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Abstract

We show that there is a sequence of explicit multilinear polynomials Pn(x1, . . . , xn) ∈
R[x1, . . . , xn] with non-negative coefficients that lies in monotone VNP such that any mono-
tone algebraic circuit for Pn must have size exp(Ω(n)). This builds on (and strengthens) a result
of Yehudayoff (2018) who showed a lower bound of exp(Ω̃(

√
n)).

1 Introduction

This paper deals with a problem in Algebraic Complexity, which is the study of the complexity of
computing multivariate polynomials over some underlying field F. The model of computation is
the Algebraic circuit model, which computes polynomials from F[x1, . . . , xn] using the basic sum
and product operations in this ring. This model and its variants have been studied by a large body
of work (see, e.g. the surveys [12, 10]).

The central question in the area is Valiant’s [13] VP vs. VNP question. The set VP contains se-
quences (Pn(x1, . . . , xn))n≥1 of polynomials of polynomially bounded degree1 that can be computed
by polynomial-sized algebraic circuits. The class VNP contains sequences (Qn(x1, . . . , xn))n≥1

where
Qn(x1, . . . , xn) =

∑
b1,...,bm∈{0,1}

Pn+m(x1, . . . , xn, b1, . . . , bm)

where m is polynomially bounded by n and (Pr(x1, . . . , xr))r≥1 is in VP.
Like its Boolean analogue, the VP vs. VNP question has proved stubbornly hard to resolve,

the principal bottleneck being our inability to prove explicit algebraic circuit lower bounds. Given
this, it is natural to look at variants of this question.

In a recent paper [15], Yehudayoff considered the monotone version of the VP vs. VNP question,
which is defined as follows. The underlying field is R and the polynomials being computed have
non-negative coefficients. A monotone algebraic circuit is one where all the constants appearing in
the circuit are non-negative. The monotone versions of VP and VNP, denoted MVP and MVNP
respectively, are defined analogously: MVP contains (sequences of) polynomials that have small

∗Email: srikanth@math.iitb.ac.in
1i.e. deg(Pn) ≤ nO(1)
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monotone algebraic circuits; MVNP contains (sequences of) polynomials that can be written as
exponential Boolean sums over polynomials in MVP.

Monotone algebraic circuits have been studied since the 80s, and explicit exponential lower
bounds are known for this model via the work of Jerrum and Snir [7] (see also [14, 11, 8]). However,
as Yehudayoff [15] pointed out, these results do not imply a separation between MVP and MVNP.
In fact, most2 of the monotone circuit lower bounds proved in earlier work also imply that the
same polynomials do not belong to MVNP, and hence do not imply a separation between these
two classes.

The main result of [15] was the resolution of the MVP vs. MVNP question. More precisely,
Yehudayoff showed that there is an explicit sequences of multilinear polynomials (Pn(x1, . . . , xn))n≥1

in MVNP such that any monotone algebraic circuit for Pn must have size exp(Ω̃(
√
n)).

In this paper, we strengthen this result to a strongly exponential lower bound.

Theorem 1. There is an explicit sequence of multilinear polynomials (Pn(x1, . . . , xn))n≥1 in MVNP
such that any monotone algebraic circuit for Pn must have size 2Ω(n).

This theorem bears a similar relation to Yehudayoff’s result as a paper of Raz and Yehudayoff [8]
bears to the result of Jerrum and Snir [7]. Jerrum and Snir [7] proved a lower bound of exp(Ω(

√
n))

for an explicit family of polynomials.3 This bound was strengthened to a strongly exponential lower
bound by Raz and Yehudayoff [8].

1.1 Some Motivation for the proof

We rely on a connection between monotone algebraic circuit lower bounds and communication
complexity that was made explicit by Raz and Yehudayoff [8]. As shown in [8], if a multilinear
polynomial P ∈ R[x1, . . . , xn] has a monotone algebraic circuit of size s, then we get a decomposition

P =

s∑
i=1

gihi (1)

where each summand gihi satisfies the property that gi and hi are non-negative multilinear poly-
nomials that depend on disjoint sets of at least n/3 variables each. We call each such term a
non-negative product polynomial. Thus, to prove a lower bound on the circuit complexity of P , it
suffices to lower bound the number of terms in any decomposition as in (1).

