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Abstract. There are various notions of balancing set families that appear in
combinatorics and computer science. For example, a family of proper non-empty
subsets S1, . . . , Sk ⊂ [n] is balancing if for every subset X ⊂ {1, 2, . . . , n} of
size n/2, there is i ∈ [k] so that |Si ∩ X| = |Si|/2. We extend and simplify
the framework developed by Hegedűs for proving lower bounds on the size of
balancing set families. We prove that if n = 2p for a prime p, then k ≥ p. For
arbitrary values of n, we show that k ≥ n/2− o(n).

We then exploit the connection between balancing families and depth-2
threshold circuits. This connection helps resolve a question raised by Kulikov
and Podolskii on the fan-in of depth-2 majority circuits computing the majority
function on n bits. We show that any depth-2 threshold circuit that computes
the majority on n bits has at least one gate with fan-in at least n/2 − o(n).
We also prove a sharp lower bound on the fan-in of depth-2 threshold circuits
computing a specific weighted threshold function.

1. Introduction

1.1. Balancing Families. Balancing set families are families of proper non-
empty subsets of a finite universe that satisfy a discrepancy type property. They
are well studied objects in combinatorics [12, 10, 4, 15, 5, 14], and they have found
many applications in computer science [4, 20, 16, 5, 14]. In this work we prove
new lower bounds on the size of such families, and then use them to prove lower
bounds on depth-2 majority and threshold circuits that compute the majority
and weighted threshold functions. We establish new sharp lower bounds on the
fan-in of the gates in such circuits.
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A central contribution of this work is the following lemma that shows a lower
bound on the degree of a special class of polynomials.

Lemma 1. Let p be prime, and let f(x1, . . . , x2p) be a polynomial over Fp, where
Fp is the field with p elements. Let f be such that for every input x ∈ {0, 1}2p with
exactly p ones, we have f(x) = 0, and f(x) is non-zero when x1 = x2 = . . . =

x2p = 0. Then, the degree of f is at least p.

Hegedűs [15] used a similar lemma to prove lower bounds for balancing sets
(in his lemma there are 4p variables, and the focus is on inputs with 3p ones).
Hegedűs’s proof uses Gröbner basis methods and linear algebra. Srinivasan found
a simpler proof of Hegedűs’s lemma that is based on Fermat’s little theorem and
linear algebra. Alon [3] gave an alternate proof of Hegedűs’s lemma using the
Combinatorial Nullstellensatz. The above lemma is inspired by Srinivasan’s proof
of Hegedűs’s lemma [21, 5]. Our simple proof is presented in Section 3.

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. Various notions
of balancing set families have been considered in the past [12, 10, 4, 15, 5] with
various terminologies. We use the following definition in this work.

Definition 1. Let k be a positive integer and n be a positive even integer. We
say that proper non-empty subsets S1, . . . , Sk ⊂ [n] are a balancing set family if
for every X ⊂ [n] of size n/2 there is an i ∈ [k] such that |Si ∩X| = |Si|/2.

Given any even n, let B(n) denote the minimum k for which a balancing set
family of size k exists. Our first result gives tight bounds on B(n):

Theorem 2. If n = 2p for a prime p, then B(n) = n/2 = p.

Moreover, if n is divisible by 4, we give an example of a balancing set family
establishing that B(n) ≤ n/2− 1. If n is divisible by 2, we show that B(n) ≤ n/2

by constructing a balancing set family of size n/2, in which each set is of size
2. We also show that this is tight when each set in the family is of size 2 (see
Theorem 13 in Section 4). Previously, for arbitrary values of n, Alon, Kumar and
Volk [5] showed that B(n) ≥ Ω(n). We show

Theorem 3. If n is an even integer, then B(n) ≥ n/2−O (n0.98).

Our lower bounds on B(n) are the most interesting and they are proved using
Lemma 1. See Section 4 and Section 5 for a full exposition of the proofs. We also
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apply our techniques to other questions about balancing sets in the literature and
improve some of the previous bounds. We now briefly discuss two such notions
from the literature.

(a) Galvin’s question [12, 10, 15] asks for the smallest balancing family, denoted
by G(n), where each set in the family is of size n/2, and n is a positive integer
that is a multiple of 4.

(b) Jansen [16] and Alon, Kumar, and Volk [5] studied a variant where the
size of each set in the family must satisfy 2τ ≤ |Si| ≤ n − 2τ for a positive
integer τ , and for every X ⊂ [n] of size n/2, there is a set in the family such that
|Si|/2− τ < |Si ∩X| < |Si|/2 + τ . Denote by J(n, τ) to be the family of smallest
size satisfying the above conditions.

We defer the discussion of previous known bounds on the quantities G(n) and
J(n, τ) to Section 2. We prove the following lower bounds on G(n) and J(n, τ).

Theorem 4. If n is divisible by 4, then G(n) ≥ n/2−O (n0.53).

Theorem 5.

(1) If n = 2p for a prime p then J(n, τ) ≥ n
4τ−2 .

(2) J(n, τ) ≥ n−O(n0.98)
7τ

.

We proceed to define the notion of unbalancing set families used in this work.

Definition 2. Let n be a positive even integer, and k ≥ 0, 0 ≤ t ≤ n/2 be integers.
We say that subsets S1, . . . , Sk ⊂ [n] are an unbalancing set family if for every
X ⊂ [n] of size n/2− t, there is an i ∈ [k] such that |Si ∩X| > |Si|/2.

Given any even n, let U(n, t) denote the minimum k for which an unbalancing
set family of size k exists. For unbalancing set families, we determine U(n, t)

exactly:

Theorem 6. U(n, t) = 2t+ 2.

