
Non-deterministic Quasi-Polynomial Time is Average-case Hard for

ACC Circuits

Lijie Chen∗

Massachusetts Institute of Technology
lijieche@mit.edu

July 12, 2019

Abstract

Following the seminal work of [Williams, J. ACM 2014], in a recent breakthrough, [Murray
and Williams, STOC 2018] proved that NQP (non-deterministic quasi-polynomial time) does
not have polynomial-size ACC0 circuits.

We strengthen the above lower bound to an average case one, by proving that for all constants
c, there is a language in NQP, which is not (1/2 + 1/ logc n)-approximable by polynomial-size
ACC0 circuits. In fact, our lower bound holds for a larger circuit class: 2log

a n-size ACC0 circuits
with a layer of threshold gates at the bottom (ACC◦THR circuits), for all constants a. Our work
also improves the average-case lower bound for NEXP against polynomial-size ACC0 circuits by
[Chen, Oliveira, and Santhanam, LATIN 2018].

Our new lower bound builds on several interesting components, including:

• Barrington’s theorem and the existence of an NC1-complete language which is random
self-reducible.

• The sub-exponential witness-size lower bound for NE against ACC0 and the conditional
non-deterministic PRG construction in [Williams, SICOMP 2016].

• An “almost” almost-everywhere MA average-case lower bound (which strengthens the cor-
responding worst-case lower bound in [Murray and Williams, STOC 2018]).

• A PSPACE-complete language which is same-length checkable, error-correctable and also
has some other nice reducibility properties, which builds on [Trevisan and Vadhan, Com-
putational Complexity 2007]. Moreover, all its reducibility properties have corresponding
low-depth non-adaptive oracle circuits.

Like other lower bounds proved via the “algorithmic approach”, the only property of ACC0 ◦
THR exploited by us is the existence of a non-trivial SAT algorithm for ACC0 ◦ THR [Williams,
STOC 2014]. Therefore, for any typical circuit class C , our results apply to them as well if the
corresponding non-trivial SAT (in fact, Gap-UNSAT) algorithms are discovered.

∗Supported by NSF CCF-1741615 (CAREER: Common Links in Algorithms and Complexity). This work was
done while the author was visiting the Simons Institute for the Theory of Computing.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 31 (2019)

1 Introduction

1.1 Background and Motivation

Proving unconditional circuit lower bounds for explicit functions (with the ultimate goal of proving
NP 6⊂ P/ poly) is one of the holy grails of theoretical computer science. Back in the 1980s, there was

a number of significant progress in proving circuit lower bounds for AC0 (constant depth circuits
consisting of AND/OR gates of unbounded fan-in) [Ajt83, FSS84, Yao85, H̊as89] and AC0[p] [Raz87,
Smo87] (AC0 circuits extended with MODp gates) for a prime p. But this quick development was
then met with an obstacle—there were little progresses in understanding the power of AC0[m]
for a composite m, despite it had been conjectured that they cannot even compute the majority
function. In fact, it was a long-standing open question in computational complexity that whether
NEXP (non-deterministic exponential time) has polynomial-size ACC0 circuits1, until a seminal work
by Williams [Wil14b] from a few years ago, which proved NEXP does not have polynomial-size ACC0

circuits, via a new algorithmic approach to circuit lower bounds [Wil13].
This circuit lower bound is an exciting new development after a long gap, especially for it

surpasses all previous known barriers for proving circuits lower bounds: relativization [BGS75],
algebrization [AW09], and natural proofs [RR97]2. Moreover, the underlying approach, the algo-
rithmic method [Wil13], puts many important classical complexity results together, ranging from
non-deterministic time hierarchy theorem [SFM78, Zák83], IP = PSPACE [LFKN92, Sha92], hard-
ness vs randomness [NW94], to PCP Theorem [ALM+98, AS98].

While this new circuit lower bound is a significant breakthrough after a long gap, it still has
some drawbacks when comparing to the previous lower bounds. First, it only holds for the gigantic
class NEXP, while our ultimate goal is to prove lower bound for a much smaller class NP. Second, it
only proves a worst-case lower bound, while previous lower bounds and their subsequent extensions
often also worked in the average-case; and it seems hard to adapt the algorithmic approach to the
average-case settings.

Motivated by the above limitations, subsequent works extend the worst-case NEXP 6⊂ ACC0

lower bound in several ways.3 In 2012, by refining the connection between circuit analysis algo-
rithms and circuit lower bounds, Williams [Wil16] proved that (NEXP ∩ coNEXP)/1 does not have

polynomial-size ACC0 circuits. Two years later, by designing a fast #SAT algorithm for ACC0◦THR
circuits, Williams [Wil14a] proved that NEXP does not have polynomial-size ACC0 ◦ THR circuits.
Then in 2017, building on [Wil16], Chen, Oliveira and Santhanam [COS18] proved that NEXP is
not 1/2 + 1/ polylog(n)-approximable by polynomial-size ACC0 circuits. Recently, in an exciting
new breakthrough, with a new easy-witness lemma for NQP, Murray and Williams [MW18] proved
that NQP does not have polynomial-size ACC0 ◦ THR circuits.

1It had been stressed several times as one of the most embarrassing open questions in complexity theory, see [AB09].
2There is no consensus that whether there is a PRG in ACC0 (so it is not clear whether the natural proof barrier

applies to ACC0). A recent work has proposed a candidate construction [BIP+18], which still needs to be tested.
But we can say that if there is a natural proof barrier for ACC0, then this lower bound has surpassed it. (We also
remark here that there is a recent proposal on how to get a natural proof for ACC0 circuit lower bounds via torus
polynomials [BHLR19].)

3There are some other works [ACW16, Tam16, Wil18, CW19] proved several circuit lower bounds uncomparable
to NEXP 6⊂ ACC0, and [CP16] improved the dependence on depth by showing NEXP does not have ACC0 circuits of
o(logn/ log logn) depth.

1

1.2 Our Results

In this work, we strengthen all the above results by proving an average-case lower bound for NQP
against ACC0 ◦ THR circuits.

Theorem 1.1. For all constants a, c, there is an integer b, such that NTIME[2logb n] is not (1/2 +

1/ logc n)-approximable by 2loga n size ACC0◦THR circuits. The same holds for (N∩coN)TIME[2logb n]/1

in place of NTIME[2logb n]4.

In other words, the conclusion of the above theorem is equivalent to that there is a language
L in NTIME[2logb n] (resp. (N∩coN)TIME[2logb n]/1) which is not (1/2 + 1/ logc n)-approximable by

2loga n size ACd? [m?] ◦ THR circuits, for all constants d?,m?. We also remark that our new circuit
lower bound builds crucially on another classical complexity gem: the Barrington’s theorem [Bar89]
together with a random self-reducible NC1-complete language [Bab87, Kil88].

Either NQP 6⊂ P/ poly or MCSP /∈ ACC0

MCSP is the Minimum Circuit Size Problem such that, given a truth-table T : {0, 1}2n and an
integer 0 ≤ s ≤ 2n, asks whether there is a circuit C of size at most s which computes the given
truth-table T (see [GII+19] and the references therein for more information on this problem).

Applying Theorem 1.1, we also resolve an open question from [GII+19]. [GII+19] proved (among
many other results) that MAJ ∈ (AC0)MCSP, and showed that either NEXP 6⊂ P/poly or MCSP /∈
ACC0, by combing with Williams’ celebrated lower bounds NEXP 6⊂ ACC0 [Wil14b]. It is asked that
whether one can further show either NQP 6⊂ P/ poly or MCSP /∈ ACC0. We answer that affirmatively
by proving the following corollary of Theorem 1.1.

Corollary 1.2. Either NQP 6⊂ P/poly or MCSP /∈ ACC0.

See Appendix E for a proof of the above corollary.

From Modest-Improvement on Gap-UNSAT Algorithms to Average-Case Lower Bounds

Like other lower bounds proved via the “algorithmic approach” [Wil13], the only property of ACC0◦
THR circuits exploited by us is the non-trivial satisfiability algorithm for them [Wil14a]. Hence,
our results also apply to other natural circuit classes if the corresponding algorithms are discovered.

We first define the Gap-UNSAT problem: given a circuit C, the goal is to distinguish between
the case that C is unsatisfiable and the case that C has at least 1/3 · 2n satisfying assignments.5

Then formally, we have:

Theorem 1.3. For a circuit class C ∈ {TC0,Formula,P/poly}, if for a constant ε > 0, there is a

2n−n
ε

time non-deterministic Gap-UNSAT algorithm for 2n
ε
-size C circuits, then for all constants

a and c, NQP is not (1/2 + 1/nc)-approximable by 2loga n-size C circuits.

Remark 1.4. Since the circuits classes listed above can compute majority, we can use better hard-
ness amplification to prove a (1/2 + 1/nc)-inapproximability result, instead of the (1/2 + 1/ logc n)

4See Definition 2.9 for a formal definition of (N∩coN)TIME[T (n)]/1.
5So this problem is weaker than both the SAT problem, and the CAPP problem which asks you to estimate the

accepting probability of C given a random assignment.

2

one. See the proof of Theorem 1.3 for the detail. We also remark that if we only want the original
(1/2 + 1/ logc n)-inapproximability, the above theorem holds for all circuit classes C closed under
composition of AC0 at the top (that is, AC0 ◦ C ⊆ C).

Remark 1.5. One may ask whether the potentially (1/2 + 1/nc)-inapproximability lower bounds
from Theorem 1.3 can be used to construct PRG for the corresponding classes (that is, whether it
boosts a “non-trivial” derandomization algorithm to a much faster PRG construction). While the
answer is yes, such a bootstrapping result for these circuit classes is already implicit in [Wil13,
Wil16], see Appendix D for details.

Therefore, we essentially strengthen the similar algorithmic-to-circuit-lower-bounds connections
in [MW18] from worst-case lower bounds against NQP to average-case lower bounds against NQP.
We remark that our connection actually does not rely on the “easy-witness lemma”, as it is not clear
how one can get an average-case easy witness lemma (i.e., NQP can be approximated by P/poly

implies all NQP verifiers have succinct witnesses). Rather, we use a different approach similar
to [Wil16] and prove the average case lower bound directly, without going through the easy-witness
lemma.6

A Simpler Proof for the New Easy Witness Lemma for NP and NQP of [MW18]

As an interesting by-product of our new ideas, we give a simpler proof for new easy-witness lemma
for NP and NQP of [MW18] (Lemma 1.6 and Lemma 1.7). The proof from [MW18] crucially
depends on a certain “bootstrapping” argument (Lemma 3.1 of [MW18]), while we provide a more
direct and simpler proof without involving that bootstrapping. We think this new proof is an
independent contribution of this work.

Lemma 1.6 (Easy-Witness Lemma for NP, Lemma 1.2 of [MW18]). For all k ≥ 1, there exists a
constant b such that if NP ⊂ SIZE[nk], then every L ∈ NP has witness circuits of size at most nb.7

Lemma 1.7 (Easy-Witness Lemma for NQP, Lemma 1.3 of [MW18]). For all k ≥ 1, there exists

a constant b such that if NQP ⊂ SIZE[2logk n], then every L ∈ NQP has witness circuits of size at

most 2logb n.

1.3 Intuition

In the following we discuss the intuition of our new average-case lower bounds. For the simplicity
of arguments, we will sketch a proof for NQP is not (1− δ)-approximable by polynomial-size ACC0

circuits, for a universal constant δ (δ can be think of as 1/1000).

Main Difficulty: The Absence of an Easy-Witness Lemma Under the Approx-
imability Assumption

First, it is instructive to see why it is hard to generalize the previous proofs for worst-case lower
bound against ACC0 [Wil14b, MW18] to prove an average-case lower bound against ACC0.

6In Section 4.2, we discuss an alternative perspective on our proof: indeed, our results imply a weaker version of
the average-case easy-witness lemma, which only holds for unary languages. This weaker lemma can still be used to
contradict the non-deterministic time hierarchy theorem for unary languages [Zák83], see Section 4.2 for more details.

7To simplify the presentation, we do not specify the relations between b and k here, but it is easy to see that one
can take b = Θ(k3), just as in [MW18].

3

The first step of the NQP 6⊂ ACC0 lower bound by Murray and Williams [MW18], is applying
the so called easy witness lemma. The easy witness lemma states: assuming NQP ⊂ ACC0, for
every language L in NQP with a verifier V (x, y), whenever V (x, ·) is satisfiable, it has a succinct
witness y which is the truth-table of a small ACC0 circuit. Then they apply a similar argument as
in [Wil13, Wil14b] to contradict the non-deterministic time hierarchy theorem [Zák83], using the
non-trivial SAT algorithm for ACC0 circuits in [Wil14b].

Now for proving the average-case lower bound for NQP, we can only start with the assumption
that NQP can be (1 − δ)-approximated by polynomial-size ACC0 circuits. As already explained
by [COS18], we cannot apply the easy witness lemma even if we start from the much stronger
assumption that NEXP can be (1−δ)-approximated by ACC0: the proofs of both the original and the
new easy-witness lemma [IKW02, MW18] completely break when we only have the approximability
assumption.

Review of [COS18]’s Approach

In order to get around the above difficulty, [COS18] start from a worst-case lower bound against
ACC0 [Wil16], and then apply a worst-case to average-case hardness amplification. Their approach
works roughly as follows:

1. By [Wil16], there is a language L ∈ (NEXP ∩ coNEXP)/1, which doesn’t have a poly(n) size

ACC0 circuit.

2. Using the locally-list-decodable codes of [GGH+07, GR08], one can compute a language L̃ ∈
(NEXP ∩ coNEXP)/1, which cannot be (1/2 + 1/ log n)-approximated by a poly(n) size ACC0

circuits. That is, we treat the truth-table of Ln as a message z ∈ {0, 1}2n of the locally-list-
decodable codes, and set L̃m to compute the codeword of z for an appropriate m = m(n).
(Note that here it is important to work with a language L in (NEXP∩coNEXP)/1, as otherwise
we don’t know how to compute the truth-table of L in NEXP.)

3. In particular, the above L̃ ∈ NEXP/1. They then get rid of the advice bit via an enumeration
trick, and therefore prove the average case lower bound for NEXP.

Unfortunately, it seems very hard to generalize the above approach to prove an average-case
lower bound for NQP: the second step of the above approach breaks, as we no longer can afford
to compute an error correcting code on the entire truth-table of a particular input length, which
takes (at least) exponential time.

Therefore, we have to take a different approach, which proves the average-case lower bound
directly, without going through the worst-case to average-case hardness amplification. In order to
do that, it is helpful to review the proof of the new easy-witness lemma in [MW18].

The New Easy-Witness Lemma: “Almost” Almost-Everywhere (a.a.e.) MA
Lower Bound and i.o. Non-deterministic PRG (NPRG)

(An instantiation of) the new easy-witness lemma of [MW18] states that if NQP ⊂ P/ poly, then all
verifiers for NQP languages have succinct (polynomial-size) witness. For the sake of contradiction,
we now suppose NQP ⊂ P/poly and some verifier for a language L ∈ NQP doesn’t have poly(n)-size

witness. That is, there is a polynomial-time verifier V (x, y) with |x| = n and y = 2logb n for a

4

constant b, such that for an infinite number of n’s, there is an xn ∈ {0, 1}n such that V (xn, ·) is
satisfiable, but for any yn such that V (xn, yn) = 1, we have SIZE(yn) = nω(1).

Now, yn can be interpreted as a truth-table of a function on ` = logb n variables, and we have
SIZE(yn) ≥ 2ω(`1/b). Therefore, given such a yn, using the well-known hardness-to-pseudorandomness
connection [Uma03], one can construct a pseudorandom generator Gyn with seed length O(`), run-

ning time 2O(`), and it fools all circuits of size 2a·`
1/b

, for all constants a.
Scaling everything properly by setting S = 2a·`

1/b
, it follows that for an infinite number of S, if

we are given the xn (of length |xn| = S1/a) as advice, we can guess a yn such that V (xn, yn) = 1,
and compute the PRG Gyn . This would be a non-deterministic PRG with seed length O(logb S),

running time 2O(logb S), and fooling all S-size circuits.
The key ingredient of [MW18] is an “almost” almost-everywhere (a.a.e.) MA circuit lower

bound, which builds on the MA circuit lower bound by Santhanam [San09].8 For the simplicity of
arguments, we now pretend that we have an almost-everywhere MA circuit lower bound. Specifi-
cally, for each c, there is an integer k = k(c) such that there is a language Lc in MATIME[nk], such
that SIZE(Lcn) ≥ nc for all sufficiently large n.

The crucial idea is that, using the above i.o. NPRG, one can non-deterministically derandomize
Lc on an infinite number of input length n’s (as the string yn can be non-deterministically guess-
and-verified). To derandomize MATIME[nk], it suffices to use the PRG which fools circuits of size

S = n2k. Therefore, by setting a = 2k, we have a language L? ∈ NTIME[2logb+1 n]/n, such that
it agrees with Lc on an infinite number of input lengths. Since c can be an arbitrary integer, we
conclude that NTIME[2logb+1 n]/n is not in P/ poly. Thus, we obtain a contradiction to our assumption
(the n bits of advice can be got rid of easily).

Our Approach: “Almost” Almost-Everywhere Average-Case MA Lower Bound
and i.o. NPRG

A natural attempt to adapt the above approach, is to start with an MA a.a.e. average-case circuit
lower bound, and try to derandomize it non-deterministically via an i.o. NPRG.

More precisely, assume that NQP can be (1 − δ)-approximated by ACC0 circuits for the sake
of contradiction. Suppose we have a language L ∈ MAQP such that for all sufficient large n,
heur1−δ-SIZE(Ln) ≥ nω(1).9 Then with an appropriate i.o. NPRG, there is a language L? ∈ NQP
which agrees with L on an infinite number of input lengths, which contradicts our assumption as
this L? cannot be approximated by polynomial-size ACC0.

An “Almost” Almost-Everywhere Average-Case MA Lower Bound

In order to implement this idea, the first obvious challenge is to strengthen the worst-case “almost”
almost-everywhere MA circuit lower bounds [MW18] to an average-case one. This could be solved
by combing ideas from the average-case circuit lower bound for MA [San09], together with a new
construction of a PSPACE-complete language.

8[MW18, San09]’s lower bounds are actually for MA with advice bits. We ignore the advice bits issue for the sake
of simplicity in the intuition part. See the end of the this section for some discussions on how to deal with the advice
bits.

9heur1−δ-SIZE(Ln) is the minimum size of a circuit computing correctly at least a (1− δ) fraction of inputs to Ln.
See Section 2.1.2 for a formal definition.

