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Abstract. In multi-prover interactive proofs (MIPs), the verifier is usually non-adaptive.
This stems from an implicit problem which we call “contamination” by the verifier. We
make explicit the verifier contamination problem, and identify a solution by constructing a
generalization of the MIP model. This new model quantifies non-locality as a new dimension
in the characterization of MIPs. A new property of zero-knowledge emerges naturally as a
result by also quantifying the non-locality of the simulator.

1 Introduction

An interactive proof is a dialog between two parties: a polynomial-time verifier and an all-
powerful prover [1, 2]. They agree ahead of time on some language L and a string x. The prover
wishes to convince the verifier that x ∈ L. If this is true, the prover should succeed almost all the
time; if not, the prover should fail almost all the time. This is a generalization of the complexity
class NP, except instead of simply being handed a polynomial-sized witness, the verifier is allowed
to quiz the prover. The set of languages that admit an interactive proof is called IP.

The multi-prover model was introduced in [3]. This model consists of multiple, non-commu-
nicating? ? ? provers talking to a single verifier. The inspiration for this model was that of a
detective interrogating a number of suspects, each of whom is isolated in a separate room. The
suspects may share a strategy before being separated, but once the interrogation begins they
are no longer able to talk to one another. The main motivation for studying this model was to
remove the complexity assumptions used in the commitment schemes. We will abbreviate “multi-
prover interactive proof” as MIP and the set of languages which can be accepted by MIPs as the
boldface MIP.

Implicit in the definition of the multi-prover model (in the original [3]) is that the provers are
local. That is, not only do the provers not communicate, but they are not correlated in any way
beyond sharing random bits.

An interactive proof is zero-knowledge if the verifier learns nothing except the truth of “x ∈ L”.
This is usually defined by saying that a distinguisher is unable to tell apart a real conversation
between the prover and the verifier, and one which is generated by a lone polynomial-time
simulator. We will denote sets of zero-knowledge interactive proofs with a ZK bold prefix.

From a complexity perspective, the zero-knowledge aspect of interactive proofs is character-
ized by IP = ZKIP = PSPACE for single-prover IPs ([4–6]), and MIP = ZKMIP = NEXP
for multi-prover IPs ([3, 7–12]). The (conjectured) necessity of complexity assumptions for zero-
knowledge in the single-prover case was the initial motivation for the multi-prover model.

However, there is a relationship between non-locality and zero-knowledge which remains un-
explored. Let us call this the cryptographic characterization (or perspective) of ZKMIPs.
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1.1 A Cryptographic Perspective

The foundation of zero-knowledge is the idea of a simulator, a machine with no more power
than the verifier, which can pretend to be all-powerful provers. Obviously, this simulator cannot
accomplish this task without some kind of advantage – independent of knowledge – that must
be provided. In single-prover zero-knowledge proofs, this advantage can be in the form of the
ability to rewind computation, to discard failed simulations, or knowledge of a trapdoor in the
commitment scheme. In multi-prover zero-knowledge proofs, the advantage in existing literature
can be summed up as signaling : the simulator, acting as several provers, knows secrets which real
provers, in a real instance of the protocol, would not. This is then used to produce the simulation.

This signaling advantage of existing ZKMIP simulators is unnecessarily strong in the sense
that if we were to require the transcript to come from multiple, non-communicating simulators (as
we do with provers in real instances), then existing simulation strategies would fail (as they would
require the simulators to communicate), whereas we have discovered that there exist simulation
strategies which do not require communication. Instead, we only require some level of non-
local correlation between the simulators. The exact level of correlation required is a heretofore
uncharacterized dimension in interactive proofs.

In order to build the framework necessary to express and characterize this dimension, we
begin with an implicit problem in the existing MIP literature.

1.2 Implicit Problem / Ad Hoc Solution

There is an implicit problem in what we call the “standard” MIP model (one verifier talking to a
number of provers) in the existing literature. As a lead-up to describing this problem, we invite
the readers to consider the following ridiculous two-prover protocol:

Protocol 1. ( Ridiculous Protocol )

1. Verifier sends Prover 1 a random string S.
2. Prover 1 replies with a string T .
3. Verifier sends Prover 2 the string T .
4. Prover 2 replies with a string S′.
5. Verifier accepts if S = S′.

Suppose that we claim the following ridiculous theorem:

Theorem 2. (Ridiculous Theorem) The probability that the verifier accepts in the Ridiculous
Protocol is exponentially small.

Proof. (Ridiculous Proof) By the definition of MIPs, the provers cannot communicate. If Prover
2 can output an S′ that is the same as the uniformly random S that only Prover 1 knows, then
they must have communicated. Contradiction. ut

The reader is astute in pointing out that steps 2 and 3 of the Ridiculous Protocol clearly
show that the verifier is helping the provers by relaying the very answer it is supposed to keep
secret. This is the implicit problem, exaggerated.

We will call this implicit problem “contamination” by the verifier. For example, a verifier
talking to one prover and then talking to another prover risks unwittingly helping the provers
(up to) signal. However, the most important (and the most subtle) of those contaminations are
ones where the verifier helps the provers perform a no-signaling correlation; examples of this can
be found in the following section, and also in [13].
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The ad hoc solution in existing literature is to cripple the verifier so that it would not do this
(and much more). The verifier in existing literature is assumed to be (or constructed to be) non-
adaptive. That is, the verifier essentially chooses the questions ahead of time. This circumvents
the problem of contamination.

However, this is overkill. We can address the problem of contamination without requiring the
verifier to be non-adaptive. We do so by constructing a multi-prover, multi-verifier model which
we shall call locality-explicit multi-prover interactive proofs (LE-MIP). MIPs in this form have
prover-verifier pairs who are talking, but no communication between any of the pairs. At the end
of a locality-explicit protocol, a special, read-only verifier accepts or rejects.

Locality-explicit protocols do not have to worry about contamination by the verifier, therefore
they do not need to be non-adaptive. We will show later that LE-MIPs can be generalized to
account for non-locally augmented provers without resorting to non-adaptive verifiers.

This new model offers the following advantages:

1. The provers and verifiers are guaranteed to be local (i.e., a very strong notion of no-commu-
nicating), if desired.

2. Any non-local resources of provers and verifiers are made explicit.
3. It is possible to enforce “honest non-locality” on the provers by having the verifier provide

them with non-local resources. Our model makes this explicit.

The new characterization of ZKMIPs emerges as we naturally extend zero-knowledge to LE-
MIPs, by making explicit the non-local resources of the (multiple) simulators.

1.3 Our Contributions

– We explain the aforementioned implicit problem with the standard (single-verifier) MIP
model (section 3).

– We describe the locality-explicit model and justify its definition by expanding on its advan-
tages over the standard model (section 4).

– We show that, in the LE-MIP model, a new, stronger property of zero-knowledge naturally
emerges (section 4.1).

– We describe a protocol which is local-verifier, local-prover and zero-knowledge which accepts
oracle-3-SAT, achieving zero-knowledge without needing the provers to authenticate any
messages, and prove its security (section 5).

– We describe how to simulate the above protocol with simulators which have only a specific
no-signaling advantage (section 5.2).

