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Abstract

We show that there is a sequence of explicit multilinear polynomials Pn(x1, . . . , xn) ∈
R[x1, . . . , xn] with non-negative coefficients that lies in monotone VNP such that any
monotone algebraic circuit for Pn must have size exp(Ω(n)). This builds on (and
strengthens) a result of Yehudayoff (2018) who showed a lower bound of exp(Ω̃(

√
n)).

1 Introduction

This paper deals with a problem in Algebraic Complexity, which is the study of the com-
plexity of computing multivariate polynomials over some underlying field F. The model of
computation is the Algebraic circuit model, which computes polynomials from F[x1, . . . , xn]
using the basic sum and product operations in this ring. This model and its variants have
been studied by a large body of work (see, e.g. the surveys [18, 15]).

The central question in the area is Valiant’s [19] VP vs. VNP question. The set VP
contains sequences (Pn(x1, . . . , xn))n≥1 of polynomials of polynomially bounded degree1 that
can be computed by polynomial-sized algebraic circuits. The class VNP contains sequences
(Qn(x1, . . . , xn))n≥1 where

Qn(x1, . . . , xn) =
∑

b1,...,bm∈{0,1}

Pn+m(x1, . . . , xn, b1, . . . , bm)

where m is polynomially bounded in n and (Pr(x1, . . . , xr))r≥1 is in VP.
Like its Boolean analogue, the VP vs. VNP question has proved stubbornly hard to

resolve, the principal bottleneck being our inability to prove explicit algebraic circuit lower
bounds. Given this, it is natural to look at variants of this question.

∗Email: srikanth@math.iitb.ac.in
1i.e. deg(Pn) ≤ nO(1)

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 32 (2019)



In a recent paper [21], Yehudayoff considered the monotone version of the VP vs. VNP
question, which is defined as follows. The underlying field is R and the polynomials being
computed have non-negative coefficients. A monotone algebraic circuit is one where all the
constants appearing in the circuit are non-negative. The monotone versions of VP and VNP,
denoted MVP and MVNP respectively, are defined analogously: MVP contains (sequences
of) polynomials that have small monotone algebraic circuits; MVNP contains (sequences of)
polynomials that can be written as exponential Boolean sums over polynomials in MVP.

Monotone algebraic circuits have been studied since the 80s, and explicit exponential
lower bounds are known for this model via the work of Schnorr [16] and Jerrum and Snir [9]
(see also [20, 17, 6, 13]). However, as Yehudayoff [21] pointed out, these results do not imply
a separation between MVP and MVNP. In fact, most2 of the monotone circuit lower bounds
proved in earlier work also imply that the same polynomials do not belong to MVNP, and
hence do not imply a separation between these two classes.

The main result of [21] was the resolution of the MVP vs. MVNP question. More
precisely, Yehudayoff showed that there is an explicit sequence of multilinear polynomials
(Pn(x1, . . . , xn))n≥1 in MVNP such that any monotone algebraic circuit for Pn must have
size exp(Ω̃(

√
n)).

In this paper, we strengthen this result to a strongly exponential lower bound.

Theorem 1. There is an explicit sequence of multilinear polynomials (Pn(x1, . . . , xn))n≥1 in
MVNP such that any monotone algebraic circuit for Pn must have size 2Ω(n).

This theorem bears a similar relation to Yehudayoff’s result as some later works [6, 13]
bears to the result of Schnorr [16]. Schnorr [16] proved a lower bound of exp(Ω(

√
n)) for

an explicit family of polynomials; a similar lower bound was also proved for an explicit
family of polynomials by Jerrum and Snir [9].3 These bounds were strengthened to strongly
exponential lower bounds by a series of works of Kuznetsov, Kasim-Zade, and Gashkov in
the USSR in the 80s [11, 5, 6]4, and independently by a more recent result of Raz and
Yehudayoff [13].

1.1 Proof Outline

High level idea. We rely on a connection between monotone algebraic circuit lower bounds
and communication complexity that was made explicit by Raz and Yehudayoff [13]. As shown
in [13], if a multilinear polynomial P ∈ R[x1, . . . , xn] has a monotone algebraic circuit of size
s, then we get a decomposition

P =
s∑
i=1

gihi (1)

2The one exception to this seems to be a lower bound of Raz and Yehudayoff [13]. Here, it is unclear
whether the hard polynomials lie in MVNP but we are unable to rule it out.