As noted by Jerrum and Snir [7], one way to do this is via the support of the polynomial P ,
by which we mean the set of monomials that have non-zero coefficients in P . We think of this set,
denoted Supp(P ), as a subset of 2[n] by identifying each multilinear monomial on x1, . . . , xn with a
subset of [n] in the natural way. Given a decomposition of P into non-negative product polynomials
as in (1), we immediately get Supp(P ) =

⋃
i∈[s] Supp(gi · hi). And so it suffices to obtain a P such

that any such decomposition of Supp(P ) must have large size.
Such decompositions are closely related to a model of communication complexity known as

Multipartition Communication Complexity, introduced by Ďuris, Hromkovič, Jukna, Sauerhoff and
Schnitger [4] (see also the earlier result of Borodin, Razborov and Smolensky [2]). The mul-
tipartition communication complexity of a subset S ⊆ 2[n] (or equivalently a Boolean function

2The one exception to this seems to be a lower bound of Raz and Yehudayoff [8]. Here, it is unclear whether the
hard polynomials lie in MVNP but we are unable to rule it out.

3The family is just the Permanent of a
√
n×
√
n matrix with distinct variable entries.
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f : {0, 1}n → {0, 1})) is defined as follows. We define a rectangle R ⊆ 2[n] to be any set of the form
{A ∪ B | A ∈ A, B ∈ B}, where A ⊆ 2X and B ⊆ 2Y and (X,Y ) is a partition of [n]. Further, we
say that R is balanced if |X|, |Y | ≥ n/3. Finally, the multipartition communication complexity of
S is defined to be dlog2 ke where k is the smallest integer such that S can be decomposed as the
union of k many balanced rectangles.

To see the connection to algebraic complexity, note that if P ∈ R[x1, . . . , xn] has monotone
algebraic circuits of size s, then Supp(P ) has multipartition communication complexity at most
dlog2 se. In particular, linear lower bounds in this model for some explicit S implies that any non-
negative polynomial P with support exactly S cannot be computed by monotone algebraic circuits
of subexponential size.

Polynomial (but sublinear) lower bounds for multipartition communication complexity were
implicit in the work of Borodin et al. [2] and were extended to linear (but somewhat non-explicit)
lower bounds in the work of Ďuris et al. [4]. An explicit linear lower bound for this model is implicit
in a result of Bova, Capelli, Mengel and Slivovsky [3]. (See also the related work of Hayes [5]. A
similar construction is attributed to Wigderson in [8].) The hard problem of [3] is quite easy to
describe. Fix a regular expander graph4 G on vertex set [n] with constant-degree d. The associated
hard problem is given by taking S to be the set of all vertex covers in G. (Alternately, we consider
the Boolean function f(x1, . . . , xn) =

∧
{i,j}∈E(G)(xi ∨ xj).)

As mentioned above, the communication complexity lower bound on S immediately yields a
strongly exponential lower bound on the monotone algebraic complexity of some explicitly defined
polynomial. Unfortunately, as observed by Yehudayoff [15], this does not yield a separation between
MVNP and MVP. This is because the above argument implies that any polynomial P0 that has
support S requires monotone algebraic circuits of exponential size. Yehudayoff showed that for any
polynomial P in MVNP, there is a polynomial-sized monotone algebraic circuit that computes a
polynomial Q with the same support. In particular, the polynomial P0 cannot be in MVNP as that
would contradict our lower bound above. Thus, to obtain a separation between MVNP and MVP
along these lines, some new idea is necessary.

