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Abstract

One of the central open questions in the theory of average-case complexity is to establish
the equivalence between the worst-case and average-case complexity of the Polynomial-time
Hierarchy (PH). One general approach is to show that there exists a PH-computable hitting
set generator whose security is based on some NP-hard problem. We present the limits of
such an approach, by showing that there exists no exponential-time-computable hitting set
generator whose security can be proved by using a nonadaptive randomized polynomial-time
reduction from any problem outside AM∩coAM, which significantly improves the previous upper
bound BPPNP of Gutfreund and Vadhan (RANDOM/APPROX 2008 [GV08]). In particular,
any security proof of a hitting set generator based on some NP-hard problem must use either an
adaptive or non-black-box reduction (unless the polynomial-time hierarchy collapses). To the
best of our knowledge, this is the first result that shows limits of black-box reductions from an
NP-hard problem to some form of a distributional problem in DistPH.

Based on our results, we argue that the recent worst-case to average-case reduction of Hi-
rahara (FOCS 2018 [Hir18]) is inherently non-black-box, without relying on any unproven as-
sumptions. On the other hand, combining the non-black-box reduction with our simulation
technique of black-box reductions, we exhibit the existence of a “non-black-box selector” for
GapMCSP, i.e., an efficient algorithm that solves GapMCSP given as advice two circuits one of
which is guaranteed to compute GapMCSP.
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1 Introduction

The technique of reductions is one of central tools in complexity theory. In order to show that a
computational task A is easier than another computational task B, it suffices to design a (black-box)
reduction, i.e., the algorithm that solves A given oracle access to B. Most reductions of complexity
theory are black-box. That is, the correctness of a reduction can be established without assuming
any computational efficiency of the oracle. Black-box reductions are quite powerful and led us to, for
instance, the discovery of thousands of NP-complete problems computationally equivalent to each
other. However, a line of work has exhibited limits of black-box reductions: Black-box reductions
are too general to resolve several important open questions. We herein continue the study of
black-box reductions especially in the context of the construction of a hitting set generator.

A hitting set generator γ-secure against a class C is a family of functions G = {G` : {0, 1}s(`) →
{0, 1}`}`∈N such that no C-algorithm can γ-avoid G; here we say that an algorithm R γ-avoids G if
R rejects every string in the image of G, and R accepts at least a γ-fraction of all inputs of length
` for every ` ∈ N. By default, we assume γ := 1/4 and we say that R avoids G if R (1/4)-avoids
G. A typical approach for constructing a hitting set generator is to design a black-box reduction
that reduces some computationally hard task to the task of avoiding a hitting set generator.

In fact, there have been already several known proof techniques that are not black-box. Im-
pagliazzo and Wigderson [IW01] constructed a hitting set generator based on the uniform hardness
assumption that EXP 6= BPP. Their security proof of the hitting set generator is not a (black-box)
reduction from the task of solving EXP to the task of avoiding the hitting set generator; they cru-
cially exploited the fact that there exists an efficient algorithm that avoids the hitting set generator.
Trevisan and Vadhan [TV07] and Gutfreund and Vadhan [GV08] showed that the security reduction
of [IW01] is inherently non-black-box in some senses. More recently, building on [CIKK16, HS17],
Hirahara [Hir18] applied the proof techniques for constructing a hitting set generator to the con-
text of average-case complexity, and presented the first non-black-box worst-case to average-case
reduction within NP.

Given the fact that there are already non-black-box proof techniques, why should we study the
limits of black-box reductions? We highlight several points:

1. Black-box reductions are more general and useful than non-black-box reductions. Therefore,
it is desirable to have a black-box reduction when it is possible; studying limits of black-box
reductions enables us to identify when one can hope to construct a black-box reduction.

For example, Impagliazzo and Wigderson [IW01] showed that EXP 6⊆ BPP implies that BPP
can be derandomized in sub-exponential time (on most inputs, for infinitely many input
lengths). This is shown by a non-black-box reduction, and it is not known whether the result
can be generalized to a “high-end” result: does EXP 6⊆ BPSUBEXP imply that BPP can be
derandomized in quasi-polynomial time? On one hand, Trevisan and Vadhan [TV07] used a
black-box reduction and provided a positive answer to this question when EXP is replaced
with PSPACE. On the other hand, Gutfreund and Vadhan [GV08] showed that a (mildly
adaptive) black-box reduction cannot be used to prove the “high-end” result for EXP.

2. Studying limits of black-box reductions can inspire new black-box reductions. Inspired by
this work, Hirahara [Hir20c, Hir20b] subsequently presented new constructions of black-box
reductions to Kolmogorov complexity, which were previously conjectured to be impossible.
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3. Surprisingly, in some cases, the proof techniques for showing limits of black-box reductions can
be combined with non-black-box reductions. We will show that one of our new algorithms for
simulating black-box reductions can be combined with a non-black-box reduction of [Hir18]
(under some assumptions), and present a new structural property of an approximation version
of the Minimum Circuit Size Problem (MCSP [KC00]).

As a main result of this paper, we show that any security proof of a hitting set generator based
on some NP-hard problem must use either an adaptive or non-black-box reduction. This is the first
limit of black-box worst-case to average-case reductions from NP-hard problems to some form of a
distributional problem in DistPH.

Due to the connection to several research areas such as average-case complexity, black-box
reductions, and derandomization, it is not easy to describe the literature in few words; we thus
review the literature in the subsequent two sections. In Section 2, we review the theory of average-
case complexity and state our main results. In Section 3, we review the non-black-box reduction
of [Hir18], present some applications of our results, and describe our proof techniques.

2 Average-Case Complexity

2.1 Background

One of the central open questions in the theory of average-case complexity [Lev86] is to establish
the equivalence between the worst-case and average-case complexity of NP.

Open Question 1. Does DistNP ⊆ AvgP imply NP = P?

Here DistNP is the class of distributional problems (L,D) (i.e., a pair of a problem and its input
distribution) such that L ∈ NP and D is an efficiently samplable distribution. AvgP is the class
of distributional problems that admit an errorless heuristic polynomial-time scheme [BT06a] (also
known as an “average-case polynomial-time algorithm”). Here, for L ⊆ {0, 1}∗ and D = {Dm}m∈N,
a distributional problem (L,D) is said to be in AvgP if there exists an algorithm M such that, for
every m ∈ N, given an input x in the support of Dm, and a parameter δ > 0,

1. M(x, δ) halts in time poly(m, 1/δ),

2. M(x, δ) outputs either the correct answer L(x) or ⊥ (“I don’t know”), and

3. the probability that M(x, δ) outputs ⊥ over a choice of x ∼ Dm is at most δ.

Open Question 1 is of particular importance from the perspective of cryptography: Average-
case hardness of NP is a prerequisite for constructing secure complexity-theoretic cryptographic
primitives such as one-way functions (OWFs). Thus resolving Open Question 1 is an important step
towards building cryptographic primitives whose security is based on more plausible assumptions
(e.g., the worst-case hardness of NP).

There has been a line of work showing that Open Question 1 cannot be resolved by using
either relativizing proof techniques [Imp11, Wat12], black-box worst-case-to-average-case reductions
[FF93, BT06b, AGGM06, BB15, ABX08], or error-correcting codes [Vio05].

For large enough complexity classes such as PSPACE and EXP, there is a general technique
for converting any worst-case hard function f to some two-sided-error average-case hard function
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Enc(f) based on error-correcting codes [STV01, TV07]. Here, the encoded function Enc(f) is
computable in EXP or PSPACE given oracle access to f ; thus, the worst-case and average-case
complexity of such large complexity classes are known to be equivalent. Viola [Vio05] showed
limits of such an approach: Enc(f) cannot be computed in PHf ; thus, the proof technique of using
error-correcting codes is not sufficient to resolve Open Question 1 as well as the following weaker
open question:

Open Question 2. Does DistPH ⊆ AvgP imply PH = P (or, equivalently, NP = P)? 1

Note that Open Question 2 is an easier question than Open Question 1, since PH = P is known
to be equivalent to NP = P. In fact, this well-known equivalence between PH = P and NP = P is
shown by using a non-black-box reduction technique2; as we will explain later, this is one reason
why all the previous limits of black-box reductions [FF93, BT06b, AGGM06, BB15, ABX08] fail
to explain the difficulty of resolving Open Question 2. In this work, we present the first limit of
black-box reduction techniques for resolving Open Question 2, thereby clarifying what kind of proof
techniques are useful. We emphasize that, while Viola’s result [Vio05] excludes the construction of
error-correcting codes within PH, it does not show limits of black-box worst-case to average-case
reduction techniques such as Ajtai’s reduction [Ajt96].

One general approach for constructing an (errorless) average-case hard function is to make use of
a hitting set generator. Indeed, a hitting set generator G secure against polynomial-time algorithms
naturally induces a hard distributional problem in DistNPG: Consider the distributional problem
(Im(G),U), i.e., the distributional problem of checking whether an input x is in the image of G,
where x is randomly chosen from the uniform distribution U . Since the number of Yes instances
of Im(G) is small under the uniform distribution, any errorless heuristic algorithm must reject a
large fraction of No instances, which gives rise to an algorithm that avoids G. To summarize:

Fact 3 (Implicit in [Hir18]). Suppose there exists a hitting set generator G := {G` : {0, 1}`−1 →
{0, 1}`}`∈N that is 1/4-secure against polynomial-time algorithms. Then, DistNPG 6⊆ AvgP. In
particular, when G is computable in PH, we obtain DistPH 6⊆ AvgP.

Fact 3 suggests an approach for resolving Open Question 2: Try to construct a PH-computable
hitting set generator whose security is based on the worst-case hardness of NP. How do we compare
this approach with the technique based on error-correcting codes [Vio05]? Our approach is more
general, because, given a two-sided-error average-case hard function Enc(f), one can construct a
pseudorandom generator G = {G` : {0, 1}`−1 → {0, 1}`}`∈N defined as G`(z) := (z,Enc(f)(z)) for
a seed z ∈ {0, 1}`−1 [Yao82].

In order to construct a secure hitting set generator based on the hardness of a problem L,
we need to argue that, if there exists an efficient algorithm that avoids G, then L can be solved
efficiently. A typical way to establish such an implication is to design black-box reductions from L
to a distinguisher for a hitting set generator. Specifically, for a candidate hitting set generator G,
a reduction M is said to be a black-box reduction from L to any γ-avoiding oracle R for G if, for
every input x and any oracle R that γ-avoids G, M computes L on input x under the oracle R.

Gutfreund and Vadhan [GV08] initiated the study of limits of such a black-box reduction,
motivated by the question on whether derandomization is possible under uniform assumptions

1We mention in passing that Pavan, Santhanam, and Vinodchandran [PSV06] made some progress, by proving
that DistPNP ⊆ AvgP implies NP = P, under the implausible assumption that NP ⊆ P/poly.

2Indeed, if the reduction is black-box, we should have PH ⊆ PNP, which means that PH collapses.
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(e.g., [IW01, TV07]). They showed that any polynomial-time randomized nonadaptive black-box
reductions to any oracle avoiding an exponential-time-computable hitting set generator G can be
simulated in BPPNP. Unfortunately, their upper bound is too weak to deduce any limit of the
approach on Open Question 2 since NP ⊆ BPPNP. Similarly, it is impossible to deduce any limit of
the approach on Open Question 1, because the upper bound becomes trivial when G is polynomial-
time-computable.

2.2 Our Results: Limits of Security Proof of Hitting Set Generators

We significantly improve the upper bound of [GV08] to AM∩coAM. We also show upper bounds
of NP/poly ∩ coNP/poly ∩ SNP

2 even if G is not computable.
To state our results formally, let BPPR‖ denote the class of languages solvable by a randomized

polynomial-time machine with nonadaptive oracle access to R.3 In the definition of a black-box
reduction M to any γ-avoiding oracle R, the reduction M is not allowed to depend on R. However,
we will show that the existence of a randomized nonadaptive black-box reduction from L to any
γ-avoding oracle R is equivalent to saying that L ∈ BPPR‖ for every oracle R that γ-avoids R.4 In

light of this, the result of Gutfreund and Vadhan [GV08] can be stated as
⋂
R BPPR‖ ⊆ BPPNP,

where the intersection is taken over all oracles R that γ-avoid an exponential-time computable
function G. Our main result improves BPPNP to AM ∩ coAM:

Theorem 4 (Main). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any (not necessarily computable)
family of functions and γ : N→ [0, 1) be a parameter such that

• there exists a constant ε > 0 such that s(`) ≤ (1− ε)` for all large ` ∈ N, and

• there exists a constant c > 0 such that γ(`) ≤ 1− `−c for all large ` ∈ N.

Then, ⋂
R

BPPR‖ ⊆ NP/poly ∩ coNP/poly ∩ SNP
2 ,

where the intersection is taken over all oracles R that γ-avoids G. Moreover, if G can be computed
in time 2O(`), then we also have ⋂

R

BPPR‖ ⊆ AM ∩ coAM.