3These explicit polynomials were based on the Clique and the Permanent respectively.
4Unfortunately, journal versions of these papers are not easily available, but we refer to a survey of

Gashkov and Sergeev [6] for a very interesting account of this line of work, along with details of some of
these results.
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where each summand gihi satisfies the property that gi and hi are non-negative multilinear
polynomials that depend on disjoint sets of at least n/3 variables each. We call each such term
a non-negative product polynomial. Thus, to prove a lower bound on the circuit complexity
of P , it suffices to lower bound the number of terms in any decomposition as in (1).

As noted by Jerrum and Snir [9], one way to do this is via the support of the polynomial
P , by which we mean the set of monomials that have non-zero coefficients in P . We think
of this set, denoted Supp(P ), as a subset of 2[n] by identifying each multilinear monomial
on x1, . . . , xn with a subset of [n] in the natural way. Given a decomposition of P into non-
negative product polynomials as in (1), we immediately get Supp(P ) =

⋃
i∈[s] Supp(gi · hi).

And so it suffices to obtain a P such that any such decomposition of Supp(P ) must have
large size.

Such decompositions are closely related to a model of communication complexity known
as Multipartition Communication Complexity, introduced by Ďuris, Hromkovič, Jukna, Sauer-
hoff and Schnitger [4] (see also the earlier result of Borodin, Razborov and Smolensky [2]).
The multipartition communication complexity of a subset S ⊆ 2[n] (or equivalently a Boolean
function f : {0, 1}n → {0, 1})) is defined as follows. We define a rectangle R ⊆ 2[n] to be
any set of the form {A ∪ B | A ∈ A, B ∈ B}, where A ⊆ 2Y and B ⊆ 2Z and (Y, Z) is a
partition of [n]. Further, we say that both the partition and the rectangle R are balanced if
|Y |, |Z| ≥ n/3. Finally, the multipartition communication complexity of S is defined to be
dlog2 ke where k is the smallest integer such that S can be decomposed as the union of k
many balanced rectangles.

To see the connection to algebraic complexity, note that if P ∈ R[x1, . . . , xn] has mono-
tone algebraic circuits of size s, then (1) implies that Supp(P ) has multipartition communi-
cation complexity at most dlog2 se. In particular, linear lower bounds in this model for some
explicit S implies that any non-negative polynomial P with support exactly S cannot be
computed by monotone algebraic circuits of subexponential size.

Polynomial (but sublinear) lower bounds for multipartition communication complexity
were implicit in the work of Borodin et al. [2] and were extended to linear (but somewhat
non-explicit) lower bounds in the work of Ďuris et al. [4]. An explicit linear lower bound
for this model is implicit in a result of Bova, Capelli, Mengel and Slivovsky [3]. (See also
the related work of Hayes [7]. Similar constructions are attributed to Wigderson in [13] and
carried out by Jukna [10].) The hard problem of [3] is quite easy to describe. Fix a regular
expander graph5 G on vertex set [n] with constant degree d. The associated hard problem
is given by taking S to be the set of all vertex covers in G. Said differently, we consider the
Boolean function fG(x1, . . . , xn) =

∧
{i,j}∈E(G)(xi ∨ xj).

As mentioned above, the communication complexity lower bound on S immediately yields
a strongly exponential lower bound on the monotone algebraic complexity of some explicitly
defined polynomial. Unfortunately, as observed by Yehudayoff [21], this does not yield a
separation between MVNP and MVP. This is because the above argument implies that any

5Recall that we call a family of d-regular graphs (Gn)n≥1 (with Gn a graph on n vertices) an expander
sequence if the second largest (in absolute value) eigenvalue of its adjacency matrix A is at most d(1−Ω(1)).
For the problem defined above, take G = Gn in such a sequence.
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polynomial P0 that has support S requires monotone algebraic circuits of exponential size.
Yehudayoff showed that for any polynomial P in MVNP, there is a polynomial-sized mono-
tone algebraic circuit that computes a polynomial Q with the same support. In particular,
the polynomial P0 cannot be in MVNP as that would contradict our lower bound above.
Thus, to obtain a separation between MVNP and MVP along these lines, some new idea is
necessary.

