
Sign-Rank Can Increase Under Intersection

Mark Bun1, Nikhil S. Mande2, and Justin Thaler2

1Simons Institute for the Theory of Computing and Boston University
2Georgetown University

Abstract

The communication class UPPcc is a communication analog of the Turing Machine com-
plexity class PP. It is characterized by a matrix-analytic complexity measure called sign-rank
(also called dimension complexity), and is essentially the most powerful communication class
against which we know how to prove lower bounds.

For a communication problem f , let f ∧ f denote the function that evaluates f on two
disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with
UPPcc(f) = O(log n), andUPPcc(f∧f) = Θ(log2 n). This is the first result showing thatUPP

communication complexity can increase by more than a constant factor under intersection. We
view this as a first step toward showing that UPPcc, the class of problems with polylogarithmic-
cost UPP communication protocols, is not closed under intersection.

Our result shows that the function class consisting of intersections of two majorities on n bits
has dimension complexity nΩ(logn). This matches an upper bound of (Klivans, O’Donnell, and
Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning
intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will
be needed to learn this class of functions in polynomial time.

1 Introduction

The unbounded-error communication complexity model UPPcc was introduced by Paturi and
Simon [25] as a natural communication analog of the Turing Machine complexity class PP. In
a UPPcc communication protocol for a Boolean function f(x, y), there are two parties, one with
input x and one with input y. The two parties engage in a private-coin randomized communication
protocol, at the end of which they are required to output f(x, y) with probability strictly greater
than 1/2. The cost of the protocol is the number of bits exchanged by the two parties. As is
standard, we use the notation UPPcc not only to denote the communication model, but also the
class of functions solvable in the model by protocols of cost polylogarithmic in the size of the input.

Observe that success probability 1/2 can be achieved with no communication by random guess-
ing, so the UPPcc model merely requires a strict improvement over this trivial solution. Owing
to this liberal acceptance criterion, UPPcc is a very powerful communication model, essentially
the most powerful one against which we know how to prove lower bounds. In particular, UPPcc

is powerful enough to simulate many other models of computing, and this makes UPPcc lower
bounds highly useful. As one example, any function f(x, y) computable by a Threshold-of-Majority
circuit of size s has UPPcc complexity at most O(log s), and this connection has been used to
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translate UPPcc lower bounds into state of the art lower bounds against threshold circuits (see,
for example, [8, 10, 12, 26, 32]).

UPPcc also happens to be characterized by a natural matrix-analytic complexity measure called
sign-rank [25]. Here, the sign-rank of a matrix M ∈ {−1, 1}N×N is the minimum rank of a real
matrix whose entries agree in sign withM . Equivalently, sr(M) := minA rk(A), where the minimum
is over all matrices A such that Ai,j ·Mi,j > 0 for all i, j ∈ [N ]. Paturi and Simon [25] showed the
following tight connection between UPPcc and sign-rank: if we associate a function f(x, y) with the
matrixM = [f(x, y)]x,y, then the UPPcc communication complexity of f equals log(sr(M))±Θ(1).

While lower bounds on UPPcc complexity (equivalently, sign-rank) are useful in complexity
theory, upper bounds on these quantities imply state of the art learning algorithms, including the
fastest known algorithms for PAC learning DNFs and read-once formulas [3,21]. More specifically,
suppose we want to learn a concept class C of functions mapping {−1, 1}n to {−1, 1}. C is naturally
associated with a |C| × 2n matrix M , whose ith row equals the truth table of the ith function in
C. Then C can be distribution-independently PAC learned in time polynomial in the sign-rank of
M . (The sign-rank of M is often referred to in the learning theory literature as the dimension
complexity of C.) Moreover, the resulting learning algorithm is robust to random classification
noise, a property not satisfied by the handful of known PAC learning algorithms that are not based
on dimension complexity.

For the purpose of our work, one particularly important application of the dimension-complexity
approach to PAC learning was derived by Klivans et al. [20], who showed that the concept class
consisting of intersections of 2 majority functions has dimension complexity at most

(

n
O(logn)

)

≤
nO(logn). They thereby obtained a quasipolynomial time algorithm for PAC learning intersections
of two majority functions.1 Prior to our work, it was consistent with current knowledge that the
dimension complexity of this concept class is in fact poly(n), which would yield a polynomial time
PAC learning algorithm for intersections of constantly many majority functions.

1.1 Our Results

Despite considerable effort, progress on understanding sign-rank (equivalently, UPPcc) has been
slow. Our lack of knowledge is highlighted via the following well-known open question (cf. Göös et
al. [17]). Throughout, for any function f : {−1, 1}n → {−1, 1}, f ∧ f denotes the function on twice
as many inputs obtained by evaluating f on two disjoint inputs and outputting −1 only if both
copies of f evaluate to −1, i.e., (f ∧ f) (x1, x2) := f(x1) ∧ f(x2).
Question 1. Is the class UPPcc closed under intersection? In other words, suppose the function
f(x, y) : {−1, 1}n × {−1, 1}n → {−1, 1} satisfies UPPcc(f) = O((log n)c) for some constant c. Is
there always some constant c1 (which may depend on c) such that UPP(f ∧ f) ≤ O ((log n)c1)?
More generally and informally, if UPPcc(f) is “small”, does this imply any non-trivial upper bound
on UPPcc(f ∧ f)?

Prior to our work, essentially nothing was known about Question 1. In particular, we are not
aware of prior work ruling out the possibility that UPPcc(f ∧ f) ≤ O(UPPcc(f)). On the other
hand, for reasons that will become apparent in Section 1.2, there is good reason to suspect that
there exists a function f with UPPcc(f) = O(logn), yet UPPcc(f ∧ f) ≥ Ω(n). While we do not
obtain a full resolution of Question 1, we do show for the first time that UPPcc complexity can
increase significantly under intersection.