We take our cue from the multipartition communication complexity lower bound above, but
modify it suitably to obtain a somewhat different lower bound candidate polynomial P . Our proof
method for the lower bound, as in [15], is not just based on the support of P , but rather on the
sizes of the coefficients of P . We define a probability distribution µ on the monomials of P and
show that for any non-negative product polynomial gihi in a decomposition as in (1), a random
monomial (chosen according to µ) has much smaller coefficient in the product polynomial than in
P . As the product polynomials sum to P , there must be many of them. This yields the lower
bound.

2 Defining the hard polynomial

Notation. Throughout, let n ≥ 1 be a growing integer parameter. Let X = {x1, . . . , xn} be
a set of indeterminates. We use xS to denote the monomial

∏
i∈S xi. Given a polynomial P ∈

R[x1, . . . , xn] and S ⊆ [n], we use Coeff(xS , P ) to denote the coefficient of the monomial xS in the
polynomial P .

4Recall that we call a d-regular graph G an expander if the second largest (in absolute value) eigenvalue of its
adjacency matrix A is at most d(1− Ω(1)).
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Let (Gn)n>d be an explicit sequence of d-regular expander graphs on n vertices with second
largest eigenvalue at most d0.75. Here, d is a large enough constant as specified below. Such an
explicit sequence of expander graphs can be constructed using, say, [9]. The only fact we will use
about expanders is the following, which is an easy consequence of the Expander Mixing Lemma [1]
(see also [6, Lemma 2.5]).

For any pair of disjoint sets U, V ⊆ V (Gn), we use E(U, V ) to denote the set of edges {u, v} ∈
E(Gn) such that u ∈ U and v ∈ V . Also, let E(U) denote the set of edges e = {u, v} ∈ E(Gn) such
that u, v ∈ U .

Lemma 2 (Corollary to Expander Mixing Lemma). Let Gn be as above. Then, for any disjoint
sets U, V ⊆ [n] such that |U |, |V | ∈ [n/3, 2n/3], we have

|E(U, V )| ≥ |E(Gn)|
10

.

as long as d is a large enough constant.

From now on, d will be fixed to be a large enough constant so that the inequality in Lemma 2
holds.

We define the polynomial Pn(x1, . . . , xn) as follows. We assume that V (Gn) = [n]. For each
edge e ∈ E(G) introduce a variable x′e and let X ′ = {x′e | e ∈ E(G)}. Notice that for each Boolean
assignment to the variables in X ′, we obtain a subgraph H of G. In particular, if the variables in
X ′ are set randomly to Boolean values, we get a random subgraph H of G with the same vertex
set [n]. We use degH(i) to denote the degree of the vertex i in the graph H.

We now define

Pn(x1, . . . , xn) = E
x′e∈{0,1}
∀e∈E(G)

∏
i∈[n]

(
1 + xi · 2degH(i)

) (2)

= E
x′e∈{0,1}
∀e∈E(G)

∑
S⊆[n]

xS · 2
∑

i∈S degH(i)

 (3)

where the variables x′e are set to one of {0, 1} independently and uniformly at random.

Lemma 3. The sequence of polynomials Pn as defined above is in mVNP.

Proof. Using (2), we see that

Pn(x1, . . . , xn) =
1

2|E(Gn)|

∑
x′e∈{0,1}:e∈E(G)

∏
i∈[n]

(
1 + xi · 2

∑
e3i x

′
e

)
.

Since G is d-regular, it suffices to show that each function f : {0, 1}d → R defined by f(x′1, . . . , x
′
d) =

2
∑

j∈[d] x
′
j can be represented by a constant-sized polynomial over x′1, . . . , x

′
d with non-negative co-

efficients.
But this is clear since f(x′1, . . . , x

′
d) =

∑
S⊆[d]

∏
i∈S x

′
i.

Remark 4. The above lemma also holds if we change the definition of Pn in (2) with the constant
2 replaced by any fixed c > 1.
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3 The lower bound

The main theorem of this section is the following.

Theorem 5. Any monotone circuit computing Pn has size 2Ω(n).

We need the following lemma from [8]. We say that a pair of multilinear polynomials (g, h) ∈
R[X] form a non-negative product pair if g, h are polynomials with non-negative coefficients, and
there is a partition of X = Y ∪ Z where n/3 ≤ |Y |, |Z| ≤ 2n/3 and g ∈ R[Y ], h ∈ R[Z].