At the core of Theorem 4 is the following two types of algorithms simulating black-box reduc-

tions: One is an Sp
2-type algorithm that simulates any query q

?
∈ R of length at most Θ(log n),

and the other is an AM ∩ coAM-type algorithm that simulates any query q
?
∈ R of length at least

Θ(log n). In particular, if G is exponential-time computable, the Sp
2-type algorithm can be replaced

with a polynomial-time algorithm and obtain the AM ∩ coAM upper bound.
Theorem 4 shows that there exists no hitting set generator whose security can be based on

the hardness of some NP-hard problem via a nonadaptive reduction (unless NP ⊆ coNP/poly). In

3The subscript ‖ stands for parallel queries.
4We state our results in the latter way because this makes our impossibility results stronger. The proof of the

equivalence can be found in Lemma 14.
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particular, the approach for Open Question 2 by constructing a PH-computable hitting set generator
based on an NP-hard problem must use either an adaptive or non-black-box reduction.

It is worthy of note that Theorem 4 is almost tight from several perspectives: First, it is
impossible to extend Theorem 4 to the case of adaptive reductions (unless PSPACE = AM). Indeed,
Trevisan and Vadhan [TV07] constructed an exponential-time-computable pseudorandom generator
based on the intractability of some PSPACE-complete problem, and its security reduction is adaptive
and black-box in the sense of Theorem 4. Second, our Sp

2-type algorithm for simulating short queries
is completely tight when G is a universal Turing machine. Third, it is possible to construct a hitting
set generator based on the hardness of SZK (Statistical Zero Knowledge), which is one of the best
lower bound on AM∩coAM; thus, the AM∩coAM upper bound of Theorem 4 cannot be significantly
improved. The reader is referred to Appendix A for the details.

2.3 Related Work: Limits of Worst-case to Average-case Reductions within NP

To the best of our knowledge, Theorem 4 is the first result that shows limits of black-box
reductions from an NP-hard problem to (some form of) a distributional problem in DistPH. In
order to explain this in more detail, we review the previous work on limits of worst-case to average-
case reductions within NP.

A natural approach for establishing the equivalence between the worst-case and average-case
complexity of NP is by means of black-box reductions. That is, it is sufficient for resolving Open
Question 1 to design a reduction that solves some NP-hard problem L, using oracle access to an
errorless heuristic algorithm M that solves some distributional problem in DistNP. A line of work
has been devoted to explaining why such a black-box reduction technique is too general to establish
a worst-case to average-case connection for an NP-complete problem.

Building on the work of Feigenbaum and Fortnow [FF93], Bogdanov and Trevisan [BT06b]
showed that if a worst-case problem L is reducible to some distributional problem in DistNP via
a nonadaptive black-box randomized polynomial-time reduction, then L must be in NP/poly ∩
coNP/poly. This in particular shows that the average-case hardness of NP cannot be based on
the worst-case hardness of an NP-complete problem using such a reduction technique (unless
the polynomial-time hierarchy collapses [Yap83]). Akavia, Goldreich, Goldwasser and Moshkovitz
[AGGM06, AGGM10] showed that, in the special case of a nonadaptive reduction to the task of
inverting a one-way function, the upper bound of [BT06b] can be improved to AM∩ coAM, thereby
removing the advice “/poly”. Bogdanov and Brzuska [BB15] showed that even an adaptive re-
duction to the task of inverting a size-verifiable one-way function cannot be used for any problem
outside AM ∩ coAM. Applebaum, Barak, and Xiao [ABX08] studied black-box reductions to PAC
learning, and observed that the technique of [AGGM06] can be applied to (some restricted type of)
a black-box reduction to the task of inverting an auxiliary-input one-way function (AIOWF), which
is a weaker primitive than a one-way function. We summarize the limits of black-box reductions
(depicted by →) as well as known implications (depicted by =⇒) in Figure 1.

Compared to the previous results on the limits of black-box worst-case-to-average-case reduc-
tions within NP, a surprising aspect of Theorem 4 is that it generalizes to any function G that may
not be computable (and this is a key property for obtaining the limits of the approach on Open
Question 2). Indeed, almost all the previous results [FF93, BT06b, AGGM06, ABX08] crucially
exploit the fact that a verifier can check the correctness of a certificate for an NP problem; thus
a dishonest prover can cheat the verifier only in one direction by not providing a certificate for a
Yes instance. In our simulation algorithms, a verifier cannot compute G and thus cannot prevent
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DistNP 6⊆ AvgBPP

NP 6⊆ BPP

∃HSG

GapεMCSP 6∈ BPP

∃OWF∃PRG ∃AIOWF

SZK 6⊆ BPP

[HILL99]

[Hir18]

[Hir18]

[Ost91]

[AH17]

[BT06b]

This Work

[HW16] [ABX08]

[AGGM06, BB15]

Figure 1: Average-case complexity and limits of black-box reductions. “A→ B” means that there
is no black-box (or oracle-independent) reduction technique showing “A ⇒ B” under reasonable
complexity theoretic assumptions. The security of all cryptographic primitives is with respect to
an almost-everywhere polynomial-time randomized adversary.

dishonest provers from cheating in this way. At a high level, our technical contributions are to over-
come this difficulty by combining the ideas of Gutfreund and Vadhan [GV08] with the techniques
developed in [FF93, BT06b].

Is it possible to directly deduce some limits of an approach on Open Question 2 from the previous
results [FF93, BT06b]? No! Recall that, in order to resolve Open Question 2, it suffices to establish
a reduction from an NP-complete problem to DistPH (using the non-black-box equivalence between
P = NP and P = PH). The results of [FF93, BT06b] crucially rely on the fact that a Yes instance
of DistNP is verifiable in polynomial time. If we would like to simulate a black-box reduction to
DistNPA for some oracle A, the simulation protocol of Feigenbaum and Fortnow [FF93] runs in
NPA/poly ∩ coNPA/poly. Thus, in order to simulate a reduction to DistΣp

2 ⊆ DistPH, the upper
bound becomes NPNP/poly ∩ coNPNP/poly, which trivially contains NP.

It is also worthy of note that Theorem 4 improves some aspects of all the previous results about
limits of black-box reductions within NP. Compared to [BT06b], our results show that the advice
“/poly” is not required to simulate black-box reductions to any oracle avoiding an exponential-time-
computable hitting set generator. Compared to [AGGM06, ABX08], our results are “improvement”
on their results in the sense that the existence of auxiliary-input one-way functions implies the
existence of hitting set generators; on the other hand, since the implication goes through the
adaptive reduction (from the task of inverting a one-way function to a distinguisher for a PRG)
of [HILL99], technically speaking, our results are incomparable with their results.5 Similarly, our

5 We emphasize that we concern the nonadaptivity of reductions used in the security proof of pseudorandom
generators. Several simplified constructions of pseudorandom generators Gf from one-way functions f (e.g., [Hol06,
HRV13]) are nonadaptive in the sense that Gf can be efficiently computed with nonadaptive oracle access to f ;
however, the security reductions of these constructions are adaptive because of the use of Holenstein’s uniform
hardcore lemma [Hol05]. Similarly, the reduction of [HILL99, Lemma 6.5] is adaptive. (We note that, in the special
case when the degeneracy of a one-way function is efficiently computable, the reduction of [HILL99] is nonadaptive.)
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results conceptually improve the result of [HW16], but these are technically incomparable, mainly
because the implication goes through the non-black-box reduction of [Hir18].

3 In Search of Inherently Non-Black-Box Reduction Techniques

Hirahara [Hir18] presented the first non-black-box worst-case to average-case reduction within
NP, which is the motivation for this work. Building on [CIKK16, HS17], Hirahara [Hir18] presented
a (nonadaptive) reduction from GapεMCSP to a distinguisher for a polynomial-time-computable

hitting set generator Gint = {Gint
2n : {0, 1}Õ(2δn) → {0, 1}2n}n∈N. Here, Gint is a “circuit interpreter”:

a function that takes a description of a circuit of size 2δn and outputs its truth table. For a constant
ε > 0, GapεMCSP denotes the problem of approximating the minimum circuit size of a Boolean
function f : {0, 1}n → {0, 1} within a factor of 2(1−ε)n, given the truth table of f . Rudich [Rud97]
conjectured that GapεMCSP cannot be solved in coNP/poly (even in the sense of average-case
complexity). Therefore, the reduction of [Hir18] is indeed non-black-box under Rudich’s conjecture,
as otherwise it contradicts the limits of black-box reductions (such as Theorem 4 and [BT06b]).

Here we pose the following question:

Are the reductions of [Hir18] inherently non-black-box? Or should we regard it as an
approach for refuting Rudich’s conjecture?

On one hand, the proofs of [Hir18] seem to yield only non-black-box reductions, in the sense that the
efficiency of an oracle is crucially exploited. On the other hand, if the reduction from GapεMCSP to
DistNP could be made black-box, by using our coAM simulation protocol of black-box reductions
(i.e., Theorem 4), we would obtain GapεMCSP ∈ coAM ⊆ coNP/poly, which refutes Rudich’s
conjecture.

In order to answer the question, it is desirable to clarify a fundamental obstacle to applying the
simulation techniques of black-box reductions to the reductions of [Hir18], without relying on any
unproven assumption.

3.1 Hirahara’s Reduction is Unconditionally Non-Black-Box

Based on Theorem 4, we can argue that the reductions of [Hir18] are inherently non-black-
box in a certain formal sense. The reason is that the idea of [Hir18] can be applied to not only
time-bounded Kolmogorov complexity but also any other types of Kolmogorov complexity, includ-
ing resource-unbounded Kolmogorov complexity. Therefore, if this generalized reduction could be
made black-box, then (as outlined below) by Theorem 4 we would obtain a finite-running-time algo-
rithm SNP

2 that approximates resource-unbounded Kolmogorov complexity, which is a contradiction
unconditionally.

More specifically, fix any universal Turing machine U , and regard it as a hitting set generator
U = {U` : {0, 1}`/2 → {0, 1}`}`∈N. That is, U` takes an input (M,x) of length `/2, simulates the
Turing machine M on input x, and outputs M(x) if the length of the output M(x) is exactly `;
otherwise, U` outputs 1`.

Claim 5. Suppose that there exists a computable oracle R that avoids U . Then, there exists a
randomized polynomial-time nonadaptive R-oracle algorithm that approximates KU (x).
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Proof Sketch. The idea of the non-black-box reduction of [Hir18] is as follows: Given an input
x ∈ {0, 1}n, take any construction of a pseudorandom generator Gx : {0, 1}`/4 → {0, 1}` based
on a worst-case hard function x : {0, 1}logn → {0, 1}.6 For example, we can use the Nisan-
Wigderson generator [NW94] combined with some error-correcting codes. The reduction estimates
p := Ez[R(Gx(z))] by sampling, and accepts if and only if p is small.

The correctness is proved as follows: If KU (x) ≤ `/5, then KU (Gx(z)) ≤ |z| + KU (x) � `/2
for a large enough `; thus p = 0. Conversely, if p ≈ 0, then by using the security proof of Gx, we
obtain a small R-oracle Turing machine that outputs x; thus KR

U (x) ≤ poly(`, log n); in particular,
by using the assumption that R is computable, we obtain KU (x) ≤ poly(`, log n). Therefore, the
reduction distinguishes the Yes instances x such that KU (x) ≤ `/5 and the No instances x such
that KU (x) > poly(`, log n). �

Observe that, in the proof above, we crucially used the assumption that R is computable. Can
we avoid the assumption and generalize Claim 5 for any R that avoids U? In other words, is
there a black-box reduction from approximating KU (x) to the task of avoiding U? If it is the
case, Theorem 4 implies that approximating KU (x) can be done in SNP

2 , which contradicts the
undecidability of Kolmogorov complexity. Therefore, we conclude that the reduction of Claim 5 is
inherently non-black-box.

3.2 Applications: Non-Black-Box Selector for GapMCSP

As explained in the previous subsection, the non-black-box reductions of [Hir18] cannot be
combined with Theorem 4 unconditionally. However, we show that our simulation protocol of black-
box reductions can be combined with the non-black-box reductions conditionally, which constitutes
a new structural property of GapMCSP — the existence of a “non-black-box selector.”

Theorem 6 (GapMCSP Has a “Non-Black-Box Selector”). For any constant ε > 0, there exist
some constant δ > 0 and a randomized polynomial-time algorithm that takes as advice two circuits
one of which is guaranteed to solve GapεMCSP and solves GapδMCSP with high probability.

A selector for a problem L is an efficient algorithm that solves L given oracle access to two
oracles one of which is guaranteed to solve; thus, it “selects” the correct answer from the two oracles.
The notion of selector exactly characterizes the class of languages for which advice of logarithmic
length can be removed [Hir15]. The selector of Theorem 6 is non-black-box in the sense that it
requires to take as advice two polynomial-size circuits instead of black-box access to two oracles.

The main building block of the non-black-box selector is our Sp
2-type simulation algorithm

of Theorem 4. Recall that Sp
2 is a proof system where two competing provers, one of which is

guaranteed to be honest, try to convince a polynomial-time verifier. In our Sp
2 simulation algorithm

of black-box reductions, for each i ∈ {0, 1}, the ith prover sends a set Ri; the honest prover sends a
set Ri that avoids a hitting set generator G. Then a verifier obtains an oracle R0 ∩R1 that avoids
G, to which the reduction is guaranteed to work.