1 In fact, their algorithm runs in quasipolynomial time for intersections of polylogarithmic many majorities.
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Babai, Frankl and Simon [4] observed that there are two natural communication complexity
analogs of the Turing machine class PP, namely PPcc and UPPcc. It is well known [5] that PPcc

is closed under intersection. Our work can be viewed as a first step towards showing that, in
contrast, UPPcc is not closed under intersection.

Theorem 1.1. There is a function f(x, y) : {−1, 1}n×{−1, 1}n → {−1, 1} such that UPPcc(f) =
O(logn), yet UPPcc(f ∧ f) = Θ(log2 n).

In fact, for each fixed x ∈ {−1, 1}n, the function f(x, y) from Theorem 1.1 simply outputs the
majority of some subset of the bits of y. This yields the following corollary.

Corollary 1.2. Let C be the concept class in which each concept is the intersection of two majorities
on n bits. Then C has dimension complexity nΘ(logn).

Corollary 1.2 shows that the dimension complexity upper bound of Klivans et al. [20] is tight
for intersections of two majorities, and new approaches will be needed to PAC learn this concept
class in polynomial time. For context, we remark that learning intersections of majorities is a
special case of the more general problem of learning intersections of many halfspaces.2 The latter
is a central and well-studied challenge in learning theory, as intersections of halfspaces are powerful
enough to represent any convex set, and they contain many basic problems (like learning DNFs)
as special cases. In contrast to the well-understood problem of learning a single halfspace, for
which many efficient algorithms are known, no 2o(n)-time algorithm is known for PAC learning
even the intersection of two halfspaces. There have been considerable efforts devoted to showing
that learning intersections of halfspaces is a hard problem [6,11,19,22], but these results apply only
to intersections of many halfspaces, or make assumptions about the form of the output hypothesis
of the learner. Our work can be seen as a new form of evidence that learning intersections of even
two majorities is hard.

1.2 Our Techniques

UPPcc has a query complexity analog, denoted UPPdt and defined as follows. A UPPdt algorithm
is a randomized algorithm which on input x, queries bits of x, and must output f(x) with probability
strictly greater than 1/2; the cost of the protocol is the number of bits of x queried. How UPPdt

behaves under intersection is now well understood. More specifically, it is known [30] that there is a
function f : {−1, 1}n → {−1, 1} (in fact, a halfspace) such that UPPdt(f) = O(1), yet UPPdt(f ∧
f) = Θ(n). Define the Majority function, which we denote by MAJ, to be −1 if at least half
of its input bits are −1. It is also known [29] that MAJ satisfies UPPdt(MAJ) = O(1), yet
UPPdt (MAJ ∧MAJ) = Θ(log n). Our goal in this paper is, to the extent possible, to show that
the UPPcc communication model behaves similarly to its query complexity analog.

Over the course of the last decade, there has been considerable progress in proving lifting
theorems [15, 16, 27]. These theorems seek to show that if a function f has large complexity in
some query model C, then for some “sufficiently complicated” function g on a “small” number of
inputs, the composition f ◦ g has large complexity in the associated communication model (ideally,
Ccc(f ◦ g) & Cdt(f)).

Unfortunately, a “generic” lifting theorem for UPP complexity is not known. That is, it is not
know how to take an arbitrary function f with high UPPdt complexity, and by composing it with
a function g on a small number of inputs, yield a function with high UPPcc complexity.

2A halfspace is any function of the form sgn
(
∑n

i=1 wi · xi + w0

)

for some real numbers w0, . . . , wn.
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However, as we now explain, some significant partial results have been shown in this direction.
It is well-known that UPPdt(f) is equivalent to an approximation-theoretic notion called threshold
degree, denoted deg±(f) (see Appendix B.1 for the definition). The threshold degree of f can in turn
be expressed as the value of a certain (exponentially large) linear program. Linear programming
duality then implies that one can prove lower bounds on deg±(f) by exhibiting good solutions to
the dual linear program. We refer to such dual solutions as dual witnesses for threshold degree.
Sherstov [28] and Razborov and Sherstov [26] showed that if deg±(f) is large, and moreover this can
be exhibited by a dual witness satisfying a certain smoothness condition, then there is a function g
defined on a constant number of inputs such that f ◦ g does have large UPPcc complexity. Several
recent works [7–9,32] have managed to prove new UPPcc lower bounds by constructing, for various
functions f , smooth dual witnesses exhibiting the fact that deg±(f) is large.

Our key technical contribution is to bring this approach to bear on the function F (x, y) =
MAJ(x)∧MAJ(y). Specifically, we show that the (known) threshold degree lower bound deg±(F ) ≥
Ω(log n) can be exhibited by a smooth dual witness.

We do this as follows. Sherstov [29] showed that for any function f : {−1, 1}n → {−1, 1}, the
threshold degree of the function F = f ∧ f is characterized by the rational approximate degree of
f , i.e., the least total degree of real polynomials p and q such that |f(x)− p(x)/q(x)| ≤ 1/3 for all
x ∈ {−1, 1}n. He then showed that the rational approximate degree of MAJ is Ω(log n), thereby
concluding that F (x, y) has threshold degree Ω(log n).

From Sherstov’s arguments, one can derive a dual witness ψ for the fact that the rational
approximate degree of MAJ is Ω(log n), and then transform ψ into a dual witness φ for the fact
that F (x, y) has threshold degree Ω(log n). Unfortunately, neither ψ nor φ satisfies the type of
smoothness condition required by Razborov and Sherstov’s machinery to yieldUPPcc lower bounds.

The smoothness condition required for the Razborov-Sherstov machinery to work essentially
states that the the mass of the dual witness ψ has to be “relatively large” (a reasonably large
fraction of what mass the uniform distribution would have placed) on a “large” set of inputs (the
fraction of inputs which do not have large mass has to be small).

