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Abstract

The sunflower conjecture is one of the most well-known open problems in combinatorics. It has several
applications in theoretical computer science, one of which is DNF compression, due to Gopalan, Meka
and Reingold (Computational Complexity, 2013). In this paper, we show that improved bounds for DNF
compression imply improved bounds for the sunflower conjecture, which is the reverse direction of the
DNF compression result. The main approach is based on regularity of set systems and a structure-vs-
pseudorandomness approach to the sunflower conjecture.

1 Introduction

The sunflower conjecture is one of the most well-known open problems in combinatorics. An r-sunflower is
a family of r sets S1, . . . , Sr where all pairwise intersections are the same. A w-set system is a collection
of sets where each set has size at most w. Erdős and Rado [ER60] asked how large can a w-set system be,
without containing an r-sunflower. They proved an upper bound of w!(r − 1)w, and conjectured that the
bound can be improved.

Conjecture 1.1 (Sunflower conjecture, [ER60]). Let r ≥ 3. There is a constant cr such that any w-set
system F of size |F| ≥ cwr contains an r-sunflower.

60 years later, only lower order improvements have been achieved, and the best bounds are still of the
order of magnitude of about ww for any fixed r, same as in the original theorem of Erdős and Rado. A good
survey on the current bounds is [Kos00].

Sunflowers have been useful in various areas in theoretical computer science. Some examples include
monotone circuit lower bounds [Raz85, Ros10], barriers for improved algorithms for matrix multiplication
[ASU13] and faster deterministic counting algorithms via DNF compression [GMR13]. The focus on this
paper is on this latter application, in particular DNF compression.

A DNF (Disjunctive Normal Form) is disjunction of conjunctive terms. The size of a DNF is the number
of terms, and the width of a DNF is the maximal number of literals in a term. It is a folklore result that any
DNF of size s can be approximated by another DNF of width O(log s), by removing all terms of larger width.
The more interesting direction is whether DNFs of small width can be approximated by DNFs of small size.
Namely - can DNFs of small width be “compressed” while approximately preserving their computational
structure?
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A beautiful result of Gopalan, Meka and Reingold [GMR13] shows that DNFs of small width can be
approximated by small size DNFs. Their proof relies on the sunflower theorem (more precisely, a variant
thereof due to Rossman [Ros10] that we will discuss shortly). Before stating their result, we introduce some
necessary terminology. We say that two functions f, g : {0, 1}n → {0, 1} are ε-close if Pr[f(x) 6= g(x)] ≤ ε
over a uniformly chosen input. We say that f is a lower bound of g, or that g is an upper bound of f , if
f(x) ≤ g(x) for all x.

Theorem 1.2 (DNF compression using sunflowers, sandwiching bounds [GMR13]). Let f be a width-w
DNF. Then for every ε > 0 there exist two width-w DNFs, flower and fupper such that

(i) flower(x) ≤ f(x) ≤ fupper(x) for all x.

(ii) flower and fupper are ε-close.

(iii) flower and fupper have size (w log(1/ε))O(w).

Recently, Lovett and Zhang [LZ18] improved the dependence of the size of the lower bound DNF on w
(but with a worse dependence on ε). In particular, the proof avoids the use of the sunflower theorem.

Theorem 1.3 (DNF compression without sunflowers, lower bound [LZ18]). Let f be a width-w DNF. Then
for every ε > 0 there exists a width-w DNFs flower such that

(i) flower(x) ≤ f(x) for all x.

(ii) flower and f are ε-close.

(iii) flower has size (1/ε)O(w).

It is natural to speculate that a similar bound holds for upper bound DNFs.

Conjecture 1.4 (Improved upper bound DNF compression). Let f be a width-w DNF. Then for every ε > 0
there exists a width-w DNF fupper such that

(i) f(x) ≤ fupper(x) for all x.

(ii) fupper and f are ε-close.

(iii) fupper has size (1/ε)O(w).

To study the connection between DNF compression and sunflowers, we would need an analog of Conjec-
ture 1.4 for monotone DNFs.

Conjecture 1.5 (Improved upper bound monotone DNF compression). In Conjecture 1.4, if f is a mono-
tone DNF, then fupper can also be taken to be a monotone DNF.

The main result of this paper is that Conjecture 1.5 implies an improved bound for the sunflower con-
jecture, with a bound of (logw)O(w) instead of the current bound of O(w)w. Thus, the connection between
sunflower theorems and DNF compression goes both ways. We note that the proof of [GMR13] is also true
for monotone DNF compression.

To simplify the presentation, we assume from now on that w ≥ 2. This will allow us to assume that
logw > 0. In any case, for w = 1 the sunflower conjecture is trivial, as any 1-set system of size r is an
r-sunflower.

Theorem 1.6 (Main theorem). Assume that Conjecture 1.5 holds. Then for any r ≥ 3 there exists a constant
cr such that the following holds. Any w-set system F of size |F| ≥ (logw)crw contains an r-sunflower.