Theorem 6 is proved by combining this Sp
2-type simulation algorithm with the non-black-box

reductions of [CIKK16, Hir18].7 The reason why we can combine the non-black-box reductions with

6Here we identify a function with its truth table.
7There is an alternative proof based on the search-to-decision reduction of GapMCSP given by Carmosino, Im-

pagliazzo, Kabanets, and Kolokolova [CIKK16]. However, we choose to present the proof by combining the Sp
2-type

10



our Sp
2-type simulation algorithm is that the non-black-box reduction of [Hir18] is, in fact, a size-

restricted black-box reduction [GV08]. This is a black-box reduction which works correctly when an
oracle can be computed by a polynomial-size circuit. Our Sp

2-type simulation algorithm can simulate
the size-restricted black-box reduction under the assumption that there exists a polynomial-size
circuit that avoids a hitting set generator.

In contrast, we were not able to combine our AM ∩ coAM algorithm of Theorem 4 with the
non-black-box reductions under similar conditions. We leave it as an interesting open question,
which could have an application to fixed-polynomial circuit lower bounds (e.g., [San09]).

Open Question 7 (“Non-Black-Box Instance Checkability” of GapMCSP). Prove that MCSP ∈
P/poly (or NP ⊆ P/poly) implies GapεMCSP ∈ coAM for some constant ε > 0.

3.3 Our Techniques

We outline our proof strategy for Theorem 4 below. Suppose that we have some reduction M
from L to any oracle R that avoids a hitting set generator G. Fix any input x ∈ {0, 1}∗, and
let Qx denote the query distribution that a reduction makes on input x. We focus on the case
when the length of each query is larger than Θ(log n), and explain the proof ideas for showing
L ∈ AM ∩ coAM.

As a warm-up, consider the case when the support supp(Qx) of Qx is small (i.e., |supp(Qx) ∩
{0, 1}`| � 2` for all large ` ∈ N). In this case, we can define an oracle R1 so that R1 := {0, 1}∗ \
supp(Qx) \ Im(G); this avoids the hitting generator G because R1 ∩ Im(G) = ∅ and the size of
R1 ∩ {0, 1}` is at least 2` − |supp(Qx)| − |Im(G`)| � 2`−1 for all large ` ∈ N. Therefore, it is
guaranteed that the reduction M computes L correctly under the oracle R1; we can simulate the
reduction by simply answering all the queries by saying “No” (since q 6∈ R1 for every q ∈ Qx);
hence L ∈ BPP.

In general, we cannot hope that supp(Qx) is small enough. To generalize the observation above,
let us recall the notion of α-heaviness [BT06b]: We say that a query q is α-heavy (with respect to
Qx) if the query q is α times more likely to be sampled under Qx than the uniform distribution
on {0, 1}|q|; that is, Prw∼Qx [w = q] ≥ α2−|q|. Now we define our new oracle R2 := {0, 1}∗ \ { q ∈
{0, 1}∗ | q : α-heavy }\Im(G), which can again be shown to avoid G because the fraction of α-heavy
queries is at most 1/α (� 1 ).

The problem now is that it is difficult to simulate the new oracle R2; it appears that, given a

query q, we need to test whether q
?
∈ Im(G), which is not possible in AM ∩ coAM. However, it

turns out that it is not necessary to test it, as we explain next: Observe that the size of Im(G)
is very small; it is at most 2s(`)

(
� 2`

)
. Thus, the probability that a query q is in Im(G) and

q is not α-heavy (i.e., q is rarely queried) is at most α · 2s(`)−`, where ` denotes the length of
q. As a consequence, the reduction cannot “distinguish” the oracle R2 and a new oracle R3 :=
{0, 1}∗ \ { q ∈ {0, 1}∗ | q : α-heavy }; hence, we can simulate the reduction if, given a query q, we

can decide whether q
?
∈ R3 in AM ∩ coAM.

This task, however, still appears to be difficult for AM∩ coAM; indeed, at this point, Gutfreund
and Vadhan [GV08] used the fact that the approximate counting is possible in BPPNP, and thereby
simulated the oracle R3 by a BPPNP algorithm.

simulation algorithm with the non-black-box reductions in order to highlight the difference between Theorem 6 and
Open Question 7.
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Our main technical contribution is to develop a way of simulating the reduction to R3. First,
note that the lower bound protocol of Goldwasser and Sipser [GS86] enables us to give an AM
certificate for α-heaviness; we can check, given a query q, whether q is α(1 + ε)-heavy or α-light for
any small error parameter ε > 0. Thus, we have an AM protocol for {0, 1}∗ \R3 for every query q
(except for the queries that are α-heavy and α(1 + ε)-light).

If, in addition, we had an AM protocol for R3, then we would be done; however, it does not
seem possible in general. The upper bound protocol of Fortnow [For89] performs a similar task,
but the protocol can be applied only for a limited purpose: we need to keep the randomness used
to generate a query q ∼ Qx from being revealed to the prover. When the number of queries of the
reduction is limited to 1, we can use the upper bound protocol in order to give an AM certificate for
R3; on the other hand, if the reduction makes two queries (q1, q2) ∼ Qx, we cannot simultaneously
provide AM certificates of the upper bound protocol for both q1 and q2, because the fact that q1 and
q2 are sampled together may reveal some information about the private randomness. To summarize,
the upper bound protocol works only for the marginal distribution of each query, but does not work
for the joint distribution of several queries.

Still, the upper bound protocol is useful for extracting some information about each query. For
example, the heavy-sample protocol of Bogdanov and Trevisan [BT06b] (which combines the lower
and upper bound protocol and sampling) estimates, in AM ∩ coAM, the probability that a query q
sampled from Qx is α-heavy. This protocol enables us to estimate the probability that q ∈ R3 over
the choice of q ∼ Qx.

The probability that q ∈ R3 is useful for simulating the reduction M . Feigenbaum and Fortnow
[FF93] developed an AM ∩ coAM protocol that simulates a nonadaptive reduction to an NP oracle
R, given as advice the probability that a query q is in R. We generalize this protocol for the case
when the oracle R is solvable by AM on average:

Theorem 8 (Generalized Feigenbaum–Fortnow Protocol; informal). Suppose that M is a random-
ized polynomial-time nonadaptive reduction to an oracle R whose queries are distributed according
to Qx on input x ∈ {0, 1}n, and that R is solvable by AM on average (i.e., there exists an AM
protocol ΠR such that, with probability 1 − 1/poly(n) over the choice of q ∼ Qx, the protocol ΠR

computes R on input q). Then, there exists an AM ∩ coAM protocol ΠM such that, given a proba-
bility p∗ ≈ Prq∼Qx [q ∈ R] as advice, the protocol ΠM simulates the reduction M with probability at
least 1− 1/poly(n).

Let R denote the complement of R3, i.e., R := { q ∈ {0, 1}∗ | q : α-heavy }. Using the generalized
Feigenbaum–Fortnow protocol, we simulate the reduction M to R as follows. Firstly, we use the
heavy-sample protocol of [BT06b] in order to estimate p∗ ≈ Prq∼Qx [q : α-heavy]. Secondly, using
the lower bound protocol of [GS86], we argue that R can be solved by some AM-protocol ΠR on
average. Lastly, we use the protocol of Theorem 8 to simulate M . The details can be found in
Section 6.

We mention in passing the difficulty of Open Question 7, i.e., the reason why we were not
able to combine our AM ∩ coAM-type simulation algorithm with the non-black-box reduction even
conditionally : The non-black-box reduction outlined in Subsection 3.1 reduces the promise problem
whose Yes instance consists of KU (x) ≤ `/5 and No instance consists of KR

U (x) > poly(`, log n) to
an oracle R. In order to make sure that the promise problem is non-trivial, it is important that R
does not depend on x. On the other hand, in our simulation algorithm, we need to choose an oracle
Rx depending on the input x, which potentially makes the promise problem trivial. (For example,
KRx
U (x) may be always close to 0.)
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Subsequent Work. Inspired by this work, Allender’s conjectures [All12] were refuted under the
plausible assumptions about the exponential-time hierarchy [Hir20c, Hir20b]. Moreover, it turned
out that the stretch of a hitting set generator construction is important. In [Hir20b], it was shown
that there exists a function G = {G : {0, 1}n−O(logn) → {0, 1}n}n∈N such that NEXP ∪ coNEXP ⊆
BPPR‖ for any oracle R that avoids G. This result bypasses our limits of black-box reductions
(Theorem 4) because G extends its seed by a small amount of O(log n) whereas Theorem 4 requires
that G extends its seed by a constant factor. In [Hir20a], the approximation quality of non-black-
box reductions of [Hir18] is improved. Moreover, based on the improvement, it is shown that,
under the assumption that DistPH ⊆ AvgP, the time-bounded SAT-oracle Kolmogorov complexity
of a string x is equal to the time-bounded Kolmogorov complexity of x up to an additive term of
O(log n), for any string x ∈ {0, 1}n.

Organization. The rest of this paper is organized as follows. After reviewing necessary background
in Section 4, we show that a reduction with only short queries can be simulated by using an Sp

2

algorithm in Section 5. We show how to simulate a reduction with long queries by using an
AM ∩ coAM algorithm in Section 6, which completes our main results. In Section 7, we present a
non-black-box selector for GapMCSP.

4 Preliminaries

We identify a language L ⊆ {0, 1}∗ with its characteristic function L : {0, 1}∗ → {0, 1}.. For a
language A and ` ∈ N, let A=` := A ∩ {0, 1}`. Let [n] := {1, . . . , n} for n ∈ N.

We will make use of a standard concentration inequality:

Lemma 9 (Hoeffding’s inequality [Hoe63]). For any independent random variables X1, . . . , Xn ∈
[0, 1] and any t ≥ 0, we have Pr [|

∑n
i=1(Xi − E[Xi])| ≥ nt] ≤ 2 exp(−2nt2).

4.1 Interactive Proof System

AM is the class of languages L that can be accepted by some polynomial-time two-round Arthur-
Merlin protocol; that is, there exists a polynomial-time Turing machine V (called an AM verifier)
such that

• (Completeness) if x ∈ L then Prr[V (x, y, r) = 1 for some y] ≥ 2
3 , and

• (Soundness) if x 6∈ L then Prr[V (x, y, r) = 1 for some y] ≤ 1
3 .

For our purpose, it is convenient to use the following characterization of AM ∩ coAM.

Fact 10. Let L ⊆ {0, 1}∗. Then L ∈ AM∩coAM if and only if there exists a randomized polynomial-
time verifier V of a private-coin constant-round interactive proof system such that, for any input
x ∈ {0, 1}∗,

• (Completeness) there exists a prover P such that V outputs L(x) by communicating with P
with probability at least 2

3 , and

• (Soundness) for any prover P , V outputs L(x) or ⊥ with P with probability at least 2
3 .
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That is, the verifier outputs a correct answer L(x) when interacting with an honest prover, and it
does not output the wrong answer 1−L(x) for any cheating prover, with high probability. The fact
above follows from the transformation from public coin protocols to private coin protocols [GS86],
and the AM hierarchy collapses [Bab85].

Circuits. We will use a circuit in order to make it easy to compose several protocols8. Usually,
a circuit takes a string of some fixed length as input and outputs a string of some fixed length.
For our purpose, it is convenient to extend this usual notion of circuit: By using some encoding,
we regard circuits as taking a string of length at most l for some l ∈ N, and outputting a string
(not necessarily of fixed length). We regard a circuit as computing a function from {0, 1}∗ to
{0, 1}∗ ∪ {“undefined”} such that the function outputs “undefined” on inputs of length > l.

4.2 Competing Prover System

Sp
2 denotes the class of languages that admit a competing-two-prover system.

Definition 11 ([Can96, RS98]). Sp
2 is the class of languages L such that there exist a polynomial

p(n) = nO(1) and a polynomial-time algorithm V such that, for every input x ∈ {0, 1}∗,

1. ∃y ∈ {0, 1}p(|x|), ∀z ∈ {0, 1}p(|x|), V (x, y, z) = L(x), and

2. ∃z ∈ {0, 1}p(|x|), ∀y ∈ {0, 1}p(|x|), V (x, y, z) = L(x).

For an oracle A, the relativized version of Sp
2 is denoted by SA2 ; that is, SA2 is the class of

languages that admit a competing-two-prover system with a polynomial-time A-oracle verifier; SNP
2

is defined as
⋃
A∈NP S

A
2 .

4.3 On Nonadaptive Reductions and Query Distributions

A polynomial-time nonadaptive reduction is a polynomial-time oracle Turing machine whose
possible queries can be computed without access to an oracle in polynomial time. For simplicity,
we assume without loss of generality that, for all inputs of length n, the reduction makes the same
number m = m(n) of queries (by adding dummy queries if necessary). For any oracle R ⊆ {0, 1}∗,
we denote by BPPR‖ the class of languages from which there exists a randomized polynomial-time
nonadaptive reduction to R. For a nonadaptive reduction M , we denote by MR(x) the output of
the reduction given oracle access to R ⊆ {0, 1}∗ and input x ∈ {0, 1}∗.