5

Roughly speaking, the MA circuit lower bounds in [San09] and [MW18] make crucial use of a
PSPACE-complete language by [TV07], which admits several nice properties, including being same-
length checkable, downward self-reducible, and paddable (see Definition 2.2 for details). We modify
the construction from [TV07] to obtain a PSPACE-complete language LPSPACE which is in addition
robust : that is, if it is hard in the worst-case, then it is also hard in the average-case. We think
this new language LPSPACE is of independent interest and may be useful for other problems.

i.o. Non-deterministic PRG

The next challenge is more serious, how do we construct the required i.o. NPRG? One starting
point is the (unconditional) witness-size lower bound for NE. That is, [Wil16] showed that there
is unary language in NE, whose verifier does not have 2n

ε
-size ACd? [m?] witness (ε = ε(d?,m?)).

Therefore, let the verifier be V (x, y) with |x| = n and |y| = 2n; on an infinite number of n’s, V (1n, ·)
is satisfiable, yet for all y such that V (1n, y) = 1, y is not the truth-table of a 2n

ε
-size ACd? [m?]

circuit.
Further assuming P ⊂ ACC0, [Wil16] showed that the above implies an i.o. NPRG for general

circuits. Note that P ⊂ ACC0 implies the Circuit-Evaluation problem has an ACC0 circuit, and
consequently P/poly collapses to ACC0. Therefore, for a y with V (1n, y) = 1, y cannot be computed

by a 2n
ε
-size general circuit as well, which means one can substitutive y into the known hardness-

to-pseudorandomness construction [NW94, Uma03], and get a quasi-polynomial time i.o. NPRG.
However, starting with our assumption NQP can be (1 − δ)-approximated by ACC0, it is not

clear how to show P/poly collapses to ACC0. So we have to take a more sophisticated approach.
To make the situation worse, performing worst-case to average-case hardness amplification requires
majority [SV10, GSV18], which means we don’t even know how to get a PRG fooling ACC0 circuits,
from a y which is only worst-case hard for ACC0.

i.o. Non-deterministic PRG for Low-Depth Circuits

So we want to work with a stronger circuit class, for which at least hardness amplification is
possible, like NC1. Fortunately, there is an NC1-complete problem which admits a nice random
self-reduction [Bar89, Bab87, Kil88]. By our assumption, this problem can clearly be (1 − δ)-
approximated by ACC0 circuits. Utilizing this random self-reduction, and the fact that approximate-
majority can be computed in AC0 [Ajt83, Vio09], we can show that this NC1-complete problem has
a poly(n)-size ACC0 circuits. This in particular means NC1 collapses to ACC0. More specifically,
there are two constants d?,m?, such that any depth d general (fan-in two) circuit has an equivalent
2O(d)-size ACd? [m?] circuit.

Now, get back to the verifier V . It follows that for an infinite number of n’s, V (1n, ·) is satisfiable
and for any y such that V (1n, y) = 1, y is not the truth-table of an nε-depth circuit. This is enough
to obtain a quasi-polynomial time i.o. non-deterministic PRG which fools polylog(n)-depth circuits.

However, in order to non-deterministically derandomize a general MA algorithm, a PRG for
polylog(n)-depth NC circuits is not enough. Suppose the MA algorithm A takes an input x, guesses
a string y, and flips some random coins r; in order to obtain a non-deterministic simulation, we
actually want to fool circuits Cy(r) := A(x, y, r), for all possible y. The circuit Cy could well be a
general circuit, which does not necessarily have low depth.

6

An Average-Case Hard MA Language with a Low-Depth Computable Predicate

The next key observation is that we don’t really need the language in MA to be average-case hard
for general circuits; to obtain a contradiction, it suffices to require it cannot be approximated by
low-depth circuits, as our assumption is that NQP can be (1 − δ)-approximated by ACC0 circuits,
which is contained in NC1.

This brings us to our final technical component—an MA language Lhard with a low-depth com-
putable predicate, and is average-case hard for low-depth circuits. That is, suppose the MA al-
gorithm A takes an input x, guesses a string y, and flips some random coins r; we require that
A(x, y, r) (A(x, y, r) is called the predicate of the MA algorithm) is computable by a uniform low-
depth circuit. Now, clearly the circuit Cy(r) := A(x, y, r) is a low-depth circuit, and therefore our
i.o. NPRG can be used to achieve an i.o. derandomization of Lhard, which results in a contradiction
to our assumption.

The construction of such an MA language is the technical centerpiece of this paper; the key
observation is that for our PSPACE-complete problem LPSPACE, all its nice properties: being same-
length checkable, downward self-reducible, and paddable, have corresponding low-depth uniform
oracle circuits. For instance, the instance checker in the same-length checkable property (see Defi-
nition 2.2), can actually be implemented by a uniform TC0 non-adaptive oracle circuit. Using these
low-depth circuits in the previous proof for average-case a.a.e. MA circuit lower bounds, together
with other additional ideas, we can exhibit the language Lhard.

A Technicality: Dealing with Advice Bits

In the above discussion, we (intentionally) omitted a technical detail—the a.a.e. MA lower bound
proved in [MW18] is actually for MA/O(logn). Therefore our i.o. derandomization of the MA
algorithm also needs to use these O(log n) advice bits. But then, we only have NQP/O(logn) is

average-case hard for polynomial-size ACC0 circuits. And the enumeration trick from [COS18]
requires the advice to be o(log n).

Luckily, we further relax the definition of an “almost” almost-everywhere circuit lower bound,
which is weak enough for us to prove such an MA average-case lower bound with only one bit of
advice, but also strong enough to allow us to prove the average-case circuit lower bound. Then we
can apply the enumeration trick from [COS18] to get the desired lower bound for NQP, without
advice.

7

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Our Results . 2
1.3 Intuition . 3

2 Preliminaries 10
2.1 Complexity Classes and Basic Definitions . 10

2.1.1 Basic Circuit Families . 10
2.1.2 Notations . 11

2.2 Pseudorandom Generators for Low-Depth Circuits 11
2.3 A PSPACE-complete Language with Low-complexity Reducibility Properties 11
2.4 Average-Case Hard Languages with Low Space . 13
2.5 MA ∩ coMA and NP ∩ coNP Algorithms . 13

3 A Simpler Proof for the New Easy Witness Lemma for NP and NQP of [MW18] 14
3.1 a.a.e. Fixed-Polynomial Lower Bounds for MA/1 . 14
3.2 Easy-Witness Lemma for NP . 17

4 The Structure of the Whole Proof and Alternative Perspectives 18
4.1 Outline of the Proof . 18
4.2 An Alternative Perspective: Average-Case Easy Witness Lemma for Unary Languages 21

5 A Collapse Theorem for NC1 21
5.1 A Random Self-reducible NC1-Complete Problem . 22
5.2 A Special Encoding . 22
5.3 NC1 Collapses to AC0 ◦ C if Uniform NC1 can be Approximated by C 23

6 An i.o. Non-deterministic PRG for Low-Depth Circuits 25
6.1 Witness-Size Lower Bound for NE . 26
6.2 The PRG Construction . 26

7 Average-Case “Almost” Almost Everywhere Lower Bounds for MA 27
7.1 Preliminaries . 27
7.2 An Average-Case MA ∩ coMA a.a.e. Lower Bound for General Circuits 27
7.3 An Average-Case MA ∩ coMA a.a.e. Lower Bound for Low Depth Circuits 30

8 A PSPACE-complete Language with Nice Reducibility Properties 33
8.1 Notations and Boolean Encodings of Field Elements 34
8.2 Review of the Construction in [TV07] . 34
8.3 Technical Challenges to Adapt [TV07] for Our Purpose 35
8.4 The Construction of the PSPACE-complete Language 36

8

9 NQP is not 1/2 + o(1)-approximable by Polynomial Size ACC0 ◦ THR Circuits 41
9.1 Preliminaries . 41
9.2 (1− δ) Average-Case Lower Bounds . 41
9.3 1/2 + 1/ polylog(n) Average-Case Lower Bounds . 45

10 Generalization to Other Natural Circuit Classes 47

11 Open Questions 47

A PRG Construction for Low-Depth Circuits 52

B TC0 Collapses to ACC0 if Uniform TC0 can be Approximated by ACC0 53

C Average-Case Easy-Witness Lemma for Unary Languages 54

D Bootstrapping from Non-trivial Derandomization Algorithms to Quasi-Polynomial
Time NPRGs 55

E Either NQP 6⊂ NQP or MCSP 6⊂ ACC0 55

9

2 Preliminaries

We use GF(pr) to denote the finite field of size pr, where p is a prime and r is an integer.

2.1 Complexity Classes and Basic Definitions

We assume knowledge of basic complexity theory (see [AB09, Gol08] for excellent references on this
subject).

2.1.1 Basic Circuit Families

A circuit family is a collection of circuits {Cn : {0, 1}n → {0, 1}}n∈N. A circuit class is a collection
of circuit families. The size of a circuit is the number of wires in the circuit, and the size of a
circuit family is a function of the input length that upper-bounds the size of circuits in the family.
The depth of a circuit is the maximum number of wires on a path from an input gate to the output
gate.

We will mainly consider classes in which the size of each circuit family is bounded by some
polynomial; however, for a circuit class C , we will sometimes also abuse notation by referring to C
circuits with various other size or depth bounds.

AC0 is the class of circuit families of constant depth and polynomial size, with AND,OR and
NOT gates, where AND and OR gates have unbounded fan-in. For an integer m, the function
MODm : {0, 1}∗ → {0, 1} is one if and only if the number of ones in the input is not divisible
by m. The class AC0[m] is the class of constant-depth circuit families consisting of polynomially-
many unbounded fan-in AND, OR and MODm gates, along with unary NOT gates. We denote
ACC0 = ∪m≥2AC

0[m].
The function majority, denoted as MAJ : {0, 1}∗ → {0, 1}, is the function that outputs 1 if the

number of ones in the input is no less than the number of zeros, and outputs 0 otherwise. TC0

is the class of circuit families of constant depth and polynomial size, with unbounded fan-in MAJ
gates. NCk for a constant k is the class of O(logk n)-depth and poly-size circuit families consisting
of fan-in two AND and OR gates and unary NOT gates.

We say a circuit family {Cn}n∈N is uniform, if there is a deterministic algorithm A, such that
A(1n) runs in time polynomial of the size of Cn, and outputs Cn.10

We also use NC circuits to denote circuits with fan-in two AND and OR gates and unary NOT
gates. For a circuit class C , we say a circuit C? is a C oracle circuit, if C? is also allowed to use
a special oracle gate (which can occur multiple times in the circuit, but with the same fan-in), in
addition to the usual gates allowed by C circuits. We say an oracle circuit is non-adaptive, if on
any path from an input gate to the output gate, there is at most one oracle gate.

We say a circuit class C is typical, if given the description of a circuit C of size s, for indices
i, j ≤ n and a bit b, the following functions

¬C,C(x1, . . . , xi−1, xj ⊕ b, xi+1, . . . , xn), C(x1, . . . , xi−1, b, xi+1, . . . , xn)

all have C circuits of size s, and their corresponding circuit descriptions can be constructed in
poly(s) time. That is, C is typical if it is closed under both negation and projection.

10That is, we use the P uniformity by default.

10

2.1.2 Notations

We say a circuit C : {0, 1}n → {0, 1} γ-approximates a function f : {0, 1}n → {0, 1}, if C(x) = f(x)
for a γ fraction of inputs from {0, 1}n. If a circuit C does not γ-approximates a function f , we say
f is not γ-approximable by C.

For a function f : {0, 1}n → {0, 1}, we define SIZE(f) (resp. DEPTH(f)) to be the minimum
size (resp. depth) of an NC circuit computing f exactly. Similarly, for an error parameter γ > 1/2,
we define heurγ-SIZE(f) (resp. heurγ-DEPTH(f)) to be the minimum size (resp. depth) of an NC
circuit γ-approximating f .

We say a language L can be γ(n)-approximated by C , if there is a circuit family {Cn}n∈N ∈ C
such that Cn γ(n)-approximates Ln for all sufficiently large n. We also say a class of language L
can be γ(n)-approximated by C , if all languages L ∈ L can be γ(n)-approximated by C .

We say that a language L is not γ(n)-approximable by a circuit class C if it cannot be γ(n)-
approximated by C . That is, for each {Cn}n∈N ∈ C , there is an infinite number of n’s, such that
Ln is not γ(n)-approximable by Cn. We say a class of language L is not γ(n)-approximable by a
circuit class C , if there is a language L ∈ L which is not γ(n)-approximable by C .

2.2 Pseudorandom Generators for Low-Depth Circuits

The following PRG construction follows directly from the local-list-decodable codes with low-
depth decoder [IJKW10, GGH+07, GR08], and the hardness-to-pseudorandomness transformation
of [NW94].

Theorem 2.1. Let δ > 0 be a constant. There are universal constants c and g, and a function
G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, if Y : {0, 1}` → {0, 1} does not have `δ-depth NC circuit,

then for S = 2`
c·δ

, and for all NC circuit C with depth log(S),∣∣∣∣ Pr
x∈{0,1}w

[C(G(Y, x)) = 1]− Pr
x∈{0,1}S

[C(x) = 1]

∣∣∣∣ < 1/S,

where w = `g. That is, G(Y, ·) 1/S-fools all logS-depth NC circuits. Moreover, G is computable in
2O(`) time.

We provide a proof for the above theorem in Appendix A for completeness.

2.3 A PSPACE-complete Language with Low-complexity Reducibility Proper-
ties

A fundamental results often used in complexity theory is the existence of a PSPACE-complete
language [TV07] satisfying strong reducibility properties, including the time-hierarchy theorem for
BPP with one bit of advice [FS04], the fixed polynomial circuit lower bound MA/1 ⊆ SIZE(nk) for
any k [San09], and the recent new witness lemmas for NQP and NP [MW18].

The key technical ingredient of our new average-case lower bound is a modified construction
of the PSPACE-complete language in [TV07], which satisfies the additional “robust” and “error
correctable” properties, which are useful for proving average-case lower bound11. Moreover, we
observe that the “reducers” in these reducibility properties of our PSPACE-complete languages

11The error correctable property here is stronger than the piecewise random self-reducible property in [San09].

11

are of low-complexity circuit classes (i.e., uniform polylog(n)-depth circuits). We believe this new
construction would be of independent interest, and may be useful to further improvement.

We first define these reducibility properties.

Definition 2.2. Let L : {0, 1}∗ → {0, 1} be a language, we define the following properties:

• L is C downward self-reducible if there is a constant c such that for all sufficiently large n,
there is an nc size uniform C circuit A? such that for all x ∈ {0, 1}n, ALn−1(x) = Ln(x).

• L is robust if there are constants c and δ > 0 such that for all sufficiently large n and ε ≥ 2−n
δ
,

SIZE(Ln) ≤ (heur1/2+ε-SIZE(Ln) · ε−1)c.

• L is paddable, if there is a polynomial time computable projection Pad (that is, each output
bit is either a constant or only depends on 1 input bit), such that for all integers 1 ≤ n < m
and x ∈ {0, 1}n, we have x ∈ L if and only if Pad(x, 1m) ∈ L, where Pad(x, 1m) always has
length m.

• L is C weakly error correctable if there is a constant c such that for all sufficiently large n,
for every oracle O : {0, 1}n → {0, 1} which 0.99-approximates Ln, there is an nc size C oracle
circuit D?, such that DO exactly computes Ln.

• L is same-length checkable if there is a probabilistic polynomial-time oracle Turing machine
M with output in {0, 1, ?}, such that, for any input x,

– M asks its oracle queries only of length |x|.
– If M is given L as an oracle, then M outputs L(x) with probability 1.

– M outputs 1− L(x) with probability at most 1/3 no matter which oracle is given to it.

We call M an instance checker for L. Moreover, we say L is C same length checkable, if there
is an instance checker M which can be implemented by uniform polynomial-size C oracle
circuits.

Remark 2.3. Note that the paddable property implies that SIZE(Ln) and DEPTH(Ln) are non-
decreasing.

The following PSPACE-complete language is given by [San09] (modifying a construction of
Trevisan and Vadhan [TV07]).

Theorem 2.4 ([TV07, San09]). There is a PSPACE-complete language LTV which is paddable, TC0

downward self-reducible, and same-length checkable.12

Based on the above language LTV, we construct a modified PSPACE-complete language LPSPACE

which is also robust and NC3 weakly error correctable. Moreover, with a careful analysis, we observe
that the instance checker for LPSPACE can be implemented in uniform TC0. That is, LPSPACE is TC0

same length checkable.

Theorem 2.5. There is a PSPACE-complete language LPSPACE which is paddable, TC0 downward
self-reducible, TC0 same-length checkable, robust and NC3 weakly error correctable. Moreover, all
the corresponding oracle circuits for the above properties are in fact non-adaptive: that is, on any
path from an input gate to the output gate, there is at most one oracle gate.

12 [TV07] doesn’t explicitly state the TC0 downward self-reducible property, but it is evident from their proof.

12

2.4 Average-Case Hard Languages with Low Space

We also need the following folklore result, which can be proved by applying standard worst-case to
average-case hardness amplification [STV01] to a hard language in SPACE[s(n)O(1)] obtained via
diagonalization.

Theorem 2.6. Let n ≤ s(n) ≤ 2o(n) be space-constructible. There is a universal constant c and a
language L ∈ SPACE[s(n)c] that heur1/2+1/n3-SIZE(Ln) > s(n) for all sufficiently large n.

2.5 MA ∩ coMA and NP ∩ coNP Algorithms

We first introduce convenient definitions of an (MA ∩ coMA)TIME[T (n)] or (N∩coN)TIME[T (n)]
algorithm, which simplifies the presentation.

Definition 2.7. Let T : N → N be a time-constructible function. A language L is in (MA ∩
coMA)TIME[T (n)], if there is a deterministic algorithm A(x, y, z) (which is called the predicate)
such that:

• A takes three inputs x, y, z such that |x| = n, |y| = |z| = O(T (n)) (y is the witness while z is
the collection of random bits), runs in O(T (n)) time, and outputs an element from {0, 1, ?}.

• (Completeness) There exists a y such that

Pr
z

[A(x, y, z) = L(x)] ≥ 2/3.

• (Soundness) For all y,
Pr
z

[A(x, y, z) = 1− L(x)] ≤ 1/3.

Remark 2.8. (MA∩ coMA) languages with advice are defined similarly, with A being an algorithm
with the corresponding advice.

Definition 2.9. Let T : N→ N be a time-constructible function. A language L is in (N∩coN)TIME[T (n)],
if there is an algorithm A(x, y) (which is called the predicate) such that:

• A takes two inputs x, y such that |x| = n, |y| = O(T (n)) (y is the witness), runs in O(T (n))
time, and outputs an element from {0, 1, ?}.

• (Completeness) There exists an y such that

A(x, y) = L(x).

• (Soundness) For all y,
A(x, y) 6= 1− L(x).

Remark 2.10. (N∩coN)TIME[T (n)] languages with advice are defined similarly, with A being an
algorithm with the corresponding advice.

