Non-deterministic Quasi-Polynomial Time is Average-case Hard for ACC Circuits

Lijie Chen*
Massachusetts Institute of Technology
lijieche@mit.edu

July 12, 2019

Abstract

Following the seminal work of [Williams, J. ACM 2014], in a recent breakthrough, [Murray and Williams, STOC 2018] proved that NQP (non-deterministic quasi-polynomial time) does not have polynomial-size ACC^{0} circuits.

We strengthen the above lower bound to an average case one, by proving that for all constants c, there is a language in NQP, which is not $\left(1 / 2+1 / \log ^{c} n\right)$-approximable by polynomial-size ACC ${ }^{0}$ circuits. In fact, our lower bound holds for a larger circuit class: $2^{\log ^{a} n}$-size ACC^{0} circuits with a layer of threshold gates at the bottom (ACC。THR circuits), for all constants a. Our work also improves the average-case lower bound for NEXP against polynomial-size ACC 0 circuits by [Chen, Oliveira, and Santhanam, LATIN 2018].

Our new lower bound builds on several interesting components, including: - Barrington's theorem and the existence of an NC^{1}-complete language which is random self-reducible. - The sub-exponential witness-size lower bound for NE against ACC^{0} and the conditional non-deterministic PRG construction in [Williams, SICOMP 2016]. - An "almost" almost-everywhere MA average-case lower bound (which strengthens the corresponding worst-case lower bound in [Murray and Williams, STOC 2018]). - A PSPACE-complete language which is same-length checkable, error-correctable and also has some other nice reducibility properties, which builds on [Trevisan and Vadhan, Computational Complexity 2007]. Moreover, all its reducibility properties have corresponding low-depth non-adaptive oracle circuits. Like other lower bounds proved via the "algorithmic approach", the only property of ACC^{0} 。 THR exploited by us is the existence of a non-trivial SAT algorithm for ACC ${ }^{0} \circ$ THR [Williams, STOC 2014]. Therefore, for any typical circuit class \mathscr{C}, our results apply to them as well if the corresponding non-trivial SAT (in fact, Gap-UNSAT) algorithms are discovered.

[^0]
1 Introduction

1.1 Background and Motivation

Proving unconditional circuit lower bounds for explicit functions (with the ultimate goal of proving NP $\not \subset \mathrm{P} /$ poly $)$ is one of the holy grails of theoretical computer science. Back in the 1980 s, there was a number of significant progress in proving circuit lower bounds for AC^{0} (constant depth circuits consisting of AND/OR gates of unbounded fan-in) [Ajt83, FSS84, Yao85, Hås89] and $\mathrm{AC}^{0}[p][\operatorname{Raz} 87$, Smo87] (AC^{0} circuits extended with MOD_{p} gates) for a prime p. But this quick development was then met with an obstacle - there were little progresses in understanding the power of $\mathrm{AC}^{0}[\mathrm{~m}]$ for a composite m, despite it had been conjectured that they cannot even compute the majority function. In fact, it was a long-standing open question in computational complexity that whether NEXP (non-deterministic exponential time) has polynomial-size ACC ${ }^{0}$ circuits ${ }^{1}$, until a seminal work by Williams [Wil14b] from a few years ago, which proved NEXP does not have polynomial-size ACC ${ }^{0}$ circuits, via a new algorithmic approach to circuit lower bounds [Wil13].

This circuit lower bound is an exciting new development after a long gap, especially for it surpasses all previous known barriers for proving circuits lower bounds: relativization [BGS75], algebrization [AW09], and natural proofs [RR97] ${ }^{2}$. Moreover, the underlying approach, the algorithmic method [Wil13], puts many important classical complexity results together, ranging from non-deterministic time hierarchy theorem [SFM78, Zák83], IP = PSPACE [LFKN92, Sha92], hardness vs randomness [NW94], to PCP Theorem [ALM ${ }^{+}$98, AS98].

While this new circuit lower bound is a significant breakthrough after a long gap, it still has some drawbacks when comparing to the previous lower bounds. First, it only holds for the gigantic class NEXP, while our ultimate goal is to prove lower bound for a much smaller class NP. Second, it only proves a worst-case lower bound, while previous lower bounds and their subsequent extensions often also worked in the average-case; and it seems hard to adapt the algorithmic approach to the average-case settings.

Motivated by the above limitations, subsequent works extend the worst-case NEXP $\not \subset \mathrm{ACC}^{0}$ lower bound in several ways. ${ }^{3}$ In 2012, by refining the connection between circuit analysis algorithms and circuit lower bounds, Williams [Wil16] proved that (NEXP \cap coNEXP $)_{/ 1}$ does not have polynomial-size ACC 0 circuits. Two years later, by designing a fast \#SAT algorithm for ACC ${ }^{0} \circ$ THR circuits, Williams [Wil14a] proved that NEXP does not have polynomial-size ACC $^{0} \circ$ THR circuits. Then in 2017, building on [Wil16], Chen, Oliveira and Santhanam [COS18] proved that NEXP is not $1 / 2+1 / \operatorname{polylog}(n)$-approximable by polynomial-size ACC^{0} circuits. Recently, in an exciting new breakthrough, with a new easy-witness lemma for NQP, Murray and Williams [MW18] proved that NQP does not have polynomial-size $A C C^{0} \circ T H R$ circuits.

[^1]
1.2 Our Results

In this work, we strengthen all the above results by proving an average-case lower bound for NQP against ACC $^{0} \circ$ THR circuits.
Theorem 1.1. For all constants a, c, there is an integer b, such that NTIME $\left[2^{\log ^{b} n}\right]$ is not $(1 / 2+$ $1 / \log ^{c} n$)-approximable by $2^{\log ^{a} n}$ size ACC \circ THR circuits. The same holds for ($N \cap \operatorname{coN}$)TIME $\left[2^{\log ^{b} n}\right]_{/ 1}$ in place of NTIME $\left[2^{\log ^{b} n}\right]^{4}$.

In other words, the conclusion of the above theorem is equivalent to that there is a language L in NTIME $\left[2^{\log ^{b} n}\right]$ (resp. ($\mathrm{N} \cap \operatorname{coN}$)TIME $\left[2^{\log ^{b} n}\right]_{/ 1}$) which is not $\left(1 / 2+1 / \log ^{c} n\right.$)-approximable by $2^{\log ^{a} n}$ size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuits, for all constants d_{\star}, m_{\star}. We also remark that our new circuit lower bound builds crucially on another classical complexity gem: the Barrington's theorem [Bar89] together with a random self-reducible NC 1-complete language [Bab87, Kil88].

Either NQP $\not \subset \mathbf{P}_{/ \text {poly }}$ or MCSP $\notin \mathbf{A C C}^{0}$

MCSP is the Minimum Circuit Size Problem such that, given a truth-table $T:\{0,1\}^{2^{n}}$ and an integer $0 \leq s \leq 2^{n}$, asks whether there is a circuit C of size at most s which computes the given truth-table T (see $\left[\mathrm{GII}^{+} 19\right]$ and the references therein for more information on this problem).

Applying Theorem 1.1, we also resolve an open question from [GII $\left.{ }^{+} 19\right]$. [GII ${ }^{+}$19] proved (among many other results) that MAJ $\in\left(\mathrm{AC}^{0}\right)^{\mathrm{MCSP}}$, and showed that either NEXP $\not \subset P /$ poly or MCSP \notin ACC^{0}, by combing with Williams' celebrated lower bounds NEXP $\not \subset \mathrm{ACC}^{0}$ [Wil14b]. It is asked that whether one can further show either NQP $\not \subset \mathrm{P} /$ poly or MCSP $\notin \mathrm{ACC}^{0}$. We answer that affirmatively by proving the following corollary of Theorem 1.1.

Corollary 1.2. Either NQP $\not \subset P_{/ \text {poly }}$ or MCSP $\notin A C C^{0}$.
See Appendix E for a proof of the above corollary.

From Modest-Improvement on Gap-UNSAT Algorithms to Average-Case Lower Bounds

Like other lower bounds proved via the "algorithmic approach" [Wil13], the only property of ACC ${ }^{0} \circ$ THR circuits exploited by us is the non-trivial satisfiability algorithm for them [Wil14a]. Hence, our results also apply to other natural circuit classes if the corresponding algorithms are discovered.

We first define the Gap-UNSAT problem: given a circuit C, the goal is to distinguish between the case that C is unsatisfiable and the case that C has at least $1 / 3 \cdot 2^{n}$ satisfying assignments. ${ }^{5}$ Then formally, we have:

Theorem 1.3. For a circuit class $\mathscr{C} \in\left\{T C^{0}\right.$, Formula, $\left.P_{/ \text {poly }}\right\}$, if for a constant $\varepsilon>0$, there is a $2^{n-n^{\varepsilon}}$ time non-deterministic Gap-UNSAT algorithm for $2^{n^{\varepsilon}}$-size \mathscr{C} circuits, then for all constants a and $c, N Q P$ is not $\left(1 / 2+1 / n^{c}\right)$-approximable by $2^{\log ^{a} n}$-size \mathscr{C} circuits .

Remark 1.4. Since the circuits classes listed above can compute majority, we can use better hardness amplification to prove a $\left(1 / 2+1 / n^{c}\right)$-inapproximability result, instead of the $\left(1 / 2+1 / \log ^{c} n\right)$

[^2]one. See the proof of Theorem 1.3 for the detail. We also remark that if we only want the original $\left(1 / 2+1 / \log ^{c} n\right)$-inapproximability, the above theorem holds for all circuit classes \mathscr{C} closed under composition of $A C^{0}$ at the top (that is, $A C^{0} \circ \mathscr{C} \subseteq \mathscr{C}$).

Remark 1.5. One may ask whether the potentially $\left(1 / 2+1 / n^{c}\right)$-inapproximability lower bounds from Theorem 1.3 can be used to construct PRG for the corresponding classes (that is, whether it boosts a "non-trivial" derandomization algorithm to a much faster PRG construction). While the answer is yes, such a bootstrapping result for these circuit classes is already implicit in [Wil13, Wil16], see Appendix D for details.

Therefore, we essentially strengthen the similar algorithmic-to-circuit-lower-bounds connections in [MW18] from worst-case lower bounds against NQP to average-case lower bounds against NQP. We remark that our connection actually does not rely on the "easy-witness lemma", as it is not clear how one can get an average-case easy witness lemma (i.e., NQP can be approximated by $\mathrm{P}_{\text {/ poly }}$ implies all NQP verifiers have succinct witnesses). Rather, we use a different approach similar to [Wil16] and prove the average case lower bound directly, without going through the easy-witness lemma. ${ }^{6}$

A Simpler Proof for the New Easy Witness Lemma for NP and NQP of [MW18]

As an interesting by-product of our new ideas, we give a simpler proof for new easy-witness lemma for NP and NQP of [MW18] (Lemma 1.6 and Lemma 1.7). The proof from [MW18] crucially depends on a certain "bootstrapping" argument (Lemma 3.1 of [MW18]), while we provide a more direct and simpler proof without involving that bootstrapping. We think this new proof is an independent contribution of this work.

Lemma 1.6 (Easy-Witness Lemma for NP, Lemma 1.2 of [MW18]). For all $k \geq 1$, there exists a constant b such that if $N P \subset \operatorname{SIZE}\left[n^{k}\right]$, then every $L \in N P$ has witness circuits of size at most $n^{b} .{ }^{7}$

Lemma 1.7 (Easy-Witness Lemma for NQP, Lemma 1.3 of [MW18]). For all $k \geq 1$, there exists a constant b such that if $N Q P \subset \operatorname{SIZE}\left[2^{\log ^{k} n}\right]$, then every $L \in N Q P$ has witness circuits of size at most $2^{\log ^{b} n}$.

1.3 Intuition

In the following we discuss the intuition of our new average-case lower bounds. For the simplicity of arguments, we will sketch a proof for NQP is not $(1-\delta)$-approximable by polynomial-size ACC 0 circuits, for a universal constant $\delta(\delta$ can be think of as $1 / 1000)$.

Main Difficulty: The Absence of an Easy-Witness Lemma Under the Approximability Assumption

First, it is instructive to see why it is hard to generalize the previous proofs for worst-case lower bound against ACC^{0} [Wil14b, MW18] to prove an average-case lower bound against ACC^{0}.

[^3]The first step of the NQP $\not \subset \mathrm{ACC}^{0}$ lower bound by Murray and Williams [MW18], is applying the so called easy witness lemma. The easy witness lemma states: assuming NQP $\subset \mathrm{ACC}^{0}$, for every language L in NQP with a verifier $V(x, y)$, whenever $V(x, \cdot)$ is satisfiable, it has a succinct witness y which is the truth-table of a small ACC^{0} circuit. Then they apply a similar argument as in [Wil13, Wil14b] to contradict the non-deterministic time hierarchy theorem [Zák83], using the non-trivial SAT algorithm for ACC^{0} circuits in [Wil14b].

Now for proving the average-case lower bound for NQP, we can only start with the assumption that NQP can be $(1-\delta)$-approximated by polynomial-size ACC^{0} circuits. As already explained by [COS18], we cannot apply the easy witness lemma even if we start from the much stronger assumption that NEXP can be $(1-\delta)$-approximated by ACC^{0} : the proofs of both the original and the new easy-witness lemma [IKW02, MW18] completely break when we only have the approximability assumption.

Review of [COS18]'s Approach

In order to get around the above difficulty, [COS18] start from a worst-case lower bound against ACC^{0} [Wil16], and then apply a worst-case to average-case hardness amplification. Their approach works roughly as follows:

1. By [Wil16], there is a language $L \in(\text { NEXP } \cap \operatorname{coNEXP})_{/ 1}$, which doesn't have a poly (n) size ACC ${ }^{0}$ circuit.
2. Using the locally-list-decodable codes of [GGH ${ }^{+} 07$, GR08], one can compute a language $\widetilde{L} \in$ $(\text { NEXP } \cap \operatorname{coNEXP})_{/ 1}$, which cannot be $(1 / 2+1 / \log n)$-approximated by a poly (n) size ACC 0 circuits. That is, we treat the truth-table of L_{n} as a message $z \in\{0,1\}^{2^{n}}$ of the locally-listdecodable codes, and set \widetilde{L}_{m} to compute the codeword of z for an appropriate $m=m(n)$. (Note that here it is important to work with a language L in $(\text { NEXP } \cap c o N E X P)_{/ 1}$, as otherwise we don't know how to compute the truth-table of L in NEXP.)
3. In particular, the above $\widetilde{L} \in \operatorname{NEXP}_{/ 1}$. They then get rid of the advice bit via an enumeration trick, and therefore prove the average case lower bound for NEXP.

Unfortunately, it seems very hard to generalize the above approach to prove an average-case lower bound for NQP: the second step of the above approach breaks, as we no longer can afford to compute an error correcting code on the entire truth-table of a particular input length, which takes (at least) exponential time.

Therefore, we have to take a different approach, which proves the average-case lower bound directly, without going through the worst-case to average-case hardness amplification. In order to do that, it is helpful to review the proof of the new easy-witness lemma in [MW18].

The New Easy-Witness Lemma: "Almost" Almost-Everywhere (a.a.e.) MA Lower Bound and i.o. Non-deterministic PRG (NPRG)

(An instantiation of) the new easy-witness lemma of [MW18] states that if $N Q P \subset P_{/ \text {poly }}$, then all verifiers for NQP languages have succinct (polynomial-size) witness. For the sake of contradiction, we now suppose $\mathrm{NQP} \subset \mathrm{P}_{\text {/ poly }}$ and some verifier for a language $L \in \mathrm{NQP}$ doesn't have poly (n)-size witness. That is, there is a polynomial-time verifier $V(x, y)$ with $|x|=n$ and $y=2^{\log ^{b} n}$ for a
constant b, such that for an infinite number of n 's, there is an $x_{n} \in\{0,1\}^{n}$ such that $V\left(x_{n}, \cdot\right)$ is satisfiable, but for any y_{n} such that $V\left(x_{n}, y_{n}\right)=1$, we have $\operatorname{SIZE}\left(y_{n}\right)=n^{\omega(1)}$.

Now, y_{n} can be interpreted as a truth-table of a function on $\ell=\log ^{b} n$ variables, and we have $\operatorname{SIZE}\left(y_{n}\right) \geq 2^{\omega\left(\ell^{1 / b}\right)}$. Therefore, given such a y_{n}, using the well-known hardness-to-pseudorandomness connection [Uma03], one can construct a pseudorandom generator $G_{y_{n}}$ with seed length $O(\ell)$, running time $2^{O(\ell)}$, and it fools all circuits of size $2^{a \cdot \ell^{1 / b}}$, for all constants a.

Scaling everything properly by setting $S=2^{a \cdot \ell^{1 / b}}$, it follows that for an infinite number of S, if we are given the x_{n} (of length $\left|x_{n}\right|=S^{1 / a}$) as advice, we can guess a y_{n} such that $V\left(x_{n}, y_{n}\right)=1$, and compute the PRG $G_{y_{n}}$. This would be a non-deterministic PRG with seed length $O\left(\log ^{b} S\right)$, running time $2^{O\left(\log ^{b} S\right)}$, and fooling all S-size circuits.

The key ingredient of [MW18] is an "almost" almost-everywhere (a.a.e.) MA circuit lower bound, which builds on the MA circuit lower bound by Santhanam [San09]. ${ }^{8}$ For the simplicity of arguments, we now pretend that we have an almost-everywhere MA circuit lower bound. Specifically, for each c, there is an integer $k=k(c)$ such that there is a language L^{c} in MATIME $\left[n^{k}\right]$, such that $\operatorname{SIZE}\left(L_{n}^{c}\right) \geq n^{c}$ for all sufficiently large n.

The crucial idea is that, using the above i.o. NPRG, one can non-deterministically derandomize L^{c} on an infinite number of input length n 's (as the string y_{n} can be non-deterministically guess-and-verified). To derandomize MATIME $\left[n^{k}\right]$, it suffices to use the PRG which fools circuits of size $S=n^{2 k}$. Therefore, by setting $a=2 k$, we have a language $L^{\star} \in \operatorname{NTIME}\left[2^{\log ^{b+1} n}\right]_{/ n}$, such that it agrees with L^{c} on an infinite number of input lengths. Since c can be an arbitrary integer, we conclude that NTIME $\left[2^{\log ^{b+1} n}\right]_{/ n}$ is not in $\mathrm{P} /$ poly. Thus, we obtain a contradiction to our assumption (the n bits of advice can be got rid of easily).

Our Approach: "Almost" Almost-Everywhere Average-Case MA Lower Bound and i.o. NPRG

A natural attempt to adapt the above approach, is to start with an MA a.a.e. average-case circuit lower bound, and try to derandomize it non-deterministically via an i.o. NPRG.

More precisely, assume that NQP can be $(1-\delta)$-approximated by ACC^{0} circuits for the sake of contradiction. Suppose we have a language $L \in$ MAQP such that for all sufficient large n, heur $_{1-\delta} \operatorname{SIZE}\left(L_{n}\right) \geq n^{\omega(1)} .{ }^{9}$ Then with an appropriate i.o. NPRG, there is a language $L^{\star} \in \operatorname{NQP}$ which agrees with L on an infinite number of input lengths, which contradicts our assumption as this L^{\star} cannot be approximated by polynomial-size ACC^{0}.

An "Almost" Almost-Everywhere Average-Case MA Lower Bound

In order to implement this idea, the first obvious challenge is to strengthen the worst-case "almost" almost-everywhere MA circuit lower bounds [MW18] to an average-case one. This could be solved by combing ideas from the average-case circuit lower bound for MA [San09], together with a new construction of a PSPACE-complete language.

[^4]Roughly speaking, the MA circuit lower bounds in [San09] and [MW18] make crucial use of a PSPACE-complete language by [TV07], which admits several nice properties, including being samelength checkable, downward self-reducible, and paddable (see Definition 2.2 for details). We modify the construction from [TV07] to obtain a PSPACE-complete language $L^{\text {PSPACE }}$ which is in addition robust: that is, if it is hard in the worst-case, then it is also hard in the average-case. We think this new language $L^{\text {PSPACE }}$ is of independent interest and may be useful for other problems.

i.o. Non-deterministic PRG

The next challenge is more serious, how do we construct the required i.o. NPRG? One starting point is the (unconditional) witness-size lower bound for NE. That is, [Wil16] showed that there is unary language in NE, whose verifier does not have $2^{n^{\varepsilon}}$-size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right]$ witness $\left(\varepsilon=\varepsilon\left(d_{\star}, m_{\star}\right)\right)$. Therefore, let the verifier be $V(x, y)$ with $|x|=n$ and $|y|=2^{n}$; on an infinite number of n 's, $V\left(1^{n}, \cdot\right)$ is satisfiable, yet for all y such that $V\left(1^{n}, y\right)=1, y$ is not the truth-table of a $2^{n^{\varepsilon}}$-size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right]$ circuit.

Further assuming $\mathrm{P} \subset \mathrm{ACC}^{0}$, [Wil16] showed that the above implies an i.o. NPRG for general circuits. Note that $P \subset A C C^{0}$ implies the Circuit-Evaluation problem has an $A C C^{0}$ circuit, and consequently P /poly collapses to ACC^{0}. Therefore, for a y with $V\left(1^{n}, y\right)=1, y$ cannot be computed by a $2^{n^{\varepsilon}}$-size general circuit as well, which means one can substitutive y into the known hardness-to-pseudorandomness construction [NW94, Uma03], and get a quasi-polynomial time i.o. NPRG.

However, starting with our assumption NQP can be $(1-\delta)$-approximated by ACC^{0}, it is not clear how to show P / poly collapses to ACC^{0}. So we have to take a more sophisticated approach. To make the situation worse, performing worst-case to average-case hardness amplification requires majority [SV10, GSV18], which means we don't even know how to get a PRG fooling ACC ${ }^{0}$ circuits, from a y which is only worst-case hard for ACC^{0}.

i.o. Non-deterministic PRG for Low-Depth Circuits

So we want to work with a stronger circuit class, for which at least hardness amplification is possible, like $N C^{1}$. Fortunately, there is an NC^{1}-complete problem which admits a nice random self-reduction [Bar89, Bab87, Kil88]. By our assumption, this problem can clearly be $(1-\delta)$ approximated by ACC^{0} circuits. Utilizing this random self-reduction, and the fact that approximatemajority can be computed in AC^{0} [Ajt83, Vio09], we can show that this NC^{1}-complete problem has a poly (n)-size ACC^{0} circuits. This in particular means NC^{1} collapses to ACC^{0}. More specifically, there are two constants d_{\star}, m_{\star}, such that any depth d general (fan-in two) circuit has an equivalent $2^{O(d)}$-size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right]$ circuit.

Now, get back to the verifier V. It follows that for an infinite number of n 's, $V\left(1^{n}, \cdot\right)$ is satisfiable and for any y such that $V\left(1^{n}, y\right)=1, y$ is not the truth-table of an n^{ε}-depth circuit. This is enough to obtain a quasi-polynomial time i.o. non-deterministic PRG which fools polylog(n)-depth circuits.

However, in order to non-deterministically derandomize a general MA algorithm, a PRG for polylog (n)-depth NC circuits is not enough. Suppose the MA algorithm A takes an input x, guesses a string y, and flips some random coins r; in order to obtain a non-deterministic simulation, we actually want to fool circuits $C_{y}(r):=A(x, y, r)$, for all possible y. The circuit C_{y} could well be a general circuit, which does not necessarily have low depth.

An Average-Case Hard MA Language with a Low-Depth Computable Predicate

The next key observation is that we don't really need the language in MA to be average-case hard for general circuits; to obtain a contradiction, it suffices to require it cannot be approximated by low-depth circuits, as our assumption is that NQP can be $(1-\delta)$-approximated by ACC 0 circuits, which is contained in $N C^{1}$.

This brings us to our final technical component-an MA language $L^{\text {hard }}$ with a low-depth computable predicate, and is average-case hard for low-depth circuits. That is, suppose the MA algorithm A takes an input x, guesses a string y, and flips some random coins r; we require that $A(x, y, r)(A(x, y, r)$ is called the predicate of the MA algorithm) is computable by a uniform lowdepth circuit. Now, clearly the circuit $C_{y}(r):=A(x, y, r)$ is a low-depth circuit, and therefore our i.o. NPRG can be used to achieve an i.o. derandomization of $L^{\text {hard }}$, which results in a contradiction to our assumption.

The construction of such an MA language is the technical centerpiece of this paper; the key observation is that for our PSPACE-complete problem $L^{\text {PSPACE }}$, all its nice properties: being samelength checkable, downward self-reducible, and paddable, have corresponding low-depth uniform oracle circuits. For instance, the instance checker in the same-length checkable property (see Definition 2.2), can actually be implemented by a uniform TC^{0} non-adaptive oracle circuit. Using these low-depth circuits in the previous proof for average-case a.a.e. MA circuit lower bounds, together with other additional ideas, we can exhibit the language $L^{\text {hard }}$.