We can modify a randomized nonadaptive reduction M so that the marginal distribution of each
query of M is identical; that is, for any query q ∈ {0, 1}∗, the probability that q is sampled as the ith
query of M is the same for all i ∈ [m]. To achieve this, we simply modify M as follows: it generates
a permutation π : [m] → [m] uniformly at random, runs M(x) to make m queries q1, . . . , qm, asks
qπ(i) as the ith query to get an answer ai from an oracle, and resumes the computation of M(x)
to get the decision on x by supplying aπ−1(1), . . . , aπ−1(m) as oracle answers. It is then easy to
see that in the new query machine the ith query distribution is identical for all i ∈ [m]. By the
modification above, we can take a single query distribution Qx such that each query of M(x) is
distributed according to Qx.

8The reader may simply regard a circuit as a Turing machine with an appropriate description to which one can
embed some additional information.
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Let Q be a distribution over {0, 1}∗. We use the notation q ∼ Q to indicate that a random
variable q is sampled from Q. For a finite set A, we use the same notation a ∼ A to indicate that
a random variable a is sampled from the uniform distribution over A. For a string q ∈ {0, 1}∗, let
Q(q) denote Prw∼Q[w = q]. For any parameter α > 0, a string q ∈ {0, 1}∗ of length ` ∈ N is called
α-heavy (with respect to Q) if Q(q) ≥ α2−`; otherwise (i.e., Q(q) < α2−`), it is called α-light.

4.4 Black-Box Reduction to an Arbitrary Avoiding Oracle

We consider any family of functions G = {G` : {0, 1}s(`) → {0, 1}`}`∈N that is regarded as a hit-
ting set generator; here, s : N→ N denotes a function that determines the seed length of the genera-
tor. Throughout this paper, we assume that the function `−s(`) is nonnegative and nondecreasing
for simplicity. We measure the time complexity of G with respect to its output length; that is, we
say that G is O(tG(`))-time computable if there exists a deterministic algorithm that computes, for
any given seed z ∈ {0, 1}s(`) and ` ∈ N, the string G`(z) of length ` in time O(tG(`)). Let Im(G`)
denote the image of G`; that is, Im(G`) = {w ∈ {0, 1}` | w = G`(u) for some u ∈ {0, 1}s(`) }.
Also let Im(G) := ∪`∈NIm(G`). We regard G as a hitting set generator, and define the standard
notion of avoiding G as follows.

Definition 12. For any family G = {G` : {0, 1}s(`) → {0, 1}`}`∈N of functions and any parameter
γ : N→ [0, 1), a set R of strings is said to γ-avoids G (or, a γ-avoiding set for G) if

1. R ∩ Im(G) = ∅, and

2. Prw∼{0,1}` [w ∈ R ] ≥ γ(`) for all ` ∈ N.

Similarly, for any fixed length ` ∈ N, we say that R γ-avoids G at length ` if R=` ∩ Im(G) = ∅ and
Prw∼{0,1}` [w ∈ R] ≥ γ(`).

We always assume that a parameter γ satisfies γ(`) ≤ 1 − 2s(`)−` for all ` ∈ N, as otherwise
γ-avoiding sets may not exist. In the context where G is fixed, we omit specifying G and simply
say that R is a γ-avoiding set.

Definition 13 (Black-box reduction to γ-avoiding oracles [GV08]). For any family of functions
G = {G` : {0, 1}s(`) → {0, 1}`}`∈N and any language L ⊆ {0, 1}∗, a randomized nonadaptive
oracle machine M is called a black-box reduction from L to any γ-avoiding oracle of G if, for any
γ-avoiding oracle R for G and any x ∈ {0, 1}∗, we have

Pr
[
MR(x) = L(x)

]
≥ 2

3
, (1)

where the probability is taken over the internal randomness of M .

We emphasize that the definition above requires that there exists a single machine that works
for every γ-avoiding oracle; on the other hand, Theorem 4 states that, if, for every γ-avoiding oracle
R, there exists a nonadaptive reduction MR from L to R, then L ∈ AM∩ coAM. That is, the order
of the quantifier is reversed; nonetheless, a diagonalization argument enables us to establish the
equivalence:

Lemma 14. Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be a family of functions, γ : N → [0, 1) be any
parameter, and L ⊆ {0, 1}∗ be a language. The following are equivalent:

15



1. L ∈
⋂

R : γ-avoids G

BPPR‖ .

2. There exists a randomized polynomial-time nonadaptive black-box reduction from L to any
γ-avoiding oracle of G.

Proof. The direction from the second item to the first item is obvious. We prove below the contra-
positive of the other direction.

Suppose that, for any randomized nonadaptive oracle machine M , there exists some γ-avoiding
oracle RM of G such that PrM

[
MR(x) = L(x)

]
< 2

3 for some x ∈ {0, 1}∗. We claim that there

exists some single γ-avoiding oracle R of G such that L 6∈ BPPR‖ .
To this end, let {Me}e∈N be the set of all randomized nonadaptive oracle machines. We will

construct some γ-avoiding oracle Re and input xe (and `e ∈ N) by induction on e ∈ N, so that Me

given oracle Re+1 fails to compute L on input xe; then we will define R :=
⋃
e∈NRe. Let us start

with R0 := ∅ and `0 := 0.
At stage e ∈ N, we claim that there exists some γ-avoiding oracle R′e+1 ⊆ {0, 1}∗ and some

input xe ∈ {0, 1}∗ such that

• Pr
[
M

R′e+1
e (xe) = L(xe)

]
< 2

3 , and

• q ∈ Re if and only if q ∈ R′e+1 for any string q of length < `e.

Indeed, for any oracle Q, let Q′ := { q ∈ Q | |q| ≥ `e }∪{ q ∈ Re | |q| < `e }. Consider a randomized

nonadaptive oracle machine M ′e such that M ′Qe simulates MQ′
e ; that is, M ′e is hardwired with the

set { q ∈ Re | |q| < `e }, and simulates Me and answer any query q of length < `e by using
the hardwired information. By our assumption, there exists some γ-avoiding oracle R̂e+1 of G

such that Pr
[
M
′R̂e+1
e (xe) = L(xe)

]
< 2

3 for some xe ∈ {0, 1}∗; by the definition of M ′e, we obtain

Pr
[
M

R′e+1
e (xe) = L(xe)

]
< 2

3 for R′e+1 := { q ∈ R̂e+1 | |q| ≥ `e } ∪ { q ∈ Re | |q| < `e }, which

is again γ-avoiding G. This completes the proof of the claim above. Now define `e+1 ∈ N as a
large enough integer so that `e+1 ≥ `e and the machine Me on input xe does not query any string
of length ≥ `e+1, and define an oracle Re+1 := { q ∈ R′e+1 | |q| < `e+1 }, which completes the
construction of stage e ∈ N.

Define R :=
⋃
e∈NRe, which γ-avoids G by the construction above. By the choice of (`e)e∈N,

we have

Pr
[
MR
e (xe) = L(xe)

]
= Pr

[
MRe+1
e (xe) = L(xe)

]
<

2

3
,

for every randomized nonadaptive oracle machine Me. Thus L 6∈ BPPR‖ . �

5 Simulating Short Queries by Competing Prover Systems

In this section, we show how to simulate a reduction that makes only short queries in Sp
2 .

Theorem 15 (Sp
2 Simulation of Short Queries). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any

family of functions and γ : N → [0, 1) be a parameter such that γ(`) ≤ 1 − 2s(`)−`+1 for all large
` ∈ N. Suppose that there exists a randomized polynomial-time black-box reduction M from a
language L to any γ-avoiding oracle for G such that the length of any query of M is at most
O(log n) for every input of length n. Then L ∈ Sp

2.
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Proof. The idea is that two competing provers send the image Im(G) of G as a certificate. Given
two possible images I0, I1 ⊆ {0, 1}∗, R := {0, 1}∗ \ I0 \ I1 is an avoiding set for G. Moreover, since
|Im(G)| is small, the set R is dense enough. We then derandomize a BPP computation by using
the power of Sp

2 .9 (Recall that BPP ⊆ Sp
2 [Can96, RS98].) Details follow.

Let c log n be an upper bound on the length of queries that M makes. Our Sp
2 algorithm is as

follows: Fix any input x of length n. We number the two competing provers 0 and 1. The ith prover
(i ∈ {0, 1}) sends, for each ` ≤ c log n, a subset Ii,` ⊆ {0, 1}` of size at most 2s(`); an honest prover
sets Ii,` := Im(G`). Define Ii :=

⋃
`≤c logn Ii,`. Note that such subsets can be encoded as a string of

polynomial length. Each prover also sends a list of randomness ri1, · · · , rit ∈ {0, 1}m to be used by
the reduction M , where t is a parameter chosen later, and m is the length of a coin flip used by M .
The verifier sets R := {0, 1}∗ \ I0 \ I1, and accept if and only if Prj,k∼[t][M

R(x; r0
j ⊕ r1

k) = 1] > 1
2 ,

where MR(x; r) denotes the output of the reduction when its coin flip is r, and ⊕ denotes the
bit-wise XOR. Note that the running time of the verifier is at most a polynomial in n and t. Below
we establish the correctness of this algorithm for some t = poly(n).

We focus on the case when the 0th prover is honest; thus I0,` := Im(G`) for each ` ≤ c log n.
Since |I1,`| ≤ 2s(`), the number of strings of length ` in R(I1) := {0, 1}∗ \ I0 \ I1 is at least
2` − |I0,`| − |I1,`| ≥ 2`γ(`) (here we write R(I1) instead of R to emphasize that R depends on
I1); thus R(I1) is a γ-avoiding oracle. By the definition of the reduction, for every I1 we have
Prr∼{0,1}m [MR(I1)(x; r) = L(x)] ≥ 2

3 .
We use the notion of cover introduced by Canetti [Can96]: A sequence r1, · · · , rt ∈ {0, 1}m

is called a cover of a subset A ⊆ {0, 1}m if for all r ∈ {0, 1}m, Prj∼[t][rj ⊕ r ∈ A] > 1
2 . Define

A(I1) := { r ∈ {0, 1}m | MR(I1)(x; r) = L(x) }. We claim that by a probabilistic argument there
exists a sequence r1, · · · , rt ∈ {0, 1}m that covers A(I1) for every I1: Fix any I1 and r ∈ {0, 1}m.
Pick r1, · · · , rt ∼ {0, 1}m. For any j ∈ [t], the probability that rj ⊕ r ∈ A(I1) is at least 2

3 . Thus
by a concentration bound (Lemma 9), the probability that at most a 1

2 -fraction of j ∈ [t] satisfies
rj ⊕ r ∈ A(I1) is at most exp(−Ω(t)). By the union bound over all r, the probability that a
sequence r1, · · · rt does not cover A(I1) is at most 2m · exp(−Ω(t)). By the union bound over all
I1, the probability that there exists some I1 such that A(I1) is not covered by r1, · · · , rt is at most
2n

c+m · exp(−Ω(t)). Therefore, for t := Θ(nc + m), there exists a sequence r1, · · · , rt that covers
A(I1) for every I1. The 0th honest prover sends this sequence r1, · · · , rt to the verifier as r0

1, · · · , r0
t ,

in which case the verifier outputs L(x) correctly because Prj,k∼[t][M
R(I1)(x; r0

j ⊕ r1
k) = L(x)] > 1

2 ,

for every I1 and every r1
1, · · · , r1

t . �

6 Simulating Long Queries by AM and coAM

In this section, we show that a reduction that makes only long queries to a distinguisher for a
hitting set generator can be simulated in AM∩ coAM. Combining this AM∩ coAM-type simulation
algorithm with Section 5, we will complete the proof of our main results.

Theorem 16 (Main; a restated version of Theorem 4). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be
any (not necessarily computable) family of functions and γ : N→ [0, 1) be a parameter such that

• there exists a constant ε > 0 such that s(`) ≤ (1− ε)` for all large ` ∈ N, and

9Alternatively, we may use the result of Russell and Sundaram [RS98] showing that S2 ·BP ·P = Sp
2 in a black-box

way.
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• there exists a constant c > 0 such that γ(`) ≤ 1− `−c for all large ` ∈ N.

Then, ⋂
R : γ-avoids G

BPPR‖ ⊆ NP/poly ∩ coNP/poly ∩ SNP
2 .

Moreover, if G can be computed in time 2O(`), then we also have⋂
R : γ-avoids G

BPPR‖ ⊆ AM ∩ coAM.

The advice in Theorem 16 is used in order to give the characteristic function of Im(G) for
all strings of length O(log n), under which situation the rest of reductions can be simulated in
AM ∩ coAM ⊆ NP/poly ∩ coNP/poly. If a hitting set generator is computable in exponential time,
then the advice can be computed in polynomial time and thus can be removed. Without any advice
and without any computational bound on a hitting set generator, the reduction can be simulated
in SNP

2 , which is a complexity class that can simulate AM ∩ coAM and Sp
2 .