Lemma 6 ([8], Lemma 3.3). Assume that Pn has a monotone circuit of size s. Then

Pn(X) =
s+1∑
i=1

gihi

where for each i ∈ [s], (gi, hi) forms a non-negative product pair.

Corollary 7. Assume that Pn has a monotone circuit of size s. Let µ be any probability distribution
on subsets S ⊆ [n]. Then, there is a non-negative product pair (g, h) such that

• gh ≤ P , i.e., Coeff(xS , gh) ≤ Coeff(xS , Pn) for each S ⊆ [n],

• ES∼µ
[
Coeff(xS , gh)/Coeff(xS , Pn)

]
≥ 1/(s + 1). (The quantity Coeff(xS , gh)/Coeff(xS , Pn)

is well defined since by (3), the denominator is non-zero for all S ⊆ [n].)

Proof. Write Pn =
∑

i≤s+1 gihi as in Lemma 6. For any fixed S ⊆ [n] and a uniformly random
i ∈ [s+ 1], we have

E
i∈[s+1]

[
Coeff(xS , gihi)

Coeff(xS , Pn)

]
=

1

s+ 1

∑
i∈[s]

Coeff(xS , gihi)

Coeff(xS , Pn)
=

1

s+ 1
.

In particular, the above also holds when S is chosen according to µ. The result now follows by
averaging over i ∈ [s+ 1].

Given Corollary 7, to prove Theorem 5, it suffices to show the following.

Lemma 8. There is a probability distribution µ on subsets S ⊆ [n] such that for any non-negative
product pair (g, h) with gh ≤ Pn, we have

E
S∼µ

[
Coeff(xS , gh)/Coeff(xS , Pn)

]
≤ exp(−Ω(n)). (4)

We need some preparatory work before proving Lemma 8.

Lemma 9. There exist constants A,B > 1 such that

Pn(X) =
∑
S⊆[n]

xSB|S|A|E(S)|.
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Proof. Using (3), we obtain

Pn(x1, . . . , xn) = E
x′e:e∈E(G)

∑
S⊆[n]

xS · 2
∑

i∈S degH(i)

 =
∑
S⊆[n]

xS · E
x′e:e∈E(G)

[
2
∑

i∈S degH(i)
]

where H is the random subgraph of G defined by a uniformly random Boolean assignment to the
variables in X ′. Note that∑

i∈S
degH(i) =

∑
i∈S

∑
e3i

x′e =
∑

e∈E(S,S̄)

x′e +
∑

e∈E(S)

2x′e.

Hence, we get for any S ⊆ [n],

E
x′e:e∈E(G)

[
2
∑

i∈S degH(i)
]

=
∏

e∈E(S,S̄)

E
x′e

[
2x
′
e

]
·
∏

e∈E(S)

E
x′e

[
4x
′
e

]
= (3/2)|E(S,S̄)| · (5/2)|E(S)|

= (3/2)|S|d · (5/2)|E(S)|

(3/2)2|E(S)|

where for the last equality, we have used the fact that 2|E(S)| + |E(S, S̄)| = |S|d. Note that this
proves the lemma with B = (3/2)d and A = (10/9).

We now define the probability distribution µ that will be shown to have the property in (4).
The distribution is defined by the following sampling process. Let m = αn where α ∈ (0, 1) is a
small constant specified below.

Sampling Algorithm S :

1. Set M = ∅. (Eventually, M will be a matching in G.)

2. For i = 1 to (m/2), do the following.

(a) Remove all vertices from Gn that are at distance at most 2 from any vertex in the

matching M . Let G
(i)
n be the resulting graph.

(b) Choose a uniformly random edge ei from E(G
(i)
n ) and add it to M .

3. Output M .

The above algorithm defines a distribution ν over matchings M in Gn of size m/2. We define
S = V (M) to be the set of vertices sampled by the algorithm. This defines a probability distribution
µ over subsets of [n].