Again, the lower bound here is more interesting than the upper bound. It is
proved by showing a connection between U(n, t) and the chromatic number of an
appropriately defined Kneser graph [18].
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1.2. Threshold Circuits. We now discuss our results on depth-2 majority and
threshold circuits. The majority function, MAJ(x) for x ∈ {0, 1}n, is defined as

MAJ(x1, . . . , xn) =

{
1
∑n

i=1 xi ≥ n/2,

0 otherwise.

The unweighted threshold function, Tt(x) for x ∈ {0, 1}n, is defined as

Tt(x1, . . . , xn) =

{
1
∑n

i=1 xi ≥ t,

0 otherwise,

for some non-negative integer t. In the rest of the paper, unless stated otherwise,
we refer to threshold functions when we mean unweighted threshold functions.

A depth-2 circuit is defined by boolean functions h, g1, . . . , gk, for some integer
k, and the depth-2 circuit is said to compute a function f on input x ∈ {0, 1}n if

f(x) = h(g1(x), . . . , gk(x)).

Here h, g1, . . . , gk are called the gates of the circuit. h is referred to as the top
gate, and g1, . . . , gk are referred to as the bottom gates of the circuit. Our lower
bounds often hold even when h is allowed to be an arbitrary boolean function.
The fan-in of a gate in the circuit measures the number of variables that need to
be read for the gate to carry out its computation. The fan-in of the top gate in
the circuit is defined to be k. The fan-in of each of the gates gi is ri if gi depends
on ri of the input variables. We sometimes refer to the top fan-in when we mean
k and the bottom fan-in when we mean the maximum of r1, . . . , rk. We say that
the fan-in of the circuit is r, if r is the maximum of the top fan-in and bottom
fan-in.

When functions g1, . . . , gk, h each compute majority, the circuit is called a
majority circuit. Similarly, if all gates compute thresholds, then the circuit is
called a threshold circuit. Kulikov and Podolskii [17] asked the following question:
What is the minimum fan-in required to compute majority using a depth-2
majority circuit? Balancing set families are closely related to depth-2 majority
circuits computing majority. One can prove that there is a depth-2 majority
circuit computing majority of n bits with top fan-in at most 2 · B(n) + 2, when
n is even. Indeed, let S1, . . . , Sk be the balancing set family. Define k majority
gates, each on variables indexed by Si, and another k majority gates, each on
variables indexed by [n] \ Si. The top majority gate, with fan-in 2k + 2, reads
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these 2k gates along with two 0 inputs. It is easy to see that this circuit correctly
computes the majority.

To obtain a lower bound on the fan-in of such circuits, a potential approach is to
show that every depth-2 majority or threshold circuit corresponds to a balancing
set family. We are able to leverage the ideas that are used to prove Theorem 2 to
obtain lower bounds on the fan-in of these circuits. Moreover, our lower bounds
are sharp up to a constant factor.

Let n = 2p for a prime p. Note that the threshold function defined by the
inequality

∑n
i=1 xi ≥ p is the majority function on n bits, and yields a circuit with

top fan-in 1. We prove a lower bound on the top fan-in of a depth-2 threshold
circuit when the bottom gates do not have the threshold p:

Theorem 7. Suppose that n = 2p for a prime p. Then in any depth-2 circuit
computing the majority of n bits, if the bottom gates compute unweighted thresholds
and read no constants, either the top fan-in is at least n/2 = p, or some gate at
the bottom computes a threshold Tt with t = p.

In fact, Theorem 7 implies a similar lower bound on the top fan-in when the
bottom threshold gates read constants - see Section 6. Observe that in Theorem
7 we do not assume that the top gate h computes a threshold function. The lower
bound holds with no restrictions on h.

Theorem 7 also gives tight lower bounds for the fan-in of threshold circuits
computing majority. Firstly, any non-constant threshold function Tt reading at
most r inputs must have t ≤ r. Secondly, any bottom gate that computes a
threshold function Tt by reading constants is equivalent to computing a threshold
function Tt′ on the same input variables, for some t′ ≤ t, and Tt′ reads no constants.
Here, t′ = t− α where α is the number of ones read by Tt. Consequently, we get:

Corollary 8. Suppose that n = 2p for a prime p. Then in any depth-2 circuit
computing the majority of n bits, if the bottom gates compute unweighted thresholds,
the fan-in of the circuit must be at least n/2 = p.

Since majority is a special case of the threshold function, the above corollary
implies the same lower bound on the fan-in of majority circuits that compute the
majority. However, by directly invoking Theorem 7, we obtain a slightly stronger
lower bound for majority circuits computing the majority:
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Corollary 9. Suppose that n = 2p for a prime p. Then in any depth-2 majority
circuit computing the majority of n bits, either the bottom fan-in is more than
2p− 2 = n− 2 or the top-fan in is at least p = n/2.

This is because when the bottom fan-in of the majority circuit is at most 2p−2,
the threshold of bottom gates are at most p− 1 and Theorem 7 applies.

Theorem 7, Corollary 8 and Corollary 9 discuss the case when n = 2p for a
prime p. For arbitrary values of n, we can generalize Theorem 7 to show that
either the top fan-in is at least n/2− o(n) or some gate at the bottom computes
a threshold Tt with t ≥ p, where p is the largest prime such that p ≤ n/2 (see
Section 6 for the proof). Naturally, this lower bound translates to Corollary 8 and
Corollary 9. In particular, we get that any depth-2 majority circuit computing
the majority of n bits must have that either the bottom fan-in at least n− o(n) or
the top fan-in at least n/2− o(n). This nearly matches Amano’s [6] construction
of a depth-2 majority circuit with bottom fan-in n− 2 and top fan-in n/2 + 2.

Another kind of result that we investigate is whether weighted threshold func-
tions can be computed using unweighted thresholds of low fan-in. To that end, let
n = (3p− 1)/2 for an odd prime p, and consider the weighted threshold function

T (x) =

1 if
∑

i≤p−1 xi + 2
∑

i>p−1 xi ≥ p,

0 otherwise.