A Technicality: Dealing with Advice Bits

In the above discussion, we (intentionally) omitted a technical detail-the a.a.e. MA lower bound proved in [MW18] is actually for $\mathrm{MA}^{(O(\log n)}$. Therefore our i.o. derandomization of the MA algorithm also needs to use these $O(\log n)$ advice bits. But then, we only have $\mathrm{NQP}_{/ O(\log n)}$ is average-case hard for polynomial-size ACC^{0} circuits. And the enumeration trick from [COS18] requires the advice to be $o(\log n)$.

Luckily, we further relax the definition of an "almost" almost-everywhere circuit lower bound, which is weak enough for us to prove such an MA average-case lower bound with only one bit of advice, but also strong enough to allow us to prove the average-case circuit lower bound. Then we can apply the enumeration trick from [COS18] to get the desired lower bound for NQP, without advice.

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Our Results 2
1.3 Intuition 3
2 Preliminaries 10
2.1 Complexity Classes and Basic Definitions 10
2.1.1 Basic Circuit Families 10
2.1.2 Notations 11
2.2 Pseudorandom Generators for Low-Depth Circuits 11
2.3 A PSPACE-complete Language with Low-complexity Reducibility Properties 11
2.4 Average-Case Hard Languages with Low Space 13
2.5 MA \cap coMA and $\mathrm{NP} \cap$ coNP Algorithms 13
3 A Simpler Proof for the New Easy Witness Lemma for NP and NQP of [MW18] 14
3.1 a.a.e. Fixed-Polynomial Lower Bounds for MA/1 14
3.2 Easy-Witness Lemma for NP 17
4 The Structure of the Whole Proof and Alternative Perspectives 18
4.1 Outline of the Proof 18
4.2 An Alternative Perspective: Average-Case Easy Witness Lemma for Unary Languages 21
5 A Collapse Theorem for NC ${ }^{1}$ 21
5.1 A Random Self-reducible NC ${ }^{1}$-Complete Problem 22
5.2 A Special Encoding 22
$5.3 \mathrm{NC}^{1}$ Collapses to $\mathrm{AC}^{0} \circ \mathscr{C}$ if Uniform NC^{1} can be Approximated by \mathscr{C} 23
6 An i.o. Non-deterministic PRG for Low-Depth Circuits 25
6.1 Witness-Size Lower Bound for NE 26
6.2 The PRG Construction 26
7 Average-Case "Almost" Almost Everywhere Lower Bounds for MA 27
7.1 Preliminaries 27
7.2 An Average-Case MA \cap coMA a.a.e. Lower Bound for General Circuits 27
7.3 An Average-Case MA \cap coMA a.a.e. Lower Bound for Low Depth Circuits 30
8 A PSPACE-complete Language with Nice Reducibility Properties 33
8.1 Notations and Boolean Encodings of Field Elements 34
8.2 Review of the Construction in [TV07] 34
8.3 Technical Challenges to Adapt [TV07] for Our Purpose 35
8.4 The Construction of the PSPACE-complete Language 36
9 NQP is not $1 / 2+o(1)$-approximable by Polynomial Size ACC ${ }^{0} \circ$ THR Circuits 41
9.1 Preliminaries 41
$9.2(1-\delta)$ Average-Case Lower Bounds 41
$9.31 / 2+1 / \operatorname{polylog}(n)$ Average-Case Lower Bounds 45
10 Generalization to Other Natural Circuit Classes 47
11 Open Questions 47
A PRG Construction for Low-Depth Circuits 52
B TC 0 Collapses to ACC 0 if Uniform TC 0 can be Approximated by ACC 0 53
C Average-Case Easy-Witness Lemma for Unary Languages 54
D Bootstrapping from Non-trivial Derandomization Algorithms to Quasi-Polynomial Time NPRGs 55
E Either NQP $\not \subset$ NQP or MCSP $\not \subset$ ACC 0 55

2 Preliminaries

We use $\operatorname{GF}\left(p^{r}\right)$ to denote the finite field of size p^{r}, where p is a prime and r is an integer.

2.1 Complexity Classes and Basic Definitions

We assume knowledge of basic complexity theory (see [AB09, Gol08] for excellent references on this subject).

2.1.1 Basic Circuit Families

A circuit family is a collection of circuits $\left\{C_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n \in \mathbb{N}}$. A circuit class is a collection of circuit families. The size of a circuit is the number of wires in the circuit, and the size of a circuit family is a function of the input length that upper-bounds the size of circuits in the family. The depth of a circuit is the maximum number of wires on a path from an input gate to the output gate.

We will mainly consider classes in which the size of each circuit family is bounded by some polynomial; however, for a circuit class \mathscr{C}, we will sometimes also abuse notation by referring to \mathscr{C} circuits with various other size or depth bounds.
AC^{0} is the class of circuit families of constant depth and polynomial size, with AND, OR and NOT gates, where AND and OR gates have unbounded fan-in. For an integer m, the function $\mathrm{MOD}_{m}:\{0,1\}^{*} \rightarrow\{0,1\}$ is one if and only if the number of ones in the input is not divisible by m. The class $\mathrm{AC}^{0}[m]$ is the class of constant-depth circuit families consisting of polynomiallymany unbounded fan-in AND, OR and MOD_{m} gates, along with unary NOT gates. We denote $\mathrm{ACC}^{0}=\cup_{m \geq 2} \mathrm{AC}^{0}[m]$.

The function majority, denoted as MAJ : $\{0,1\}^{*} \rightarrow\{0,1\}$, is the function that outputs 1 if the number of ones in the input is no less than the number of zeros, and outputs 0 otherwise. TC ${ }^{0}$ is the class of circuit families of constant depth and polynomial size, with unbounded fan-in MAJ gates. NC^{k} for a constant k is the class of $O\left(\log ^{k} n\right)$-depth and poly-size circuit families consisting of fan-in two AND and OR gates and unary NOT gates.

We say a circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ is uniform, if there is a deterministic algorithm A, such that $A\left(1^{n}\right)$ runs in time polynomial of the size of C_{n}, and outputs $C_{n} .^{10}$

We also use NC circuits to denote circuits with fan-in two AND and OR gates and unary NOT gates. For a circuit class \mathscr{C}, we say a circuit $C^{?}$ is a \mathscr{C} oracle circuit, if $C^{?}$ is also allowed to use a special oracle gate (which can occur multiple times in the circuit, but with the same fan-in), in addition to the usual gates allowed by \mathscr{C} circuits. We say an oracle circuit is non-adaptive, if on any path from an input gate to the output gate, there is at most one oracle gate.

We say a circuit class \mathscr{C} is typical, if given the description of a circuit C of size s, for indices $i, j \leq n$ and a bit b, the following functions

$$
\neg C, C\left(x_{1}, \ldots, x_{i-1}, x_{j} \oplus b, x_{i+1}, \ldots, x_{n}\right), C\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_{n}\right)
$$

all have \mathscr{C} circuits of size s, and their corresponding circuit descriptions can be constructed in $\operatorname{poly}(s)$ time. That is, \mathscr{C} is typical if it is closed under both negation and projection.

[^5]
2.1.2 Notations

We say a circuit $C:\{0,1\}^{n} \rightarrow\{0,1\} \gamma$-approximates a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, if $C(x)=f(x)$ for a γ fraction of inputs from $\{0,1\}^{n}$. If a circuit C does not γ-approximates a function f, we say f is not γ-approximable by C.

For a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, we define $\operatorname{SIZE}(f)$ (resp. DEPTH $\left.(f)\right)$ to be the minimum size (resp. depth) of an NC circuit computing f exactly. Similarly, for an error parameter $\gamma>1 / 2$, we define heur ${ }_{\gamma}-\operatorname{SIZE}(f)$ (resp. heur $\gamma^{-}-\operatorname{DEPTH}(f)$) to be the minimum size (resp. depth) of an NC circuit γ-approximating f.

We say a language L can be $\gamma(n)$-approximated by \mathscr{C}, if there is a circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}} \in \mathscr{C}$ such that $C_{n} \gamma(n)$-approximates L_{n} for all sufficiently large n. We also say a class of language \mathscr{L} can be $\gamma(n)$-approximated by \mathscr{C}, if all languages $L \in \mathscr{L}$ can be $\gamma(n)$-approximated by \mathscr{C}.

We say that a language L is not $\gamma(n)$-approximable by a circuit class \mathscr{C} if it cannot be $\gamma(n)$ approximated by \mathscr{C}. That is, for each $\left\{C_{n}\right\}_{n \in \mathbb{N}} \in \mathscr{C}$, there is an infinite number of n 's, such that L_{n} is not $\gamma(n)$-approximable by C_{n}. We say a class of language \mathscr{L} is not $\gamma(n)$-approximable by a circuit class \mathscr{C}, if there is a language $L \in \mathscr{L}$ which is not $\gamma(n)$-approximable by \mathscr{C}.

2.2 Pseudorandom Generators for Low-Depth Circuits

The following PRG construction follows directly from the local-list-decodable codes with lowdepth decoder [IJKW10, GGH ${ }^{+}$07, GR08], and the hardness-to-pseudorandomness transformation of [NW94].

Theorem 2.1. Let $\delta>0$ be a constant. There are universal constants c and g, and a function $G:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that, if $Y:\{0,1\}^{\ell} \rightarrow\{0,1\}$ does not have ℓ^{δ}-depth NC circuit, then for $S=2^{\ell^{c \cdot \delta}}$, and for all NC circuit C with depth $\log (S)$,

$$
\left|\operatorname{Pr}_{x \in\{0,1\} w}[C(G(Y, x))=1]-\operatorname{Pr}_{x \in\{0,1\} S}[C(x)=1]\right|<1 / S,
$$

where $w=\ell^{g}$. That is, $G(Y, \cdot) 1 / S$-fools all $\log S$-depth NC circuits. Moreover, G is computable in $2^{O(\ell)}$ time.

We provide a proof for the above theorem in Appendix A for completeness.

2.3 A PSPACE-complete Language with Low-complexity Reducibility Properties

A fundamental results often used in complexity theory is the existence of a PSPACE-complete language [TV07] satisfying strong reducibility properties, including the time-hierarchy theorem for BPP with one bit of advice [FS04], the fixed polynomial circuit lower bound MA $/ 1 \subseteq \operatorname{SIZE}\left(n^{k}\right)$ for any k [San09], and the recent new witness lemmas for NQP and NP [MW18].

The key technical ingredient of our new average-case lower bound is a modified construction of the PSPACE-complete language in [TV07], which satisfies the additional "robust" and "error correctable" properties, which are useful for proving average-case lower bound ${ }^{11}$. Moreover, we observe that the "reducers" in these reducibility properties of our PSPACE-complete languages

[^6]are of low-complexity circuit classes (i.e., uniform polylog(n)-depth circuits). We believe this new construction would be of independent interest, and may be useful to further improvement.

We first define these reducibility properties.
Definition 2.2. Let $L:\{0,1\}^{*} \rightarrow\{0,1\}$ be a language, we define the following properties:

- L is \mathscr{C} downward self-reducible if there is a constant c such that for all sufficiently large n, there is an n^{c} size uniform \mathscr{C} circuit $A^{?}$ such that for all $x \in\{0,1\}^{n}, A^{L_{n-1}}(x)=L_{n}(x)$.
- L is robust if there are constants c and $\delta>0$ such that for all sufficiently large n and $\varepsilon \geq 2^{-n^{\delta}}$, $\operatorname{SIZE}\left(L_{n}\right) \leq\left(\text { heur }_{1 / 2+\varepsilon}-\operatorname{SIZE}\left(L_{n}\right) \cdot \varepsilon^{-1}\right)^{c}$.
- L is paddable, if there is a polynomial time computable projection Pad (that is, each output bit is either a constant or only depends on 1 input bit), such that for all integers $1 \leq n<m$ and $x \in\{0,1\}^{n}$, we have $x \in L$ if and only if $\operatorname{Pad}\left(x, 1^{m}\right) \in L$, where $\operatorname{Pad}\left(x, 1^{m}\right)$ always has length m.
- L is \mathscr{C} weakly error correctable if there is a constant c such that for all sufficiently large n, for every oracle $O:\{0,1\}^{n} \rightarrow\{0,1\}$ which 0.99 -approximates L_{n}, there is an n^{c} size \mathscr{C} oracle circuit $D^{\text {? }}$, such that D^{O} exactly computes L_{n}.
- L is same-length checkable if there is a probabilistic polynomial-time oracle Turing machine M with output in $\{0,1, ?\}$, such that, for any input x,
- M asks its oracle queries only of length $|x|$.
- If M is given L as an oracle, then M outputs $L(x)$ with probability 1 .
- M outputs $1-L(x)$ with probability at most $1 / 3$ no matter which oracle is given to it.

We call M an instance checker for L. Moreover, we say L is \mathscr{C} same length checkable, if there is an instance checker M which can be implemented by uniform polynomial-size \mathscr{C} oracle circuits.

Remark 2.3. Note that the paddable property implies that $\operatorname{SIZE}\left(L_{n}\right)$ and $\operatorname{DEPTH}\left(L_{n}\right)$ are nondecreasing.

The following PSPACE-complete language is given by [San09] (modifying a construction of Trevisan and Vadhan [TV07]).
Theorem 2.4 ([TV07, San09]). There is a PSPACE-complete language L_{TV} which is paddable, TC ${ }^{0}$ downward self-reducible, and same-length checkable. ${ }^{12}$

Based on the above language L_{TV}, we construct a modified PSPACE-complete language $L^{\text {PSPACE }}$ which is also robust and $N C^{3}$ weakly error correctable. Moreover, with a careful analysis, we observe that the instance checker for $L^{\text {PSPACE }}$ can be implemented in uniform TC^{0}. That is, $L^{\text {PSPACE }}$ is TC^{0} same length checkable.

Theorem 2.5. There is a PSPACE-complete language $L^{\text {PSPACE }}$ which is paddable, T^{0} downward self-reducible, TC ${ }^{0}$ same-length checkable, robust and $N C^{3}$ weakly error correctable. Moreover, all the corresponding oracle circuits for the above properties are in fact non-adaptive: that is, on any path from an input gate to the output gate, there is at most one oracle gate.

[^7]
2.4 Average-Case Hard Languages with Low Space

We also need the following folklore result, which can be proved by applying standard worst-case to average-case hardness amplification [STV01] to a hard language in $\operatorname{SPACE}\left[s(n)^{O(1)}\right]$ obtained via diagonalization.
Theorem 2.6. Let $n \leq s(n) \leq 2^{o(n)}$ be space-constructible. There is a universal constant c and a language $L \in \operatorname{SPACE}\left[s(n)^{c}\right]$ that heur $r_{1 / 2+1 / n^{3}}-\operatorname{SIZE}\left(L_{n}\right)>s(n)$ for all sufficiently large n.

2.5 $\mathrm{MA} \cap \mathrm{coMA}$ and $\mathrm{NP} \cap$ coNP Algorithms

We first introduce convenient definitions of an (MA $\cap \operatorname{coMA}$)TIME[T(n)] or ($\mathrm{N} \cap \operatorname{coN}$)TIME[T(n)] algorithm, which simplifies the presentation.

Definition 2.7. Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a time-constructible function. A language L is in (MA \cap coMA $) \operatorname{TIME}[T(n)]$, if there is a deterministic algorithm $A(x, y, z)$ (which is called the predicate) such that:

- A takes three inputs x, y, z such that $|x|=n,|y|=|z|=O(T(n))(y$ is the witness while z is the collection of random bits), runs in $O(T(n))$ time, and outputs an element from $\{0,1, ?\}$.
- (Completeness) There exists a y such that

$$
\operatorname{Pr}_{z}[A(x, y, z)=L(x)] \geq 2 / 3 .
$$

- (Soundness) For all y,

$$
\operatorname{Pr}_{z}[A(x, y, z)=1-L(x)] \leq 1 / 3 .
$$

Remark 2.8. (MA $\cap \operatorname{coMA})$ languages with advice are defined similarly, with A being an algorithm with the corresponding advice.

Definition 2.9. Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a time-constructible function. A language L is in ($\mathrm{N} \cap \operatorname{coN}$) TIME $[T(n)]$, if there is an algorithm $A(x, y)$ (which is called the predicate) such that:

- A takes two inputs x, y such that $|x|=n,|y|=O(T(n))$ (y is the witness), runs in $O(T(n))$ time, and outputs an element from $\{0,1, ?\}$.
- (Completeness) There exists an y such that

$$
A(x, y)=L(x) .
$$

- (Soundness) For all y,

$$
A(x, y) \neq 1-L(x) .
$$

Remark 2.10. (N $\cap \operatorname{coN})$ TIME[T(n)] languages with advice are defined similarly, with A being an algorithm with the corresponding advice.

Note that by above definition, the semantic of $(\mathrm{MA} \cap \operatorname{coMA})_{/ 1}$ is different from $\mathrm{MA}_{/ 1} \cap \operatorname{coMA} / 1$. A language in $(\mathrm{MA} \cap \operatorname{coMA})_{/ 1}$ has both an $\mathrm{MA}_{/ 1}$ algorithm and a coMA $/ 1$ algorithm, and their advice bits are the same. While a language in $\mathrm{MA}_{/ 1} \cap \operatorname{coMA}_{/ 1}$ can have an $\mathrm{MA}_{/ 1}$ algorithm and a coMA $/ 1$ algorithm with different advice sequences. Similar relationship holds for (NP $\cap \operatorname{coNP})_{/ 1}$ and $\mathrm{NP}_{/ 1} \cap \operatorname{coNP}_{/ 1}$.

3 A Simpler Proof for the New Easy Witness Lemma for NP and NQP of [MW18]

In this section, we present our simpler proof of easy-witness lemma for NP from [MW18] (it is easy to adapt that for NQP). This also serves as a warm-up of the whole paper, as it can be seen as a baby version of our a.a.e. average-case MA lower bounds, which are the technical centerpiece of this paper.

As already discussed in the intuition section, the technical centerpiece of the new easy witness lemma of [MW18] is an a.a.e. MA circuit lower bound. In the following we first give a simpler proof of that MA lower bound, and then sketch how to get an NP easy-witness lemma based on that (this part is basically an adaption of the proof of Lemma 4.1 of [MW18]).

3.1 a.a.e. Fixed-Polynomial Lower Bounds for MA/1

Now we are ready to prove the a.a.e. fixed-polynomials lower bounds for $\mathrm{MA}_{/ 1}$.
Lemma 3.1. For all constants k, there is an integer c, and a language $L \in M A_{/ 1}$, such that for all sufficiently large $\tau \in \mathbb{N}$ and $n=2^{\tau}$, either

- $\operatorname{SIZE}\left(L_{n}\right)>n^{k}$, or
- $\operatorname{SIZE}\left(L_{m}\right)>m^{k}$, for an $m \in\left(n^{c}, 2 \cdot n^{c}\right) \cap \mathbb{N}$.

Our Relaxation of The a.a.e. Condition. The statement of Lemma 3.1 also illustrates our relaxation of the a.a.e. condition which allows to only use 1 bit of advice, which is crucial in the average-case setting. In [MW18], the lower bound shows that for almost all n 's and $m=n^{c}$, at least one of L_{n} and L_{m} requires n^{k} or m^{k} size circuits correspondingly. But that requires one to consider an $\mathrm{MA}_{/ O(\log n)}$ language. Here we relax the condition, such that we only need the lower bound to hold for almost all n which is a power of 2 , and an $m \in\left(n^{c}, 2 \cdot n^{c}\right)$. In Section 3.2, we show how the above simplification can still be used to prove the easy witness lemma for NP.

Proof of Lemma 3.1. Let $L^{\text {PSPACE }}$ be the language specified by Theorem 2.4. By Theorem 2.6, there is an integer c_{1} and a language $L^{\text {diag }} \operatorname{in} \operatorname{SPACE}\left(n^{c_{1}}\right)$, such that $\operatorname{SIZE}\left(L_{n}^{\text {diag }}\right) \geq n^{k}$ for all sufficiently large n. By the fact that $L^{\text {PSPACE }}$ is PSPACE-complete, there is a constant c_{2} such that $L_{n}^{\text {diag }}$ can be reduced to $L^{\text {PSPACE }}$ on input length $n^{c_{2}}$ in $n^{c_{2}}$ time. We set $c=c_{2}$.

The Algorithm. Let $\tau \in \mathbb{N}$ be sufficiently large. We also let b to be a constant to be specified later. Given an input x of length $n=2^{\tau}$ and let $m=n^{c}$, we first provide an informal description of the MA/1 algorithm which computes the language L. There are two cases:

1. When $\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq n^{b}$. That is, when $L_{m}^{\text {PSPACE }}$ is easy. In this case, on inputs of length n, we guess-and-verify a circuit for $L_{m}^{\text {PSPACE }}$ of size n^{b}, and use that to compute $L_{n}^{\text {diag }}$.
2. Otherwise, we know $L_{m}^{\text {PSPACE }}$ is hard. Let ℓ be the largest integer such that $\operatorname{SIZE}\left(L_{\ell}^{\text {PSPACE }}\right) \leq$ n^{b}. On inputs of length $m_{1}=m+\ell$, we guess-and-verify a circuit for $L_{\ell}^{\text {PSPACE }}$, and compute it (that is, compute $L_{\ell}^{\text {PSPACE }}$ on the first ℓ input bits while ignoring the rest).

Intuitively, the above algorithm computes a hard function because either it computes the hard language $L_{n}^{\text {diag }}$ on inputs of length n, or it computes the hard language $L_{\ell}^{\text {PSPACE }}$ on inputs of length m_{1}. A formal description of the algorithm is given in Algorithm 1, while an algorithm for setting the advice sequence is given in Algorithm 2. It is not hard to see that a y_{n} can only be set once in Algorithm 2.

```
Algorithm 1: The \(\mathrm{MA}_{/ 1}\) algorithm
    Given an input \(x\) with input length \(n=|x|\);
    Given an advice bit \(y=y_{n} \in\{0,1\}\);
    Let \(m=n^{c}\);
    Let \(n_{0}=n_{0}(n)\) be the largest integer such that \(n_{0}^{c} \leq n\);
    Let \(m_{0}=n_{0}^{c}\);
    6 Let \(\ell=n-m_{0}\);
    7 if \(y=0\) then
    Output 0 and terminate
    if \(n\) is a power of 2 then
            (We are in the case that \(\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq n^{b}\).);
            Compute \(z\) in \(n^{c}\) time such that \(L_{n}^{\text {diag }}(x)=L_{m}^{\operatorname{PSPACE}_{( }}(z)\);
            Guess a circuit \(C\) of size at most \(n^{b}\);
            Let \(M\) be the instance checker for \(L_{m}^{\text {PSPACE }}\);
            Flip an appropriate number of random coins, let them be \(r\);
            Accept if \(M^{C}(z, r)=1\);
    else
            (We are in the case that \(\operatorname{SIZE}\left(L_{m_{0}}^{\mathrm{PSPACE}}\right)>n_{0}^{b}\) and \(\ell\) is the largest integer such that
            \(\left.\operatorname{SIZE}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \leq n_{0}^{b}.\right)\);
            Let \(z\) be the first \(\ell\) bits of \(x\);
            Guess a circuit \(C\) of size at most \(n_{0}^{b}\);
            Let \(M\) be the instance checker for \(L_{\ell}^{\text {PSPACE }}\);
            Flip an appropriate number of random coins, let them be \(r\);
            Accept if \(M^{C}(z, r)=1\);
```

The Algorithm Satisfies the MA Promise. We first show the algorithm satisfies the MA promise. The intuition is that it only tries to guess-and-verify a circuit for $L^{\text {PSPACE }}$ when it exists, and the properties of the instance checker (Definition 2.2) ensure that in this case the algorithm satisfies the MA promise. Let $y=y_{n}$, there are three cases:

1. $y=0$. In this case, the algorithm computes the all zero function, and clearly satisfies the MA promise.
2. $y=1$ and n is a power of 2 . In this case, from Algorithm 2 , we know that $\operatorname{SIZE}\left(L_{m}^{\mathrm{PSPACE}}\right) \leq n^{b}$ for $m=n^{c}$. Therefore, at least one guess of the circuit is the correct circuit for $L_{m}^{\text {PSPACE }}$, and on that guess, when $L_{m}^{\text {PSPACE }}(z)=L_{n}^{\text {diag }}(x)=1$, the algorithm accepts with probability at least $2 / 3$, by the property of the instance checker (Definition 2.2).
```
Algorithm 2: The algorithm for setting advice bits
    All \(y_{n}\) 's are set to 0 by default;
    for \(\tau=1 \rightarrow \infty\) do
        Let \(n=2^{\tau}\);
        Let \(m=n^{c}\);
        if \(\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq n^{b}\) then
            Set \(y_{n}=1\);
        else
            Let \(\ell=\max \left\{\ell: \operatorname{SIZE}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \leq n^{b}\right\}\);
            Set \(y_{m+\ell}=1\);
```

Again by the property of the instance checker, when $L_{n}^{\text {diag }}(x)=L_{m}^{\operatorname{PSPACE}^{(z)}}(z)=0$, the algorithm accepts with probability at most $1 / 3$ for all guesses of C, as $M^{C}(z, r)=1=1-L_{m}^{\text {PSPACE }^{(z)}}(z)$ with probability at most $1 / 3$ over the choices of r. Hence, the algorithm correctly computes $L_{n}^{\text {diag }}$ on inputs of length n.
3. $y=1$ and n is not a power of 2 . In this case, from Algorithm 2, we know that $\operatorname{SIZE}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \leq$ n_{0}^{b}. Therefore, at least one guess of the circuit is the correct circuit for $L_{\ell}^{\mathrm{PSPACE}}$, and on that guess, when $L_{\ell}^{\operatorname{PSPACE}}(z)=1(z=z(x)$ is the first ℓ bits of $x)$, the algorithm accepts with probability at least $2 / 3$, by the property of the instance checker (Definition 2.2).
Again by the property of the instance checker, when $L_{\ell}^{\operatorname{PSPACE}}(z)=0$, on all possible guesses of C, the algorithm accepts with probability at most $1 / 3$. Hence, the algorithm correctly computes $L_{\ell}^{\text {PSPACE }}(z(x))$ on inputs of length n.

