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Abstract

The seminal result of Kahn, Kalai and Linial shows that a coalition of O( n
logn ) players can

bias the outcome of any Boolean function {0, 1}n → {0, 1} with respect to the uniform measure.
We extend their result to arbitrary product measures on {0, 1}n, by combining their argument
with a completely different argument that handles very biased coordinates.

We view this result as a step towards proving a conjecture of Friedgut, which states that
Boolean functions on the continuous cube [0, 1]n (or, equivalently, on {1, . . . , n}n) can be biased
using coalitions of o(n) players. This is the first step taken in this direction since Friedgut
proposed the conjecture in 2004.

Russell, Saks and Zuckerman extended the result of Kahn, Kalai and Linial to multi-round
protocols, showing that when the number of rounds is o(log∗ n), a coalition of o(n) players can
bias the outcome with respect to the uniform measure. We extend this result as well to arbitrary
product measures on {0, 1}n.

The argument of Russell et al. relies on the fact that a coalition of o(n) players can boost
the expectation of any Boolean function from ε to 1 − ε with respect to the uniform measure.
This fails for general product distributions, as the example of the AND function with respect
to µ1−1/n shows. Instead, we use a novel boosting argument alongside a generalization of our
first result to arbitrary finite ranges.
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1 Introduction

How can distributed processors collectively flip a somewhat fair coin if some processors may try
to bias the outcome? In the Collective Coin-Flipping Problem, a classical problem in distributed
computing, n processors wish to generate a single common random bit, even in the presence of
faulty and possibly malicious processors. Collective coin-flipping protocols can be used to expedite
Byzantine Agreement [CD89] and are closely related to Leader Election Protocols [Dod06]. The
problem has been considered in several scenarios, depending on the assumptions made on the type
of the communication between the processors, the kind and number of faults, and the power of the
adversary [CD89, BOLS89, Dod06, BOL89].

A Boolean function f : {0, 1}n → {0, 1}, where {0, 1}n is endowed with a product measure µ,
naturally corresponds to a single round collective coin-flipping protocol in the perfect information
model introduced by Ben-Or and Linial [BOL89], where n players each broadcast a bit according to
a private distribution, and at the end, the output of the protocol is the value of f on the broadcast
string. An interesting and important concept in the design of collective coin-flipping protocols is
resilience against coalitions of a significant number of players who attempt to influence the output
of the protocol towards a particular value.

A coalition is a subset S of players that have a particular desired value b ∈ {0, 1} in mind,
and if possible, broadcast bits that set the output of the protocol to b. We study the model where
the coalition is allowed rushing : the corrupt players may wait until all the other players broadcast
their bits before deciding on what bit to broadcast. In other words, they succeed on x ∼ µ if it is
possible to modify x only on the coordinates in S to obtain a string y with f(y) = b; they fail if the
value of f is already determined to be not equal to b by the bits broadcast by the players outside
the coalition. The success of such a coalition can be easily quantified as the probability that the
coalition succeeds on a random x ∼ µ.

Fix a parameter ε > 0. A protocol f is said to be ε-resilient against coalitions of ` players
if no coalition of size at most ` succeeds with probability at least 1 − ε. How resilient can a
function be against large coalitions? Over the uniform distribution, perhaps the most natural
candidate for a highly resilient function is the majority function, which can be easily seen to be
resilient against Ω(

√
n) size coalitions. However, somewhat surprisingly, it turns out that plain

democracy is not the most effective way to be immune against the influence of coalitions. Indeed,
Ajtai and Linial [AL93] gave a randomized construction of a Boolean function that is resilient
against coalitions of size Ω(n/ log2 n), significantly better than the Ω(

√
n) bound of the majority

function. More recently, Chattopadhyay and Zuckerman [CZ16] gave an explicit construction of a
highly resilient function over the uniform measure. This was a key ingredient in their breakthrough
work that introduced explicit two-source extractors for polylogarithmic min-entropy. Subsequently,
Meka [Mek17] gave an explicit construction of a monotone depth three Boolean function that is as
resilient as the randomized construction of Ajtai and Linial.

In this article, we are mainly interested in the limitations of resilience. The most classical theo-
rem in this direction is due to Kahn, Kalai, and Linial [KKL88], who proved that, for the uniform
distribution, no Boolean function is resilient against coalitions of size ω(n/ log n). Closing the gap
between this bound and the Ω(n/ log2 n) construction of Ajtai and Linial remains a longstanding
open problem.

Starting with the work of Ben-Or and Linial [BOL89], researchers have studied two natural
ways to generalize the discussed protocols: First, allow players to broadcast longer messages, and
second, allow many rounds. In this paper, we mostly focus on the latter generalization. In the
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multi-round setting, the voting procedure that is described above is repeated r times: at every
round, first the players who are not in the coalition broadcast their random messages, and then the
players in the coalition decide and broadcast their messages in an adversarial manner. When the
players are sending single-bit messages, the outcome is decided by a function f : ({0, 1}n)r → {0, 1}.

The most efficient known protocols are due to Russell and Zuckerman [RZ01] and to Feige [Fei99].
In the case where players are allowed to send longer messages, they constructed log? n+O(1) round
protocols resilient against coalitions of size βn for any β < 1/2. In the case when players are allowed
to broadcast single bit messages, their protocols use (1 − o(1)) log n rounds, and are still resilient
against coalitions of size βn for any β < 1/2. For a discussion of various models and known upper
and lower bounds, see a survey of Dodis [Dod06].

In the multi-round setting, the players in the coalition have the disadvantage that they will
not see the future-round votes of the other players before voting in the current round. Thus, it
becomes significantly more difficult to prove limitations on resilience as r grows, and naturally the
known bounds are weaker. Russell, Saks and Zuckerman [RSZ02], building upon the work of Kahn
et al. [KKL88], showed that over the uniform measure, no Boolean function f : ({0, 1}n)r → {0, 1}
is ε-resilient against coalitions of size ωε

(
r2n

log(2r−1) n

)
, where log(2r−1) n is an iterated logarithm.

It follows as a simple corollary that Ω(log? n) rounds are necessary in order for a protocol to be
resilient against coalitions of size Ω(n).

The purpose of this paper is to generalize the above results from the uniform distribution to
arbitrary product distributions on the Boolean cube.

A moment of reflection reveals that there are major differences between the uniform distribution
and the general case, and indeed, prior to this work, it was not clear to us whether similar results
were true for general product distributions. We will elaborate on this later, but for now, we only
mention that the coordinates xi that are not highly biased, i.e. t ≤ Pr[xi = 1] ≤ 1 − t for some t
that is not too small, can be handled using the same argument as in Kahn et al. [KKL88]. Similarly,
the argument of Russell et al. [RSZ02] can be used to analyze these coordinates in the multi-round
setting. However, the highly biased coordinates behave very differently, and to handle those, we
need to take an entirely new approach, and employ a new set of ideas. Indeed, our proofs for the
highly biased case have almost no resemblance to those in previous works.

Our first theorem concerns single round protocols. By combining the argument of Kahn, Kalai
and Linial with an argument geared towards biased coordinates, we are able to show that these
protocols can always be influenced towards a single value, with coalitions which are only slightly
worse than those guaranteed by the KKL theorem.

Theorem 1.1. Over any product distribution µ, there is no function f : {0, 1}n → {0, 1} that is
ε-resilient against coalitions of size ωε(

n log logn
logn ) .

(In contrast, the KKL theorem shows the impossibility of ε-resilience against coalitions of size
ωε(

n
logn).)
Next, we prove an impossibility result for resilience in the multi-round setting over arbitrary

product distributions. This was posed as an open problem by Russell et al. [RSZ02]. Here we face
several new challenges. Generalizing our argument for the biased coordinates to the multi-round
setting is far from straightforward, and combining it with the argument of Russell et al. [RSZ02]
for the unbiased coordinates also requires new ideas.
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Theorem 1.2. Let n and r < n be given. Over any product distribution µ over ({0, 1}n)r, there is
no r-round coin-flipping protocol f : ({0, 1}n)r → {0, 1} that is ε-resilient against coalitions of size

ωε

(
n(log? n)2

log(4r) n

)
.

As a result, over any product distribution µ, Ω(log? n) rounds are necessary in order for a
protocol to be resilient against coalitions of size Ω(n).

Influences The notion of resilience of a Boolean function is related to the influences of variables
and coalitions of variables. For a Boolean function f : {0, 1}n → {0, 1} over a product probability
measure µ, the influence of the k-th variable is defined as

Ik(f) := Pr
x∼µ

[f is not constant on Bk(x)] ,

where
Bk(x) := {y ∈ {0, 1}n : yj = xj for all j 6= k}.