T (x) is a weighted threshold function with weights 1 and 2.

Theorem 10. Any depth-2 circuit computing T (x) where the bottom gates compute
unweighted thresholds must have top fan-in at least (p− 1)/2 = (n− 1)/3.

Observe that in Theorem 10 we do not assume an upper bound on the fan-in
of the bottom gates. Our bounds are much stronger and significantly simpler
than past lower bounds ([17, 9]) on such circuits. Our proofs of Theorem 2 and
Theorem 7 are based on proving lower bounds on the degree of specific polynomials,
using Lemma 1, that are constructed using the balancing set families and depth-2
threshold circuits, respectively.

Table 1 and Table 2 summarize all our results discussed in the introduction.

Outline. The rest of the paper is organized as follows. We discuss related work in
Section 2. We prove Lemma 1 in Section 3. Theorem 2 is proved in Section 4, and
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Balancing Sets

B(n) = n/2 when n = 2p Theorem 2
B(n) ≥ n/2− o(n) Theorem 3
G(n) ≥ n/2− o(n) Theorem 4
J(n, τ) ≥ n/(4τ − 2) when n = 2p Theorem 5
J(n, τ) ≥ n(1− o(1))/7τ Theorem 5

Unbalancing Sets U(n, t) = 2t+ 2 Theorem 6

Table 1. Summary of results on balancing and unbalancing families.
p is a prime.

Function Bottom Gates Result

Majority thresholds and
reads no constants

k ≥ n/2 or threshold = p
when n = 2p

Theorem 7

Majority thresholds max{k, r} ≥ n/2 when
n = 2p

Corollary 8

Majority majority k ≥ n/2 or r > n − 2
when n = 2p

Corollary 9

Majority thresholds k ≥ n/2− o(n) or thresh-
old ≥ µ(n/2)

Theorem 18

Majority thresholds max{k, r} ≥ n/2− o(n) Corollary 19

T (x)
unbounded fan-in
thresholds k ≥ (n− 1)/3 Theorem 10

Table 2. Summary of results on depth-2 circuits. n is the number
of input bits and p is a prime. k is the top fan-in and r is the
maximum fan-in of the bottom gates. µ(n) denotes the largest
prime that is no more than n.

the application of our techniques to generalizations of balancing set families are
discussed in Section 5. In particular, Section 5 contains the proofs of Theorem 3,
4 and 5. Theorems 7 and 10 are proved in Sections 6 and 7 respectively. Theorem
6 is proved in Section 8.

Notation. Fp denotes the field with p elements, where p is a prime. For a positive
integer n, µ(n) denotes the largest prime p so that p ≤ n. For a natural number
n, [n] denotes the set {1, 2, . . . , n}. For every x ∈ {0, 1}n and i ∈ [n], xi denotes
the i’th coordinate of x. For x ∈ {0, 1}n, when x1 = x2 = . . . = xn = 0, we refer
to x as the all-zeros vector or the all-zeros input. The all-ones vector or all-ones
input is defined similarly.



8 HRUBEŠ, NATARAJAN RAMAMOORTHY, RAO, AND YEHUDAYOFF

Bounds on µ(n). Generalizations of Theorems 2 and 7 to the case when n 6= 2p

for a prime p are obtained by using a known lower bound on µ(n). Baker, Harman
and Pintz [8] showed that the largest gap between consecutive primes is bounded
by O(n0.53). As a consequence, we can conclude that

Theorem 11. [8] µ(n) ≥ n−O(n0.53).

2. Related Work

2.1. Balancing Families. Various notions of balancing set families have been
studied. We first describe the question posed by Galvin [12, 10, 15].

Definition 3. Let n be a positive integer that is divisible by 4. A family of proper
subsets S1, . . . , Sk ⊂ [n] is exactly balancing if each Si is of size n/2 and for every
X ⊂ [n] of size n/2 there is an i ∈ [k] such that |X ∩ Si| = |Si|/2.

When n is divisible by 4, let G(n) denote the minimum k for which an exactly
balancing set family of size k exists. Clearly, the family of all subsets of [n] of size
n/2 is exactly balancing, and any family with only one set is not exactly balancing.
Therefore finding the minimum number of sets in any exactly balancing set family
is interesting.

Galvin [12] observed that G(n) ≤ n/2; take n/2 consecutive intervals of length
n/2. Frankl and Rödl [12] proved that G(n) ≥ Ω(n) if n/4 is odd, and later
Enomote, Frankl, Ito and Nomura [10] proved that if n/4 is odd, then G(n) ≥ n/2.
Proofs in [12, 10] are based on techniques from linear algebra and extremal set
theory. Recently, Hegedűs [15] used algebraic techniques to proved that if n/4
is prime, then G(n) ≥ n/4. For arbitrary values of n, Alon, Kumar and Volk [5]
proved that G(n) ≥ Ω(n). Theorem 4 improves the bound of Alon, Kumar and
Volk.

Several natural variants of Galvin’s problem have been studied. One such
variant was studied by Jansen [16], and Alon, Kumar and Volk [5]:

Definition 4. Let n be an even integer, and let τ be a positive integer. Let
S1, . . . , Sk ⊂ [n] with 2τ ≤ |Si| ≤ n− 2τ . We say that S1, . . . , Sk is a τ -balancing
set family if for every X ⊂ [n] of size n/2 there is an i ∈ [k] such that

|Si|/2− τ < |X ∩ Si| < |Si|/2 + τ.
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When n is even and τ is positive, let J(n, τ) denote the minimum k for which
such a family of size k exists. This variant allows the family to have sets with
different sizes and the intersection sizes to take more than just one value. Alon,
Kumar and Volk proved that J(n, τ) ≥ 1

105
· (n/τ). This lower bound is sharp up

to a constant factor. Theorem 5 improves their bound to n−o(n)
7τ

.
Our techniques yield a quantitatively stronger lower bound on balancing set

families. The improvement stems from the fact that the ratio of the degree of the
polynomial to the number of variables of the polynomial increases from 1/4 to
1/2. Moreover, the application of Lemma 1 eliminates an additional argument
using the probabilistic method employed in the work of Alon, Kumar and Volk.