The Algorithm Computes a Hard Language. Next we show that the algorithm indeed computes a hard language as stated. Let τ be a sufficiently large integer, $n=2^{\tau}$, and $m=n^{c}$. According to Algorithm 2, there are two cases:

- $\operatorname{SIZE}\left(L_{m}^{\mathrm{PSPACE}}\right) \leq n^{b}$. In this case, Algorithm 2 sets $y_{n}=1$. And by previous analyses, we know that L_{n} computes the hard language $L_{n}^{\text {diag }}$, and therefore $\operatorname{SIZE}\left(L_{n}\right)>n^{k}$.
- $\operatorname{SIZE}\left(L_{m}^{\mathrm{PSPACE}}\right)>n^{b}$. Let ℓ be the largest integer such that $\operatorname{SIZE}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \leq n^{b}$. By Remark 2.3, we have $0<\ell<m$.
Note that $\operatorname{SIZE}\left(L_{\ell+1}^{\mathrm{PSPACE}}\right) \leq(\ell+1)^{d} \cdot \operatorname{SIZE}\left(L_{\ell}^{\mathrm{PSPACE}}\right)$ for a universal constant d, because $L^{\text {PSPACE }}$ is downward self-reducible. Therefore,

$$
\operatorname{SIZE}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \geq \operatorname{SIZE}\left(L_{\ell+1}^{\mathrm{PSPACE}}\right) /(\ell+1)^{d} \geq n^{b} / m^{d} \geq n^{b-c \cdot d}
$$

Now, on inputs of length $m_{1}=m+\ell$, we have $y_{m_{1}}=1$ by Algorithm 2 (note that $m_{1} \in(m, 2 m)$ as $\ell \in(0, m))$. Therefore, $L_{m_{1}}$ computes $L_{\ell}^{\text {PSPACE }}$, and

$$
\operatorname{SIZE}\left(L_{m_{1}}\right)=\operatorname{SIZE}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \geq n^{b-c \cdot d}
$$

We set b such that $n^{b-c \dot{d}} \geq(2 m)^{k} \geq m_{1}^{k}$ (we can set $b=c d+3 \cdot c k$), which completes the proof.

3.2 Easy-Witness Lemma for NP

Now we sketch the proof for the easy-witness lemma for NP, which also illustrate why our relaxation of a.a.e. condition is still enough for the purpose of proving lower bounds.

First we need the following simple lemma.
Lemma 3.2. For a constant k, if $N P_{/ O(n)}$ is not in $\operatorname{SIZE}\left(n^{k}\right)$, then $N P$ is not in $\operatorname{SIZE}\left(n^{k}\right)$.
Proof. We prove the contrapositive. Suppose NP is in $\operatorname{SIZE}\left(n^{k}\right)$ for an integer k. Let $L \in \mathrm{NP}_{/ c n}$ for a constant c, and M and $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ be its corresponding nondeterministic Turing machine and advice sequence. Let $p(n)$ be a polynomial running time upper bound of M on inputs of length n.

Now we define a language L^{\prime} such that a pair $(x, \alpha) \in L^{\prime}$ if and only if $c|x|=|\alpha|$ and M accepts x with advice bits set to α in $p(|x|)$ steps. Clearly, $L^{\prime} \in$ NP from the definition, so it has an n^{k}-size circuit family. Fixing the advice bits to the actual α_{n} 's in the circuit family, we have an $O\left(n^{k}\right)$-size circuit family for L as well. This completes the proof.

Reminder of Lemma 1.6 For all $k \geq 1$, there exists a constant b such that if $N P \subset \operatorname{SIZE}\left[n^{k}\right]$, then every $L \in N P$ has witness circuits of size at most n^{b}.

Proof Sketch. Fix the integer k, let $b=b(k)$ be a constant to be specified later. We prove the contrapositive. Suppose there is a language $L \in$ NP without n^{b}-size witness circuits.

That is, there is polynomial time verifier $V(x, y)$ for $L(x \in L \Leftrightarrow \exists y V(x, y)=1)$, with $|x|=n$ and $|y|=n^{a}$ for a constant a, such that for infinite many $x_{n} \in L$, we have $V\left(x_{n}, \cdot\right)$ is satisfiable, and $V\left(x_{n}, y\right)=1$ implies y (interpreted as a function $\{0,1\}^{a \log n} \rightarrow\{0,1\}$) does not have n^{b} size circuits.

Using this, one can construct a non-deterministic PRG as follows:

- Given a parameter n, and an input $x_{n} \in\{0,1\}^{n}$ as advice.
- Guess a $y \in\{0,1\}^{n^{a}}$ such that $V(x, y)=1$.
- Feed y into the known hardness-to-pseduorandomness construction [Uma03] to construct a PRG. ${ }^{13}$

By previous discussions, for infinite many n 's, there are corresponding advice x_{n} such that the above computes a poly (n)-time PRG fooling $n^{\Omega(b)}$-size circuits with $O(\log n)$ seed length.

Let L be the MA/1 language from Lemma 3.1 with parameter $2 k$, and let c be the corresponding constant. Now, for each such n which is sufficiently large, let $n_{1}=n_{1}(n)$ be the smallest power of 2 which is $\leq n$. We know that either (1) $L_{n_{1}} \geq n_{1}^{2 k}$, or (2) $L_{m} \geq m^{2 k}$ for an $m=m(n) \in\left(n_{1}^{c}, 2 \cdot n_{1}^{c}\right)$. Suppose $L \in \operatorname{MATIME}\left[n^{t}\right]_{/ 1}$ for a constant t.

Now there are two cases:

[^8]- (1) holds for infinite n 's. In this case, we define an $\mathrm{NP}_{/ O(n)}$ language which tries to derandomize $L_{n_{1}}$ for all these $n_{1}=n_{1}(n)$'s. This can be completed by setting $b \gg t$, and derandomize L on all these n_{1} 's using the aforementioned non-deterministic PRG with parameter n (which is given as advice).
- (2) holds for infinite n 's. In this case, we define another NP ${ }_{/ O(n)}$ languages which tries to derandomize L_{m} for all these $m=m(n)$'s. Again, this can be completed by setting $b \gg t \cdot c$, and derandomize L on all these m 's using the NPRG with parameter n (which is again given as advice).

Therefore, we conclude that there is an NP ${ }_{/ O(n)}$ language hard for $\Omega\left(n^{2 k}\right)$ size circuits, which implies NP $\not \subset \operatorname{SIZE}\left(n^{k}\right)$ by Lemma 3.2, and completes the proof.

Remark 3.3. One can see that in the above proof, it does not matter that whether $L \in M A_{/ 1}$ or $L \in M A_{/ O(n)}$. We choose to present Lemma 3.1 with $M A_{/ 1}$ because it serves as a toy example of our a.a.e. average-case MA lower bounds.

4 The Structure of the Whole Proof and Alternative Perspectives

The presentation of this paper roughly follows the intuition part (so it is recommended to read the intuition part before reading the whole paper). That is, we divide the whole proof into three parts: (1) An i.o. non-deterministic PRG for low-depth circuits assuming that NQP can be approximated by $\mathrm{ACC}^{0} \circ$ THR; (2) An Average-Case Hard MA Language with a low-depth computable predicate (this is unconditional); (3) Assuming NQP can be approximated by $\mathrm{ACC}^{0} \circ \mathrm{THR}$, we combine (1) and (2) to get a contradiction.

As the whole proof is quite involved and consists of several technical ingredients, in this section, we present an outline of the whole proof, together with a diagram (Figure 1) on how all the components fit together. Moreover, to maximize helpful intuitions for the reader, we discuss an alternative perspective of our proof at the end of this section, which is closer the the original "easy-witness lemma paradigm" of [Wil13, Wil14b, MW18].

4.1 Outline of the Proof

As illustrated by Figure 1, Section 5 and Section 6 are devoted to construct the required i.o. NPRG for low-depth circuits, assuming that NQP can be approximated by ACC $^{0} \circ$ THR. More specifically:

- In Section 5, we first introduce the random self-reducible ${N C^{1}}^{1}$-complete language, and specify its random self-reduction. Then, in the rest of this section, we show that this language can be used to establish the collapse theorem we want.
The proofs in this section mainly deal with some technical details (a certain amount of work is required to make sure the reduction can be implemented as a projection), but are conceptually very simple.
- In Section 6, we first recall the ACC 0 witness-size lower bound for NE in [Wil16], and remark that it generalizes to an $\mathrm{ACC}^{0} \circ$ THR witness-size lower bound for NE easily, if one makes use of the recent PCP construction in [BSV14] and the algorithm for $\mathrm{ACC}^{0} \circ$ THR in [Wil14a]. Then

Figure 1: The structure of the whole proof.
we combine this $\mathrm{ACC}^{0} \circ \mathrm{THR}$ witness-size lower bound together with the collapse theorem in Section 5 and the standard PRG construction [NW94] to construct our conditional i.o. NPRG for low-depth circuits.

The proofs in this section basically combine several previous known results together in a sophisticated way, in order to achieve what we need.

Section 7 and Section 8 are devoted to prove the needed a.a.e. average-case MA lower bound with a low-depth computable predicate. In fact, we actually prove a slightly stronger average-case lower bound for $\mathrm{MA} \cap \operatorname{coMA}$. More specifically:

- In Section 7, we first prove an average-case MA \cap coMA a.a.e. lower bound for general circuits (that is, a strict strengthening of the corresponding worst-case lower bound in [MW18]). Next, we generalize it to an average-case MA \cap coMA a.a.e. lower bound for low-depth circuits, and with a low-depth computable predicate. Our proofs build crucially on our new PSPACEcomplete language with nice reducibility properties (constructed in the next Section), and a win-win analysis similar to that of [MW18] and [San09].
A technical remark is that the a.a.e. MA lower bound in [MW18] is actually for $\mathrm{MA}_{O(\log n)}$, we slightly relax the a.a.e. requirement so that our lower bounds actually apply for ($\mathrm{MA} \cap$ $\operatorname{coMA})_{/ 1}$. This reduction in the number of advice bits is crucially for the average-case lower bound (although the number of advice bits doesn't matter much in [MW18] as long as it is $o(n))$.
This is the most technically involved part of this paper.
- In Section 8, we construct the needed PSPACE-complete language. Our proof builds carefully on the original PSPACE-complete language in [TV07].
The proofs in this section apply several well-known previous results (such as the local list decoder of the Reed-Muller codes and Walsh-Hadamard codes) and several crucial observations on the PSPACE-complete language of [TV07] (the most important observation is that the instance checker of that language can be implemented in TC^{0}).

Then, finally in Section 9 we prove our average-case lower bound. More specifically:

- In Section 9, we first combine the conditional i.o. NPRG and the a.a.e. average-case MA \cap coMA lower bound to show a $(1-\delta)$-inapproximability result for (NQP $\cap \operatorname{coNQP})_{/ O(1)}$ against $\mathrm{ACC}^{0} \circ$ THR circuits. Then we apply mild to strong hardness amplification to strengthen that to a $1 / 2+1 / \operatorname{polylog}(n)$ one (note that it is crucial to start with an (NQP $\cap \operatorname{coNQP}$) lower bound in order to apply the hardness amplification). Finally we show how to get rid of the advice bits and get the desired lower bound for NQP.
The proofs in this section basically implement the proof strategy outlined in the intuition part: combine conditional i.o. NPRG and a.a.e. average-case MA lower bound to get a contradiction. It also makes use of several previous results: mild to strong hardness amplification [IJKW10], and the enumeration trick to get rid of the advice bits while keeping the average-case hardness [COS18].

4.2 An Alternative Perspective: Average-Case Easy Witness Lemma for Unary Languages

In the intuition part we have discussed why it seems hard to prove an average-case witness lemma, and that is the reason that we took an alternative approach. But in fact, our results actually imply a weaker version of the average-case witness lemma, which is still enough to be utilized to contradict the non-deterministic time hierarchy.

More specifically, the ideal average-case easy-witness lemma would be:
Ideal Lemma. (Average-Case Easy-Witness Lemma) For a typical circuit class \mathscr{C}, if NQP can be approximated by poly-size \mathscr{C}, then all NQP verifiers have poly-size \mathscr{C} witnesses.

Our results in fact imply the following weaker version, which only holds for NQP verifiers for unary languages:

Lemma 4.1. (Average-Case Easy-Witness Lemma for Unary Languages) There is a universal constant δ such that, for a typical circuit class \mathscr{C}^{14}, if NQP can be $(1-\delta)$-approximated by poly-size \mathscr{C}, then all NQP verifiers for unary languages have poly-size \mathscr{C} witnesses.

For the completeness, we provide a proof sketch in Appendix C. Given the above lemma, one can still apply the non-trivial SAT algorithm for ACC $^{0} \circ$ THR [Wil14a] to contradict the non-deterministic time hierarchy theorem for unary languages [Zák83].

This new perspective actually brings us closer to the original proof strategy of [Wil14b, Wil13], in which the last step of the proof is to contradict the non-deterministic time-hierarchy theorem. That is, the non-deterministic time-hierarchy plays the central part. While in our presentation of the proof, the last step is to derandomize the a.a.e. average-case MA lower bound to get a contradiction; the non-deterministic time-hierarchy theorem "sits in the middle", and is only used to construct the conditional i.o. NPRG. ${ }^{15}$

Of course, these two perspectives are mathematically equivalent ${ }^{16}$. But we hope clarifying this alternative perspective would provide more intuition for the reader, and hopefully stimulate future works in this direction.

5 A Collapse Theorem for NC ${ }^{1}$

In this section we prove our collapse theorem for NC^{1}. In Section 5.1 we introduce the NC^{1}-complete language by Barrington, together with its random-self reduction. Next in Section 5.2 we define a special encoding of the input to that language. The purpose here is to make sure the random-self reduction can be implemented as a projection, which is crucial for the proof. Finally, in Section 5.3, we prove the needed collapse theorem.

We remark that we can also prove a similar collapse theorem for TC^{0} : if uniform TC^{0} can be approximated by ACC^{0}, then TC^{0} collapses to ACC^{0}. We include this in Appendix B as it may be of independent interest, and it does not rely on Barrington's theorem.

[^9]
5.1 A Random Self-reducible NC ${ }^{1}$-Complete Problem

We first define the following problem, iterated group product over S_{5} (the group of all permutations on [5], we use id to denote the identity permutation), denoted as $\mathrm{W}_{S_{5}}$, as follows:

Iterated group product over $S_{5}\left(\mathrm{~W}_{S_{5}}\right)$

Given n permutations $m_{1}, m_{2}, \ldots, m_{n} \in S_{5}$, compute $\prod_{i=1}^{n} m_{i}$.

From the classical Barrington's theorem [Bar89], we know this function is NC^{1}-complete under projection. Formally, we have:

Lemma 5.1 ([Bar89]). For any depth-d NC circuit C on n input bits, there is a projection P : $\{0,1\}^{n} \rightarrow\{0,1\}^{2^{O(d)}}$, such that $C(x)=1$ if and only if $W_{S_{5}}(P(x))=$ id, for all $x \in\{0,1\}^{n}$.

The above problem is random self reducible [Bab87, Kil88], which is crucial for the proof of our collapse theorem. Here we recall its random self reduction:

The random self reduction of $\mathrm{W}_{S_{5}}$

Given an input $\vec{m}=\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in\left(S_{5}\right)^{n}$ to $\mathrm{W}_{S_{5}}$. We draw $n+1$ i.i.d. random elements $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}, u_{n+1}\right)$ from S_{5}, and consider the following input to $\mathrm{W}_{S_{5}}$:

$$
\operatorname{Rand}(\vec{m}, \vec{u}):=\left(u_{1} m_{1} u_{2}^{-1}, u_{2} m_{2} u_{3}^{-1}, \ldots, u_{n} m_{n} u_{n+1}^{-1}\right) .
$$

For all possible \vec{m}, over the randomness in \vec{u}, $\operatorname{Rand}(\vec{m}, \vec{u})$ distributes as a uniform random input to $\mathrm{W}_{S_{5}}$. Moreover, we have:

$$
\mathrm{W}_{S_{5}}(\vec{m})=u_{1}^{-1} \cdot \mathrm{~W}_{S_{5}}(\operatorname{Rand}(\vec{m}, \vec{u})) \cdot u_{n+1} .
$$

5.2 A Special Encoding

It may seems Lemma 5.1 and the random self-reduction are already sufficient for the collapse theorem we want, but there are still some technical problems remained. ${ }^{17}$

- First, we have to encode $\mathrm{W}_{S_{5}}$ as a Boolean function. A naive way would be to construct a bijection between [120] and S_{5}, and then divide the input into blocks of 7 bits, each representing one element in S_{5}. The problem is that most of the Boolean inputs would be invalid in this encoding; and therefore this would make it a promise problem only defined on a negligible fraction of inputs, which is not suited for our purpose.
- Second, a straightforward implementation of the random self-reduction actually requires NC^{0} circuits, as one needs to implement product of two elements in S_{5}. This would collapse NC 1 to $\mathrm{ACC}^{0} \circ \mathrm{THR} \circ \mathrm{NC}^{0}$, rather than $\mathrm{ACC}^{0} \circ \mathrm{THR}$; and we don't know yet how to do circuit analysis of $A C C^{0} \circ T H R \circ N C^{0}$ faster than brute-force.

[^10]A Special Encoding for the Second Issue. We first deal with the second issue via a special encoding of the group elements. Let $N=\left|S_{5}\right|=120$. For each $i \in[N]$, let $e_{i} \in\{0,1\}^{N}$ be the vector with i-th bit being 1 while others are all zero. We identify S_{5} with $[N]$ (that is, we fix a bijection between S_{5} and $[N]$), and use e_{a} to represent the element $a \in S_{5}$. Now the problem is formally defined as follows:

Iterated group product over $S_{5}\left(\mathrm{~W}_{S_{5}}\right)$
Given n vectors $e_{m_{1}}, e_{m_{2}}, \ldots, e_{m_{n}} \in\{0,1\}^{N}$, compute $a=\prod_{i=1}^{n} m_{i}$ and output e_{a}.

The advantage of this special encoding is that for all $p, q \in S_{5}$, there is a projection $P_{p, q}$: $\{0,1\}^{N} \rightarrow\{0,1\}^{N}$ (in fact, a permutation), such that for all $a \in S_{5}, P_{p, q}\left(e_{a}\right)=e_{p \cdot a \cdot q}$. This is crucial to make sure the random self-reduction can be implemented as a projection, and our collapse theorem doesn't introduce any additional sub-circuits at the bottom (so we can collapse $N C^{1}$ to $A C C^{0} \circ T H R$ instead of $\left.\mathrm{ACC}^{0} \circ \mathrm{THR} \circ \mathrm{NC}^{0}\right)$.

Slightly abusing notation, we sometimes use $p \cdot e_{a} \cdot q$ to denote $e_{p \cdot a \cdot q}$.
A Redundant Encoding for the First Issue. But the first issue remains: $\mathbf{W}_{S_{5}}$ is still a promise problem, as we require all vectors to be one of the e_{a} 's. We use a redundant encoding to make this problem defined on all possible inputs.

Let $\mathcal{S}_{\text {good }}$ be the set of all e_{a} 's for $a \in S_{5}$ (that is, all vectors in $\{0,1\}^{N}$ with hamming weight $1)$, and $\mathcal{S}_{\text {bad }}$ be all other vectors in $\{0,1\}^{N}$.

We define the following problem Redundant-W $W_{S_{5}}$:

Iterated group product over S_{5} with a redundant encoding (Redundant-W ${ }_{S_{5}}$)
We are given $n^{2}\{0,1\}^{N}$ vectors $\left\{m_{i, j}\right\}_{(i, j) \in[n] \times[n]}$.
For each $i \in[n]$, let j_{i} be the first integer such that $m_{i, j_{i}} \in \mathcal{S}_{\text {good }}$.

- We call the input a bad input, if there is no such j_{i} for some i, and we just output the all-zero vector of length N in this case.
- Otherwise, we call the input a good input, and the goal is to compute $a=\prod_{i=1}^{n} m_{i, j_{i}}$ and output e_{a}.

5.3 NC ${ }^{1}$ Collapses to $\mathrm{AC}^{0} \circ \mathscr{C}$ if Uniform NC^{1} can be Approximated by \mathscr{C}

We define Approx-MAJ ${ }_{n}$ be the function that outputs 1 (resp. 0) if at least a $2 / 3$ fraction of the inputs are 1 (resp. 0), and is undefined otherwise. To establish our collapse theorem, we need the following standard construction for approximate-majority in AC^{0}.

Lemma 5.2 ([AB84, Ajt90, Vio09]). Approx-MAJ ${ }_{n}$ can be computed by poly (n)-size uniform $A C_{3}$ circuits.

Now we are ready to show that for a general circuit class $\mathscr{C}, \mathrm{NC}^{1}$ collapses to $\mathrm{AC}^{0} \circ \mathscr{C}$, if uniform $N C^{1}$ can be approximated by \mathscr{C}.

Theorem 5.3. Let \mathscr{C} be a typical circuit class, $S: \mathbb{N} \rightarrow \mathbb{N}$ be a size parameter. There is a universal constant δ such that suppose all languages in uniform $N C^{1}$ can be $(1-\delta)$-approximated by S-size \mathscr{C} circuit families. Then any depth-d NC circuit C on n input has an equivalent $\operatorname{poly}\left(S\left(2^{O(d)}\right), n\right)$-size $A C_{3} \circ \mathscr{C}$ circuit.

Proof. Let $\delta=1 / 480$, and D be a depth- d NC circuit on n input. By Lemma 5.1, there is a projection $P:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$ where $\ell=2^{O(d)}$, such that $D(x)=\mathrm{W}_{S_{5}}(P(x))_{\text {id }}$ (for $a \in S_{5}$, $\left(e_{a}\right)_{\text {id }}=1$ if and only if $a=$ id). Without loss of generality, we can assume n is sufficiently large and $d \geq \log n$.

Construction of The Circuit C Approximating Redundant-W ${ }_{S_{5}}$. Now, let $t=\ell / 120$ (that is, $\mathrm{W}_{S_{5}}$ on ℓ bits computes the iterated group product of t permutations from S_{5}). Consider the Redundant- $\mathrm{W}_{S_{5}}$ problem on t^{2} vectors, clearly it is in uniform NC^{1}.

Note that Redundant- $W_{S_{5}}$ has 120 output bits, so we can construct $120 \mathscr{C}$ circuits $\left\{C_{i}\right\}_{i \in[N]}$, each (1- δ)-approximates an output bit of Redundant- $\mathrm{W}_{S_{5}}$. We denote $C(x) \in\{0,1\}^{N}$ as the vector consists of $C_{i}(x)$'s.

By a simple union bound, we have

$$
\underset{z}{\operatorname{Pr}}\left[\text { Redundant }-\mathrm{W}_{S_{5}}(z)=C(z)\right] \geq 1-\delta \cdot 120 \geq 0.75,
$$

where z is a random input to Redundant- $W_{S_{5}}$ from $\{0,1\}^{120 \cdot t^{2}}$.
Implementation of the Random Self Reduction. Now, we know that for a random input to Redundant- $\mathrm{W}_{S_{5}}$, it is a good input to Redundant- $\mathrm{W}_{S_{5}}$ with probability at least

$$
1-t \cdot\left(\frac{\left|\mathcal{S}_{\mathrm{bad}}\right|}{2^{120}}\right)^{t} \geq 0.99
$$

when n (and therefore t) is sufficiently large.
Now we define the function First : $\{0,1\}^{120 \cdot t} \rightarrow \mathcal{S}_{\text {good }} \cup\{\perp\}$. Given an input $\vec{m}=\left(m_{1}, m_{2}, \ldots, m_{t}\right) \in$ $\left(\{0,1\}^{N}\right)^{t}$, letting j be the first integer that $m_{j} \in \mathcal{S}_{\text {good }}$, we define First $(\vec{m})=m_{j}$. If there is no such j, we define $\operatorname{First}(\vec{m})=\perp$.