Note that by above definition, the semantic of (MA∩ coMA)/1 is different from MA/1 ∩ coMA/1.
A language in (MA ∩ coMA)/1 has both an MA/1 algorithm and a coMA/1 algorithm, and their
advice bits are the same. While a language in MA/1 ∩ coMA/1 can have an MA/1 algorithm and
a coMA/1 algorithm with different advice sequences. Similar relationship holds for (NP ∩ coNP)/1
and NP/1 ∩ coNP/1.

13

3 A Simpler Proof for the New Easy Witness Lemma for NP and
NQP of [MW18]

In this section, we present our simpler proof of easy-witness lemma for NP from [MW18] (it is easy
to adapt that for NQP). This also serves as a warm-up of the whole paper, as it can be seen as
a baby version of our a.a.e. average-case MA lower bounds, which are the technical centerpiece of
this paper.

As already discussed in the intuition section, the technical centerpiece of the new easy witness
lemma of [MW18] is an a.a.e. MA circuit lower bound. In the following we first give a simpler
proof of that MA lower bound, and then sketch how to get an NP easy-witness lemma based on
that (this part is basically an adaption of the proof of Lemma 4.1 of [MW18]).

3.1 a.a.e. Fixed-Polynomial Lower Bounds for MA/1

Now we are ready to prove the a.a.e. fixed-polynomials lower bounds for MA/1.

Lemma 3.1. For all constants k, there is an integer c, and a language L ∈ MA/1, such that for
all sufficiently large τ ∈ N and n = 2τ , either

• SIZE(Ln) > nk, or

• SIZE(Lm) > mk, for an m ∈ (nc, 2 · nc) ∩ N.

Our Relaxation of The a.a.e. Condition. The statement of Lemma 3.1 also illustrates our
relaxation of the a.a.e. condition which allows to only use 1 bit of advice, which is crucial in the
average-case setting. In [MW18], the lower bound shows that for almost all n’s and m = nc, at
least one of Ln and Lm requires nk or mk size circuits correspondingly. But that requires one to
consider an MA/O(logn) language. Here we relax the condition, such that we only need the lower
bound to hold for almost all n which is a power of 2, and an m ∈ (nc, 2 · nc). In Section 3.2, we
show how the above simplification can still be used to prove the easy witness lemma for NP.

Proof of Lemma 3.1. Let LPSPACE be the language specified by Theorem 2.4. By Theorem 2.6,
there is an integer c1 and a language Ldiag in SPACE(nc1), such that SIZE(Ldiag

n) ≥ nk for all
sufficiently large n. By the fact that LPSPACE is PSPACE-complete, there is a constant c2 such that
Ldiag
n can be reduced to LPSPACE on input length nc2 in nc2 time. We set c = c2.

The Algorithm. Let τ ∈ N be sufficiently large. We also let b to be a constant to be specified
later. Given an input x of length n = 2τ and let m = nc, we first provide an informal description
of the MA/1 algorithm which computes the language L. There are two cases:

1. When SIZE(LPSPACE
m) ≤ nb. That is, when LPSPACE

m is easy. In this case, on inputs of length

n, we guess-and-verify a circuit for LPSPACE
m of size nb, and use that to compute Ldiag

n .

2. Otherwise, we know LPSPACE
m is hard. Let ` be the largest integer such that SIZE(LPSPACE

`) ≤
nb. On inputs of length m1 = m+ `, we guess-and-verify a circuit for LPSPACE

` , and compute
it (that is, compute LPSPACE

` on the first ` input bits while ignoring the rest).

14

Intuitively, the above algorithm computes a hard function because either it computes the hard
language Ldiag

n on inputs of length n, or it computes the hard language LPSPACE
` on inputs of length

m1. A formal description of the algorithm is given in Algorithm 1, while an algorithm for setting
the advice sequence is given in Algorithm 2. It is not hard to see that a yn can only be set once in
Algorithm 2.

Algorithm 1: The MA/1 algorithm

1 Given an input x with input length n = |x|;
2 Given an advice bit y = yn ∈ {0, 1};
3 Let m = nc;
4 Let n0 = n0(n) be the largest integer such that nc0 ≤ n;
5 Let m0 = nc0;
6 Let ` = n−m0;
7 if y = 0 then
8 Output 0 and terminate

9 if n is a power of 2 then
10 (We are in the case that SIZE(LPSPACE

m) ≤ nb.);
11 Compute z in nc time such that Ldiag

n (x) = LPSPACE
m (z);

12 Guess a circuit C of size at most nb;

13 Let M be the instance checker for LPSPACE
m ;

14 Flip an appropriate number of random coins, let them be r;
15 Accept if MC(z, r) = 1;

16 else
17 (We are in the case that SIZE(LPSPACE

m0
) > nb0 and ` is the largest integer such that

SIZE(LPSPACE
`) ≤ nb0.);

18 Let z be the first ` bits of x;

19 Guess a circuit C of size at most nb0;

20 Let M be the instance checker for LPSPACE
` ;

21 Flip an appropriate number of random coins, let them be r;
22 Accept if MC(z, r) = 1;

The Algorithm Satisfies the MA Promise. We first show the algorithm satisfies the MA
promise. The intuition is that it only tries to guess-and-verify a circuit for LPSPACE when it exists,
and the properties of the instance checker (Definition 2.2) ensure that in this case the algorithm
satisfies the MA promise. Let y = yn, there are three cases:

1. y = 0. In this case, the algorithm computes the all zero function, and clearly satisfies the MA
promise.

2. y = 1 and n is a power of 2. In this case, from Algorithm 2, we know that SIZE(LPSPACE
m) ≤ nb

for m = nc. Therefore, at least one guess of the circuit is the correct circuit for LPSPACE
m , and

on that guess, when LPSPACE
m (z) = Ldiag

n (x) = 1, the algorithm accepts with probability at
least 2/3, by the property of the instance checker (Definition 2.2).

15

Algorithm 2: The algorithm for setting advice bits

1 All yn’s are set to 0 by default;
2 for τ = 1→∞ do
3 Let n = 2τ ;
4 Let m = nc;

5 if SIZE(LPSPACE
m) ≤ nb then

6 Set yn = 1;
7 else
8 Let ` = max{` : SIZE(LPSPACE

`) ≤ nb};
9 Set ym+` = 1;

Again by the property of the instance checker, when Ldiag
n (x) = LPSPACE

m (z) = 0, the algorithm
accepts with probability at most 1/3 for all guesses of C, as MC(z, r) = 1 = 1− LPSPACE

m (z)
with probability at most 1/3 over the choices of r. Hence, the algorithm correctly computes

Ldiag
n on inputs of length n.

3. y = 1 and n is not a power of 2. In this case, from Algorithm 2, we know that SIZE(LPSPACE
`) ≤

nb0. Therefore, at least one guess of the circuit is the correct circuit for LPSPACE
` , and on that

guess, when LPSPACE
` (z) = 1 (z = z(x) is the first ` bits of x), the algorithm accepts with

probability at least 2/3, by the property of the instance checker (Definition 2.2).

Again by the property of the instance checker, when LPSPACE
` (z) = 0, on all possible guesses

of C, the algorithm accepts with probability at most 1/3. Hence, the algorithm correctly
computes LPSPACE

` (z(x)) on inputs of length n.

The Algorithm Computes a Hard Language. Next we show that the algorithm indeed
computes a hard language as stated. Let τ be a sufficiently large integer, n = 2τ , and m = nc.
According to Algorithm 2, there are two cases:

• SIZE(LPSPACE
m) ≤ nb. In this case, Algorithm 2 sets yn = 1. And by previous analyses, we

know that Ln computes the hard language Ldiag
n , and therefore SIZE(Ln) > nk.

• SIZE(LPSPACE
m) > nb. Let ` be the largest integer such that SIZE(LPSPACE

`) ≤ nb. By Re-
mark 2.3, we have 0 < ` < m.

Note that SIZE(LPSPACE
`+1) ≤ (`+1)d·SIZE(LPSPACE

`) for a universal constant d, because LPSPACE

is downward self-reducible. Therefore,

SIZE(LPSPACE
`) ≥ SIZE(LPSPACE

`+1)/(`+ 1)d ≥ nb/md ≥ nb−c·d.

Now, on inputs of lengthm1 = m+`, we have ym1 = 1 by Algorithm 2 (note thatm1 ∈ (m, 2m)
as ` ∈ (0,m)). Therefore, Lm1 computes LPSPACE

` , and

SIZE(Lm1) = SIZE(LPSPACE
`) ≥ nb−c·d.

We set b such that nb−cḋ ≥ (2m)k ≥ mk
1 (we can set b = cd + 3 · ck), which completes the

proof.

16

3.2 Easy-Witness Lemma for NP

Now we sketch the proof for the easy-witness lemma for NP, which also illustrate why our relaxation
of a.a.e. condition is still enough for the purpose of proving lower bounds.

First we need the following simple lemma.

Lemma 3.2. For a constant k, if NP/O(n) is not in SIZE(nk), then NP is not in SIZE(nk).

Proof. We prove the contrapositive. Suppose NP is in SIZE(nk) for an integer k. Let L ∈ NP/cn
for a constant c, and M and {αn}n∈N be its corresponding nondeterministic Turing machine and
advice sequence. Let p(n) be a polynomial running time upper bound of M on inputs of length n.

Now we define a language L′ such that a pair (x, α) ∈ L′ if and only if c|x| = |α| and M accepts
x with advice bits set to α in p(|x|) steps. Clearly, L′ ∈ NP from the definition, so it has an nk-size
circuit family. Fixing the advice bits to the actual αn’s in the circuit family, we have an O(nk)-size
circuit family for L as well. This completes the proof.

Reminder of Lemma 1.6 For all k ≥ 1, there exists a constant b such that if NP ⊂ SIZE[nk],
then every L ∈ NP has witness circuits of size at most nb.

Proof Sketch. Fix the integer k, let b = b(k) be a constant to be specified later. We prove the
contrapositive. Suppose there is a language L ∈ NP without nb-size witness circuits.

That is, there is polynomial time verifier V (x, y) for L (x ∈ L⇔ ∃y V (x, y) = 1), with |x| = n
and |y| = na for a constant a, such that for infinite many xn ∈ L, we have V (xn, ·) is satisfiable,
and V (xn, y) = 1 implies y (interpreted as a function {0, 1}a logn → {0, 1}) does not have nb size
circuits.

Using this, one can construct a non-deterministic PRG as follows:

• Given a parameter n, and an input xn ∈ {0, 1}n as advice.

• Guess a y ∈ {0, 1}na such that V (x, y) = 1.

• Feed y into the known hardness-to-pseduorandomness construction [Uma03] to construct a
PRG.13

By previous discussions, for infinite many n’s, there are corresponding advice xn such that the
above computes a poly(n)-time PRG fooling nΩ(b)-size circuits with O(log n) seed length.

Let L be the MA/1 language from Lemma 3.1 with parameter 2k, and let c be the corresponding
constant. Now, for each such n which is sufficiently large, let n1 = n1(n) be the smallest power of 2
which is ≤ n. We know that either (1) Ln1 ≥ n2k

1 , or (2) Lm ≥ m2k for an m = m(n) ∈ (nc1, 2 · nc1).
Suppose L ∈ MATIME[nt]/1 for a constant t.

Now there are two cases:

13Roughly speaking, [Uma03] transforms a function f : {0, 1}` → {0, 1} which requires at size S circuits to a PRG
with seed length O(`) fooling SΩ(1)-size circuits.

17

• (1) holds for infinite n’s. In this case, we define an NP/O(n) language which tries to derandom-
ize Ln1 for all these n1 = n1(n)’s. This can be completed by setting b� t, and derandomize
L on all these n1’s using the aforementioned non-deterministic PRG with parameter n (which
is given as advice).

• (2) holds for infinite n’s. In this case, we define another NP/O(n) languages which tries to
derandomize Lm for all these m = m(n)’s. Again, this can be completed by setting b� t · c,
and derandomize L on all these m’s using the NPRG with parameter n (which is again given
as advice).

Therefore, we conclude that there is an NP/O(n) language hard for Ω(n2k) size circuits, which

implies NP 6⊂ SIZE(nk) by Lemma 3.2, and completes the proof.

Remark 3.3. One can see that in the above proof, it does not matter that whether L ∈ MA/1 or
L ∈ MA/O(n). We choose to present Lemma 3.1 with MA/1 because it serves as a toy example of
our a.a.e. average-case MA lower bounds.

4 The Structure of the Whole Proof and Alternative Perspectives

The presentation of this paper roughly follows the intuition part (so it is recommended to read the
intuition part before reading the whole paper). That is, we divide the whole proof into three parts:
(1) An i.o. non-deterministic PRG for low-depth circuits assuming that NQP can be approximated
by ACC0 ◦ THR; (2) An Average-Case Hard MA Language with a low-depth computable predicate
(this is unconditional); (3) Assuming NQP can be approximated by ACC0 ◦ THR, we combine (1)
and (2) to get a contradiction.

As the whole proof is quite involved and consists of several technical ingredients, in this section,
we present an outline of the whole proof, together with a diagram (Figure 1) on how all the
components fit together. Moreover, to maximize helpful intuitions for the reader, we discuss an
alternative perspective of our proof at the end of this section, which is closer the the original
“easy-witness lemma paradigm” of [Wil13, Wil14b, MW18].

4.1 Outline of the Proof

As illustrated by Figure 1, Section 5 and Section 6 are devoted to construct the required i.o. NPRG
for low-depth circuits, assuming that NQP can be approximated by ACC0 ◦THR. More specifically:

• In Section 5, we first introduce the random self-reducible NC1-complete language, and specify
its random self-reduction. Then, in the rest of this section, we show that this language can
be used to establish the collapse theorem we want.

The proofs in this section mainly deal with some technical details (a certain amount of work is
required to make sure the reduction can be implemented as a projection), but are conceptually
very simple.

• In Section 6, we first recall the ACC0 witness-size lower bound for NE in [Wil16], and remark
that it generalizes to an ACC0◦THR witness-size lower bound for NE easily, if one makes use of
the recent PCP construction in [BSV14] and the algorithm for ACC0 ◦THR in [Wil14a]. Then

18

(Section 5.1) A random self-

reducible NC1-complete lan-

guage [Bar89, Bab87, Kil88].

(Section 5) NC1 ⊆ AC0 ◦ C if

uniform NC1 can be approximated

by C .

(Section 6.1) Witness-size lower

bound for NE against ACC0 ◦ THR
circuits. [Wil16, Wil14a].

(Section 2.2 and Appendix A)

PRG for low-depth circuits

from the truth-table of a func-

tion hard for low-depth cir-

cuits [GR08, NW94].

(Section 6) i.o. non-deterministic

PRG for low-depth circuits as-

suming NQP can be approximated

by ACC0 ◦ THR.

(Section 7) An a.a.e. average-case

MA circuit lower bound with a

low-depth computable predicate.

(Section 8) A robust PSPACE-

complete language with nice re-

ducibility properties.

(Folklore, Section 2.4) average-

case hard languages in PSPACE.

(Section 9.2) NQP is not (1 − δ)-
approximable by ACC0 ◦ THR
circuits.

(Section 9.3) NQP is not 1/2 +

1/polylog(n)-approximable by

ACC0 ◦ THR circuits.

mild to strong hardness amplification

Figure 1: The structure of the whole proof.

19

we combine this ACC0 ◦ THR witness-size lower bound together with the collapse theorem
in Section 5 and the standard PRG construction [NW94] to construct our conditional i.o.
NPRG for low-depth circuits.

The proofs in this section basically combine several previous known results together in a
sophisticated way, in order to achieve what we need.

Section 7 and Section 8 are devoted to prove the needed a.a.e. average-case MA lower bound
with a low-depth computable predicate. In fact, we actually prove a slightly stronger average-case
lower bound for MA ∩ coMA. More specifically:

• In Section 7, we first prove an average-case MA∩coMA a.a.e. lower bound for general circuits
(that is, a strict strengthening of the corresponding worst-case lower bound in [MW18]). Next,
we generalize it to an average-case MA∩ coMA a.a.e. lower bound for low-depth circuits, and
with a low-depth computable predicate. Our proofs build crucially on our new PSPACE-
complete language with nice reducibility properties (constructed in the next Section), and a
win-win analysis similar to that of [MW18] and [San09].

A technical remark is that the a.a.e. MA lower bound in [MW18] is actually for MAO(logn),
we slightly relax the a.a.e. requirement so that our lower bounds actually apply for (MA ∩
coMA)/1. This reduction in the number of advice bits is crucially for the average-case lower
bound (although the number of advice bits doesn’t matter much in [MW18] as long as it is
o(n)).

This is the most technically involved part of this paper.

• In Section 8, we construct the needed PSPACE-complete language. Our proof builds carefully
on the original PSPACE-complete language in [TV07].

The proofs in this section apply several well-known previous results (such as the local list
decoder of the Reed-Muller codes and Walsh-Hadamard codes) and several crucial observa-
tions on the PSPACE-complete language of [TV07] (the most important observation is that
the instance checker of that language can be implemented in TC0).

Then, finally in Section 9 we prove our average-case lower bound. More specifically:

• In Section 9, we first combine the conditional i.o. NPRG and the a.a.e. average-case MA ∩
coMA lower bound to show a (1−δ)-inapproximability result for (NQP∩coNQP)/O(1) against

ACC0 ◦THR circuits. Then we apply mild to strong hardness amplification to strengthen that
to a 1/2 + 1/ polylog(n) one (note that it is crucial to start with an (NQP ∩ coNQP) lower
bound in order to apply the hardness amplification). Finally we show how to get rid of the
advice bits and get the desired lower bound for NQP.

The proofs in this section basically implement the proof strategy outlined in the intuition
part: combine conditional i.o. NPRG and a.a.e. average-case MA lower bound to get a
contradiction. It also makes use of several previous results: mild to strong hardness ampli-
fication [IJKW10], and the enumeration trick to get rid of the advice bits while keeping the
average-case hardness [COS18].

20

4.2 An Alternative Perspective: Average-Case Easy Witness Lemma for Unary
Languages

In the intuition part we have discussed why it seems hard to prove an average-case witness lemma,
and that is the reason that we took an alternative approach. But in fact, our results actually
imply a weaker version of the average-case witness lemma, which is still enough to be utilized to
contradict the non-deterministic time hierarchy.

More specifically, the ideal average-case easy-witness lemma would be:

Ideal Lemma. (Average-Case Easy-Witness Lemma) For a typical circuit class C , if NQP can be
approximated by poly-size C , then all NQP verifiers have poly-size C witnesses.

Our results in fact imply the following weaker version, which only holds for NQP verifiers for
unary languages:

Lemma 4.1. (Average-Case Easy-Witness Lemma for Unary Languages) There is a universal
constant δ such that, for a typical circuit class C 14, if NQP can be (1−δ)-approximated by poly-size
C , then all NQP verifiers for unary languages have poly-size C witnesses.