To construct a smooth dual witness ψ′ for F , our primary technical contribution is to construct
a smooth dual witness φ′ for the fact that the rational approximate degree of MAJ is Ω(log n).
We then apply a different transformation, due to Sherstov [31], of φ′ into a dual witness for the
fact that the threshold degree of F is Ω(log n), and we show that this transformation preserves the
smoothness of ψ′.

In a nutshell, our smooth dual witness for MAJ is obtained in two steps: first we define for all
inputs x whose Hamming weight lies in [n/2− ⌊n2/3⌋, n/2 + ⌊n2/3⌋], a dual witness φ′x that places
a large mass on x and not too much mass on other points. Next, we define the final dual witness
φ′(x) to be a certain weighted average over x of all the dual witnesses thus obtained. The resulting
mass on φ′(x) for each x of Hamming weight in [n/2 − ⌊n2/3⌋, n/2 + ⌊n2/3⌋] is large enough, and
the fraction of inputs whose Hamming weight is not in [n/2−⌊n2/3⌋, n/2+ ⌊n2/3⌋] is small enough,
to allow us to use the Razborov-Sherstov framework (Theorem 2.3) to prove the desired sign-rank
lower bound on the pattern matrix of F .

2 Preliminaries

All logarithms in this paper are taken base 2. We use the notation exp(x) to denote ex, where e is
Euler’s number. Given any finite set X and any functions f, g : X → R, define ‖f‖1 :=

∑

x∈X |f(x)|
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and 〈f, g〉 :=∑x∈X f(x)g(x). We refer to ‖f‖1 as the ℓ1-norm of f . For any x ∈ {−1, 1}n, we use
the notation |x| to denote the Hamming weight of x, which is the number of −1’s in the string x.

Paturi and Simon [25] showed the following equivalence between the sign-rank of a matrix and
the UPPcc cost of its corresponding communication game.

Theorem 2.1. For any F : {−1, 1}2n×{−1, 1}n → {−1, 1}, let MF denote its communication
matrix, defined by MF (x, y) = F (x, y). Then, UPPcc(F ) = log sr(MF )±O(1).

Let n,N be positive integers such that n divides N . Partition the set [N ] := {1, . . . , N} into n
disjoint blocks {1, 2, . . . , N/n}, {N/n+ 1, . . . , 2N/n}, . . . , {(n− 1)N/n+ 1, . . . , N}. Define the set
P(N,n) to be the collection of subsets of [N ] which contain exactly one element from each block.
For x ∈ {−1, 1}n and S ∈ P(N,n), let x|S = (xs1 , . . . , xsn), where s1 < s2 < · · · < sn are the
elements of S.

Definition 2.2 (Pattern matrix). For any function φ : {−1, 1}n → R, the (N,n, φ)-pattern matrix
M is defined as follows.

M = [φ(x|S)⊕ w]x∈{−1,1}N ,(S,w)∈P(N,n)×{−1,1}n .

Note that M is a 2N × (N/n)n2n matrix.

In a breakthrough result, Forster [12] proved that an upper bound on the spectral norm of
a sign matrix implies a lower bound on its sign-rank. Razborov and Sherstov [26] established a
generalization of Forster’s theorem [12] that can be used to prove sign-rank lower bounds for pattern
matrices. Specifically, we require the following result, implicit in their work [26, Theorem 1.1].

Theorem 2.3 (Implicit in [26]). Let f : {−1, 1}n → {−1, 1} be any Boolean function and α > 1 be
a real number. Suppose there exists a function φ : {−1, 1}n → R satisfying the following conditions.

• ∑x∈{−1,1}n |φ(x)| = 1.

• For all polynomials p of degree at most d,
∑

x∈{−1,1}n φ(x)p(x) = 0.

• f(x) · φ(x) ≥ 0 ∀x ∈ {−1, 1}n.

• |φ(x)| ≥ γ for all but a ∆ fraction of inputs x ∈ {−1, 1}n.

Then, the sign-rank of the (N,n, f)-pattern matrix M can be bounded below as

sr(M) ≥ γ

1
2n

(

n
N

)d/2
+ γ∆

.

We require the following well-known combinatorial identity.

Claim 2.4. For every polynomial p of degree less than 2n, we have
∑n

t=−n(−1)t
(

2n
n+t

)

p(t) = 0.

Recall from Section 1.2 that the rational ǫ-approximate degree of f is the least degree of two
polynomials p and q such that |f(x) − p(x)/q(x)| ≤ ǫ for all x in the domain of f . Sherstov [31,
Theorem 6.9] showed that a dual witness to the rational approximate degree of any function f can
be converted to a threshold degree dual witness for ORn ◦ f . Implicit in his theorem is the fact
that a smooth dual witness to the rational approximate degree of f can be converted to a smooth
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dual witness for the threshold degree of ORn ◦ f . More precisely, the following result is established
by the proof of [31, Theorem 6.9].3

Theorem 2.5 (Sherstov [31]). Let f : {−1, 1}n → {−1, 1} be any function. Let F denote ORt ◦ f :
{−1, 1}nt → {−1, 1}, and δ > ε > 0 be any real numbers.