The influence of the k-th variable towards a value b ∈ {0, 1} is defined as

Ibk(f) := Pr
x∼µ

[b ∈ f(Bk(x))] .

Similarly, the influence of a coalition S ⊆ [n] towards a value b ∈ {0, 1} is defined as

IbS(f) := Pr
x∼µ

[b ∈ f(BS(x))] ,

where
BS(x) := {y ∈ {0, 1}n : yj = xj for all j /∈ S}.

Equivalently, IbS(f) is the probability that a random x ∼ µ can be modified on its S variables such
that the output of f becomes b.

A function f is not ε-resilient against coalitions of size ` if and only if there exists a set S of
size at most ` and a value b such that IbS(f) ≥ 1− ε.

The seminal work of Kahn, Kalai and Linial introduced discrete Fourier-analytic techniques to
the study of influences. Their main theorem, known as the KKL inequality, states that over the
uniform measure, every unbiased Boolean function f : {0, 1}n → {0, 1} has an influential variable.
Formally, there exists k such that Ik(f) ≥ Ω(α logn

n ) when α ≤ E[f(x)] ≤ 1 − α. Let b ∈ {0, 1}
satisfy Pr[f(x) = b] ≥ ε. Then repeated applications of the KKL inequality imply the existence of a

set S with |S| = Oε

(
n

logn

)
such that IbS(f) ≥ 1− ε. In particular, there are no ωε(n/ log n)-resilient

functions over the uniform distribution.
The above argument shows that unless f is already very biased towards 0 or 1, one can pick

any b ∈ {0, 1} and find a small coalition S that can bias f towards b. However, this is no longer
true if we consider general product distributions.

Example 1.3. Consider the p-biased distribution µnp over {0, 1}n, i.e. each coordinate is 1 with
probability p. Set p = 1/n and let f be the OR function

∨n
i=1 xi. Obviously, E[f ] = 1− (1− p)n ≈

1− 1
e , and yet for every S with |S| = o(n), we have I0S(f) = 1−(1−p)n−|S| ≈ 1− 1

e . In other words,
despite the fact that the expected value of the function is bounded away from both 0 and 1, no small
coalition can influence the output of the function towards 0. However, this is not a counterexample
to Theorem 1.1 because any set S with |S| = 1 satisfies I1S(f) = 1, and thus the function is not
even 1-resilient.
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As the above example illustrates, part of the difficulty of generalizing the coalition theorem of
KKL is to figure out which b ∈ {0, 1} to bias towards.

Using the notation IbS(f), Theorem 1.1 can be restated as follows.

Theorem 1.4 (Theorem 1.1 reformulated). Let f : {0, 1}n → {0, 1} be a function over a product
distribution µ. There exists a set S of size Oε(

n log logn
logn ) such that IbS(f) ≥ 1−ε for some b ∈ {0, 1}.

Remark. To simplify the statement, in Theorem 1.4, we did not explicitly state the dependence of
|S| on ε. Our proof yields the bound |S| = O( log(1/ε)nε logn + n log logn

ε logn ).

Continuous cube and a conjecture of Friedgut The Bernoulli distribution on {0, 1} with
parameter p can be embedded in the continuous interval [0, 1] via the measure-preserving map
σ : [0, 1] → {0, 1} defined as σ(x) = 1 if and only if x ≥ 1 − p. By taking the product of these
maps, for every product probability measure µ on {0, 1}n, we obtain a measure-preserving map
σµ : [0, 1]n → {0, 1}n. As a result, every function f : ({0, 1}n, µ) → {0, 1} naturally corresponds to
a function f : [0, 1]n → {0, 1} defined by f = f ◦ σµ. Note that

IbS [f ] = IbS [f ],

for every S ⊆ [n] and b ∈ {0, 1}. Thus, a more general setting for studying resilience is the set of
measurable functions f : [0, 1]n → {0, 1}. Indeed, Bourgain et al [BKK+92] proved a generalization
of the KKL inequality, but erroneously claimed that as a corollary, if ε ≤ E[f ], then I1S [f ] ≥ 1− ε
for a set S of size |S| = oε(n). Interestingly, Example 1.3, which was introduced in the same paper
to demonstrate that the proof of the KKL inequality breaks down for the continuous cube, is also
a counterexample to this false claim. Friedgut [Fri04] pointed out this error, and suggested the
following tantalizing conjecture to replace the false statement1.

Conjecture 1.5 ([Fri04]). Let f : [0, 1]n → {0, 1} be a measurable function. There exists a set S of
size oε(n) such that IbS(f) ≥ 1− ε for some b ∈ {0, 1}.

A standard compression argument shows that it suffices to prove this conjecture for increasing
functions, and indeed the original form of the conjecture is stated for increasing functions. Further-
more, by discretization, the statement can be further reduced to functions f : {1, . . . , n2}n → {0, 1},
where the domain is endowed with the uniform measure. Note that this form of the conjecture
corresponds to resilience of one-round collective coin-flipping protocols where each player is allowed
to send log n-bit messages.

The above discussion show that, qualitatively, Conjecture 1.5 is a generalization of Theorem 1.4,
and thus our theorem can be considered as a step towards resolving Friedgut’s conjecture. However,
our techniques and ideas seem to fall short of proving the full conjecture.

Beyond the Boolean range As we discussed above, the coalition theorem of KKL says that
if E[f(x) = b] ≥ ε then there exists a small coalition S such that IbS(f) ≥ 1 − ε. Now consider a
function h : {0, 1}n → R over the uniform distribution, where R is a constant size set. Pick any
b ∈ R with Pr[h(x) = b] ≥ ε. We can apply the KKL theorem to the function f : {0, 1}n → {0, 1}
defined as f(x) = 1 if and only if h(x) = b, and conclude that there is a coalition of size Oε (n/ log n)

1Nati Linial told the last author about this error and conjecture years earlier, but as far as we know this is the
first published account.
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with IbS(f) ≥ 1−ε. This shows that over the uniform distribution, the general rangeR easily reduces
to the Boolean range.

Unfortunately, the above reduction cannot be carried for general product distributions, for in
Theorem 1.4, the final outcome b is dictated to us by the function. To illustrate the problem,
consider a function h : {0, 1}n → {0, 1, 2} and a general product distribution µ. By bundling {1, 2}
into a single value and applying Theorem 1.4, we can conclude that there exists a small coalition S
such that either it biases the outcome of the function towards 0, or it biases the outcome towards
being in {1, 2}. If it is the former case, then we are done, but in the latter case, it is not clear how
to proceed.

We know that except for the x’s that belong to a small-measure set E , the coalition can modify
x in such a way that the outcome is in {1, 2}. Now at first glance, it might seem that by applying
Theorem 1.4 again, we can find another coalition T that can modify x further to refine the outcome
to a single value b ∈ {1, 2}, and thus conclude that for most x’s the alliance S ∪ T can influence
the outcome of the function towards b. Unfortunately, this is actually not the case. One reason
is that S and T might intersect, and suggest conflicting modifications to x. Even if S and T are
disjoint, the proof doesn’t work: denoting by x′ the vector obtained from x ∼ µ after modification
by S, we no longer have x′ ∼ µ, and so there is no guarantee that on most inputs T can be applied
successfully. In other words, Pr[x′ ∈ E ] need not be small.

The above discussion shows that one cannot deduce the general case via the simple reduction
that was outlined above for the uniform measure, but surely, as cumbersome as it may be, one can
go over the proof and generalize every step from {0, 1} to {0, 1, 2} by making small notational ad-
justments. This turns out not to be the case either! The proof of Theorem 1.4, rather unexpectedly,
relies on the assumption that the function takes only two values. Indeed, to generalize the result
to larger ranges, we had to introduce new ideas, and in particular a strengthening of Theorem 1.4
(see Theorem 3.5 below) that provides stronger control over the set E described above.

Theorem 1.6 (Single round, general range). Let R be a constant size set, and f : {0, 1}n → R
be a function over a product distribution µ. There exists a set S of size Oε(

n log logn
logn ) such that

IbS(f) ≥ 1− ε for some b ∈ R.

Remark. At the heart of the proof of Theorem 1.6 there is an intermediate result, Theorem 3.5,
which states that if all coordinates are biased, say Pr[xi = 1] < α, then a random coalition of size
O(log3 |R| log log |R| ·αn) biases the outcome with high probability. This intermediate result is an
essential ingredient in the proof of our result on the multi-round setting, Theorem 1.2. For this
application, it was crucial to obtain a bound which depends only polylogarithmically in |R|.