There are many applications of balancing set families. Alon, Bergmann, Cop-
persmith and Odlyzko [4] studied a different version of balancing sets that has
applications to optical data communication. Jansen [16] and Alon, Kumar, and
Volk [5] showed applications to proving lower bounds for syntactic multilinear
algebraic circuits (also see [20]).

2.2. Threshold Circuits. A depth-d majority circuit can be defined in analogy
to depth-2 majority circuits. Let Md(n) denote the minimum fan-in of a depth-
d majority circuit that computes the majority of n bits. A long line of work
has addressed the question of computing the majority function using majority
circuits. Ajtai, Komlós and Szemerédi [1] showed that Mc·logn(n) = O(1), for some
constant c. Using probabilistic arguments, Valiant [22] showed the existence of
depth O(log n) majority circuit that computes the majority, where each gate has
constant fan-in. Allender and Koucky [2] showed that Mc(n) = O(nε(c)), where
c is a constant and ε(c) is a function of c. Kulikov and Podolskii proved that
M3(n) ≤ Õ

(
n2/3

)
1. See [17, 9, 11] and references within for a detailed treatment.

We now discuss previous bounds on M2(n). Kulikov and Podolskii [17] used
probabilistic arguments to show that M2(n) ≥ Ω̃

(
n7/10

)
. They also proved that

M2(n) ≥ Ω̃
(
n13/19

)
when the gates are not required to read distinct variables.

Amano and Yoshida [7] showed that for every odd n ≥ 7, M2(n) ≤ n− 2, where
they allowed some of the gates to read variables multiple times. Later, Engles,
Garg, Makino and Rao [9] used ideas from discrepancy theory to prove that
M2(n) ≥ Ω(n4/5) when the gates do not read constants. Posobin [19] showed

1In the rest of the paper, Õ(a) and Ω̃(a) mean that polylog(a) factors are ignored.
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that majority can be computed by a depth-2 majority circuit of fan-in at most
2n/3 + 4 (this was also proved independently by Bauwens [19]). Very recently,
Amano [6] gave a construction of a depth-2 majority circuit computing majority
with bottom fan-in n− 2 and top fan-in n/2 + 2.

Kulikov and Podolskii [17] studied and proved lower bounds on other vari-
ants of depth-2 majority circuits. In particular, they consider circuits in which
each majority gate can read a variable multiple times. Let W be the maxi-
mum over the number of times a variable is read. They prove that M2(n) ≥
min

{
Ω̃
(
n13/19

)
, Ω̃
(
n7/10

W 3/10

)}
. In this case, our techniques yield a lower bound of

M2(n) ≥ Ω
(
n
W

)
. Essentially, their lower bound is stronger when W ≥ n6/19 and

our bound is stronger when W ≤ n6/19.
The question of computing weighted thresholds using a depth-2 threshold

function is connected to the study of exact threshold circuits initiated by Hansen
and Podolskii [13]. It may also be useful in studying the expressibility of general
functions using threshold or ReLu gates; see the work of Williams [23].

We would like to emphasize that the lower bounds in Theorems 7 and 10 are
tight and only off by constant factors. In addition, most functions considered in
past work on majority and threshold circuit lower bounds do not admit depth-2
majority or threshold circuits with linear fan-in on the gates. In fact, one can
prove exponential lower bounds on the size of circuits computing these functions
(see [13]).

3. Proof of Lemma 1

Let f be as in the assumption of Lemma 1. Consider the polynomial

g(x1, . . . , x2p) = (1− x1) ·
p−1∏
i=1

(
i−

2p∑
i=1

xi

)
,

which has degree p. For x ∈ {0, 1}2p, observe that g(x) = 0 if the number of ones
in x is not a multiple of p or x is the all-ones input, and g(x) 6= 0 if x is the
all-zeros input. Therefore, f · g is non-zero on the all-zeros input and 0 elsewhere
in {0, 1}2p.

We will now show that the degree of f ·g is at least 2p. Consider the polynomial
h that is obtained by multilinearizing f · g. In other words, replace every power xki
with xi in f · g, for k ≥ 1, Observe that the degree of h is at most the degree of f .



LOWER BOUNDS FOR BALANCING SETS 11

Define α = h(0, . . . , 0). Recall that there is a one-to-one correspondence between
multilinear polynomials over Fp on 2p variables and the set of all functions from
{0, 1}2p → Fp. Since h is the same as the function that is α on the all-zeros input
and 0 elsewhere in {0, 1}2p, we can use this correspondence to conclude that

h(x1, . . . , x2p) = α ·
2p∏
i=1

(1− xi).

Therefore the degree of h is 2p.
Hence the degree of f · g is at least 2p, implying that the degree of f is at least

p.

4. Upper and Lower Bounds on B(n)

In this section, we describe some explicit balancing set families.

Lemma 12.

(1) If n is divisible by 4 and n 6= 4, then B(n) ≤ n/2− 1.
(2) If n is divisible by 2 and n 6= 2, then B(n) ≤ n/2.

Proof. When 4 divides n, there is a family of k = n
2
− 1 sets that are balancing:

take any k sets, each of size 4, satisfying Si ∩Sj = {1, 2} for all i 6= j. This family
has the property that for any subset X ⊂ [n] of size n/2, there is an i ∈ [k] such
that |X ∩ Si| = 2.