For each $m \in \mathcal{S}_{\text {good }}$, we define \mathcal{M}_{m} be the uniform distribution over the set $\{\operatorname{First}(z)=m: z \in$ $\left.\{0,1\}^{120 \cdot t}\right\}$. Note that a sample from \mathcal{M}_{m} can be generated as follows:

- For $j \in[t]$, let p_{j} be the probability that a random sample $\vec{w}=\left(w_{1}, w_{2}, \ldots, w_{t}\right) \leftarrow \mathcal{M}_{m}$ satisfies that j is the first integer that $w_{j} \in \mathcal{S}_{\text {good }}$ (note that we must have $w_{j}=m$).
- We first draw $j \in[t]$ according to the probabilities p_{j} 's. Then a sample $\vec{w}=\left(w_{1}, w_{2}, \ldots, w_{t}\right) \leftarrow$ \mathcal{M}_{m} can be generated as follows: for $k \in[j-1]$, we set w_{k} to be a uniform sample from $\mathcal{S}_{\text {bad }}$; we set $w_{j}=m$; for $k \in\{j+1, j+2, \ldots, t\}$, we set w_{k} to be a uniform sample from $\{0,1\}^{N}$.

One can observe that when the randomness of the above process is fixed, each bit of the sample depends on at most one bit of m (that is, it is a projection).

Next, given a valid input $\vec{m}=\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ to $\mathrm{W}_{S_{5}}$, we draw $t+1$ i.i.d. random elements $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{t}, u_{t+1}\right)$ from S_{5}, and consider the following input to $\mathrm{W}_{S_{5}}$:

$$
\operatorname{Rand}(\vec{m}, \vec{u}):=\left(u_{1} m_{1} u_{2}^{-1}, u_{2} m_{2} u_{3}^{-1}, \ldots, u_{t} m_{t} u_{t+1}^{-1}\right)
$$

Note that for all $\vec{m} \in \mathcal{S}_{\text {good }}^{t}, \operatorname{Rand}(\vec{m}, \vec{u})$ distributes uniformly random on set $\mathcal{S}_{\text {good }}^{t}$. Moreover,

$$
\mathrm{W}_{S_{5}}(\vec{m})=u_{1}^{-1} \cdot \mathrm{~W}_{S_{5}}(\operatorname{Rand}(\vec{m}, \vec{u})) \cdot u_{t+1} .
$$

Next, consider the following input distribution to Redundant- $\mathrm{W}_{S_{5}}$:

$$
\mathcal{M}_{\vec{m}, \vec{u}}:=\left(\mathcal{M}_{\operatorname{Rand}(\vec{m}, \vec{u})_{1}}, \mathcal{M}_{\operatorname{Rand}(\vec{m}, \vec{u})_{2}}, \cdots, \mathcal{M}_{\left.\operatorname{Rand}(\vec{m}, \vec{u})_{t}\right)} .\right.
$$

It is easy to see that it distributes identically to a random good input to Redundant- $W_{S_{5}}$.
Let r be the randomness used to generate a sample from $\mathcal{M}_{\vec{m}, \vec{u}}$, according to the previously discussed sampler for \mathcal{M}_{m}. Specifically, there is a set \mathcal{R} and a function $\operatorname{Gen}(\vec{m}, \vec{u}, r)$, such that $\operatorname{Gen}(\vec{m}, \vec{u}, r)$ distributes identical to $\mathcal{M}_{\vec{m}, \vec{u}}$ when r is drawn from \mathcal{R}.

Therefore, for any $\vec{m} \in \mathcal{S}_{\text {good }}^{t}$, we have

$$
\underset{\vec{u} \leftarrow \mathcal{S}_{\text {good }}^{t+1} r<\operatorname{Re}}{\operatorname{Pr}}\left[\mathrm{W}_{S_{5}}(\vec{m})=u_{1}^{-1} \cdot C(\operatorname{Gen}(\vec{m}, \vec{u}, r)) \cdot u_{t+1}\right] \geq 0.7 .
$$

Construction of the Final Circuit E. Now, one can see that \vec{u} is fixed, $\operatorname{Rand}(\vec{m}, \vec{u})$ is a projection of \vec{m}. And when r is fixed, $\operatorname{Gen}(\vec{m}, \vec{u}, r)$ is also a projection of $\operatorname{Rand}(\vec{m}, \vec{u})$. Therefore, when both \vec{u} and r are fixed, $\operatorname{Gen}(\vec{m}, \vec{u}, r)$ is a projection of \vec{m}.

Now, we pick $T=100 \cdot n$ i.i.d. samples $\vec{u}^{1}, \vec{u}^{2}, \ldots, \vec{u}^{T}$ form $\mathcal{S}_{\text {good }}^{t+1}$, and $r^{1}, r^{2}, \ldots, r^{T}$ from \mathcal{R}. For each $j \in[T]$, we define the circuit

$$
C_{j}(x):=\left(\left(u_{1}^{j}\right)^{-1} \cdot C\left(\operatorname{Gen}\left(P(x), \vec{u}^{j}, r^{j}\right)\right) \cdot u_{t+1}^{j}\right)_{\mathrm{id}} .
$$

By previous discussion, C_{j} can be computed by a \mathscr{C} circuit of size $S_{1}=\operatorname{poly}\left(S\left(2^{O(d)}\right), n\right)$. Moreover, for each $x \in\{0,1\}^{n}$, over the randomness of \vec{u}^{j} and r^{j}, we have

$$
\operatorname{Pr}\left[C_{j}(x)=D(x)\right] \geq 0.7 .
$$

Therefore, we set our final circuit to be an approximate-majority of these T circuits $C_{1}, C_{2}, \ldots, C_{T}$. By a simple Chernoff bound, there exists a fixed choice of all the \vec{u}^{j} 's and r^{j} 's, such that the resulting circuit E computes D exactly. By Lemma $5.2, E$ is an $\mathrm{AC}_{3} \circ \mathscr{C}$ circuit of size $\operatorname{poly}\left(S_{1}\right)=$ $\operatorname{poly}\left(S\left(2^{O(d)}\right), n\right)$, which completes the proof.

Remark 5.4. We remark that the above theorem only requires that some special languages in uniform $N C^{1}$ can be approximated by \mathscr{C} circuits (the languages corresponding to the output bits of Redundant- $W_{S_{5}}$).

6 An i.o. Non-deterministic PRG for Low-Depth Circuits

In this section we construct the required i.o. non-deterministic PRG for low-depth circuits, assuming NQP can be approximated by $\mathrm{ACC}^{0} \circ$ THR circuits.

In Section 6.1 we recall the witness-size lower bound for ACC^{0} [Wil16], and observe that the proof generalizes to $\mathrm{ACC}^{0} \circ \mathrm{THR}$. Then in Section 6.2, we construct the required conditional i.o. NPRG.

6.1 Witness-Size Lower Bound for NE

The following lemma is implicit in [Wil16] (with the new PCP construction of [BSV14] and the SAT algorithm for $\mathrm{ACC}^{0} \circ$ THR circuits from [Wil14a]) (see also Section 3 of [COS18]).
Lemma 6.1 (Essentially Theorem 9 of [COS18], combing with the algorithm in [Wil14a]). For all constants a, d_{\star}, m_{\star}, there is an integer b and a polynomial-time verifier $V(x, y)$ with $|x|=\log ^{b} n$, $|y|=2^{\log ^{b} n}$, such that for an infinite number of $n ' s, V\left(1^{\log ^{b} n}, \cdot\right)$ is satisfiable, and $V\left(1^{\log ^{b} n}, y\right)=1$ implies y cannot be computed by a $2^{\log ^{a} n^{n}}$-size $A C_{d_{\star}}\left[m_{\star}\right] \circ T H R$ circuit.

Remark 6.2. We remark that this is the only part of our argument where special properties (the existence of non-trivial circuit-analysis algorithms) of $A C C^{0} \circ T H R$ is exploited: for a typical circuit class \mathscr{C}, the proof of the above lemma only requires a non-trivial algorithm for Gap-UNSAT of $A C^{0} \circ \mathscr{C}$.

6.2 The PRG Construction

Now we show that under the assumption that uniform NC^{1} can be $(1-\delta)$-approximated by $\mathrm{ACC}^{0} \circ$ THR, we have an i.o. NPRG for low-depth circuits.

Theorem 6.3. (Conditional i.o. NPRG for Low-Depth Circuits) There is a universal constant δ such that for all constants a, d_{\star}, m_{\star}, there is an integer b such that if uniform $N C^{1}$ can be $(1-\delta)$ approximated by $2^{\log ^{a} n}$-size $A C_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuit families, then for an infinite number of n 's, there is a non-deterministic $P R G$ which works as follows:

- Let $\ell=\log ^{b} n$, there is a polynomial time algorithm $V(x, y)$ with $|x|=\ell$ and $|y|=2^{\ell}$, computable in $2^{O(\ell)}$ time.
- $V\left(1^{\ell}, \cdot\right)$ is satisfiable, and the $P R G$ guesses a y such that $V\left(1^{\ell}, y\right)=1$.
- The PRG then computes a function $G_{y}:\{0,1\}^{O(\ell)} \rightarrow\{0,1\}^{2^{\log ^{a} n}}$, which $1 / 2^{\log ^{a} n}$ fools all $\log ^{a} n$ depth NC circuits. Moreover, G_{y} is computable in $2^{O(\ell)}$ time.

Proof. Let δ be the universal constant in Theorem 5.3. We can without of loss generality assume that n is a sufficiently large integer.

Construction of the "Hardness Certifier" V^{\prime} for Low-Depth Circuits. We first combine the collapse theorem with the witness-size lower bound to construct a hardness certifier V^{\prime}.

By Theorem 5.3 and our assumption, we know that for a depth- d NC circuit on n bits, there is an equivalent $2^{c_{e} \cdot d^{a}}$-size $\mathrm{AC}_{d_{\star}+c_{d}}\left[m_{\star}\right] \circ$ THR circuit for universal constants c_{e} and c_{d}.

Let a_{1} be an integer to be specified later, and $d_{1}=d_{\star}+c_{d}$. Now we apply Lemma 6.1 with parameters a_{1}, d_{1}, m_{\star}. Then there is another constant $b_{1}=b_{1}\left(a_{1}, d_{1}, m_{\star}\right)$ such that there is a polynomial-time algorithm $V^{\prime}(x, y)$ with $|x|=\log ^{b_{1}} n,|y|=2^{\log ^{b_{1}} n}$, such that for infinite n 's, we have $V^{\prime}\left(1^{\log ^{b_{1}} n}, \cdot\right)$ is satisfiable, and $V^{\prime}\left(1^{\log ^{b_{1}} n}, y\right)=1$ implies y cannot be computed by a $2^{\log ^{a_{1}} n^{n}}$-size $\mathrm{AC}_{d_{1}}\left[m_{\star}\right] \circ$ THR circuit.

Let $d=\log ^{k} n$ for a constant k to be specified later. A depth- d NC circuit has an equivalent
 on these infinite n 's, for a y of length $2^{\log ^{b_{1}} n}$ with $V^{\prime}\left(1^{\log ^{b_{1}} n}, y\right)=1$, we know that y cannot be computed by a $\log ^{k} n$-depth NC circuits.

Construction of the NPRG. Now we can plug this y into a standard construction of a PRG. Let c_{2}, g and $G:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be the constants and the function in Theorem 2.1. Now, on these infinite n 's, we guess a y such that $V^{\prime}\left(1^{\log ^{b_{1}} n}, y\right)=1$, and computes the corresponding PRG G_{y}.

By Theorem 2.1, the PRG $G_{y}:\{0,1\}^{\log ^{g \cdot b_{1}} n} \rightarrow\{0,1\}^{S^{\prime}}$, where $S^{\prime}=2^{\log ^{c_{2} k} n}, 1 / S^{\prime}$-fools $\log S^{\prime}$ depth NC circuit, and is computable in poly $(|y|) \leq 2^{O\left(\log ^{b_{1}} n\right)}$ time. Now we can set k so that $\log S^{\prime}=\log ^{c_{2} k} n \geq \log ^{a} n$ (that is, $k=2 a / c_{2}$) and $b=g \cdot b_{1}$, which completes the proof (the final verifier V takes x, y with $|x|=\ell=\log ^{b} n$ and $|y|=2^{\ell}$, and simulates V^{\prime} with $x=1^{\log ^{b_{1}} n}$ and the first $2^{\log ^{b_{1}}}$ bits of y).

Remark 6.4. The guarantee on the above algorithm is that on an infinite number of n's. The algorithm computes a PRG G_{y} with all y such that $V\left(1^{\log ^{b} n}, y\right)=1$. That is, on different such valid y 's, it could compute different $P R G G_{y}$'s.

7 Average-Case "Almost" Almost Everywhere Lower Bounds for MA

In this section we prove the average-case circuit lower bounds for MA (in fact, MA \cap coMA), which is the most important technical component of our proof. In Section 7.1 we introduce some definitions and lemmas which will be helpful for our proof. In Section 7.2, we prove an average-case MA $\cap c o M A$ a.a.e. lower bound for general circuits. In Section 7.3, we generalize it to an average-case MA $\cap c o M A$ a.a.e. lower bound for low-depth circuits, and with a low-depth computable predicate.

7.1 Preliminaries

We first prove some folklore lemmas and introduce some notations. The following lemma is a direct corollary of Theorem 2.6.
Lemma 7.1. For all constants a, there is an integer $h=h(a)$ and a language $L^{\text {diag }}$ in $\operatorname{SPACE}\left(2^{\log ^{h} n}\right)$ such that for all sufficiently large n, heur $1_{1 / 2+1 / n}-\operatorname{SIZE}\left(L_{n}^{\text {diag }}\right)>2^{\log ^{a} n}$.

The following is a simple corollary of the above lemma.
Corollary 7.2. For all constants a, there is an integer $h=h(a)$ and a language $L^{\text {diag }}$ in $\operatorname{SPACE}\left(2^{\log ^{h} n}\right)$ such that for all sufficiently large n, heur $r_{1 / 2+1 / n}-D E P T H\left(L_{n}^{\text {diag }}\right)>\log ^{a} n$.

7.2 An Average-Case MA \cap coMA a.a.e. Lower Bound for General Circuits

Now we are ready to prove our average-case lower bound for MA \cap coMA, which is "almost" almost-everywhere. We first state a simpler version of our result with $O(\log n)$ advice bits. This is an average-case strengthening of the worst-case MA "almost" almost everywhere lower bound in [MW18].

Theorem 7.3. For all constants a, there are integers b and c, and a language $L \in(M A \cap$ coMA) $\operatorname{TIME}\left(2^{O\left(\log ^{b} n\right)}\right)^{\prime O(\log n)}$, such that for all sufficiently large $n \in \mathbb{N}$ and $m=\left\lceil 2^{\log ^{c} n}\right\rceil$, either

- heur $r_{1 / 2+1 / n}-\operatorname{SIZE}\left(L_{n}\right)>2^{\log ^{a} n}$, or
- heur $_{1 / 2+1 / m}-\operatorname{SIZE}\left(L_{m}\right)>2^{\log ^{a} m}$.

Remark 7.4. This "almost almost-everywhere" condition states that, in a precise sense, L is hard on at least "half" of the input lengths.
Proof. Let $L^{\text {PSPACE }}$ be the language specified by Theorem 2.5. By Lemma 7.1 with parameter a, there is a constant h and a language $L^{\text {diag }} \in \operatorname{SPACE}\left(2^{\log ^{h} n}\right)$ such that heur $1 / 2+1 / n-\operatorname{SIZE}\left(L_{n}^{\text {diag }}\right)>$ $2^{\log ^{a} n}$ for all sufficiently large n. Since $L^{\text {PSPACE }}$ is PSPACE-complete, there is a constant c_{1} such that $L_{n}^{\text {diag }}$ can be reduced to $L^{\text {PSPACE }}$ on input length $2^{\log ^{c_{1}} n}$ in $2^{O\left(\log ^{c_{1}} n\right)}$ time. We set $c \geq c_{1}$.

The Algorithm. Given an input x of length n and let $m=\left\lceil 2^{\log ^{c} n}\right\rceil$, we first provide an informal description of the MA $\cap \operatorname{coMA}$ algorithm which computes the language L. There are two cases:

1. When $\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n}$. That is, when $L_{m}^{\text {PSPACE }}$ is easy. In this case, we guess-andverify a circuit for $L_{m}^{\text {PSPACE }}$ of size $2^{\log ^{b} n}$, and use that to compute $L_{n}^{\text {diag }}$.
2. Otherwise, we know $L_{m}^{\text {PSPACE }}$ is hard. On input of length m, we are given an advice y which is the largest integer such that $L_{y}^{\text {PSPACE }} \leq 2^{\log ^{b} n}$. We guess-and-verify a circuit for $L_{y}^{\text {PSPACE }}$, and compute it (that is, compute $L_{y}^{\text {PSPACE }}$ on the first y input bits while ignoring the rest).

Intuitively, the above algorithm computes an average-case hard function because either it computes the average-case hard language $L_{n}^{\text {diag }}$ on inputs of length n, or it computes the average-case hard language $L_{y}^{\text {PSPACE }}$ on inputs of length m ($L^{\text {PSPACE }}$ is robust). A formal description of the algorithm is given in Algorithm 3, while the algorithm for setting the advice bits is given in Algorithm 4 (note that a y_{n} may be set twice).

The Algorithm Satisfies the MA \cap coMA Promise. We first show the algorithm satisfies the MA \cap coMA promise (Definition 2.7). The intuition is that it only tries to guess-and-verify a circuit for $L^{\text {PSPACE }}$ when it exists, and the properties of the instance checker (Definition 2.2) ensure that in this case the algorithm satisfies the MA \cap coMA promise. Let $y=y_{n}$, there are three cases:

1. $y=-1$. In this case, the algorithm computes the all zero function, and clearly satisfies the $\mathrm{MA} \cap$ coMA promise.
2. $y=0$. In this case, from Algorithm 4, we know that $\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n}$ for $m=\left\lceil 2^{\log ^{c} n}\right\rceil$. Therefore, at least one guess of the circuit is a correct circuit for $L_{m}^{\text {PSPACE }}$, and on that guess, the algorithm outputs $L_{n}^{\text {diag }}(x)=L_{m}^{\text {PSPACE }}(z)$ with probability at least $2 / 3$, by the property of the instance checker (Definition 2.2).
Still by the property of the instance checker, on all possible guesses, the algorithm outputs $1-L_{n}^{\text {diag }}(x)=1-L_{m}^{\operatorname{PSPACE}}(z)$ with probability at most $1 / 3$. Hence, the algorithm correctly computes $L_{n}^{\text {diag }}$ on inputs of length n, with respect to Definition 2.7.
3. $y>0$. In this case, from Algorithm 4, we know that $n_{0} \neq-1, n=\left\lceil 2^{\log ^{b} n_{0}}\right\rceil, \operatorname{SIZE}\left(L_{n}^{\text {PSPACE }}\right)>$ $2^{\log ^{b} n_{0}}$, and $\operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n_{0}}$. Therefore, at least one guess of the circuit is a correct circuit for $L_{y}^{\text {PSAPACE }}$, and on that guess, the algorithm outputs $L_{y}^{\operatorname{PSPACE}}(z)(z=z(x)$ is the first y bits of x) with probability at least $2 / 3$, by the property of the instance checker (Definition 2.2).
```
Algorithm 3: The MA \(\cap\) coMA algorithm for the average-case hard language \(L\)
    Given an input \(x\) with length \(n=|x|\);
    Given an advice integer \(y=y_{n} \in[-1, n] \cap \mathbb{Z}\);
    Let \(m=\left\lceil 2^{\log ^{c} n}\right\rceil\);
    Let \(n_{0}=n_{0}(n)\) be the integer such that \(\left\lceil 2^{\log ^{c} n_{0}}\right\rceil=n\); if no such integer exists, \(n_{0}=-1\);
    if \(y=-1\) then
        Output 0 and terminate
    if \(y=0\) then
    ( \(y=0\) indicates we are in the case that \(\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n}\).);
        Compute a \(z\) of length \(m\) in \(2^{O\left(\log ^{c} n\right)}\) time such that \(L_{n}^{\text {diag }}(x)=L_{m}^{\operatorname{PSPACE}}(z)\);
        Guess a circuit \(C\) of \(2^{\log ^{b} n}\) size;
        Let \(M\) be the instance checker for \(L_{m}^{\text {PSPACE }}\);
        Flip an appropriate number of random coins, let them be \(r\);
        Output \(M^{C}(z, r)\);
    else
        ( \(y>0\) indicates we are in the case that \(\left.\operatorname{SIZE}\left(L_{n}^{\text {PSPACE }}\right)>2^{\log ^{b} n_{0}}.\right)\);
        Let \(z\) be the first \(y\) bits of \(x\);
        Guess a circuit \(C\) of \(2^{\log ^{b} n_{0}}\) size;
        Let \(M\) be the instance checker for \(L_{y}^{\text {PSPACE }}\);
        Flip an appropriate number of random coins, let them be \(r\);
        Output \(M^{C}(z, r)\);
```

```
Algorithm 4: The algorithm for setting advice bits of Algorithm 3
    All \(y_{n}\) 's are set to -1 by default;
    for \(n=1 \rightarrow \infty\) do
        Let \(m=\left\lceil 2^{\log ^{c} n}\right\rceil\);
        if \(\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n}\) then
            Set \(y_{n}=0\);
        else
            Set \(y_{m}=\max \left\{y: \operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n}\right\} ;\)
```

Still by the property of the instance checker, on all possible guesses, the algorithm outputs $1-L_{y}^{\text {PSPACE }}(z)$ with probability at most $1 / 3$. Hence, the algorithm correctly computes $L_{y}^{\text {PSPACE }}(z(x))$ on inputs of length n, with respect to Definition 2.7.

The Algorithm Computes an "Almost" Almost Everywhere Average-Case Hard Language. Next we show that the algorithm indeed computes an average-case hard language. Let n be a sufficiently large integer and $m=\left\lceil 2^{\log ^{c} n}\right\rceil$. According to Algorithm 4, there are two cases.

- $\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n}$. In this case, Algorithm 4 sets $y_{n}=0$. And by previous analysis, we know that L_{n} computes the average-case hard language $L_{n}^{\text {diag }}$, and therefore heur ${ }_{1 / 2+1 / n}$ - $\operatorname{SIZE}\left(L_{n}\right)>$ $2^{\log ^{a} n}$ as n is sufficiently large.
- $\operatorname{SIZE}\left(L_{m}^{\text {PSPACE }}\right)>2^{\log ^{b} n}$. We set b so that $2^{\log ^{b} n} \geq 2^{\log ^{2 a}(m)}$ (we can set $b \geq 3 a c$). Let y be the largest integer such that $\operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right) \leq 2^{\log ^{b} n}$. By Remark 2.3, we have $y<m$.
Note that $\operatorname{SIZE}\left(L_{y+1}^{\mathrm{PSPACE}}\right) \leq(y+1)^{d} \cdot \operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right)$ for a universal constant d (because $L^{\text {PSPACE }}$ is downward self-reducible). Therefore,

$$
\operatorname{SIZE}\left(L_{y}^{\mathrm{PSPACE}}\right) \geq \operatorname{SIZE}\left(L_{y+1}^{\mathrm{PSPACE}}\right) /\left\lceil 2^{\log ^{c} n}\right\rceil^{d} \geq 2^{\Omega\left(\log ^{b} n\right)}
$$

Now, on an input of length m, clearly we have $n_{0}(m)=n \neq-1$ and $y_{m} \neq-1$ by Algorithm 4. Therefore, L_{m} either computes $L_{m}^{\text {diag }}$ or $L_{y_{m}}^{\text {PSPACE }}$ (since $y_{m} \neq-1$). The first case is already discussed. In the second case, we know $y_{m}=y$ and $\operatorname{heur}_{1 / 2+1 / m}-\operatorname{SIZE}\left(L_{m}\right)=$ heur $_{1 / 2+1 / m}-\operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right)$.
Now, since $\operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right) \leq 2^{y}$, we have $y \geq \Omega\left(\log ^{b} n\right)$. Let c_{1} and δ_{1} be the corresponding constants of the robust property of $L^{\text {PSPACE }}$. For $\varepsilon \geq 2^{-y^{\delta_{1}}}$, we have

$$
\operatorname{SIZE}\left(L_{y}^{\operatorname{PSPACE}}\right) \leq\left(\operatorname{heur}_{1 / 2+\varepsilon}-\operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right) \cdot \varepsilon^{-1}\right)^{c_{1}}
$$

and hence

$$
\operatorname{heur}_{1 / 2+\varepsilon^{-}}-\operatorname{SIZE}\left(L_{y}^{\operatorname{PSPACE}}\right) \geq \varepsilon \cdot \operatorname{SIZE}\left(L_{y}^{\text {PSPACE }}\right)^{1 / c_{1}} \geq \varepsilon \cdot 2^{\Omega\left(\log ^{b} n\right)} .
$$

We set b so that $y^{\delta_{1}} \geq \Omega\left(\log ^{\delta_{1} \cdot b} n\right) \geq \log (m)$ (that is, we can set $\left.b \geq 2 c / \delta_{1}\right)$, and then set $\varepsilon=1 / m$. It follows that heur $r_{1 / 2+1 / m^{-}}$SIZE $\left(L_{y}^{\text {PSPACE }}\right) \geq 2^{\Omega\left(\log ^{b} n\right)} / 2^{\log ^{c} n} \geq 2^{\Omega\left(\log ^{b} n\right)} \geq 2^{\log ^{a}(m)}$, which completes the whole proof.