Even though Theorem 1.4 is a special case of Theorem 1.6, we prove them separately, as
Theorem 1.4 can be proven using a shorter and simpler proof.

Paper organization We prove Theorem 1.1, which shows that all single-round protocols can
be biased using coalitions of size o(n), in Section 2. We prove Theorem 1.6, which generalizes the
preceding result to arbitrary finite domains, in Section 3. We prove our main result, Theorem 1.2,
which shows the multi-round protocols can be biased, in Section 4. Finally, Section 5 presents
some concluding remarks.
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2 Single Round Case: Proof of Theorem 1.1

In this section we prove Theorem 1.1, showing that, under any product distribution, there exists a
small coalition which can bias the output of the function towards one of the outputs.

Note that in order to prove Theorem 1.1, without loss of generality, we can assume that
Prx∼µ[xi = 1] ≤ 1

2 for every i ∈ [n], as otherwise we can simply change the role of 0 and 1
for the i-th coordinate. In light of this observation, the coordinates can be divided into two sets:
the small bias coordinates, satisfying Prx∼µ[xi = 1] ∈ (α0,

1
2 ], and the highly biased coordinates,

satisfying Prx∼µ[xi = 1] ≤ α0, where α0 is a threshold that is chosen to be α0 = 1
logn .

Indeed, we first consider the case where all the coordinates are of the same type:

• Small bias case: Prx∼µ[xi = 1] ∈ (α0,
1
2 ] for every i ∈ [n].

• Large bias case: Prx∼µ[xi = 1] ≤ α0 for every i ∈ [n].

We handle the large bias case in Section 2.1, which is the novel part of the proof. The small
bias case is handled in Section 2.2 via a reduction to the previous work of Russell et al. [RSZ02].
Finally, in Section 2.3 we show how to combine the two cases to handle any product distribution
µ, thus completing the proof of Theorem 1.1.

2.1 Large Bias Case

We will sometimes identify the subsets of [n] with elements of {0, 1}n. For example, S ∼ µ would
mean that S = supp(x), where x is sampled according to µ. We construct the coalitions from a
certain boosted form of µ.

Definition 2.1 (Boosted distribution). For a positive integer t, we denote by µ(t) the distribution
of x1 ∨ · · · ∨ xt, where x1, . . . , xt are i.i.d. random variables distributed according to µ.

The large bias case of Theorem 1.1 follows from the following general proposition, that holds
for distributions that are not necessarily product distributions.

Proposition 2.2. Consider f : ({0, 1}n, µ)→ {0, 1}, where µ is an arbitrary probability measure,

and let S ∼ µ(k), where k ≈ 10 log 1
ε

ε . For some b ∈ {0, 1}, we have PrS [IbS [f ] > 1− ε] > 1− ε.

Note that Proposition 2.2 implies (via a straightforward concentration bound) that in the large
bias case, there exists a random coalition of expected size at most kα0n such that PrS [IbS [f ] >
1− ε] > 1− ε. As it will become apparent later, for the application to the multiround setting, it is
important that in Proposition 2.2 the set S is chosen randomly from a distribution that does not
depend on f .

Proposition 2.2 is a direct consequence of the following lemma, as for the Boolean range {0, 1},
either Condition I holds for b = 0 or Condition II holds for b = 1. This, however, is not true for
larger R.

Lemma 2.3 (Key Lemma for Single Round). Consider f : ({0, 1}n, µ)→ R, where µ is an arbitrary

probability measure. Let x, y ∼ µ, S ∼ µ(k), where k ≈ 10 log 1
ε

ε . For b ∈ R, either of

• Condition I: Prx[Pry[f(x ∨ y) = b] ≥ 1− ε] > ε/2, or
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• Condition II: Prx[Pry[f(x ∨ y) = b] ≥ ε] ≥ 1− ε/2,

implies PrS [IbS [f ] > 1− ε] > 1− ε.

Proof. Let S = supp(y1 ∨ · · · ∨ yk), where y1, . . . , yk ∼ µ are drawn independently. Let the sets XI

and XII denote the following subsets of the input space {0, 1}n:

XI = {x : Pr
y

[f(x ∨ y) = b] ≥ 1− ε},

XII = {x : Pr
y

[f(x ∨ y) = b] ≥ ε}.

If we are in the Type I setting, then Pr
[
XI
]
> ε/2, and so

Pr
S

[S contains some x ∈ XI ] ≥ 1− Pr
[
y1, . . . , yk 6∈ XI

]
≥ 1−

(
1− ε

2

)k
> 1− ε.

Note that if there exists z ∈ XI which is a subset of S then for every x, the two elements x and
x ∨ z can only differ on a subset of S, and thus

IbS(f) ≥ Pr
x

[f(x ∨ z) = b] > 1− ε.

Now we turn our attention to Condition II. In this case, we shall prove that PrS [IbS [f ] < 1−ε] ≤ ε.
Indeed,

Pr
S

[IbS [f ] < 1− ε] ≤ Pr
y1,...,yk

[
Pr
x

[∃i ∈ [k], f(x ∨ yi) = b] < 1− ε
]

= Pr
y1,...,yk

[
Pr
x

[∀i ∈ [k], f(x ∨ yi) 6= b] ≥ ε
]
. (1)

To bound the last probability, for x ∈ {0, 1}n let Ex denote the event that for every i ∈ [k],
f(x ∨ yi) 6= b. Then

Pr
x

[Ex] ≤ Pr
x

[x 6∈ XII ] + Pr
x

[Ex ∧ x ∈ XII ] ≤ ε

2
+ Pr

x
[Ex | x ∈ XII ].

Plugging this into (1), we get

Pr
S

[IbS [f ] < 1− ε] ≤ Pr
y1,...,yk

[Pr
x

[Ex] ≥ ε] ≤ Pr
y1,...,yk

[
Pr
x

[Ex | x ∈ XII ] ≥ ε

2

]
≤

1

(ε/2)
Pr

y1,...,yk,x
[Ex | x ∈ XII ].

Since k ≈ 10 log 1
ε

ε ,

Pr
x,y1,...,yk

[Ex | x ∈ XII ] ≤ (1− ε)k ≤ ε2

2
,

showing that

Pr
S

[IbS [f ] < 1− ε] ≤ 1

(ε/2)
· ε

2

2
≤ ε.
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2.2 Small Bias Case

To handle the small bias case for the sake of proving Theorem 1.1, one can simply repeat the
argument of Kahn et al. [KKL88], i.e. iteratively select influential variables and set them to the
value that increases the probability of success. However, for the purposes of our results in the
multi-round setting, we will need to prove a stronger result, which states that even if the coalition
is selected randomly, there is a nontrivial chance of succeeding in influencing the outcome.

We start with the case that Pr[xi = 1] ∈ (1/4, 3/4) for every i. The following lemma is proved
in [RSZ02] for the uniform distribution. By inspection, it is easy to check that the proof extends
to any product distribution in which the marginal biases are bounded away from 0 and 1.

Lemma 2.4 ([RSZ02], Lemma 11 modified). Let n ∈ N, γ ∈ (0, 1/2) and m ≤ n. Assume m >
n/γ log n. Let f : ({0, 1}n, µ) → {0, 1}, where µ is a product distribution such that E[xi] ∈ (14 ,

3
4)

for each i ∈ [n]. If E[f ] ≥ γ then

Pr
S⊆[n] : |S|=m

[I1S [f ] ≥ 1− γ] >
1

2

(m
4n

)2 80n
mγ

.

We can extend Lemma 2.4 to somewhat higher biases by representing a µp distributed variable
as an AND of t variables that are µc distributed, where c ≈ 1/2 and p = ct.

Lemma 2.5. Let n ∈ N, γ ∈ (0, 1/2) and m ≤ n. Let f : ({0, 1}n, µ)→ {0, 1}, where µ is a product

distribution such that for all i, 1/n < α ≤ E[xi] ≤ 1/2. Assume m > n log 1/α
2γ logn . If E[f ] ≥ γ then

Pr
S⊆[n] : |S|=m

[
I1S [f ] ≥ 1− γ

]
>

1

2

(
m

4n log 1/α

)2
80n log 1/α

mγ

.