We take our cue from the multipartition communication complexity lower bound above,
but modify it suitably to obtain a somewhat different lower bound candidate polynomial
P . Our proof method for the lower bound, as in [21], is not just based on the support
of P , but rather on the sizes of the coefficients of P . We define a probability distribution
µ on the monomials of P and show that for any non-negative product polynomial gihi in
a decomposition as in (1), a random monomial (chosen according to µ) has much smaller
coefficient in the product polynomial than in P . As the product polynomials sum to P ,
there must be many of them. This yields the lower bound.

We explain this in some more detail below.

Detailed outline. The heart of the multipartition communication complexity lower bound
for the function fG is a more standard lower bound for the non-deterministic communciation
complexity of the Disjointness problem. Here, the non-deterministic communication com-
plexity of a function f (or equivalently, the set system S ⊆ 2[n] given by f−1(1)) is defined
in a similar way to multipartition communication complexity, except that each balanced
rectangle R is defined over the same equipartition (Y, Z) of [n], which we can take to be the
sets [n/2] and [n] \ [n/2] respectively; and the Disjointness function D(x) is defined by the
Boolean predicate

∧
i∈[n/2](xi ∨ xi+n/2).6

The lower bound for the Disjointness function is proved by a standard Fooling set argu-
ment (see, e.g., [12]). We consider the 2n/2× 2n/2 communication matrix M , where the rows
and columns are labelled by Boolean settings to variables indexed by Y and Z respectively
and the (i, j)th entry of M is the disjointness predicate evaluated on the corresponding in-
put. Further, assume that the rows are ordered using the lexicograhical ordering of {0, 1}Y ,
and the columns are ordered according to the reverse lexicographic ordering of {0, 1}Z . This
ensures that for any i ∈ [2n/2], the diagonal entry M(i, i) corresponds to an input of the form
(a, a) where a ∈ {0, 1}Y and a is the bitwise complement of a. From the definition of the
Disjointness function, one can check that each diagonal entry of M is 1; further, given i 6= j,
either M(i, j) or M(j, i) is 0. This implies that any rectangle over (Y, Z) that contains the
ith diagonal entry cannot contain the jth diagonal entry for any j 6= i. In particular, the
number of rectangles required to cover all the diagonal entries is 2n/2, implying a linear lower
bound on the non-deterministic communication complexity of the Disjointness function.

For the multipartition setting, we can follow the above strategy to prove a lower bound
for the function fG defined above. The intuition is that for any graph G, the function fG
contains many copies of the Disjointness function above. In particular, taking any induced

6Strictly speaking, the Disjointness function is
∧

i∈[m](¬xi ∨ ¬xi+n/2) but we keep this definition for
simplicity.
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matching M of size m in G and setting variables corresponding to vertices i 6∈ V (M) to
1, we get a copy fM of the Disjointness function on 2m bits. Given any rectangle R over
the partition (Y, Z), one can similarly prove that R cannot contain many (suitably defined)
“diagonal entries” of the communication matrix of fM , as long as M contains many (say
Ω(m)) edges from the cut defined by (Y, Z) in G.

But there is a subtle question of how to choose M as above. In the multipartition setting,
the partition (Y, Z) is not known ahead of time and furthermore, each rectangle comes with
its own underlying partition. This is where the expanding nature of the graph G comes in.
Standard facts about expander graphs imply that given any balanced partition (Y, Z) (i.e.
|Y |, |Z| ≥ n/3), a constant fraction of the edges of G lie in the cut defined by (Y, Z). In
particular, choosing M randomly guarantees that many edges of M lie in the cut with high
probability. This leads to a proof of the multipartition commmunication complexity lower
bound.

We now describe how this connects to the lower bounds of this paper for monotone
algebraic circuits. We will follow a similar strategy, but instead of the 0s and 1s of the
Boolean predicate, we will analyze the coefficients of the multilinear monomials in P and in
the terms of the decomposition in (1). The polynomial P is defined using an expander graph
G on vertex set [n] (let us skip over what the definition of P is for the moment) and the
hard distribution µ over the monomials of P is again just the process of choosing a random
induced matching7 M of size m in G and considering the monomial

∏
i∈V (M) xi.