When 2 divides n, there is a family of k = n/2 sets that are balancing: take
any k sets, each of size 2, satisfying Si ∩ Sj = {1} for all i 6= j. This family has
the property that for any subset X ⊂ [n] of size n/2, there is an i ∈ [k] such that
|X ∩ Si| = 1. �

As implied by Theorem 2, when n = 2p for a prime p, there is no construction
with k = n

2
− 1 sets; the minimum possible k in this case is n

2
. We now prove

Theorem 2.

Proof of Theorem 2. Lemma 12 implies that B(n) ≤ p = n/2. We now proceed to
show that B(n) ≥ p = n/2. Let S1, . . . , Sk be the balancing set family. Without
loss of generality each |Si| is even, and therefore 1 ≤ |Si|/2 ≤ p− 1 for all i ∈ [k].
We will now construct a polynomial that is non-zero on the all-zeros input and
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vanishes on all x ∈ {0, 1}2p with p ones. Define the polynomial

f(x1, . . . , x2p) =
k∏
i=1

(
|Si|/2−

∑
j∈Si

xj

)
,

over Fp that has degree k. Since 1 ≤ |Si|/2 ≤ p− 1 for all i ∈ [k], f(0) 6= 0. We
will show that f(x) = 0, for x ∈ {0, 1}2p, when x exactly has p ones. This is
because the input x to f with exactly p ones corresponds to a set X ⊂ [2p] of
size p. The fact that there is an i ∈ [k] such that |Si ∩X| = |Si|/2, implies that
|Si|/2−

∑
j∈Si

xj = 0. By applying Lemma 1, we can conclude that k ≥ p. �

Remark. In Definition 1, since |Si ∩ X| = |Si|/2, it is no loss of generality to
assume that each Si is even sized. The definition can be relaxed by having
|Si ∩ X| = d|Si|/2e. In this relaxed definition, the family {1}, {2, . . . , 2p} is
balancing and the size of the family is 2. However, if we impose an extra condition
that each |Si| ≥ 2, then we can prove that the size of any such family is at least p.

When n is even and all sets in the balancing set family are of size 2, we use a
graph theoretic argument to prove that the size of the family is at least n/2. This
shows that the construction in the proof of part 2 of Lemma 12 is tight.

Theorem 13. Let n be a positive even integer. Let S1, . . . , Sk ⊂ [n] be a balancing
set family. If |Si| = 2 for all i ∈ [k], then, k ≥ n/2.

We need the following lemma about integers to prove the above theorem.

Lemma 14. Let a1, . . . , ak be positive integers such that
∑k

i=1 ai = n. If k > n/2,
then for every non-negative integer s ≤ n, there is a S ⊆ [k] such that

∑
i∈S ai = s.

Proof. We prove the lemma by induction on n. The base case is when n = 1. In
this case k = 1, and the possible values for s is 0 and 1. Hence the statement
is true for n = 1. Induction hypothesis assumes that the statement is true for
all positive integers that are at most n− 1, and we prove it for n. Without loss
of generality, we can assume that a1 is the largest among a1, . . . , ak. If a1 = 1,
then the statement is true because this implies that k = n, and for every s ≤ n,∑s

i=1 ai = s. For the rest of the proof, we assume that a1 ≥ 2. We will first
show that a1 ≤ dn/2e. Assume for contradiction that a1 > dn/2e. Since each
ai ≥ 1, we can conclude that

∑k
i=2 ai ≥ k − 1 ≥ bn/2c. Therefore, we get that∑k

i=1 ai > bn/2c+ dn/2e = n, which is a contradiction.
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We claim that k − 1 > n−a1
2

. Indeed, since k > n/2, we have

k − 1 >
n− 2

2
≥ n− a1

2
,

where the last inequality follows from the fact that a1 ≥ 2. As k − 1 > n−a1
2

, we
can apply the induction hypothesis on a2, . . . , ak. By the induction hypothesis,
for every s ≤ n− a1, there is a S ⊆ {2, 3, . . . , k} such that

∑
i∈S ai = s. For every

s > n− a1, let s′ be such that s = a1 + s′. We have

n− a1 ≥ s′ = s− a1 > n− 2a1 ≥ −1

where the last inequality follows from a1 ≤ dn/2e. This implies that 0 ≤ s′ ≤ n−a1,
and the induction hypothesis gives a set S ⊆ {2, 3, . . . , k} such that

∑
i∈S ai = s′.

Hence
∑

i∈S∪{1} ai = s. This completes the proof. �

Proof of Theorem 13. Consider a graph defined on the vertex set [n]. (u, v) ∈
[n] × [n], for u 6= v, is an edge in the graph iff u, v ∈ Si for some i ∈ [k]. The
number of edges in this graph is k. Let k′ be the number of connected components,
and let a1, . . . , ak′ be such that ai is the size of the i’th connected component.
Observe that

∑k′

i=1 ai = n. Since the number of edges in the i’th connected
component is at least ai− 1, we get that k′ ≥ n− k. We will proceed to show that
k ≥ n/2. Assume for contradiction that k < n/2. We then know that k′ > n/2.
Lemma 14 implies there is a S ⊂ [k′] such that

∑
i∈S ai = n/2. Define X ⊂ [n] to

be the set of all vertices in the connected components indexed by S. |X| = n/2

and there is no edge from X to [n] \X. Therefore, for every i ∈ [n], |Si ∩X| 6= 1

and this is a contradiction. Hence, k′ ≤ n/2 and k ≥ n/2. �

5. Balancing Families: Generalizations and Improvements

In this section we prove Theorems 3, 4 and 5. The following lemma is crucial
in the proofs these theorems.