2 Previous Work

The early work by Ben-Or, Goldwasser, Kilian and Wigderson asserting that ZKMIP = MIP
from [3] and [9] use multi-round protocols and their (honest) verifiers are inherently signalling.
This is precisely why we address the situation in this work. Proving soundness is quite subtle in
this case because the provers could use the (signalling) verifier to break binding of the commit-
ments. In particular, soundness will not be valid if the protocol is composed concurrently with
other executions of itself or even used as a sub-routine. In recent conversations with Kilian [14],
we have learned that controlling the impact of this signaling (via the verifier) has been a concern
since the early days of MIPs. The protocols as they are might be sound but it is not fully proven
anywhere in writing. However, it is also clear that no considerations had been given to the fact
that general non-local correlations are possible via the verifier. If soundness rests on the binding
property of a commitment scheme (such as those zero-knowledge proofs) and this binding prop-
erty rests on the inability to achieve a certain non-local correlation then impossibility to achieve
this correlation via the verifier must be demonstrated. It is not done or hinted in these papers.
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The multi-round issue we address may seem trivial because it is a known fact that multi-round
MIPs may be reduced to a single round using techniques of Lapidot-Shamir [15] and Feige-Lovasz
[16]. Nevertheless, if interested in zero-knowledge MIPs, commitment schemes are generally used
to obtain the zero-knowledge property and thus the single-round structure is lost in the process.
Although single-round protocols bypass verifier’s non-local contamination problems we describe
in this work, converting multi-round protocols into single-round ones is highly inefficient and
complex. Preserving zero-knowledge while achieving single-round has turned out to be a major
challenge. Practically, keeping a multi-round protocol’s structure, using only commitments to
achieve zero-knowledge is very appealing.

In [15], Lapidot-Shamir proposed a parallel ZKMIP for NEXP, but they removed the zero-
knowledge claim in the journal version [17] of their work without any explanation as of why.
Feige and Kilian [10] were the last ones to follow this approach combining techniques drawn
from Lapidot-Shamir [15], Feige-Lovasz [16] and Dwork, Feige, Kilian, Naor, and Safra, [11] to
achieve a “2-prover 1-round 0-knowledge” proof for NEXP. As far as we can tell, this is the
only paper in the ZKMIP literature that appears to avoid the multi-round problems and the
non-local contamination that we discuss. However, note that the analysis of [10] is partly based
of that of [15], and the journal version of Feige-Kilian [12] does not contain their prior claim of
zero-knowledge either. All other ZKMIPs for NEXP in the literature are multi-round, and thus
our analysis applies to them.

Similar issues are possible using more recent results such as Ito-Vidick’s proof [18] that
NEXP ⊆ MIP∗ and Kalai, Raz and Rothblum’s proof [19] that MIPns = EXP. The rea-
son why these multi-round constructions may maintain their soundness despite the potential
non-locality contamination (via the verifier) is the non-adaptive nature of their verifiers. Non-
adaptive verifiers cannot take advantage of information acquired in recent rounds to construct
new questions to the provers: all their questions are pre-established before the interaction with
the provers start. This is a special simpler case of local verifiers. Nowhere in this large literature
can one find a single statement observing the non-adaptiveness of the verifiers and its impor-
tance to guarantee soundness of those MIPs. Moreover, their multi-round structure requires that
any straightforward extensions to ZKMIP∗ or ZKMIPns via commitment schemes be analyzed
very carefully and the locality of the resulting verifiers be re-established. This is part of the
reasons why the ZK version did not follow easily. Recently, Chiesa, Forbes, Gur, and Spooner
[20] discovered a proof that NEXP ⊆ ZKMIP∗. Their construction is based on refinements of
Ito-Vidick’s proof and along the lines of Feige-Kilian, building on algebraic structures to bypass
the need of commitment schemes. Unfortunately, this work is so complicated that we are unable
to assess whether their verifier is actually non-adaptive. And of course, this is not mentioned or
proven anywhere nor available from the authors...

Bellare, Feige, and Kilian [21] considered a multi-verifier model similar to ours in order to
analyze the role of randomness in multi-prover proofs. This is completely unrelated to our goal of
analyzing verifier non-local contamination. Finally, the notion of relativistic commitment schemes
put forward by Kilian [22] and Kent [23] leads to several results [24–26] where a similar multi-
verifier model is necessary in order to assess spatial separation of the provers. The new (Non-local)
Zero-Knowledge definition is 100% fresh from this work. No prior work exists at all.

3 The Standard MIP Model

Multi-prover interactive proofs were introduced in [3]. The intuition for their model was that of
a detective interrogating two suspects held in different rooms. This was formalized as follows:

Definition 1. Let P1, . . . , Pk be computationally unbounded Turing machines and let V be a
probabilistic polynomial-time Turing machine. All machines have a read-only input tape, a read-
only auxiliary-input tape, a private work tape and a random tape. The Pi’s share a joint, infinitely
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long, read-only random tape. Each Pi has a write-only communication tape to V , and vice-versa.
We call (P1, . . . , Pk, V ) a k-prover interactive protocol (k-prover IP).

This model is essentially equivalent to that of Bell [27] who introduced his famous Bell’s
inequality to distinguish local parties from entangled parties.

Zero-knowledge MIPs were also defined in [3]:

Definition 2. Let (P1, . . . , Pk, V ) be a k-prover IP for a language L.Let view(P1, . . . , Pk, V, x)
denote the verifier’s incoming and outgoing messages with the provers, including his coin tosses.
We say that (P1, . . . , Pk, V ) is perfect zero-knowledge for L if there exists an expected polynomial-
time machine M such that for all V ′, view(P1, . . . , Pk, V

′, x) and M(x) are identically dis-
tributed.

Let us call the above two definitions the standard MIP model. There have also been augmen-
tations of the model by giving the provers various non-local resources, such as entanglement [18],
or arbitrary no-signaling power [19].

The first work to point out the aforementioned blind spot in the standard MIP model, al-
though it was not worded explicitly, was [13]. In order to understand their point, we need to
understand the following two-prover protocol.

Protocol 3. ( BGKW-type commitment for bit b )

P1 and P2 pre-share a random n-bit string w.

1. V sends a random n-bit strings r to P2.
2. P2 replies with x← b× r ⊕ w.
3. P1 announces to V a string w′.
4. V accepts iff (w′ ⊕ x) ∈ {0, r}.

This is a two-prover commitment protocol. Steps 1 and 2 commit, while steps 3 and 4 unveil.
An intuitive proof of its binding condition is that, since the provers cannot signal, and they both
need to know r in order to unveil the commitment in the way they want, therefore they cannot
cheat. This intuition is incomplete, as was pointed out in [13], because breaking the binding
condition does not require signaling. The following protocol, known as a PR-box, can be used to
break binding without signaling.

c //
PR

roo

w′ := c× r ⊕ x //oo x (uniform)

Fig. 1. a PR-box

By having P1, P2 obtain w′, x via the PR-box, P1 can unveil the commitment the way it
wishes, c. This fact will become extremely important in Sections 5 and 4.1.

The punchline of [13] is that the verifier itself can act as a PR-box for the provers without
violating their no-signaling assumption. Consider the following:

1. Any security proof of protocol 3 must show that it does not contain a PR-box as a subroutine.
2. More generally, any security proof of a protocol must show that no subroutine within itself

can be commandeered by the provers to achieve a non-local functionally (like the PR-box).
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3. Composition of protocols, for instance between the committing and the opening of commit-
ments, must be done in such a way that provably does not create a non-local box.

