the case of reductions to the set of random strings, the Sp
2 reductions

of Theorem 45 can be derandomized to obtain PNP reductions.

Theorem 47. EXPNP ⊆ PNP
RKU .

Proof. By Theorem 45, we immediately obtain EXPNP ⊆ S
RKU
2 . By the relativized version of

Cai’s result [Cai07], we have PNP
RKU ⊆ S

RKU
2 ⊆ ZPPNP

RKU ; thus it remains to derandomize the
computation of ZPP under an NPRKU oracle. One can find the lexicographically first Kolmogorov-

random string by a PNP
RKU algorithm. By Lemma 41 and Theorem 42, the circuit complexity

relative to an NPRKU oracle of any Kolmogorov-random string of length n is at least nΩ(1). Thus by
using a Kolmogorov-random string as a hard function of the Impagliazzo-Wigderson pseudorandom
generator [IW97], one can derandomize the computation of ZPP under an NPRKU oracle. �
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A Security Proofs of Hitting Set Generators Based on SZK

In this section, we show that the security of a hitting set generator can be proved by using a
uniform black-box reduction, based on a worst-case hardness assumption of SZK.

Reminder of Theorem 5. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint =

{Gint
n : {0, 1}nε → {0, 1}n}n∈N. Then, SZK ⊆ BPPR.

Proof Sketch. Take any problem L ∈ SZK. Allender and Das [AD17] showed that there exists
a candidate auxiliary-input one-way function fL such that the task of solving L reduces to the
task of inverting fL. (This fact was first shown by Ostrovsky [Ost91]). Here we say that a ran-
domized algorithm A inverts an auxiliary-input one-way function fL if, for every auxiliary-input
x, PrA,y[A(x, fL(x, y)) ∈ f−1

L (x, -)] ≥ 1/poly(|x|+ |y|). This task can be done by a randomized
polynomial-time algorithm with oracle access to R, by constructing a candidate pseudorandom

38



(function) generator GfL based on fL using [HILL99, GGM86], and observing that R can dis-
tinguish GfL from the uniform distribution. (See [ABK+06b, Theorem 45], [AH17] for details.)

�

Next, we show that a worst-case hardness assumption of integer factorization implies the exis-
tence of a hitting set generator with a nonadaptive security proof.

Reminder of Theorem 6. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint =

{Gint
n : {0, 1}nε → {0, 1}n}n∈N. Then, factoring the product of two primes can be done in ZPPR‖ .

Proof. We follow the proof of [ABK+06b, Theorem 47] showing that Integer Factorization is in
ZPPMCSP. The idea is that, by using [HILL99, GGM86], one can invert any auxiliary-input one-
way function fN with oracle access to R (cf. [ABK+06b, Theorem 45], [AH17]). For the purpose
of integer factorization, we can use some regular one-way function fN , and we observe that the
security reduction of [HILL99] is nonadaptive in this case.

Let N ∈ N be an input. We may assume without loss of generality that N is odd; hence, N = pq
for some odd prime numbers p, q. We may also assume that p 6= q. Let fN : (Z/NZ)∗ → (Z/NZ)∗

be Rabin’s (auxiliary-input) one-way function [Rab79]: fN (x) = x2 mod N , where we regard N
as an auxiliary input. As observed in [Rab79], fN is a 4-to-1 function. (That is, for any a with
gcd(a,N) = 1, the number of x ∈ (Z/NZ)∗ such that x2 ≡ a (mod N) is 4. Indeed, the condition
is equivalent to saying that x2 ≡ a (mod p) and x2 ≡ a (mod q), and each congruence has exactly
2 solutions; by the Chinese remainder theorem, we obtain exactly 4 solutions.) Rabin showed that
the task of factoring N is efficiently reducible to the task of inverting fN on average. Therefore, it
remains to show that one can efficiently invert fN with parallel queries to R.

From the regular candidate one-way function fN , a candidate pseudorandom generator GN =
{GN,n : {0, 1}n/2 → {0, 1}n}n∈N can be constructed as in [HILL99, Theorem 5.5] so that the
reduction of the security proof for GN is nonadaptive. By using a construction of [GGM86], we

extend the output length of GN so that G′N = {G′N,n : {0, 1}n → {0, 1}nO(1/ε)}n∈N with the property

that G′N,n(z) ∈ Im(Gint
nO(1/ε)) for every seed z (that is, the function represented by G′N,n(z) as a

truth table can be computed by a circuit of size nO(1)). Thus the oracle R distinguishes G′N from
the uniform distribution, and hence we obtain a nonadaptive randomized algorithm factoring N .
Finally, the randomized algorithm can be made zero-error by using the primality test of [AKS04].

�

As an immediate corollary, we obtain a new hardness result of MCSP under nonadaptive re-
ductions.

Corollary 48. Factoring the product of two primes can be done in ZPP
GapεMCSP
‖ for every constant

ε > 0.
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