Proof. The lemma is proved by a reduction to Lemma 2.4. Let µi := E[xi]. For each variable
i ∈ [n], we pick ci ∈ (14 ,

3
4) and an integer ti ≤ log 1/α such that µi = ctii : first choose ti ≤

log1/4 α so that
(
1
4

)ti < µi <
(
3
4

)ti (note the intervals are overlapping since
(
3
4

)2
> 1

4), and then
choose ci appropriately. For each variable xi, introduce ti new variables yi,1, . . . yi,ti . Consider
g : ({0, 1}

∑
i ti , µ′)→ {0, 1}, where µ′ =

∏
i µ

ti
ci and

g(y) = f

 t1∧
j=1

y1,j , . . . ,

tn∧
j=1

yn,j

 .

We designed g so that the input to f is distributed according to µ. Applying Lemma 2.4, we deduce
that typical S of size m satisfy I1S [g] ≥ 1 − γ. Let S′ = {xi : yi,j ∈ S for some j}. A moment’s
thought shows that I1S′ [f ] ≥ 1− γ. A simple coupling argument now completes the proof.

2.3 Finishing the Proof: Combining the Two Cases

We are ready to finish the proof of Theorem 1.1. Let A := {i : Prx∼µ[xi = 1] ∈ (α0,
1
2 ]}, and

recall that α0 = 1
logn . For every y ∈ {0, 1}A, define fy : {0, 1}[n]\A → {0, 1} as fy(z) := f(y, z). By

Proposition 2.2, for every y ∈ {0, 1}A, there exists b := by ∈ {0, 1} such that

Pr
S∼µ(k)

[n]\A

[
IbS [fy] > 1− ε

2

]
> 1− ε

2
,
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where k = O
(
log(1/ε)

ε

)
. Moreover, since every variable i in [n]\A satisfies E[xi] ≤ α0 = 1/ log n,

Chernoff’s bound gives,

Pr
S∼µ(k)

[n]\A

[
|S| ≥ C log(1/ε)n

ε log n

]
≤ exp

(
−Ω

(
log(1/ε)n

ε log n

))
≤ ε

2
,

for some constant C > 0. Therefore,

Pr
S∼µ(k)

[n]\A

[
IbS [fy] > 1− ε

2
and |S| ≤ C log(1/ε)n

ε log n

]
> 1− ε.

It follows that

E
S∼µ(k)

[n]\A

[
Pr
y,b

[
IbS [fy] ≥ 1− ε

2

]]
>

1− ε
2
≥ 1

4
,

assuming without loss of generality that ε ≤ 1/2. Hence, there exists a fixed b0 ∈ {0, 1} and a set

S, satisfying |S| ≤ C log(1/ε)n
ε logn and

Pr
y

[
Ib0S [fy] ≥ 1− ε

2

]
≥ 1

4
.

Now, define h : {0, 1}n → {0, 1} as h(y) = 1 if and only if Ib0S [fy|A ] ≥ 1 − ε/2. Note that, h

depends only on A variables. The above inequality asserts that E[h] ≥ 1
4 . Since, A contains only

small bias variables, we may apply Lemma 2.5. Namely, there is m = O(n log logn
ε logn ) such that

Pr
T⊆[n] : |T |=m

[
I1T [h] ≥ 1− ε

2

]
> 0.

Thus, there exists a coalition T ⊆ A of size O(n log logn
ε logn ) of players that can bias h towards 1. In

other words, T can bias y towards cases where S is able to bias fy towards b0. As a result,

Ib0S∪T [f ] ≥
(

1− ε

2

)(
1− ε

2

)
> 1− ε.

Moreover, |S ∪ T | = O
(
n log logn
ε logn + log(1/ε)n

ε logn

)
, as desired.

3 The Larger Range: Proof of Theorem 1.6

As outlined in the introduction, there are certain obstacles to generalizing Theorem 1.1 to larger
ranges. In particular, the fact that the set E of all the points on which the coalition fails in
Theorem 1.1 is of small measure does not seem to be a sufficiently strong condition for an induction
to go through. We will need to prove a strengthening of Theorem 1.1 which shows that not only is
E of small measure, but it is also small if it is measured via the boosted distributions introduced
in Definition 2.1. This leads to a more general definition of influence.

Definition 3.1 (Boosted influence towards value). Let R be an arbitrary set. For a function
f : {0, 1}n → R and b ∈ R, define

Ib,tS (f) = Pr
x∼µ(t)

[b ∈ f(BS(x))].

Note that IbS(f) = Ib,1S (f), as µ(1) = µ.
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The following lemma generalizes Lemma 2.3, as we spell out in its corollary.

Lemma 3.2. Consider f : {0, 1}n → R, let t ∈ N, and let S ∼ µ(k), where k = 10t
δ log t

ε . Let b ∈ R.
We have

Pr
S

[∀` ≤ t, Ib,`S (f) ≥ 1− ε] ≥ 1− ε,

if any of the following two cases hold:

• Case I: For some s ≤ t,

Pr
u∼µ(s)

[ Pr
v∼µ(t)

[f(u ∨ v) = b] ≥ 1− ε/2] ≥ δ.

• Case II: For every s ≤ t,

Pr
u∼µ(s)

[ Pr
v∼µ(t)

[f(u ∨ v) = b] ≥ δ] ≥ 1− ε

2
.

Proof. Case I: Suppose the condition in Case I is satisfied. Fix a u, and consider an ` ≤ t. Since

Pr
v∼µ(t)

[f(u ∨ v) 6= b] = E
w∼µ(t−`)

[
Pr

v∼µ(`)
[f(u ∨ v ∨ w) 6= b]

]
,

by Markov’s inequality Prv∼µ(t) [f(u ∨ v) 6= b] ≤ ε/2 would imply that

Pr
w∼µ(t−`)

[
Pr

v∼µ(`)
[f(u ∨ v ∨ w) 6= b] ≥ ε

]
≤ 1/2,

or equivalently

Pr
w∼µ(t−`)

[
Pr

v∼µ(`)
[f(u ∨ v ∨ w) 6= b] < ε

]
≥ 1/2.

In other words,

Pr
v∼µ(t)

[f(u ∨ v) = b] ≥ 1− ε/2 =⇒ Pr
w∼µ(t−`)

[
Pr

v∼µ(`)
[f(u ∨ v ∨ w) = b] > 1− ε

]
≥ 1/2.

Averaging over u, we conclude that by the assumption of Case I, we have

δ/2 ≤ Pr
u∼µ(s)
w∼µ(t−`)

[
Pr

v∼µ(`)
[f(u ∨ v ∨ w) = b] > 1− ε

]
= Pr

u∼µ(s+t−`)
[ Pr
v∼µ(`)

[f(u ∨ v) = b] ≥ 1− ε].

Hence, recalling that S ∼ µ(k), the probability that there exists u ⊆ S such that Prv∼µ(`) [f(u∨
v) = b] ≥ 1− ε is at least

1− (1− δ/2)bk/(s+t−`)c ≥ 1− ε/t.

But if this event happens then Ib,`S (f) ≥ 1− ε. Hence by the union bound,

Pr
S

[∀` ≤ t, Ib,`S (f) ≥ 1− ε] ≥ 1− ε.
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Case II: Next assume that the condition in Case II is satisfied. Consider an ` ≤ t. Define

B = {u : Pr
v∼µ(t)

[f(u ∨ v) = b] < δ},

and note that by our assumption

µ(`)(B) ≤ ε

2
.

Since S ∼ µ(k), we can set S = y1 ∨ · · · ∨ yk/t, where yi ∼ µ(t) are i.i.d. random variables. This
shows that

Ib,`S (f) ≥ Pr
u∼µ(`)

[f(u ∨ yi) = b for some i].

Hence
Pr
S

[Ib,`S < 1− ε] ≤ Pr
y1,...,yk/t∼µ(t)

[ Pr
u∼µ(`)

[f(u ∨ yi) 6= b for all i] > ε].

Define now
py1,...,yk/t = Pr

u∼µ(`)
[f(u ∨ yi) 6= b for all i and u /∈ B],

and notice that

Pr
u∼µ(`)

[f(u ∨ yi) 6= b for all i] ≤ µ(`)(B) + py1,...,yk/t ≤
ε

2
+ py1,...,yk/t .

Therefore,

Pr
S

[Ib,`S < 1− ε] ≤ Pr
y1,...,yk/t∼µ(t)

[
py1,...,yk/` >

ε

2

]
≤ 2

ε
E

y1,...,yk/t∼µ(t)
[py1,...,yk/` ] =

2

ε
Pr

u∼µ(`)
y1,...,yk/t∼µ(t)

[f(u ∨ yi) 6= b for all i and u /∈ B].