The solution proposed in [13] was that of verifier isolation. Informally, this means that any
message an “isolating” verifier sends to a set S of provers must be computed solely from messages
that are received from S. The end result is that an isolating verifier can never accidentally
implement a PR-box and, in general, it will always enforce the locality of the provers. In a sense,
we can think of an isolating verifier as “local”. Our new model will make this more precise and
more general.

Furthermore, existing zero-knowledge MIPs such as [9] require that the verifier courier an
authenticated message between the provers in order to obtain soundness while ensuring zero-
knowledge. The gist of it goes like this:

1. V asks P1 some questions.
2. V wants to check one of P1’s answers with P2 for consistency.
3. In order for zero-knowledge to hold, V must ask P2 a question it has already asked P1.
4. P1 authenticates a question with a key that was committed at the beginning of the protocol

and sends it to V .
5. V sends the question and the authentication to P2, who proceeds only if authentication

succeeds.

Steps 4 and 5 consists of V sending a message from P1 to P2. Proofs that this act does not
contaminate non-locally (such as simulating a PR-box) is not found in any existing MIP. This
needs to be proven, and the proof contained in [9] does not address this issue. Moreover, the zero-
knowledge protocol of [9] allows P1 to send an arbitrary message to P2 (via the authentication
key). Therefore, one cannot compose such a protocol in a nested fashion (as a subroutine call)
since the inner instance would violate the no-communication assumption of the outer instance.
For more details on the problems of the standard MIP model, see [28].

Existing simulators for zero-knowledge protocols such as those found in [9] needs to know how
to break commitments in order to simulate. The simulator accomplishes this by acting as both
provers, thereby receiving the secret string r which was meant for one prover only. This standard
model of zero-knowledge gives the simulator unnecessary power, in a sense. We will discuss this
further in section 4.1.

4 Locality-Explicit MIP

The standard MIP model allows the verifier to non-locally contaminate the provers. We neutralize
this problem by defining a model with multiple verifiers, each of which talks to a single prover;
in turn, each prover talks to a single verifier. There are no communication tapes between the
verifiers, nor are there between provers. There is a special verifier V0 which only reads the outputs
of the other verifiers; this is the verifier that will decide to accept or reject membership to L. We
call this model “locality-explicit” since the provers and verifiers are explicitly local, and if any
non-local resources (such as entanglement) are available to them, then it is explicitly specified

via a supplementary entity named P̂ for the provers and V̂ for the verifiers.
This model is a generalization of the standard model because the special setting where P̂ is

empty and V̂ signals for the verifiers corresponds to the standard MIP model.

Definition 3. An interactive Turning machine (ITM) is a Turing machine augmented with the
following tapes:

– k1 read-only incoming communication tapes.
– k2 write-only outgoing communication tapes.
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– Private work, auxiliary-input, and random tapes.

An ITM A can signal to an ITM B if A’s write-only outgoing tape is B’s read-only incoming
tape.

Definition 4. Let (P̂ , P1, . . . , Pk, V̂ , V0, V1, . . . , Vk) be a tuple of ITMs, where the P’s are com-
putationally all-powerful and the V’s are polynomial-time. For each i, there are two-way com-
munication tapes between Vi and Pi, and that for all j, there is a two-way communication tape
between V̂ and Vj and also between P̂ and Pj. In addition, for each `, there is a read-only tape
going from V` to V0 (where V0 reads). Then, this is said to be a locality-explicit multi-prover
interactive proof.

We call P̂ and V̂ correlators and say that the provers and verifiers are P̂ -local and V̂ -local

respectively. We define the class of all MIPs with such correlators MIPP̂
V̂

.

It is perhaps easier to understand our definition with the help of figure 2.

.	.	.
.	.	.

̂P ̂V

P1
P2

Pk

V1
V2

Vk

V0

Fig. 2. Locality-Explicit MIP

The solid lines represents two-way communication and the dashed arrows represents one-way
communication, with the arrow indicating the direction of information flow.

We can define that an LE-MIP accepts a language L if the usual soundness and completeness
conditions hold:

Definition 5. An LE-MIP (V̂ , V0, V1, . . . , Vk, P̂ , P1, . . . , Pk) accepts a language L if and only if

– (completeness) ∀x ∈ L,Pr[V0(x, t1, . . . , tk) = accept] > 2/3,

– (soundness) ∀x /∈ L,∀P ′1, . . . , P ′k,Pr[V0(x, t1, . . . , tk) = accept] < 1/3,

where ti is the read-only tape from Vi to V0 at the end of the interaction of Vi with Pi (or P ′i )
on input x.

Note that we do not quantify over P̂ (nor V̂ ), as we want to use them not as (possibly
malicious) participants to the protocol, but as a description of non-local resources available to
the provers and verifiers.
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Definition 6. An LE-MIP is local if V̂ = P̂ = ∅ and all of the provers’ (resp. verifiers’) ran-
dom tapes are initialized with the same uniformly random string R (resp. verifiers with another,
independent uniformly random string S)†.

MIPs in the standard model (with local provers) are equivalent to LE-MIPs where P̂ = ∅
and V̂ acts as a bulletin board. That is, a single verifier communicating with multiple provers is
equivalent to multiple verifiers communicating with provers and each other.

In standard MIPs, it is possible that the honest (single) verifier bridges the provers non-locally.
If a protocol does not desire this – and most existing MIPs do not – it must be proven. With local
LE-MIPs, the special verifier V0 decides to accept or reject. This verifier cannot communicate
with anyone else, avoiding the aforementioned problem of contamination.

4.1 Zero-Knowledge LE-MIPs

Zero-knowledge is defined by simulations, the fundamental idea that if a transcript can be pro-
duced by an entity (simulator) with no more power than one (verifier) interrogating all-powerful
provers, then no knowledge is gained.

The simulator of single-prover IP and standard MIP are equal to the verifier in computational
power, but they do have “advantages” which allow them to fake transcripts. For single-prover
IPs, the simulator is allowed to rewind computation; for standard MIPs, the simulator is given a
(commitment-breaking) secret. Those advantages are, of course, independent of knowledge.

LE-MIPs naturally induces a new advantage for the simulator: non-local correlations. This is
a very powerful advantage. Using the correct non-local correlations, simulators do not need to
rewind, do not need to pretend to be multiple (isolated) provers, and do not need to know any
commitment-breaking secrets. In short, they do not need to signal. Multiple, no-signaling simu-
lators can even produce transcripts in “real-time” (example will follow) if the proper correlations
are used.

Definition 7. Let M = (M̂,M1, . . . ,Mk) be a tuple of polynomial-time ITMs. Each machine
has a random tape, and every random tape is initialized with the same random bits. For 1 ≤ i ≤ k,
there is a two-way communication tape between M̂ and Mi. There are no communication tapes
between any of the Mi’s. Then this is called a tuple of locality-explicit simulators and M̂ is the
locality class of M, which will be abbreviated M̂ -local.

Definition 8 (White-box version).

Let PV = (P̂ , P1, . . . , Pk, V̂ , V0, V1, . . . , Vk) be an LE-MIP for language L. If there exists a

correlator Ŝ such that for all verifiers (V ′0 , V
′
1 , . . . , V

′
k), there exists (S1, . . . , Sk) for all correlator

V̂ ′, such that for all x ∈ L the transcripts of conversations

(P̂ , P1, . . . , Pk, V̂
′, V ′0 , V

′
1 , . . . , V

′
k)(x)

and those generated by

(Ŝ ∪ V̂ ′, V ′0 , S1, . . . , Sk)(x)

are identically distributed, where (Ŝ, S1, . . . , Sk) is a tuple of locality-explicit simulators, then we

say that PV is a Ŝ-local perfect zero-knowledge LE-MIP for L.
We will denote the set of all ZK LE-MIPs where the provers, verifiers, and simulators are

P̂ -local, V̂ -local, and Ŝ-local by

ZKŜMIPP̂
V̂
.