In fact, Theorem 1.6 holds even with a slightly weaker conjecture instead of Conjecture 1.5, where the
size bound can be assumed to be ((logw)/ε)O(w) instead of (1/ε)O(w).
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1.1 Proof overview

The proof of Erdős and Rado [ER60] is by a simple case analysis which we now recall. Let F be a w-set
system. Then either F contains r pairwise disjoint sets, which are in particular an r-sunflower; or at most
r−1 sets whose union intersects all other sets. In the latter case, there is an element that belongs to a 1

(r−1)w
fraction of the sets in F . If we restrict to these sets, and remove the common element, then we reduced the

problem to a (w − 1)-set system of size |F|
(r−1)w . The proof concludes by induction.

Our approach is to refine this via a structure-vs-pseudorandomness approach. Either there is a set T
of elements that belong to many sets in F (concretely, at least |F|/κ|T |, for an appropriately chosen κ), or
otherwise the set system F is pseudo-random, in the sense that no set T is contained in too many sets in F .
The main challenge is showing that by choosing κ large enough, this notion of pseudo-randomness is useful.
This will involve introducing several new concepts and tying them to the sunflower problem.

The following proof overview follows the same structure as the sections in the paper, to ease readability.

Section 2: DNFs and set systems. First, we note that set systems are one-to-one correspondence to
monotone DNFs. Formally, we identify a set system F = {S1, . . . , Sm} with the monotone DNF fF (x) =∨
S∈F

∧
i∈S xi. This equivalence will be useful in the proof, as at different stages one of these viewpoints is

more convenient.
The notions of “lower bound DNF” flower and “upper bound DNF” fupper used in Theorem 1.2, Theo-

rem 1.3 and Conjecture 1.5 have analogs for set systems, which we refer to as proper lower bound and upper
bound DNFs (or set systems). For the purpose of this high level overview, we ignore this distinction here.

Section 3: Approximate sunflowers. The notion of approximate sunflowers was introduced by Rossman
[Ros10]. It relies on the notion of satisfying set systems.

Let F be a set system on a universe X. We say that F is (p, ε)-satisfying if Prx∼Xp [fF (x) = 1] > 1− ε,
where fF is the corresponding monotone DNF for F , and Xp is the p-biased distribution on X. The
importance of satisfying set systems in our context is that a (1/r, 1/r)-satisfying set system contains r
pairwise disjoint sets (Claim 3.4).

Let K = ∩S∈FS be the intersection of all sets in F . We say that F is a (p, ε)-approximate sunflower if
the set system {S\K : S ∈ F} is (p, ε)-satisfying. An interesting connection between approximate sunflowers
and sunflowers is that a (1/r, 1/r)-approximate sunflower contains an r-sunflower (Corollary 3.5).

Section 4: Regular set systems. Let D be a distribution over subsets of X. We say that D is regular
if when sampling S ∼ D, the probability that S contains any given set T is exponentially small in the size
of T . Formally, D is κ-regular if for any set T ⊆ X it holds that PrS∼D[T ⊆ S] ≤ κ−|T |.

A set system F is κ-regular if there exists a κ-regular distribution supported on sets in F . We show that
if F is κ-regular, then the same holds for any upper bound set system (Claim 4.4) and any “large enough”
lower bound set system (Claim 4.5). These facts will turn out to be useful later.

Section 5: Regular set systems are (1/2, 1/2)-satisfying. In this section, we focus on regular set
systems F , or equivalently regular DNFs f = fF . We show that, assuming Conjecture 1.5 (or the slightly
weaker Conjecture 5.2), any κ-regular DNF of width w, where κ = (logw)O(1), is (1/2, 1/2)-satisfying.
Namely, Pr[f(x) = 1] ≥ 1/2, where x is uniformly chosen. In particular, this implies that F contains two
disjoint sets. However, our goal is to prove that F contains an r-sunflower for r ≥ 3, so we are not done yet.

Section 6: Intersecting regular set systems. Let α(w, r) denote the maximal κ such that there exists
a κ-regular w-set system without r pairwise disjoint sets. It is easy to prove that the sunflower theorem
holds for any set system of size |F| > α(w, r)w (Claim 6.4). However, our discussion so far only allows us to
bound β(w) = α(w, 2); concretely, assuming Conjecture 1.5 we have β(w) ≤ (logw)O(1).
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We show (Lemma 6.6) that nontrivial upper bounds on β(w) imply related upper bounds on α(w, r)
for every r. Concretely, if β(w) ≤ (logw)O(1) then α(w, r) ≤ (logw)cr where cr > 0 are constants. This
concludes the proof, as we get that any w-set system of size |F| ≥ (logw)crw must contain an r-sunflower.

Acknowledgements. We thank Ray Li for spotting a subtle mistake in the previous version (its solution
necessitated restricting some claims to non-trivial or non-redundant set systems). We also thank CCC
reviewers for pointing out some early mistakes.

2 DNFs and set systems

A DNF is monotone if it contains no negated variables. Monotone DNFs are in one-to-one correspondence
with set systems. Formally, if F is a set system then the corresponding monotone DNF is

fF (x) =
∨
S∈F

∧
i∈S

xi.