7.3 An Average-Case MA \cap coMA a.a.e. Lower Bound for Low Depth Circuits

Now we are ready to prove the technical centerpiece of this paper, an $(\mathrm{MA} \cap \operatorname{coMA})_{/ 1}$ language with a low-depth computable predicate, and is average-case hard for low-depth circuits.

By significantly relaxing the "almost" almost everywhere requirement, we are able to construct an average-case hard language with only one bit of advice, yet still enough for our final average-case circuit lower bound proof.

Theorem 7.5. For all constants a, there are integers b and c, and a language $L \in(M A \cap$ coMA) TIME $\left(2^{O\left(\log ^{b} n\right)}\right) / 1$ (specified by Algorithm 5 and Algorithm 6), such that for all sufficiently large $\tau \in \mathbb{N}$ and $n=2^{\tau}$, either

- heur 0.99-DEPTH $\left.^{-D} L_{n}\right)>\log ^{a} n$, or
- heur ${ }_{0.99}-D E P T H\left(L_{m}\right)>\log ^{a} m$, for an $m \in\left(2^{\log ^{c} n}, 2^{\log ^{c} n+1}\right) \cap \mathbb{N}$.

Remark 7.6. We remark that in the real proof, we slightly deviate from the intuition section of the introduction: we actually don't need the precise condition that the corresponding predicate is low-depth computable as it is not required by the proof (the proof only requires that the instance checker part (the composed circuit $\left.D_{\text {checker }}^{C}(z, \cdot)\right)$ is computable by low-depth circuits). Still, it is not hard to make the entire predicate corresponding to Algorithm 5 low-depth computable.

```
Algorithm 5: The MA \(\cap\) coMA algorithm for the language \(L\) which is average-case hard
for low-depth circuits
    Given an input \(x\) with length \(n=|x|\);
    Given an advice integer \(y=y_{n} \in\{0,1\}\);
    Let \(m=\left\lceil 2^{\log ^{c} n}\right\rceil\);
    Let \(n_{0}=n_{0}(n)\) be the largest integer such that \(2^{\log ^{c} n_{0}} \leq n\);
    Let \(m_{0}=2^{\log ^{c} n_{0}}\);
    Let \(\ell=n-m_{0}\);
    7 if \(y=0\) then
    Output 0 and terminate
    if \(n\) is a power of 2 then
        (we are in the case that DEPTH \(\left(L_{m}^{\text {PSPACE }}\right) \leq \log ^{b} n\).);
        Compute a \(z\) in \(2^{O\left(\log ^{c} n\right)}\) time such that \(L_{n}^{\text {diag }}(x)=L_{m}^{\operatorname{PSPACE}^{( }}(z)\);
        Guess an NC circuit \(C\) of \(\log ^{b} n\) depth;
        Compute in poly \((m)\) time a \(\mathrm{TC}^{0}\) oracle circuit \(D_{\text {checker }}^{\text {? }}\) which implements the instance
        checker for \(L_{m}^{\text {PSPACE }}\);
        Flip an appropriate number of random coins, let them be \(r\);
        Output \(D_{\text {checker }}^{C}(z, r)\);
    else
            (we are in the case that \(\operatorname{DEPTH}\left(L_{m_{0}}^{\mathrm{PSPACE}}\right)>\log ^{b} n_{0}\) and \(\ell\) is the largest integer such
        that DEPTH \(\left.\left(L_{\ell}^{\text {PSPACE }}\right) \leq \log ^{b} n_{0}.\right)\);
            Let \(z\) be the first \(\ell\) bits of \(x\);
            Guess an NC circuit \(C\) of \(\log ^{b} n_{0}\) depth;
            Compute in poly \((\ell)\) time a \(\mathrm{TC}^{0}\) oracle circuit \(D_{\text {checker }}^{?}\) which implements the instance
            checker for \(L_{\ell}^{\text {PSPACE }}\);
            Flip an appropriate number of random coins, let them be \(r\);
            Output \(D_{\text {checker }}^{C}(z, r)\);
```

Proof of Theorem 7.5. Let $L^{\text {PSPACE }}$ be the language specified by Theorem 2.5. By Corollary 7.2 with parameter a, there is a language $L^{\text {diag }} \in \operatorname{SPACE}\left(2^{\log ^{h} n}\right)$ for a constant h such that heur $r_{1 / 2+1 / n}$

```
Algorithm 6: The algorithm for setting advice bits for Algorithm 5
    All \(y_{n}\) 's are set to 0 by default;
    for \(\tau=1 \rightarrow \infty\) do
        Let \(n=2^{\tau}\);
        Let \(m=2^{\log ^{c} n}\);
        if \(\operatorname{DEPTH}\left(L_{m}^{\text {PSPACE }}\right) \leq \log ^{b} n\) then
            Set \(y_{n}=1\);
        else
            Let \(\ell=\max \left\{\ell: \operatorname{DEPTH}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \leq \log ^{b} n\right\}\);
            Set \(y_{m+\ell}=1\);
```

-DEPTH $\left(L_{n}^{\text {diag }}\right)>\log ^{a} n$ for all sufficiently large n. Since $L^{\text {PSPACE }}$ is PSPACE-complete, there is a constant c_{1} such that $L_{n}^{\text {diag }}$ can be reduced to $L^{\text {PSPACE }}$ on input length $2^{\log ^{c_{1} n}}$ in $2^{O\left(\log ^{c_{1}} n\right)}$ time. We set $c \geq c_{1}$, and recall that heur $1_{1 / 2+1 / n}-\operatorname{DEPTH}\left(L_{n}^{\text {diag }}\right)>\log ^{a} n$, and therefore heur ${ }_{0.99}-\operatorname{DEPTH}\left(L_{n}^{\text {diag }}\right)>$ $\log ^{a} n$.

The Algorithm. Let $\tau \in \mathbb{N}$ be sufficiently large. Given an input x of length $n=2^{\tau}$ and let $m=2^{\log ^{c} n}$, we first provide an informal description of the MA \cap coMA algorithm which computes the language L. There are two cases:

1. When $\operatorname{DEPTH}\left(L_{m}^{\text {PSPACE }}\right) \leq \log ^{b} n$. That is, when $L_{m}^{\text {PSPACE }}$ is easy. In this case, we guess-andverify a circuit for $L_{m}^{\text {PSPACE }}$ of depth $\log ^{b} n$, and use that to compute $L_{n}^{\text {diag }}$.
2. Otherwise, we know $L_{m}^{\text {PSPACE }}$ is hard. Let ℓ be the largest integer such that DEPTH $\left(L_{\ell}^{\text {PSPACE }}\right) \leq$ $\log ^{b} n$. On input of length $m_{1}=m+\ell$, we guess-and-verify a circuit for $L_{\ell}^{\text {PSPACE }}$, and compute it (that is, compute $L_{\ell}^{\text {PSPACE }}$ on the first ℓ input bits while ignoring the rest). Note that by Remark 2.3, we have $0<\ell<m$ and therefore $m+\ell$ is not a power of 2 .

Intuitively, the above algorithm computes an average-case hard function because either it computes the average-case hard language $L_{n}^{\text {diag }}$ on inputs of length n, or it computes the average-case hard language $L_{\ell}^{\text {PSPACE }}$ on inputs of length m ($L^{\text {PSPACE }}$ is NC^{3} weakly error correctable). A formal description of the algorithm is given in Algorithm 5, while the algorithm for setting the advice bits is given in Algorithm 6. It is not hard to see that a y_{n} can only be set once in Algorithm 6.

Now we verify that the above algorithm computes a language satisfying our requirements.
The Algorithm Satisfies the MA \cap coMA Promise. Again, by Algorithm 6, the algorithm tries to guess a circuit for $L^{\text {PSPACE }}$ only if that circuit exists. Therefore, by a similar argument as in the proof of Theorem 7.3, the algorithm satisfies the MA \cap coMA promise. Moreover, L_{n} computes $L_{n}^{\text {diag }}$ if $y_{n}=1$ and n is a power of 2 , and $L_{\ell}^{\text {PSPACE }}$ if $y_{n}=1$ and n is not a power of 2 .

The Algorithm Computes an "Almost" Almost Everywhere Average-Case Hard Language for Low Depth Circuits. Next we show that the algorithm indeed computes an averagecase hard language. Let τ be a sufficiently large integer, $n=2^{\tau}$, and $m=2^{\log ^{c} n}$. According to Algorithm 6, there are two cases:

- $\operatorname{DEPTH}\left(L_{m}^{\text {PSPACE }}\right) \leq \log ^{b} n$. In this case, Algorithm 6 sets $y_{n}=1$. And by previous analysis, we know that L_{n} computes the average-case hard language $L_{n}^{\text {diag }}$, and therefore heur $_{0.99}-\operatorname{DEPTH}\left(L_{n}\right)>\log ^{a} n$ as n is sufficiently large.
- $\operatorname{DEPTH}\left(L_{m}^{\text {PSPACE }}\right)>\log ^{b} n$. We set b so that $\log ^{b} n \geq \log ^{2 a}(2 m)$ (we can set $b \geq 3 a c$). Let ℓ be the largest integer such that $\operatorname{DEPTH}\left(L_{\ell}^{\text {PSPACE }}\right) \leq \log ^{b} n$. By Remark 2.3, we have $\ell<m$.
Note that $\operatorname{DEPTH}\left(L_{\ell+1}^{\text {PSPACE }}\right) \leq d \log (\ell+1)+\operatorname{DEPTH}\left(L_{\ell}^{\text {PSPACE }}\right)$ for a universal constant d (because $L^{\text {PSPACE }}$ is TC^{0} downward self-reducible, and the corresponding TC^{0} oracle circuit is non-adaptive). Therefore,

$$
\operatorname{DEPTH}\left(L_{\ell}^{\operatorname{PSPACE}}\right) \geq \operatorname{DEPTH}\left(L_{\ell+1}^{\mathrm{PSPACE}}\right)-d \log (\ell+1) \geq \Omega\left(\log ^{b} n\right)
$$

Now, on inputs of length $m_{1}=m+\ell$, we have $y_{m_{1}}=1$ by Algorithm 6. Therefore, $L_{m_{1}}$ computes $L_{\ell}^{\text {PSPACE }}$, and therefore heur $0_{0.99}-\operatorname{DEPTH}\left(L_{m_{1}}\right)=$ heur $_{0.99-D E P T H}\left(L_{\ell}^{\text {PSPACE }}\right)$.
Since $L^{\text {PSPACE }}$ is NC^{3} weakly error correctable, and the corresponding NC^{3} oracle circuit is non-adaptive. There is a universal constant d such that

$$
\operatorname{DEPTH}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \leq d \log ^{3} \ell+\operatorname{heur}_{0.99-\mathrm{DEPTH}\left(L_{\ell}^{\mathrm{PSPACE}}\right) .}
$$

Therefore, by our choice of b, it follows
$\operatorname{heur}_{0.99-\operatorname{DEPTH}}\left(L_{\ell}^{\mathrm{PSPACE}}\right) \geq \operatorname{DEPTH}\left(L_{\ell}^{\mathrm{PSPACE}}\right)-d \log ^{3} \ell \geq \Omega\left(\log ^{b} n\right)-O\left(\log ^{3 c} n\right) \geq \Omega\left(\log ^{b} n\right)$.
Finally, note that $\Omega\left(\log ^{b} n\right) \geq \Omega\left(\log ^{2 a}(2 m)\right) \geq \log ^{a}\left(m_{1}\right)$. We have heur $0_{0.99}$ - $\operatorname{DEPTH}\left(L_{m_{1}}\right)=$ heur $0.99-\operatorname{DEPTH}\left(L_{\ell}^{\text {PSPACE }}\right) \geq \log ^{a}\left(m_{1}\right)$, which completes the proof.

Finally, using a similar trick as in the proof of Theorem 7.5, we can also reduce the number of advice in Theorem 7.3 to 2 bits.

Corollary 7.7. For all constants a, there are integers b and c, and a language $L \in(M A \cap$ $\operatorname{coMA}) \operatorname{TIME}\left(2^{O\left(\log ^{b} n\right)}\right)_{/ 1}$, such that for all sufficiently large $\tau \in \mathbb{N}$ and $n=2^{\tau}$, either

- heur $0.99-\operatorname{SIZE}\left(L_{n}\right)>2^{\log ^{a} n}$, or
- heuro.99-SIZE $\left(L_{m}\right)>2^{\log ^{a} m}$, for an $m \in\left(2^{\log ^{c} n}, 2^{\log ^{c} n+1}\right) \cap \mathbb{N}$.

8 A PSPACE-complete Language with Nice Reducibility Properties

In this section we construct a PSPACE-complete language with the needed nice reducibility properties.

In Section 8.1, we introduce the necessary definitions for the construction of this section. In Section 8.2, we review the original construction in [TV07]; and in Section 8.3, we briefly discuss what adaption is required to make it suitable for our purpose. In Section 8.4, we construct the needed PSPACE-complete language.

8.1 Notations and Boolean Encodings of Field Elements

We first need to introduce some notations. Let pow (n) be the smallest power of 2 which is no less than n.

Let \mathbb{F}_{n} be $\operatorname{GF}\left(2^{\operatorname{pow}(n)}\right)$. Note that for all $n<m$, either $\mathbb{F}_{n}=\mathbb{F}_{m}$, or \mathbb{F}_{n} is a sub-field of \mathbb{F}_{m}. An element from \mathbb{F}_{n} can be encoded in pow (n) bits via a natural bijection ϕ_{n} between \mathbb{F}_{n} and $\operatorname{GF}(2)^{\operatorname{pow}(n)}$. We encode them in a consistent way that for any $2^{\ell}<\operatorname{pow}(n)$, the first 2^{ℓ} bits of the encoding correspond to an element from $\operatorname{GF}\left(2^{2^{\ell}}\right)$.

That is, for all $n<m$ and an element a from \mathbb{F}_{n}, the first pow (n) bits of $\phi_{m}(a)$ equals $\phi_{n}(a)$. Note that all these fields \mathbb{F}_{n} (i.e., a degree pow (n) irreducible $\operatorname{GF}(2)$-polynomial) and bijections ϕ_{n} can be constructed deterministically in poly (n) time [Sho88].

Let ℓ be an integer, $F=\operatorname{GF}\left(2^{2^{\ell}}\right)$, and $K=\operatorname{GF}\left(2^{2^{\ell+1}}\right)$. K is an extension field of F, and there exists an element $\alpha \in K$ (which can be found in poly $\left(2^{\ell}\right)$ time) such that all element $x \in K$ can be uniquely written as $x=y \cdot \alpha+z$, where $y, z \in F$.

8.2 Review of the Construction in [TV07]

We need the following lemma from [TV07], which builds on the proof of IP $=$ PSPACE theorem [LFKN92, Sha92].
Lemma 8.1. For some polynomials t and m, there is a collection of functions $\left\{f_{n, i}:\left(\mathbb{F}_{n}\right)^{t(n, i)} \rightarrow\right.$ $\left.\mathbb{F}_{n}\right\}_{n \in \mathbb{N}, i \leq m(n)}$ with the following properties:

1. (Self-Reducibility) For $i<m(n), f_{n, i}$ can be evaluated with oracle access to $f_{n, i+1}$ in $\operatorname{poly}(n)$ time. $f_{n, m(n)}$ can be evaluated in poly (n) time, and in fact it is computable by a poly (n)-size uniform TC ${ }^{0}$ circuit.
2. (PSPACE-hardness) For every language L in PSPACE, there is a polynomial-time computable function ℓ and g, such that for all $n \in \mathbb{N}$ and $x \in\{0,1\}^{n}, L(x)=f_{\ell\left(1^{n}\right), 0}(g(x))$, and $\ell\left(1^{n}\right)$ is bounded by a polynomial in n (which depends on L).
3. (Low Degree) $f_{n, i}$ is a polynomial of total degree at most $\operatorname{poly}(n)$.

Remark 8.2. In [TV07], the field \mathbb{F}_{n} is just $G F\left(2^{n}\right)$, we make it slightly larger in order to establish the padability. ${ }^{18}$ We formulate the second property in a slightly different way than [TV07] for convenience. Also, it is easy to see that in the construction of [TV07], $t(n, i)$ and $m(n)$ are both increasing functions in n.

The polynomial $f_{n, m(n)}$ in [TV07] is very simple, and it is easy to see that it can be computed by a $\operatorname{poly}(n)$-size uniform $T C^{0}$ circuit.

More specifically, for all $i<m(n), f_{n, i}(x)$ has $\ell=t(n, i)$ variables, and it is defined in terms of $f_{n, i+1}$ using one of the following rules:

[^11]\[

$$
\begin{align*}
& \text { Three rules of defining } f_{n, i}(x) \\
& f_{n, i}\left(x_{1}, \ldots, x_{\ell}\right)=f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 0\right) \cdot f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 1\right) . \tag{1}\\
& f_{n, i}\left(x_{1}, \ldots, x_{\ell}\right)=1-\left(1-f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 0\right)\right) \cdot\left(1-f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 1\right)\right) . \tag{2}\\
& f_{n, i}\left(x_{1}, \ldots, x_{k}, \ldots, x_{\ell}\right)=x_{k} \cdot f_{n, i+1}\left(x_{1}, \ldots, 1, \ldots, x_{\ell}\right)+\left(1-x_{k}\right) \cdot f_{n, i+1}\left(x_{1}, \ldots, 0, \ldots, x_{\ell}\right) . \tag{3}
\end{align*}
$$
\]

8.3 Technical Challenges to Adapt [TV07] for Our Purpose

The original language in [TV07] just computes $f_{n, i}$ in the order of first increasing in n and then decreasing in i. By Lemma 8.1, this can be easily seen to be downward self-reducible and error correctable (as polynomials are error correctable). To make it further paddable, [FS04, San09] simply use a padding construction so that now on a single input length, the language computes $f_{n, i}$ and all polynomials which come before it.

In order to construct a PSPACE-complete language which is both error correctable and paddable, there are some technical challenges:

- First, after the padding construction, the language now is not a single polynomial, but a bunch of different polynomials. We need to do some interpolation to "wrap" them into a single polynomial again. One obvious problem is that these polynomials are over different fields and may have different numbers of variables, we resolve that by a careful choice of the fields (for all $n<m, \mathbb{F}_{n}$ is a sub-field of \mathbb{F}_{m}), and adding dummy variables.
- Another problem is that a simple interpolation would actually destroy the padability. Suppose we have k polynomials $g_{1}, g_{2}, \ldots, g_{k}: \mathbb{F}^{n} \rightarrow \mathbb{F}$ of degree D. We can construct a single polynomial $G_{k}: \mathbb{F}^{n+1} \rightarrow \mathbb{F}$ with degree $D+k$, such that $G_{k}(i, x)=g_{i}(x)$, via a simple interpolation. But the issue here is that then G_{k-1} cannot be reduced to G_{k} easily (so it is not paddable). We resolve this via a different choice of interpolation. Specifically, we define $G_{k}: \mathbb{F}^{n} \times \mathbb{F}^{k} \rightarrow \mathbb{F}$ as $G_{k}\left(x, y_{1}, y_{2}, \ldots, y_{k}\right):=\sum_{i=1}^{k} g_{i}(x) \cdot y_{i}$.
- Finally, the polynomials are over a large alphabet \mathbb{F}_{n}, and we have to turn them into Boolean functions. This step is standard as one can just make use of Walsh-Hadamard codes.

The next step is to argue that the reducibility properties of the constructed new language actually have low complexity oracle circuits implementations. For padability it is trivial. For weakly error correctability and the robust property, it is still straightforward from the local decoders of Reed-Muller codes and Walsh-Hadamard codes. The main difficulty here is to argue this for samelength checkability and for downward self-reducibility.

Same-length Checkability. This actually looks counter-intuitive at first-the instance-checker in [TV07, FS04, San09] actually simulates the interactive proof protocol for PSPACE [LFKN92, Sha92]. Since it is an interactive proof protocol, it appears that this checking process should proceed one step after another step (that is, highly sequentially), and it should not have a highly parallelizable implementation such as TC^{0} oracle circuits.

The key observation is that, despite the fact that we are simulating an interactive proof protocol, the prover's strategy is already committed to the given oracle. This enables us to check different stages of the interactive proof protocol in the same time, and from which we can construct a TC^{0} oracle circuit for the instance checker.

Downward Self-reducibility. Downward self-reducibility is a bit tricky. When G_{k} and G_{k+1} are over the same field, downward self-reducibility follows from the way that the $f_{n, i}$'s are constructed. But when G_{k} and G_{k+1} are over different fields $\mathbb{F}_{\text {old }}$ and $\mathbb{F}_{\text {new }}$ ($\mathbb{F}_{\text {old }}$ is a sub-field of $\mathbb{F}_{\text {new }}$), it is not clear how to evaluate G_{k+1} given an oracle access to G_{k}. To circumvent this issue, suppose $G_{k}: \mathbb{F}_{\text {old }}^{n+k} \rightarrow \mathbb{F}_{\text {old }}$ is a degree $d=\operatorname{poly}(n)$ polynomial, we wish to extent it to a polynomial $H_{k}: \mathbb{F}_{\text {new }}^{n+k} \rightarrow \mathbb{F}_{\text {new }}$.

For this purpose, we construct $n+k+1$ intermediate polynomials $H_{0}^{\mathrm{int}}, H_{1}^{\mathrm{int}}, \ldots, H_{n+k}^{\mathrm{int}}$, such that $H_{i}^{\text {int }}: \mathbb{F}_{\text {new }}^{i} \times \mathbb{F}_{\text {old }}^{n+k-i} \rightarrow \mathbb{F}_{\text {new }}$ is constructed by extending G_{k} to the domain $\mathbb{F}_{\text {new }}^{i} \times \mathbb{F}_{\text {old }}^{n+k-i}$. Note that $H_{n+k}^{\text {int }}=H_{k}$. We simply insert the polynomials $H_{0}^{\text {int }}, H_{2}^{\text {int }}, \ldots, H_{n+k}^{\text {int }}$ between G_{k} and G_{k+1}. Note that for each $i \in[n+k]$, given oracle access to $H_{i-1}^{\text {int }}$, it is easy to evaluate $H_{i}^{\text {int }}$ by interpolation. Also, G_{k+1} can be evaluated easily given oracle access to H_{k}, as now they are over the same field $\mathbb{F}_{\text {new }}$, and $H_{0}^{\text {int }}$ can be easily evaluated given oracle access to G_{k} via interpolation.

It remains to ensure that adding these $H_{i}^{\text {int }}$'s does not hurt other properties we want. It is straightforward to verify that padability, weakly error correctability, and the robust property still hold, and a careful examination shows that these intermediate polynomials $H_{i}^{\text {int }}$'s are also samelength checkable.

8.4 The Construction of the PSPACE-complete Language

Now we are ready to construct the needed PSPACE-complete language, we first restate the theorem for convenience.

Reminder of Theorem 2.5 There is a PSPACE-complete language $L^{\text {PSPACE }}$ which is paddable, $T C^{0}$ downward self-reducible, $T C^{0}$ same-length checkable, robust, and $N C^{3}$ weakly error correctable. Moreover, all the corresponding oracle circuits for the above properties are in fact non-adaptive: that is, on any path from an input gate to the output gate, there is at most one oracle gate.

Proof of Theorem 2.5. In the following, we roughly follows the ideas outlined in Section 8.3. Our construction is a careful modification of the construction from [TV07], together with an application of Walsh-Hadamard codes to turn the polynomials into Boolean functions.