† By ∅ we mean the empty correlator that provides everyone with nothing at all as output.
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Let S,P,V be sets of correlators. We will denote, by convention,

ZKSMIPP
V

as the set of all ZK LE-MIPs where each correlator comes from each of the respective sets.

Definition 9 (Black-box version).

Let PV = (P̂ , P1, . . . , Pk, V̂ , V0, V1, . . . , Vk) be an LE-MIP for language L. If there exists a

tuple of locality-explicit simulators (Ŝ, S1, . . . , Sk), such that for all verifiers (V̂ ′, V ′0 , V
′
1 , . . . , V

′
k),

such that for all x ∈ L the transcripts of conversations

(P̂ , P1, . . . , Pk, V̂
′, V ′0 , V

′
1 , . . . , V

′
k)(x)

and those generated by
(Ŝ, V ′0 , S1(V ′1), . . . , Sk(V ′k))(x)

(where the V ′i still have access to V̂ ′) are identically distributed, then we say that PV is a Ŝ-local
perfect (black-box) zero-knowledge LE-MIP for L.

We will denote the set of all BBZK LE-MIPs where the provers, verifiers, and simulators are
P̂ -local, V̂ -local, and Ŝ-local by

ZKŜ
BBMIPP̂

V̂
.

Let S,P,V be sets of correlators. We will denote, by convention,

ZKS
BBMIPP

V

as the set of all BBZK LE-MIPs where each correlator comes from each of the respective sets.

Our motivations for the above definitions are twofold.
First, a simulator (or simulators) should not have more power than necessary. If two local

simulators can output for two local verifiers, then it is not necessary to have a single simulator
(equivalent to two signaling simulators) do the job. Allowing simulators to signal (equivalently,
having a single simulator) in the multi-prover setting is analogous to allowing unbounded running-

time simulation in single-prover zero-knowledge. In general, finding the minimal Ŝ that will allow
simulation establishes how little extra is needed to obtain the zero-knowledge property.

Second, the non-locality of simulators is a characterization of the resilience of zero-knowledge.
A protocol with local simulators which can withstand arbitrary (malicious) verifiers is more
resilient than one in which signaling simulators are needed.

This may be of practical interest, if transcripts are timestamped. For example, under the
relativistic assumption that one may not signal faster-than-light, one may be able to distinguish
two spatially separated simulators from two spatially separated verifiers, if the simulators need to
signal (transmit a commitment-breaking secret) in order to generate a transcript. On the other
hand, if two entangled simulators are sufficient to produce the transcript, then they are indis-
tinguishable from real verifiers and provers. Our protocol 7 can be modified as to let entangled
simulators do their work, without needing PR-boxes or signaling. Details in section 5.

4.2 The Power of LE-MIPs

Local LE-MIPs form a subclass of standard MIPs. They are, by design, more restricted in what
you can make the verifier do. An immediate question is whether this is too restrictive. Perhaps,
in all interesting cases, it is necessary for a single verifier to go back-and-fourth between provers,
using previous discussions to generate new questions.

The answer is that, of all the literature we have surveyed, almost all protocols can be re-
written in a local-verifier manner without any loss of functionality. We explicitly demonstrate
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this for the multi-prover protocol for oracle-3-SAT in [8]. The protocol details can be found in
the appendix. For the purpose of our discussion, we only need to look at the general form of the
protocol:

Protocol 4. ( BFL Classic, Single-Verifier )

1. V asks P1 some questions non-adaptively.

2. V chooses a question Q from the pool of questions which were asked to P1.

3. V asks Q to P2.

4. V accepts if the interaction with P1 was successful, and the answer from P2 is con-
sistent with those of P1.

The crucial observation is that V does not adaptively ask questions to P1. Therefore, the
questions asked on that entire side of the conversation can be selected in advance, and thus they
can be shared in advance with a second verifier. We can therefore naturally rewrite the BFL
classic protocol as a local LE-MIP in the following way. The reader can check the details in the
appendix, and in section 3 of [8].

Protocol 5. ( BFL as an LE-MIP )

1. V1 prepares the questions which it will ask P1.

2. V1 chooses a question Q from the above list and shares it with V2.

3. LE-MIP begins. All parties are local as per definitions.

4. V1 asks the questions to P1.

5. V2 asks Q to P2.

6. V0, reading the responses, decides to accept or reject, based on the same criteria as
in protocol 4.

The BFL protocol is for oracle-3-SAT, which is NEXP-complete. Rewritten as a local LE-
MIP, it circumvents all non-locality issues we have mentioned. Thus, we can conclusively say that
“MIP∅

∅ = MIP = NEXP”; no transformation to single-round MIP necessary, and no need to
invoke the general theory of PCPs.

5 ZKPRMIP∅
∅ = NEXP

The question which follows naturally is whether there exists a zero-knowledge, local LE-MIP for
NEXP. The existing technique for achieving zero-knowledge in MIP [3, 9] requires the (single)
verifier to courier an authenticated message between provers. This is not possible with local-
verifier LE-MIPs. We show that there is a way around that constraint.

By adapting the protocol from [8], we will exhibit a protocol with the following properties:

1. The provers and verifiers are local: V̂ = P̂ = ∅.

2. The simulators need only access to instances of PR-boxes to work. That is, M̂ simply com-
putes indexed instances of PR-boxes. We will abbreviate this as “PR-local.”

10



We may succinctly summarize the above as ZKPRMIP∅
∅ = NEXP, where PR denotes a

correlator which simply computes PR-boxes for the simulators.
The generic way of turning an interactive proof into a zero-knowledge one is by running it

in committed form [3, 9]. With this technique, provers commit their answers instead of directly
responding, and use cryptographic techniques to convince the verifier that the answers are correct.

As shown in section 4.2, the BFL protocol can be turned into a local LE-MIP. If we try to
turn it into a zero-knowledge LE-MIP by having the provers commit their answers (for example
using protocol 3 as commitment), we run into a problem. In order to achieve zero-knowledge,
the provers must ensure that the question P2 receives from V2 is one of the questions which V1
has asked P1. On the other hand, since the provers and verifiers are local, the provers cannot
communicate, nor can they ask the verifiers to courier authenticated messages between them.

Our solution essentially asks the provers to (strongly-universal-2) hash the selected committed
answer with a key that is based on the verifier’s question. We force V2 to behave honestly (to
ask a question that V1 has asked) by making bad questions meaningless. If the verifiers ask the
provers the same question, they will receive the same hash of the same answer. Otherwise, they
will receive two unrelated random hash values.

We need the PR commitment (protocol 6), which is secure in the local setting as previously
proved in [23, 13, 24].

5.1 The Protocols

The following is a PR-type commitment that is perfectly concealing and statistically binding. In

general, we use the commitment-box notation “ b ” as the name of a commitment to bit b in the
next two protocols.

Protocol 6. A statistically binding, perfectly concealing commitment protocol to bit b.

All parties agree on a security parameter 1k.
P1 and P2 partition their private random tape into two k-bit strings w1, w2.