Lemma 15. Let n be an even integer. Let S1, . . . , Sk ⊂ [n] and T1, . . . , Tk ⊆
[µ(n/2) − 1]. Suppose that there is a set R ⊆ [n] of size n − 2µ(n/2) such that
for every i ∈ [k] and t ∈ Ti, |Si ∩R| < t, and for every X ⊂ [n] of size n/2 there
is an i ∈ [k] such that |X ∩ Si| ∈ Ti. Then

∑k
i=1 |Ti| ≥ µ(n/2).
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Proof. Define the polynomial

F (x1, . . . , xn) =
k∏
i=1

∏
t∈Ti

(
t−

∑
j∈Si

xj

)
.

Let p = µ(n/2). Define the polynomial f(x1, x2, . . . , x2p) over Fp by setting in F
half of the variables indexed by R to 0 and the other half to 1. The degree of f is
at most

∑k
i=1 |Ti|. We claim that f takes the value 0 on all inputs with exactly

p ones and f is non-zero on the all-zeros input. This is sufficient to prove the
theorem as Lemma 1 implies that

∑k
i=1 |Ti| ≥ p.

The former part of the claim is true because the input x to f with exactly p
ones along with the variables in R that are set to 1 correspond to a set X ⊂ [n]

of size n/2. The fact that there is an i ∈ [k] and t ∈ Ti with |Si ∩X| = t, implies
t−
∑

j∈Si
xj = 0.

We now proceed to show that f is non-zero on the all-zeros input. On the
all-zeros input for f , we know that all variables indexed by [n] \ R are set to 0

and we do not have any control on the assignment to the variables in R. However,
since for every i ∈ [k] and t ∈ Ti, 0 < t < p and |Si ∩R| < t, f is non-zero on the
all-zeros input. �

Implications of Lemma 15. We now discuss the implications of Lemma 15 to
the questions about balancing set families discussed in Section 1 and Section 2.
The choice of R in Lemma 15 depends on the context. We obtain an asymptotically
sharp lower bound for Galvin’s problem and an improvement over the lower bound
of Alon, Kumar and Volk.
B(n). We prove Theorem 3 using the following claim, which is proved in Appendix
A.

Claim 16. Let n be a positive integer and S1, . . . , Sk ⊂ [n] be a balancing set
family. If n is large enough and k < n/2− 2n0.98, then there exists a R ⊂ [n] of
size n− 2µ(n/2) such that for every i ∈ [k], |Si ∩R| < |Si|/2.

Proof of Theorem 3. Assume for contradiction that B(n) < n/2−2n0.98. Let R be
the set given by Claim 16. By invoking Lemma 15 with R and each Ti = {|Si|/2},
we get B(n) ≥ µ(n/2) ≥ n/2− O (n0.53), where the last inequality follows from
Theorem 11. This contradicts the assumption for large values of n. �
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J(n, τ ). We prove Theorem 5. We have that each

Ti = {|Si|/2− τ + 1, . . . , |Si|/2, . . . , |Si|/2 + τ − 1}.

When n = 2p for a prime p, R = ∅. Observing that each Ti is of size 2τ − 1,
Lemma 15 implies Part 1 of Theorem 5.

We now proceed to prove Part 2 of Theorem 5. We need the following claim,
and this claim is proved in Appendix A.

Claim 17. Let n be a positive integer, τ be a positive integer, and S1, . . . , Sk ⊂ [n]

be τ -balancing set family. If n is large enough and k < n/(7τ) − n0.98/(7τ),
then there exists a R ⊂ [n] of size n − 2µ(n/2) such that for every i ∈ [k],
|Si ∩R| ≤ |Si|/2− τ .

Proof of Part 2 of Theorem 5. Assume for contradiction that

J(n, τ) < n/(7τ)− n0.98/(7τ).

Let R be the set given by Claim 17. By invoking Lemma 15 with R and each

Ti = {|Si|/2− τ + 1, . . . , |Si|/2, . . . , |Si|/2 + τ − 1},

we get J(n, τ) ≥ µ(n/2)
2τ−1 ≥

n−O(n0.53)
4τ−2 , where the last inequality follows from

Theorem 11. This contradicts the assumption for large values of n. �

G(n). We prove Theorem 4. For Galvin’s problem, n is divisible by 4, each Si
is of size n/2 and each Ti = {n/4}. R can be chosen to be any arbitrary set of
size n − 2µ(n/2). For Lemma 15 to apply, we need that for each i ∈ [k] and
t ∈ Ti, Ti ⊆ [µ(n/2)− 1] and |Si ∩R| < t. This translates in to the condition that
µ(n/2) > 3n/8. Lemma 15 in conjunction with Theorem 11 implies Theorem 4.

Specifically Theorem 4 shows that our lower bound is sharp up to an additive
o(n) term as G(n) ≤ n/2. It is worth noting that G(n) < n/2 for n ∈ {8, 16}, so
a general n/2 lower bound is false (see [5]).

6. Computing Majority using Depth-2 Threshold Circuits

We first prove Theorem 7.

Proof of Theorem 7. Let k be the top fan-in of the circuit, and let g1, . . . , gk be
the threshold functions given by the bottom gates of the circuit. We know that gi
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is defined by an inequality of the form Li(x) ≥ ti for a linear function Li. Assume
towards a contradiction that k < p and each ti 6= p.