Construction of Interpolated Polynomial G_{k}. First, we order all polynomials in the following order

$$
f_{1, m(1)}, f_{1, m(1)-1}, \ldots, f_{1,0}, f_{2, m(2)}, \ldots, f_{2,0}, \ldots, f_{n, m(n)}, \ldots, f_{n, 0}, \ldots
$$

Let g_{k} be the k-th polynomial in the above list. Suppose g_{k} is $f_{n, i}$. Let $d=d(k)$ be the maximum number of variables of a polynomial in $g_{1}, g_{2}, \ldots, g_{k}$. By introducing some dummy variables at the end, we can make all polynomials $g_{1}, g_{2}, \ldots, g_{k}$ have d variables. Moreover, since all fields $\mathbb{F}_{1}, \mathbb{F}_{2}, \ldots, \mathbb{F}_{n-1}$ are sub-fields of $\mathbb{F}_{n}\left(\right.$ or equal to \mathbb{F}_{n}), we can treat all $g_{1}, g_{2}, \ldots, g_{k}$ as polynomials from $\mathbb{F}_{n}^{d} \rightarrow \mathbb{F}_{n}$.

Now, we introduce k more variables $y_{1}, y_{2}, \ldots, y_{k}$, and define the following polynomial G_{k} : $\mathbb{F}_{n}^{d+k} \rightarrow \mathbb{F}_{n}$,

$$
G_{k}\left(x, y_{1}, y_{2}, \ldots, y_{k}\right):=\sum_{i=1}^{k} g_{i}(x) \cdot y_{i} .
$$

Since all g_{i} 's are of total degree at most poly $(n), G_{k}$ is also of total degree poly (n).
Construction of Field-Transferring Polynomial $H_{k, i}^{\text {int }}$. One issue is that when G_{k} and G_{k+1} are over different fields, it is not clear how one can compute G_{k+1} with oracle access to G_{k} (that is, how to implement the downward self-reducibility). To circumvent this, we construct a series of field-transferring polynomials ${ }^{19}$ between G_{k} and G_{k+1} to help the process of making the field larger.

Since G_{k+1} is over a larger field than G_{k}, it must be the case that $n=2^{\tau}$ for an integer τ and $i=0$. Let $\mathbb{F}_{\text {old }}=\mathbb{F}_{n}=\operatorname{GF}\left(2^{2^{\tau}}\right)$ and $\mathbb{F}_{\text {new }}=\mathbb{F}_{n+1}=\operatorname{GF}\left(2^{2^{\tau+1}}\right)$, we know that G_{k} is over $\mathbb{F}_{\text {old }}$ and G_{k+1} is over $\mathbb{F}_{\text {new }}$.

We want to construct a polynomial $H_{k}: \mathbb{F}_{\text {new }}^{d+k} \rightarrow \mathbb{F}_{\text {new }}$ which extends G_{k}. Note that it is unique, as G_{k} is of $D=\operatorname{poly}(n)$ degree, while $\mathbb{F}_{\text {old }}$ has size at least 2^{n}. If we simple insert H_{k} after G_{k}, it is still not clear how to evaluate H_{k} given oracle access to G_{k}. Therefore, we move the polynomial variables from $\mathbb{F}_{\text {old }}$ to $\mathbb{F}_{\text {new }}$ one after another instead of moving them all together.

Let $H_{k, i}^{\text {int }}: \mathbb{F}_{\text {new }}^{i} \times \mathbb{F}_{\text {old }}^{d+k-i} \rightarrow \mathbb{F}_{\text {new }}$ be the polynomial extending G_{k} to the domain $\mathbb{F}_{\text {new }}^{i} \times \mathbb{F}_{\text {old }}^{d+k-i}$. Clearly $H_{k, d+k}^{\text {int }}=H_{k}$.

Moreover, to compute $H_{k, i}^{\text {int }}$ given oracle access to $H_{k, i-1}^{\mathrm{int}}$, one can simply interpolate the i th coordinate. That is, given $\left(y_{<i}, y_{i}, z\right) \in \mathbb{F}_{\text {new }}^{i} \times \mathbb{F}_{\text {old }}^{d+k-i}$, one queries $H_{k, i-1}^{\text {int }}\left(y_{<i}, x, z\right)$ for $x \in$ $\{0,1, \ldots, D\}$ to interpolate a polynomial $p(x): \mathbb{F}_{\text {old }} \rightarrow \mathbb{F}_{\text {new }}$ which equals $H_{k, i-1}^{\text {int }}\left(y_{<i}, x, z\right)$. Then we have $H_{i}^{\text {int }}\left(y_{<i}, y_{i}, z\right)=p\left(y_{i}\right)$.

Converting G_{k} and $H_{k, i}^{\text {int }}$ into Boolean Functions via Walsh-Hadamard Codes. Next, we need to turn the polynomials G_{k} and $H_{k, i}^{\text {int }}$ into Boolean functions. We do this by applying Walsh-Hadamard codes.

Let $\ell=\operatorname{pow}(n)$. We use the bijection $\phi=\phi_{n}$ between \mathbb{F}_{n} and $\operatorname{GF}(2)^{\ell}$ described in Section 8.1. We define $F_{k}: \mathbb{F}_{n}^{d+k} \times \mathrm{GF}(2)^{\ell} \rightarrow \mathrm{GF}(2)$ as,

$$
F_{k}(z, r):=\left\langle\phi\left(G_{k}(z)\right), r\right\rangle,
$$

where $\left\langle\phi\left(G_{k}(z)\right), r\right\rangle$ is the inner product between $\phi\left(G_{k}(z)\right)$ and r over GF(2).
F_{k} can be easily interpreted as a Boolean function on $\{0,1\}^{e(k)}$, where $e(k)=(d+k+1) \cdot \ell$.
We call a k special, if G_{k} and G_{k+1} are over different fields. In this case, we know that $\mathbb{F}_{n+1}=\operatorname{GF}\left(2^{2 \ell}\right)$, and $H_{k, i}^{\text {int }}$ is from $\mathbb{F}_{n+1}^{i} \times \mathbb{F}_{n}^{d+k-i} \rightarrow \mathbb{F}_{n+1}$. Similarly, we define $F_{k, i}^{\text {trans }}: \mathbb{F}_{n+1}^{i} \times$ $\mathbb{F}_{n}^{d+k-i} \times \mathrm{GF}(2)^{2 \ell} \rightarrow \mathrm{GF}(2)$ as

$$
F_{k, i}^{\mathrm{trans}}(z, r):=\left\langle\phi_{n+1}\left(H_{k, i}^{\mathrm{int}}(z)\right), r\right\rangle .
$$

$F_{k, i}^{\text {trans }}$ can be interpreted as a Boolean function on $\{0,1\}^{e(k, i)}$, where $e(k, i)=(d+k+i+2) \cdot \ell$.

[^12]Note that for a special k, we have that $e(k)<e(k, 0)<e(k, 1)<\ldots<e(k, d+k-1)<$ $e(k, d+k)<e(k+1)$.

Now, for each input length m, let k be the largest integer such that $e(k) \leq m$ and i be the largest integer such that $e(k, i) \leq m$. If there is no such $k, L_{m}^{\text {PSPACE }}$ just computes the all-zero function. If k is not special, we set $L_{m}^{\text {PSPACE }}$ to compute F_{k} on its first $e(k)$ bits; otherwise we set $L_{m}^{\text {PSPACE }}$ to compute $F_{k, i}^{\text {trans }}$ on its first $e(k, i)$ bits.

In the following we verify that $L^{\text {PSPACE }}$ has all the desired properties.
$L^{\text {PSPACE }}$ is Paddable. Note that it suffices to verify the padability between n and $m=n+1$. There are several non-trivial cases (we ignore the trivial case when $L_{n}^{\text {PSPACE }}$ and $L_{m}^{\text {PSPACE }}$ compute the same function).

1. $L_{n}^{\text {PSPACE }}$ computes F_{k} and $L_{m}^{\text {PSPACE }}$ computes F_{k+1}.
2. $L_{n}^{\text {PSPACE }}$ computes $F_{k}, L_{m}^{\text {PSPACE }}$ computes $F_{k, 0}^{\text {trans }}$ for a special k.
3. $L_{n}^{\text {PSPACE }}$ computes $F_{k, i}^{\text {trans }}, L_{m}^{\text {PSPACE }}$ computes $F_{k, i+1}^{\text {trans }}$ for a special k and $0 \leq i \leq d+k-1$.
4. $L_{n}^{\text {PSPACE }}$ computes $F_{k, d+k}^{\text {trans }}, L_{m}^{\text {PSPACE }}$ computes F_{k+1} for a special k.

We only discuss the first case, other cases follow by similar arguments. Note that in this case F_{k} and F_{k+1} are over the same field, and we have

$$
F_{k}\left(x, y_{1}, y_{2}, \ldots, y_{k}, z\right)=F_{k+1}\left(x, y_{1}, y_{2}, \ldots, y_{k}, 0, z\right)
$$

by the definition of F_{k} and F_{k+1}. The padability is then evident with our encoding of the fields \mathbb{F}_{n} 's (see Section 8.1).

To make the presentation clean, when verifying the remaining properties, we first discuss the case when $L_{m}^{\text {PSPACE }}$ computes the function F_{k}, and then argue the additional cases when $L_{m}^{\text {PSPACE }}$ computes the function $F_{k, i}^{\text {trans }}$.
$L^{\text {PSPACE }}$ is Robust. Supposing $L_{m}^{\text {PSPACE }}$ computes the function F_{k}, we only need to show this property for the Boolean function F_{k}. By the well-known local-list-decoders of the Walsh-Hadamard codes [GL89] and of the Reed-Muller codes [STV01], this property follows directly.
$L^{\text {PSPACE }}$ is NC 3 Weakly Error Correctable. This follows from the well-known local-decoders of the Reed-Muller codes and the Walsh-Hadamard codes [STV01]. Walsh-Hadamard codes have NC 1 local decoders [GL89], while the computational bottleneck of the local decoder of Reed-Muller is solving a system of linear equations over \mathbb{F}_{n}. Solving a system of linear equation can be done by an $O\left(\log ^{2} n\right)$ depth arithmetic circuit with field operations over \mathbb{F}_{n}, and a field operation over \mathbb{F}_{n} can be implemented by a uniform TC^{0} circuit [HV06] (and therefore a uniform NC^{1} circuit). Hence, the whole local decoder can be implemented by a uniform $N C^{3}$ circuit, and this property follows.

Handling $F_{k, i}^{\text {trans }}$. Consider the function $F_{k, i}^{\text {trans }}$ constructed from the function $H_{k, i}^{\text {int }}: \mathbb{F}_{\text {new }}^{i} \times$ $\mathbb{F}_{\text {old }}^{d+k-i} \rightarrow \mathbb{F}_{\text {new }}$ (recall that now k is special; $\mathbb{F}_{\text {new }}$ and $\mathbb{F}_{\text {old }}$ are the (different) fields of G_{k} and G_{k+1} respectively). $H_{k, i}^{\text {int }}$ can indeed be interpreted as a polynomial $\mathbb{F}_{\text {old }}^{i} \times \mathbb{F}_{\text {old }}^{i} \times \mathbb{F}_{\text {old }}^{d+k-i} \rightarrow \mathbb{F}_{\text {new }}$. Recall that there is an element $\alpha \in K$ such that all element $x \in K$ can be uniquely written as $x=y \cdot \alpha+z$ for $y, z \in F$.

We consider the following polynomial $\widetilde{H}_{k, i}^{\text {int }}: \mathbb{F}_{\text {old }}^{i} \times \mathbb{F}_{\text {old }}^{i} \times \mathbb{F}_{\text {old }}^{d+k-i} \rightarrow \mathbb{F}_{\text {new }}$, defined as

$$
\widetilde{H}_{k, i}^{\mathrm{int}}(y, z, w)=H_{k, i}^{\mathrm{int}}(y \cdot \alpha+z, w)
$$

where $y, z \in \mathbb{F}_{\text {old }}^{i}$ and $w \in \mathbb{F}_{\text {old }}^{d+k-i}$, and the operators in $y \cdot \alpha+z$ are coordinate-wise scalar multiplication and addition.
$\widetilde{H}_{k, i}^{\text {int }}$ has the same degree of $H_{k, i}^{\text {int }}$, and is indeed the same function as $H_{k, i}^{\text {int }}$. Therefore, the robust property and weakly error correctability can be established similarly when $L_{m}^{\text {PSPACE }}$ computes $F_{k, i}^{\text {trans }}$.
$L^{\text {PSPACE }}$ is $\mathbf{T C}^{0}$ Same-length Checkable. Suppose we want to check whether $F_{k}(x, y, r)=1$ given an oracle O which is supposed to compute F_{k} (the case for checking whether $F_{k}(x, y, r)=0$ is analogous). Suppose $g_{k}=f_{n, i}$, and let $\ell=\operatorname{pow}(n)$. Note that given an oracle for F_{k}, one can ask it ℓ times to get $G_{k}(x, y)$ for any valid x, y.

We first query the oracle O to get $G_{k}(x, y)$, and reject immediately if it is not consistent with $F_{k}(x, y, r)$. Since $G_{k}(x, y)=\sum_{i=1}^{k} g_{k}(x) \cdot y_{i}$, we next ask the oracle O to get $g_{1}(x)=$ $G_{k}(x, 1,0, \ldots, 0), g_{2}(x)=G_{k}(x, 0,1,0, \ldots), \ldots, g_{k}(x)=G_{k}(x, 0,0, \ldots, 0,1)$. We reject immediately if these queried values are not consistent with $G_{k}(x, y)$. Now we can use the original instance checker in [TV07, FS04] to check whether these obtained $g_{i}(x)$'s are correct.

Therefore, now it suffices to show that the instance checker of [TV07, FS04] can be implemented by a uniform polynomial size TC^{0} circuit. Suppose we want to check the value of $f_{n, i}(x)$ for some n and i, given oracle access to alleged polynomials $\widetilde{f}_{n, i}, \widetilde{f}_{n, i+1}, \ldots, \widetilde{f}_{n, m(n)}$, which are supposed to compute the polynomials $f_{n, i}, f_{n, i+1}, \ldots, f_{n, m(n)}$ (by the way we order polynomials, these alleged polynomials are accessible given the oracle O).

For all $i<m(n), f_{n, i}(x)$ has $\ell=t(n, i)$ variables, recall that it is defined in terms of $f_{n, i+1}$ using one of the following rules:

$$
\begin{align*}
f_{n, i}\left(x_{1}, \ldots, x_{\ell}\right) & =f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 0\right) \cdot f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 1\right) . \tag{4}\\
f_{n, i}\left(x_{1}, \ldots, x_{\ell}\right) & =1-\left(1-f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 0\right)\right) \cdot\left(1-f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, 1\right)\right) . \tag{5}\\
f_{n, i}\left(x_{1}, \ldots, x_{k}, \ldots, x_{\ell}\right) & =x_{k} \cdot f_{n, i+1}\left(x_{1}, \ldots, 1, \ldots, x_{\ell}\right)+\left(1-x_{k}\right) \cdot f_{n, i+1}\left(x_{1}, \ldots, 0, \ldots, x_{\ell}\right) . \tag{6}
\end{align*}
$$

Let $D=\operatorname{poly}(n)$ be a degree bound on all the polynomials $f_{n, i}, f_{n, i+1}, \ldots, f_{n, m(n)}$. Suppose we want to check whether $f_{n, i}\left(x_{1}, \ldots, x_{\ell}\right)=T_{i}$, the instance checker works as follows:

- For case (1) and case (2), we first query the oracle polynomials $\widetilde{f}_{n, i+1}$ on points $\left(x_{1}, \ldots, x_{\ell}, z\right)$ for $z \in\{0,1,2, \ldots, D\}$, and interpolate a polynomial $P_{i}(z)$ of degree D, which is supposed to be the polynomial $f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, z\right)$.
- We first check whether $P_{i}(0) \cdot P_{i}(1)=T_{i}$ in case (1), or $1-\left(1-P_{i}(0)\right) \cdot\left(1-P_{i}(1)\right)=T_{i}$ in case (2), and reject immediately if they are not satisfied.
- We pick a random value $z_{i} \in \mathbb{F}_{n}$, and proceed to check whether $f_{n, i+1}\left(x_{1}, \ldots, x_{\ell}, z_{i}\right)=$ $P_{i}\left(z_{i}\right)$.
- For case (3), we first query the oracle polynomials $\widetilde{f}_{n, i+1}$ on points ($x_{1}, \ldots, x_{k-1}, z, x_{k+1}, \ldots, x_{\ell}$) for $z \in\{0,1,2, \ldots, D\}$, and interpolate a polynomial $P_{i}(z)$ of degree D, which is supposed to be the polynomial $f_{n, i+1}\left(x_{1}, \ldots, x_{k-1}, z, x_{k+1}, \ldots, x_{\ell}\right)$.
- We first check whether $x_{k} \cdot P_{i}(1)+\left(1-x_{k}\right) \cdot P_{i}(0)=T_{i}$.
- We pick a random value $z_{i} \in \mathbb{F}_{n}$, and proceed to check whether $f_{n, i+1}\left(x_{1}, \ldots, x_{k-1}, z_{i}, x_{k+1}\right.$, $\left.\ldots, x_{\ell}\right)=P_{i}\left(z_{i}\right)$.
- Finally, when we reach the stage of checking whether $f_{n, m(n)}\left(x_{1}, x_{2}, \ldots, x_{t(n, m(n))}\right)=T_{m(n)}$. We simply evaluate the polynomial $f_{n, m(n)}$ on the given point and reject it is not equal to $T_{m(n)}$.

The correctness of the instance checker follows directly from the proof of IP $=$ PSPACE [LFKN92, Sha92]. Now we show it can be implemented in uniform TC 0.

First notice that we can draw all the random values $z_{i}, z_{i+1}, \ldots, z_{m(n)}$ in the beginning, and each interpolated polynomials P_{i} are completed determined by the input $x_{1}, x_{2}, \ldots, x_{\ell}$, the random values z_{i} 's, and the oracle polynomial $\widetilde{f}_{n, i}$'s. By Lagrange's formula and [HV06], all P_{i} 's can be computed by uniform TC^{0} non-adaptive oracle circuits with the oracle O.

After constructing the polynomials, one can see the instance checker only needs to perform some additional consistency checks. Note that we have $T_{i+1}=P_{i}\left(z_{i}\right)$, so all consistency checks only involve at most two polynomials P_{i} and P_{i+1}, and they can be easily implemented by uniform TC ${ }^{0}$ circuits, again by [HV06].

Handling $F_{k, i}^{\text {trans }}$. When $L_{m}^{\text {PSPACE }}$ computes $F_{k, i}^{\text {trans }}$, the only complication is that now all these polynomials $f_{n, i}$ are over the domain $\mathbb{F}_{\text {new }}^{t} \times \mathbb{F}_{\text {old }}^{\ell-t}$ for some t. The above argument still works with minor modifications.
$L^{\text {PSPACE }}$ is TC 0 Downward Self-reducible. Finally, we show how to compute $L_{m}^{\text {PSPACE }}$ given an oracle to $L_{m-1}^{\text {PSPACE }}$. Note that we can ignore the trivial case where both $L_{m}^{\text {PSPACE }}$ and $L_{m-1}^{\text {PSPACE }}$ compute the same function. We first consider the case that $L_{m}^{\text {PSPACE }}$ and $L_{m-1}^{\text {PSPACE }}$ compute the function F_{k} and F_{k-1} respectively.

To compute $F_{k}(x, y, r)$, it suffices to compute $G_{k}(x, y)$. Computing $G_{k}(x, y)$ can be in turn reduced to computing $g_{1}(x), g_{2}(x), \ldots, g_{k}(x)$. Recall that these $g_{i}(x)$'s are defined by one of the rules (4), (5) and (6), we can see either $g_{i}(x)$ is itself computable by a uniform TC^{0} circuit (it is $f_{n, m(n)}$ for some n), or it can be computed by a uniform TC 0 non-adaptive oracle circuit with g_{i-1} as the oracle [HV06].

Given oracle access to F_{k-1}, we also get the access to polynomials $g_{1}(x), g_{2}(x), \ldots, g_{k-1}(x)$, and therefore we can compute each $g_{1}(x), g_{2}(x), \ldots, g_{k}(x)$ with a uniform TC^{0} non-adaptive oracle circuit with the oracle F_{k-1}. Combing them with another TC ${ }^{0}$ circuit on the top, we can compute $F_{k}(x, y, r)$ with a uniform TC^{0} non-adaptive oracle circuit with the oracle F_{k-1}, which completes the proof.

Handling $F_{k, i}^{\text {trans }}$. There are three non-trivial cases involving $F_{k, i}^{\text {trans }}$.

1. $L_{m-1}^{\text {PSPACE }}$ computes $F_{k}, L_{m}^{\text {PSPACE }}$ computes $F_{k, 0}^{\text {trans }}$ for a special k.
2. $L_{m-1}^{\text {PSPACE }}$ computes $F_{k, i}^{\text {trans }}, L_{m}^{\text {PSPACE }}$ computes $F_{k, i+1}^{\text {trans }}$ for a special k and $0 \leq i \leq d+k-1$.
3. $L_{m-1}^{\text {PSPACE }}$ computes $F_{k, d+k}^{\text {trans }}, L_{m}^{\text {PSPACE }}$ computes F_{k+1} for a special k.

Note that the third case can be handled similarly as the case involves F_{k} and F_{k-1}. For the first two cases, $L_{m}^{\text {PSPACE }}$ can be computed easily given an oracle to $L_{m-1}^{\text {PSPACE }}$ via interpolation, by the way we define $F_{k, i}^{\text {trans }}$'s.

9 NQP is not $1 / 2+o(1)$-approximable by Polynomial Size ACC $^{0} \circ$ THR Circuits

In this section we prove that NQP is not $(1 / 2+1 / \operatorname{polylog}(n))$-approximable by polynomial-size ACC ${ }^{0} \circ$ THR circuits.

In Section 9.1 we introduce some definitions and lemmas which will be helpful for our proof. In Section 9.2, we prove a $(1-\delta)$-inapproximability result for (NQP $\cap c o N Q P)^{\prime}(1)$ against $\mathrm{ACC}^{0} \circ$ THR circuits. And in Section 9.3, we apply mild to strong hardness amplification to obtain a $(1 / 2+$ $1 / \operatorname{polylog}(n))$-inapproximability result for $(\mathrm{NQP} \cap \operatorname{coNQP})_{/ O(1)}$ against $\mathrm{ACC}^{0} \circ$ THR circuits, and then apply an enumeration trick to get rid of that advice, and prove the same lower bound for NQP.

9.1 Preliminaries

We first introduce some definitions. For an integer $a \in \mathbb{N}$, we use $\operatorname{bin}(a)$ to denote the Boolean string representing a in binary (from the most significant bit to the least significant bit).

Given two integers $m, n \in \mathbb{N}$, we construct an integer pair (m, n) as follows. First letting $\ell=$ $|\operatorname{bin}(n)|$, we duplicate each bits in $\operatorname{bin}(\ell)$ and to get a string $z_{\text {len }}$ of length $2 \cdot|\operatorname{bin}(\ell)|$ (for example, if $\operatorname{bin}(\ell)=101$, we get 110011). Then we let $z=\operatorname{bin}(m) \circ \operatorname{bin}(n) \circ 01 \circ z_{\text {len }}$, where \circ means concatenation, and define pair (m, n) as the integer with binary representation z.

It is easy to see that pair $(m, n) \leq O\left(m n^{2}\right)$. Also, given the integer pair (m, n), one can easily decode the pair of number m and n.

$9.2(1-\delta)$ Average-Case Lower Bounds

We first show that there is a function in $(\mathrm{NQP} \cap \operatorname{coNQP})_{/ 2}$ which is not $(1-\delta)$-approximable by $\mathrm{ACC}^{0} \circ$ THR circuits, for a universal constant δ.

Theorem 9.1. For all constants a, there is an integer b, a universal constant $\delta>0$, such that ($N \cap \operatorname{coN}$)TIME $\left[2^{\log ^{b} n}\right]_{/ 2}$ is not $(1-\delta)$-approximable by $2^{\log ^{a} n}$ size $A C C^{0} \circ T H R$ circuits.

Remark 9.2. In other words, the conclusion of the above theorem is equivalent to that there is a language L in $(N \cap \operatorname{coN}) T I M E\left[2^{\log ^{b} n}\right]_{/ 2}$ which is not $(1-\delta)$-approximable by $2^{\log ^{a} n}$ size $A C_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuits, for all constants d_{\star}, m_{\star}.

We will prove a weaker theorem first, and then show it implies Theorem 9.1.
Theorem 9.3. For all constants a, d_{\star}, m_{\star}, there is an integer b, a universal constant $\delta>0$, and a language L in ($N \cap \operatorname{coN}$)TIME $\left[2^{\log ^{b} n}\right]_{/ 2}$ such that L is not $(1-\delta)$-approximable by $2^{\log ^{a} n}$-size $A C_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuits .

Proof. Let b be an integer to be specified later and δ be the universal constant in Theorem 6.3. Now for the sake of contradiction, suppose all languages in ($\mathrm{N} \cap \operatorname{coN}$)TIME[$\left.2^{\log ^{b} n}\right]_{/ 2}$ have a $2^{\log ^{a} n_{-}}$ size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuit family which computes it correctly on a $1-\delta$ fraction of inputs for all sufficiently large input length n.

We first apply Theorem 7.5. Let b_{1} and c_{1} be such that there is a language $L^{\text {hard }} \in(\mathrm{MA} \cap$ coMA)TIME $\left(2^{\log ^{b_{1}} n}\right)_{/ 2}$ specified by Algorithm 5 and Algorithm 6, such that for all sufficiently large $\tau \in \mathbb{N}$ and $n=2^{\tau}$, either

- heur ${ }_{0.99}-\operatorname{DEPTH}\left(L_{n}^{\text {hard }}\right)>\log ^{2 a} n$, or
- heur $_{0.99}$ - DEPTH $\left(L_{m}^{\text {hard }}\right)>\log ^{2 a} m$, for an $m \in\left(2^{\log ^{c_{1}} n}, 2^{\log ^{c_{1}} n+1}\right) \cap \mathbb{N}$.

Now we try to derandomize $L^{\text {hard }}$ non-deterministically, and get a contradiction. In the following we always assume n is sufficiently large.

By Theorem 6.3, there is a constant b_{2}, such that the following holds for an infinite number of n 's (we call them good n 's):

- Let $S_{\text {derand }}(n)=2^{\log ^{2 b_{1} c_{1}^{2}} n}$.
- There is a polynomial time algorithm $V(x, y)$ with $|x|=\log ^{b_{2}} n$ and $|y|=2^{\log ^{b_{2}} n}$ computable in $2^{O\left(\log ^{2} n\right)}$ time.
- $V\left(1^{\log ^{b_{2}} n}, \cdot\right)$ is satisfiable, and for all y such that $V\left(1^{\log ^{b_{2}} n}, y\right)=1, G_{y}:\{0,1\}^{O\left(\log ^{b_{2}} n\right)} \rightarrow$ $\{0,1\}^{S_{\text {derand }}(n)}$ is a PRG which $1 / S_{\text {derand }}(n)$ fools all $\log S_{\text {derand }}(n)$ depth NC circuits, and computable in $2^{O\left(\log ^{b} n\right)}$ time.

Now, for all these good n 's. Let n_{1} be the largest power of 2 which is no greater than n.
We first provide an informal description of our non-deterministic algorithm. There are two cases according to Theorem 7.5.

- When heur $0_{0.99}-\operatorname{DEPTH}\left(L_{n_{1}}^{\text {hard }}\right)>\log ^{2 a} n_{1}$. On inputs of length n, we apply the PRG with parameter n, and try to compute $L_{n_{1}}^{\text {hard }}$ on the first n_{1} bits in $2^{O\left(\log ^{b_{2}} n\right)}$ time.
- When heur $0_{0.99}$-DEPTH $\left(L_{m}^{\text {hard }}\right)>\log ^{2 a} m$, for an $m \in\left(2^{\log _{1} n_{1}}, 2^{\log ^{c_{1}} n_{1}+1}\right) \cap \mathbb{N}$. Now, on an input of length $n_{2}=$ pair $(m, n)=O\left(m n^{2}\right)$, we apply the PRG with parameter n, and try to compute $L_{m}^{\text {hard }}$ on the first m bits in $2^{O\left(\log ^{b_{2}} n\right)} \leq 2^{O\left(\log ^{b_{2}} n_{2}\right)}$ time.

Formally, the algorithm is specified in Algorithm 7, with a key sub-routine given in Algorithm 8. The advice bits y_{n} and z_{n} are set by Algorithm 9. It is not hard to see that a y_{n} or a z_{n} can only be set once.

```
Algorithm 7: Non-deterministic Derandomization of \(L^{\text {hard }}\)
    Given an input \(x\) with length \(n=|x|\);
    Given advice bits \(y=y_{n} \in\{0,1\}\) and \(z=z_{n} \in\{0,1\}\);
    if \(y=0\) then
        Let \(n_{1}\) be the largest power of 2 which is no greater than \(n\);
        ( \(y=0\) indicates we are in the case that heur \(0_{099}-\operatorname{DEPTH}\left(L_{n_{1}}^{\text {hard }}\right)>\log ^{2 a} n_{1}\) and \(n\) is
            good.);
        Let \(w\) be the first \(n_{1}\) bits of \(x\);
        Derand \(\left(w, z_{n}, n\right)\);
    else
        Parse \(n\) as two integers \(\left(m_{0}, n_{0}\right)\) (that is, \(n=\operatorname{pair}\left(m_{0}, n_{0}\right)\) );
```



```
        good.);
        Let \(w\) be the first \(m_{0}\) bits of \(x\);
        Derand \(\left(w, z_{n}, n_{0}\right)\);
```

```
Algorithm 8: Derand \(\left(x, z, n_{0}\right)\)
    Given an input \(x\) with length \(n=|x|, z \in\{0,1\}\) and \(n_{0}\);
    2 ( \(z\) is supposed to be the advice for \(L^{\text {hard }}\) on input length \(n\) and \(n_{0}\) is suppose to be good.);
    3 (In the following the algorithm tries to derandomize Algorithm 5 with the corresponding
    advice z.);
    if \(z=0\) then
        Output 0 and terminate
    6 According to whether \(n\) is a power of 2 and Algorithm 5, compute \(z\) and \(\ell\) such that
        \(L_{n}^{\text {hard }}(x)=L_{\ell}^{\text {PSPACE }}(z)\), and guess an NC circuit \(C\) of depth \(D=D(n)\);
    Compute in poly \((\ell)\) time a \(\mathrm{TC}^{0}\) instance checker \(D_{\text {checker }}^{?}\) for \(L_{\ell}^{\text {PSPACE }}\);
    8 Guess a \(y_{\text {hard }}\) such that \(V\left(1^{\log ^{b_{2}} n_{0}}, y_{\text {hard }}\right)=1\);
    for \(w \leftarrow\{0,1, ?\}\) do
        \(p_{w}=\operatorname{Pr}_{r \leftarrow\{0,1\}}^{\circ} \circ\left(\log ^{\left.b_{2} n_{0}\right)}\right)\left[D_{\text {checker }}^{C}\left(x, G_{y_{\text {hard }}}(r)\right)=w\right] ;\)
    if \(p_{1}>0.66\) then
        Output 1 and terminate
    if \(p_{0}>0.66\) then
        Output 0 and terminate
    15 Output?;
```

```
Algorithm 9: The algorithm for setting advice bits of Algorithm 7
    All \(y_{n}\) 's and \(z_{n}\) 's are set to 0 by default;
    Let \(\operatorname{adv}=\left\{\operatorname{adv}_{n}\right\}_{n \in \mathbb{N}}\) be the advice sequence for \(L^{\text {hard }}\);
    for \(n=1 \rightarrow \infty\) do
        if \(n\) is good then
            Let \(n_{1}\) be the largest power of 2 which is no greater than \(n\);
            if heur \({ }_{0.99}-D E P T H\left(L_{n_{1}}^{\text {hard }}\right)>\log ^{2 a} n_{1}\) then
                \(y_{n}=0\);
                \(z_{n}=\operatorname{adv}_{n_{1}} ;\)
            else
                Let \(m\) be an integer from \(\left(2^{\log ^{c_{1}} n_{1}}, 2^{\log ^{c_{1}} n_{1}+1}\right) \cap \mathbb{N}\) such that
                heur \(_{0.99}-\) DEPTH \(\left(L_{m}^{\text {hard }}\right)>\log ^{2 a} m\);
                \(n_{2}=\operatorname{pair}(m, n)\);
                \(y_{n_{2}}=1\);
                \(z_{n_{2}}=\operatorname{adv}_{m} ;\)
```

Analysis of the algorithm. It is easy to see that $L \in \operatorname{NTIME}\left[2^{\log ^{b_{2}+1} n}\right]_{/ 2}$; we set $b \geq b_{2}+1$. Then by our assumption, L can be $(1-\delta)$-approximated by $2^{\log ^{a} n_{-s i z e}} \mathrm{AC}_{d_{\star}}\left[m_{\star}\right]$ circuits on all sufficiently large input length n. In particular, it also implies that L can be $(1-\delta)$-approximated by $O\left(\log ^{a} n\right)$-depth NC circuits on all sufficiently large input length n.

Analysis of Derand $\left(x, z, n_{0}\right)$. Next, we say an execution of $\operatorname{Derand}\left(x, z, n_{0}\right)$ is correct, if z is the correct advice of $L_{|x|}^{\text {hard }}, n_{0}$ is good, and $2^{\log ^{c} n_{0}+1}>|x|=n$. We first show that on a correct execution of $\operatorname{Derand}\left(x, z, n_{0}\right)$, it non-deterministically computes $L^{\text {hard }}(x)$ (with respect to Definition 2.9). We can assume the corresponding $z=1$ because otherwise it is trivial. Note that in both cases (whether n is a power of 2 in Algorithm 5), we have $\ell \leq 2^{\log ^{c_{1}} n}$ and $D \leq \log ^{b_{1}} n$. Therefore, $D_{\text {checker }}^{C}$ is equivalent to a depth $O\left(\log ^{c_{1}} n+\log ^{b_{1}} n\right) \leq \log S\left(n_{0}\right)=\log ^{2 b_{1} c_{1}^{2}} n_{0}$ circuit $\left(\log ^{c_{1}} n_{0}+1>\log n\right)$. Hence, since n_{0} is good, for any $y_{\text {hard }}$ such that $V\left(1^{\log ^{b_{2}} n_{0}}, y_{\text {hard }}\right)=1, G_{y_{\text {hard }}} 1 / S\left(n_{0}\right)$-fools $D_{\text {checker }}^{C}$, and it follows that $\operatorname{Derand}\left(x, z, n_{0}\right)$ non-deterministically computes $L^{\text {hard }}(x)$.

Contradiction. Finally, we show the above is a contradiction. Since there are infinite good n's, either Line 7 or Line 12 of Algorithm 9 is executed for an infinite number of times. We consider the following two cases.

- For an infinite number of good n 's, heur $0_{0.99}$-DEPTH $\left(L_{n_{1}}^{\text {hard }}\right)>\log ^{2 a} n_{1}$. In this case, L_{n} computes $L_{n_{1}}^{\text {hard }}$ for all these n 's, and therefore heur ${ }_{0.99}-$ DEPTH $\left(L_{n}\right)=\operatorname{heur}_{0.99}$-DEPTH $\left(L_{n_{1}}^{\text {hard }}\right) \geq$ $\log ^{2 a} n_{1}=\omega\left(\log ^{a} n\right)$, contradiction.
- For an infinite number of good n 's, heur ${ }_{0.99}$-DEPTH $\left(L_{n_{1}}^{\text {hard }}\right) \leq \log ^{2 a} n_{1}$. In this case, $L_{n_{2}}$ computes $L_{m}^{\text {hard }}$ for all these $n_{2}=n_{2}(n)$'s, and therefore heur ${ }_{0.99}$-DEPTH $\left(L_{n_{2}}\right)=$ heur ${ }_{0.99}$-DEPTH $\left(L_{m}^{\text {hard }}\right) \geq$ $\log ^{2 a} m \geq \omega\left(\log ^{a} n_{2}\right)\left(m \leq n_{2} \leq O\left(m n^{2}\right), m \geq 2^{\Omega\left(\log ^{c} n\right)}\right)$, contradiction.

Now, we show Theorem 9.3 implies Theorem 9.1.
Proof of Theorem 9.1. Let $b \geq 1$ be an integer to be specified later, and δ be the universal constant in Theorem 9.3.

For the sake of contradiction, suppose all languages in (N $\cap c o N$)TIME $\left[2^{\log ^{b} n}\right]_{/ 2}$ have a $2^{\log ^{a} n}$-size $\mathrm{ACC}^{0} \circ$ THR circuit family which computes it correctly on a $1-\delta$ fraction of inputs for all sufficiently large input length n.

In particular, the uniform NC^{1} languages considered in the proof of Theorem 5.3 (see Remark 5.4) can be ($1-\delta$)-approximated by $2^{\log ^{a} n^{n}}$-size $\mathrm{AC}_{d_{0}}\left[m_{\circ}\right] \circ$ THR circuit families, for two constants d_{\circ}, m_{\circ}. Therefore, by Theorem 5.3, there exist constants c_{e}, c_{d} such that any depth d-NC circuit has an equivalent $2^{c_{e} \cdot d^{a}}$-size $\mathrm{AC}_{d_{\circ}+c_{d}}\left[m_{\circ}\right] \circ$ THR circuit.

Note there is a universal constant c_{w} such that, for all constants d_{\star} and m_{\star}, a $2^{\log ^{a}{ }^{n} \text {-size }}$ $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuit has an equivalent $c_{w} \cdot \log ^{a} n$-depth NC circuit, which in turn has an equivalent

Finally, by Theorem 9.3, there is a language $L \in(\mathrm{~N} \cap \operatorname{coN}) \operatorname{TIME}\left[2^{\log ^{b} n}\right]_{/ 2}$ (now we set b) such that L is not $(1-\delta)$-approximable by $2^{\log ^{a^{2}+1} n}$-size $\mathrm{AC}_{d_{\circ}+c_{d}}\left[m_{\circ}\right] \circ$ THR circuits. By the previous discussion, it follows that L is also not $(1-\delta)$-approximable by $2^{\log ^{a} n} n_{-s i z e} \mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuits for all constants d_{\star}, m_{\star}, contradiction.

Remark 9.4. We remark here that the above proof is in fact non-constructive: it doesn't give an explicit bound on the integer b.

$9.31 / 2+1 / \operatorname{polylog}(n)$ Average-Case Lower Bounds

Finally, we prove Theorem 1.1 from Theorem 9.1 and hardness amplification.
We first define black-box hardness amplification.
Definition 9.5. A $(1 / 2-\varepsilon, \delta)$-black-box hardness amplification from input length k to input length $n=n(k)$ is a pair (Amp, Dec) where Amp is an oracle Turing machine that computes a (sequence of) boolean function on n bits, Dec is a randomized oracle Turing machine on k bits which also takes an advice string of length $a=a(k)$, and for which the following holds. For every pair of functions $f:\{0,1\}^{k} \rightarrow\{0,1\}$ and $h:\{0,1\}^{n} \rightarrow\{0,1\}$ such that

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[h(x)=\operatorname{Amp}^{f}(x)\right]>1 / 2+\varepsilon,
$$

there is an advice string $\alpha \in\{0,1\}^{a}$ such that

$$
\operatorname{Pr}_{x \sim\{0,1\}^{k}}\left[\operatorname{Dec}^{h}(x, \alpha)=f(x)\right]>1-\delta .
$$

Next we state the hardness amplification result we need. ${ }^{20}$
Theorem 9.6 ([IJKW10]). For all constants $\delta>0$, and a real $\varepsilon=k^{-o(1)}$, there is a $(1 / 2-$ $\varepsilon, \delta)$-black-box hardness amplification from input length k to input length $n=O\left(k^{2}\right)$ with oracle Turing machine pair (Amp,Dec). Moreover, $\operatorname{Amp}^{f}(x)$ can be computed in poly $(n, 1 / \varepsilon)$ time for all $x \in\{0,1\}^{n}$, and Dec? can be implemented by a constant-depth circuit of size poly $(n, 1 / \varepsilon)$, with unbounded fan-in AND, OR gates and majority gates of fan-in $\Theta(1 / \varepsilon)$.

[^13]Remark 9.7. Since a majority gate of $\Theta(1 / \varepsilon)$ fan-in can be computed by an $\exp (1 / \varepsilon)$-size A^{0} circuit, the decoder can also be implemented by an A^{0} circuit of size $\operatorname{poly}(n, \exp (1 / \varepsilon))$.

We first prove the following lemma with 2 bits of advice.
Lemma 9.8. For all constants a, c, there is an integer b and a language L in ($N \cap \operatorname{coN}$)TIME $\left[2^{\log ^{b} n}\right]_{/ 2}$ such that L is not $\left(1 / 2+1 / \log ^{c} n\right)$-approximable by $2^{\log ^{a} n}$-size $A C C^{0} \circ T H R$ circuits.
Proof. By Theorem 9.1, there is an integer b_{1} and a language L^{\prime} in ($\mathrm{N} \cap \operatorname{coN}$)TIME $\left[2^{\log ^{b_{1}} n}\right]_{/ 2}$ such that L^{\prime} is not $(1-\delta)$-approximable by $2^{\log ^{a_{1}} n}$-size $\mathrm{ACC}^{0} \circ$ THR circuits, for a universal constant δ, and a constant a_{1} to be specified later.

Let $b=b_{1}+1$. Applying Theorem 9.6 , we construct another language L, such that on input length of $n=n(k)=O\left(k^{2}\right)$ (we can assume without of loss of generality that the function $n: \mathbb{N} \rightarrow \mathbb{N}$ is injective), L_{n} computes the function Amp ${ }^{L_{k}^{\prime}}$ with $\varepsilon=1 / \log ^{c} n$. Clearly, L is in (N $\cap \operatorname{coN}$)TIME $\left[2^{\log ^{b} n}\right]_{/ 2}$.

By theorem 9.6. For all constants d_{\star}, m_{\star}, if $L_{n}=$ Amp ${ }^{L_{k}^{\prime}}$ can be $(1 / 2+\varepsilon)$-approximated by a $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR of size $2^{\log ^{a} n}$. Then L_{k}^{\prime} can be $(1-\delta)$-approximated by an

$$
(k \cdot \exp (1 / \varepsilon))^{O(1)} \cdot 2^{\log ^{a} n} \leq 2^{\log ^{a} n+O\left(\log ^{c} n\right)}
$$

size $\mathrm{AC}_{d_{\star}+c_{d}}\left[m_{\star}\right] \circ$ THR circuit, for a universal constant c_{d}.
Finally, we set $a_{1}=2 a c$. Then clearly $2^{\log ^{a_{1}} k} \geq 2^{\log ^{a} n+O\left(\log ^{c} n\right)}$. Now, for all constants d_{\star}, m_{\star}, we know that L^{\prime} is not $(1-\delta)$-approximable by $2^{\log ^{a_{1}} k_{-s i z e}} \mathrm{AC}_{d_{\star}+c_{d}}\left[m_{\star}\right] \circ$ THR circuits, and hence L is not $\left(1 / 2+1 / \log ^{c} n\right)$-approximable by $2^{\log ^{a} n}{ }^{n}$-size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuits. This implies that L is not $\left(1 / 2+1 / \log ^{c} n\right)$-approximable by $2^{\log ^{a} n}$-size ACC $^{0} \circ$ THR circuits.

Now, Theorem 1.1 follows from the same argument as in [COS18].
Proof of Theorem 1.1. By Lemma 9.8, there is an integer b and a language $L^{\prime} \in(\mathrm{N} \cap \operatorname{coN}) \mathrm{TIME}\left[2^{\log ^{b} n}\right]_{/ 2}$ such that L^{\prime} is not $\left(1 / 2+1 / \log ^{2 c} n\right)$-approximable by $2^{\log ^{2 a} n}$-size $\mathrm{ACC}^{0} \circ$ THR circuits. Let $w_{0}, w_{1}, w_{2}, w_{3} \in\{0,1\}^{2}$ be an enumeration of the set $\{0,1\}^{2}$.

NQP Lower Bounds. We first prove the case for NTIME $\left[2^{\log ^{b} n}\right]$. We define another language $L \in \operatorname{NTIME}\left[2^{\log ^{b} n}\right]$ as follows: on an input of length n, let $n^{\prime}=\lfloor n / 4\rfloor$ and $k=n-4 \cdot n^{\prime}, L_{n}$ simulates the non-deterministic algorithm for $L_{n^{\prime}}^{\prime}$ with advice w_{k}, on the first n^{\prime} bits of input.

By the construction of L^{\prime}, for all constants d_{\star}, m_{\star}, there is an infinite number of pairs $\left(n_{i}, a_{i}\right) \in$ $\mathbb{N} \times\{0,1,2,3\}$ such that the non-deterministic algorithm for $L_{n_{i}}^{\prime}$ with advice $w_{a_{i}}$ computes a function which is not $\left(1 / 2+1 / \log ^{2 c} n_{i}\right)$-approximable by $2^{\log ^{2 a}} n_{i}$ size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuits. By the construction of $L, L_{\left(4 \cdot n_{i}+a_{i}\right)}$ computes a function which is not $\left(1 / 2+1 / \log ^{2 c} n_{i}\right) \leq\left(1 / 2+1 / \log ^{c} n\right)$ approximable by $2^{\log ^{2 a} n_{i}} \geq 2^{\log ^{a} n}$ size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right] \circ$ THR circuits. Therefore, L is not $\left(1 / 2-1 / \log ^{c}\right)-$ approximable by $2^{\log ^{a} n}$-size ACC ${ }^{0} \circ$ THR circuits.
$(\text { NQP } \cap \operatorname{coNQP})_{/ 1}$ Lower Bounds. Now we prove the case for ($N \cap \operatorname{coN}$)TIME[2 $\left.2^{\log ^{b} n}\right]_{/ 1}$. We first define another language $L \in(\mathrm{~N} \cap \operatorname{coN}) \operatorname{TIME}\left[2^{\log ^{b} n}\right]_{/ 1}$ as follows: for an input length n, let $n^{\prime}=\lfloor n / 4\rfloor$ and $k=n-4 \cdot n^{\prime}$. We set the advice bit $a_{n}=1$ if and only if w_{k} is the correct advice for input length n^{\prime} of language L^{\prime}. When $a_{n}=1, L_{n}$ simulates $L_{n^{\prime}}^{\prime}$ with advice w_{k}, on the first n^{\prime} bits of input; Otherwise, L_{n} computes the all-zero function. A similar argument as the previous case completes the proof.

10 Generalization to Other Natural Circuit Classes

Most of our arguments are pretty generic, the only part that makes use of special properties of $\mathrm{ACC}^{0} \circ$ THR circuit is Lemma 6.1, which builds on the non-trivial SAT algorithm for this circuit class from [Wil14a]. (A non-trivial Gap-UNSAT algorithm also suffices in the argument.)

Therefore, as long as we have a non-trivial SAT or CAPP algorithm for a circuit class \mathscr{C}, then our argument can also be used to imply an average-case circuit lower bound against \mathscr{C}. In this section we sketch the proof for Theorem 1.3.

Reminder of Theorem 1.3. For a circuit class $\mathscr{C} \in\left\{T C^{0}\right.$, Formula, $\left.P_{/ \text {poly }}\right\}$, if for a constant $\varepsilon>0$, there is a $2^{n-n^{\varepsilon}}$ time non-deterministic Gap-UNSAT algorithm for $2^{n^{\varepsilon}}$-size \mathscr{C} circuits, then for all constants a, c, NQP is not $\left(1 / 2+1 / n^{c}\right)$-approximable by $2^{\log ^{a}{ }^{n}}$-size \mathscr{C} circuits.

Proof Sketch of Theorem 1.3. We first discuss how to prove a $(1-\delta)$-inapproximability result, for a universal constant δ. When $\mathscr{C}=\mathrm{TC}^{0}$ or Formulas, the proofs are exactly the same as the case for $\mathrm{ACC}^{0} \circ \mathrm{THR}$. (when $\mathscr{C}=$ Formulas, we don't even need Theorem 5.3 to get a collapse from NC ${ }^{1}$).

When $\mathscr{C}=\mathrm{P}_{\text {/ poly }}$, we can no longer use Theorem 7.5. But a similar argument can proceed with Corollary 7.7.

After that, we can use the same hardness-amplification in Theorem 9.6 , but since now \mathscr{C} can compute majority, we can prove a $\left(1 / 2+1 / n^{c}\right)$-inapproximability result, instead of a $\left(1 / 2+1 / \log ^{c} n\right)$ one.

11 Open Questions

There are several interesting questions stemming from this work:

- Can we prove more average-case lower bounds for NQP (or even NP) with the techniques in this paper? Recall that the well-known open question of constructing an explicit rigid matrix is just construct an average-case hard function for low-rank matrices. Can we construct an NP explicit rigid matrix for any non-trivial regimes of parameters by refining our approach? This would require us to both tighten our algorithm-to-circuit-lower-bounds connection and to find sufficient algorithms for certain tasks on low-rank matrices.

Or less ambitiously, can we construct an NP explicit function which cannot be approximated by $\omega(\sqrt{n})$ degree \mathbb{F}_{2} polynomials?

- We can only prove a $1 / 2+1 / \operatorname{poly} \log (n)$ inapproximability lower bound for NQP against $\mathrm{ACC}^{0} \circ$ THR. Can this be improved to a $1 / 2+1 / \operatorname{poly}(n)$ one? This could potentially lead us to an unconditional non-deterministic PRG for ACC^{0}, with poly-logarithmic seed length (the best non-deterministic PRG for ACC^{0} has seed length $n-n^{1-\delta}$ [COS18]).