Suppose there exist functions ψ0, ψ1 : {−1, 1}n → R that are not identically 0 and satisfy the
following properties:

f(x) = 1 =⇒ ψ0(x) ≥ δ|ψ1(x)|, (1)

f(x) = −1 =⇒ ψ1(x) ≥ δ|ψ0(x)|, (2)

deg(p) < d =⇒ 〈ψ0, p〉 = 0 and 〈ψ1, p〉 = 0. (3)

Then there exist functions A,B : {−1, 1}nt → R such that Ψ = 1
δA − 1

εB satisfies the following
properties.

deg(p) ≤ min{⌊ε2t⌋d, d} =⇒ 〈Ψ, p〉 = 0. (4)

F (x) ·Ψ(x1, . . . , xt) ≥ (δ − ε)2t
t
∏

i=1

|ψ0(xi)| for all x ∈ {−1, 1}nt. (5)

|A(x1, . . . , xt)| ≤
t
∏

i=1

|ψ0(xi)| for all x = (x1, . . . , xt) ∈ {−1, 1}nt. (6)

|B(x1, . . . , xt)| ≤
∏

i:f(xi)=0

|ψ0(xi)| ·
∏

i:f(xi)=1

δψ1(xi) +
t
∏

i=1

(|ψ0(xi)| − δψ1(xi))

for all x = (x1, . . . , xt) ∈ {−1, 1}nt. (7)

3 A Smooth Dual Witness for Majority

Our main technical contribution in this paper is captured in Theorem 3.1 below. This theorem
constructs a smooth dual witness R for the hardness of rationally approximating the sign function
on {0,±1, . . . ,±n} (cf. Appendix B for details of this interpretation of Theorem 3.1). We defer
the proof until Section 4.

Theorem 3.1. Let 1 ≤ d ≤ 1
3 log n and let n be odd. There exists a function R : {0,±1, . . . ,±n} →

R such that

•
n
∑

t=−n

|R(t)| = 1. (8)

• For δ = exp(−18/(n1/(6d))) and every t = 1, 2, . . . , n,

R(t) ≥ δ|R(−t)|. (9)

3 In Theorem 2.5, the functions ψ1 and ψ0 together form a dual witness for the fact that the rational δ-approximate
degree of f is at least d, while Ψ is a dual witness to the fact that deg±(F ) ≥ d. See Appendix B for details. However,
we will not exploit this interpretation of Theorem 2.5 in our analysis.
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• If p : {0,±1, . . . ,±n} → R is any polynomial of degree less than d− 2, then

〈R, p〉 = 0. (10)

• For every t ∈ {0,±1,±2, . . . ,±⌊n2/3⌋} we have

|R(t)| ≥ Ω

(

1

n20

)

. (11)

The following theorem shows how to convert the (univariate) function R from Theorem 3.1 into
a dual witness for the (multivariate) MAJ function.

Theorem 3.2. Let 1 ≤ d ≤ 1
3 log n and let n be odd. Let R : {0,±1, . . . ,±n} → R be any

function obtained in Theorem 3.1. Then, the multivariate polynomial R′ : {−1, 1}2n → R defined
by R′(x) = R(n− |x|)/

(

2n
|x|
)

satisfies the following properties.

• ‖R′‖1 = 1. (12)

• For δ = exp(−18/(n1/(6d))) and every t = 1, 2, . . . , n,

R′(x) ≥ δ|R′(y)| (13)

for any x, y ∈ {−1, 1}2n such that |x| = n− t, |y| = n+ t.

• For any polynomial p of degree at most d− 2,

〈R′, p〉 = 0. (14)

• For all x ∈ {−1, 1}2n such that n− ⌊n2/3⌋ ≤ |x| ≤ n+ ⌊n2/3⌋,

|R′(x)| ≥ Ω

(

1

n20 · 22n
)

. (15)

Proof. To establish Equation (12), observe:

‖R′‖1 =
∑

x∈{−1,1}2n
|R′(x)| =

2n
∑

t=0





∑

x∈{−1,1}2n:|x|=t

|R′(x)|





=
2n
∑

t=0

(

2n

t

)

|R(n− t)|/
(

2n

t

)

=
n
∑

t=−n

|R(t)| = 1,

where the last equality follows from Equation (8). Equation (13) follows directly from Equation (9)
and the definition of R′.

To establish Equation (14), consider any polynomial p : {−1, 1}2n → R of degree at most d− 2.
For any permutation σ ∈ S2n, define the polynomial pσ by pσ(x1, . . . , x2n) = p(xσ(1), . . . , xσ(2n)).
Note that, since R′ is symmetric, 〈R′, pσ〉 = 〈R′, p〉 for all σ ∈ S2n. Define q = Eσ∈S2n [pσ].
Note that q is symmetric and 〈R′, p〉 = 〈R′, q〉. It is a well-known fact (cf. [24]) that q can be
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written as a polynomial q′ of degree at most d− 2 in the variable
∑2n

i=1 xi, and so can R′. Hence,

〈R′, p〉 = 〈R′, q〉 =∑2n
t=0

(

2n
t

)R(n−t)

(2nt )
· q′(t) = 0, where the final equality holds by Equation (10).

To establish Equation (15), observe that by Equation (11) and the definition of R′, we have

that for all x ∈ {−1, 1}2n such that |x| ∈
[

n− ⌊n2/3⌋, n+ ⌊n2/3⌋
]

, |R′(x)| ≥ Ω

(

1
n20·(2n|x|)

)

≥

Ω
(

1
n20·22n

)

.

We are ready to derive a lower bound on the sign-rank of the (4n2, 4n,OR2 ◦MAJ2n)-pattern
matrix.

Theorem 3.3. The (4n2, 4n,OR2 ◦MAJ2n)-pattern matrix M satisfies sr(M) ≥ nΩ(logn).

Proof. Let F denote the function OR2 ◦ MAJ2n in this proof. Set d = log n/100 and con-
sider the function R : {0,±1, . . . ,±n} → R obtained via Theorem 3.1. Define the function
R′ : {0,±1, . . . ,±n} → R by R′(t) = R(−t). Define the functions ψ0, ψ1 : {−1, 1}2n → R by
ψ1(x) = R(n−|x|)/

(

2n
|x|
)

, and ψ0(x) = R′(n−|x|)/
(

2n
|x|
)

. We now verify that ψ0, ψ1 satisfy the condi-

tions in Theorem 2.5 for δ = exp(−18/(n1/(6d))) = exp(−18/n100/6 logn) = exp(−18/2100/6) > 0.99.
Set ε = δ · c, where c > 0 is a constant such that 0.99 > δ · c > 1/

√
2.