Define the polynomial

f(x) =
∏

i∈{j|0<tj<2p}

(Li(x)− ti)

over Fp that has degree at most k. By definition, f(0) is non-zero. We claim
that f(x) = 0 on every x ∈ {0, 1}2p with p ones. Indeed, for such a x we have
that MAJ(x) = 1, but for x′ that is obtained from x by flipping a coordinate with
value 1 to 0, we have that MAJ(x′) = 0. Observe that each Li is a linear function
with coefficients in {0, 1}. Since x and x′ only differ in one coordinate, we have
Li(x) − Li(x′) ∈ {0, 1} for every i ∈ [k]. MAJ(x) = 1 and MAJ(x′) = 0 implies
that there is an i ∈ [k] such that gi(x) = 1 and gi(x

′) = 0. This means that
Li(x) = ti, but Li(x′) = ti − 1. Moreover, this implies that 0 < ti < 2p. Hence,
for every x ∈ {0, 1}2p with p ones, there is an i ∈ [k] such that Li(x) = ti and
0 < ti < 2p, which makes f(x) = 0. Therefore Lemma 1 implies that the degree
of f is at least p, which is a contradiction. �

We obtain the following theorem for arbitrary values of n, which is proved using
Theorem 7.

Theorem 18. In any depth-2 circuit computing the majority of n bits, if the
bottom gates compute unweighted thresholds, either the top fan-in is at least µ(n/2),
or some gate at the bottom computes a threshold Tt with t ≥ µ(n/2).

Proof. Let k be the top fan-in of the circuit, and let p = µ(n/2). If there exists
a bottom gate with threshold at least p, then we are done. So assume that all
bottom gates have threshold less than p. Set half the variables in x2p+1, . . . , xn to
0 and the other half to 1. We get a new depth-2 circuit computing the majority
of x1, . . . , x2p. Any bottom threshold gate computing Tt that reads constants is
equivalent to a threshold gate computing Tt′ on the same input variables with
t′ ≤ t < p, and Tt′ reads no constants. Here, t′ = t− α, where α is the number
of ones read by Tt. Replacing each bottom gate that reads constants with its
equivalent gate that reads no constants, we obtain a depth-2 circuit in which each
bottom gate computes a threshold function with threshold less than p and does
not read constants. By applying Theorem 7, we can conclude that k ≥ p. �
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Using Theorem 11 we get a corollary to Theorem 18.

Corollary 19. In any depth-2 circuit computing the majority of n bits, if the
bottom gates compute unweighted thresholds, then the fan-in is at least n/2 −
O(n0.53).

7. Proof of Theorem 10

Let g1, . . . , gk be the threshold functions given by the bottom gates of the circuit.
Let

L(x) =
∑
i≤p−1

xi + 2
∑
i>p−1

xi.

Note that L is a polynomial on 3p−1
2

variables. For i ∈ [k], we know that gi
is defined by an inequality of the form Li(x) ≥ ti for a linear function Li with
coefficients in {0, 1}.

Consider the polynomial

f(x) =
∏

i∈{j|0<tj<p}

(Li (x)− ti)

over Fp that has degree at most k. By definition, f is non-zero on the all-zeros
input. We will show that f(x) = 0 on x ∈ {0, 1} 3p−1

2 such that L(x) = p.
Let x ∈ {0, 1} 3p−1

2 be such that L(x) = p. Note that for every such x, the
number of ones in it is at most p − 1 and at least 1. For every x′ ∈ {0, 1} 3p−1

2

that is obtained by flipping one of the coordinates of x with value 1 to 0, we
have T (x′) = 0. For such x, x′, there must be an i ∈ [k] such that gi(x) = 1 and
gi(x

′) = 0. Moreover, Li being a linear function with coefficients in {0, 1} implies
that Li(x)− Li(x′) ∈ {0, 1}. Since gi(x) 6= gi(x

′), we have Li(x) = ti. In addition,
since the number ones in x is at most p− 1 and at least 1, we get that 0 < ti < p.
Hence we can conclude that f(x) = 0.

We now find a polynomial g that is 0 everywhere in {0, 1} 3p−1
2 , except on the

all-zeros input and x such that L(x) = p. Define

g(x) = (1− x1) ·
p−1∏
i=1

(i− L(x)) .

The degree of g is p, and f · g is non-zero on the all-zeros input and 0 elsewhere
in {0, 1} 3p−1

2 . We will show that the degree of f · g is at least (3p− 1)/2. As in
the proof of Lemma 1, let h be the multilinearization of f · g. Then h is non-zero
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on the all-zeros input and 0 elsewhere in {0, 1} 3p−1
2 . Therefore the degree of h is

at least (3p− 1)/2. Since the degree of h is at most the degree of f · g, the degree
of f is at least (p− 1)/2.

8. Upper and Lower Bounds on U(n, t)

Theorem 6 is proved in this section. We first recall the definition of a Kneser
graph. The Kneser graph Kn,α is a graph whose vertices are identified with the
subsets of [n] of size α, and there is an edge between two vertices if and only if
the corresponding subsets are disjoint. We need the following theorem bounding
the chromatic number of Kneser graphs.

Theorem 20 ([18]). Consider the Kneser graphs in which the vertex set is
given by subsets of [n] of size α. Then the chromatic number of this graph is
max{1, n− 2α + 2}.

Proof of Theorem 6. We first prove the upper bound. The following 2t+ 2 sets
form an unbalancing family:

{1}, {2}, . . . , {2t+ 1}, {2t+ 2, 2t+ 3, . . . , n}.

The above family has the property that for a given X ⊆ [n] of size n/2− t, either
X ⊆ {2t+ 2, 2t+ 3, . . . , n} or not. In the former case,

|X ∩ {2t+ 2, 2t+ 3, . . . , n}| = n/2− t > n− 2t− 1

2
.

In the latter case, there will be an i ∈ [2t + 1] such that i ∈ X. Therefore,
|X ∩ {i}| = 1 > 1

2
.