Acknowledgment

I would like to thank my advisor, Ryan Williams, for his continuing support and countless valuable discussions during this work, for his suggestion to use a random self-reducible $N C^{1}$-complete problem to simplify the proof, also for many comments on an early draft of this paper.

I am grateful to Roei Tell for several detailed discussions on the proof and helpful suggestions on the presentation, in particular, for the discussion which leads to the alternative perspective in Section 4.2. I am also grateful to Chi-Ning Chou for suggestions on an early draft of this paper, and Mrinal Kumar for discussions on the complexity of the local-list decoder of Reed Solomon codes. I also would like to thank Hanlin Ren for catching an issue in the previous construction of the PSPACE-complete language.

I want to thank Josh Alman, Chi-Ning Chou, Shuichi Hirahara, Xuangui Huang, Nutan Limaye, Igor Carboni Oliveira, Zhao Song and Emanuele Viola for helpful discussions during this work, and FOCS reviewers for useful comments.

References

[AB84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30-May 2, 1984, Washington, DC, USA, pages 471-474, 1984.
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press, 2009.
[ACW16] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representations of threshold functions and algorithmic applications. In IEEE 57 th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 467-476, 2016.
[Ajt83] M Ajtai. Σ_{1}^{1}-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1-48, 1983.
[Ajt90] Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances In Computational Complexity Theory, Proceedings of a DIMACS Workshop, New Jersey, USA, December 3-7, 1990, pages 1-20, 1990.
$\left[\mathrm{ALM}^{+} 98\right]$ Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501555, 1998.
[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. J. ACM, 45(1):70-122, 1998.
[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. TOCT, 1(1):2:1-2:54, 2009.
[Bab87] László Babai. Random oracles separate PSPACE from the polynomial-time hierarchy. Inf. Process. Lett., 26(1):51-53, 1987.
[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC ${ }^{1}$. J. Comput. Syst. Sci., 38(1):150-164, 1989.
[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the $\mathrm{P}=$? NP question. SIAM J. Comput., 4(4):431-442, 1975.
[BHLR19] Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao. Torus polynomials: An algebraic approach to ACC lower bounds. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages 13:1-13:16, 2019.
[$\left.\mathrm{BIP}^{+} 18\right]$ Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring crypto dark matter: - new simple PRF candidates and their applications. In Theory of Cryptography - 16th International Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part II, pages 699-729, 2018.
[BSV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In International Colloquium on Automata, Languages, and Programming, pages 163-173. Springer, 2014.
[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning algorithms from natural proofs. In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 10:1-10:24, 2016.
[COS18] Ruiwen Chen, Igor Carboni Oliveira, and Rahul Santhanam. An average-case lower bound against ACC 0. In LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 317-330, 2018.
[CP16] Shiteng Chen and Periklis A. Papakonstantinou. Depth-reduction for composites. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 99-108, 2016.
[CT19] Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits "just beyond" known lower bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 34-41, 2019.
[CW19] Lijie Chen and Ryan Williams. Stronger connections between circuit analysis and circuit lower bounds, via PCPs of proximity. 2019. To appear in the proceedings of CCC 2019.
[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial time. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 316-324, 2004.
[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13-27, 1984.
[GGH $\left.{ }^{+} 07\right]$ Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum. Verifying and decoding in constant depth. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 440-449, 2007.
[GII ${ }^{+}$19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, and Avishay Tal. $\mathrm{AC}_{0}[p]$ lower bounds against MCSP via the coin problem. 2019. To appear in the proceedings of ICALP 2019.
[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 25-32, 1989.
[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University Press, 2008.
[GR08] Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 11th International Workshop, APPROX 2008, and 12th International Workshop, RANDOM 2008, Boston, MA, USA, August 25-27, 2008. Proceedings, pages 455-468, 2008.
[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive procedures with advice, and lower bounds on hardness amplification proofs. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 956-966, 2018.
[Hås89] Johan Håstad. Almost optimal lower bounds for small depth circuits. Advances in Computing Research, 5:143-170, 1989.
[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields of characteristic two. In STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006, Proceedings, pages 672-683, 2006.
[HVV06] Alexander Healy, Salil P. Vadhan, and Emanuele Viola. Using nondeterminism to amplify hardness. SIAM J. Comput., 35(4):903-931, 2006.
[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct product theorems: Simplified, optimized, and derandomized. SIAM J. Comput., 39(4):1637-1665, 2010.
[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672-694, 2002.
[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 20-31, 1988.
[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof systems. J. ACM, 39(4):859-868, 1992.
[MW18] Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasipolytime: an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 890-901, 2018.
[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-167, 1994.
[O’D04] Ryan O'Donnell. Hardness amplification within NP. J. Comput. Syst. Sci., 69(1):68-94, 2004.
[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR, 41(4):333-338, 1987.
[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., $55(1): 24-35,1997$.
[San09] Rahul Santhanam. Circuit lower bounds for merlin-arthur classes. SIAM J. Comput., 39(3):1038-1061, 2009.
[SFM78] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeterministic time complexity classes. J. ACM, 25(1):146-167, 1978.
[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869-877, 1992.
[Sho88] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. In 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26 October 1988, pages 283-290, 1988.
[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 77-82, 1987.
[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci., 62(2):236-266, 2001.
[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J. Comput., 39(7):3122-3154, 2010.
[Tam16] Suguru Tamaki. A satisfiability algorithm for depth two circuits with a sub-quadratic number of symmetric and threshold gates. Electronic Colloquium on Computational Complexity (ECCC), 23:100, 2016.
[Tel18] Roei Tell. Quantified derandomization of linear threshold circuits. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 855-865, 2018.
[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity, 16(4):331-364, 2007.
[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci., 67(2):419-440, 2003.
[Vio09] Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity, 18(3):337-375, 2009.
[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM Journal on Computing, 42(3):1218-1244, 2013.
[Wil14a] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 194-202, 2014.
[Wil14b] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM (JACM), 61(1):2, 2014.
[Wil16] Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497529, 2016.
[Wil18] Ryan Williams. Limits on representing boolean functions by linear combinations of simple functions: Thresholds, relus, and low-degree polynomials. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 6:16:24, 2018.
[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary version). In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985, pages 1-10, 1985.
[Zák83] Stanislav Zák. A turing machine time hierarchy. Theor. Comput. Sci., 26:327-333, 1983.

A PRG Construction for Low-Depth Circuits

In this section we sketch the proof of Theorem 2.1, which is a simple combination of the local-list deocdable codes in [GR08] and the Nisan-Wigderson PRG construction [NW94].

Reminder of Theorem 2.1. Let $\delta>0$ be a constant. There are universal constants c and g, and a function $G:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that, if $Y:\{0,1\}^{\ell} \rightarrow\{0,1\}$ does not have ℓ^{δ}-depth NC circuit, then for $S=2^{\ell^{c \cdot \delta}}$, and for all NC circuit C with depth $\log (S)$,

$$
\left|\operatorname{Pr}_{x \in\{0,1\}^{w}}[C(G(Y, x))=1]-\operatorname{Pr}_{x \in\{0,1\}^{S}}[C(x)=1]\right|<1 / S,
$$

where $w=\ell^{g}$. That is, $G(Y, \cdot) 1 / S$-fools all $\log S$-depth $N C$ circuits. Moreover, G is computable in $2^{O(\ell)}$ time.

Proof Sketch. Given such a function Y, we first apply the local-list decodable codes construction in [GR08] to turn it into a sufficiently average-case hard function against low-depth circuit (the decoder in [GR08] has a low-depth implementation). Now we can simply plug the resulting function into the Nisan Wigderson PRG construction [NW94], which completes the proof.

Remark A.1. It is also possible to prove the above theorem using the pseudoentropy generator from [STV01] and a low-depth computable extractor (see, e.g. [Tel18] and [CT19] for a construction in sparse $\left.T C^{0}\right)$.

B TC 0 Collapses to ACC 0 if Uniform TC 0 can be Approximated by ACC ${ }^{0}$

In this section we provide a proof that TC^{0} collapses to ACC^{0} if uniform TC^{0} can be approximated by ACC^{0}. Note that the conclusion here is weaker than Theorem 5.3; we include this because the proof is very elementary and does not rely on Barrington's theorem, and also starts with a weaker assumption. ${ }^{21}$

To show TC ${ }^{0}$ collapses to ACC^{0}, it suffices to show that MAJ is in ACC^{0}.
Lemma B.1. Let $S: \mathbb{N} \rightarrow \mathbb{N}$ be a size parameter and d, m be two constants. Suppose all languages in uniform $T C^{0}$ can be 0.99-approximated by S-size $A C_{d_{\star}}\left[m_{\star}\right]$ circuit families. Then MAJ can be computed by a $\operatorname{poly}(S, n)$ size $A C_{d_{\star}+O(1)}\left[m_{\star}\right]$ circuit family.

Proof. The following proof is similar to the self-error correction of the parity function ${ }^{22}$.
Construction of the Function g in Uniform TC 0. We first construct a function in uniform TC^{0}, which encodes MAJ in a nice way. Suppose n is a power of 2 for simplicity. Letting $n=2^{\ell}$, we fix a natural bijection between $\{0,1\}^{\ell}$ and $\mathbb{Z}_{2^{\ell}}$. We also define $\operatorname{Sum}_{n}:\{0,1\}^{n \cdot \ell} \rightarrow\{0,1\}^{\ell}$, as the summation of n numbers from the group $\mathbb{Z}_{2^{\ell}}$.

Now we define a function $g:\{0,1\}^{n \cdot \ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}$, as

$$
g(x, y):=\operatorname{Sum}_{n}(x) \cdot y,
$$

where the inner product is over $\operatorname{GF}(2) .\left(g(x, \cdot)\right.$ is just the Walsh-Hadamard encoding of Sum $\left.{ }_{n}(x).\right)$
From now on we assume n is large enough. Clearly, since both Sum_{n} and inner product over \mathbb{F}_{2} have uniform TC^{0} circuits, g has uniform TC^{0} circuits. Therefore by our assumption, g can be 0.99 -approximated by an $S(2 n \log n)$-size $\mathrm{AC}_{d_{\star}}\left[m_{\star}\right]$ circuit C_{g}. That is,

$$
\operatorname{Pr}_{x \in\{0,1\}^{n \cdot \ell}} \operatorname{Pr}_{y \in\{0,1\}^{\ell}}\left[C_{g}(x, y)=g(x, y)\right] \geq 0.99
$$

Construction of an ACC Circuit D Approximating Sum $_{n}$ from C_{g}. By a simple Markov's inequality, for at least a 0.9 fraction of x from $\{0,1\}^{n \cdot \ell}$, we have

$$
\operatorname{Pr}_{y \in\{0,1\}^{\ell}}\left[C_{g}(x, y)=g(x, y)\right] \geq 0.9 .
$$

We call an x good if it satisfies the above condition. We can use the following simple decoding algorithm to find an ACC circuit $D:\{0,1\}^{n \cdot \ell} \rightarrow\{0,1\}^{\ell}$ approximating Sum ${ }_{n}$.

Letting $t=10 \ell$, we pick t random strings $z_{1}, z_{2}, \ldots, z_{t}$ from $\{0,1\}^{\ell}$. Given $x \in\{0,1\}^{n \cdot \ell}$ and $i \in[\ell]$, the i-th output bit of D is the approximate-majority of $\left\{C_{g}\left(x, z_{j}\right) \oplus C_{g}\left(x, z_{j} \oplus e_{i}\right)\right\}_{j \in[t]}$, where e_{i} is Boolean string that only the i-th bit is 1 , and $z_{j} \oplus e_{i}$ means the coordinate-wise addition over GF(2).

[^14]Note that for a fixed good $x \in\{0,1\}^{n \cdot \ell}, i \in[\ell],\left\{C_{g}\left(x, z_{j}\right) \oplus C_{g}\left(x, z_{j} \oplus e_{i}\right)\right\}_{j \in[t]}$'s are independent, and for each $j \in[t]$, we have

$$
\underset{z_{j}}{\operatorname{Pr}}\left[C_{g}\left(x, z_{j}\right) \oplus C_{g}\left(x, z_{j} \oplus e_{i}\right)=\operatorname{Sum}_{n}(x)_{i}\right] \geq 0.8 .
$$

Therefore, by a simple Chernoff bound, for a good x, we have $D(x)=\operatorname{Sum}_{n}(x)$ with probability at least $1-1 / n$. That is, by an averaging argument, there exists a set of fixed z_{j} 's, such that the constructed circuit D satisfying $D(x)=\operatorname{Sum}_{n}(x)$ for at least a $0.9 \cdot 0.8 \geq 0.7$ fraction of inputs.

By Lemma 5.2, D is an $\mathrm{AC}_{d_{\star}+O(1)}\left[m_{\star}\right]$ circuit of size $\operatorname{poly}(S, n)$.
The Self-correction of $\mathbf{S u m}_{n}$. Next, we use the property that Sum $_{n}$ is self-correctable. For all $x \in\{0,1\}^{n \cdot \ell}$, let z be a uniform element from $\mathbb{Z}_{2^{\ell}}^{n}$, we have

$$
\underset{z}{\operatorname{Pr}}\left[D(z+x)-\operatorname{Sum}_{n}(z)=\operatorname{Sum}_{n}(x)\right] \geq 0.7 .
$$

In above, $z+x$ is the element-wise additions over \mathbb{Z}_{2}. The above holds since $z+x$ is uniformly distributed, and D agrees with Sum_{n} for a 0.7 fraction of inputs. Let $D_{z}(x):=D(x+z)$, note that D_{z} has a $\operatorname{poly}(n, S)$-size $\mathrm{AC}_{d_{\star}+O(1)}\left[m_{\star}\right]$ circuit, as $x+z$ is element-wise addition over $\mathbb{Z}_{2^{\ell}}$ with each entries on $\ell=O(\log n)$ bits, one can use $2^{O(\ell)}=\operatorname{poly}(n)$ CNFs at the bottom; we can do the same thing at the top to subtract $\operatorname{Sum}_{n}(z)$ over $\mathbb{Z}_{2^{\ell}}$, which is a constant; the total depth increase is $O(1)$.

The Final Circuit E. Finally, we pick 10n i.i.d. samples $z_{1}, z_{2}, \ldots, z_{10 \cdot n \cdot \ell}$'s from $\mathbb{Z}_{2^{\ell}}^{n}$.
And our final circuit E computes an approximate majority on the $D_{z_{j}}(x)$'s with the given input x. By a simple Chernoff bound, with a non-zero probability that E computes Sum $_{n}$ correctly on all inputs. We fix such a collection of z_{j} 's in our construction of E.

Now we have an exact $\mathrm{AC}_{d_{\star}+O(1)}\left[m_{\star}\right]$ circuit E for Sum $_{n}$. One can easily construct an exact $\mathrm{AC}_{d_{\star}+O(1)}\left[m_{\star}\right]$ circuit for MAJ_{n} from E, which completes the proof.

C Average-Case Easy-Witness Lemma for Unary Languages

In this section we sketch the proof for Lemma 4.1.
Reminder of Lemma 4.1. (Average-Case Easy-Witness Lemma for Unary Languages) There is a universal constant δ such that, for a typical circuit class \mathscr{C}^{23}, if NQP can be $(1-\delta)$-approximated by poly-size \mathscr{C}, then all NQP verifiers for unary languages have poly-size \mathscr{C} witness.

Proof Sketch. We prove the contrapositive. Let $\delta=1 / 1000$.
Suppose there is unary language L in NQP such that is doesn't have poly-size \mathscr{C} circuits. And for the sake of contradiction, we further assume NQP can be $(1-\delta)$-approximated by poly-size \mathscr{C}. By Theorem 5.3 and the assumption that $\mathrm{AC}^{0} \circ \mathscr{C} \subseteq \mathscr{C}$, it follows that NC^{1} collapses to poly-size \mathscr{C}.

Now we can proceed similarly as the proof of Theorem 6.3 to construct an i.o. quasi-polynomial time NPRG for polylog (n)-depth circuits (we can use the verifier V for L as the "hardness certifier"). Then we can combine it with the a.a.e. average-case MA lower bound for low-depth circuits with a low-depth computable predicate, and proceed identically as Theorem 1.1, to show that NQP cannot be approximated by poly-size \mathscr{C}, which is a contradiction.

[^15]
D Bootstrapping from Non-trivial Derandomization Algorithms to Quasi-Polynomial Time NPRGs

In this section we sketch the proof for the following bootstrapping theorem, which is implicit in [Wil13, Wil16].

The proof of the following theorem follows roughly as the proof of Theorem 4.1 of [Wil16].
Theorem D.1. (Informal) For a circuit class $\mathscr{C} \in\left\{T C^{0}\right.$, Formula, $\left.P_{/ \text {poly }}\right\}$, if for a constant $\varepsilon>0$, there is a $2^{n-n^{\varepsilon}}$ time non-deterministic Gap-UNSAT algorithm for $2^{n^{\varepsilon}}$-size \mathscr{C} circuits, then there is a quasi-polynomial time non-deterministic infinite often PRG for polynomial-size \mathscr{C} circuits.

Proof Sketch. From the assumption, and a proof similar to that of Lemma 6.1. We have that for some constant $\delta>0$, there is an unary NE verifier which doesn't have $2^{n^{\delta}}{ }^{\text {-size }} \mathscr{C}$ witness.

Then this NE verifier V can be used as the "worst-case hardness certifier" for \mathscr{C} circuits. That is, we have a polynomial-time algorithm $V(x, y)$, where $|x|=n$ and $|y|=2^{n}$, such that for an infinite number of n 's, $V(x, \cdot)$ is satisfiable, and $V(x, y)=1$ implies y is not the truth-table of a $2^{n^{\delta}}$-size \mathscr{C} circuit.

Now we guess an $y_{\text {hard }}$ such that $V\left(1^{n}, y_{\text {hard }}\right)=1$. We interpret $y_{\text {hard }}$ as a function $f_{\text {ws }}:\{0,1\}^{n} \rightarrow$ $\{0,1\}$. By [GR08], there are local-list decodable codes with TC 0 decoders and polynomial-size blowup. Therefore, one can construct in $2^{O(n)}$ time another function $f_{\text {avg }}:\{0,1\}^{O(n)} \rightarrow\{0,1\}$, which is average-case hard for \mathscr{C} circuits (as \mathscr{C} contains TC^{0}). Plugging $f_{\text {avg }}$ into the NisanWidgersion PRG construction [NW94] completes the proof.

E Either NQP $\not \subset$ NQP or MCSP $\not \subset \mathbf{A C C}^{0}$

In this section we prove Corollary 1.2 (restated below).
Reminder of Corollary 1.2 Either $N Q P \not \subset P_{/ \text {poly }}$ or MCSP $\notin A C C^{0}$.
Proof. For the sake of contradiction, suppose NQP $\subset \mathrm{P} /$ poly and MCSP $\in \mathrm{ACC}^{0}$.
By [CIKK16], any function $f \in \mathrm{P}$ /poly has a non-uniform $\left(\mathrm{TC}^{0}\right)^{\mathrm{MCSP}}$ circuit C of polynomial size that agrees with f on all but an inverse polynomial fraction of inputs. Also, by [GII $\left.{ }^{+} 19\right]$, we have that MAJ $\in\left(\mathrm{AC}^{0}\right)^{\mathrm{MCSP}}$ and therefore $\left(\mathrm{TC}^{0}\right)^{\mathrm{MCSP}} \subseteq\left(\mathrm{AC}^{0}\right)^{\mathrm{MCSP}} \subseteq \mathrm{ACC}^{0}$, as $\mathrm{MCSP} \in \mathrm{ACC}$.

Since NQP $\subset P_{/ \text {poly }}$, we know that NQP can be approximated by $A C C^{0}$, contradiction to Theorem 1.1.

[^0]: *Supported by NSF CCF-1741615 (CAREER: Common Links in Algorithms and Complexity). This work was done while the author was visiting the Simons Institute for the Theory of Computing.

[^1]: ${ }^{1}$ It had been stressed several times as one of the most embarrassing open questions in complexity theory, see [AB09].
 ${ }^{2}$ There is no consensus that whether there is a PRG in ACC^{0} (so it is not clear whether the natural proof barrier applies to ACC^{0}). A recent work has proposed a candidate construction $\left[\mathrm{BIP}^{+} 18\right]$, which still needs to be tested. But we can say that if there is a natural proof barrier for ACC^{0}, then this lower bound has surpassed it. (We also remark here that there is a recent proposal on how to get a natural proof for ACC^{0} circuit lower bounds via torus polynomials [BHLR19].)
 ${ }^{3}$ There are some other works [ACW16, Tam16, Wil18, CW19] proved several circuit lower bounds uncomparable to NEXP $\not \subset \mathrm{ACC}^{0}$, and [CP16] improved the dependence on depth by showing NEXP does not have ACC ${ }^{0}$ circuits of $o(\log n / \log \log n)$ depth.

[^2]: ${ }^{4}$ See Definition 2.9 for a formal definition of (N $\cap \operatorname{coN}$)TIME $[T(n)]_{/ 1}$.
 ${ }^{5}$ So this problem is weaker than both the SAT problem, and the CAPP problem which asks you to estimate the accepting probability of C given a random assignment.

[^3]: ${ }^{6}$ In Section 4.2, we discuss an alternative perspective on our proof: indeed, our results imply a weaker version of the average-case easy-witness lemma, which only holds for unary languages. This weaker lemma can still be used to contradict the non-deterministic time hierarchy theorem for unary languages [Zák83], see Section 4.2 for more details.
 ${ }^{7}$ To simplify the presentation, we do not specify the relations between b and k here, but it is easy to see that one can take $b=\Theta\left(k^{3}\right)$, just as in [MW18].

[^4]: ${ }^{8}$ [MW18, San09]'s lower bounds are actually for MA with advice bits. We ignore the advice bits issue for the sake of simplicity in the intuition part. See the end of the this section for some discussions on how to deal with the advice bits.
 ${ }^{9}$ heur ${ }_{1-\delta}-\operatorname{SIZE}\left(L_{n}\right)$ is the minimum size of a circuit computing correctly at least a $(1-\delta)$ fraction of inputs to L_{n}. See Section 2.1.2 for a formal definition.

[^5]: ${ }^{10}$ That is, we use the P uniformity by default.

[^6]: ${ }^{11}$ The error correctable property here is stronger than the piecewise random self-reducible property in [San09].

[^7]: ${ }^{12}$ [TV07] doesn't explicitly state the TC^{0} downward self-reducible property, but it is evident from their proof.

[^8]: ${ }^{13}$ Roughly speaking, [Uma03] transforms a function $f:\{0,1\}^{\ell} \rightarrow\{0,1\}$ which requires at size S circuits to a PRG with seed length $O(\ell)$ fooling $S^{\Omega(1)}$-size circuits.

[^9]: ${ }^{14}$ Here we require \mathscr{C} is closed under adding AC^{0} at the top. That is, $\mathrm{AC}^{0} \circ \mathscr{C} \subseteq \mathscr{C}$.
 ${ }^{15}$ We remark that this is similar to the proof strategy in [Wil16].
 ${ }^{16}$ One caveat here is that it seems not easy to prove lower bounds for NQP \cap coNQP, if we simply reason along Lemma 4.1. In this case, one may need hardness amplification for non-deterministic time classes [O'D04, HVV06] to get a $1 / 2+1 / \operatorname{polylog}(n)$-inapproximability lower bound for NQP.

[^10]: ${ }^{17}$ We remark similar issues arise in $\left[\mathrm{GGH}^{+} 07\right]$ as well.

[^11]: ${ }^{18}$ The problem with the original encoding is, $\operatorname{GF}\left(2^{n}\right)$ is not a sub-field of $\operatorname{GF}\left(2^{n+1}\right)$ for $n \geq 2$.

[^12]: ${ }^{19}$ We are slightly extending the notion of polynomials here, as in those intermediate polynomials, different variables could be over different fields. Still, one can view them as the evaluation of a polynomial on a certain domain.

[^13]: ${ }^{20}$ Theorem 9.6 can be proved by combing the local-decoder of the direct-product codes [IJKW10], and the localdecoder of Walsh-Hadamard Codes [GL89].

[^14]: ${ }^{21}$ In fact, an earlier version of this paper builds on this collapse theorem, with a more complicated argument than the current version.
 ${ }^{22}$ Suppose $F 0.99$-approximates the function Parity ${ }_{n}$. Let z be a random vector from $\{0,1\}^{n}$, we have $F(z) \oplus F(z \oplus$ $x)=\operatorname{Parity}_{n}(x)$ with probability 0.98 for all $x \in\{0,1\}^{n}$.

[^15]: ${ }^{23}$ Here we require \mathscr{C} is closed under adding AC^{0} at the top. That is, $\mathrm{AC}^{0} \circ \mathscr{C} \subseteq \mathscr{C}$.