The following is the main technical result of this section.

Theorem 17 (AM Simulation of Long Queries). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any
family of functions. Let t, θ, α0 : N → N be efficiently computable functions. Suppose that there
exists a randomized t(n)-time nonadaptive black-box reduction M from a language L to any γ-
avoiding oracle for G such that the length of any query that M makes on input length n is at least
θ(n). Suppose also that, for all large n ∈ N,

• α0(n) ≤ 1
16e3t(n)2

2θ(n)−s(θ(n)), and

• α0(n) ·
(
1− 2s(`)−` − γ(`)

)
≥ 1 for all ` ∈ N such that θ(n) ≤ ` ≤ t(n).

Then, there exists an AM ∩ coAM protocol running in t(n)O(1) time that decides L.

We first observe that this is sufficient to prove Theorem 16.

Proof of Theorem 16 from Theorem 17. Take any language L ∈
⋂
R : γ-avoids G BPPR‖ . By Lemma 14,

we have a randomized t(n)-time nonadaptive black-box reductionM from L to any γ-avoiding oracle
for G, where t(n) = nO(1). By the assumption on the seed length s, we have ε` ≤ `−s(`) for all large
` ∈ N. For any ` ∈ N between θ(n) and t(n), we have 1−2s(`)−`−γ(`) ≥ `−c−2−ε` � `−c/2; hence,

by defining α0(n) := 2t(n)c, we obtain α0(n) ≥
(
1− 2s(`)−` − γ(`)

)−1
for all ` between θ(n) ≤ ` ≤

t(n). On the other hand, 2θ(n)−s(θ(n))/t(n)2 ≥ 2εθ(n)/t(n)2; thus, for θ(n) := ((c+ 2 + 1) log t(n))/ε,
we obtain α0(n)� 2θ(n)−s(θ(n))/16e3t(n)2 for all large n.

The assumptions about parameters of Theorem 17 are thus satisfied for θ(n) = O(log t(n)). In
particular, we can encode the characteristic function of the set ∪`≤θ(n)Im(G`) as an advice string of

length t(n)O(1). Given such an advice, we can modify the reduction M so that M does not make any
query q of length at most θ(n): Indeed, if the original reduction makes a query q of length ≤ θ(n),
then we modify the reduction so that q is answered according to whether q ∈ {0, 1}∗ \ Im(G|q|),
which can be decided by using the advice. After this modification, by using Theorem 17, M can
be simulated in AM ∩ coAM. We thus obtain L ∈ AM/poly ∩ coAM/poly = NP/poly ∩ coNP/poly.
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Moreover, if G is computable in 2O(`), then the advice can be computed in polynomial time:
Indeed, by an exhaustive search, one can compute Im(G`) in time 2O(s(`)) · 2O(`) = 2O(`) ≤ t(n)O(1)

for all ` ≤ θ(n).
Finally, we sketch an SNP

2 algorithm for deciding L when G is not necessarily computable and
no advice is given: As in Theorem 15, each competing prover sends a verifier all the strings in
Im(G) of length at most θ(n). Let I0, I1 ⊆ {0, 1}∗ be the claimed image of G. Then we modify the
reduction M so that any short query is answered according to {0, 1}∗ \ I0 \ I1. Now by applying
Theorem 17, we obtain an AM algorithm deciding L. In particular, there exists an NP machine
V such that Prr[V (x, r) = L(x)] ≥ 2

3 for every input x. This randomized computation can be
derandomized as in Theorem 15, by requesting each competing prover to send a sequence of coin
flips r1, · · · , rs. Thus we obtain L ∈ SNP

2 . �

The rest of this section is devoted to proving Theorem 17.

6.1 Generalized Feigenbaum–Fortnow Protocol

One of the main building blocks of our proof is a generalization of the protocol of Feigenbaum
and Fortnow [FF93] (and its description by Bogdanov and Trevisan [BT06b]) for simulating some
type of randomized nonadaptive reduction M to an NP problem R. Suppose that for a given input
x, M makes m nonadaptive queries q1, . . . , qm under a certain distribution Q. In the Feigenbaum–
Fortnow protocol, a verifier asks a prover to give witnesses to all positive instances among them.
The prover cannot give a witness to a negative instance (hence, it cannot cheat the verifier by saying
“yes” to a negative instance) while it may try to cheat the verifier by not giving a witness to some
of the positive instances of q1, . . . , qm. If, however, the verifier knows the proportion p∗ of positive
instances among queries under the distribution Q, then it may detect wrong negative answers from
the prover if the number of positive answers is much smaller than p∗m. More specifically, the
Feigenbaum–Fortnow protocol runs as follows. It first generates K tuples of m nonadaptive queries
{(qk1, . . . , qkm)}1≤k≤K by running M(x) independently K times. By a concentration inequality, the

number of positive instances among all Km queries should be in the range of m ·
(
p∗K ±O(

√
K)
)

with high probability; thus, if the prover gives “yes” answers (with witnesses) much smaller than

m ·
(
p∗K −O(

√
K)
)

, then the verifier stops the computation immediately, suspecting that the

prover is not honest. On the other hand, if the number of positive answers to those queries is close
to p∗Km, then the number of positive instances on which the prover can cheat is at most O(m

√
K),

with high probability. We choose K large enough so that O(m
√
K)� K; then the majority of K

tuples are answered correctly by the oracle, and we can use them to determine the result of MR(x)
by taking the majority vote of the results of M(x) computed by using prover’s answers to each
tuple of queries (qk1, . . . , qkm).10

We generalize the Feigenbaum–Fortnow protocol so that a new protocol is capable of dealing
with a reduction to a distributional AM problem R; that is, we show that, given any nonadaptive
reduction to some AM problem solvable on average and the proportion p∗ of positive instances as
advice, one can simulate the reduction in AM∩ coAM. In our protocol, we use Adleman’s trick (for
proving BPP ⊆ P/poly [Adl78]) to “derandomize” AM oracle so that we obtain a new NP oracle,
and then run the original Feigenbaum–Fortnow protocol. The following is the specification of the
generalized Feigenbaum–Fortnow protocol:

10We note that taking the majority is not necessary; instead, it suffices to pick k ∼ [K] and use the result.
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Inputs. A tuple (C, V, δ, p∗) such that:

• A randomized nonadaptive reduction C is given as a probabilistic circuit such that each query
of C is identically distributed to some distribution Q over {0, 1}∗, and the reduction always
makes exactly m queries. (We assume that an input to a reduction is hardwired into the
circuit C; thus C does not take any input other than random bits.)

• An AM verifier V is given as a circuit.

• An error parameter δ ∈
(
0, 1

2

)
is given in unary, and a probability p∗ ∈ [0, 1] is given in binary.

Promise. We assume that there exist some answer a ∈ {0, 1}, some oracle R ⊆ {0, 1}∗, and some
error parameters ε0, ε1, ε2 ∈ [0, 1] satisfying the following:

• PrC [CR = a] ≥ 1 − ε0. (That is, a is supposed to be the answer of the reduction C to the
oracle R.)

• The advice p∗ satisfies |p∗ − Prq∼Q[q ∈ R]| ≤ ε1.

• The distributional problem (R,Q) is “solvable by AM on average”: that is, define11

VYes := { q ∈ {0, 1}∗ | Pr
r

[V (q, y, r) = 1 for some y] ≥ 3/4 }, and

VNo := { q ∈ {0, 1}∗ | Pr
r

[V (q, y, r) = 0 for all y] ≥ 3/4 };

then we assume that Prq∼Q[q ∈ VYes ∪ VNo] ≥ 1− ε2 and VYes ⊆ R ⊆ {0, 1}∗ \ VNo.

Protocol.

1. (Preprocess of Verifier: Adleman’s trick) Let s be sufficiently large so that s > 20|V | and
s ≥ 20 log(1/δ) where |V | denotes the circuit size of V . Pick r1, . . . rs uniformly at random,
and share the random bits with the prover. Define a new circuit W by

W (x, y1, . . . , ys) := majority
i∈[s]

V (x, yi, ri).

In what follows, we call ȳ := (y1, . . . , ys) a certificate for W .

2. (Verifier) Let K := m2(1/δ)2 log(m/δ). Run C independently K times and obtain queries
(qk1, . . . , qkm) for each kth run of C (k ∈ [K]). Send these queries to the prover.

3. (Prover) For each (k, i) ∈ [K] × [m], send a certificate ȳki for W ; an honest prover sends, if
any, some certificate ȳki such that W (qki, ȳki) = 1.

4. (Verifier) Let a∗ki := W (qki, ȳki) ∈ {0, 1} for each (k, i) ∈ [K]× [m]. Verify that∑
1≤k≤K
1≤i≤m

a∗ki ≥ mp∗K − m
(

(ε1 + ε2)K +
√
K log(m/δ)

)
, (2)

and if not, output ⊥ and halt. Otherwise, pick k ∼ [K] uniformly at random and output the
kth run of the reduction of C assuming that the answers from the oracle are (ak1, . . . , akm).

11As a circuit V outputs “undefined” if an input (q, y, r) is too long, the sets VYes, VNo of strings are finite.
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Theorem 18 (Correctness of the Generalized Feigenbaum–Fortnow Protocol). Suppose that the
protocol above is given inputs satisfying the promise listed above. Then, the protocol satisfies the
completeness and soundness for error ε := ε0 + 2mε1 + 3mε2 + 3δ, described below:

• (Completeness) There exists a prover such that the verifier outputs a with probability at least
1− ε.

• (Soundness) For any prover, the verifier outputs a or ⊥ with probability at least 1− ε.

We prove this theorem by a sequence of claims below. The following claim follows from a
standard fact about amplification of the success probability of a randomized machine.

Claim 19 (Amplification and Adleman’s trick). With probability at least 1 − δ over the choice of
r1, . . . , rs, the following holds. For any query q ∈ VYes ∪ VNo,

• if q ∈ VYes then W (q, ȳ) = 1 for some certificate ȳ := (y1, . . . , ys), and

• if q ∈ VNo then W (q, ȳ) = 0 for any certificate ȳ := (y1, . . . , ys).

Proof. First, note that |VYes ∪ VNo| is at most 2s/20. Indeed, the circuit size of V is less than s/20,
and hence for any input q of length ≥ s/20, V is not defined; thus q 6∈ VYes ∪ VNo. That is, the
length of every query in VYes ∪ VNo is less than s/20.

Fix any q such that q ∈ VYes or q ∈ VNo; in the former case, let aq := 1 and aq := 0 otherwise.
Our claim is that maxȳW (q, ȳ) = aq. For each i ∈ [s], let Xi ∈ {0, 1} be the random variable (over
the random choice of r1, . . . , rs) such that Xi := 1 iff V (q, yi, ri) = 1 for some yi; in other words,
Xi := maxyi V (q, yi, ri) ∈ {0, 1}. Observe that

max
ȳ
W (q, ȳ) = max

ȳ
majority

i∈[s]
V (q, yi, ri) = majority

i∈[s]
max
yi

V (q, yi, ri) = majority
i∈[s]

Xi.

By the assumption on V , we have |E[Xi] − aq| ≤ 1
4 for any i ∈ [s]; hence, majorityi∈[s]Xi 6= aq

implies |1s
∑

i(Xi − E[Xi])| ≥ 1
4 . By Hoeffding’s inequality (Lemma 9),

Pr[max
ȳ
W (q, ȳ) 6= aq] ≤ Pr

[∣∣∣∣∣
s∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ s

4

]
≤ 2 exp

(
−2s (1/4)2

)
≤ 2−s/10.

Now, by the union bound over all q ∈ VYes ∪ VNo, the probability that there exists some q ∈
VYes ∪ VNo such that maxȳW (q, ȳ) 6= aq is at most |VYes ∪ VNo| · 2−s/10 ≤ 2−s/20 ≤ δ. �

For each (k, i) ∈ [K]× [m], define aki ∈ {0, 1} as aki := 1 if and only if W (qki, ȳ) = 1 for some
certificate ȳ. The honest prover sends a certificate for W (if any), and thus aki = a∗ki; on the other
hand, when communicating with a cheating prover, we have only a∗ki ≤ aki. The next claim shows
the sum of (aki) concentrates around its mean.

Claim 20 (Concentration). Under the event of Claim 19, with probability at least 1−δ, the following
holds: ∣∣∣∣∣∣∣∣

∑
1≤k≤K
1≤i≤m

aki −mKp∗

∣∣∣∣∣∣∣∣ ≤ m
(

(ε1 + ε2)K +
√
K log(m/δ)

)
.
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Proof. Fix any i ∈ [m]. By the assumption on C, the queries q1i, . . . , qKi are independent and identi-
cally distributed according to Q; hence, a1i, . . . , aKi ∈ {0, 1} are also independent random variables.
The expectation E[aki] of these random variables is equal to Prq∼Q[W (q, ȳ) = 1 for some ȳ].