In the other direction, if f =
∨
j∈[m]

∧
i∈Sj

xi is a monotone DNF then its corresponding set system is

Ff = {S1, . . . , Sm}.

Observe that a w-set system corresponds to a width-w monotone DNF, and vice versa. If X is the set of
elements over which F is defined then we write F ⊆ P(X).

A DNF is non-redundant if no term implies another term. A DNF is non-trivial if it is not a constant
function. This motivates the following definitions for the corresponding set systems.

Definition 2.1 (Non-redundant set systems). A set system F is non-redundant if it is an anti-chain.
Namely, it does not contain two distinct sets S1, S2 with S1 ⊂ S2.

Definition 2.2 (Non-trivial set systems). A set system F is non-trivial if it is not empty, and doesn’t
contain the empty set.

To recall, we consider both lower bound and upper bound DNFs. As our main motivation is to better
understand sunflowers, we restrict attention to monotone DNFs from now on; however, all the definitions
can be easily adapted for general DNFs.

We next define proper upper and lower bound DNFs. Proper lower bound DNFs are obtained by removing
terms from the DNF, and proper upper bound DNFs are obtained by removing variables from terms in the
DNF. We describe both in terms of the corresponding set systems.

Definition 2.3 (Proper lower bound DNF / set system). Let F be a set system. A proper lower bound set
system for F is simply a sub set system F ′ ⊆ F . Observe that indeed

fF ′(x) ≤ fF (x) ∀x.

Definition 2.4 (Proper upper bound DNF / set system). Let F be a set system. A proper upper bound
set system for F is a set system F ′ that satisfies the following: for each S ∈ F there exists S′ ∈ F ′ such
that S′ ⊆ S. Observe that indeed

fF ′(x) ≥ fF (x) ∀x.

For monotone DNFs, upper bounds and proper upper bounds are the same.

Claim 2.5. Let F ,F ′ be set systems over the same universe, such that

fF ′(x) ≥ fF (x) ∀x.

Then F ′ is a proper upper bound set for F .
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Proof. Assume not. Then there exists S ∈ F such that there is no S′ ∈ F ′ with S′ ⊆ S. Let x = 1S be the
indicator vector for S. Then fF (x) = 1 but fF ′(x) = 0, a contradiction.

Corollary 2.6. In Conjecture 1.5, we may assume that fupper is a proper upper bound DNF for f .

We note that the lower and upper bound DNFs in [GMR13] are in fact proper lower and upper bounds,
and the same holds for the lower bound DNF in [LZ18].

3 Approximate sunflowers

We introduce the notion of approximate sunflowers, first defined by Rossman [Ros10]. We first need some
notation. Given a finite set X and 0 < p < 1, we denote by Xp the p-biased distribution over X, where
W ∼ Xp is sampled by including each x ∈ X in W independently with probability p. The definition of
approximate sunflowers relies on the notion of a satisfying set system.

Definition 3.1 (Satisfying set system). Let F ⊆ P(X) be a set system and let 0 < p, ε < 1. We say that F
is (p, ε)-satisfying if

Pr
W∼Xp

[∃S ∈ F : S ⊆W ] > 1− ε.

Equivalently, if fF : {0, 1}X → {0, 1} is the DNF corresponding to F , then F is (p, ε)-satisfying if

Pr
x∼Xp

[fF (x) = 1] > 1− ε.

An approximate sunflower is a set system which is satisfying if we first remove the common intersection
of all the sets in the set system.

Definition 3.2 (Approximate sunflower). Let F ⊆ P(X) be a set system and let 0 < p, ε < 1. Let
K = ∩S∈FS. Then F is a (p, ε)-approximate sunflower if the set system {S \K : S ∈ F} is (p, ε)-satisfying.

Rossman proved an analog of the sunflower theorem for approximate sunflowers. Li, Lovett and Zhang
[LLZ18] reproved this theorem by using a connection to randomness extractors.

Theorem 3.3 (Approximate sunflower lemma [Ros10]). Let F be a w-set system and let ε > 0. If |F| ≥
w! · (1.71 log(1/ε)/p)w then F contains a (p, ε)-approximate sunflower.

To conclude this section, we show that satisfying set systems contain many disjoint sets, and hence
approximate sunflowers contain sunflowers.

Claim 3.4. Let F be a non-trivial set system, r ≥ 2, and assume that F is a (1/r, 1/r)-satisfying. Then F
contains r pairwise disjoint sets.

Proof. Let F ⊆ P(X). Consider a uniform random coloring of X with r colors. A coloring induces a
partition of X into X = W1 ∪ . . . ∪Wr, where Wc is the set of all elements that attain the color c. Given
a color c ∈ [r], a set S ∈ F is c-monochromatic if all its elements attain the color c. Observe that for each
color c,

Pr[∃S ∈ F , S is c-monochromatic] = Pr[∃S ∈ F , S ⊆Wc].