We will need the following properties of the above algorithm.

Lemma 10 (Properties of S.). Let M be sampled as in S above and let S = V (M). Then we have

1. |M | = (m/2), |S| = m and E(S) = M with probability 1.

6



2. Let (U, V ) be any partition of V (Gn) such that n/3 ≤ |U |, |V | ≤ 2n/3. Then, as long as
α ≤ 1/(100 · d2), for some absolute constant γ > 0, we have

Pr
M

[|M ∩ E(U,W )| ≤ γm] ≤ exp(−γm).

3. Let M1 and M2 be two independent samples obtained by running S twice, and let Si = V (Mi)
(i ∈ [2]). Let (U, V ) be a partition of V (Gn) as above. Define Ri = Si ∩ U and Ti = Si ∩ V.
Then, for α ≤ γ lnA/(100 ·A4d2) we have

E
M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|

]
≤ Aγm/4.

Proof. Item 1 is immediate from the definition of the Sampling algorithm S.
For Item 2, we proceed as follows. For i ∈ {1, . . . ,m/2}, let ei be the edge chosen by the

sampling algorithm S in the ith iteration of Step 2. Fix any choice of ej for j < i and consider

the ith iteration of Step 2. The probability that ei lies in E(U, V ) is |Ei(U, V )|/|E(G
(i)
n )| where

Ei(U, V ) is the set of edges in G
(i)
n with one endpoint each in U and V . Note that

|Ei(U, V )| ≥ |E(U, V )| − |E(Gn) \ E(G(i)
n )| ≥ nd

10
− 2(i− 1) · (d3 + d2 + d) ≥ nd

10
− αn(3d3) ≥ nd

20

where the second inequality follows from Lemma 2 and the fact that for each vertex incident to one
of e1, . . . , ei−1, we remove at most d2+d+1 vertices (and hence at most d3+d2+d edges) from Gn to

obtain G
(i)
n ; and the last two inequalities follow from the fact that 2(i−1) < m = αn ≤ n/(100 ·d2).

Hence, we have shown that for each i,

Pr[ei ∈ E(U, V ) | e1, . . . , ei−1] =
|Ei(U, V )|
|E(G

(i)
n )|

≥ (nd)/20

(nd)/2
=

1

10
.

In particular, for any T ⊆ [m], the probability that for every i ∈ T , ei 6∈ E(U, V ) can be upper
bounded by (9/10)|T |.

Thus, the probability that |M ∩ E(U, V )| ≤ ` = γm can be bounded by

Pr
M

[∃T ∈
(

[m]

m− `

)
s.t. ∀i ∈ T, ei 6∈ E(U, V )] ≤

∑
T

Pr
M

[∀i ∈ T, ei 6∈ E(U, V )]

≤
(
m

`

)(
9

10

)m−`
≤
(em
`

)`
·
(

9

10

)m−`
=

(
e

γ
·
(

9

10

)(1/γ)−1
)γm

≤ exp(−γm)

as long as γ is bounded by a small enough absolute constant. This finishes the proof of Item 2.
We now prove Item 3. Fix any possible value of M1 as sampled by the algorithm S. It suffices

to bound EM2

[
A|E(R2,T1)|+|E(R1,T2)|] for each such M1. Let S̃1 denote the set of vertices that are

at distance at most 1 from S1 and let E1 denote the set of edges that have at least one endpoint in
S̃1. Note that |E1| ≤ |S̃1|d ≤ |S1|d2 = md2.

We claim that |E(R2, T1)| + |E(R1, T2)| ≤ 4|E1 ∩M2|. The reason for this is that if a vertex
i ∈ S2 is incident to an edge e in E(R1, T2) ∪ E(R2, T1) then i ∈ S̃1 and hence the edge e′ ∈ M2
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involving i is an edge in E1 ∩M2. In particular, the number of such vertices i ∈ S2 is at most
2|E1 ∩M2|. Further, each such vertex i is adjacent to at most 2 vertices in S1 since vertices in S1

that are not adjacent via an edge in M1 are at distance at least 3 from each other. Thus each such
vertex i contributes at most 2 to |E(R2, T1)|+ |E(R1, T2)|. This yields the claimed inequality. Thus
it suffices to bound EM2

[
A4|E1∩M2|

]
.