When u /∈ B, the probability that f(u ∨ yi) 6= b is at most 1− δ, and so

Pr
u∼µ(`)

y1,...,yk/t∼µ(t)

[f(u∨ yi) 6= b for all i and u /∈ B] = E
u∼µ(`)

[1B · Pr
y∼µ(t)

[f(u∨ y) 6= b]k/t] ≤ (1− δ)k/t ≤ ε2

2t
.

This shows that PrS [Ib,`S < 1 − ε] ≤ ε/t. We complete the proof by an application of the union
bound.

Corollary 3.3. Consider f : {0, 1}n → {0, 1}, let t ∈ N, and S ∼ µ(k), where k = 20t
ε log t

ε . At
least for one of the values b ∈ {0, 1}, we have

Pr
S

[∀` ≤ t, Ib,`S (f) ≥ 1− ε] ≥ 1− ε.

Proof. Setting δ = ε/2, either Case I holds for b = 0 or Case II holds for b = 1.

Another corollary allows the function f to attain a third value †, as long as its probability is
small enough (with respect to various boostings of µ).
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Corollary 3.4. Consider f : {0, 1}n → {0, 1, †}, let t ∈ N, and let S ∼ µ(k), where k = k(t, ε) =
40t
ε log t

ε . If Prx∼µ(`) [f(x) = †] < (ε/4)2 for all ` ≤ 2t, then at least for one of the values b ∈ {0, 1},
we have

Pr
S

[∀` ≤ t, Ib,`S (f) ≥ 1− ε] ≥ 1− ε.

Proof. Set δ = ε/4, and fix an s. Suppose that neither Case I holds for b = 0, nor Case II holds for
b = 1. That is

Pr
u∼µ(s)

[ Pr
v∼µ(t)

[f(u ∨ v) = 0] ≥ 1− ε/2] < ε/4, (2)

and
Pr

u∼µ(s)
[ Pr
v∼µ(t)

[f(u ∨ v) = 1] ≥ ε/4] < 1− ε/2. (3)

Let

B =

{
u : Pr

v∼µ(t)
[f(u ∨ v) = 0] ≥ 1− ε/2 or Pr

v∼µ(t)
[f(u ∨ v) = 1] ≥ ε/4

}
,

and note that for every u 6∈ B we have

Pr
v∼µ(t)

[f(u ∨ v) = †] ≥ ε/4.

On the other hand, by (2) and (3) we have

Pr
u∼µ(s)

[u ∈ B] < 1− ε

4
.

This is a contradiction, as it implies that

Pr
x∼µ(s+t)

[f(x) = †] = Pr
u∼µ(s)
v∼µ(t)

[f(u ∨ v) = †] ≥ Pr
u∼µ(s)

[u 6∈ B] Pr
u∼µ(s)
v∼µ(t)

[f(u ∨ v) = †|u 6∈ B] ≥
( ε

4

)2
.

Hence for every s, either Case I holds for b = 0, or Case II holds for b = 1, and thus Lemma 3.2
implies the corollary.

We can now state and prove the main result of this section, which generalizes Corollary 3.4 to
allow more output bits. The failure output † allows the inductive proof of Theorem 3.5, as well as
our multi-round result, Theorem 4.2, to go through, as we explain in Section 4.

Theorem 3.5. Let f : {0, 1}n → {0, 1}m∪{†}, and suppose that {0, 1}n is endowed with a probabil-
ity measure µ. Let t be a positive integer, and let S ∼ µ(k), where k = k(m, t, ε) = O(tm3ε−2 log tm

ε ).

If Prµ(`) [†] < ε4

216
for every ` ≤ 2t, then there exists a value b ∈ {0, 1}m such that

Pr
S

[
∀` ≤ t, Ib,`S (f) ≥ 1− ε

]
≥ 1− ε.

Proof. We prove this by induction on m. The base case m = 1 is established in Corollary 3.4.
We divide f(x) into two parts f1(x) and f2(x) corresponding to the first bit and the following

m− 1 bits, respectively. That is, f1(x) = f2(x) = † if f(x) = †, and otherwise f1(x) equals the first

bit, and f2(x) equals the last m− 1 bits of f(x). Let ε1 =
(
ε
8

)2
, ε2 = ε− ε1, k1 = k(1, 2t, ε1), and

k2 = k(m− 1, t, ε2).
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Since Prx∼µ(`) [f(x) = †] <
(
ε1
4

)2
, applying the base case to f1 with parameters m = 1, 2t and

ε1, we find a value b1 ∈ {0, 1} such that

Pr
S1∼µ(k1)

[∀` ≤ 2t, Ib1,`S1
(f1) ≥ 1− ε1] ≥ 1− ε1.

Let us call an S1 good if for all ` ≤ 2t we have Ib1,`S1
(f1) ≥ 1− ε1. For a fixed good S1, for every

x satisfying b1 ∈ f1(BS1(x)), let σS1(x) = y, where y ∈ BS1(x) is an element satisfying f1(y) = b1.
We call such values of x good with respect to S1. We call the other values of x bad with respect to
S1. Note that if S1 is good, then not only a random x ∼ µ is unlikely to be bad, but the same is
true if x ∼ µ(`) for larger values of ` as long as ` ≤ 2t. More precisely, for every ` ≤ 2t,

Pr
x∼µ(`)

[x is bad w.r.t. S1 | S1 is good] < ε1.

This stronger statement is the key property that will allow us to proceed with our strong
induction.

Now we need to force the last m− 1 bit of f . Let gS1 : {0, 1}n → {0, 1}m−1 ∪ {†} be defined as
gS1(x) = f2(σS1(x)) for good values of x, and gS1(x) = † for bad values of x. Note that

Pr
x∼µ(`)

[gS1(x) = † | S1 is good] < ε1 ≤
(ε2

4

)2
,

where the last inequality can be verified easily.
Provided that S1 is good, applying the induction hypothesis to gS1 with ε2 and k2, we conclude

that there exists a value b2 ∈ {0, 1}m−1 such that

Pr
S2∼µ(k2)

[∀` ≤ t, Ib2,`S2
(gS1) ≥ 1− ε2] ≥ 1− ε2.

Let us call S2 good with respect to S1 if the condition in the above probability holds.
Now suppose that S1 is good, and that S2 is good with respect to S1. Then for a random x ∼ µ`,

with probability at least 1− ε2, there is a y ∈ BS2(x) with gS1(y) = f2(σS1(y)) = b2. On the other
hand, f1(σS1(y)) = b1 and σS1(y) ∈ BS1(y). This shows that z = σS1(y) satisfies z ∈ BS1∪S2(x)
and f(z) = (f1(x), f2(x)) = (b1, b2) =: b. Hence conditioned on S1 and S2 being good, we have for
S = S1 ∪ S2 and every ` ≤ t,

Ib,`S (f) ≥ 1− ε2.

We conclude that for S = S1 ∪ S2,

Pr
S

[∀` ≤ t, Ib,`S (f) ≥ 1− ε2] ≥ Pr[(S1 is good) and (S2 is good w.r.t. S1)]

≥ Pr[S1 is good)]× Pr[S2 is good w.r.t. S1 | S1 is good]

≥ (1− ε1)(1− ε2) ≥ 1− ε1 − ε2 = 1− ε.

Finally, denoting by k(m, t, ε) the value k such that S ∼ µ(k), we get the recurrence

k(m, t, ε) ≤ k(1, 2t, ε1) + k(m− 1, t, ε2),

with base case k(1, 2t, ε) = O(t/ε1 log(t/ε1)). Accordingly, define K(γ) = (t/γ2) log(t/γ).
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Let us define a sequence γ1 = ε, γr+1 = γr(1 − γr/64); note that γr+1 is the ε2 corresponding
to ε = γr. Then

k(m, t, ε) = O(K(γ1) + · · ·+K(γm)).

Since the γ sequence is monotone, we see that γr ≥ γ1(1− ε/64)r. Choose a constant C ≥ 2 so
that s1 = C/ε satisfies γs1 ≥ ε/2. The same calculation shows that s2 = 2C/ε satisfies γs1+s2 ≥ ε/4,
that s3 = 4C/ε satisfies γs1+s2+s3 ≥ ε/8, and so on. In general, γs1+···+sa ≥ ε/2a. On the other
hand, s1 + · · ·+ sa = (2a − 1)C/ε. This shows that

γs1+···+sa ≥
ε

s1 + · · ·+ sa
.