The marginal distribution of each Wc is (1/r)-biased. By our assumption that F is (1/r, 1/r)-satsifying, the
probability that Wc contains some S ∈ F is more than 1− 1/r. So by the union bound,

Pr[∀c ∈ [r] ∃S ∈ F , S is c-monochromatic] > 0.

In particular, there exists a coloring where this event happens. Let S1, . . . , Sr be the sets for which Sc is
c-monochromatic. As F is non-trivial, S1, . . . , Sr are non-empty sets, and hence must be distinct. Thus
S1, . . . , Sr must be pairwise disjoint.
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Corollary 3.5. Let F be a non-redundant set system with |F| ≥ 2, r ≥ 2, and assume that F is a (1/r, 1/r)-
approximate sunflower. Then F contains an r-sunflower.

Proof. Let K = ∩S∈FS and define F ′ = {S \K : S ∈ F} which by assumption is (1/r, 1/r)-satisfying. As
F is non-redundant and has at least two elements, F ′ is non-trivial. By Claim 3.4 F ′ contains r pairwise
disjoint sets S1 \K, . . . , Sr \K. This implies that S1, . . . , Sr form an r-sunflower.

4 Regular set systems

The notion of regularity of a set system is pivotal in this paper. At a high level, a set system is regular if no
element belongs to too many sets, no pair of elements belongs to too many sets, and so on. It is closely related
to the notion of block min-entropy studied in the context of lifting theorems in communication complexity
[GLM+16].

Definition 4.1 (Regular distribution). Let X be a finite set, and let D be a distribution on non-empty
subsets S ⊆ X. The distribution D is κ-regular if for any set T ⊆ X it holds that

Pr
S∼D

[T ⊆ S] ≤ κ−|T |.

Remark 4.2. Note that we need to restrict D to be supported on non-empty sets, as otherwise the regularity
can be infinite.

Definition 4.3 (Regular set system). A non-trivial set system F is κ-regular if there exists a κ-regular
distribution D supported on the sets in F .

The following claims show that if F is a κ-regular set system then any proper upper bound set system
for it is also κ-regular, and any “large” proper lower bound set system is approximately κ-regular.

Claim 4.4. Let F be a non-trivial κ-regular set system. Let F ′ be a non-trivial proper upper bound set
system for F . Then F ′ is also κ-regular.

Proof. Let D be a κ-regular distribution supported on F . Let ϕ : F → F ′ be a map such that ϕ(S) ⊆ S for
all S ∈ F . Define a distribution D′ on F ′ as follows:

D′(S′) =
∑

S∈ϕ−1(S′)

D(S).

Then for any set T ,

Pr
S′∼D′

[T ⊆ S′] =
∑

S′∈F ′:T⊆S′
D′(S′) =

∑
S∈F :T⊆ϕ(S)

D(S) ≤
∑

S∈F :T⊆S

D(S) = Pr
S∼D

[T ⊆ S] ≤ κ−|T |.

Claim 4.5. Let F be a non-trivial κ-regular set system, and D be a κ-regular distribution supported on
F . Let F ′ ⊆ F be a non-trivial proper lower bound set system for F , and let α = D(F ′). Then F ′ is
(κα)-regular.

Proof. Define a distribution D′ on F ′ by D′(S) = α−1D(S). Then for any non-empty set T ,

Pr
S∼D′

[T ⊆ S] ≤ α−1 Pr
S∼D

[T ⊆ S] ≤ α−1κ−|T | ≤ (κα)−|T |.
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5 Regular set systems are (1/2, 1/2)-satisfying

In this section we use Conjecture 1.5 to prove that regular enough DNFs are (1/2, ε)-satisfying, where in
light of Claim 3.4 we care about ε = 1/2. To recall the definitions, a DNF f is (1/2, ε)-satisfying if for a
uniformly chosen x,

Pr
x

[f(x) = 1] > 1− ε.

Define

γ(w) = sup{κ : ∃non-trivial κ-regular w-set system which is not (1/2, 1/2)-satisfying}.

In other words, γ(w) is the largest value, such that for any κ > γ(w), if F is a nontrivial κ-regular w-set
system, then Prx[fF (x) = 1] > 1/2.

We start by giving a lower bound on γ(w), where the motivation is to help the reader gain intuition.

Claim 5.1. γ(w) ≥ logw −O(1).

Proof. We construct a non-trivial κ-regular w-set system which is not (1/2, 1/2)-satisfying, for κ = logw −
O(1). Let X1, . . . , Xw be disjoint sets, each of size κ = logw − c for a constant c > 0 to be determined.
Let X = X1 ∪ . . . ∪Xw. Let F ⊆ P(X) be the w-set system of all sets S that contain exactly one element
from each set Xi. It is simple to verify that the uniform distribution over F is κ-regular, and hence F is
κ-regular. Let W ∼ X1/2. Then

Pr[∃S ∈ F , S ⊆W ] = Pr[∀i ∈ [w], |Xi ∩W | ≥ 1] = (1− 2−κ)w = (1− c/w)w ≤ exp(−c).