For the completeness, we provide a proof sketch in Appendix C. Given the above lemma, one can
still apply the non-trivial SAT algorithm for ACC0◦THR [Wil14a] to contradict the non-deterministic
time hierarchy theorem for unary languages [Zák83].

This new perspective actually brings us closer to the original proof strategy of [Wil14b, Wil13],
in which the last step of the proof is to contradict the non-deterministic time-hierarchy theorem.
That is, the non-deterministic time-hierarchy plays the central part. While in our presentation
of the proof, the last step is to derandomize the a.a.e. average-case MA lower bound to get a
contradiction; the non-deterministic time-hierarchy theorem “sits in the middle”, and is only used
to construct the conditional i.o. NPRG.15

Of course, these two perspectives are mathematically equivalent16. But we hope clarifying this
alternative perspective would provide more intuition for the reader, and hopefully stimulate future
works in this direction.

5 A Collapse Theorem for NC1

In this section we prove our collapse theorem for NC1. In Section 5.1 we introduce the NC1-complete
language by Barrington, together with its random-self reduction. Next in Section 5.2 we define a
special encoding of the input to that language. The purpose here is to make sure the random-self
reduction can be implemented as a projection, which is crucial for the proof. Finally, in Section 5.3,
we prove the needed collapse theorem.

We remark that we can also prove a similar collapse theorem for TC0: if uniform TC0 can be
approximated by ACC0, then TC0 collapses to ACC0. We include this in Appendix B as it may be
of independent interest, and it does not rely on Barrington’s theorem.

14Here we require C is closed under adding AC0 at the top. That is, AC0 ◦ C ⊆ C .
15We remark that this is similar to the proof strategy in [Wil16].
16One caveat here is that it seems not easy to prove lower bounds for NQP ∩ coNQP, if we simply reason along

Lemma 4.1. In this case, one may need hardness amplification for non-deterministic time classes [O’D04, HVV06] to
get a 1/2 + 1/ polylog(n)-inapproximability lower bound for NQP.

21

5.1 A Random Self-reducible NC1-Complete Problem

We first define the following problem, iterated group product over S5 (the group of all permutations
on [5], we use id to denote the identity permutation), denoted as WS5 , as follows:

Iterated group product over S5 (WS5)

Given n permutations m1,m2, . . . ,mn ∈ S5, compute
∏n
i=1mi.

From the classical Barrington’s theorem [Bar89], we know this function is NC1-complete under
projection. Formally, we have:

Lemma 5.1 ([Bar89]). For any depth-d NC circuit C on n input bits, there is a projection P :

{0, 1}n → {0, 1}2O(d)
, such that C(x) = 1 if and only if WS5(P (x)) = id, for all x ∈ {0, 1}n.

The above problem is random self reducible [Bab87, Kil88], which is crucial for the proof of our
collapse theorem. Here we recall its random self reduction:

The random self reduction of WS5

Given an input ~m = (m1,m2, . . . ,mn) ∈ (S5)n to WS5 . We draw n+ 1 i.i.d. random elements
~u = (u1, u2, . . . , un, un+1) from S5, and consider the following input to WS5 :

Rand(~m, ~u) := (u1m1u
−1
2 , u2m2u

−1
3 , . . . , unmnu

−1
n+1).

For all possible ~m, over the randomness in ~u, Rand(~m, ~u) distributes as a uniform random
input to WS5 . Moreover, we have:

WS5(~m) = u−1
1 ·WS5(Rand(~m, ~u)) · un+1.

5.2 A Special Encoding

It may seems Lemma 5.1 and the random self-reduction are already sufficient for the collapse
theorem we want, but there are still some technical problems remained.17

• First, we have to encode WS5 as a Boolean function. A naive way would be to construct a bi-
jection between [120] and S5, and then divide the input into blocks of 7 bits, each representing
one element in S5. The problem is that most of the Boolean inputs would be invalid in this
encoding; and therefore this would make it a promise problem only defined on a negligible
fraction of inputs, which is not suited for our purpose.

• Second, a straightforward implementation of the random self-reduction actually requires NC0

circuits, as one needs to implement product of two elements in S5. This would collapse NC1

to ACC0 ◦ THR ◦ NC0, rather than ACC0 ◦ THR; and we don’t know yet how to do circuit
analysis of ACC0 ◦ THR ◦ NC0 faster than brute-force.

17We remark similar issues arise in [GGH+07] as well.

22

A Special Encoding for the Second Issue. We first deal with the second issue via a special
encoding of the group elements. Let N = |S5| = 120. For each i ∈ [N], let ei ∈ {0, 1}N be the
vector with i-th bit being 1 while others are all zero. We identify S5 with [N] (that is, we fix a
bijection between S5 and [N]), and use ea to represent the element a ∈ S5. Now the problem is
formally defined as follows:

Iterated group product over S5 (WS5)

Given n vectors em1 , em2 , . . . , emn ∈ {0, 1}N , compute a =
∏n
i=1mi and output ea.

The advantage of this special encoding is that for all p, q ∈ S5, there is a projection Pp,q :
{0, 1}N → {0, 1}N (in fact, a permutation), such that for all a ∈ S5, Pp,q(ea) = ep·a·q. This
is crucial to make sure the random self-reduction can be implemented as a projection, and our
collapse theorem doesn’t introduce any additional sub-circuits at the bottom (so we can collapse
NC1 to ACC0 ◦ THR instead of ACC0 ◦ THR ◦ NC0).

Slightly abusing notation, we sometimes use p · ea · q to denote ep·a·q.

A Redundant Encoding for the First Issue. But the first issue remains: WS5 is still a promise
problem, as we require all vectors to be one of the ea’s. We use a redundant encoding to make this
problem defined on all possible inputs.

Let Sgood be the set of all ea’s for a ∈ S5 (that is, all vectors in {0, 1}N with hamming weight
1), and Sbad be all other vectors in {0, 1}N .

We define the following problem Redundant-WS5 :

Iterated group product over S5 with a redundant encoding (Redundant-WS5)

We are given n2 {0, 1}N vectors {mi,j}(i,j)∈[n]×[n].
For each i ∈ [n], let ji be the first integer such that mi,ji ∈ Sgood.

• We call the input a bad input, if there is no such ji for some i, and we just output the
all-zero vector of length N in this case.

• Otherwise, we call the input a good input, and the goal is to compute a =
∏n
i=1mi,ji

and output ea.

5.3 NC1 Collapses to AC0 ◦ C if Uniform NC1 can be Approximated by C

We define Approx-MAJn be the function that outputs 1 (resp. 0) if at least a 2/3 fraction of the
inputs are 1 (resp. 0), and is undefined otherwise. To establish our collapse theorem, we need the
following standard construction for approximate-majority in AC0.

Lemma 5.2 ([AB84, Ajt90, Vio09]). Approx-MAJn can be computed by poly(n)-size uniform AC3

circuits.

23

Now we are ready to show that for a general circuit class C , NC1 collapses to AC0◦C , if uniform
NC1 can be approximated by C .

Theorem 5.3. Let C be a typical circuit class, S : N→ N be a size parameter. There is a universal
constant δ such that suppose all languages in uniform NC1 can be (1− δ)-approximated by S-size C
circuit families. Then any depth-d NC circuit C on n input has an equivalent poly(S(2O(d)), n)-size
AC3 ◦ C circuit.

Proof. Let δ = 1/480, and D be a depth-d NC circuit on n input. By Lemma 5.1, there is a
projection P : {0, 1}n → {0, 1}` where ` = 2O(d), such that D(x) = WS5(P (x))id (for a ∈ S5,
(ea)id = 1 if and only if a = id). Without loss of generality, we can assume n is sufficiently large
and d ≥ log n.

Construction of The Circuit C Approximating Redundant-WS5. Now, let t = `/120 (that
is, WS5 on ` bits computes the iterated group product of t permutations from S5). Consider the
Redundant-WS5 problem on t2 vectors, clearly it is in uniform NC1.

Note that Redundant-WS5 has 120 output bits, so we can construct 120 C circuits {Ci}i∈[N],

each (1−δ)-approximates an output bit of Redundant-WS5 . We denote C(x) ∈ {0, 1}N as the vector
consists of Ci(x)’s.

By a simple union bound, we have

Pr
z

[Redundant-WS5(z) = C(z)] ≥ 1− δ · 120 ≥ 0.75,

where z is a random input to Redundant-WS5 from {0, 1}120·t2 .

Implementation of the Random Self Reduction. Now, we know that for a random input to
Redundant-WS5 , it is a good input to Redundant-WS5 with probability at least

1− t ·
(
|Sbad|
2120

)t
≥ 0.99,

when n (and therefore t) is sufficiently large.
Now we define the function First : {0, 1}120·t → Sgood∪{⊥}. Given an input ~m = (m1,m2, . . . ,mt) ∈

({0, 1}N)t, letting j be the first integer that mj ∈ Sgood, we define First(~m) = mj . If there is no
such j, we define First(~m) = ⊥.

For each m ∈ Sgood, we defineMm be the uniform distribution over the set {First(z) = m : z ∈
{0, 1}120·t}. Note that a sample from Mm can be generated as follows:

• For j ∈ [t], let pj be the probability that a random sample ~w = (w1, w2, . . . , wt) ← Mm

satisfies that j is the first integer that wj ∈ Sgood (note that we must have wj = m).

• We first draw j ∈ [t] according to the probabilities pj ’s. Then a sample ~w = (w1, w2, . . . , wt)←
Mm can be generated as follows: for k ∈ [j− 1], we set wk to be a uniform sample from Sbad;
we set wj = m; for k ∈ {j + 1, j + 2, . . . , t}, we set wk to be a uniform sample from {0, 1}N .

One can observe that when the randomness of the above process is fixed, each bit of the sample
depends on at most one bit of m (that is, it is a projection).

24

Next, given a valid input ~m = (m1,m2, . . . ,mt) to WS5 , we draw t + 1 i.i.d. random elements
~u = (u1, u2, . . . , ut, ut+1) from S5, and consider the following input to WS5 :

Rand(~m, ~u) := (u1m1u
−1
2 , u2m2u

−1
3 , . . . , utmtu

−1
t+1).

Note that for all ~m ∈ Stgood, Rand(~m, ~u) distributes uniformly random on set Stgood. Moreover,

WS5(~m) = u−1
1 ·WS5(Rand(~m, ~u)) · ut+1.

Next, consider the following input distribution to Redundant-WS5 :

M~m,~u := (MRand(~m,~u)1
,MRand(~m,~u)2

, · · · ,MRand(~m,~u)t).

It is easy to see that it distributes identically to a random good input to Redundant-WS5 .
Let r be the randomness used to generate a sample from M~m,~u, according to the previously

discussed sampler for Mm. Specifically, there is a set R and a function Gen(~m, ~u, r), such that
Gen(~m, ~u, r) distributes identical to M~m,~u when r is drawn from R.

Therefore, for any ~m ∈ Stgood, we have

Pr
~u←St+1

good

Pr
r←R

[
WS5(~m) = u−1

1 · C(Gen(~m, ~u, r)) · ut+1

]
≥ 0.7.

Construction of the Final Circuit E. Now, one can see that ~u is fixed, Rand(~m, ~u) is a
projection of ~m. And when r is fixed, Gen(~m, ~u, r) is also a projection of Rand(~m, ~u). Therefore,
when both ~u and r are fixed, Gen(~m, ~u, r) is a projection of ~m.

Now, we pick T = 100 · n i.i.d. samples ~u1, ~u2, . . . , ~uT form St+1
good, and r1, r2, . . . , rT from R.

For each j ∈ [T], we define the circuit

Cj(x) :=
(

(uj1)−1 · C(Gen(P (x), ~uj , rj)) · ujt+1

)
id
.

By previous discussion, Cj can be computed by a C circuit of size S1 = poly(S(2O(d)), n).
Moreover, for each x ∈ {0, 1}n, over the randomness of ~uj and rj , we have

Pr[Cj(x) = D(x)] ≥ 0.7.

Therefore, we set our final circuit to be an approximate-majority of these T circuits C1, C2, . . . , CT .
By a simple Chernoff bound, there exists a fixed choice of all the ~uj ’s and rj ’s, such that the re-
sulting circuit E computes D exactly. By Lemma 5.2, E is an AC3 ◦ C circuit of size poly(S1) =
poly(S(2O(d)), n), which completes the proof.

Remark 5.4. We remark that the above theorem only requires that some special languages in
uniform NC1 can be approximated by C circuits (the languages corresponding to the output bits of
Redundant-WS5).

6 An i.o. Non-deterministic PRG for Low-Depth Circuits

In this section we construct the required i.o. non-deterministic PRG for low-depth circuits, assum-
ing NQP can be approximated by ACC0 ◦ THR circuits.

In Section 6.1 we recall the witness-size lower bound for ACC0 [Wil16], and observe that the
proof generalizes to ACC0 ◦ THR. Then in Section 6.2, we construct the required conditional i.o.
NPRG.

25

6.1 Witness-Size Lower Bound for NE

The following lemma is implicit in [Wil16] (with the new PCP construction of [BSV14] and the SAT
algorithm for ACC0 ◦ THR circuits from [Wil14a]) (see also Section 3 of [COS18]).

Lemma 6.1 (Essentially Theorem 9 of [COS18], combing with the algorithm in [Wil14a]). For all
constants a, d?,m?, there is an integer b and a polynomial-time verifier V (x, y) with |x| = logb n,

|y| = 2logb n, such that for an infinite number of n’s, V (1logb n, ·) is satisfiable, and V (1logb n, y) = 1
implies y cannot be computed by a 2loga n-size ACd? [m?] ◦ THR circuit.

Remark 6.2. We remark that this is the only part of our argument where special properties (the
existence of non-trivial circuit-analysis algorithms) of ACC0 ◦THR is exploited: for a typical circuit
class C , the proof of the above lemma only requires a non-trivial algorithm for Gap-UNSAT of
AC0 ◦ C .

6.2 The PRG Construction

Now we show that under the assumption that uniform NC1 can be (1− δ)-approximated by ACC0 ◦
THR, we have an i.o. NPRG for low-depth circuits.

Theorem 6.3. (Conditional i.o. NPRG for Low-Depth Circuits) There is a universal constant δ
such that for all constants a, d?,m?, there is an integer b such that if uniform NC1 can be (1− δ)-
approximated by 2loga n-size ACd? [m?] ◦ THR circuit families, then for an infinite number of n’s,
there is a non-deterministic PRG which works as follows:

• Let ` = logb n, there is a polynomial time algorithm V (x, y) with |x| = ` and |y| = 2`,
computable in 2O(`) time.

• V (1`, ·) is satisfiable, and the PRG guesses a y such that V (1`, y) = 1.

• The PRG then computes a function Gy : {0, 1}O(`) → {0, 1}2loga n
, which 1/2loga n fools all

loga n depth NC circuits. Moreover, Gy is computable in 2O(`) time.

Proof. Let δ be the universal constant in Theorem 5.3. We can without of loss generality assume
that n is a sufficiently large integer.

Construction of the “Hardness Certifier” V ′ for Low-Depth Circuits. We first combine
the collapse theorem with the witness-size lower bound to construct a hardness certifier V ′.

By Theorem 5.3 and our assumption, we know that for a depth-d NC circuit on n bits, there is
an equivalent 2ce·d

a
-size ACd?+cd [m?] ◦ THR circuit for universal constants ce and cd.

Let a1 be an integer to be specified later, and d1 = d? + cd. Now we apply Lemma 6.1 with
parameters a1, d1,m?. Then there is another constant b1 = b1(a1, d1,m?) such that there is a

polynomial-time algorithm V ′(x, y) with |x| = logb1 n, |y| = 2logb1 n, such that for infinite n’s,

we have V ′(1logb1 n, ·) is satisfiable, and V ′(1logb1 n, y) = 1 implies y cannot be computed by a
2loga1 n-size ACd1 [m?] ◦ THR circuit.

Let d = logk n for a constant k to be specified later. A depth-d NC circuit has an equivalent
2ce logak n-size ACd1 [m?] ◦ THR circuit. Now, we set a1 = ak + 1 (hence loga1 n > ce logak n) so that

on these infinite n’s, for a y of length 2logb1 n with V ′(1logb1 n, y) = 1, we know that y cannot be
computed by a logk n-depth NC circuits.

26

Construction of the NPRG. Now we can plug this y into a standard construction of a PRG.
Let c2, g and G : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be the constants and the function in Theorem 2.1. Now,

on these infinite n’s, we guess a y such that V ′(1logb1 n, y) = 1, and computes the corresponding
PRG Gy.

By Theorem 2.1, the PRG Gy : {0, 1}logg·b1 n → {0, 1}S′ , where S′ = 2logc2k n, 1/S′-fools logS′-

depth NC circuit, and is computable in poly(|y|) ≤ 2O(logb1 n) time. Now we can set k so that
logS′ = logc2k n ≥ loga n (that is, k = 2a/c2) and b = g · b1, which completes the proof (the final

verifier V takes x, y with |x| = ` = logb n and |y| = 2`, and simulates V ′ with x = 1logb1 n and the

first 2logb1 bits of y).

Remark 6.4. The guarantee on the above algorithm is that on an infinite number of n’s. The
algorithm computes a PRG Gy with all y such that V (1logb n, y) = 1. That is, on different such
valid y’s, it could compute different PRG Gy’s.

7 Average-Case “Almost” Almost Everywhere Lower Bounds for
MA

In this section we prove the average-case circuit lower bounds for MA (in fact, MA∩coMA), which is
the most important technical component of our proof. In Section 7.1 we introduce some definitions
and lemmas which will be helpful for our proof. In Section 7.2, we prove an average-case MA∩coMA
a.a.e. lower bound for general circuits. In Section 7.3, we generalize it to an average-case MA∩coMA
a.a.e. lower bound for low-depth circuits, and with a low-depth computable predicate.

7.1 Preliminaries

We first prove some folklore lemmas and introduce some notations. The following lemma is a direct
corollary of Theorem 2.6.

Lemma 7.1. For all constants a, there is an integer h = h(a) and a language Ldiag in SPACE(2logh n)

such that for all sufficiently large n, heur1/2+1/n-SIZE(Ldiag
n) > 2loga n.

The following is a simple corollary of the above lemma.

Corollary 7.2. For all constants a, there is an integer h = h(a) and a language Ldiag in SPACE(2logh n)

such that for all sufficiently large n, heur1/2+1/n-DEPTH(Ldiag
n) > loga n.

7.2 An Average-Case MA ∩ coMA a.a.e. Lower Bound for General Circuits

Now we are ready to prove our average-case lower bound for MA ∩ coMA, which is “almost”
almost-everywhere. We first state a simpler version of our result with O(log n) advice bits. This
is an average-case strengthening of the worst-case MA “almost” almost everywhere lower bound
in [MW18].