The proof of the lower bound then proceeds as follows. Assume that P has a circuit of
size s and consider the decomposition given in (1). Given a term gihi of the decomposition,
we get a balanced partition (Yi, Zi) of the underlying variable set x1, . . . , xn. We argue that
for a random monomial m chosen according to the distribution µ, the expected value of
the coefficient of m in gihi is much smaller than its coefficient in P . To do this, we use
a numerical analogue of the fooling set technique outlined above. Again, we consider the
“communication matrix” M , which now is a 2|Yi| × 2|Zi| matrix whose rows and columns
are labelled by multilinear monomials in Yi and Zi respectively, and such that the entry
corresponding to monomials (m1,m2) is the coefficient of the product monomial m1 · m2 in
P . The main technical part of the proof shows the following: for independently sampled
monomials m′ and m′′ (chosen from distribution µ) that factor as m′1 · m′2 and m′′1 · m′′2
respectively, where m′1,m

′′
1 are monomials over Yi and m′2,m

′′
2 are monomials over Zi, the

coefficients of the “cross monomials” m̂ := m′1 ·m′′2 and m̃ := m′′1 ·m′2 in P are much smaller
than the coefficients of m′ and m′′ in P . This immediately implies that the coefficients of m′

and m′′ in gihi are smaller than they are in P by the following simple argument. If we let
Coeff(m, Q) denote the coefficient of monomial m in a polynomial Q, then we see that

Coeff(m′, gihi) · Coeff(m′′, gihi) = Coeff(m′1, gi)Coeff(m′2, hi)Coeff(m′′1, gi)Coeff(m′′2, hi)

= Coeff(m̂, gihi) · Coeff(m̃, gihi).

The latter term is upper bounded by the product of the coefficients of the monomials m̂ and

7For some technical reasons, we will actually choose M so that the non-adjacent vertices of M are at
distance at least 3 from each other. But this can be ignored for now.
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m̃ in P (because of the decomposition (1)), which we already argued are much smaller than
the coefficients of m′ and m′′ in P . This implies that a randomly chosen monomial m has
much smaller coefficient in any product term gihi than in P . Therefore, there must be many
such terms in the decomposition (1). This implies the lower bound.

The above outline also indicates the property of P that allows the lower bound proof
to work: we would like that the coefficients of m′ and m′′ are much larger than those of
the monomials m̂ and m̃. We do this by designing a polynomial P in MVNP where the
coefficients of any monomial

∏
i∈S xi grows with the number of edges in the subgraph of G

induced by the set S. Recall that for a random monomial m chosen according to µ, S is the
vertex set of a matching of size m and hence this induced subgraph has m edges. However,
if m is sufficiently smaller than n (say m ≤ αn for a small enough α > 0), we do not expect
the vertex sets of two independently chosen matchings of size m to have too many edges
between them. This is what allows us to bound the coefficients of m̂ and m̃, and prove the
lower bound as above.

2 Defining the hard polynomial

Notation. Throughout, let n ≥ 1 be a growing integer parameter. Let X = {x1, . . . , xn}
be a set of indeterminates. We use xS to denote the monomial

∏
i∈S xi. Given a polynomial

P ∈ R[x1, . . . , xn] and S ⊆ [n], we use Coeff(xS, P ) to denote the coefficient of the monomial
xS in the polynomial P .

Let (Gn)n>d be an explicit sequence of d-regular expander graphs on n vertices with second
largest eigenvalue at most d0.75. Here, d is a large enough constant as specified below. Such
an explicit sequence of expander graphs can be constructed using, say, [14]. The only fact
we will use about expanders is the following, which is an easy consequence of the Expander
Mixing Lemma [1] (see also [8, Lemma 2.5]).

For any pair of disjoint sets U, V ⊆ V (Gn), we use E(U, V ) to denote the set of edges
{u, v} ∈ E(Gn) such that u ∈ U and v ∈ V . Also, let E(U) denote the set of edges
e = {u, v} ∈ E(Gn) such that u, v ∈ U .

Lemma 2 (Corollary to Expander Mixing Lemma). Let Gn be as above. Then, for any
disjoint sets U, V ⊆ [n] such that |U |, |V | ∈ [n/3, 2n/3], we have

|E(U, V )| ≥ |E(Gn)|
10

.

as long as d is a large enough constant.

From now on, d will be fixed to be a large enough constant so that the inequality in
Lemma 2 holds.

We define the polynomial Pn(x1, . . . , xn) as follows. We assume that V (Gn) = [n]. For
each edge e ∈ E(Gn) introduce a variable x′e and let X ′ = {x′e | e ∈ E(Gn)}. Notice that for
each Boolean assignment to the variables in X ′, we obtain a subgraph H of Gn. In particular,
if the variables in X ′ are set randomly to Boolean values, we get a random subgraph H of
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Gn with the same vertex set [n]. We use degH(i) to denote the degree of the vertex i in the
graph H.