Now choose the minimal a so that s1 + · · ·+ sa ≥ m. Then either a = 1 or m ≥ (s1 + · · ·+ sa)/2.
In both cases, γm ≥ ε/(2m). Therefore,

k(m, t, ε) = O(mK(γm)) = O

(
tm3ε−2 log

tm

ε

)
.

3.1 Proof of Theorem 1.6

Finally, we show how Theorem 1.6 follows from Theorem 3.5. Similar to the proof of Theorem 1.1
in Section 2.3, we need to combine Theorem 3.5 that handles the highly biased coordinates with
the KKL argument that handles the small bias coordinates.

Let m = dlog2 |R|e, and embed R inside {0, 1}m. As in Section 2.3, let A = {i : Pr[xi = 1] >
α0}, where α0 = 1

logn , and for every y ∈ {0, 1}A, define fy : {0, 1}[n]\A → {0, 1}m ∪ {†} as fy(z) :=
f(y, z) (note fy(z) 6= † for all y, z). Theorem 3.5 (applied with t = 1 and ε/2) shows that for every
y ∈ {0, 1}A there exists by ∈ {0, 1}m such that

Pr
S∼µ(k)

[n]\A

[
I
by
S (fy) ≥ 1− ε

2

]
≥ 1− ε

2
,

where k = O(m3ε−2 log m
ε ). An averaging argument similar to the one in Section 2.3 shows that

there exists b0 ∈ {0, 1}m and a set S of size O( kn
logn) such that

Pr
y

[
Ib0S [fy] ≥ 1− ε

2

]
≥ 1

2m+1
.

We now define the function h : {0, 1}A → {0, 1} just as in Section 2.3: it equals 1 when Ib0S [fy] ≥
1− ε/2. Applying Lemma 2.5 with γ = min(ε/2, 1/2m+1), we deduce the existence of a coalition T
of O(n log logn

γ logn ) players such that I1T [h] ≥ 1− ε/2. As in Section 2.3, we conclude that

Ib0S∪T [f ] ≥ (1− ε/2)(1− ε/2) ≥ 1− ε.

Finally, the size of the coalition S ∪ T is

|S ∪ T | = O

(
m3 log m

ε · n
ε2 log n

+
(1/ε+ 2m)n log logn

log n

)
,

as claimed.
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4 Multi-Round Protocols: Proof of Theorem 1.2

In this section we will prove Theorem 1.2, showing that even in the multi-round setting, there are
no protocols that are resilient against all coalitions of size o(n). As described in the introduction,
here at every round, first the players who are not in the coalition broadcast their random messages,
and then the players in the coalition decide and broadcast their messages in an adversarial manner.
The outcome is decided by a function f : ({0, 1}n)r → {0, 1}.

To be more formal, let µ = µ1 × · · · × µr be a product distribution over {0, 1}rn ≡ ({0, 1}n)r,
where each µi is a product distribution over {0, 1}n. An (n, r) coin-flipping protocol is simply a
map f : ({0, 1}n)r → {0, 1}. Such a protocol is executed in r rounds. In the presence of a coalition
B ⊆ [n] of bad players, the protocol operates as follows. In round i, the players in [n]\B select
αi ∈ {0, 1}[n]\B according to µi|[n]\B. Then, the bad players B choose their values depending on
α1, . . . , αi. Formally, an (n, r)-strategy for a set B ⊆ [n] is a sequence π = (π1, . . . , πr) of functions
where

πi : ({0, 1}[n]\B)i → {0, 1}B.

The function πi describes the choice of bits the bad players make in the i-th round based on the
broadcasted bits of the good players in the first i rounds.

Definition 4.1. Let f : ({0, 1}n)r → {0, 1} be an (n, r) coin-flipping protocol, and let µ be a product
distribution on ({0, 1}n)r. Given a Boolean value b ∈ {0, 1}, a set B ⊆ [n], and an (n, r)-strategy
π for the bad players B,

• Ibπ,B(f) is the probability that f outputs b given that the bad players B follow π.

• IbB(f) := supπ{Ibπ,B(f)} is the influence of B on f towards b.

Our goal is to show that there exists a coalition B of size o(n) such that IbB(f) ≥ 1 − ε for
some b ∈ {0, 1}. For the moment, let us assume that we have only two rounds, and let f(x, y)
denote the protocol, where x, y ∈ {0, 1}n correspond to the inputs in the first and the second round
respectively. Let us also denote fx(y) : = f(x, y).

Russell et al. [RSZ02] proof of the uniform case: Pick b ∈ {0, 1} such that Pr[f(x, y) = b] ≥
1
2 . Let A be the set of all x ∈ {0, 1}n that satisfy Pry[fx(y) = b] ≥ 1

4 , and note that Prx[x ∈ A] ≥ 1
4 .

By Lemma 2.4 of Russell et al. [RSZ02], for every x ∈ A, a random coalition S can bias fx towards
b, with a probability δ that is not too small. Since S is chosen randomly and independently of x,
it follows that there exists a fixed coalition S0 that can bias fx for at least a δ fraction of x ∈ A,
and thus for at least a δ

4 fraction of {0, 1}n. Let A′ ⊆ A ⊆ {0, 1}n denote the set of such x. If
x ∈ A′, the coalition S0 is able to bias the protocol by only interfering in the second round. The
set A′ is of measure at least δ

4 , which is not too small. Thus, applying Lemma 2.4 again, we can
find another coalition T0 = o(n) which can modify most x’s to fall in A′. Now we can form the
desired coalition B = T0 ∪ S0: In the first round, the players in T0 try to modify x into an element
in A′, and if they succeed, in the second round, the players in S0 interfere to change the outcome
of the protocol into b. This argument easily generalizes to more rounds.

We point out that it was crucial for the above argument, that the distribution of S in Proposi-
tion 2.2 is independent of f .
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What fails for the general product distributions: Consider f(x, y) over µ = µ1×µ2, where
µ1 is highly biased, and µ2 is the uniform distribution. Similar to the previous paragraph, we can
find a set A′ ⊆ {0, 1}n, a value b ∈ {0, 1}, and a small coalition S0 such that Prx∼µ1 [x ∈ A′] ≥ δ

4 ,
and moreover for every x ∈ A′, the coalition S0 is able to influence f towards b by interfering only
in the second round. Now, if we are to follow the argument of Russell et al., we would like to find
a set T0 of players to add to the coalition such that, with high probability, T0 is able to modify a
random x ∼ µ1 into an element in A′. We could then conclude that B = S0∪T0 can bias f towards
b.

Unfortunately, Proposition 2.2, the highly-biased counterpart of Lemma 2.4, only guarantees
the existence of a small coalition T0 which either modifies a random x ∼ µ into being in A′ or
modifies a random x ∼ µ into not being in A′; in the latter case, the coalition T0 is useless. As
Example 1.3 shows, this is not just a caveat of the proof of the proposition. To be more concrete,
suppose µ1 is the 1

n -biased distribution, and A′ consists only of the single element x = ~0. Even
though Pr[x ∼ A] ≥ 1

4 , there is no coalition of size o(n) which can, with high probability, modify a
random x ∼ µ1 into an element in A′. On the other hand, even a single player can modify every x
into an element outside A′, but this is not helpful for our purposes, as the elements outside A′ are
the elements that S0 cannot handle.

How to overcome the problem: Consider the same setting as in the previous paragraph. We
know that for every x, a random coalition S of size o(n) succeeds in influencing fx towards one of
the outputs, with probability at least δ, where δ is not too small. Instead of picking one S0, we
select a collection of coalitions that cover almost all x’s. More precisely, we find S1, . . . , SM and
b1 . . . , bM , where M = Oδ(1), such that apart from a small set of exceptions E ⊆ {0, 1}n, every fx
can be biased towards some bi using the coalition Si.

Let h : {0, 1}n → {1, . . . ,M}∪ {†} be defined as follows: If x ∈ E , then h(x) = †, and otherwise
h(x) is equal to some i such that Si can bias fx towards bi. This brings us to the non-Boolean
range case, which was analyzed in Section 3. We can apply Theorem 3.5 to find a coalition T
that can influence h towards one of the values in j ∈ {1, . . . ,M}. Now B = T ∪ Sj will be our
desired coalition. With high probability, in the first round the players in T can successfully modify
a random element x into an element x′ with h(x′) = j, and then in the second round, the players in
Sj can modify x′ to bias the outcome towards bj . This is the main new idea used below to resolve
the multi-round setting over arbitrary distributions.

Theorem 1.2 is a consequence of the following more elaborate theorem which states that for
sufficiently large n, and r ≤ log? n/5, no (n, r) protocol over an arbitrary product distribution is
resilient against coalitions of m = o(n) bad players.