Theorem 7.3. For all constants a, there are integers b and c, and a language L ∈ (MA ∩
coMA)TIME(2O(logb n))/O(logn), such that for all sufficiently large n ∈ N and m =

⌈
2logc n

⌉
, either

• heur1/2+1/n-SIZE(Ln) > 2loga n, or

27

• heur1/2+1/m-SIZE(Lm) > 2logam.

Remark 7.4. This “almost almost-everywhere” condition states that, in a precise sense, L is hard
on at least “half” of the input lengths.

Proof. Let LPSPACE be the language specified by Theorem 2.5. By Lemma 7.1 with parameter a,
there is a constant h and a language Ldiag ∈ SPACE(2logh n) such that heur1/2+1/n-SIZE(Ldiag

n) >

2loga n for all sufficiently large n. Since LPSPACE is PSPACE-complete, there is a constant c1 such
that Ldiag

n can be reduced to LPSPACE on input length 2logc1 n in 2O(logc1 n) time. We set c ≥ c1.

The Algorithm. Given an input x of length n and let m =
⌈
2logc n

⌉
, we first provide an informal

description of the MA ∩ coMA algorithm which computes the language L. There are two cases:

1. When SIZE(LPSPACE
m) ≤ 2logb n. That is, when LPSPACE

m is easy. In this case, we guess-and-

verify a circuit for LPSPACE
m of size 2logb n, and use that to compute Ldiag

n .

2. Otherwise, we know LPSPACE
m is hard. On input of length m, we are given an advice y which

is the largest integer such that LPSPACE
y ≤ 2logb n. We guess-and-verify a circuit for LPSPACE

y ,

and compute it (that is, compute LPSPACE
y on the first y input bits while ignoring the rest).

Intuitively, the above algorithm computes an average-case hard function because either it com-
putes the average-case hard language Ldiag

n on inputs of length n, or it computes the average-case
hard language LPSPACE

y on inputs of length m (LPSPACE is robust). A formal description of the algo-
rithm is given in Algorithm 3, while the algorithm for setting the advice bits is given in Algorithm 4
(note that a yn may be set twice).

The Algorithm Satisfies the MA∩ coMA Promise. We first show the algorithm satisfies the
MA∩ coMA promise (Definition 2.7). The intuition is that it only tries to guess-and-verify a circuit
for LPSPACE when it exists, and the properties of the instance checker (Definition 2.2) ensure that
in this case the algorithm satisfies the MA ∩ coMA promise. Let y = yn, there are three cases:

1. y = −1. In this case, the algorithm computes the all zero function, and clearly satisfies the
MA ∩ coMA promise.

2. y = 0. In this case, from Algorithm 4, we know that SIZE(LPSPACE
m) ≤ 2logb n for m =

⌈
2logc n

⌉
.

Therefore, at least one guess of the circuit is a correct circuit for LPSPACE
m , and on that guess,

the algorithm outputs Ldiag
n (x) = LPSPACE

m (z) with probability at least 2/3, by the property
of the instance checker (Definition 2.2).

Still by the property of the instance checker, on all possible guesses, the algorithm outputs
1 − Ldiag

n (x) = 1 − LPSPACE
m (z) with probability at most 1/3. Hence, the algorithm correctly

computes Ldiag
n on inputs of length n, with respect to Definition 2.7.

3. y > 0. In this case, from Algorithm 4, we know that n0 6= −1, n =
⌈
2logb n0

⌉
, SIZE(LPSPACE

n) >

2logb n0 , and SIZE(LPSPACE
y) ≤ 2logb n0 . Therefore, at least one guess of the circuit is a cor-

rect circuit for LPSPACE
y , and on that guess, the algorithm outputs LPSPACE

y (z) (z = z(x) is
the first y bits of x) with probability at least 2/3, by the property of the instance checker
(Definition 2.2).

28

Algorithm 3: The MA ∩ coMA algorithm for the average-case hard language L

1 Given an input x with length n = |x|;
2 Given an advice integer y = yn ∈ [−1, n] ∩ Z;

3 Let m =
⌈
2logc n

⌉
;

4 Let n0 = n0(n) be the integer such that
⌈
2logc n0

⌉
= n; if no such integer exists, n0 = −1;

5 if y = −1 then
6 Output 0 and terminate

7 if y = 0 then

8 (y = 0 indicates we are in the case that SIZE(LPSPACE
m) ≤ 2logb n.);

9 Compute a z of length m in 2O(logc n) time such that Ldiag
n (x) = LPSPACE

m (z);

10 Guess a circuit C of 2logb n size;

11 Let M be the instance checker for LPSPACE
m ;

12 Flip an appropriate number of random coins, let them be r;
13 Output MC(z, r);

14 else

15 (y > 0 indicates we are in the case that SIZE(LPSPACE
n) > 2logb n0 .);

16 Let z be the first y bits of x;

17 Guess a circuit C of 2logb n0 size;

18 Let M be the instance checker for LPSPACE
y ;

19 Flip an appropriate number of random coins, let them be r;
20 Output MC(z, r);

Algorithm 4: The algorithm for setting advice bits of Algorithm 3

1 All yn’s are set to −1 by default;
2 for n = 1→∞ do

3 Let m =
⌈
2logc n

⌉
;

4 if SIZE(LPSPACE
m) ≤ 2logb n then

5 Set yn = 0;
6 else

7 Set ym = max{y : SIZE(LPSPACE
y) ≤ 2logb n};

29

Still by the property of the instance checker, on all possible guesses, the algorithm out-
puts 1− LPSPACE

y (z) with probability at most 1/3. Hence, the algorithm correctly computes

LPSPACE
y (z(x)) on inputs of length n, with respect to Definition 2.7.

The Algorithm Computes an “Almost” Almost Everywhere Average-Case Hard Lan-
guage. Next we show that the algorithm indeed computes an average-case hard language. Let n
be a sufficiently large integer and m =

⌈
2logc n

⌉
. According to Algorithm 4, there are two cases.

• SIZE(LPSPACE
m) ≤ 2logb n. In this case, Algorithm 4 sets yn = 0. And by previous analysis, we

know that Ln computes the average-case hard language Ldiag
n , and therefore heur1/2+1/n-SIZE(Ln) >

2loga n as n is sufficiently large.

• SIZE(LPSPACE
m) > 2logb n. We set b so that 2logb n ≥ 2log2a(m) (we can set b ≥ 3ac). Let y be

the largest integer such that SIZE(LPSPACE
y) ≤ 2logb n. By Remark 2.3, we have y < m.

Note that SIZE(LPSPACE
y+1) ≤ (y + 1)d · SIZE(LPSPACE

y) for a universal constant d (because

LPSPACE is downward self-reducible). Therefore,

SIZE(LPSPACE
y) ≥ SIZE(LPSPACE

y+1)/
⌈
2logc n

⌉d
≥ 2Ω(logb n).

Now, on an input of length m, clearly we have n0(m) = n 6= −1 and ym 6= −1 by Algo-

rithm 4. Therefore, Lm either computes Ldiag
m or LPSPACE

ym (since ym 6= −1). The first case
is already discussed. In the second case, we know ym = y and heur1/2+1/m-SIZE(Lm) =

heur1/2+1/m-SIZE(LPSPACE
y).

Now, since SIZE(LPSPACE
y) ≤ 2y, we have y ≥ Ω(logb n). Let c1 and δ1 be the corresponding

constants of the robust property of LPSPACE. For ε ≥ 2−y
δ1 , we have

SIZE(LPSPACE
y) ≤ (heur1/2+ε-SIZE(LPSPACE

y) · ε−1)c1 ,

and hence
heur1/2+ε-SIZE(LPSPACE

y) ≥ ε · SIZE(LPSPACE
y)1/c1 ≥ ε · 2Ω(logb n).

We set b so that yδ1 ≥ Ω
(
logδ1·b n

)
≥ log(m) (that is, we can set b ≥ 2c/δ1), and then set

ε = 1/m. It follows that heur1/2+1/m-SIZE(LPSPACE
y) ≥ 2Ω(logb n)/2logc n ≥ 2Ω(logb n) ≥ 2loga(m),

which completes the whole proof.

7.3 An Average-Case MA ∩ coMA a.a.e. Lower Bound for Low Depth Circuits

Now we are ready to prove the technical centerpiece of this paper, an (MA∩coMA)/1 language with
a low-depth computable predicate, and is average-case hard for low-depth circuits.

By significantly relaxing the “almost” almost everywhere requirement, we are able to construct
an average-case hard language with only one bit of advice, yet still enough for our final average-case
circuit lower bound proof.

30

Theorem 7.5. For all constants a, there are integers b and c, and a language L ∈ (MA ∩
coMA)TIME(2O(logb n))/1 (specified by Algorithm 5 and Algorithm 6), such that for all sufficiently
large τ ∈ N and n = 2τ , either

• heur0.99-DEPTH(Ln) > loga n, or

• heur0.99-DEPTH(Lm) > logam, for an m ∈ (2logc n, 2logc n+1) ∩ N.

Remark 7.6. We remark that in the real proof, we slightly deviate from the intuition section of
the introduction: we actually don’t need the precise condition that the corresponding predicate is
low-depth computable as it is not required by the proof (the proof only requires that the instance
checker part (the composed circuit DC

checker(z, ·)) is computable by low-depth circuits). Still, it is
not hard to make the entire predicate corresponding to Algorithm 5 low-depth computable.

Algorithm 5: The MA ∩ coMA algorithm for the language L which is average-case hard
for low-depth circuits

1 Given an input x with length n = |x|;
2 Given an advice integer y = yn ∈ {0, 1};
3 Let m =

⌈
2logc n

⌉
;

4 Let n0 = n0(n) be the largest integer such that 2logc n0 ≤ n;

5 Let m0 = 2logc n0 ;
6 Let ` = n−m0;
7 if y = 0 then
8 Output 0 and terminate

9 if n is a power of 2 then

10 (we are in the case that DEPTH(LPSPACE
m) ≤ logb n.);

11 Compute a z in 2O(logc n) time such that Ldiag
n (x) = LPSPACE

m (z);

12 Guess an NC circuit C of logb n depth;

13 Compute in poly(m) time a TC0 oracle circuit D?
checker which implements the instance

checker for LPSPACE
m ;

14 Flip an appropriate number of random coins, let them be r;
15 Output DC

checker(z, r);

16 else

17 (we are in the case that DEPTH(LPSPACE
m0

) > logb n0 and ` is the largest integer such

that DEPTH(LPSPACE
`) ≤ logb n0.);

18 Let z be the first ` bits of x;

19 Guess an NC circuit C of logb n0 depth;

20 Compute in poly(`) time a TC0 oracle circuit D?
checker which implements the instance

checker for LPSPACE
` ;

21 Flip an appropriate number of random coins, let them be r;
22 Output DC

checker(z, r);

Proof of Theorem 7.5. Let LPSPACE be the language specified by Theorem 2.5. By Corollary 7.2
with parameter a, there is a language Ldiag ∈ SPACE(2logh n) for a constant h such that heur1/2+1/n

31

Algorithm 6: The algorithm for setting advice bits for Algorithm 5

1 All yn’s are set to 0 by default;
2 for τ = 1→∞ do
3 Let n = 2τ ;

4 Let m = 2logc n;

5 if DEPTH(LPSPACE
m) ≤ logb n then

6 Set yn = 1;
7 else

8 Let ` = max{` : DEPTH(LPSPACE
`) ≤ logb n};

9 Set ym+` = 1;

-DEPTH(Ldiag
n) > loga n for all sufficiently large n. Since LPSPACE is PSPACE-complete, there is a

constant c1 such that Ldiag
n can be reduced to LPSPACE on input length 2logc1 n in 2O(logc1 n) time. We

set c ≥ c1, and recall that heur1/2+1/n-DEPTH(Ldiag
n) > loga n, and therefore heur0.99-DEPTH(Ldiag

n) >
loga n.

The Algorithm. Let τ ∈ N be sufficiently large. Given an input x of length n = 2τ and let
m = 2logc n, we first provide an informal description of the MA ∩ coMA algorithm which computes
the language L. There are two cases:

1. When DEPTH(LPSPACE
m) ≤ logb n. That is, when LPSPACE

m is easy. In this case, we guess-and-

verify a circuit for LPSPACE
m of depth logb n, and use that to compute Ldiag

n .

2. Otherwise, we know LPSPACE
m is hard. Let ` be the largest integer such that DEPTH(LPSPACE

`) ≤
logb n. On input of length m1 = m+`, we guess-and-verify a circuit for LPSPACE

` , and compute
it (that is, compute LPSPACE

` on the first ` input bits while ignoring the rest). Note that by
Remark 2.3, we have 0 < ` < m and therefore m+ ` is not a power of 2.

Intuitively, the above algorithm computes an average-case hard function because either it com-
putes the average-case hard language Ldiag

n on inputs of length n, or it computes the average-case
hard language LPSPACE

` on inputs of length m (LPSPACE is NC3 weakly error correctable). A formal
description of the algorithm is given in Algorithm 5, while the algorithm for setting the advice bits
is given in Algorithm 6. It is not hard to see that a yn can only be set once in Algorithm 6.

Now we verify that the above algorithm computes a language satisfying our requirements.

The Algorithm Satisfies the MA ∩ coMA Promise. Again, by Algorithm 6, the algorithm
tries to guess a circuit for LPSPACE only if that circuit exists. Therefore, by a similar argument as in
the proof of Theorem 7.3, the algorithm satisfies the MA∩ coMA promise. Moreover, Ln computes
Ldiag
n if yn = 1 and n is a power of 2, and LPSPACE

` if yn = 1 and n is not a power of 2.

The Algorithm Computes an “Almost” Almost Everywhere Average-Case Hard Lan-
guage for Low Depth Circuits. Next we show that the algorithm indeed computes an average-
case hard language. Let τ be a sufficiently large integer, n = 2τ , and m = 2logc n. According to
Algorithm 6, there are two cases:

32

• DEPTH(LPSPACE
m) ≤ logb n. In this case, Algorithm 6 sets yn = 1. And by previous

analysis, we know that Ln computes the average-case hard language Ldiag
n , and therefore

heur0.99-DEPTH(Ln) > loga n as n is sufficiently large.

• DEPTH(LPSPACE
m) > logb n. We set b so that logb n ≥ log2a(2m) (we can set b ≥ 3ac). Let `

be the largest integer such that DEPTH(LPSPACE
`) ≤ logb n. By Remark 2.3, we have ` < m.

Note that DEPTH(LPSPACE
`+1) ≤ d log(` + 1) + DEPTH(LPSPACE

`) for a universal constant d

(because LPSPACE is TC0 downward self-reducible, and the corresponding TC0 oracle circuit
is non-adaptive). Therefore,

DEPTH(LPSPACE
`) ≥ DEPTH(LPSPACE

`+1)− d log(`+ 1) ≥ Ω(logb n).

Now, on inputs of length m1 = m + `, we have ym1 = 1 by Algorithm 6. Therefore, Lm1

computes LPSPACE
` , and therefore heur0.99-DEPTH(Lm1) = heur0.99-DEPTH(LPSPACE

`).

Since LPSPACE is NC3 weakly error correctable, and the corresponding NC3 oracle circuit is
non-adaptive. There is a universal constant d such that

DEPTH(LPSPACE
`) ≤ d log3 `+ heur0.99-DEPTH(LPSPACE

`).

Therefore, by our choice of b, it follows

heur0.99-DEPTH(LPSPACE
`) ≥ DEPTH(LPSPACE

`)−d log3 ` ≥ Ω(logb n)−O(log3c n) ≥ Ω(logb n).

Finally, note that Ω(logb n) ≥ Ω(log2a(2m)) ≥ loga(m1). We have heur0.99-DEPTH(Lm1) =
heur0.99-DEPTH(LPSPACE

`) ≥ loga(m1), which completes the proof.

Finally, using a similar trick as in the proof of Theorem 7.5, we can also reduce the number of
advice in Theorem 7.3 to 2 bits.

Corollary 7.7. For all constants a, there are integers b and c, and a language L ∈ (MA ∩
coMA)TIME(2O(logb n))/1, such that for all sufficiently large τ ∈ N and n = 2τ , either

• heur0.99-SIZE(Ln) > 2loga n, or

• heur0.99-SIZE(Lm) > 2logam, for an m ∈ (2logc n, 2logc n+1) ∩ N.

8 A PSPACE-complete Language with Nice Reducibility Proper-
ties

In this section we construct a PSPACE-complete language with the needed nice reducibility prop-
erties.

In Section 8.1, we introduce the necessary definitions for the construction of this section. In
Section 8.2, we review the original construction in [TV07]; and in Section 8.3, we briefly discuss
what adaption is required to make it suitable for our purpose. In Section 8.4, we construct the
needed PSPACE-complete language.

33

8.1 Notations and Boolean Encodings of Field Elements

We first need to introduce some notations. Let pow(n) be the smallest power of 2 which is no less
than n.

Let Fn be GF(2pow(n)). Note that for all n < m, either Fn = Fm, or Fn is a sub-field of Fm.
An element from Fn can be encoded in pow(n) bits via a natural bijection φn between Fn and
GF(2)pow(n). We encode them in a consistent way that for any 2` < pow(n), the first 2` bits of the

encoding correspond to an element from GF(22`).
That is, for all n < m and an element a from Fn, the first pow(n) bits of φm(a) equals φn(a).

Note that all these fields Fn (i.e., a degree pow(n) irreducible GF(2)-polynomial) and bijections φn
can be constructed deterministically in poly(n) time [Sho88].

Let ` be an integer, F = GF(22`), and K = GF(22`+1
). K is an extension field of F , and there

exists an element α ∈ K (which can be found in poly(2`) time) such that all element x ∈ K can be
uniquely written as x = y · α+ z, where y, z ∈ F .

8.2 Review of the Construction in [TV07]

We need the following lemma from [TV07], which builds on the proof of IP = PSPACE theo-
rem [LFKN92, Sha92].

Lemma 8.1. For some polynomials t and m, there is a collection of functions {fn,i : (Fn)t(n,i) →
Fn}n∈N,i≤m(n) with the following properties:

1. (Self-Reducibility) For i < m(n), fn,i can be evaluated with oracle access to fn,i+1 in poly(n)
time. fn,m(n) can be evaluated in poly(n) time, and in fact it is computable by a poly(n)-size

uniform TC0 circuit.

2. (PSPACE-hardness) For every language L in PSPACE, there is a polynomial-time computable
function ` and g, such that for all n ∈ N and x ∈ {0, 1}n, L(x) = f`(1n),0(g(x)), and `(1n) is
bounded by a polynomial in n (which depends on L).

3. (Low Degree) fn,i is a polynomial of total degree at most poly(n).