We now define

Pn(x1, . . . , xn) = E
x′e∈{0,1}
∀e∈E(Gn)

∏
i∈[n]

(
1 + xi · 2degH(i)

) (2)

= E
x′e∈{0,1}
∀e∈E(Gn)

∑
S⊆[n]

xS · 2
∑

i∈S degH(i)

 (3)

where the variables x′e are set to one of {0, 1} independently and uniformly at random.

Lemma 3. The sequence of polynomials Pn as defined above is in MVNP.

Proof. Using (2), we see that

Pn(x1, . . . , xn) =
1

2|E(Gn)|

∑
x′e∈{0,1}:e∈E(G)

∏
i∈[n]

(
1 + xi · 2

∑
e3i x

′
e

)
.

Since Gn is d-regular, it suffices to show that each function f : {0, 1}d → R defined by
f(x′1, . . . , x

′
d) = 2

∑
j∈[d] x

′
j can be represented by a constant-sized polynomial over x′1, . . . , x

′
d

with non-negative coefficients.
But this is clear since f(x′1, . . . , x

′
d) =

∑
S⊆[d]

∏
i∈S x

′
i.

3 The lower bound

The main theorem of this section is the following.

Theorem 4. Any monotone circuit computing Pn has size 2Ω(n).

We need the following lemma from [13]. We say that a pair of multilinear polynomials
(g, h) ∈ R[X] form a non-negative product pair if g, h are polynomials with non-negative
coefficients, and there is a partition of X = Y ∪ Z where n/3 ≤ |Y |, |Z| ≤ 2n/3 and
g ∈ R[Y ], h ∈ R[Z].

Lemma 5 ([13], Lemma 3.3). Assume that Pn has a monotone circuit of size s. Then

Pn(X) =
s+1∑
i=1

gihi

where for each i ∈ [s], (gi, hi) forms a non-negative product pair.

Corollary 6. Assume that Pn has a monotone circuit of size s. Let µ be any probability
distribution on subsets S ⊆ [n]. Then, there is a non-negative product pair (g, h) such that
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• gh ≤ P , i.e., Coeff(xS, gh) ≤ Coeff(xS, Pn) for each S ⊆ [n],

• ES∼µ
[
Coeff(xS, gh)/Coeff(xS, Pn)

]
≥ 1/(s+1). (The quantity Coeff(xS, gh)/Coeff(xS, Pn)

is well defined since by (3), the denominator is non-zero for all S ⊆ [n].)

Proof. Write Pn =
∑

i≤s+1 gihi as in Lemma 5. For any fixed S ⊆ [n] and a uniformly
random i ∈ [s+ 1], we have

E
i∈[s+1]

[
Coeff(xS, gihi)

Coeff(xS, Pn)

]
=

1

s+ 1

∑
i∈[s]

Coeff(xS, gihi)

Coeff(xS, Pn)
=

1

s+ 1
.

In particular, the above also holds when S is chosen according to µ. The result now follows
by averaging over i ∈ [s+ 1].

Given Corollary 6, to prove Theorem 4, it suffices to show the following.

Lemma 7. There is a probability distribution µ on subsets S ⊆ [n] such that for any non-
negative product pair (g, h) with gh ≤ Pn, we have

E
S∼µ

[
Coeff(xS, gh)/Coeff(xS, Pn)

]
≤ exp(−Ω(n)). (4)

We need some preparatory work before proving Lemma 7.

Lemma 8. There exist constants A,B > 1 such that

Pn(X) =
∑
S⊆[n]

xSB|S|A|E(S)|.

Proof. Using (3), we obtain

Pn(x1, . . . , xn) = E
x′e:e∈E(G)

∑
S⊆[n]

xS · 2
∑

i∈S degH(i)

 =
∑
S⊆[n]

xS · E
x′e:e∈E(G)

[
2
∑

i∈S degH(i)
]

where H is the random subgraph of G defined by a uniformly random Boolean assignment
to the variables in X ′. Note that∑

i∈S

degH(i) =
∑
i∈S

∑
e3i

x′e =
∑

e∈E(S,S̄)

x′e +
∑

e∈E(S)

2x′e.