Pre-computation phase:

– V1 samples two k-bit strings z1, z2 independently and uniformly, and provides them
to V2.

– V1 sends z1 to P1 and V2 sends z2 to P2.

Commit phase:

– P1 commits b to V1 as b = (b× z1)⊕ w1, where b× z1 is a multiplication in F2n .
– P2 sends V2: d = (w1 × z2)⊕ w2.

Unveiling phase:

– P1 sends w1, w2 to V1.

– V1 computes b = 1 if b ⊕ w1 = z1, or b = 0 if b = w1.

– V0 rejects if b ⊕ w1 is anything but z1 or 0, or if d⊕ w2 6= w1 × z2 and accepts b
otherwise.

Below is the zero-knowledge, local LE-MIP for oracle-3-SAT (Protocol 7). The basis of pro-
tocol 7 is the localized BFL protocol we presented in section 4.2 (details in the appendix). A
note on notation: for a circuit f , we will denote f

(
x
)

as the gate-by-gate committed circuit

evaluated with x as the input. We also use statements such as “P1 proves to V1 that Ω1 was
computed correctly”. The reader is expected familiarity with zero-knowledge computations on
committed circuits as put forward by [29, 30, 5, 9].
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Protocol 7. A local zero-knowledge LE-MIP for oracle-3-SAT

Let x = (B, r, s), an instance of oracle-3-SAT, be the common input, let k = |x| =
r + 3s+ 3, and let Λ be the verifier’s program in protocol 11 (see appendix).

1. Pre-computation:

(a) V1 samples two k-bit strings z1, z2 independently and uniformly, and provides
them to V2.

(b) V1 selects k + 3 random bit strings R1, ..., Rk+3 (size specified implicitly by Λ)
and evaluates the circuit of Λ using the Ri as randomness, resulting in questions
Q1, ..., Qk+3, and provides them to V2

(c) V1 randomly chooses i, 1 ≤ i ≤ k + 3, the index of an oracle query that will be
made to both P1 and P2. V1 provides i to V2.

(d) V1 sends z1 to P1 and V2 sends z2 to P2 for future commitments.
(e) All parties agree on a family of strongly-universal-2 hash functions {Hi} indexed

by k-bit keys.
(f) P1 and P2 agree on a k-bit key γ, an index to the above family.
(g) P1 commits γ to V1.

2. Sumcheck with oracle:

– Let f be the arithmetization obtained in protocol 10, let z be a string from Ir

and Qk+1, Qk+2, Qk+3 be strings of Is as generated in protocol 11. V1 and P1

execute protocol 10 in committed form. At the end of this phase, P1 shows that
the committed final value is equal to

f
(
z,Qk+1, Qk+2, Qk+3, A(Qk+1) , A(Qk+2) , A(Qk+3)

)
,

an evaluation in committed form of f using the committed values that were used
during the protocol’s loop. If this fails, V1 instructs V0 to reject.

3. Multilinearity test:

(a) For 1 ≤ i ≤ k:

i. V1 sends Qi to P1,

ii. P1 commits his answer as A(Qi) .

(b) P1 and V1 evaluate a circuit description of Λ in committed form with inputs

A(Q1) , . . . , A(Qk) to verify proper linearity among them. P1 unveils the cir-

cuit’s committed output. If it rejects, V1 instructs V0 to reject.

4. Consistency test:

(a) V1 sends i to P1.

(b) P1 computes Ω1 = A(Qi) ⊕H γ (Qi) and sends Ω1 to V1.

(c) P1 proves to V1 that Ω1 was computed correctly, from the existing commitments.

(d) P1 unveils Ω1 for V1, who gets Ω1.

(e) V2 sends Qi to P2 (recall that this was pre-agreed in step 1.(c))
(f) P2 responds to V2 with Ω2 = A(Qi)⊕Hγ(Qi).
(g) V0 accepts if and only if all of the following conditions are met:

– Ω1 = Ω2

– All commitments which have been unveiled are valid.
– V1 did not reject in the two previous cases

12



5.2 Proofs of Security

Locality

Since the protocol is written as an LE-MIP in which P̂ = V̂ = ∅, the protocol is local by
definition 6.

Completeness

Completeness follows from the completeness of the underlying protocol [8], and the fact that
the commitment protocol (protocol 6) is well-defined for honest provers (who will never send a
commitment that they cannot unveil).

Soundness

Without loss of generality, we may assume that the soundness error in the BFL protocol to
be 1/3, through sequential amplification. The probability that our commitment scheme (protocol
6) fails binding is exponentially small in k. Local probabilistic provers are equivalent to local
deterministic provers. This is because the success probability α of randomized provers of breaking
soundness is an average over the randomized provers’ random tapes. Each instance of a random
tape represents a deterministic strategy. Therefore there is a deterministic strategy which succeeds
with probability at least α, and hence we only need to consider local deterministic provers.

Since P1 is deterministic, we may unambiguously consider what happens if we were to
“rewind” the prover machine. Suppose that at some point P1 unveils a particular commitment c
to 0. We rewind P1 and let V1 make different choices before that point. Suppose that, with these
alternate choices, P1 then unveils c to 1 (an attempt to break binding). Because of locality, P1’s
behavior is independent of what P2 receives (namely z2). Therefore, there is only one such z2
which V0 will ultimately accept as a valid unveiling of c in both ways (recall that our commitment
is statistically binding).

Therefore, in the worst case, for every commitment there exists a sequence of interactions
between V1 and P1 such that P1 will attempt to break the binding of that commitment. Each
such commitment-breaking corresponds to at most one string z2 that will actually work.

Let us denote the set of such binding-breaking strings by B. If z2 /∈ B, then the provers will
not break binding, and the soundness error is reduced to that of the underlying protocol (at most
1/3). On the other hand, since |B| < poly(k), the probability that z2 ∈ B is at most poly(k)/2k.

Therefore, the soundness error of our protocol is at most

Pr[z2 /∈ B and underlying protocol accepts] + Pr[z2 ∈ B] ≤ 1

3
+

poly(k)

2k
.

Zero-Knowledge The simulation will be divided in two parts. In the first part, the simulator
produces a transcript of the pre-computation, multilinearity test and sumcheck with oracle parts,
which involves only interactions with V1. In the second part, the simulator will fake a valid
consistency test.
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Protocol 8. ( Perfectly Indistinguishable, PR-Local Simulator for Protocol 7, Part 1)

The setup:

– Let (Ŝ, S1, S2) be a set of locality-explicit simulators.

– S1 and S2 can send Ŝ an index along with a bit.
– Ŝ completes the indexed PR box (protocol 3) for both simulators.

The simulation strategy:

1. The simulators agree on unique indices for every commitment used in the protocol.
2. S1 interacts with V1 the way P1 would. Whenever P1 should commit, S1 commits to

random bits, just like the single-simulator from section 5.
3. For each commitment, V2 sends S2 a string s. S2 sends to Ŝ the index of the com-

mitment and s.
4. Ŝ runs the PR box (protocol 3) and replies with V2’s half of the output.
5. Whenever S1 needs to unveil a commitment, it can be unveiled in the way S1 desires

by sending the corresponding index and bit to Ŝ.
6. Ŝ completes the corresponding PR box which outputs t. Ŝ sends t to S1.
7. S1 sends t to V1.

The second part (the consistency test) can be done by having the simulators ignore the
question.