In particular, for c ≥ 1 we get that F is not (1/2, 1/2)-satisfying.

As we shall soon see, Conjecture 1.5 implies that the lower bound is not far from tight:

γ(w) ≤ (logw)O(1).

It will be sufficient to assume a slightly weaker version of Conjecture 1.5, where we allow the size of fupper
to be somewhat bigger.

Conjecture 5.2 (Weaker version of Conjecture 1.5). Let w ≥ 2, ε > 0. For any monotone width-w DNF f
there exists a monotone width-w DNF fupper such that

(i) fupper is a proper upper bound DNF for f .

(ii) fupper and f are ε-close.

(iii) fupper has size at most ((logw)/ε)cw for some absolute constant c > 1.

Lemma 5.3. Assume Conjecture 5.2 holds. Then there exists a constant c0 > 1 such that the following
holds. For w ≥ 2, ε > 0 let κ0(w, ε) = ((logw)/ε)c0 . Let F be a non-trivial κ-regular w-set system for
κ = κ0(w, ε). Then F is (1/2, ε)-satisfying.

Corollary 5.4. γ(w) ≤ κ0(w, 1/2) = (logw)O(1).

We prove Lemma 5.3 in the remainder of this section. We start with some simple claims that would serve
as a base case for Lemma 5.3 for w = O(1).

Claim 5.5. Let r ≥ 2. Let F be a non-trivial κ-regular w-set system, where κ > w
(
r
2

)
. Then F contains r

pairwise disjoint sets.
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Proof. Let D be a κ-regular distribution over F . Sample independently S, S′ ∼ D. The probability that
S, S′ intersect is at most

Pr[|S ∩ S′| ≥ 1] ≤
∑
i∈S

Pr[i ∈ S′] ≤ w/κ.

Let S1, . . . , Sr ∼ D be chosen independently. Then by the union bound, the probability that two of them
intersect is at most

(
r
2

)
w/κ < 1. In particular, there exist r pairwise disjoint sets in F . As F is non-trivial,

the sets are non-empty, and hence distinct.

Claim 5.6. Let ε > 0. Let F be a non-trivial κ-regular w-set system, where κ = w(2w log(1/ε))2. Then F
is (1/2, ε)-satisfying.

Proof. Assume F ⊆ P(X). Claim 5.5 implies that F contains r = 2w log(1/ε) pairwise disjoint sets S1, . . . , Sr
of size at most w. Let W ∼ X1/2. Then

Pr[∃S ∈ F , S ⊆W ] ≥ Pr[∃i ∈ [r], Si ⊆W ] ≥ 1− (1− 2−w)r > 1− ε.

Proof of Lemma 5.3. We will need several properties from κ0 in the proof. To simplify notations, we short-
hand κ0(w/2, ε) for κ0(bw/2c, ε) throughout. The constant c > 1 below is the absolute constant from
Conjecture 1.5. We need a constant c′ > 1 so that the following conditions are satisfied:

(i) κ0(w, ε) ≥ w(2w log(1/ε))2 for w = 1, 2 and ε > 0.

(ii) κ0(w, ε) ≥ ((logw)/ε)12c for w ≥ 3, ε > 0.

(iii) κ0(w, ε) ≥ κ0(w/2, ε(1− 1/ logw)) + 1 for w ≥ 3, ε > 0.

One can check that the function τ(w, ε) = (logw)/ε satisfies τ(w/2, ε(1− 1/ logw)) ≤ τ(w, ε), with equality
when w is even. Thus taking κ0(w, ε) = ((logw)2/ε)c

′
satisfies the conditions for a large enough c′ ≥ 12c.

We then take c0 = 2c′.
The proof of lemma Lemma 5.3 is by induction on w. The base cases are w = 1 and w = 2 which follow

from Claim 5.6 and condition (i) on κ0. Thus, we assume from now that w ≥ 3. We need to prove that for
f = fF we have

Pr[f(x) = 0] < ε.

Let γ = ε/ logw and assume that F is κ-regular for κ = κ0(w, ε). Let F1 = {S ∈ F : |S| ≥ w/2} and let
f1 = fF1 be the corresponding DNF. Applying Conjecture 5.2 to f1 with error parameter γ, we obtain that
there exists a γ-approximate proper upper bound DNF f2 for f1 of size s = ((logw)/γ)cw ≤ ((logw)/ε)2cw.
Let F2 be the corresponding set system to f2, and observe that F2 is a proper upper bound set system for
F1. Let F3 = (F \ F1) ∪ F2 and let f3 = fF3

be the corresponding DNF. Then

Pr[f(x) = 0] ≤ Pr[f3(x) = 0] + (Pr[f2(x) = 0]− Pr[f1(x) = 0]) ≤ Pr[f3(x) = 0] + γ.

We may assume without loss of generality that F3 is non-trivial, as otherwise f3 ≡ 1, hence Pr[f(x) = 0] ≤ γ
and we are done.