• By the definitions of ψ0, ψ1 and Equation (13), Properties (1) and (2) in the statement of
Theorem 2.5 are satisfied.

• Equation (14) implies that 〈ψ0, p〉 = 〈ψ1, p〉 = 0 for any polynomial p of degree at most d− 2,
and hence Property (3) is satisfied.

Moreover, Equation (15) implies that |ψ0(x)|, |ψ1(x)| ≥ Ω
(

1
n20·22n

)

for all x ∈ {−1, 1}2n such that

n − ⌊n2/3⌋ ≤ |x| ≤ n + ⌊n2/3⌋, and Equation (12) implies ‖ψ0‖1 = ‖ψ1‖1 = 1. Theorem 2.5 now
implies the existence of a function Ψ satisfying the following properties.

• By Equation (4), deg(p) < min{⌊2ε2⌋ · ((log n)/100 − 2), (log n)/100 − 2} =⇒ 〈Ψ, p〉 = 0.
Since ε > 1/

√
2, this implies that

deg(p) < (log n)/100− 2 =⇒ 〈Ψ, p〉 = 0.

• By Equation (5), Ψ(x) · F (x) ≥ 0 for all x ∈ {−1, 1}2n × {−1, 1}2n.

• We now note that the functions A and B obtained in Theorem 2.5 have ℓ1-norm at most a
constant. Since ‖ψ0‖1 = ‖ψ‖1 = 1, we use Equation (6) to conclude that

∑

x1,x2∈{−1,1}2n×{−1,1}2n
|A(x1, x2)| ≤

∑

x1∈{−1,1}2n
|ψ0(x1)| ·

∑

x2∈{−1,1}2n
|ψ0(x2)| = 1.

By Equation (7), we have

∑

x1,x2∈{−1,1}2n
|B(x1, x2)| ≤ max{‖ψ0‖1, δ‖ψ1‖1}2 + ‖ψ0‖21 + δ‖ψ0‖1‖ψ1‖1 + δ2‖ψ1‖21,

which is at most a constant, since δ = O(1).

Combined with the fact that ε is a constant, we conclude ‖Ψ‖1 ≤ 1
δ‖A‖1 + 1

ε‖B‖1 ≤ O(1).
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• By Equation (5), F (x) · Ψ(x1, x2) ≥ (δ − ε)4|ψ0(x1)| · |ψ0(x2)| ∀x ∈ {−1, 1}4n. This implies
that for |x1|, |x2| ∈ [n− ⌊n2/3⌋, n+ ⌊n2/3⌋],

|Ψ(x1, x2)| ≥ Ω

(

1

n40 · 24n
)

,

since δ − ε = Ω(1)

• By a standard Chernoff bound, the number of inputs in {−1, 1}2n × {−1, 1}2n such that
|x1|, |x2| ∈ [n− ⌊n2/3⌋, n+ ⌊n2/3⌋] is at least 1− 2 exp(−n1/3/3).

Plugging f = OR2 ◦MAJ2n and φ = Ψ
‖Ψ‖1 into Theorem 2.3, we conclude that the sign-rank of

the (4n2, 4n,OR2 ◦MAJ2n) pattern matrix M is bounded below as

sr(M) ≥ Ω





1
n40 · 1

24n
(

1
n(logn/200)−1 · 1

24n

)

+
(

1
n40 · 1

24n
· 2 exp(−n1/3/3)

)



 ≥ nΩ(logn).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Note that the function AND ◦MAJ(x) = OR ◦MAJ(x). Consider the dual
witness φ = Ψ

‖Ψ‖1 obtained for the threshold degree of OR2 ◦ MAJ2n in the previous proof. Note

that the function φ′ defined by φ′(x) = −φ(x) acts as a dual witness for the threshold degree of
AND2 ◦MAJ2n, and satisfies all the conditions in Theorem 2.3 with the same parameters as in the
proof of Theorem 3.3. Proceeding in exactly the same way as in the previous proof, we conclude
that sign-rank of the (4n2, 4n,AND2 ◦MAJ2n) pattern matrix M ′ is bounded below as

sr(M ′) ≥ nΩ(logn). (16)

Denote by f the communication game corresponding to the (2n2, 2n,MAJ2n) pattern matrix.
For completeness, we now sketch a standard UPPcc protocol of cost O(log n) for f . Note that
Alice holds 2n2 input bits, and Bob holds a (2n · logn)-bit string indicating the “relevant bits” in
each block of Alice’s input and a 2n-bit string w. Bob sends Alice the index of a uniformly random
relevant bit using log(2n2) bits of communication. Alice responds with her value b of that input
bit, and Bob outputs b⊕wi. It is easy to check that this is a valid UPPcc protocol, and it has cost
O(logn).

One can verify by the definition of pattern matrices (Definition 2.2) that the communication
game corresponding to the (4n2, 4n,AND2◦MAJ2n) pattern matrixM ′ equals f∧f . By Theorem 2.1
and Equation (16), we obtain that

UPP(f ∧ f) = Θ(log sr(M ′)) = Ω(log2 n).

As mentioned in Section 1, the result of Klivans et al. [20] implies that sr(M ′) = O(log2 n).
Thus, the function f satisfies UPPcc(f) = O(logn), but UPPcc(f ∧ f) = Θ(log2 n).

Corollary 1.2 follows immediately from the previous proof and the definition of pattern matrices.
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4 Proof of Theorem 3.1

The rest of this paper is dedicated towards proving Theorem 3.1. Before proving the theorem, we
describe the main auxiliary construction and prove some preliminary facts about it.