We start with a tail bound for |E1 ∩M2|. Let M2 = {e′1, . . . , e′m/2} where e′j is the jth edge

added to M2 by the algorithm S. Conditioned on e′1, . . . , e
′
j−1, the probability that e′j ∈ E1 is at

most
|E1|

|E(G
(j)
n )|

=
|E1|

|E(Gn)| − |E(Gn) \ E(G
(j)
n )|

≤ αnd

(nd/2)− 3αnd3
≤ αnd

(nd)/4
= 4α

where for the first inequality we have bounded |E(Gn) \ E(G
(j)
n )| as above and for the second

inequality we have used the bound on α. Hence, we have

Pr
M2

[|E1 ∩M2| ≥ i] ≤
∑

T∈(m/2
i )

Pr
M2

[∀j ∈ T, e′j ∈ E1] ≤
(
m/2

i

)
(4α)i.

This allows us to bound EM2

[
A4|E1∩M2|

]
for any fixed M1 output by S.

E
M2

[
A4|E1∩M2|

]
≤

m/2∑
i=0

A4i Pr
M2

[|E1 ∩M2| ≥ i]

≤
m/2∑
i=0

A4i ·
(
m/2

i

)
(4α)i =

(
1 + 4αA4

)m/2
≤ (1 + (γ lnA)/2)m/2 ≤ exp((mγ lnA)/4) = Aγm/4

where the third inequality follows from the bound on α.

We are now ready to prove Lemma 8, which will complete the proof of Theorem 5.

Proof of Lemma 8. We set m = αn so that α is a positive constant upper bounded by γ lnA/(100 ·
A4 ·d2) and m is even. Assume that M is as sampled above by sampling algorithm S and S = V (M).
This defines the distribution µ on subsets of [n].

Let (g, h) be any non-negative product pair such gh ≤ Pn. Consequently, there exists a partition
(U, V ) of V (Gn) = [n] such that n/3 ≤ |U |, |V | ≤ 2n/3 and g ∈ R[xi : i ∈ U ], h ∈ R[xj : j ∈ V ].

Let E = E(M) denote the event that |M ∩E(U, V )| ≤ γm. By Lemma 10 item 2, we know that
PrM [E ] ≤ exp(−Ω(n)) and hence we have

E
M

[
Coeff(xS , gh)

Coeff(xS , Pn)

]
≤ E

M

[
Coeff(xS , gh)

Coeff(xS , Pn)
| E
]

Pr
M

[E ] + E
M

[
Coeff(xS , gh)

Coeff(xS , Pn)
| E
]

Pr
M

[Ē ]

≤ Pr
M

[E ] + E
M

[
Coeff(xS , gh)

Coeff(xS , Pn)
| E
]

≤ exp(−Ω(n)) +
1

Bm ·Am/2
E
M

[
Coeff(xS , gh) | E

]
(5)

where for the second inequality we have used that gh ≤ Pn, and for the final inequality we have
used our bound on PrM [E ] along with Lemma 9 and Lemma 10 item 1.
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We now bound the latter term in (5). For any i, j, k, let Ei,j,k = Ei,j,k(M) denote the event that
|M ∩ E(U, V )| = i, |M ∩ E(U)| = j, and |M ∩ E(V )| = k. The event Ē is partitioned into Ei,j,k
where i+ j + k = (m/2) and i ≥ γm. Let T denote the set of such triples (i, j, k). We have

E
M

[
Coeff(xS , gh) | E

]
=

∑
(i,j,k)∈T

E
M

[
Coeff(xS , gh) | Ei,j,k

]
· Pr
M

[Ei,j,k | E ]