We claim that, for any (k, i) ∈ [K] × [m], the expectation E[aki] is equal to p∗ up to additive
error ε1 + ε2. Under the event of Claim 19, we have q ∈ VYes =⇒ ∃ȳ. W (q, ȳ) = 1 =⇒ q 6∈ VNo

for any q ∈ {0, 1}∗; hence,

Pr[q ∈ VYes] ≤ Pr[∃ȳ. W (q, ȳ) = 1] ≤ Pr[q 6∈ VNo]. (3)

Similarly, since VYes ⊆ R ⊆ {0, 1}∗ \ VNo, we have

Pr[q ∈ VYes] ≤ Pr[q ∈ R] ≤ Pr[q 6∈ VNo]. (4)

Combining (3) and (4), we obtain

|Pr[q ∈ R]− E[aki]| ≤ Pr[q 6∈ VNo]− Pr[q ∈ VYes] ≤ ε2.

Therefore, |E[aki]− p∗| ≤ |E[aki]− Pr[q ∈ R]|+ |Pr[q ∈ R]− p∗| ≤ ε2 + ε1.
By Hoeffding’s inequality (Lemma 9), for each i ∈ [m],

Pr

[∣∣∣∣∣
K∑
k=1

(aki − E[aki])

∣∣∣∣∣ ≥√K log(m/δ)

]
≤ 2 exp(−2K log(m/δ)/K) ≤ δ/m.

By the union bound over all i ∈ [m], with probability at least 1− δ, we have∣∣∣∣∣
m∑
i=1

K∑
k=1

aki −mKp∗
∣∣∣∣∣ ≤

∣∣∣∣∣
m∑
i=1

K∑
k=1

(aki − E[aki])

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

K∑
k=1

(E[aki]− p∗)

∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣∣
K∑
k=1

(aki − E[aki])

∣∣∣∣∣+mK(ε1 + ε2)

≤ m
√
K log(m/δ) +mK(ε1 + ε2).

�

Now we are ready to bound the probability of completeness and soundness. Let E denote any
event (which is supposed to be the event that completeness or soundness does not hold); using
Claim 19 and 20, we will bound the probability in the following way:

Pr[E] ≤ 2δ + Pr[E ∧ (the event of Claim 19 holds) ∧ (the concentration of Claim 20 occurs) ].

That is, assuming that the events of Claim 19 and 20 happens, we will analyze the probability of
completeness and soundness.

Claim 21 (Completeness). The verifier outputs a with probability at least 1 − ε when interacting
with the honest prover.

Proof. The verifier does not output a only if
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• the inequality (2) does not hold, or

• for a random k ∼ [K], the kth run of C is not correct.

The honest prover sets a∗ki := aki for any (k, i) ∈ [K]× [m]. Thus, under the assumption that the
concentration of Claim 20, the inequality (2) is satisfied; that is, the verifier does not output ⊥,
and hence it remains to bound the probability that, for a random k ∼ [K], the kth run of C is not
correct.

The kth run of C is not correct only if the reduction itself makes a mistake, or there exists some
i ∈ [m] such that a∗ki 6= R(qki) (which happens only if qki 6∈ VYes ∪ VNo for the honest prover). The
former probability is at most ε0, and the latter is at most mε2.

Overall, the verifier outputs a with probability at least 1− 2δ − ε0 −mε2 ≥ 1− ε. �

Claim 22 (Soundness). For any cheating prover, the verifier outputs a or ⊥ with probability at
least 1− ε.

Proof. The verifier outputs the wrong answer 1− a only if for a random k ∼ [K], the kth run of C
is not correct.

Recall that we have a∗ki ≤ aki for any (k, i) ∈ [K]× [m] no matter how a prover tries to cheat.
The main difference between the proof of Claim 21 is that, for a random choice k ∼ [K] of the
verifier, a prover may be cheating so that a∗ki < aki for some i ∈ [m]; as a consequence, the kth run
of C is more likely to be wrong. On the other hand, the number of (k, i) ∈ [K] × [m] such that
a∗ki < aki is small: Indeed, under the event that the verifier does not output ⊥, the inequality (2)

holds, and we also have the concentration of Claim 20; hence, we obtain
∑K

k=1

∑m
i=1(aki − a∗ki) ≤

2m
(

(ε1 + ε2)K +
√
K log(m/δ)

)
. Thus, the probability that a∗ki < aki for some i ∈ [m] over the

random choice of k ∼ [K] is at most 2m(ε1 + ε2) +m
√

log(m/δ)/K ≤ 2m(ε1 + ε2) + δ.
Overall, the probability that the verifier outputs the wrong answer is at most (2δ+ ε0 +mε2) +

(2m(ε1 + ε2) + δ) ≤ ε. �

Proof of Theorem 18. Immediate from Claim 21 and 22. �

6.2 Simulating Long Queries

Using the generalized Feigenbaum–Fortnow protocol, we show how to simulate long queries by
a constant-round interactive proof system (i.e., a proof of Theorem 17). For simplicity, we focus on
the case when t(n) = nO(1). Let M be a randomized t(n)-time nonadaptive black-box reduction to
any γ-avoiding oracle for G. Let x ∈ {0, 1}∗ be an input of length n.

We first modify the reduction so that we can assume useful properties. By the modifica-
tions explained in Section 4, we may assume that the number of queries that M makes is exactly
m(n) (≤ t(n) ) on inputs of length n. We may also assume that each query of M is identically
distributed; Let Qx be the query distribution of M on input x.

As explained in the introduction, one of the keys of our proof is that we can replace a γ-avoiding
oracle for G by an oracle defined based only on the query distribution Qx. Here we introduce such

23



oracles and justify the replacement. For any α > 0, define Lα, Hα and Rα by

Lα := { q ∈ {0, 1}∗ | q is α-light with respect to Qx },
Hα := {0, 1}∗ \ Lα = { q ∈ {0, 1}∗ | q is α-heavy with respect to Qx }, and

Rα := Lα \ Im(G).

For large enough α > 0, we can easily show that Rα γ-avoids G.

Claim 23. For any γ : N→ [0, 1) and α > 0 and for any length ` ∈ N, if

γ(`) + 1/α ≤ 1− 2s(`)−`,

then Rα is a γ-avoiding set at length ` for G.

Proof. Since Rα ⊆ {0, 1}∗ \ Im(G), it suffices to show that Prw∼{0,1}` [w 6∈ Rα] ≤ 1 − γ(`). Note
that w 6∈ Rα if either w ∈ Im(G`) or w is α-heavy. The probability of the former case is at most
2−` · |Im(G`)| ≤ 2s(`)−`. Similarly, the probability of the latter case is bounded above by 2−` · |H=`

α |,
where H=`

α = { q ∈ {0, 1}` | q is α-heavy }. On the other hand, we have

|H=`
α | · α2−` ≤

∑
q∈H=`

α

Pr
w∼Qx

[w = q ] = Pr
w∼Qx

[w ∈ H=`
α ] ≤ 1.

Hence, |H=`
α | ≤ 2`/α. Thus,

Pr
w∼{0,1}`

[w 6∈ Rα] ≤ 2s(`)−` + 1/α ≤ 1− γ(`),

proving that Prw∼{0,1}` [w ∈ Rα] ≥ γ(`). �

Since the reduction M does not make any query q such that |q| 6∈ [θ(n), t(n)], Claim 23 guaran-
tees that the reduction M works by using Rα on inputs x of length n if γ(`) + 1/α ≤ 1− 2s(`)−` for
all ` ∈ N such that θ(n) ≤ ` ≤ t(n). As this condition is satisfied by our assumptions of Theorem 17
for any α ≥ α0(n) and any input x of length n, we have

Pr
M

[
MRα(x) = L(x)

]
≥ 15

16
. (5)

On the other hand, we can show below that M(x) cannot distinguish Rα and Lα when α is
small enough.

Claim 24. For any α > 0 and input x ∈ {0, 1}∗ of length n, and for ε := α2s(θ(n))−θ(n) ·m(n)t(n),

Pr
M

[
MLα(x) 6= MRα(x)

]
≤ ε. (6)

Proof. Recall that Rα = Lα \ Im(G). Thus, M(x) may find the difference between Lα and Rα only
if it makes a query in Lα ∩ Im(G) in one of its m(n) nonadaptive queries. This probability is at
most m(n) · Prw∼Qx [w ∈ Lα ∩ Im(G)] by a union bound.
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Here we have

Pr
w∼Qx

[w ∈ Lα ∩ Im(G) ] =
∑

q∈Lα∩Im(G)

Pr
w∼Qx

[ q = w ]

≤
∑

q∈supp(Qx)∩Im(G)

α · 2−|q|,

where supp(Qx) is the set of all possible queries asked by M(x). By our assumption on M , we have
θ(n) ≤ |q| ≤ t(n) for any q ∈ supp(Qx). Then it follows∑

q∈supp(Qx)∩Im(G)

α · 2−|q| ≤
∑

θ(n)≤`≤t(n)

α · 2−` · |Im(G`)| ≤
∑

θ(n)≤`≤t(n)

α · 2s(`)−`

because |Im(G`)| ≤ 2s(`).
Since we assumed that `− s(`) is nondecreasing for ` ∈ N, we have∑

θ(n)≤`≤t(n)

α2s(`)−` ≤ t(n) · α2s(θ(n))−θ(n) = ε/m(n).

This bound is sufficient to get the desired error bound. �

By Claim 24 and our assumptions on α0(n) of Theorem 17, for any α ≤ e3α0(n), we have

Pr
M

[
MLα(x) 6= MRα(x)

]
≤ 1

16
. (7)

From the inequalities (5) and (7), we immediately obtain the following:

Corollary 25. For any input x ∈ {0, 1}∗ of length n and any α ∈ [α0(n), e3α0(n)],

Pr
M

[
MLα(x) = L(x)

]
≥ 7

8
.

In light of this, our task is now to simulate MLα(x) for some α ∈ [α0(n), e3α0(n)] (in fact, we
will choose the threshold α randomly, as explained later). To this end, we combine the generalized
Feigenbaum–Fortnow protocol, the lower bound protocol of Goldwasser and Sipser [GS86], and the
heavy-sample protocol of Bogdanov and Trevisan [BT06b]. Here we review the last two protocols.
Since these protocols are explained carefully and in detail in the paper [BT06b], we simply review
their specifications and use them as a black-box tool.

6.2.1 Lower Bound Protocol

Recall that q 6∈ Lα if and only if q is α-heavy. The lower bound protocol of Goldwasser and
Sipser [GS86] can be used to give an AM-type witness to any α-heavy instance. It is an AM
protocol for showing that a given set of strings has more than s elements for a given threshold s.
The specification of the lower bound protocol is as follows.

Inputs. A set of strings is given as a circuit C on {0, 1}m, which specifies the set as C−1(1) :=
{ r ∈ {0, 1}m | C(r) = 1 }. A threshold s ∈ N such that 0 ≤ s ≤ 2m. Parameters δ, ε ∈ [0, 1]
represented in unary.

Promise.
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• Yes instances: |C−1(1)| ≥ s.
• No instances: |C−1(1)| ≤ (1− ε)s.

Sketch of the Protocol.

1. (Verifier) Send a random hash function h : {0, 1}m → {0, 1}m′ for some appropriate parameter
m′.

2. (Prover) Send a string y ∈ {0, 1}m claiming that y ∈ C−1(1) and h(y) = 0m
′

hold. (Such an
y is called an AM-type witness.)

3. (Verifier) Check the correctness of the prover’s claim on the witness y.

Theorem 26 (Correctness of the lower bound protocol [GS86]; see [BT06b] for a proof). The lower
bound protocol stated above satisfies the following:

• (Completeness) Given an yes instance, there exists a prover that makes the verifier accept
with probability at least 1− δ.

• (Soundness) Given a no instance, for any prover, the verifier accepts with probability at most
δ.

By using the protocol above, it is easy to construct an AM verifier V that checks whether a given
query q is α-heavy.

Claim 27. For any parameter ε(n) ≥ 1/poly(n), there exists an AM verifier V such that, for any
input x ∈ {0, 1}∗ of length n and any query q ∈ {0, 1}∗,

1. if q is α-heavy with respect to Qx, then Prh[V (x, q, h, y) = 1 for some y] ≥ 3
4 , and

2. if q is (1− ε(n))α-light with respect to Qx, then Prh[V (x, q, h, y) = 1 for some y] ≤ 1
4 .

Proof. Let Qx be the circuit that samples the query distribution Qx; that is, on input r ∈ {0, 1}m,
the circuit Qx(r) outputs q so that Prr∼{0,1}m [Qx(r) = q] = Prw∼Qx [w = q] for any q ∈ {0, 1}∗.
Given a string q ∈ {0, 1}∗ as input, construct a circuit Cq such that Cq(r) := 1 iff Qx(r) = q, on
input r ∈ {0, 1}m. Now use the lower bound protocol for the circuit Cq, the threshold s := α2−|q|2m,
and parameters δ := 1

4 and ε := ε(n). The lower bound protocol gives an AM certificate for the yes

instances such that |C−1
q (1)| ≥ s, which is equivalent to saying that Prr[Qx(r) = q] ≥ α2−|q|, that

is, q is α-heavy. On the other hand, if q is (1 − ε)α-light, then we have |C−1
q (1)| < (1 − ε)s; thus

with high probability there is no AM-type witness by the correctness of the lower bound protocol
(Theorem 26). �

Note that there is a gap between yes instances and no instances; that is, if the probability that
q is sampled from Qx is between α and (1− ε)α, then the behavior of the lower bound protocol is
undefined. To circumvent this, we pick the threshold α randomly in the same way with Bogdanov
and Trevisan (cf. [BT06b, Claim 3.2]): Consider the following set Aα0,ε of thresholds defined by
parameters α0, ε > 0, and choose the threshold α uniformly at random from Aα0,ε.