Hence, we get for any S ⊆ [n],

E
x′e:e∈E(G)

[
2
∑

i∈S degH(i)
]

=
∏

e∈E(S,S̄)

E
x′e

[
2x

′
e

]
·
∏

e∈E(S)

E
x′e

[
4x

′
e

]
= (3/2)|E(S,S̄)| · (5/2)|E(S)|

= (3/2)|S|d · (5/2)|E(S)|

(3/2)2|E(S)|

where for the last equality, we have used the fact that 2|E(S)|+ |E(S, S̄)| = |S|d. Note that
this proves the lemma with B = (3/2)d and A = (10/9).
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We now define the probability distribution µ that will be shown to have the property
in (4). The distribution is defined by the following sampling process. Let m = αn where
α ∈ (0, 1) is a small constant specified below.

Sampling Algorithm S :

1. Set M = ∅. (Eventually, M will be a matching of size m/2 in G.)

2. For i = 1 to (m/2), do the following.

(a) Remove all vertices from Gn that are at distance at most 2 from any vertex in

the matching M . Let G
(i)
n be the resulting graph.

(b) Choose a uniformly random edge ei from E(G
(i)
n ) and add it to M .

3. Output M .

The above algorithm defines a distribution ν over matchings M in Gn of size m/2. We define
S = V (M) to be the set of vertices sampled by the algorithm. This defines a probability
distribution µ over subsets of [n].

We will need the following properties of the above algorithm.

Lemma 9 (Properties of S.). Let M be sampled as in S above and let S = V (M). Then we
have

1. Assuming that α ≤ 1/(100 · d2), we have |M | = (m/2), |S| = m and E(S) = M with
probability 1.

2. Let (U, V ) be any partition of V (Gn) such that n/3 ≤ |U |, |V | ≤ 2n/3. Then, as long
as α ≤ 1/(100 · d2), for some absolute constant γ > 0, we have

Pr
M

[|M ∩ E(U, V )| ≤ γm] ≤ exp(−γm).

3. Let M1 and M2 be two independent samples obtained by running S twice, and let
Si = V (Mi) (i ∈ [2]). Let (U, V ) be a partition of V (Gn) as above. Define Ri = Si ∩U
and Ti = Si ∩ V. Then, for α ≤ γ lnA/(100 · A4d2) we have

E
M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|] ≤ Aγm/4.

Here, γ is as in the previous item and A is as in the statement of Lemma 8.

Proof. Item 1 easily follows from the definition of the Sampling algorithm S. Note that in
each iteration of Step 2, we remove at most 2 · (1 + d + d2) vertices and hence at most
2(d+ d2 + d3) edges from the graph Gn. Hence, the upper bound on α guarantees that after
i < (m/2) iterations of the for loop, the number of edges removed from the graph is at most

2i · (d3 + d2 + d) < 4md3 = 4αnd3 <
nd

2
,

9



which allows the algorithm to choose an edge from the graph G
(i)
n to add to the matching

M .
For Item 2, we proceed as follows. For i ∈ {1, . . . ,m/2}, let ei be the edge chosen by

the sampling algorithm S in the ith iteration of Step 2. Fix any choices of all the ej with
j < i and consider the ith iteration of Step 2. The probability that ei lies in E(U, V ) is

|Ei(U, V )|/|E(G
(i)
n )| where Ei(U, V ) is the set of edges in G

(i)
n with one endpoint each in U

and V . Note that

|Ei(U, V )| ≥ |E(U, V )|−|E(Gn)\E(G(i)
n )| ≥ nd

10
−2(i−1)·(d3 +d2 +d) ≥ nd

10
−αn(3d3) ≥ nd

20

where the second inequality follows from Lemma 2 and an analysis similar to Item 1 above;
the last two inequalities follow from the fact that 2(i− 1) < m = αn ≤ n/(100 · d2). Hence,
we have shown that for each i,

Pr[ei ∈ E(U, V ) | e1, . . . , ei−1] =
|Ei(U, V )|
|E(G

(i)
n )|

≥ (nd)/20

(nd)/2
=

1

10
.

In particular, for any T ⊆ [m], the probability that for every i ∈ T , ei 6∈ E(U, V ) can be
upper bounded by (9/10)|T |.