Theorem 4.2. For every ε > 0, and integers n > 0, and r < log? n/5, there exists δ = Ω( 1
log(1/ε)rn

),

and m = o(n) such that the following holds. For every f : ({0, 1}n)r → {0, 1} over a product
distribution µ, there exists b ∈ {0, 1}, such that the corresponding r-round protocol satisfies

Pr
S∼ν

[IbS(f) ≥ 1− ε] ≥ δr,

where ν is a distribution on
(
[n]
m

)
that depends only µ but not on f . To be more precise, one can

take m = Oε

(
n·r·4r

log(4r) n

)
= Oε

(
n(log? n)2

log(4r) n

)
.

Proof. Let µ = µ1 × · · · × µr. We make two simplifying assumptions:
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1. Without loss of generality, we may assume for every i ∈ [r] and j ∈ [n] that Ex∼µi [xj ] ≤ 1
2 ,

as otherwise, we can exchange the role of 0 and 1 for the j-th variable.

2. Let η1, . . . , ηr ∈ (0, 1) be set later. By potentially doubling the number of rounds, and
modifying the product distributions, we will assume that for every i ∈ [r], the distribution µi
is either highly biased or not very biased. Namely, one of the following two cases holds

– Highly biased with parameter ηi: For all j ∈ [n], Ex∼µi [xj ] ≤ ηi;
– Small biased with parameter ηi: For all j ∈ [n], Ex∼µi [xj ] > ηi;

In more detail, let µ̂1, . . . , µ̂r/2 be the original distributions. If η2i−1 ≤ η2i, then for each j ∈
[n], either Ex∼µ̂i [xj ] ≤ η2i or Ex∼µ̂i [xj ] > η2i−1. We let µ2i−1 be the highly biased distribution
with parameter η2i−1 obtained from µ̂i by replacing the η2i−1-unbiased coordinates with
dummy coordinates, and similarly µ2i is the small biased distribution with parameter η2i
obtained from µ̂i in an analogous fashion. If η2i−1 ≥ η2i, then instead µ2i−1 will be η2i−1-
unbiased and µ2i will be η2i-biased.

Let δ0 := 1, m0 := 0, and k0 := 0. For every ` ∈ [r] we set the following parameters, some of
them recursively:

• δ` := Θ( 1
log`(1/ε) log(4r−4`) n

)

• η` := δ`−1

• k` := O( 4r−`n
log(4r) n·ε3

)

• m` := k` +m`−1

We will show by induction on ` that the following modified statement of the theorem holds.

Let g : ({0, 1}n)` → {0, 1} be an (n, `, µr−`+1 × . . .× µr)-protocol. There is a choice
of b ∈ {0, 1} and a probability measure ν` over subsets of [n] of size at most m`, such
that

Pr
S∼ν`

[
IbS(g) ≥ 1− ε

2r−`

]
≥ δ` > 0.

Moreover, ν` does not depend on g.

Note that the ` = r case is then the statement of the theorem. The base case of ` = 0 is about
biasing a zero-round protocol (namely, a protocol that outputs a constant value in {0, 1} with no
players involved). The base case of ` = 0 is trivially true, as no bad players are needed to fully bias
a constant valued protocol with probability 1.

For the induction step, in the case when the first round of g is highly biased, we apply the
following lemma.

Lemma 4.3 (Large bias). Let g : ({0, 1}n)` → {0, 1} be an `-round coin-flipping protocol, and
suppose that for each i ∈ [`], the i-th round is endowed with the distribution µr−`+i. Suppose that
µr−`+1 is highly biased with parameter η`. There is b ∈ {0, 1} such that for

k = O

(
ε−34r−` log r log

(
1

δ`−1

)
log log

(
1

δ`−1

))
18



it holds that

Pr
S∼µ(k)r−`+1,T∼ν`−1

[
IbS∪T (g) ≥ 1− ε

2r−`

]
≥ δ`−1

4 log(1/ε) + 4r
.

(Here µ
(k)
r−`+1 is the union of the supports of k independent samples from µr−`+1.)

Proof. Throughout the proof it helps to think of sampling T ∼ ν`−1 in two stages: We first sample

M = O
( log(1/ε)+r

δ`−1

)
sets T1, . . . , TM independently from ν`−1. We later sample i ∈ [M ] uniformly at

random and let T = Ti. Note that, even though we sampled T in two stages, T is still distributed
according to ν`−1.

For every x ∈ {0, 1}n define an (` − 1)-round protocol gx : ({0, 1}n)`−1 → {0, 1} as gx(y) :=
g(x, y). By the induction hypothesis, for every x,

Pr
T1,...,TM

[
∃i ∈ [M ],

(
I1Ti(gx) ≥ 1− ε

2r−`+1
or I0Ti(gx) ≥ 1− ε

2r−`+1

)]
≥ 1− (1− δ`−1)M . (4)

For i ∈ [M ] let bin(i) ∈ {0, 1}dlogMe denote the binary representation of i− 1 (we chose i− 1 so
that the all zeros vector does not go unused). We define a function h : {0, 1}n → {0, 1}dlogMe+1∪{†}
as follows. We set h(x) = † if for every i ∈ [M ], both I1Ti(gx) < 1− ε

2r−`+1 and I0Ti(gx) < 1− ε
2r−`+1 .

Otherwise, we let h(x) = (bin(i), b), where (i, b) ∈ [M ] × {0, 1} is the lexicographically first tuple
such that IbTi(gx) ≥ 1− ε

2r−`+1 .
We will apply Theorem 3.5 to h with t = 1, but before doing so, we will show that the conditions

on the † probability will hold with high probability over the choice of T1, . . . , TM . We need to verify

that Prµr−`+1
[†] ≤ (ε/2r−`+1)4

216
and Pr

µ
(2)
r−`+1

[†] ≤ (ε/2r−`+1)4

216
. We first observe that,

Pr
µr−`+1

[†] = Pr
x∼µr−`+1

[
∀i ∈ [M ], b ∈ {0, 1}, IbTi [gx] < 1− ε

2r−`+1

]
.

Thus (4) gives us,

E
T1,...,TM

[
Pr

µr−`+1

[†]
]
≤ (1− δ`−1)M ≤

(ε/2r−`+1)5

217
.

Applying Markov’s inequality, we get

Pr
T1,...,TM

[
Pr

µr−`+1

[†] ≥ (ε/2r−`+1)4

216

]
≤ (ε/2r−`+1)

2
.

An identical argument gives

Pr
T1,...,TM

[
Pr

µ
(2)
r−`+1

[†] ≥ (ε/2r−`+1)4

216

]
≤ (ε/2r−`+1)

2
.

Thus, h satisfies the conditions of Theorem 3.5 for t = 1 with probability at least 1− ε
2r−`+1 . Define

ET to be this event. Conditioned on ET , there exist i ∈ [M ] and b ∈ {0, 1} for which

Pr
S∼µ(k)r−l+1

[
I
(bin(i),b)
S [h] ≥ 1− ε/2r−`+1

]
≥ 1− ε/2r−`+1,

where k = O
(

log(3)M( ε
2r−`

)−2 log
(
logM
ε

))
= O

(
4r−` log r · ε−3 log

(
1

δ`−1

)
log log

(
1

δ`−1

))
.
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Let S be such that I
(bin(i),b)
S [h] ≥ 1 − (ε/2r−`+1). This means that a set of bad players S can

use the first round to bias h towards inputs x, for most of which, Ti can be used to bias gx towards
b. As a result, for such S, IbS∪Ti(g) ≥ (1 − ε/2r−`+1)(1 − ε/2r−`+1) ≥ 1 − ε/2r−`. The probability
that the final set T is equal to this specific Ti is 1/M . To sum up, we have proved

Pr
S∼µ(k)r−`+1,T∼ν`−1

[
IbS∪T [g] ≥ 1− ε

2r−`

]
≥ Pr

S∼µ(k)r−`+1

[
I
(bin(i),b)
S [h] ≥ 1− ε

2r−`+1

∣∣∣ET ] · Pr[ET ] · Pr
T

[T = Ti]

≥ 1

M
·
(

1− ε

2r−`+1

)
· Pr
S∼µ(k)r−`+1

[
I
(bin(i),b)
S [h] ≥ 1− ε

2r−`+1

∣∣∣ET ]
≥
(

1− ε

2r−`+1

)2
·M−1

≥ δ`−1
4 log(1/ε) + 4r

.