Next, observe that F3 is a proper upper bound set system for F . As we assume that F is κ-regular,
then by Claim 4.4 we obtain that F3 is also κ-regular. Let D be a κ-regular distribution supported on F3.
Let F4 = {S ∈ F3 : |S| ≥ w/2}, where F4 ⊆ F2. As each set S ∈ F4 has size |S| ≥ w/2 then, since D is
κ-regular, we have

D(S) ≤ κ−w/2.

Summing over all S ∈ F4 we obtain that

D(F4) ≤ |F4| · κ−w/2 ≤ |F2| · κ−w/2 ≤

((
logw

ε

)2c

κ−1/2

)w
.

8



We would need that D(F4) ≤ 1/κ. As w ≥ 3, this follows from condition (ii) on κ0. Let F5 = F3 \F4. Then
F5 is a (w/2)-set system. Note that F5 is non-trivial since F4 is a strict subset of F3. By Claim 4.5 F5 is
κ′-regular for

κ′ = κ · D(F5) = κ(1−D(F4)) ≥ κ− 1.

Let ε′ = ε(1−1/ logw). Assumption (iii) on κ0 gives that κ0(w/2, ε′) ≤ κ0(w, ε)−1. Thus, F5 is κ0(w/2, ε′)-
regular. Applying the induction hypothesis, if we denote by f5 the corresponding DNF for F5, then

Pr[f5 = 0] < ε′.

Finally, as F5 ⊆ F3 we have Pr[f3(x) = 0] ≤ Pr[f5(x) = 0]. Putting these together we obtain that

Pr[f(x) = 0] ≤ Pr[f3(x) = 0] + γ ≤ Pr[f5(x) = 0] + γ < ε′ + γ = ε(1− 1/ logw) + ε/ logw = ε.

6 Intersecting regular set systems

As we showed in Claim 3.4, if F is a (1/r, 1/r)-satisfying set system, then it contains r pairwise disjoint sets.
However we only proved that a regular enough set system is (1/2, 1/2)-satisfying so far. In this section, we
prove that this is enough to show the existence of an r-sunflower for any constant r, and with a comparable
condition of regularity. Our proof is based on a the study of regular intersecting set systems.

Definition 6.1 (Intersecting set system). A set system is intersecting if any two sets in it intersect. In
other words, it does not contain two disjoint sets.

Definition 6.2. For w ≥ 1, r ≥ 2 define

α(w, r) = sup{κ : ∃non-trivial κ-regular w-set system without r pairwise disjoint sets}.

It will be convenient to shorthand β(w) = α(w, 2), which can equivalently be defined as

β(w) = sup{κ : ∃non-trivial κ-regular intersecting w-set system}.

Claim 6.3. α(w + 1, r) ≥ α(w, r) and α(w, r + 1) ≥ α(w, r) for all w ≥ 1, r ≥ 2.

Proof. The first claim follows by our definition that a w-set system is a set system where all sets have size
at most w. In particular, any w-set system is also a (w+ 1)-set system and hence α(w+ 1, r) ≥ α(w, r). The
second claim holds since a set system that does not contain r pairwise disjoint sets, also does not contain
r + 1 pairwise disjoint sets.

We start by showing that upper bounds on α(w, r) directly translate to upper bounds on sunflowers.
This is reminiscent to the original proof of Erdős and Rado [ER60].

Claim 6.4. Let F be a non-redundant w-set system of size |F| > α(w, r)w. Then F contains an r-sunflower.

Proof. Note that F is also non-trivial by our assumptions. The proof is by induction on w. If F contains
r pairwise disjoint sets then we are done. Otherwise, F is not κ-regular for any κ > α(w, r). In particular,
the uniform distribution over F is not κ-regular. This implies that there exists a nonempty set T of size
|T | = t ≥ 1 such that

F ′ = {S \ T : S ∈ F , T ⊆ S}

has size |F ′| ≥ |F|κ−t > α(w, r)w−t ≥ α(w− t, r)w−t. Observe that F ′ is also non-redundant. By induction,
F ′ contains an r-sunflower S1 \ T, . . . , Sr \ T . Hence S1, . . . , Sr is a sunflower in F .

Corollary 6.5. Let F be a w-set system of size |F| > (2α(w, r))w. Then F contains an r-sunflower.
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Proof. Let F ′ ⊂ F be the sub set system of all the maximal sets in F ,

F ′ = {S ∈ F : there is no S′ ∈ F with S ( S′}.

Note that F ′ is a non-redundant w-set system of size |F ′| ≥ |F|/2w, and hence by Claim 6.4 it contains an
r-sunflower.

The main lemma we prove in this section is that upper bounds on β imply upper bounds on α.

Lemma 6.6. For all w ≥ 1, r ≥ 3 it holds that α(w, r) ≤ r2r+1β(wr)r.

Before proving Lemma 6.6, we first prove some upper and lower bounds on β(w). Although these are
not needed in the proof of Lemma 6.6, we feel that they help gain intuition on β(w).

Claim 6.7. β(w) ≤ w.