Thus, the probability that |M ∩ E(U, V )| ≤ ` = γm can be bounded by

Pr
M

[∃T ∈
(

[m]

m− `

)
s.t. ∀i ∈ T, ei 6∈ E(U, V )] ≤

∑
T

Pr
M

[∀i ∈ T, ei 6∈ E(U, V )]

≤
(
m

`

)(
9

10

)m−`
≤
(em
`

)`
·
(

9

10

)m−`
=

(
e

γ
·
(

9

10

)(1/γ)−1
)γm

≤ exp(−γm)

as long as γ is bounded by a small enough absolute constant. This finishes the proof of Item
2.

We now prove Item 3. Fix any possible matching M1 as sampled by the algorithm S.
It suffices to bound EM2

[
A|E(R2,T1)|+|E(R1,T2)|] for each such M1. Let S̃1 denote the set of

vertices that are at distance at most 1 from S1 and let E1 denote the set of edges that have
at least one endpoint in S̃1. Note that |E1| ≤ |S̃1|d ≤ |S1|d2 = md2 = αnd2.

We claim that |E(R2, T1)| + |E(R1, T2)| ≤ 4|E1 ∩M2|. The reason for this is that if a
vertex i ∈ S2 is incident to an edge e in E(R1, T2) ∪ E(R2, T1) then i ∈ S̃1 and hence the
edge e′ ∈ M2 involving i is an edge in E1 ∩M2. In particular, the number of such vertices
i ∈ S2 is at most 2|E1 ∩M2|. Further, each such vertex i is adjacent to at most 2 vertices
in S1 since vertices in S1 that are not adjacent via an edge in M1 are at distance at least 3
from each other. Thus each such vertex i contributes at most 2 to |E(R2, T1)|+ |E(R1, T2)|.
This yields the claimed inequality. Thus it suffices to bound EM2

[
A4|E1∩M2|

]
.
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We start with a tail bound for |E1∩M2|. Let M2 = {e′1, . . . , e′m/2} where e′j is the jth edge
added to M2 by the algorithm S. Conditioned on e′1, . . . , e

′
j−1, the probability that e′j ∈ E1

is at most

|E1|
|E(G

(j)
n )|

=
|E1|

|E(Gn)| − |E(Gn) \ E(G
(j)
n )|
≤ αnd2

(nd/2)− 3αnd3
≤ αnd2

(nd)/4
= 4αd

where for the first inequality we have bounded |E(Gn) \ E(G
(j)
n )| and |E1| as above and for

the second inequality we have used the bound on α. Hence, we have

Pr
M2

[|E1 ∩M2| ≥ i] ≤
∑

T∈(m/2
i )

Pr
M2

[∀j ∈ T, e′j ∈ E1] ≤
(
m/2

i

)
(4αd)i.

This allows us to bound EM2

[
A4|E1∩M2|

]
for any fixed M1 output by S.

E
M2

[
A4|E1∩M2|

]
≤

m/2∑
i=0

A4i Pr
M2

[|E1 ∩M2| ≥ i]

≤
m/2∑
i=0

A4i ·
(
m/2

i

)
(4αd)i =

(
1 + 4αdA4

)m/2
≤ (1 + (γ lnA)/2)m/2 ≤ exp((mγ lnA)/4) = Aγm/4

where the third inequality follows from the bound α ≤ γ lnA/(100 · A4d2) assumed in the
statement of the lemma.

We are now ready to prove Lemma 7, which will complete the proof of Theorem 4.

Proof of Lemma 7. We set m = αn so that α is a positive constant upper bounded by
γ lnA/(100 · A4 · d2) and m is even. Assume that M is as sampled above by sampling
algorithm S and S = V (M). This defines the distribution µ on subsets of [n].

Let (g, h) be any non-negative product pair such gh ≤ Pn. Consequently, there exists a
partition (U, V ) of V (Gn) = [n] such that n/3 ≤ |U |, |V | ≤ 2n/3 and g ∈ R[xi : i ∈ U ], h ∈
R[xj : j ∈ V ].

Let E = E(M) denote the event that |M ∩E(U, V )| ≤ γm. By Lemma 9 item 2, we know
that PrM [E ] ≤ exp(−Ω(n)) and hence we have

E
M

[
Coeff(xS, gh)

Coeff(xS, Pn)

]
≤ E

M

[
Coeff(xS, gh)

Coeff(xS, Pn)
| E
]

Pr
M

[E ] + E
M

[
Coeff(xS, gh)

Coeff(xS, Pn)
| E
]

Pr
M

[Ē ]

≤ Pr
M

[E ] + E
M

[
Coeff(xS, gh)

Coeff(xS, Pn)
| E
]

≤ exp(−Ω(n)) +
1

Bm · Am/2
E
M

[
Coeff(xS, gh) | E

]
(5)

11



where for the second inequality we have used that gh ≤ Pn, and for the final inequality we
have used our bound on PrM [E ] along with Lemma 8 and Lemma 9 item 1.