Note that for S ∼ µ
(k)
r−`+1 we have ES [|S|] ≤ kη`n. Applying the Chernoff bound, choosing

η` ≤ 1
n we have

Pr
S∼µ(k)r−`+1

[|S| ≥ 2kη`n] ≤ e
−(kη`n)

2

knη`(1−η`) ≤ δ`−1
8 log(1/ε) + 8r

,

which follows from our choice of k.
We let ν` be the distribution that samples S ∼ µ(k)r−`+1 conditioned on |S| ≤ 2kη`n and T ∼ ν`−1

and takes their union. It follows from the above Chernoff bound and Lemma 4.3 that there exists
b ∈ {0, 1} such that

Pr
S∼ν`

[
IbS [g] ≥ 1− ε

2r−`
]
≥ δ`−1

8 log(1/ε) + 8r
.

In particular, if

δ` ≤
δ`−1

8 log(1/ε) + 8r
(5)

and
m` ≥ m`−1 + ε−3 log(1/δ`−1) log log(δ`−1)4

r−` log r · η`n, (6)

the distribution ν` satisfies the induction step.
We now verify these two conditions by recalling our choices of δ` := Θ( 1

log(1/ε)` log(4r−4`) n
),

η` := δ`−1, k` := O( 4r−`n
log(4r) n·ε3

), and m` := ` · k`. Now, (5) follows from

δ`+1 ≤
δ`

8 log(1/ε) + 8 log r
,

and (6) holds because

k`+1 ≥ ε−3 · log

(
1

δ`−1

)
log log(δ`−1)4

r−`+1 log r · η`n.

In the case when the first round of g has small bias, we apply the following lemma for the
induction step.
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Lemma 4.4 (Small bias). Let g : ({0, 1}n)` → {0, 1} be an `-round coin-flipping protocol, and
suppose that for each i ∈ [`], the i-th round is endowed with the distribution µr−`+i. Suppose that

µr−`+1 is small biased with parameter η`. There is b ∈ {0, 1} such that for k > n log(1/η`)
δ`−1 logn

it holds

that

Pr
S⊆[n];|S|=k
T∼ν`−1

[
IbS∪T (g) ≥ 1− ε

2r−`

]
≥ δ`−1

2
·
(

k

2n log(1/η`)

)2

320·2r−`·n·log(1/η`)
k·ε·δ`−1

.

Proof. Similar to the proof of Lemma 4.3, we consider the functions gx(y) := g(x, y). Let Ex be the
event that at least one of I1T (gx) ≥ 1− ε/2r−`+1 or I0T (gx) ≥ 1− ε/2r−`+1 holds. By the induction
hypothesis, for every x ∈ {0, 1}n,

Pr
T∼ν`−1

[Ex] ≥ δ`−1.

Thus

E
T∼ν`−1

[
E

x∼µr−`+1

[1Ex ]

]
≥ δ`−1.

On the other hand,

E
T∼ν`−1

[
E

x∼µr−`+1

[1Ex ]

]
≤ δ`−1

2
+ Pr
T∼ν`−1

[
E

x∼µr−`+1

[1Ex ] ≥ δ`−1
2

]
,

and thus

Pr
T∼ν`−1

[
Pr

x∼µr−`+1

[Ex] ≥ δ`−1
2

]
≥ δ`−1

2
.

Recalling the definition of Ex, there exists b ∈ {0, 1} such that

Pr
T∼ν`−1

[
Pr

x∼µr−`+1

[
IbT (gx) ≥ 1− ε

2r−`+1

]
≥ δ`−1

4

]
≥ δ`−1

2
.

Let ET denote the event that Prx∼µr−`+1

[
IbT (gx) ≥ 1 − ε

2r−`+1

]
≥ δ`−1

4 . For a fixed T , define

h : {0, 1}n → {0, 1} as h(x) = 1 if and only if IbT (gx) ≥ 1− ε
2r−`+1 . Note that Ex[h(x)|ET ] ≥ δ`−1/2.

Hence, by Lemma 2.5, for k > n log(1/η`)
δ`−1 logn

, assuming ET we have

Pr
S⊆[n];|S|=k

[
I1S [h] ≥ 1− ε

2r−`+1

]
≥ 1

2

(
k

4n log(1/η`)

)2

320·2r−`·n·log(1/η`)
k·ε·δ`−1

Now, note that whenever h(x) = 1, the set T is able to use the y bits to bias g(x, ·) towards b. In
particular, we have shown

Pr
S⊆[n];|S|=k
T∼ν`−1

[
IbS∪T (g) ≥ 1− ε

2r−`

]
≥ Pr

S⊆[n];|S|=k
T∼ν`−1

[
ET ∧ I1S [h] ≥ 1− ε

2r−`+1

]
= Pr

T∼ν`−1

[ET ] · Pr
S⊆[n];|S|=k

[
I1S(h) ≥ 1− ε

2r−`+1

∣∣∣ET ]

≥ δ`−1
2
·
(

k

2n log(1/η`)

)2

320·2r−`·n·log(1/η`)
k·ε·δ`−1

.
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Hence, if r − `+ 1 is even, applying the above lemma provides the induction step as long as

δ` ≤
δ`−1

2
·
(

k`
2n log(1/η`)

)2

320·2r−`·n·log(1/η`)
k·ε·δ`−1

, (7)

and
m` ≥ k` +m`−1. (8)

Recall, again, our choices of δ` := Θ( 1
log(1/ε)` log(4r−4`) n

), η` := δ`−1, k` := O( 4r−`n
log(4r) n·ε3

), and

m` := m`−1 + k`. We see that for sufficiently large n, and every ` < r − 1,

δ`
2
·
(

k`
2n log(1/η`)

)2

320·2r−`·n·log(1/η`)
k`·ε·δ`−1

≥ δ`
2

(
160 · 2r−`

log(4r−4`+1) n · log(4r) n

)2log
(4r−4`) n·log(4r−4`+1) n·log(4r) n

≥ δ`
2

(
160 · 2r−`

log(4r−4`) n

)2log
(4r−4`−1) n

≥ δ`
2
· 2log

(4r−4`−2) n

≥ δ`
2
· 1

log(4r−4`−3) n

≥ δ`+1,

implying (7). Finally (8), namely m`+1 ≥ m` + k`+1 is immediate from our definition of m`+1.

5 Concluding Remarks and Open Problems

• Perhaps the most interesting next step is proving limitations for resilience of protocols where
players may send longer messages. As was discussed below Conjecture 1.5, it is conjectured
that even when the players are allowed to broadcast arbitrarily long messages, only resilience
against coalitions of size o(n) is possible. This question has also been studied in the multi-
round setting [RSZ02, RZ01, Fei99]. In this case, if the players are allowed log n-bit messages,
we know of (log? n+O(1))-round protocols resilient against coalitions of size (1/2−ε)n [RZ01,
Fei99]. On the other hand, Russell et al. [RSZ02] showed that Ω(log? n) rounds are necessary if
we have the added restriction that in the i-th round the players are allowed messages of length
(log(2i−1) n)1−o(1). Strengthening this impossibility result to messages of length Ω(log n) is
another interesting problem that remains open.

• The key qualitative point of Theorems 1.1 and 1.2 is that there always exists a coalition of
size o(n) that can bias the outcome of the protocol towards a particular value. Interestingly,
we are not aware of a simpler proof of this weaker qualitative statement even in the case of the
uniform measure. The proof techniques introduced in this paper for the highly biased coordi-
nates are more combinatorial and probabilistic in nature; however, the less biased coordinates
are ultimately handled by the Fourier-analytic proof of [KKL88]. These Fourier analytic argu-
ments are hard in nature, in the sense that their purpose is to give effective bounds. It would
be interesting to find more intuitive combinatorial proofs for these statements, potentially
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at the cost of obtaining less effective bounds, or by appealing to soft analytic tools such as
compactness, at the cost of obtaining no quantitative bounds. We refer the reader to Terence
Tao’s blog post [Tao07] for a discussion about hard and soft analysis.

• Over the uniform distribution, Kahn et al. [KKL88] proved that there exists no Boolean

function that is ε-resilient against coalitions of size ωε

(
n

logn

)
. In this work we show that

a similar bound of ωε

(
n log logn

logn

)
on resilience holds over arbitrary product distributions.

A natural question is whether the log log n in our bound necessary. However, even in the
uniform setting there is work left to be done. Here, the best known constructions guarantee
resilience against coalitions of size O( n

log2 n
) [Mek17, AL93], which is a factor of log n off from

the impossibility result of Kahn, Kalai, and Linial.
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