Proof. Apply Claim 5.5 for r = 2.

It is easy to construct examples that show that β(w) > 1; for example, the family of all sets of size w in
a universe of size 2w − 1 is intersecting and ((2w − 1)/w)-regular. The following example shows that β(w)
is super-constant.

Claim 6.8. β(w) ≥ Ω
(

logw
log logw

)
.

Proof. We construct an example of a κ-regular intersecting w-set system for κ = Ω(logw/ log logw). Let
t ≤ w/2 to be optimized later and set m = w− t+ 1. Let X1, . . . , Xm be disjoint sets of size t each, and let
X = X1 ∪ . . . ∪Xm. Consider the set system F of all sets S ⊆ X of the following form:

F = {S ⊆ X : ∃i ∈ [m], Xi ⊆ S, ∀j 6= i, |Xj ∩ S| = 1}.

Observe that F is an intersecting w-set system.
Let D be the uniform distribution over F . We show that D is κ-regular, and hence F is κ-regular. There

are two extreme cases: for sets T of size |T | = 1 we have

Pr
S∼D

[T ⊆ S] =
1

m
+

(
1− 1

m

)
1

t
≤ 2

t
.

For sets T = Xi we have

Pr
S∼D

[Xi ⊆ S] =
1

m
.

One can verify that these are the two extreme cases which control the regularity, and hence F is κ-regular
for

κ = min(t/2,m1/t).

Setting t = Θ(logw/ log logw) gives κ = Θ(logw/ log logw).

We conjecture that this is essentially tight. In fact, by Claim 3.4 we have that

β(w) ≤ γ(w)

As we proved, Conjecture 5.2 implies γ(w) = (logw)O(1), thus it also implies β(w) = (logw)O(1).

Proof of Lemma 6.6. For w, r ≥ 1 define

η(w, r) = r2r+1β(wr)r.

We will first prove that
α(w, 2r) ≤ max (η(w, r), 2α(w, r))
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and then that this implies the bound
α(w, r) ≤ η(w, r).

Let F be a non-trivial κ-regular w-set system which does not contain 2r pairwise disjoint sets, where
κ > max (η(w, r), 2α(w, r)). We will show that this leads to a contradiction.

Let D be the corresponding κ-regular distribution on F . Let F ′ ⊆ F be any sub set-system with
D(F ′) ≥ 1/2. Claim 4.5 then implies that F ′ is (κ/2)-regular. By our choice of κ, κ/2 > α(w, r), and hence
F ′ contains r pairwise disjoint sets.

More generally, consider the following setup. Let D′ : F → R≥0 with D′(S) ≤ D(S) for all S ∈ F .
Define F ′ = {S : D′(S) > 0} and D′(F) =

∑
D′(S). As long as D′(F) ≥ 1/2 we are guaranteed that F ′ is

(κ/2)-regular, and hence contains r pairwise disjoint sets. Consider the following process:

1. Initialize D0(S) = D(S) for all S ∈ F and i = 0.

2. As long as Di(F) ≥ 1/2 do:

(a) Let Fi = {S : Di(S) > 0}.
(b) Find r pairwise disjoint sets Si,1, . . . , Si,r ∈ Fi.
(c) Let δi = min(Di(Si,1), . . . , Di(Si,r)).

(d) Set Di+1(S) = Di(S)− δi if S ∈ {Si,1, . . . , Si,r}, and Di+1(S) = Di(S) otherwise.

(e) Set i← i+ 1

Assume that the process terminates after m steps. Let Wi = Si,1 ∪ . . . ∪ Si,r, which by construction is
a non-empty set of size at most wr. Note that as we assume that F does not contain 2r pairwise disjoint
sets, we obtain that W1, . . . ,Wm must be an intersecting set system (possibly with some repeated sets). Let
δ =

∑
δi. As Di+1(F) = Di(F)− δir, and as we terminate when Dm(F) < 1/2, we have

δ ≥ 1/2r.

Let F∗ = {W1, . . . ,Wm}, namely taking each set exactly once. As it may be the case that W1, . . . ,Wm

are not all distinct, we only know that |F∗| ≤ m. Consider the distribution D∗ on F∗ given by D∗(W ) =
1
w

∑
i:Wi=W

wi. Then as F∗ is a non-trivial intersecting set system, we obtain that D∗ cannot be β-regular
for β = β(wr).

Thus, there exists a nonempty set T of size |T | = t ≥ 1 such that∑
W∈F∗: T⊆W

D∗(W ) ≥ β−t.

This implies that if we denote I = {i ∈ [m] : T ⊆Wi} then∑
i∈I

wi ≥ wβ−t ≥
1

2rβt
.

Next, consider some i ∈ I. Recall that Wi is the union of pairwise disjoint sets Si,1, . . . , Si,r ∈ F . In
particular, there must exist ji ∈ [r] such that |T ∩ Si,ji | ≥ |T |/r. We denote Ti = T ∩ Si,ji . As the number
of possibles subsets of T is 2|T |, there must exist T ∗ ⊆ T such that∑

i∈I: Ti=T∗

wi ≥ 2−t
∑
i∈I

wi ≥
1

2r(2β)t
.