Remark 8.2. In [TV07], the field Fn is just GF(2n), we make it slightly larger in order to establish
the padability.18 We formulate the second property in a slightly different way than [TV07] for
convenience. Also, it is easy to see that in the construction of [TV07], t(n, i) and m(n) are both
increasing functions in n.

The polynomial fn,m(n) in [TV07] is very simple, and it is easy to see that it can be computed

by a poly(n)-size uniform TC0 circuit.

More specifically, for all i < m(n), fn,i(x) has ` = t(n, i) variables, and it is defined in terms of
fn,i+1 using one of the following rules:

18The problem with the original encoding is, GF(2n) is not a sub-field of GF(2n+1) for n ≥ 2.

34

Three rules of defining fn,i(x)

fn,i(x1, . . . , x`) = fn,i+1(x1, . . . , x`, 0) · fn,i+1(x1, . . . , x`, 1). (1)

fn,i(x1, . . . , x`) = 1− (1− fn,i+1(x1, . . . , x`, 0)) · (1− fn,i+1(x1, . . . , x`, 1)). (2)

fn,i(x1, . . . , xk, . . . , x`) = xk · fn,i+1(x1, . . . , 1, . . . , x`) + (1− xk) · fn,i+1(x1, . . . , 0, . . . , x`). (3)

8.3 Technical Challenges to Adapt [TV07] for Our Purpose

The original language in [TV07] just computes fn,i in the order of first increasing in n and then
decreasing in i. By Lemma 8.1, this can be easily seen to be downward self-reducible and error
correctable (as polynomials are error correctable). To make it further paddable, [FS04, San09]
simply use a padding construction so that now on a single input length, the language computes fn,i
and all polynomials which come before it.

In order to construct a PSPACE-complete language which is both error correctable and paddable,
there are some technical challenges:

• First, after the padding construction, the language now is not a single polynomial, but a
bunch of different polynomials. We need to do some interpolation to “wrap” them into a
single polynomial again. One obvious problem is that these polynomials are over different
fields and may have different numbers of variables, we resolve that by a careful choice of the
fields (for all n < m, Fn is a sub-field of Fm), and adding dummy variables.

• Another problem is that a simple interpolation would actually destroy the padability. Suppose
we have k polynomials g1, g2, . . . , gk : Fn → F of degree D. We can construct a single
polynomial Gk : Fn+1 → F with degree D + k, such that Gk(i, x) = gi(x), via a simple
interpolation. But the issue here is that then Gk−1 cannot be reduced to Gk easily (so it is
not paddable). We resolve this via a different choice of interpolation. Specifically, we define
Gk : Fn × Fk → F as Gk(x, y1, y2, . . . , yk) :=

∑k
i=1 gi(x) · yi.

• Finally, the polynomials are over a large alphabet Fn, and we have to turn them into Boolean
functions. This step is standard as one can just make use of Walsh-Hadamard codes.

The next step is to argue that the reducibility properties of the constructed new language
actually have low complexity oracle circuits implementations. For padability it is trivial. For weakly
error correctability and the robust property, it is still straightforward from the local decoders of
Reed-Muller codes and Walsh-Hadamard codes. The main difficulty here is to argue this for same-
length checkability and for downward self-reducibility.

Same-length Checkability. This actually looks counter-intuitive at first—the instance-checker
in [TV07, FS04, San09] actually simulates the interactive proof protocol for PSPACE [LFKN92,
Sha92]. Since it is an interactive proof protocol, it appears that this checking process should
proceed one step after another step (that is, highly sequentially), and it should not have a highly
parallelizable implementation such as TC0 oracle circuits.

35

The key observation is that, despite the fact that we are simulating an interactive proof protocol,
the prover’s strategy is already committed to the given oracle. This enables us to check different
stages of the interactive proof protocol in the same time, and from which we can construct a TC0

oracle circuit for the instance checker.

Downward Self-reducibility. Downward self-reducibility is a bit tricky. When Gk and Gk+1 are
over the same field, downward self-reducibility follows from the way that the fn,i’s are constructed.
But when Gk and Gk+1 are over different fields Fold and Fnew (Fold is a sub-field of Fnew), it is
not clear how to evaluate Gk+1 given an oracle access to Gk. To circumvent this issue, suppose
Gk : Fn+k

old → Fold is a degree d = poly(n) polynomial, we wish to extent it to a polynomial
Hk : Fn+k

new → Fnew.
For this purpose, we construct n + k + 1 intermediate polynomials H int

0 , H int
1 , . . . ,H int

n+k, such

that H int
i : Finew × Fn+k−i

old → Fnew is constructed by extending Gk to the domain Finew × Fn+k−i
old .

Note that H int
n+k = Hk. We simply insert the polynomials H int

0 , H int
2 , . . . ,H int

n+k between Gk and

Gk+1. Note that for each i ∈ [n + k], given oracle access to H int
i−1, it is easy to evaluate H int

i by
interpolation. Also, Gk+1 can be evaluated easily given oracle access to Hk, as now they are over
the same field Fnew, and H int

0 can be easily evaluated given oracle access to Gk via interpolation.
It remains to ensure that adding these H int

i ’s does not hurt other properties we want. It is
straightforward to verify that padability, weakly error correctability, and the robust property still
hold, and a careful examination shows that these intermediate polynomials H int

i ’s are also same-
length checkable.

8.4 The Construction of the PSPACE-complete Language

Now we are ready to construct the needed PSPACE-complete language, we first restate the theorem
for convenience.

Reminder of Theorem 2.5 There is a PSPACE-complete language LPSPACE which is paddable,
TC0 downward self-reducible, TC0 same-length checkable, robust, and NC3 weakly error correctable.
Moreover, all the corresponding oracle circuits for the above properties are in fact non-adaptive:
that is, on any path from an input gate to the output gate, there is at most one oracle gate.

Proof of Theorem 2.5. In the following, we roughly follows the ideas outlined in Section 8.3. Our
construction is a careful modification of the construction from [TV07], together with an application
of Walsh-Hadamard codes to turn the polynomials into Boolean functions.

Construction of Interpolated Polynomial Gk. First, we order all polynomials in the following
order

f1,m(1), f1,m(1)−1, . . . , f1,0, f2,m(2), . . . , f2,0, . . . , fn,m(n), . . . , fn,0,

Let gk be the k-th polynomial in the above list. Suppose gk is fn,i. Let d = d(k) be the
maximum number of variables of a polynomial in g1, g2, . . . , gk. By introducing some dummy
variables at the end, we can make all polynomials g1, g2, . . . , gk have d variables. Moreover, since
all fields F1,F2, . . . ,Fn−1 are sub-fields of Fn (or equal to Fn), we can treat all g1, g2, . . . , gk as
polynomials from Fdn → Fn.

36

Now, we introduce k more variables y1, y2, . . . , yk, and define the following polynomial Gk :
Fd+k
n → Fn,

Gk(x, y1, y2, . . . , yk) :=
k∑
i=1

gi(x) · yi.

Since all gi’s are of total degree at most poly(n), Gk is also of total degree poly(n).

Construction of Field-Transferring Polynomial H int
k,i. One issue is that when Gk and Gk+1

are over different fields, it is not clear how one can compute Gk+1 with oracle access to Gk (that
is, how to implement the downward self-reducibility). To circumvent this, we construct a series
of field-transferring polynomials19 between Gk and Gk+1 to help the process of making the field
larger.

Since Gk+1 is over a larger field than Gk, it must be the case that n = 2τ for an integer τ and
i = 0. Let Fold = Fn = GF(22τ) and Fnew = Fn+1 = GF(22τ+1

), we know that Gk is over Fold and
Gk+1 is over Fnew.

We want to construct a polynomial Hk : Fd+k
new → Fnew which extends Gk. Note that it is unique,

as Gk is of D = poly(n) degree, while Fold has size at least 2n. If we simple insert Hk after Gk, it
is still not clear how to evaluate Hk given oracle access to Gk. Therefore, we move the polynomial
variables from Fold to Fnew one after another instead of moving them all together.

Let H int
k,i : Finew ×Fd+k−i

old → Fnew be the polynomial extending Gk to the domain Finew ×Fd+k−i
old .

Clearly H int
k,d+k = Hk.

Moreover, to compute H int
k,i given oracle access to H int

k,i−1, one can simply interpolate the i-

th coordinate. That is, given (y<i, yi, z) ∈ Finew × Fd+k−i
old , one queries H int

k,i−1(y<i, x, z) for x ∈
{0, 1, . . . , D} to interpolate a polynomial p(x) : Fold → Fnew which equals H int

k,i−1(y<i, x, z). Then

we have H int
i (y<i, yi, z) = p(yi).

Converting Gk and H int
k,i into Boolean Functions via Walsh-Hadamard Codes. Next,

we need to turn the polynomials Gk and H int
k,i into Boolean functions. We do this by applying

Walsh-Hadamard codes.
Let ` = pow(n). We use the bijection φ = φn between Fn and GF(2)` described in Section 8.1.
We define Fk : Fd+k

n × GF(2)` → GF(2) as,

Fk(z, r) := 〈φ(Gk(z)), r〉,

where 〈φ(Gk(z)), r〉 is the inner product between φ(Gk(z)) and r over GF(2).
Fk can be easily interpreted as a Boolean function on {0, 1}e(k), where e(k) = (d+ k + 1) · `.
We call a k special, if Gk and Gk+1 are over different fields. In this case, we know that

Fn+1 = GF(22`), and H int
k,i is from Fin+1 × Fd+k−i

n → Fn+1. Similarly, we define F trans
k,i : Fin+1 ×

Fd+k−i
n × GF(2)2` → GF(2) as

F trans
k,i (z, r) := 〈φn+1(H int

k,i(z)), r〉.

F trans
k,i can be interpreted as a Boolean function on {0, 1}e(k,i), where e(k, i) = (d+ k+ i+ 2) · `.

19We are slightly extending the notion of polynomials here, as in those intermediate polynomials, different variables
could be over different fields. Still, one can view them as the evaluation of a polynomial on a certain domain.

37

Note that for a special k, we have that e(k) < e(k, 0) < e(k, 1) < . . . < e(k, d + k − 1) <
e(k, d+ k) < e(k + 1).

Now, for each input length m, let k be the largest integer such that e(k) ≤ m and i be the
largest integer such that e(k, i) ≤ m. If there is no such k, LPSPACE

m just computes the all-zero
function. If k is not special, we set LPSPACE

m to compute Fk on its first e(k) bits; otherwise we set
LPSPACE
m to compute F trans

k,i on its first e(k, i) bits.

In the following we verify that LPSPACE has all the desired properties.

LPSPACE is Paddable. Note that it suffices to verify the padability between n and m = n + 1.
There are several non-trivial cases (we ignore the trivial case when LPSPACE

n and LPSPACE
m compute

the same function).

1. LPSPACE
n computes Fk and LPSPACE

m computes Fk+1.

2. LPSPACE
n computes Fk, L

PSPACE
m computes F trans

k,0 for a special k.

3. LPSPACE
n computes F trans

k,i , LPSPACE
m computes F trans

k,i+1 for a special k and 0 ≤ i ≤ d+ k − 1.

4. LPSPACE
n computes F trans

k,d+k, L
PSPACE
m computes Fk+1 for a special k.

We only discuss the first case, other cases follow by similar arguments. Note that in this case
Fk and Fk+1 are over the same field, and we have

Fk(x, y1, y2, . . . , yk, z) = Fk+1(x, y1, y2, . . . , yk, 0, z)

by the definition of Fk and Fk+1. The padability is then evident with our encoding of the fields
Fn’s (see Section 8.1).

To make the presentation clean, when verifying the remaining properties, we first discuss the
case when LPSPACE

m computes the function Fk, and then argue the additional cases when LPSPACE
m

computes the function F trans
k,i .

LPSPACE is Robust. Supposing LPSPACE
m computes the function Fk, we only need to show this

property for the Boolean function Fk. By the well-known local-list-decoders of the Walsh-Hadamard
codes [GL89] and of the Reed-Muller codes [STV01], this property follows directly.

LPSPACE is NC3 Weakly Error Correctable. This follows from the well-known local-decoders
of the Reed-Muller codes and the Walsh-Hadamard codes [STV01]. Walsh-Hadamard codes have
NC1 local decoders [GL89], while the computational bottleneck of the local decoder of Reed-Muller
is solving a system of linear equations over Fn. Solving a system of linear equation can be done by
an O(log2 n) depth arithmetic circuit with field operations over Fn, and a field operation over Fn
can be implemented by a uniform TC0 circuit [HV06] (and therefore a uniform NC1 circuit). Hence,
the whole local decoder can be implemented by a uniform NC3 circuit, and this property follows.

38

Handling F trans
k,i . Consider the function F trans

k,i constructed from the function H int
k,i : Finew ×

Fd+k−i
old → Fnew (recall that now k is special; Fnew and Fold are the (different) fields of Gk and

Gk+1 respectively). H int
k,i can indeed be interpreted as a polynomial Fiold × Fiold × Fd+k−i

old → Fnew.
Recall that there is an element α ∈ K such that all element x ∈ K can be uniquely written as
x = y · α+ z for y, z ∈ F .

We consider the following polynomial H̃ int
k,i : Fiold × Fiold × Fd+k−i

old → Fnew, defined as

H̃ int
k,i(y, z, w) = H int

k,i(y · α+ z, w),

where y, z ∈ Fiold and w ∈ Fd+k−i
old , and the operators in y · α + z are coordinate-wise scalar

multiplication and addition.
H̃ int
k,i has the same degree of H int

k,i , and is indeed the same function as H int
k,i . Therefore, the robust

property and weakly error correctability can be established similarly when LPSPACE
m computes F trans

k,i .

LPSPACE is TC0 Same-length Checkable. Suppose we want to check whether Fk(x, y, r) = 1
given an oracle O which is supposed to compute Fk (the case for checking whether Fk(x, y, r) = 0
is analogous). Suppose gk = fn,i, and let ` = pow(n). Note that given an oracle for Fk, one can
ask it ` times to get Gk(x, y) for any valid x, y.

We first query the oracle O to get Gk(x, y), and reject immediately if it is not consistent
with Fk(x, y, r). Since Gk(x, y) =

∑k
i=1 gk(x) · yi, we next ask the oracle O to get g1(x) =

Gk(x, 1, 0, . . . , 0), g2(x) = Gk(x, 0, 1, 0, . . .), . . . , gk(x) = Gk(x, 0, 0, . . . , 0, 1). We reject immedi-
ately if these queried values are not consistent with Gk(x, y). Now we can use the original instance
checker in [TV07, FS04] to check whether these obtained gi(x)’s are correct.

Therefore, now it suffices to show that the instance checker of [TV07, FS04] can be implemented
by a uniform polynomial size TC0 circuit. Suppose we want to check the value of fn,i(x) for some

n and i, given oracle access to alleged polynomials f̃n,i, f̃n,i+1, . . . , f̃n,m(n), which are supposed to
compute the polynomials fn,i, fn,i+1, . . . , fn,m(n) (by the way we order polynomials, these alleged
polynomials are accessible given the oracle O).

For all i < m(n), fn,i(x) has ` = t(n, i) variables, recall that it is defined in terms of fn,i+1 using
one of the following rules:

fn,i(x1, . . . , x`) = fn,i+1(x1, . . . , x`, 0) · fn,i+1(x1, . . . , x`, 1). (4)

fn,i(x1, . . . , x`) = 1− (1− fn,i+1(x1, . . . , x`, 0)) · (1− fn,i+1(x1, . . . , x`, 1)). (5)

fn,i(x1, . . . , xk, . . . , x`) = xk · fn,i+1(x1, . . . , 1, . . . , x`) + (1− xk) · fn,i+1(x1, . . . , 0, . . . , x`). (6)

Let D = poly(n) be a degree bound on all the polynomials fn,i, fn,i+1, . . . , fn,m(n). Suppose we
want to check whether fn,i(x1, . . . , x`) = Ti, the instance checker works as follows:

• For case (1) and case (2), we first query the oracle polynomials f̃n,i+1 on points (x1, . . . , x`, z)
for z ∈ {0, 1, 2, . . . , D}, and interpolate a polynomial Pi(z) of degree D, which is supposed to
be the polynomial fn,i+1(x1, . . . , x`, z).

– We first check whether Pi(0) · Pi(1) = Ti in case (1), or 1− (1− Pi(0)) · (1− Pi(1)) = Ti
in case (2), and reject immediately if they are not satisfied.

39

– We pick a random value zi ∈ Fn, and proceed to check whether fn,i+1(x1, . . . , x`, zi) =
Pi(zi).

• For case (3), we first query the oracle polynomials f̃n,i+1 on points (x1, . . . , xk−1, z, xk+1, . . . , x`)
for z ∈ {0, 1, 2, . . . , D}, and interpolate a polynomial Pi(z) of degree D, which is supposed to
be the polynomial fn,i+1(x1, . . . , xk−1, z, xk+1, . . . , x`).

– We first check whether xk · Pi(1) + (1− xk) · Pi(0) = Ti.

– We pick a random value zi ∈ Fn, and proceed to check whether fn,i+1(x1, . . . , xk−1, zi, xk+1,
. . . , x`) = Pi(zi).

• Finally, when we reach the stage of checking whether fn,m(n)(x1, x2, . . . , xt(n,m(n))) = Tm(n).
We simply evaluate the polynomial fn,m(n) on the given point and reject it is not equal to
Tm(n).

The correctness of the instance checker follows directly from the proof of IP = PSPACE [LFKN92,
Sha92]. Now we show it can be implemented in uniform TC0.

First notice that we can draw all the random values zi, zi+1, . . . , zm(n) in the beginning, and
each interpolated polynomials Pi are completed determined by the input x1, x2, . . . , x`, the random
values zi’s, and the oracle polynomial f̃n,i’s. By Lagrange’s formula and [HV06], all Pi’s can be
computed by uniform TC0 non-adaptive oracle circuits with the oracle O.

After constructing the polynomials, one can see the instance checker only needs to perform
some additional consistency checks. Note that we have Ti+1 = Pi(zi), so all consistency checks only
involve at most two polynomials Pi and Pi+1, and they can be easily implemented by uniform TC0

circuits, again by [HV06].

Handling F trans
k,i . When LPSPACE

m computes F trans
k,i , the only complication is that now all these

polynomials fn,i are over the domain Ftnew × F`−told for some t. The above argument still works with
minor modifications.

LPSPACE is TC0 Downward Self-reducible. Finally, we show how to compute LPSPACE
m given

an oracle to LPSPACE
m−1 . Note that we can ignore the trivial case where both LPSPACE

m and LPSPACE
m−1

compute the same function. We first consider the case that LPSPACE
m and LPSPACE

m−1 compute the
function Fk and Fk−1 respectively.