Let ∆ = ⌊n1/(3d)⌋ ≥ 2. Fix any u ∈ {1, . . . , ⌊n2/3⌋ − 1, ⌊n2/3⌋}. Define the set

Su = {±u,±u∆,±u∆2, . . . ,±u∆d−1}.

Define the polynomial ru : {0,±1, . . . ,±n} → R by

ru(t) =
1

(2n)!

d−1
∏

i=0

(

t−
(

u∆i
√
∆
))

∏

s/∈Su

(t− s).

Since n is odd, notice that sgn(ru(t)) = (−1)t, for t ∈ {u, u∆, u∆2, . . . , u∆d−1}, and ru(t) = 0
for t /∈ Su.

Define

pu(t) =

(

2n

n+ t

)

ru(t) =







































(−1)n−t ·

d−1
∏

i=0

(

t−
(

u∆i
√
∆
))

∏

s∈Su
s 6=t

(t− s)
if t ∈ Su

0 otherwise.

The following claim tells us that for any u ∈ {1, . . . , ⌊n2/3⌋}, the function pu places a reasonably
large mass on input −u.

Claim 4.1.

|pu(−u)| ≥
√
∆+ 1

2
· u−(d−1) ·∆−(d−1)2/2.

Proof. We calculate

|pu(−u)| =
u(
√
∆+ 1)

2u
·
d−1
∏

i=1

u(∆i
√
∆+ 1)

u2(∆i + 1)(∆i − 1)

(pairing terms corresponding to u∆i and −u∆i)

=

√
∆+ 1

2
· u−(d−1) ·

d−1
∏

i=1

∆i+ 1
2 + 1

∆2i − 1
≥

√
∆+ 1

2
· u−(d−1) ·∆(d−1)/2 ·

d−1
∏

i=1

∆i

∆2i

=

√
∆+ 1

2
· u−(d−1) ·∆−(d−1)2/2.

The next claim tells us that the mass placed by pu on other points in its support is small.
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Claim 4.2. For every j = 1, 2, . . . , d− 1,

|pu(−u∆j)| ≤ e4 ·∆−(j2−3j−2)/2 ·
(√

∆+ 1

2
· u−(d−1) ·∆−(d−1)2/2

)

.

Proof. We calculate

|pu(−u∆j)| = u(∆j
√
∆+∆j)

2u∆j
·
j−1
∏

i=0

u(∆i
√
∆+∆j)

u2(∆i +∆j)(∆j −∆i)
·

d−1
∏

i=j+1

u(∆i
√
∆+∆j)

u2(∆i +∆j)(∆i −∆j)

(pairing terms corresponding to u∆i and −u∆i)

≤
√
∆+ 1

2
· u−(d−1) ·

j−1
∏

i=0

√
∆

∆j −∆i
·

d−1
∏

i=j+1

√
∆

∆i −∆j

≤
√
∆+ 1

2
· (
√
∆ · u−1)d−1 ·

j−1
∏

i=0

∆j−i ·∆−j

∆j−i − 1
·

d−1
∏

i=j+1

∆−i ·∆i−j

∆i−j − 1

≤
√
∆+ 1

2
· (
√
∆ · u−1)d−1 ·

j−1
∏

i=0

∆−j ·
d−1
∏

i=j+1

∆−i ·
( ∞
∏

k=1

∆k

∆k − 1

)2

≤
√
∆+ 1

2
· (
√
∆ · u−1)d−1 ·∆−j2−(d(d−1)−(j+2)(j+1))/2 · exp

(

2
∞
∑

k=1

1

∆k − 1

)

(since 1 + x ≤ ex for all x ∈ R)

≤
√
∆+ 1

2
· u−(d−1) ·∆−(j2−3j−2)/2 ·∆−(d−1)2/2 · exp

(

4
∞
∑

k=1

1

∆k

)

(since ∆ ≥ 2)

≤ e4 ·
√
∆+ 1

2
· u−(d−1) ·∆−(j2−3j−2)/2 ·∆−(d−1)2/2. (again using ∆ ≥ 2)

The following claim tells us that for each u and j, the masses placed by ru (and hence pu) on
u∆j and −u∆j are comparable.

Claim 4.3. For every j = 0, 1, . . . , d− 1, we have

|ru(−u∆j)| ≥ |ru(u∆j)| ≥ exp(−18/
√
∆)|ru(−u∆j)|

and |pu(−u∆j)| ≥ |pu(u∆j)| ≥ exp(−18/
√
∆)|pu(−u∆j)|.

Proof. We may write the ratio

|pu(u∆j)|
|pu(−u∆j)| =

|ru(u∆j)|
|ru(−u∆j)| =

j−1
∏

i=0

u(∆j −∆i
√
∆)

u(∆j +∆i
√
∆)

·
d−1
∏

i=j

u(∆i
√
∆−∆j)

u(∆j +∆i
√
∆)

.
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This is a product of terms smaller than 1, yielding the first inequality. For the second, we follow
Sherstov’s argument [29, Theorem 5.3] and note that this product is at least

( ∞
∏

i=1

∆i/2 − 1

∆i/2 + 1

)2

≥ exp

(

−5
∞
∑

i=1

1

∆i/2

)

since (a− 1)/(a+ 1) > exp(−2.5/a) for a ≥
√
2

= exp

(

−5√
∆

∞
∑

i=0

1

∆i/2

)

≥ exp

( −5√
∆

· 1

1− 1/
√
2

)

since ∆ ≥ 2

≥ exp

(

− 18√
∆

)

.

Putting the three claims together, we obtain the following conclusion, which states that the
mass placed by pu on −u and u is a relatively large fraction of its ℓ1-norm.

Lemma 4.4. |pu(−u)| ≥ ‖pu‖1/(8∆2e4) and |pu(−u)| ≥ |pu(u)| ≥ exp(−18/
√
∆−4)

8∆2 · ‖pu‖1.