Call a triple (i, j, k) ∈ T heavy if PrM [Ei,j,k] ≥ A−γm/4 and light otherwise. Note that as
PrM [E ] = 1− exp(−Ω(n)) ≥ 1/2, we have PrM [Ei,j,k | E ] ≤ 2 PrM [Ei,j,k]. In particular, if (i, j, k) is
light, we have PrM [Ei,j,k | E ] ≤ 2A−γm/4 = exp(−Ω(n)). Plugging this into the above, we get

E
M

[
Coeff(xS , gh) | E

]
=

∑
(i,j,k)∈T

E
M

[
Coeff(xS , gh) | Ei,j,k

]
· Pr
M

[Ei,j,k | E ]

≤ |{(i, j, k) | (i, j, k) light}| · Coeff(xS , Pn) · exp(−Ω(n)) + max
(i,j,k) heavy

E
M

[
Coeff(xS , gh) | Ei,j,k

]
≤ exp(−Ω(n))BmAm/2 + max

(i,j,k) heavy
E
M

[
Coeff(xS , gh) | Ei,j,k

]
. (6)

It suffices therefore to bound EM
[
Coeff(xS , gh) | Ei,j,k

]
for any heavy (i, j, k). This is the main

part of the proof.
Fix some (i, j, k) ∈ T that is heavy. Let C = EM

[
Coeff(xS , gh) | Ei,j,k

]
. Thus, we get

C2 = E
M1,M2

[
Coeff(xS1 , gh)Coeff(xS2 , gh)

]
where M1 and M2 are independent samples of M conditioned on the event Ei,j,k(M), and S` =
V (M`) for ` ∈ {1, 2}. Define R` = S` ∩U and T` = S` ∩ V. We make some simple observations. For
each ` ∈ [2]

1. |R`| = i+ 2j and |T`| = i+ 2k,

2. |E(R`)| = j, |E(T`)| = k,

3. Coeff(xS` , gh) = Coeff(xR` , g) · Coeff(xT` , h).

Thus, we have

C2 = E
M1,M2

[
Coeff(xR1 , g)Coeff(xT1 , h)Coeff(xR2 , g)Coeff(xT2 , h)

]
= E

M1,M2

[
Coeff(xR1∪T2 , gh)Coeff(xR2∪T1 , gh)

]
≤ E

M1,M2

[
Coeff(xR1∪T2 , Pn)Coeff(xR2∪T1 , Pn)

]
= E

M1,M2

[
B|R1|+|T2| ·A|E(R1∪T2)| ·B|R2|+|T1| ·A|E(R2∪T1)|

]
= E

M1,M2

[
B4(i+j+k) ·A|E(R1)|+|E(T1)|+|E(R2)|+|E(T2)|+|E(R1,T2)|+|E(R2,T1)|

]
= B2mAm−2i · E

M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|

]
≤ B2mAm(1−2γ) · E

M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|

]
(7)
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where we used the observations above for the equalities and for the final inequality, we used the
fact that i ≥ γm for all (i, j, k) ∈ T .

To bound the latter term in (7), we consider a similar expression where M1 and M2 are re-
placed by M ′1 and M ′2 which are independent random outputs of the algorithm S (without any
conditioning). In this case, by Lemma 10 item 3, we have

E
M ′1,M

′
2

[
A|E(R′1,T

′
2)|+|E(R′2,T

′
1)|
]
≤ Aγm/4,

where R′`, T
′
` are defined analogously for ` ∈ [2]. Thus, using Bayes’ rule we have

E
M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|

]
≤

EM ′1,M ′2

[
A|E(R′1,T

′
2)|+|E(R′2,T

′
1)|
]

PrM ′1,M ′2 [Ei,j,k(M ′1) ∧ Ei,j,k(M ′2)]
≤ A3γm/4

where the last inequality uses the fact that (i, j, k) is heavy. Plugging the above into (7), we have

C ≤ BmAm/2−5γm/8 = BmAm/2 exp(−Ω(n)).

As this holds for any heavy (i, j, k), using (6) and (5), we obtain the statement of the lemma.
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