Protocol 9. ( Perfectly Indistinguishable, PR-Local Simulator for Protocol 7, Part 2)

1. V1 sends i to S1.
2. S1 computes Ω1 = H γ (Qi).

3. Using Ŝ to break binding, S1 convinces V1 that Ω1 is actually A(Qi) ⊕H γ (Qi).

4. S1 unveils Ω1 for V1, who gets Ω1 = Hγ(Qi).

5. V2 sends Q′i to S2.
6. S2 responds with Ω2 = Hγ(Q′i).

By the properties of the strongly-universal-2 hash H, if Qi = Q′i then Ω1 = Ω2. Otherwise
Ω1 6= Ω2 with probability exponentially close to one. This produces the result as desired. The
simulators then feed the transcripts to V0, and terminates simulation.

5.3 Entangled Simulators

The binding condition of commitment used above (protocol 6) can be broken given PR-boxes.
However, if the verifier were willing to tolerate approximately 15% of errors in the provers’
unveiling string (z1 or 0), then it is possible to break binding with shared entanglement [31]
while maintaining soundness against local provers. Using this weakened version of commitment

in place of protocol 6 yields a ZK
poly

|LOC〉MIP∅
∅ protocol for a NEXP-complete language (ZK

poly

|LOC〉

denotes shared entanglement for the simulator; consult Appendix B for more notations). We leave
the details of this modification to the reader.
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6 Conclusions and Future Work

MIP is cryptographic. NEXP is complexity theoretic. Although there exists a non-adaptive
MIP which accepts NEXP (resolving the complexity of MIP and avoiding contamination), there
seems to be a bit of an unexplored dimension on the zero-knowledge (cryptographic) side of
things. LE-MIPs accomplishes two things: it makes explicit that non-adaptive verifiers are not
necessary to avoid contamination, and it induces the question of non-locality with respect to
zero-knowledge. We close with four open questions.

First, although the provers and verifiers of protocol 7 are local, the simulators are not – they
use PR-boxes. We do not know whether it is possible to simulate protocol 7 with local simulators.
In fact, we conjecture that there does not exist a ZK∅MIP∅

∅ protocol for any NEXP-complete
language.

Second, as we have sketched out in section 5.3, by weakening the commitment scheme used,

we get ZK
poly

|LOC〉MIP∅
∅ = NEXP. What is a minimal Ŝ such that ZKŜMIP∅

∅ = NEXP?
Third, as of the time of this writing, it is an open question whether NEXP ( MIP∗ [18].

Under the locality-explicit setup, we ask a slightly more general question: does there exist a
correlator P̂ and a corresponding LE-MIP which accepts a language /∈ NEXP? We remind
the reader that characterizing the complexity classes of MIPs where the provers have non-local
resources are generally open questions.

Finally, although the verifier’s contamination is undesirable (in the standard MIP model), is
it possible to turn it into a resource? For example, given local provers, let the verifier provide
them with some non-local resources, such PR-boxes or entanglement that can be simulated in
polynomial-time. This can be seen as “enforceable honest non-local resources.” Malicious provers
would not be able to use these resources at will. Perhaps this concept would be useful in the
design of multi-prover protocols.
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A Babai, Fortnow and Lund’s MIP for Languages in NEXP

This section describes a variant of the multi-prover protocol for oracle-3-SAT found in [8]. We
refer to this as the BFL protocol, or BFL classic.

Definition 10. Let r, s > 0 be integers. Let z, b1, b2, b3 be strings of variables, where |z| = r
and |bi| = s. Let B(z, b1, b2, b3, t1, t2, t3) be a Boolean formula in r+ 3s+ 3 variables. A Boolean
function A : {0, 1}s → {0, 1} is a 3-satisfying oracle for B if

B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 1

for every string z, b1, b2, b3.
B is oracle-3-satisfiable if such a function A exists.
The Oracle-3-SAT problem (B, r, s) asks whether a Boolean formula B is oracle-3-satisfiable,

where r and s denote the lengths of z and bi, as above.

Lemma 1. Oracle-3-SAT is NEXP-complete.

Definition 11. Let F be an arbitrary field. Let φ : {0, 1}m → {0, 1} be a Boolean function. An
arithmetization of φ is a polynomial f(x1, . . . , xm) ∈ F[X1, . . . , Xm] such that for all z ∈ {0, 1}m,
φ(z) = 0⇔ f(z) = 0. A specific one is given in [8], proposition 3.1 .

Equivalently, the φ(z) = 0⇔ f(z) = 0 condition can be replaced with φ(z) = 1⇔ f(z) = 0.

Protocol 10. ( Sumcheck Protocol )

Let φ(x1, . . . , xm) be the 3-CNF formula which the prover P is trying to show to be a
tautology to a verifier V . Let F be a field of sufficient size (of order at least (3c + 1)m
will suffice where c is the number of clauses of φ).

1. V takes φ and computes its arithmetization f according to [8] Proposition 3.1 and
sends it to P .

2. V and P agree on a set I ⊂ F of size at least 2dm where d is the degree of f .
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3. V assigns b0 = 0, which is supposed to be equal to the sum

1∑
x1=0

. . .

1∑
xm=0

f(x1, . . . , xm)2 = 0

4. i← 1.

5. P sends the coefficients of the univariate polynomial in x,

gi(x) = h(r1, . . . , ri−1, x) =

1∑
xi+1=0

. . .

1∑
xm=0

f(r1, . . . , ri−1, x, xi+1, . . . , xm)2

6. V checks whether bi−1 = gi(0) + gi(1). If not, abort.

7. V chooses a random ri ∈ I, computes bi = gi(ri) and sends ri to P .

8. If i ≤ m then i← i+ 1 and go to step 4.

9. V checks whether bm = f(r1, . . . , rm)2.

Protocol 11. ( Babai, Fortnow and Lund’s MIP for Oracle-3-SAT )

Given (B, r, s) as common input.

1. (sumcheck with oracle) V and P1 execute protocol 10. Let (Qk+1, Qk+2, Qk+3) =
(rr+1...rr+s, rr+s+1...rr+2s, rr+2s+1...rr+3s) ∈ (Is)3 be V ’s questions during this phase.

2. (multilinearity test) V asks P1 to simulate an oracle storing the function A. V queries
P1 with random, linearly related values in Is. If any response does not satisfy linearity,
abort protocol. Let Q1, . . . , Qk ∈ Is be V ’s questions during this phase.

3. (non-adaptiveness test) V chooses uniformly at random an i such that 1 ≤ i ≤ k + 3
and asks Qi to P2. If P2’s answer differs from that of P1, reject. Otherwise accept.

B Non-Locality – an introduction

In this section we solely focus on the two-party single-round games and strategies that are
sufficient to discuss and analyze most of the MIPs. Definitions and proofs for complete gener-
alizations to multi-party multi-round games and strategies will appear in a forthcoming paper
with co-author Adel Magra.

Games: Let V be a predicate on A×B×X ×Y (for some finite sets A,B,X, and Y ) and let π
be a probability distribution on A×B. Then V and π define a (single-round) game G as follows:
A pair of questions (a, b) is randomly chosen according to distribution π, and a ∈ A is sent to
Alice and b ∈ B is sent to Bob. Alice must respond with an answer x ∈ X and Bob with an
answer y ∈ Y . Alice and Bob win if V evaluates to 1 on (a, b, x, y) and lose otherwise.