In particular, |T ∗| ≥ |T |/r and ∑
i∈I: T∗⊆Si,ji

wi ≥
1

2r(2β)t
.
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It may be that the list of Si,ji contains repeated sets (namely, that Si,ji = Si′,ji′ for some i 6= i′). For
each S ∈ F let I(S) = {i ∈ I : Si,ji = S}. In particular, I(S) is not empty only for sets S with T ∗ ⊆ S. We
can rewrite the sum as ∑

i∈I: T∗⊆Si,ji

wi =
∑

S∈F : T∗⊆S

∑
i∈I(S)

wi.

Next, fix some S ∈ F with T ∗ ⊆ S and consider the internal sum. Recall that wi = Di(S) −Di+1(S),
and hence the sum is a telescopic sum and can be bounded by∑

i∈I(S)

wi ≤ D0(S)−Dm(S) ≤ D(S).

We thus obtain that ∑
S∈F :T∗⊆S

D(S) ≥
∑

i∈I: T∗⊆Si,ji

wi ≥
1

2r(2β)t
.

Recall that D is κ-regular. We can upper bound κ by

κ ≤
(
2r(2β)t

)1/|T∗| ≤ (2r(2β)t
)r/t ≤ 2r(2β)r = η(w, r).

Putting everything together, we get

α(w, 2r) ≤ max (η(w, r), 2α(w, r)) .

To conclude the proof, note that if r is a power of two then by induction and our choice of η we have

α(w, 2r) ≤ max (η(w, r), 2η(w, r/2), 4η(w, r/4), . . .) = η(w, r).

Thus for a general r, if r ≤ s ≤ 2r is the smallest power of two that upper bounds r then

α(w, r) ≤ α(w, s) ≤ η(w, s/2) ≤ η(w, r).

Proof of Theorem 1.6. We put all the pieces together. Let w ≥ 2. Assume Conjecture 5.2 holds. Lemma 5.3
gives that

γ(w) ≤ (logw)c

for some constant c ≥ 1. Claim 5.5 then gives that

β(w) ≤ γ(w)

and Lemma 6.6 gives that

α(w, r) ≤ r2r+1β(wr)r ≤ r2r+1(log(wr))cr ≤ (logw)cr

for some constant cr ≥ 1. Finally, Claim 6.4 shows that if F is a w-set system of size |F| ≥ (logw)crw then
F contains an r-sunflower.

7 Further discussions

Recall that β(w) is the maximal κ such that there exists an intersecting κ-regular w-set system.

Conjecture 7.1. β(w) ≤ (logw)O(1).
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We would like to point out that in Conjecture 7.1, the assumption that the set system is intersecting
cannot be replaced by a weaker assumption that it is almost intersecting, namely that most pairs of sets
intersect. To see that, consider the following example.

Example 7.2. Let F be the family of all sets of size w in a universe of size n = cw2. By choosing an
appropriate constant c > 0, we get that 99% of the sets S, S′ ∈ F intersect. However, F is (w/c)-regular.

The following is an interesting family of examples, that might help shed light on Conjecture 7.1.

Example 7.3. Let Fp be a finite field and n ≥ 1. Let V ⊂ Fnp be a linear subspace of dimension k. Given
a set of coordinates I ⊆ [n], define VI = {(vi)i∈I : v ∈ V } to be the subspace obtained by restricting vectors
v ∈ V to coordinates I. We say that V is α-large if

dim(VI) ≥ α|I| ∀I ⊆ [n].

In particular, this implies that k ≥ αn.
Next, we define a set system corresponding to a subspace. Let X = {(i, a) : i ∈ [n], a ∈ Fp}. For any

vector v ∈ Fnp define its corresponding set

S(v) = {(i, vi) : i ∈ [n]} ⊂ X.

For a subspace V ⊂ Fnp define the set system

F(V ) = {S(v) : v ∈ V }.

Observe that:

(i) F(V ) is an n-set system of size pk.

(ii) For any T ⊆ X it holds that |{S ∈ F(V ) : T ⊆ S}| ≤ p−α|T ||F|. Hence F(V ) is κ-regular for κ = pα.

(iii) F(V ) is intersecting iff any v ∈ V contains at least one zero coordinate.

If Conjecture 7.1 holds and p ≥ (log n)c for some absolute constant c > 0, then it must hold that V contains
a vector with no zero coordinates. This motivates the following problem.

Problem 7.4. Let V ⊂ Fnp be a α-large subspace. Prove that if p ≥ (log n)c, for some c = c(α), then V
must contain a vector with no zero coordinates.

A previous version of this paper gave a more restricted version of Example 7.3, corresponding to the case
when V spans an MDS code. Namely, dim(VI) = |I| for all I ⊆ [n] with |I| ≤ k. Ryan Alweiss [Alw19]
proved the analog of Problem 7.4 for this case, in fact where p ≥ p0(n/k).
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