We now prove the lower bound. Consider the Kneser graph in which the vertex
set is given by subsets of [n] of size n/2− t. We claim that the chromatic number
of this graph is at most k. The coloring is as follows: For every X ⊆ [n] of
size n/2 − t, we know that there is an i ∈ [k] such that |Si ∩X| > |Si|/2. The
vertex associated with X is given the color i. This is a proper coloring because
for every X, Y ⊆ [n], each of size n/2− t that are disjoint, it cannot be the case
that |X ∩ Si| > |Si|/2 and |Y ∩ Si| > |Si|/2. Therefore by Theorem 20, we can
conclude that k ≥ 2t+ 2. �
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Appendix A. Proofs of Claim 16 and Claim 17

We need the following claim to prove Claim 16 and Claim 17.

Claim 21. Let n be a positive integer, ∅ ⊂ S ⊂ [n], and 0 ≤ t ≤ n be an integer.
Let T be a random subset of [n] of size r. Then

Pr[|S ∩ T | ≥ t] ≤ 2|S| ·
( r
n

)t
.

Proof. We have

Pr[|S ∩ T | ≥ t] ≤
(
|S|
t

)
·
(
n−t
r−t

)(
n
r

) ≤ 2|S| ·
( r
n

)t
.

�

Proof of Claim 16. Let p = µ(n/2) and r be such that r = n− 2p. By Theorem
11, for large enough n, r < n0.54. In addition, we can assume without loss of
generality that for all i ∈ [k], |Si| is even.

Define
A = {j|j ∈ Si for some i ∈ [k] and |Si| = 2}

and

B = {j|j ∈ Si and j ∈ Si′ for i, i′ ∈ [k], i 6= i′, and |Si| = |Si′| = 4}.

In words, A is the set of elements which are in sets of size 2 and B is the set of
elements that belong to at least 2 sets of size 4. We claim that |A∪B| ≤ n−4n0.98.
Indeed, we have that

|A| ≤ 2 · (# sets of size 2)

and
|B| ≤ (4 · (# sets of size 4))/2 = 2 · (# sets of size 4).
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Since k ≤ n/2− 2n0.98, we get that |A ∪B| ≤ n− 4n0.98.
By the definition of B, we have the property that for every j ∈ [n] \ B, it is

the case that j appears in at most one set Si of size 4. Let X ⊆ [n] \ (A ∪B) be
the largest set such that for every i ∈ [k] if |Si| = 4 and |Si ∩ (A ∪B)| < 4, then
|Si ∩X| = 1. The definition of X implies that |X| ≥ |[n] \ (A ∪B)|/4 ≥ n0.98 for
large enough n.

We will pick a random subset R of size r from X, and show that

(1) Pr[∃i ∈ [k], |Si ∩R| ≥ |Si|/2] < 1/n0.2.

This is sufficient as this implies that there exists a set R ⊂ [n] of size r such that
for every i ∈ [k], |Si ∩R| < |Si|/2.

We now proceed to prove Inequality 1. For every i ∈ [k], by the definition of
X, if |Si| = 2, then |Si ∩R| = 0. Similarly, if |Si| = 4, then |Si ∩R| ≤ 1. We now
consider the case when |Si| ≥ 6 for i ∈ [k]. Using r < n0.54 and |X| ≥ n0.98, we
get from Claim 21 that for every i ∈ [k],

Pr[|Si ∩R| ≥ |Si|/2] ≤ 2|Si| ·
(

1

n0.44

)|Si|/2

≤ 2|Si|−0.22·|Si|·logn.

For large enough n we have,

Pr[|Si ∩R| ≥ |Si|/2] ≤ 2−0.21·|Si|·logn ≤ n−1.2,

where the last inequality follows from the fact that |Si| ≥ 6. Therefore by an
union bound over i ∈ [k], we can conclude that

Pr[∃i ∈ [k], |Si ∩R| ≥ |Si|/2] < 1/n0.2.

�

Proof of Claim 17. Note that τ ≥ 1. Let p = µ(n/2) and r be such that r = n−2p.
By Theorem 11, for large enough n, r < n0.54.

Consider the following iterative process: If there is a set Si with at most 7τ
elements, remove the set and its elements from other sets to which they belong.
Repeat this process until all remaining sets have size more than 7τ . Let A
denote the set of elements from [n] that did not belong a Si that was removed,
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and let T1, . . . , Tk′ ⊆ A (k′ ≤ k) be the sets that remain. Observe that since
k < n/(7τ)− n0.98/(7τ), |A| ≥ n0.98.

If k′ = 0, then let R be any subset of A of size r. We now consider the case
when k′ ≥ 1. We will pick a random subset R of size r from A, and show that

(2) Pr[∃i ∈ [k′], |Ti ∩R| ≥ |Ti|/2− τ ] < 1/n0.01.

This is sufficient because it shows the existence of a R of size r such that |Si∩R| <
|Si|/2− τ for every i ∈ [k]. Indeed for each Si that was removed, we have that
|Si∩R| = 0. For each Si that was not removed, we have that |Si∩R| < |Ti|/2−τ ≤
|Si|/2− τ , where Ti is the set corresponding to Si that remained.

We now proceed to show Inequality 2. Using r < n0.54 and |A| ≥ n0.98, we get
from Claim 21 that for every i ∈ [k′],

Pr[|Ti ∩R| ≥ |Ti|/2− τ ] ≤ 2|Ti| ·
(

1

n0.44

)|Ti|/2−τ
= 2|Ti|(1−0.22 logn)+0.44τ logn

≤ 2(0.44τ−0.21|Ti|)·logn,

where the last inequality is true for large enough n. Since, |Ti| ≥ 7τ , we have that
0.44τ − 0.21|Ti| < −1.01τ . Therefore, Pr[|Ti ∩R| ≥ |Ti|/2− τ ] ≤ n−1.01, as τ ≥ 1.
By an union bound over i ∈ [k′], we can conclude that

Pr[∃i ∈ [k′], |Ti ∩R| ≥ |Ti|/2− τ ] < 1/n0.01.

�
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