Strategies: Two-Party Channels A strategy for Alice and Bob is simply a probability distri-
bution P(x,y|a,b) describing exactly how they will answer (x, y) on every pair of questions (a, b). We
now breakdown the set of all possible strategies for Alice and Bob according to their non-locality.
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Deterministic and Local Strategies: A strategy P(x,y|a,b) is deterministic if there exists
functions fA : A→ X, fB : B → Y such that

P(x,y|a,b) =

{
1 if x = fA(a) and y = fB(b)

0 otherwise
.

A deterministic strategy corresponds to the situation where Alice and Bob agree on their indi-
vidual actions before any knowledge of the values a, b is provided to them. In this case they use
only their own input to determine their individual output.

A strategy P(x,y|a,b) is local if there exists a finite set R and functions fA : A× R → X, fB :
B ×R→ Y such that

P(x,y|a,b) =
|{r ∈ R : x = fA(a, r) and y = fB(b, r)|

|R|
.

A local strategy corresponds to the situation where Alice and Bob agree on a deterministic
strategy selected uniformly among |R| such possibilities. The choice r of Alice and Bob’s strategy,
and the choice of inputs (a, b) provided to Alice and Bob are generally agreed to be statistically
independent random variables.

B.1 Local Reducibility

We now turn to the notion of locally reducing a strategy to another, that is how Alice and Bob
limited to local strategies but equipped with a particular (not necessarily local) strategy U ′ are
able to achieve another particular (not necessarily local) strategy U . For this purpose we introduce
a notion of distance between strategies in order to analyze strategies that are approaching each
other asymptotically.

Distances between Strategies: Several distances could be selected here as long as their mean-
ing as it approaches zero are the same. In the definitions below, U,U ′ are strategies and U ′ is a
finite set of strategies.

Definition 12. |U,U ′| =
∑
a,b,x,y

|PU (x, y|a, b)− PU ′(x, y|a, b)|

Definition 13. |U,U ′| = min
U ′∈U ′

|U,U ′|

Local extensions of Strategies: For natural integer n, we define the set LOCn(U) of strategies
that are local extensions (of order n) of U to be all the strategies Alice and Bob can achieve using
local strategies where strategy U may be used up to n times as sub-routine calls‡. If we restrict
all the functions used to be polynomial-time computable we analogously define LOC

poly

n(U).

Definition 14. U ′ Locally (poly-)Reduces to U (U ′ ≤LOC
(poly)

U) iff lim
n→∞

|U ′, LOC
(poly)

n(U)| = 0.

Definition 15. U ′ is Locally (poly-)Equivalent to U (U ′ =LOC
(poly)

U) iff U ′ ≤LOC
(poly)

U ≤LOC
(poly)

U ′.

‡ Done by selecting functions f0
A : A × R → A, f1

A : A ×X × R → A, ..., fn−1
A : A ×Xn−1 × R → A,

fn
A : A×Xn ×R→ X to determine the input of each sub-routine from input a and previous outputs.
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Non-Adaptive extensions of Strategies: For natural integer n, we define the set NADn(U)
of strategies that are Non-Adaptive extensions (of order n) of U to be all the strategies Alice and
Bob can achieve using Non-Adaptive strategies where strategy U may be used up to n times as
sub-routine calls§. If we restrict the functions used to be poly-time computable we get NAD

poly

n(U).

Definition 16. U ′ Non-Adaptively (poly-)Reduces to U (U ′ ≤NAD
(poly)

U) iff lim
n→∞

|U ′,NAD
(poly)

n(U)| =

0.

Definition 17. U ′ is Non-Adaptively (poly-)Equivalent to U (U ′ =NAD
(poly)

U) iff U ′ ≤NAD
(poly)

U ≤NAD
(poly)

U ′.

In general, Non-Adaptive reducibility is a weaker notion than local reducibility. However, for
certain distributions U it may result that {D|D ≤LOC

(poly)

U} = {D|D ≤NAD
(poly)

U} as follows.

B.2 Locality

We now define the lowest of the non-locality classes LOC. We could define it directly from the
notion of local strategies as defined above, but for analogy with the other classes we later define,
LOC is defined as all those strategies locally reducible to a complete strategy we call ID (see
Fig. 3). Of course, any strategy is complete for this class.

a //
ID

boo

a //oo b

Fig. 3. an ID-box

Definition 18. LOC = {U |U ≤LOC ID} and LOC
poly

= {U |U ≤LOC
poly

ID}

Note: LOC is the class of strategies that John Bell [27] considered as classical hidden-variable
theories that he compared to entanglement. It is also the class of strategies that BenOr, Gold-
wasser, Kilian and Wigderson [3] chose to define classical Provers in Multi-Provers Interactive
Proof Systems. LOC is also those strategies Non-Adaptively reducible to ID

Definition 19. Alternatively, LOC = {U |U ≤NAD ID} and LOC
poly

= {U |U ≤NAD
poly

ID}

Alternatively, we can also define LOC from an empty box as used in the core of this paper

a //
∅

boo

x //oo y

Fig. 4. an ∅-box where x ∈ X and y ∈ Y are uniform and independent of everything else

Definition 20. Alternatively, LOC = {U |U ≤NAD ∅} = {U |U ≤LOC ∅}
§ Done by selecting functions f0

A : A×R→ A, f1
A : A×R→ A, ..., fn−1

A : A×R→ A,
fn
A : A×Xn ×R→ X to determine the input of each sub-routine from input a only.
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B.3 One-Way Signalling

We now turn to One-Way Signalling which allows communication from one side to the other.
We name the directions arbitrarily Left and Right. We define R-SIG (resp. L-SIG) as all those
strategies locally reducible to a complete strategy we call R-SIG (see Fig. 5) (resp. L-SIG (see
Fig. 6)). These classes are useful to define what it means for a strategy to signal as well as the
notion of No-Signalling strategies.

a //
R-SIG

boo

a //oo a

Fig. 5. an R-SIG-box

Definition 21. R-SIG = {U |U ≤LOC R-SIG} and R-SIG
poly

= {U |U ≤LOC
poly

R-SIG}

Definition 22. We say that U Right Signals (is R-SIG-verbose¶) iff R-SIG ≤LOC U .

a //
L-SIG

boo

b //oo b

Fig. 6. an L-SIG-box

Definition 23. L-SIG = {U |U ≤LOC L-SIG} and L-SIG
poly

= {U |U ≤LOC
poly

L-SIG}

Definition 24. We say that U Left Signals (is L-SIG-verbose) iff L-SIG ≤LOC U .

Definition 25. We say that U Signals iff U Right Signals or Left Signals.

We prove a first result that is intuitively obvious. We show that the complete strategy R-SIG
cannot be approximated in L-SIG and the other way around.

Theorem 12. R-SIG 6∈ L-SIG and L-SIG 6∈ R-SIG.

Proof. Follows from a simple capacity argument. For all n, all the channels in LOCn(R-SIG)
have zero left-capacity, while L-SIG has non-zero left-capacity. And vice-versa.

B.4 Signalling

We are now ready to define the largest of the non-locality classes SIG. Indeed every possible
strategy is in SIG.

Definition 26. SIG = {U |U ≤LOC SIG} and SIG
poly

= {U |U ≤LOC
poly

SIG}

Definition 27. We say that U Fully Signals (is SIG-verbose) iff U Right Signals and Left Sig-
nals.