Aα0,ε := {α0(1 + 3ε)i | 0 ≤ i ≤ 1/ε }.

Observe that Aα0,ε ⊆ [α0, e
3α0]. Moreover, the following holds.
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Lemma 28. For every α0 > 0 and 0 < ε < 1
3 and any constant c > 0, and for any distribution Q,

with probability at least 1− 1/c over the choice of α ∼ Aα0,ε,

Pr
q∼Q

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]
≤ cε. (8)

(Recall that Q(q) := Prw∼Q[w = q].)

Proof. For any ε ∈
(
0, 1

3

)
and q ∈ {0, 1}∗, the intervals ((1 − ε)α2−|q|, (1 + ε)α2−|q|) are pairwise

disjoint for all α ∈ Aα0,ε; hence for any real p ∈ R, the probability that p ∈ ((1 − ε)α2−|q|, (1 +
ε)α2−|q|) is at most 1/|Aα0,ε| ≤ ε over the choice of α ∼ Aα0,ε. In particular, we have

E
α∼Aα0,ε

[
Pr
q∼Q

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]]
= E
q∼Q

[
Pr

α∼Aα0,ε

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]]
≤ ε.

Therefore, by Markov’s inequality, the probability that Prq∼Q
[
Q(q) ∈ ((1± ε)α2−|q|)

]
≥ cε is at

most ε/(cε) = 1/c. �

In our simulation protocol for M , we start with picking α ∼ Aα0,ε randomly. By Lemma 28,
except for probability 1/O(1), the heaviness of almost all queries q sampled from Qx is not close
to the threshold α. As a consequence, the distributional problem (Lα,Qx) is solvable by coAM
on average; indeed, with probability at least 1 − O(ε) over the choice of q ∼ Qx, the lower bound
protocol of Claim 27 solves Lα.

6.2.2 Heavy-sample Protocol

Next we review the heavy-sample protocol of Bogdanov and Trevisan [BT06b], which is an AM
protocol for estimating Prq∼Qx [q is α-heavy].

Inputs. A circuit Q which samples a string according to a distribution Q on {0, 1}∗. A probability
p ∈ [0, 1] represented in binary. Parameters c > 0 and 0 < ε < 1

3 represented in unary. A threshold
α > 0 represented in binary.

Promise.

• Yes instances: Prq∼Q[Q(q) ≥ α2−|q|] = p.

• No instances:
∣∣Prq∼Q[Q(q) ≥ α2−|q|]− p

∣∣ > 16cε.

• We assume the condition (8). That is,

Pr
q∼Q

[
Q(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]
≤ cε.

Sketch of the Protocol.

1. (Verifier) Generate random queries q1, . . . , qk from the distribution Q for some sufficiently
large k, and send these queries to the prover.
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2. (Prover) For each query qi, tell the verifier whether qi is α-heavy.

3. (Verifier and Prover) To check the prover’s claim, run the lower bound protocol of Goldwasser
and Sipser [GS86] and the upper bound protocol of Fortnow [For89] in parallel.

Theorem 29 (Correctness of the heavy-sample protocol [BT06b]). The heavy-sample protocol
specified above satisfies following:

• (Completeness) Given any yes instance, there exists a prover that makes the verifier accept
with probability at least 1−O(ε).

• (Soundness) Given any no instance, for any prover, the verifier accepts with probability at
most O(ε).

6.2.3 Putting It Together

Using the protocols reviewed above, we can now simulate the reduction M to an oracle Lα on
input x ∈ {0, 1}∗. Below we explain how to choose the inputs (C, V, δ := 1

100 , p
∗) for the generalized

Feigenbaum–Fortnow protocol.
The generalized Feigenbaum–Fortnow protocol requires an AM protocol for solving an oracle on

average (instead of coAM). By negating answers from the oracle, we can define a new machine M
X

which simulates the computation of M{0,1}
∗\X for any given oracle X. We thus use the generalized

Feigenbaum–Fortnow protocol for simulating M
Hα

(x) with oracle Hα := {0, 1}∗ \ Lα, which is the
set of α-heavy queries with respect to Qx; more specifically, let C be the circuit that simulates the
reduction M on input x (where the input x is hardwired into the circuit) and we give the circuit
C to the protocol as input.

To solve Hα on average by an AM protocol, we use the lower bound protocol. That is, we build
a circuit Vx that simulates the AM verifier stated in Claim 27 on input x and on all the queries
q ∈ {0, 1}∗ that M(x) can make. Then we give the circuit Vx to the protocol as input.

We also need to give as advice a probability p∗ that approximates Prq∼Qx [q ∈ Hα], which can
be estimated by using the heavy-sample protocol. We require the prover to send p∗ first, and then
we verify the prover’s claim by running the heavy-sample protocol; if the test passes, then we give
p∗ to the generalized Feigenbaum–Fortnow protocol as input.

Summarizing the discussion above, our whole simulation algorithm is given below.

Inputs. A string x ∈ {0, 1}∗ of length n.

Promise. Let α0 := α0(n). Then, for any α ∈ [α0, e
3α0], we assume that

Pr
M

[MLα(x) = L(x)] ≥ 7

8
,

(which is guaranteed by Corollary 25).

Protocol.

1. (Preprocess) Set an error parameter ε := 1/c0m(n) for a sufficiently large constant c0 (repre-
sented in unary).

2. (Verifier) Pick a threshold α ∼ Aα0,ε ⊆ [α0, e
3α0] randomly. Send α to the prover.
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3. (Prover) Send p∗ ∈ [0, 1] to the verifier. An honest prover sends p∗ := Prq∼Qx [q ∈ Hα].

4. (Verifier and Prover) Run the heavy-sample protocol in order to verify that p∗ ≈ Prq∼Qx [q ∈
Hα] for the distribution Qx and error parameter ε and parameter c := 100; if the test does
not pass, output ⊥ and halt.

5. (Verifier and Prover) Build a circuit C simulatingM on the hardwired input x, and a circuit Vx
simulates the AM verifier for α-heaviness. Run the generalized Feigenbaum–Fortnow protocol
on input (C, Vx, δ := 1

100 , p
∗), and output the result of the protocol.

Now we argue that our simulation protocol is correct:

Claim 30. The simulation protocol stated above satisfies the following: for any x ∈ {0, 1}∗,

• (Completeness) there exists a prover such that the verifier outputs L(x) with probability at
least 3/4, and

• (Soundness) for any prover, the verifier outputs L(x) or ⊥ with probability at least 3/4.

Proof. Fix any input x ∈ {0, 1}∗. By Lemma 28, with probability at least 1 − 1
100 over the choice

of α ∼ Aα0,ε, the condition (8) holds for c := 100 and Q := Qx; that is,

Pr
q∼Qx

[
Qx(q) ∈ ((1− ε)α2−|q|, (1 + ε)α2−|q|)

]
≤ 100ε.

In what follows, we assume this event happens and analyze the probability of the completeness and
soundness.

Suppose that a prover sends p∗. If the prover is honest then we have p∗ = Prq∼Qx [q ∈ Hα].
Hence the completeness of the heavy-sample protocol implies that, with probability at least 1 −
O(ε) � 1 − 1

100 , the protocol accepts. On the other hand, if a cheating prover sends p∗ such that
|p∗ − Prq∼Qx [q ∈ Hα]| > 16cε, then with probability at least 0.99 the cheat can be caught by the
soundness of the heavy-sample protocol.

Thus, at the point that the generalized Feigenbaum–Fortnow protocol starts, for any prover,
with probability at least 0.98, we have |p∗ − Prq∼Qx [q ∈ Hα]| ≤ 16cε and moreover the condition (8)
holds. Under this event, the promise of the generalized Feigenbaum–Fortnow protocol is satisfied:

• Define a := L(x), ε0 := 1
8 , and R := Hα. Then we have PrC [CR = a] ≥ 1− ε0 by the promise

of our simulation protocol (Corollary 25).

• The advice p∗ satisfies |p∗ − Prq∼Qx [q ∈ R]| ≤ ε1 for ε1 := 16cε.

• By Claim 27 and (8), we have Prq∼Qx [q 6∈ VYes ∪ VNo] ≤ Prq∼Qx [Qx(q) 6∈ (1± ε)α2−|q|] ≤ ε2
for ε2 := 100ε.

Therefore, from the correctness of the generalized Feigenbaum–Fortnow protocol (Theorem 18), our
simulation protocol satisfies the completeness and soundness with probability at least 1 − 0.02 −
(1

8 + 2m(n)ε1 + 3m(n)ε2 + 3δ) ≥ 3
4 , where the last inequality holds for some large constant c0. �

This completes the proof of Theorem 17.
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7 Non-Black-Box Selector for GapMCSP

In this section, we present an application of our proof techniques. For any oracle A and a
constant ε > 0, denote by GapεMCSPA the 2(1−ε)n-factor approximation version of the Minimum
A-Oracle Circuit Size Problem; that is, the problem is approximating the minimum A-oracle circuit
of a Boolean function f : {0, 1}n → {0, 1} within a factor of 2(1−ε)n, given the truth table of f . We
construct a non-black-box selector for GapεMCSPA for any oracle A.

Theorem 31. Let A,R be any oracles such that R ∈ PA/poly.12 Let α, c > 0 be any constants.
Then, there exist a randomized polynomial-time algorithm S and a constant β > 0 such that, for
any n ∈ N and any R-oracle circuits C0, C1 of size nc such that one of them computes GapαMCSPA

on every input of length at most n, for any instance x ∈ {0, 1}n of GapβMCSPA, SR(x,C0, C1)
decides x correctly with high probability.

We call S a “non-black-box” selector because the algorithm makes use of the property that two
candidate algorithms solving GapαMCSPA are modeled as polynomial-size circuits instead of ora-
cles.

The non-black-box selector S uses the property that GapMCSPA is reducible to any polynomial-
size oracle avoiding the A-oracle circuit interpreter Gint,A, as captured in the following lemma.

Lemma 32 (GapMCSPA Reduces to Natural Properties; [CIKK16, Hir18]). Let A,R be any or-
acles. Let α > 0 be any constant. Let D = {Dm}m∈N be a family of R-oracle polynomial-size

circuits DR
m on 2m inputs that 7

8 -avoids Gint,A : {0, 1}Õ(2αm) → {0, 1}2m. Then, there exist a con-
stant β > 0 and a polynomial-time computable function G that takes a size parameter s ∈ N, a
truth table of a Boolean function f : {0, 1}n → {0, 1} and a string z and returns a string Gfs (z) of
length m = m(n, s) ≤ 2n such that:

1. if sizeA(f) ≤ s, then D(Gfs (z)) = 0 for every z, and

2. if sizeR(f) ≥ 2(1−β)ns, then Prz[D(Gfs (z)) = 1] ≥ 3
4 .

Proof. Let f : {0, 1}n → {0, 1} be a Boolean function. We define G as the Nisan-Wigderson
generator [NW94] instantiated with a hardness-amplified version of f as an underlying function.
Specifically, let k be a parameter chosen later. We define a hardness-amplified version of f as
f⊕k(x1, · · · , xk) = f(x1)⊕ · · · ⊕ f(xk) for (x1, · · · , xk) ∈ {0, 1}nk.

We proceed to the definition of the Nisan-Wigderson generator NW: Let p be an arbitrary
prime such that kn ≤ p ≤ 2kn and m ∈ N be a parameter chosen later. For each string q ∈ {0, 1}m,
we associate a polynomial q′ of degree m over the field Fp defined as q′(a) =

∑m
i=1 qia

i for any
a ∈ Fp. Take an arbitrary subset D ⊆ Fp of size kn, and define Sq := { (a, q′(a)) | a ∈ D } ⊆ (Fp)2.

For a string z ∈ {0, 1}p2 , denote by zSq ∈ {0, 1}kn the string obtained by concatenating the ith

bit of z for every i ∈ Sq, identifying i ∈ (Fp)2 with i ∈ [p2]. The function Gfs (z) is defined as

NWf⊕k(z) := (f(zSq) | q ∈ {0, 1}m) ∈ {0, 1}2m , that is, the truth table of the Boolean function that
maps q 7→ f(zSq). (We will choose k and m depending on the size parameter s.)

Consider any f such that sizeA(f) ≤ s. From the construction, it is easy to see that

sizeA(NWf⊕k(z)) ≤ poly(sizeA(f),m, k, n) ≤ poly(s,m, k, n)

12 R is included for the purpose of stating the theorem as general as possible. The reader may think of R := ∅ for
simplicity.
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for every z ∈ {0, 1}p2 . For a sufficiently large m, this can be bounded above by 2αm. Thus we can
take m as the smallest integer such that poly(s,m, k, n) ≤ 2αm. Since D avoids Gint,A, we obtain

the first condition of Lemma 32 (i.e., Dm(NWf⊕k(z)) = 0).