To compute Fk(x, y, r), it suffices to compute Gk(x, y). Computing Gk(x, y) can be in turn
reduced to computing g1(x), g2(x), . . . , gk(x). Recall that these gi(x)’s are defined by one of the
rules (4), (5) and (6), we can see either gi(x) is itself computable by a uniform TC0 circuit (it is
fn,m(n) for some n), or it can be computed by a uniform TC0 non-adaptive oracle circuit with gi−1

as the oracle [HV06].
Given oracle access to Fk−1, we also get the access to polynomials g1(x), g2(x), . . . , gk−1(x),

and therefore we can compute each g1(x), g2(x), . . . , gk(x) with a uniform TC0 non-adaptive oracle
circuit with the oracle Fk−1. Combing them with another TC0 circuit on the top, we can compute
Fk(x, y, r) with a uniform TC0 non-adaptive oracle circuit with the oracle Fk−1, which completes
the proof.

40

Handling F trans
k,i . There are three non-trivial cases involving F trans

k,i .

1. LPSPACE
m−1 computes Fk, L

PSPACE
m computes F trans

k,0 for a special k.

2. LPSPACE
m−1 computes F trans

k,i , LPSPACE
m computes F trans

k,i+1 for a special k and 0 ≤ i ≤ d+ k − 1.

3. LPSPACE
m−1 computes F trans

k,d+k, L
PSPACE
m computes Fk+1 for a special k.

Note that the third case can be handled similarly as the case involves Fk and Fk−1. For the
first two cases, LPSPACE

m can be computed easily given an oracle to LPSPACE
m−1 via interpolation, by

the way we define F trans
k,i ’s.

9 NQP is not 1/2 + o(1)-approximable by Polynomial Size ACC0 ◦
THR Circuits

In this section we prove that NQP is not (1/2 + 1/ polylog(n))-approximable by polynomial-size
ACC0 ◦ THR circuits.

In Section 9.1 we introduce some definitions and lemmas which will be helpful for our proof. In
Section 9.2, we prove a (1−δ)-inapproximability result for (NQP∩coNQP)/O(1) against ACC0◦THR
circuits. And in Section 9.3, we apply mild to strong hardness amplification to obtain a (1/2 +
1/polylog(n))-inapproximability result for (NQP ∩ coNQP)/O(1) against ACC0 ◦ THR circuits, and
then apply an enumeration trick to get rid of that advice, and prove the same lower bound for
NQP.

9.1 Preliminaries

We first introduce some definitions. For an integer a ∈ N, we use bin(a) to denote the Boolean
string representing a in binary (from the most significant bit to the least significant bit).

Given two integers m,n ∈ N, we construct an integer pair(m,n) as follows. First letting ` =
|bin(n)|, we duplicate each bits in bin(`) and to get a string zlen of length 2 · |bin(`)| (for example,
if bin(`) = 101, we get 110011). Then we let z = bin(m) ◦ bin(n) ◦ 01 ◦ zlen, where ◦ means
concatenation, and define pair(m,n) as the integer with binary representation z.

It is easy to see that pair(m,n) ≤ O(mn2). Also, given the integer pair(m,n), one can easily
decode the pair of number m and n.

9.2 (1− δ) Average-Case Lower Bounds

We first show that there is a function in (NQP ∩ coNQP)/2 which is not (1 − δ)-approximable by

ACC0 ◦ THR circuits, for a universal constant δ.

Theorem 9.1. For all constants a, there is an integer b, a universal constant δ > 0, such that
(N∩coN)TIME[2logb n]/2 is not (1− δ)-approximable by 2loga n size ACC0 ◦ THR circuits.

Remark 9.2. In other words, the conclusion of the above theorem is equivalent to that there is a
language L in (N∩coN)TIME[2logb n]/2 which is not (1− δ)-approximable by 2loga n size ACd? [m?] ◦
THR circuits, for all constants d?,m?.

41

We will prove a weaker theorem first, and then show it implies Theorem 9.1.

Theorem 9.3. For all constants a, d?,m?, there is an integer b, a universal constant δ > 0, and
a language L in (N∩coN)TIME[2logb n]/2 such that L is not (1 − δ)-approximable by 2loga n-size
ACd? [m?] ◦ THR circuits.

Proof. Let b be an integer to be specified later and δ be the universal constant in Theorem 6.3.
Now for the sake of contradiction, suppose all languages in (N∩coN)TIME[2logb n]/2 have a 2loga n-
size ACd? [m?] ◦ THR circuit family which computes it correctly on a 1− δ fraction of inputs for all
sufficiently large input length n.

We first apply Theorem 7.5. Let b1 and c1 be such that there is a language Lhard ∈ (MA ∩
coMA)TIME(2logb1 n)/2 specified by Algorithm 5 and Algorithm 6, such that for all sufficiently large
τ ∈ N and n = 2τ , either

• heur0.99-DEPTH(Lhard
n) > log2a n, or

• heur0.99-DEPTH(Lhard
m) > log2am, for an m ∈ (2logc1 n, 2logc1 n+1) ∩ N.

Now we try to derandomize Lhard non-deterministically, and get a contradiction. In the following
we always assume n is sufficiently large.

By Theorem 6.3, there is a constant b2, such that the following holds for an infinite number of
n’s (we call them good n’s):

• Let Sderand(n) = 2log2b1c
2
1 n.

• There is a polynomial time algorithm V (x, y) with |x| = logb2 n and |y| = 2logb2 n computable

in 2O(logb2 n) time.

• V (1logb2 n, ·) is satisfiable, and for all y such that V (1logb2 n, y) = 1, Gy : {0, 1}O(logb2 n) →
{0, 1}Sderand(n) is a PRG which 1/Sderand(n) fools all logSderand(n) depth NC circuits, and

computable in 2O(logb2 n) time.

Now, for all these good n’s. Let n1 be the largest power of 2 which is no greater than n.
We first provide an informal description of our non-deterministic algorithm. There are two cases

according to Theorem 7.5.

• When heur0.99-DEPTH(Lhard
n1

) > log2a n1. On inputs of length n, we apply the PRG with

parameter n, and try to compute Lhard
n1

on the first n1 bits in 2O(logb2 n) time.

• When heur0.99-DEPTH(Lhard
m) > log2am, for an m ∈ (2logc1 n1 , 2logc1 n1+1) ∩ N. Now, on an

input of length n2 = pair(m,n) = O(mn2), we apply the PRG with parameter n, and try to

compute Lhard
m on the first m bits in 2O(logb2 n) ≤ 2O(logb2 n2) time.

Formally, the algorithm is specified in Algorithm 7, with a key sub-routine given in Algorithm 8.
The advice bits yn and zn are set by Algorithm 9. It is not hard to see that a yn or a zn can only
be set once.

42

Algorithm 7: Non-deterministic Derandomization of Lhard

1 Given an input x with length n = |x|;
2 Given advice bits y = yn ∈ {0, 1} and z = zn ∈ {0, 1};
3 if y = 0 then
4 Let n1 be the largest power of 2 which is no greater than n;

5 (y = 0 indicates we are in the case that heur0.99-DEPTH(Lhard
n1

) > log2a n1 and n is
good.);

6 Let w be the first n1 bits of x;
7 Derand(w, zn, n);

8 else
9 Parse n as two integers (m0, n0) (that is, n = pair(m0, n0));

10 (y = 1 indicates we are in the case that heur0.99-DEPTH(Lhard
m0

) > 2logbm0 and n0 is
good.);

11 Let w be the first m0 bits of x;
12 Derand(w, zn, n0);

Algorithm 8: Derand(x, z, n0)

1 Given an input x with length n = |x|, z ∈ {0, 1} and n0;

2 (z is supposed to be the advice for Lhard on input length n and n0 is suppose to be good.);
3 (In the following the algorithm tries to derandomize Algorithm 5 with the corresponding

advice z.);
4 if z = 0 then
5 Output 0 and terminate

6 According to whether n is a power of 2 and Algorithm 5, compute z and ` such that

Lhard
n (x) = LPSPACE

` (z), and guess an NC circuit C of depth D = D(n);

7 Compute in poly(`) time a TC0 instance checker D?
checker for LPSPACE

` ;

8 Guess a yhard such that V (1logb2 n0 , yhard) = 1;
9 for w ← {0, 1, ?} do

10 pw = Pr
r←{0,1}O(logb2 n0)[DC

checker(x,Gyhard(r)) = w];

11 if p1 > 0.66 then
12 Output 1 and terminate

13 if p0 > 0.66 then
14 Output 0 and terminate

15 Output ?;

43

Algorithm 9: The algorithm for setting advice bits of Algorithm 7

1 All yn’s and zn’s are set to 0 by default;

2 Let adv = {advn}n∈N be the advice sequence for Lhard;
3 for n = 1→∞ do
4 if n is good then
5 Let n1 be the largest power of 2 which is no greater than n;

6 if heur0.99-DEPTH(Lhard
n1

) > log2a n1 then
7 yn = 0;
8 zn = advn1 ;

9 else

10 Let m be an integer from (2logc1 n1 , 2logc1 n1+1) ∩ N such that

heur0.99-DEPTH(Lhard
m) > log2am;

11 n2 = pair(m,n);
12 yn2 = 1;
13 zn2 = advm;

Analysis of the algorithm. It is easy to see that L ∈ NTIME[2logb2+1 n]/2; we set b ≥ b2 + 1.

Then by our assumption, L can be (1 − δ)-approximated by 2loga n-size ACd? [m?] circuits on all
sufficiently large input length n. In particular, it also implies that L can be (1− δ)-approximated
by O(loga n)-depth NC circuits on all sufficiently large input length n.

Analysis of Derand(x, z, n0). Next, we say an execution of Derand(x, z, n0) is correct, if z is the
correct advice of Lhard

|x| , n0 is good, and 2logc1 n0+1 > |x| = n. We first show that on a correct execu-

tion of Derand(x, z, n0), it non-deterministically computes Lhard(x) (with respect to Definition 2.9).
We can assume the corresponding z = 1 because otherwise it is trivial. Note that in both cases
(whether n is a power of 2 in Algorithm 5), we have ` ≤ 2logc1 n and D ≤ logb1 n. Therefore, DC

checker

is equivalent to a depth O(logc1 n+ logb1 n) ≤ logS(n0) = log2b1c21 n0 circuit (logc1 n0 + 1 > log n).

Hence, since n0 is good, for any yhard such that V (1logb2 n0 , yhard) = 1, Gyhard 1/S(n0)-fools DC
checker,

and it follows that Derand(x, z, n0) non-deterministically computes Lhard(x).

Contradiction. Finally, we show the above is a contradiction. Since there are infinite good n’s,
either Line 7 or Line 12 of Algorithm 9 is executed for an infinite number of times. We consider
the following two cases.

• For an infinite number of good n’s, heur0.99-DEPTH(Lhard
n1

) > log2a n1. In this case, Ln com-
putes Lhard

n1
for all these n’s, and therefore heur0.99-DEPTH(Ln) = heur0.99-DEPTH(Lhard

n1
) ≥

log2a n1 = ω(loga n), contradiction.

• For an infinite number of good n’s, heur0.99-DEPTH(Lhard
n1

) ≤ log2a n1. In this case, Ln2 com-
putes Lhard

m for all these n2 = n2(n)’s, and therefore heur0.99-DEPTH(Ln2) = heur0.99-DEPTH(Lhard
m) ≥

log2am ≥ ω(loga n2) (m ≤ n2 ≤ O(mn2), m ≥ 2Ω(logc1 n)), contradiction.

44

Now, we show Theorem 9.3 implies Theorem 9.1.

Proof of Theorem 9.1. Let b ≥ 1 be an integer to be specified later, and δ be the universal constant
in Theorem 9.3.

For the sake of contradiction, suppose all languages in (N∩coN)TIME[2logb n]/2 have a 2loga n-size

ACC0◦THR circuit family which computes it correctly on a 1−δ fraction of inputs for all sufficiently
large input length n.

In particular, the uniform NC1 languages considered in the proof of Theorem 5.3 (see Re-
mark 5.4) can be (1 − δ)-approximated by 2loga n-size ACd◦ [m◦] ◦ THR circuit families, for two
constants d◦,m◦. Therefore, by Theorem 5.3, there exist constants ce, cd such that any depth d-NC
circuit has an equivalent 2ce·d

a
-size ACd◦+cd [m◦] ◦ THR circuit.

Note there is a universal constant cw such that, for all constants d? and m?, a 2loga n-size
ACd? [m?]◦THR circuit has an equivalent cw ·loga n-depth NC circuit, which in turn has an equivalent

2ce·c
a
w·loga

2
n-size ACd◦+cd [m◦] ◦ THR circuits.

Finally, by Theorem 9.3, there is a language L ∈ (N∩coN)TIME[2logb n]/2 (now we set b) such

that L is not (1 − δ)-approximable by 2loga
2+1 n-size ACd◦+cd [m◦] ◦ THR circuits. By the previous

discussion, it follows that L is also not (1− δ)-approximable by 2loga n-size ACd? [m?] ◦THR circuits
for all constants d?,m?, contradiction.

Remark 9.4. We remark here that the above proof is in fact non-constructive: it doesn’t give an
explicit bound on the integer b.

9.3 1/2 + 1/ polylog(n) Average-Case Lower Bounds

Finally, we prove Theorem 1.1 from Theorem 9.1 and hardness amplification.
We first define black-box hardness amplification.

Definition 9.5. A (1/2−ε, δ)-black-box hardness amplification from input length k to input length
n = n(k) is a pair (Amp,Dec) where Amp is an oracle Turing machine that computes a (sequence
of) boolean function on n bits, Dec is a randomized oracle Turing machine on k bits which also
takes an advice string of length a = a(k), and for which the following holds. For every pair of
functions f : {0, 1}k → {0, 1} and h : {0, 1}n → {0, 1} such that

Pr
x∼{0,1}n

[h(x) = Ampf (x)] > 1/2 + ε,

there is an advice string α ∈ {0, 1}a such that

Pr
x∼{0,1}k

[Dech(x, α) = f(x)] > 1− δ.

Next we state the hardness amplification result we need.20

Theorem 9.6 ([IJKW10]). For all constants δ > 0, and a real ε = k−o(1), there is a (1/2 −
ε, δ)-black-box hardness amplification from input length k to input length n = O(k2) with oracle
Turing machine pair (Amp,Dec). Moreover, Ampf (x) can be computed in poly(n, 1/ε) time for all
x ∈ {0, 1}n, and Dec? can be implemented by a constant-depth circuit of size poly(n, 1/ε), with
unbounded fan-in AND,OR gates and majority gates of fan-in Θ(1/ε).

20Theorem 9.6 can be proved by combing the local-decoder of the direct-product codes [IJKW10], and the local-
decoder of Walsh-Hadamard Codes [GL89].

45

Remark 9.7. Since a majority gate of Θ(1/ε) fan-in can be computed by an exp(1/ε)-size AC0

circuit, the decoder can also be implemented by an AC0 circuit of size poly(n, exp(1/ε)).

We first prove the following lemma with 2 bits of advice.

Lemma 9.8. For all constants a, c, there is an integer b and a language L in (N∩coN)TIME[2logb n]/2
such that L is not (1/2 + 1/ logc n)-approximable by 2loga n-size ACC0 ◦ THR circuits.

Proof. By Theorem 9.1, there is an integer b1 and a language L′ in (N∩coN)TIME[2logb1 n]/2 such

that L′ is not (1− δ)-approximable by 2loga1 n-size ACC0 ◦THR circuits, for a universal constant δ,
and a constant a1 to be specified later.

Let b = b1 + 1. Applying Theorem 9.6, we construct another language L, such that on in-
put length of n = n(k) = O(k2) (we can assume without of loss of generality that the function
n : N → N is injective), Ln computes the function AmpL

′
k with ε = 1/ logc n. Clearly, L is in

(N∩coN)TIME[2logb n]/2.

By theorem 9.6. For all constants d?,m?, if Ln = AmpL
′
k can be (1/2 + ε)-approximated by a

ACd? [m?] ◦ THR of size 2loga n. Then L′k can be (1− δ)-approximated by an

(k · exp(1/ε))O(1) · 2loga n ≤ 2loga n+O(logc n)

size ACd?+cd [m?] ◦ THR circuit, for a universal constant cd.
Finally, we set a1 = 2ac. Then clearly 2loga1 k ≥ 2loga n+O(logc n). Now, for all constants d?,m?,

we know that L′ is not (1− δ)-approximable by 2loga1 k-size ACd?+cd [m?] ◦THR circuits, and hence
L is not (1/2 + 1/ logc n)-approximable by 2loga n-size ACd? [m?] ◦THR circuits. This implies that L
is not (1/2 + 1/ logc n)-approximable by 2loga n-size ACC0 ◦ THR circuits.

Now, Theorem 1.1 follows from the same argument as in [COS18].

Proof of Theorem 1.1. By Lemma 9.8, there is an integer b and a language L′ ∈ (N∩coN)TIME[2logb n]/2

such that L′ is not (1/2 + 1/ log2c n)-approximable by 2log2a n-size ACC0 ◦ THR circuits. Let
w0, w1, w2, w3 ∈ {0, 1}2 be an enumeration of the set {0, 1}2.

NQP Lower Bounds. We first prove the case for NTIME[2logb n]. We define another language

L ∈ NTIME[2logb n] as follows: on an input of length n, let n′ = bn/4c and k = n − 4 · n′, Ln
simulates the non-deterministic algorithm for L′n′ with advice wk, on the first n′ bits of input.

By the construction of L′, for all constants d?,m?, there is an infinite number of pairs (ni, ai) ∈
N × {0, 1, 2, 3} such that the non-deterministic algorithm for L′ni with advice wai computes a

function which is not (1/2+1/ log2c ni)-approximable by 2log2a ni size ACd? [m?]◦THR circuits. By the
construction of L, L(4·ni+ai) computes a function which is not (1/2+1/ log2c ni) ≤ (1/2+1/ logc n)-

approximable by 2log2a ni ≥ 2loga n size ACd? [m?] ◦THR circuits. Therefore, L is not (1/2− 1/ logc)-
approximable by 2loga n-size ACC0 ◦ THR circuits.

(NQP ∩ coNQP)/1 Lower Bounds. Now we prove the case for (N∩coN)TIME[2logb n]/1. We

first define another language L ∈ (N∩coN)TIME[2logb n]/1 as follows: for an input length n, let
n′ = bn/4c and k = n− 4 · n′. We set the advice bit an = 1 if and only if wk is the correct advice
for input length n′ of language L′. When an = 1, Ln simulates L′n′ with advice wk, on the first n′

bits of input; Otherwise, Ln computes the all-zero function. A similar argument as the previous
case completes the proof.