Proof. We bound the ratio

‖pu‖1
|pu(−u)|

≤ 2
d−1
∑

j=0

|pu(−u∆j)|
|pu(−u)|

by the first inequality in Claim 4.3

≤ 2



1 +
d−1
∑

j=0

e4∆−(j2−3j−2)/2



 by Claims 4.1 and 4.2

≤ 2 + 2e4





3
∑

j=0

∆−(j2−3j−2)/2 +
∞
∑

j=4

∆−(j2−3j−2)/2





≤ 8∆2 · e4 ·
∞
∑

k=1

∆−k ≤ 8 ·∆2 · e4. since ∆ ≥ 2

By the above and the second inequality in Claim 4.3,

|pu(u)| ≥ exp(−18/
√
∆)|pu(−u)| ≥

exp(−18/
√
∆− 4)

8∆2
· ‖pu‖1.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Define the function P (t) =
∑⌊n2/3⌋

u=1 u20 · pu(t)
‖pu‖1 . We claim that the function

R : {0,±1, . . . ,±n} → {−1, 1} defined by R(t) = (−1)tP (t)
‖P‖1 satisfies the conditions in Theorem 3.1.

• Clearly,
∑n

t=−n |R(t)| = 1, i.e., R satisfies Equation (8).

• By Claim 4.3, for every u = 1, . . . , ⌊n2/3⌋ and every t = 1, . . . , n, (−1)tpu(t) ≥ δ|pu(−t)| for
δ = exp(−18/

√
∆) = exp(−18/n(1/6d)). Therefore, for all such t we also have (−1)tP (t) ≥

δ|P (t)|, which implies R(t) ≥ δ|R(−t)| for every t = 1, 2, . . . , n.
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• We have

R(t) =
(−1)tP (t)

‖P‖1
=

(−1)t

‖P‖

⌊n2/3⌋
∑

u=1

u20 · pu(t)‖pu‖1
=

(−1)t

‖P‖1

(

2n

n+ t

) ⌊n2/3⌋
∑

u=1

u20 · ru(t)‖pu‖1
.

Since each ru is a polynomial of degree at most (2n+ 1)− d, Claim 2.4 implies that for any
polynomial p of degree at most d− 2, 〈R, p〉 = 0.

• It now remains to verify the smoothness condition. Fix a point v ∈ {1, . . . , ⌊n2/3⌋}. Since
sgn(pu(v)) = (−1)v for all u and for all v > 0, we have that

|P (v)|
‖P‖1

≥ v20 · |pv(v)| · ‖pv‖
−1
1

∑⌊n2/3⌋
u=1 u20

≥ exp(−18/
√
∆− 4)/8∆2

⌊n2/3⌋ · (⌊n2/3⌋)20 by Lemma 4.4

≥ exp(−18/
√
2− 4)

8n15
≥ e−15

8n15
. since n1/3 ≥ ∆ = ⌊n1/3d⌋ ≥ 2

If v < 0, the argument needs some more care because we do not have the guarantee that
sgn(pu(v)) = (−1)v. The large mass placed by p−v on the point v plays a crucial role.

|P (v)| ≥ (−v)20 · |p−v(v)|
‖p−v‖1

−
⌊n2/3⌋
∑

u=1
u 6=v

u20 · pu(−v)‖pu‖1

≥ (−v)20
8∆2e4

−
⌊log∆(−v)⌋
∑

j=1

(−v∆−j)20 · p−v∆−j (v)

‖p−v∆−j‖1
by Lemma 4.4, the definition of pu and its support

≥ (−v)20




1

8∆2e4
− e4

∞
∑

j=1

∆−20j ·∆(−j2+3j+2)/2



 by Claims 4.1 and 4.2

= (−v)20




1

8∆2e4
− e4

∞
∑

j=1

∆(−j2−37j+2)/2



 ≥ (−v)20




1

8∆2e4
− e4

∞
∑

j=1

∆−18j





≥ (−v)20
[

1

8∆2e4
− e4

∆17

]

= (−v)20
[

∆15 − 8e8

8∆17e4

]

≥ 20

∆17
≥ 20

n6

since n1/3 ≥ ∆ ≥ 2 and (−v) ≥ 1

Thus, we have that for v < 0,

|P (v)|
‖P‖1

≥ 20

n6
∑⌊n2/3⌋

u=1 u20
≥ 20

n6⌊n2/3⌋ · (⌊n2/3⌋)20 ≥ 20

n20
.

5 Conclusion

We have exhibited a communication problem f with UPPcc(f) = O(log n), and UPPcc(f ∧ f) =
Θ(log2 n). This is the first result showing that UPP communication complexity can increase
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by more than a constant factor under intersection. As a consequence, we have concluded that
the dimension-complexity-based quasipolynomial time PAC learning algorithm of [20] for learning
intersections of polylogarithmically many majorities is optimal. That is, new learning algorithms
not based on dimension complexity will be required to learn this class in polynomial time.

A glaring open question left by our work is whether the class of problems with polylogarithmic
UPPcc complexity is closed under intersection. Our results represent an important first step in
this direction. It would also be very interesting to extend our result that dimension-complexity-
based algorithms cannot PAC learn intersections of two majorities in polynomial time, to rule out
an even larger class of learning algorithms. Specifically, it would be very interesting to show that
no algorithm working in the important statistical query model [18] can learn this concept class in
polynomial time.
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A Other Related Work on Sign Rank

Alon, Frankl and Rödl [1] proved lower bounds on the sign-rank of random matrices. The first
nontrivial lower bounds for explicit matrix families was obtained in the breakthrough work of
Forster [12], who proved strong lower bounds on the sign-rank of any sign matrix with small
spectral norm. Several subsequent works improved and generalized Forster’s method, and studied
the relationship of sign-rank to other important complexity measures in learning theory and circuit
complexity [2, 13, 14, 23]. As previously mentioned, Sherstov [28] and Razborov and Sherstov [26]
showed that a smooth dual witness for the fact that a function has large threshold degree implies
that a related function has large sign-rank. Razborov and Sherstov used this result to great effect,
constructing a smooth dual witnesses for the large threshold degree of a certain DNF, and thereby
giving an AC0 function with exponential sign-rank. This answered an old question of Babai, Frankl,
and Simon [4]. Recent works have quantitatively strengthened these sign-rank lower bounds for
AC0 [8, 9, 32]. Another work, due to Bouland et al. [7], managed to apply the methods to simpler
functions within AC0, and thereby resolved several old open questions about the power of statistical
zero knowledge proofs.