Next, we prove the contrapositive of the second condition. We assume Prz[D
R
m(NWf⊕k(z)) =

1] < 3
4 . Since DR

m is 7
8 -dense, we have Prw∼{0,1}m [DR

m(w) = 1] ≥ 7
8 . In particular, DR

m distinguishes

NWf⊕k from the uniform distribution with advantage 7
8 −

3
4 = 1

8 . By the security proof of the

Nisan-Wigderson generator [NW94], we obtain an oracle circuit C such that Prx̄∼{0,1}nk [CD
R
m(x̄) =

f⊕k(x̄)] ≥ 1
2 + Ω( 1

2m ) and the size of C is poly(2m). Since the size of the circuit Dm is at most a
polynomial in the input length 2m, we can replace oracle gates of C with Dm and obtain an R-oracle
circuit C1 of size poly(2m) such that CR1 computes f⊕k with probability 1

2 + Ω( 1
2m ). By Yao’s XOR

lemma (cf. [GNW11]), we obtain a circuit C2 of size poly(2m, 1/δ) such that Prx∼{0,1}n [CR2 (x) =

f(x)] ≥ 1 − δ, where δ is an arbitrary parameter that satisfies (1 − δ)k ≤ Ω( 1
2m ). We define

k := Θ(m/δ) so that this inequality is satisfied, and we take δ := 2−βns/2n for some sufficiently
small constant β > 0. Finally, we correct the error of C2 in a trivial way: Let ϕ be a DNF formula
of size at most δn2n such that ϕ(x) = 1 if and only if CR2 (x) 6= f(x). Then a circuit CR3 := CR2 ⊕ϕ
is a circuit of size poly(2m, 1/δ) + δn2n that computes f exactly. By the definition of m, we have
2m = Θ(poly(s, n, 1/δ)), and thus poly(2m, 1/δ) ≤ poly(s, n, 1/δ) ≤ (sn/δ)c for some constant c.
Therefore, sizeR(f) ≤ 2cβn(2n)2c + 2(1−β)n−1s < 2(1−β)ns for β < 1/(c+ 1) and a sufficiently large
n. �

Now we construct a non-black-box selector S for GapMCSP.

Proof of Theorem 31. The idea is exactly the same with Theorem 15. Namely, given two oracles
R0, R1 such that one of them is guaranteed to be a dense subset of random strings, R0 ∩R1 is also
a dense subset of random strings. We apply this idea to the case of GapMCSP. In our case, by a
“random string” we mean a truth table that cannot be compressed into a small circuit.

Let f : {0, 1}n → {0, 1} and s ∈ N be an instance of GapβMCSPA, and m = m(n, s) be as in

Lemma 32. Let C0, C1 be R-oracle circuits one of which computes GapαMCSPA for every instance
of length 2m (≤ 2n ). For each i ∈ {0, 1}, we fix the size parameter of the inputs to Ci to 2αn/2; that
is, define C ′Ri (g) := CRi (g, 2αn/2). When the ith circuit is correct, C ′Ri accepts every g ∈ {0, 1}2m

such that sizeA(g) ≤ 2αn/2, and rejects every g such that sizeA(g) > 2(1−α)n+αn/2 = 2(1−α/2)n.
In particular, for a random g ∼ {0, 1}2m , we have Pr[C ′Ri (g) = 1] ≤ o(1) by a simple counting
argument.

Here is the algorithm S for solving GapβMCSPA: For each i ∈ {0, 1}, we verify that Ci has
a small number of Yes instances by sampling. Specifically, we pick g ∼ {0, 1}2m , verify that
C ′Ri (g) = 0, and repeat this test O(1) times. If one of these tests fails, it means that C ′i is not likely

to compute GapαMCSPA correctly; thus we redefine C ′i := 0. In particular, if Prg∼{0,1}2m [C ′Ri (g) =

1] ≥ 1
16 , then with high probability C ′i is redefined. We then define a circuit D so that DR(g) :=

¬(C ′R0 (g) ∨ C ′R1 (g)) for g ∈ {0, 1}2m . By the test above, with high probability, DR is dense, that
is, Prg[D

R(g) = 1] ≥ 7
8 . Now let G be the function of Lemma 32. Pick a random z and accept if

and only if D(Gfs (z)) = 0.
We claim the correctness of the algorithm S described above. We verify that the hypothesis

of Lemma 32 for R = A is satisfied with high probability. Since R ∈ PA/poly, the R-oracle
polynomial-size circuit D can be simulated by an A-oracle polynomial-size circuit. Moreover, DR
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avoids Im(Gint,A) since every g ∈ {0, 1}2αn/2 is rejected, and DR is 7
8 -dense with high probability.

Applying Lemma 32, the algorithm accepts every instance (f, s) such that sizeA(f) ≤ s and rejects
every instance (f, s) such that sizeA(f) ≥ 2(1−β)ns, with high probability. �

The existence of a selector for a language L has several consequences. For example, if L is
computable by a slightly-nonuniform algorithm, then by trying all the advice strings and selecting
the correct computation by using the selector, one can get rid of the nonuniformity [Hir15]. It can
also be shown that L is low for Sp

2 if L ∈ P/poly, which generalizes a result of [CCHO05] (from
any downward self-reducible language to any language with a selector; a detail can be found in
[Hir20c]). As a consequence of the non-black-box selector for GapMCSP, it is possible to prove the
lowness of GapMCSP for Sp

2 :

Theorem 33 (Lowness for Sp
2). Let A,R be any oracles such that R ∈ PA/poly. Let α > 0 be any

constant. If GapαMCSPA ∈ PR/poly, then S
GapβMCSPA

2 ⊆ SR2 for some constant β > 0.

Proof Sketch. Let S be the non-black-box selector of Theorem 31. Let c be a constant such
that there exists a R-oracle circuit C of size nc such that CR computes GapαMCSPA. Let

L ∈ S
GapβMCSPA

2 , and V be an S2-type verifier for L. We present an S2 · BP · PR algorithm
W : For each i ∈ {0, 1}, the ith competing prover sends a polynomial-size R-oracle circuit Ci of
size nc and a certificate for V . Using the two certificates, W simulates V , and each query q that
V makes is answered by running SR(q, C0, C1). The correctness of W follows from Theorem 31.
Therefore, we have L ∈ S2 · BP · PR = SR2 . �

The non-black-box property prevents us from generalizing Theorem 33 for every R. We leave
it as an interesting open question whether Theorem 33 holds for any oracles R and A.

A Tightness of Our Simulation Algorithms

In this appendix, we present the evidence that the upper bounds of Theorem 4 are nearly tight.
In Subsection A.1, we argue that the AM ∩ coAM upper bound cannot be significantly improved.
In Subsection A.2, we show that our Sp

2-type simulation algorithm is tight in a certain case.

A.1 Security Proofs of a Hitting Set Generator Based on SZK

In this section, we show that the security of a hitting set generator can be proved by using a
uniform black-box reduction, based on the worst-case hardness assumption of SZK.

Theorem 34. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint = {Gint

n : {0, 1}nε →
{0, 1}n}n∈N. Then, SZK ⊆ BPPR.

Proof Sketch. Take any problem L ∈ SZK. Allender and Das [AD17] showed that there exists
a candidate auxiliary-input one-way function fL such that the task of solving L reduces to the
task of inverting fL. (This fact was first shown by Ostrovsky [Ost91]). Here we say that a ran-
domized algorithm A inverts an auxiliary-input one-way function fL if, for every auxiliary-input
x, PrA,y[A(x, fL(x, y)) ∈ f−1

L (x, -)] ≥ 1/poly(|x|+ |y|). This task can be done by a randomized
polynomial-time algorithm with oracle access to R, by constructing a candidate pseudorandom
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(function) generator GfL based on fL using [HILL99, GGM86], and observing that R can distin-
guish GfL from the uniform distribution. (See [ABK+06, Theorem 45], [AH17] for details.) �

The reduction of Theorem 34 is adaptive because of the use of [HILL99]. We conjecture that
SZK ⊆

⋂
R BPPR‖ , which implies that the AM ∩ coAM upper bound of Theorem 4 cannot be

significantly improved. While we were not able to obtain nonadaptive reductions in the general
case, we show that the problem of factoring the product of two primes is nonadaptively reducible
to R.

Theorem 35. Let ε > 0 be any constant, and R be any oracle 1
2 -avoiding Gint = {Gint

n : {0, 1}nε →
{0, 1}n}n∈N. Then, factoring the product of two primes can be done in ZPPR‖ .

Proof. We follow the proof of [ABK+06, Theorem 47] showing that Integer Factorization is in
ZPPMCSP. The idea is that, by using [HILL99, GGM86], one can invert any auxiliary-input one-
way function fN with oracle access to R (cf. [ABK+06, Theorem 45], [AH17]). For the purpose
of integer factorization, we can use some regular one-way function fN , and we observe that the
security reduction of [HILL99] is nonadaptive in this case.

Let N ∈ N be an input. We may assume without loss of generality that N is odd; hence, N = pq
for some odd prime numbers p, q. We may also assume that p 6= q. Let fN : (Z/NZ)∗ → (Z/NZ)∗

be Rabin’s (auxiliary-input) one-way function [Rab79]: fN (x) = x2 mod N , where we regard N
as an auxiliary input. As observed in [Rab79], fN is a 4-to-1 function. (That is, for any a with
gcd(a,N) = 1, the number of x ∈ (Z/NZ)∗ such that x2 ≡ a (mod N) is 4. Indeed, the condition
is equivalent to saying that x2 ≡ a (mod p) and x2 ≡ a (mod q), and each congruence has exactly
2 solutions; by the Chinese remainder theorem, we obtain exactly 4 solutions.) Rabin showed that
the task of factoring N is efficiently reducible to the task of inverting fN on average. Therefore, it
remains to show that one can efficiently invert fN with parallel queries to R.

From the regular candidate one-way function fN , a candidate pseudorandom generator GN =
{GN,n : {0, 1}n/2 → {0, 1}n}n∈N can be constructed as in [HILL99, Theorem 5.5] so that the
reduction of the security proof for GN is nonadaptive. By using a construction of [GGM86], we

extend the output length of GN so that G′N = {G′N,n : {0, 1}n → {0, 1}nO(1/ε)}n∈N with the property

that G′N,n(z) ∈ Im(Gint
nO(1/ε)) for every seed z (that is, the function represented by G′N,n(z) as a

truth table can be computed by a circuit of size nO(1)). Thus the oracle R distinguishes G′N from
the uniform distribution, and hence we obtain a nonadaptive randomized algorithm factoring N .
Finally, the randomized algorithm can be made zero-error by using the primality test of [AKS04].

�

As an immediate corollary, we obtain a new hardness result of MCSP under nonadaptive re-
ductions.

Corollary 36. Factoring the product of two primes can be done in ZPP
GapεMCSP
‖ for every constant

ε > 0.

A.2 On the Simulation by Using the Competing Prover System

Our Sp
2-type simulation algorithm is in fact completely tight in a certain setting. Regard a

universal Turing machine U as a hitting set generator. We consider an exponential-time analogue
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of Theorem 4 when the reduction can make only short queries. Specifically, for an oracle R, denote
by BPEXPR[poly] the class of languages that can be computed by a two-sided-error randomized

2n
O(1)

-time algorithm that can query q
?
∈ R of length ≤ nO(1), on inputs of length n. (We note

that all the queries of polynomial length can be asked by an exponential-time reduction, and thus
the adaptivity does not matter here.) The computational power of

⋂
R BPEXPR[poly] where R is

an arbitrary oracle that avoids a universal Turing machine is exactly equal to the exponential-time
analogue of Sp

2 .

Theorem 37. Regard a universal Turing machine U as a family of functions U = {U` : {0, 1}`/2 →
{0, 1}`}`∈N. Then, ⋂

R avoids U

EXPR‖ =
⋂

R avoids U

BPEXPR[poly] = Sexp
2 .

Proof. It was shown in [Hir20c] that
⋂
R avoids U EXPR‖ =

⋂
R avoids U EXP

R[poly]
‖ = Sexp

2 . It remains
to claim that ⋂

R avoids U

BPEXPR
[poly] ⊆ Sexp

2 .

Let L ∈
⋂
R avoids U BPEXPR[poly]. We first note that, as in Lemma 14, the order of quantifiers

can be swapped; indeed, the proof of Lemma 14 does not rely on any specific property of BPP‖
reductions; hence, the same proof works for other notions of reduction. Thus, there exists some
randomized t(n)-time black-box reduction M from a language L to any γ-avoiding oracle for U
such that the length of any query that M makes on input of length n is at most log t(n), for some

t(n) = 2n
O(1)

. Let L′ := {x01t(n) | x ∈ L } be a padded version of L. Applying Theorem 15 to L′,
we obtain L′ ∈ Sp

2 , from which it follows that L ∈ Sexp
2 . �
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