46

10 Generalization to Other Natural Circuit Classes

Most of our arguments are pretty generic, the only part that makes use of special properties of
ACC0 ◦ THR circuit is Lemma 6.1, which builds on the non-trivial SAT algorithm for this circuit
class from [Wil14a]. (A non-trivial Gap-UNSAT algorithm also suffices in the argument.)

Therefore, as long as we have a non-trivial SAT or CAPP algorithm for a circuit class C , then
our argument can also be used to imply an average-case circuit lower bound against C . In this
section we sketch the proof for Theorem 1.3.

Reminder of Theorem 1.3. For a circuit class C ∈ {TC0,Formula,P/ poly}, if for a constant

ε > 0, there is a 2n−n
ε

time non-deterministic Gap-UNSAT algorithm for 2n
ε
-size C circuits, then

for all constants a, c, NQP is not (1/2 + 1/nc)-approximable by 2loga n-size C circuits.

Proof Sketch of Theorem 1.3. We first discuss how to prove a (1− δ)-inapproximability result, for
a universal constant δ. When C = TC0 or Formulas, the proofs are exactly the same as the case for
ACC0 ◦ THR. (when C = Formulas, we don’t even need Theorem 5.3 to get a collapse from NC1).

When C = P/poly, we can no longer use Theorem 7.5. But a similar argument can proceed with
Corollary 7.7.

After that, we can use the same hardness-amplification in Theorem 9.6, but since now C can
compute majority, we can prove a (1/2+1/nc)-inapproximability result, instead of a (1/2+1/ logc n)
one.

11 Open Questions

There are several interesting questions stemming from this work:

• Can we prove more average-case lower bounds for NQP (or even NP) with the techniques in
this paper? Recall that the well-known open question of constructing an explicit rigid matrix
is just construct an average-case hard function for low-rank matrices. Can we construct an
NP explicit rigid matrix for any non-trivial regimes of parameters by refining our approach?
This would require us to both tighten our algorithm-to-circuit-lower-bounds connection and
to find sufficient algorithms for certain tasks on low-rank matrices.

Or less ambitiously, can we construct an NP explicit function which cannot be approximated
by ω(

√
n) degree F2 polynomials?

• We can only prove a 1/2 + 1/ polylog(n) inapproximability lower bound for NQP against
ACC0 ◦THR. Can this be improved to a 1/2 + 1/ poly(n) one? This could potentially lead us
to an unconditional non-deterministic PRG for ACC0, with poly-logarithmic seed length (the
best non-deterministic PRG for ACC0 has seed length n− n1−δ [COS18]).

Acknowledgment

I would like to thank my advisor, Ryan Williams, for his continuing support and countless valuable
discussions during this work, for his suggestion to use a random self-reducible NC1-complete problem
to simplify the proof, also for many comments on an early draft of this paper.

47

I am grateful to Roei Tell for several detailed discussions on the proof and helpful suggestions
on the presentation, in particular, for the discussion which leads to the alternative perspective in
Section 4.2. I am also grateful to Chi-Ning Chou for suggestions on an early draft of this paper,
and Mrinal Kumar for discussions on the complexity of the local-list decoder of Reed Solomon
codes. I also would like to thank Hanlin Ren for catching an issue in the previous construction of
the PSPACE-complete language.

I want to thank Josh Alman, Chi-Ning Chou, Shuichi Hirahara, Xuangui Huang, Nutan Limaye,
Igor Carboni Oliveira, Zhao Song and Emanuele Viola for helpful discussions during this work, and
FOCS reviewers for useful comments.

References

[AB84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth compu-
tations. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1984, Washington, DC, USA, pages 471–474, 1984.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[ACW16] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representations
of threshold functions and algorithmic applications. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pages 467–476, 2016.

[Ajt83] M Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983.

[Ajt90] Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances
In Computational Complexity Theory, Proceedings of a DIMACS Workshop, New Jer-
sey, USA, December 3-7, 1990, pages 1–20, 1990.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–
555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. J. ACM, 45(1):70–122, 1998.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
TOCT, 1(1):2:1–2:54, 2009.

[Bab87] László Babai. Random oracles separate PSPACE from the polynomial-time hierarchy.
Inf. Process. Lett., 26(1):51–53, 1987.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP
question. SIAM J. Comput., 4(4):431–442, 1975.

48

[BHLR19] Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao. Torus
polynomials: An algebraic approach to ACC lower bounds. In 10th Innovations in
Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA, pages 13:1–13:16, 2019.

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring
crypto dark matter: - new simple PRF candidates and their applications. In Theory
of Cryptography - 16th International Conference, TCC 2018, Panaji, India, November
11-14, 2018, Proceedings, Part II, pages 699–729, 2018.

[BSV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In In-
ternational Colloquium on Automata, Languages, and Programming, pages 163–173.
Springer, 2014.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In 31st Conference on Computa-
tional Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 10:1–10:24,
2016.

[COS18] Ruiwen Chen, Igor Carboni Oliveira, and Rahul Santhanam. An average-case lower
bound against ACC0. In LATIN 2018: Theoretical Informatics - 13th Latin American
Symposium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 317–330,
2018.

[CP16] Shiteng Chen and Periklis A. Papakonstantinou. Depth-reduction for composites. In
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 99–108, 2016.

[CT19] Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits ”just beyond”
known lower bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 34–41,
2019.

[CW19] Lijie Chen and Ryan Williams. Stronger connections between circuit analysis and circuit
lower bounds, via PCPs of proximity. 2019. To appear in the proceedings of CCC 2019.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial
time. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings, pages 316–324, 2004.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Roth-
blum. Verifying and decoding in constant depth. In Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007, pages 440–449, 2007.

49

[GII+19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina
Kolokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem.
2019. To appear in the proceedings of ICALP 2019.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May
14-17, 1989, Seattle, Washigton, USA, pages 25–32, 1989.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge Uni-
versity Press, 2008.

[GR08] Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In Approx-
imation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
11th International Workshop, APPROX 2008, and 12th International Workshop, RAN-
DOM 2008, Boston, MA, USA, August 25-27, 2008. Proceedings, pages 455–468, 2008.

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive
procedures with advice, and lower bounds on hardness amplification proofs. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 956–966, 2018.

[H̊as89] Johan H̊astad. Almost optimal lower bounds for small depth circuits. Advances in
Computing Research, 5:143–170, 1989.

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite
fields of characteristic two. In STACS 2006, 23rd Annual Symposium on Theoretical
Aspects of Computer Science, Marseille, France, February 23-25, 2006, Proceedings,
pages 672–683, 2006.

[HVV06] Alexander Healy, Salil P. Vadhan, and Emanuele Viola. Using nondeterminism to
amplify hardness. SIAM J. Comput., 35(4):903–931, 2006.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
direct product theorems: Simplified, optimized, and derandomized. SIAM J. Comput.,
39(4):1637–1665, 2010.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci.,
65(4):672–694, 2002.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 20–31, 1988.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[MW18] Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime: an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 890–901, 2018.

50

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[O’D04] Ryan O’Donnell. Hardness amplification within NP. J. Comput. Syst. Sci., 69(1):68–94,
2004.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical Notes of the Academy of Sciences
of the USSR, 41(4):333–338, 1987.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[San09] Rahul Santhanam. Circuit lower bounds for merlin–arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

[SFM78] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeterministic
time complexity classes. J. ACM, 25(1):146–167, 1978.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[Sho88] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields.
In 29th Annual Symposium on Foundations of Computer Science, White Plains, New
York, USA, 24-26 October 1988, pages 283–290, 1988.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean cir-
cuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pages 77–82, 1987.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority.
SIAM J. Comput., 39(7):3122–3154, 2010.

[Tam16] Suguru Tamaki. A satisfiability algorithm for depth two circuits with a sub-quadratic
number of symmetric and threshold gates. Electronic Colloquium on Computational
Complexity (ECCC), 23:100, 2016.

[Tel18] Roei Tell. Quantified derandomization of linear threshold circuits. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 855–865, 2018.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Computational Complexity, 16(4):331–364, 2007.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst.
Sci., 67(2):419–440, 2003.

[Vio09] Emanuele Viola. On approximate majority and probabilistic time. Computational
Complexity, 18(3):337–375, 2009.

51

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM Journal on Computing, 42(3):1218–1244, 2013.

[Wil14a] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold
gates. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 194–202, 2014.

[Wil14b] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM (JACM),
61(1):2, 2014.

[Wil16] Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–
529, 2016.

[Wil18] Ryan Williams. Limits on representing boolean functions by linear combinations of
simple functions: Thresholds, relus, and low-degree polynomials. In 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 6:1–
6:24, 2018.

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (prelimi-
nary version). In 26th Annual Symposium on Foundations of Computer Science, Port-
land, Oregon, USA, 21-23 October 1985, pages 1–10, 1985.

[Zák83] Stanislav Zák. A turing machine time hierarchy. Theor. Comput. Sci., 26:327–333,
1983.

A PRG Construction for Low-Depth Circuits

In this section we sketch the proof of Theorem 2.1, which is a simple combination of the local-list
deocdable codes in [GR08] and the Nisan-Wigderson PRG construction [NW94].

Reminder of Theorem 2.1. Let δ > 0 be a constant. There are universal constants c and
g, and a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, if Y : {0, 1}` → {0, 1} does not have

`δ-depth NC circuit, then for S = 2`
c·δ

, and for all NC circuit C with depth log(S),∣∣∣∣ Pr
x∈{0,1}w

[C(G(Y, x)) = 1]− Pr
x∈{0,1}S

[C(x) = 1]

∣∣∣∣ < 1/S,

where w = `g. That is, G(Y, ·) 1/S-fools all logS-depth NC circuits. Moreover, G is computable in
2O(`) time.

Proof Sketch. Given such a function Y , we first apply the local-list decodable codes construction
in [GR08] to turn it into a sufficiently average-case hard function against low-depth circuit (the
decoder in [GR08] has a low-depth implementation). Now we can simply plug the resulting function
into the Nisan Wigderson PRG construction [NW94], which completes the proof.

Remark A.1. It is also possible to prove the above theorem using the pseudoentropy generator
from [STV01] and a low-depth computable extractor (see, e.g. [Tel18] and [CT19] for a construction
in sparse TC0).

52

B TC0 Collapses to ACC0 if Uniform TC0 can be Approximated by
ACC0

In this section we provide a proof that TC0 collapses to ACC0 if uniform TC0 can be approximated
by ACC0. Note that the conclusion here is weaker than Theorem 5.3; we include this because the
proof is very elementary and does not rely on Barrington’s theorem, and also starts with a weaker
assumption.21

To show TC0 collapses to ACC0, it suffices to show that MAJ is in ACC0.

Lemma B.1. Let S : N→ N be a size parameter and d,m be two constants. Suppose all languages
in uniform TC0 can be 0.99-approximated by S-size ACd? [m?] circuit families. Then MAJ can be
computed by a poly(S, n) size ACd?+O(1)[m?] circuit family.

Proof. The following proof is similar to the self-error correction of the parity function22.

Construction of the Function g in Uniform TC0. We first construct a function in uniform
TC0, which encodes MAJ in a nice way. Suppose n is a power of 2 for simplicity. Letting n = 2`,
we fix a natural bijection between {0, 1}` and Z2` . We also define Sumn : {0, 1}n·` → {0, 1}`, as the
summation of n numbers from the group Z2` .

Now we define a function g : {0, 1}n·` × {0, 1}` → {0, 1}, as

g(x, y) := Sumn(x) · y,

where the inner product is over GF(2). (g(x, ·) is just the Walsh-Hadamard encoding of Sumn(x).)
From now on we assume n is large enough. Clearly, since both Sumn and inner product over

F2 have uniform TC0 circuits, g has uniform TC0 circuits. Therefore by our assumption, g can be
0.99-approximated by an S(2n log n)-size ACd? [m?] circuit Cg. That is,

Pr
x∈{0,1}n·`

Pr
y∈{0,1}`

[Cg(x, y) = g(x, y)] ≥ 0.99.

Construction of an ACC Circuit D Approximating Sumn from Cg. By a simple Markov’s
inequality, for at least a 0.9 fraction of x from {0, 1}n·`, we have

Pr
y∈{0,1}`

[Cg(x, y) = g(x, y)] ≥ 0.9.

We call an x good if it satisfies the above condition. We can use the following simple decoding
algorithm to find an ACC circuit D : {0, 1}n·` → {0, 1}` approximating Sumn.

Letting t = 10`, we pick t random strings z1, z2, . . . , zt from {0, 1}`. Given x ∈ {0, 1}n·` and
i ∈ [`], the i-th output bit of D is the approximate-majority of {Cg(x, zj) ⊕ Cg(x, zj ⊕ ei)}j∈[t],
where ei is Boolean string that only the i-th bit is 1, and zj⊕ei means the coordinate-wise addition
over GF(2).

21In fact, an earlier version of this paper builds on this collapse theorem, with a more complicated argument than
the current version.

22Suppose F 0.99-approximates the function Parityn. Let z be a random vector from {0, 1}n, we have F (z)⊕F (z⊕
x) = Parityn(x) with probability 0.98 for all x ∈ {0, 1}n.

53

Note that for a fixed good x ∈ {0, 1}n·`, i ∈ [`], {Cg(x, zj)⊕Cg(x, zj⊕ei)}j∈[t]’s are independent,
and for each j ∈ [t], we have

Pr
zj

[Cg(x, zj)⊕ Cg(x, zj ⊕ ei) = Sumn(x)i] ≥ 0.8.

Therefore, by a simple Chernoff bound, for a good x, we have D(x) = Sumn(x) with probability
at least 1− 1/n. That is, by an averaging argument, there exists a set of fixed zj ’s, such that the
constructed circuit D satisfying D(x) = Sumn(x) for at least a 0.9 · 0.8 ≥ 0.7 fraction of inputs.

By Lemma 5.2, D is an ACd?+O(1)[m?] circuit of size poly(S, n).

The Self-correction of Sumn. Next, we use the property that Sumn is self-correctable. For all
x ∈ {0, 1}n·`, let z be a uniform element from Zn

2`
, we have

Pr
z

[D(z + x)− Sumn(z) = Sumn(x)] ≥ 0.7.

In above, z+x is the element-wise additions over Z2` . The above holds since z+x is uniformly
distributed, and D agrees with Sumn for a 0.7 fraction of inputs. Let Dz(x) := D(x+ z), note that
Dz has a poly(n, S)-size ACd?+O(1)[m?] circuit, as x+ z is element-wise addition over Z2` with each

entries on ` = O(log n) bits, one can use 2O(`) = poly(n) CNFs at the bottom; we can do the same
thing at the top to subtract Sumn(z) over Z2` , which is a constant; the total depth increase is O(1).

The Final Circuit E. Finally, we pick 10n` i.i.d. samples z1, z2, . . . , z10·n·`’s from Zn
2`

.
And our final circuit E computes an approximate majority on the Dzj (x)’s with the given input

x. By a simple Chernoff bound, with a non-zero probability that E computes Sumn correctly on
all inputs. We fix such a collection of zj ’s in our construction of E.

Now we have an exact ACd?+O(1)[m?] circuit E for Sumn. One can easily construct an exact
ACd?+O(1)[m?] circuit for MAJn from E, which completes the proof.

C Average-Case Easy-Witness Lemma for Unary Languages

In this section we sketch the proof for Lemma 4.1.

Reminder of Lemma 4.1. (Average-Case Easy-Witness Lemma for Unary Languages) There is
a universal constant δ such that, for a typical circuit class C 23, if NQP can be (1− δ)-approximated
by poly-size C , then all NQP verifiers for unary languages have poly-size C witness.

Proof Sketch. We prove the contrapositive. Let δ = 1/1000.
Suppose there is unary language L in NQP such that is doesn’t have poly-size C circuits. And

for the sake of contradiction, we further assume NQP can be (1− δ)-approximated by poly-size C .
By Theorem 5.3 and the assumption that AC0 ◦ C ⊆ C , it follows that NC1 collapses to poly-size
C .

Now we can proceed similarly as the proof of Theorem 6.3 to construct an i.o. quasi-polynomial
time NPRG for polylog(n)-depth circuits (we can use the verifier V for L as the “hardness certifier”).
Then we can combine it with the a.a.e. average-case MA lower bound for low-depth circuits with a
low-depth computable predicate, and proceed identically as Theorem 1.1, to show that NQP cannot
be approximated by poly-size C , which is a contradiction.

23Here we require C is closed under adding AC0 at the top. That is, AC0 ◦ C ⊆ C .

54

D Bootstrapping from Non-trivial Derandomization Algorithms
to Quasi-Polynomial Time NPRGs

In this section we sketch the proof for the following bootstrapping theorem, which is implicit
in [Wil13, Wil16].

The proof of the following theorem follows roughly as the proof of Theorem 4.1 of [Wil16].

Theorem D.1. (Informal) For a circuit class C ∈ {TC0,Formula,P/ poly}, if for a constant ε > 0,

there is a 2n−n
ε

time non-deterministic Gap-UNSAT algorithm for 2n
ε
-size C circuits, then there

is a quasi-polynomial time non-deterministic infinite often PRG for polynomial-size C circuits.

Proof Sketch. From the assumption, and a proof similar to that of Lemma 6.1. We have that for
some constant δ > 0, there is an unary NE verifier which doesn’t have 2n

δ
-size C witness.

Then this NE verifier V can be used as the “worst-case hardness certifier” for C circuits. That
is, we have a polynomial-time algorithm V (x, y), where |x| = n and |y| = 2n, such that for an
infinite number of n’s, V (x, ·) is satisfiable, and V (x, y) = 1 implies y is not the truth-table of a

2n
δ
-size C circuit.
Now we guess an yhard such that V (1n, yhard) = 1. We interpret yhard as a function fws : {0, 1}n →

{0, 1}. By [GR08], there are local-list decodable codes with TC0 decoders and polynomial-size
blowup. Therefore, one can construct in 2O(n) time another function favg : {0, 1}O(n) → {0, 1},
which is average-case hard for C circuits (as C contains TC0). Plugging favg into the Nisan-
Widgersion PRG construction [NW94] completes the proof.

E Either NQP 6⊂ NQP or MCSP 6⊂ ACC0

In this section we prove Corollary 1.2 (restated below).

Reminder of Corollary 1.2 Either NQP 6⊂ P/poly or MCSP /∈ ACC0.

Proof. For the sake of contradiction, suppose NQP ⊂ P/poly and MCSP ∈ ACC0.

By [CIKK16], any function f ∈ P/poly has a non-uniform (TC0)MCSP circuit C of polynomial
size that agrees with f on all but an inverse polynomial fraction of inputs. Also, by [GII+19], we
have that MAJ ∈ (AC0)MCSP and therefore (TC0)MCSP ⊆ (AC0)MCSP ⊆ ACC0, as MCSP ∈ ACC0.

Since NQP ⊂ P/ poly, we know that NQP can be approximated by ACC0, contradiction to
Theorem 1.1.

55

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