¶ We define the notion of L-verbose in analogy to NP-hard: it means “as verbose as any distribution in
non-locality class L”. In consequence, a distribution U is L-complete if U ∈ L and U is L-verbose.
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a //
SIG

boo

b //oo a

Fig. 7. a SIG-box

L-SIG R-SIG!"#

$%ℂ

ℕ%!"#

|$%ℂ⟩
ℂ%)%ℙ

L-!"# R-!"#

SIG
ID

R BGR
BG

PR, ??
??

ℕ+,

L-SIG R-SIG!"#

$%ℂ

ℕ%!"#

|$%ℂ⟩
ℂ%)%ℙ

L-!"# R-!"#

SIG
ID

PR ??
??

Fig. 8. Non-locality Hierarchy and complete (two-party) distributions in each class.

B.5 No-Signalling

We finally define the less intuitive non-locality class NOSIG in relation to classes defined above.

Definition 28. NOSIG = R-SIG
⋂

L-SIG and NOSIG
poly

= R-SIG
poly

⋂
L-SIG

poly
.

A similar characterization may be found in [32] Section 3 and [33] Corollary 3.5.

Theorem 13. . The above definition of NOSIG exactly coincides with the traditional notion of
No-Signalling [34].

Intuitively, a distribution P (x, y|a, b) is No-Signalling as long as for every a the x|b and for
every b the y|a channels have zero capacity.

Note: Forster and Wolf [35] have proved that PR (see Fig. 1) is complete for NOSIG distri-
butions under an asymptotic definition similar to ours.

Fig. 8 shows the relation of these classes as well as the case obtained via quantum entangle-
ment (|LOC〉) as considered by Bell [27] and via commuting-operators (COMOP) as defined by
Ito, Kobayashi, Preda, Sun, and Yao [36]. We include those for completeness but will not discuss
these particular classes any further in this work.

Definition 29. We say that U does not Signal iff U does not Right Signal nor Left Signal iff
U ∈ NOSIG.
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C Visual description of the new model

C.1 Local Multi-Prover Interactive Proofs

LOC
poly

LOC

P1 V1 V2 P2

V1 V0V2

Fig. 9. Interrogation phase (top) followed by decision phase (bottom).

In the Interrogation phase (see Fig. 9) V1, ..., Vk (equipped with an arbitrary local correlator)
individually interrogate P1, ..., Pk (equipped with an arbitrary local correlator). At the end of the
interactive part, all the V1, ..., Vk report to V0 who takes the final decision. The corresponding
complexity class is MIP = MIPLOC

LOC
poly

= NEXP.

C.2 Entangled Multi-Prover Interactive Proofs

|LOC〉
poly

|LOC〉

P1 V1 V2 P2

Fig. 10. Interrogation phase.

In the Interrogation phase (see Fig. 10) V1, ..., Vk (equipped with an arbitrary entangled
correlator) individually interrogate P1, ..., Pk (equipped with an arbitrary entangled correlator).
At the end of the interactive part, all the V1, ..., Vk report to V0 who takes the final decision. The

corresponding complexity class is MIP∗ = MIP
|LOC〉
|LOC〉
poly

⊇ NEXP.

23



C.3 No-Signalling Multi-Prover Interactive Proofs

NOSIG
poly

NOSIG

P1 V1 V2 P2

Fig. 11. Interrogation phase.

In the Interrogation phase (see Fig. 11) V1, ..., Vk (equipped with an arbitrary No-Signalling
correlator) individually interrogate P1, ..., Pk (equipped with an arbitrary No-Signalling correla-
tor). At the end of the interactive part, all the V1, ..., Vk report to V0 who takes the final decision.
The corresponding complexity class is MIPns = MIPNOSIG

NOSIG
poly

= EXP.

As noted before, most MIPs found in the literature are actually (non-adaptive) local-verifier
MIPs (see Fig. 12) yielding for instance MIPns = MIPNOSIG

LOC
poly

.

LOC
poly

NOSIG

P1 V1 V2 P2

Fig. 12. Interrogation phase.

C.4 A New, Stronger Flavour of Zero-Knowledge

Traditionally zero-knowledge is defined as a property of the honest provers for all (polynomial-
time) verifiers

∀polyV ′ ∃polyS ∀x∈L ∀w VIEWV ′ [P1, ..., Pk, V
′](w, x) = S(w, x).

However, in the present context, the fact that the simulation of V ′’s view via a single cen-
tralized simulator S, achieving zero-knowledge is rather easy because such an S can cheat the
binding property of the commitments at will. The intuition behind the original definition is that
the verifier is unable to convince a third party (a Judge J0) because the VIEW he reports (see
Fig. 13) could have been equally created (with the same distribution) by a simulator. Never-
theless, a stronger flavour of zero-knowledge is achieved if the simulator is not invoking its full
signalling power whenever the verifier does not use such power.

24



J0V ′

w

Fig. 13. (Interac/Simula)tion-Distinction phase.

For all non-locality levels starting with Ŝ and up, the simulators Si do not need more non-local

power than the verifiers V ′i . The ultimate (strongest) notion of “LOC
poly

-local ZK” being ZK
poly

LOC

because at all levels V ′ is simulated by a simulator with no extra non-local power, whereas at

the opposite end of the spectrum ZK
poly

SIG is what is generally considered zero-knowledge with a
single simulator or a group of signalling simulators.

This stronger notion of zero-knowledge is particularly interesting in the relativistic bit-
commitment scenario where a pair of judges may provide separate auxiliary-inputs to spatially
separated verifiers pretending to be speaking to powerful provers. If the verifiers can report their
conversation fast enough to the judges (but not interact with the judges however), they must be
able to do so without invoking signalling because of the distance separating them. If a pair of
simulators can produce the same distribution of views in the same context, we obtain a stronger
flavour of zero-knowledge (See Fig. 14).

The results of this paper, depending on the specific bit commitment used, may be achieved
under a stronger flavour of zero-knowledge if a member of the non-locality class Ŝ is enough to
break the binding property of the commitments. For instance, the result of section 5.1 is really

ZK
poly

NOSIGMIPLOC
LOC
poly

= NEXP although existing proofs usually mean ZK
poly

SIGMIPLOC
LOC
poly

= NEXP.

Using the bit commitment scheme based on the magic square game of [28] we can also obtain

ZK
poly

|LOC〉MIPLOC
LOC
poly

= NEXP.

Some interesting questions resulting from this definition is whether any higher class such as

ZK
poly

LOCMIPLOC
LOC
poly

or ZK
poly

NOSIGMIPNOSIG
NOSIG
poly

contains more than the natural examples such as GRAPH

ISO or CODE EQUIV already found in the most natural class ZK
poly

SIGMIPSIG
SIG
poly

= ZKIP.

C.5 A note on notation

ZKSMIPP
V

is the complexity class of Zero-Knowledge Multi-provers Interactive Proofs where (honest and
dishonest) provers are restricted to non-locality class P (important for soundness), where the
honest verifier is from non-locality class V (also important for soundness), and where the Zero-

Knowledge simulators are from non-locality class S unless V̂ ′ is outside of S in which case they
are from the class of V̂ ′.

25



|LOC〉

V̂′

Ṽ1 Ṽ2J1 J2

w1 w2

|LOC〉

Ŝ
⋃
V̂′

S1 S2J1 J2

w1 w2

J1 J2 J0

w1, w2

Fig. 14. Interrogation or Simulation phase (top) followed by Distinction phase (bottom).
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