B Threshold Degree, Rational Approximate Degree, Sign-Rank

and Duality

In this appendix, we define threshold degree and introduce its dual formulation, and also introduce
the dual formulation of rational approximate degree. We also explain the connection between the
threshold degree, rational approximate degree, and the sign-rank of pattern matrices. The material
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in this appendix is standard and provided only for intuition; none of it is actually required to prove
the results in this paper.

B.1 Threshold Degree and Its Dual Formulation

The threshold degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted deg±(f), is the least
degree of a real polynomial p that sign-represents f , i.e., p(x) · f(x) > 0 for all x ∈ {−1, 1}n.

To describe the dual formulation of threshold degree, we need to introduce some terminology.

Definition B.1. Let ψ : {−1, 1}n → R be any real-valued function on the Boolean hypercube. Recall
(see Section 2) that, given another function p : {−1, 1}n → R, we let 〈ψ, p〉 :=∑x∈{−1,1}n ψ(x)·p(x),
and refer to 〈ψ, p〉 as the correlation of ψ with p. Also, ‖ψ‖1 :=

∑

x∈{−1,1}n |ψ(x)|, and we refer
to ‖ψ‖1 as the ℓ1-norm of ψ. If 〈ψ, p〉 = 0 for all polynomials p of degree at most d, we say that ψ
has pure high degree at least d.

The following standard theorem provides the aforementioned dual formulation of threshold
degree.

Theorem B.2. Let f : {−1, 1}n → {−1, 1}. Then deg±(f) > d if and only if there is a real
function ψ : {−1, 1}n → R such that:

1. (Pure high degree): ψ has pure high degree at least d.

2. (Non-triviality): ‖ψ‖1 > 0.

3. (Sign Agreement): ψ(x) · f(x) ≥ 0 for all x ∈ {−1, 1}n.

ψ is called a dual polynomial for the fact that deg±(f) > d.

The relationship between threshold degree and sign-rank of pattern matrices. Suppose
that deg±(f) = d. Then it is not hard to see that the (N,n, f)-pattern matrix M has sign-rank at

most
(

N
d

)

≤ Nd. This is because each entry Mx,(S,w) of M can be written as the sign of a linear
combination of monomials in x, where each monomial in the linear combination has degree at most
d. Theorem 2.3 shows that this sign-rank upper bound is essentially tight, so long as there is a dual
polynomial ψ for that fact that deg±(f) ≥ d, such that ψ satisfies an extra smoothness condition.

B.2 Rational Approximate Degree and Its Dual Formulation

In Section 1.2, we defined the rational ǫ-approximate degree of f to be the least total degree of real
polynomials p and q such that |f(x) − p(x)/q(x)| ≤ ǫ for all x in the domain of f . The functions
ψ0 and ψ1 appearing in Theorem 2.5 constitute a dual witness to the large rational approximate
degree of f . However, to describe the duality theory of rational approximate degree, it is helpful
to introduce a related notion, due to Sherstov [31].

Definition B.3 (Sherstov [31] Definition 6.4). For d0, d1 > 0 and a function f : {−1, 1}n →
{−1, 1}, define R(f, d0, d1) as the infimum over all ǫ > 0 for which there exist polynomials p0, p1
of degree at most d0, d1, respectively, such that:

• f(x) = 1 =⇒ |p1(x)| < ǫ · p0(x),

17



• f(x) = −1 =⇒ |p0(x)| < ǫ · p1(x).

The relationship between rational approximate degree and Definition B.3. Sherstov [31]
showed that, for constant ǫ > 0, the rational ǫ-approximate degree of f is at most O(d) if and only
if there is some constant c > 0 such that R(f, c · d, c · d) ≤ ǫ. And unlike rational approximate
degree itself, R(f, d0, d1) has a clean dual characterization.

Theorem B.4 (Sherstov [31] Theorem 6.6). For d0, d1 > 0 and a function f : {−1, 1}n → {−1, 1},
R(f, d0, d1) ≥ ǫ if and only if there exist ψ0, ψ1 : {−1, 1}n → R such that

• ψ0(x) ≥ ǫ|ψ1(x)| for all x ∈ f−1(1).

• ψ1(x) ≥ ǫ|ψ0(x)| for all x ∈ f−1(−1).

• ψ0 has pure high degree at least d0.

• ψ1 has pure high degree at least d1.

• ‖ψ0‖1, ‖ψ1‖1 > 0.

The Connection Between Rational Approximate Degree and Threshold Degree of In-

tersections. Let F = f ∧ f . Beigel et al. [5] famously showed that if f has rational approximate
degree at most d, then F has threshold degree at most O(d) (see [31, Section 1.2] for a lucid ex-
planation of this upper bound). The dual formulations of threshold degree (Theorem B.2) and
rational approximate degree (Theorem B.4) together allow us to interpret Theorem 2.5 as showing
that the upper bound of Beigel et al. is tight. That is, Theorem 2.5 shows that if f has rational
δ-approximate degree at least d for an appropriate value of δ, then F has threshold degree at least
d. In fact, Theorem 2.5 explicitly translates a dual witness to the high rational approximate degree
of f into a dual witness to the high threshold degree of F .

18

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