We now bound the latter term in (5). For any i, j, k, let Ei,j,k = Ei,j,k(M) denote the event
that |M ∩ E(U, V )| = i, |M ∩ E(U)| = j, and |M ∩ E(V )| = k. The event Ē is partitioned
into Ei,j,k where i+ j + k = (m/2) and i ≥ γm. Let T denote the set of such triples (i, j, k).
We have

E
M

[
Coeff(xS, gh) | E

]
=

∑
(i,j,k)∈T

E
M

[
Coeff(xS, gh) | Ei,j,k

]
· Pr
M

[Ei,j,k | E ]

Call a triple (i, j, k) ∈ T heavy if PrM [Ei,j,k] ≥ A−γm/4 and light otherwise. Note that
as PrM [E ] = 1 − exp(−Ω(n)) ≥ 1/2, we have PrM [Ei,j,k | E ] ≤ 2 PrM [Ei,j,k]. In particular,
if (i, j, k) is light, we have PrM [Ei,j,k | E ] ≤ 2A−γm/4 = exp(−Ω(n)). Plugging this into the
expression above, we get

E
M

[
Coeff(xS, gh) | E

]
=

∑
(i,j,k)∈T

E
M

[
Coeff(xS, gh) | Ei,j,k

]
· Pr
M

[Ei,j,k | E ]

≤ |{(i, j, k) | (i, j, k) light}| ·BmAm/2 · exp(−Ω(n)) + max
(i,j,k) heavy

E
M

[
Coeff(xS, gh) | Ei,j,k

]
≤ exp(−Ω(n))BmAm/2 + max

(i,j,k) heavy
E
M

[
Coeff(xS, gh) | Ei,j,k

]
. (6)

It suffices therefore to bound EM

[
Coeff(xS, gh) | Ei,j,k

]
for any heavy (i, j, k). This is

the main part of the proof.
Fix some (i, j, k) ∈ T that is heavy. Let C = EM

[
Coeff(xS, gh) | Ei,j,k

]
. Thus, we get

C2 = E
M1,M2

[
Coeff(xS1 , gh)Coeff(xS2 , gh)

]
where M1 and M2 are independent samples of M conditioned on the event Ei,j,k(M), and
S` = V (M`) for ` ∈ {1, 2}. Define R` = S` ∩ U and T` = S` ∩ V. We make some simple
observations. For each ` ∈ [2]

1. |R`| = i+ 2j and |T`| = i+ 2k,

2. |E(R`)| = j, |E(T`)| = k,

3. Coeff(xS` , gh) = Coeff(xR` , g) · Coeff(xT` , h).
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Thus, we have

C2 = E
M1,M2

[
Coeff(xR1 , g)Coeff(xT1 , h)Coeff(xR2 , g)Coeff(xT2 , h)

]
= E

M1,M2

[
Coeff(xR1∪T2 , gh)Coeff(xR2∪T1 , gh)

]
≤ E

M1,M2

[
Coeff(xR1∪T2 , Pn)Coeff(xR2∪T1 , Pn)

]
= E

M1,M2

[
B|R1|+|T2| · A|E(R1∪T2)| ·B|R2|+|T1| · A|E(R2∪T1)|]

= E
M1,M2

[
B4(i+j+k) · A|E(R1)|+|E(T1)|+|E(R2)|+|E(T2)|+|E(R1,T2)|+|E(R2,T1)|]

= B2mAm−2i · E
M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|]

≤ B2mAm(1−2γ) · E
M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|] (7)

where we used the observations above for the equalities and for the final inequality, we used
the fact that i ≥ γm for all (i, j, k) ∈ T .

To bound the latter term in (7), we consider a similar expression where M1 and M2 are
replaced by M ′

1 and M ′
2 which are independent random outputs of the algorithm S (without

any conditioning). In this case, by Lemma 9 item 3, we have

E
M ′

1,M
′
2

[
A|E(R′

1,T
′
2)|+|E(R′

2,T
′
1)|
]
≤ Aγm/4,

where R′`, T
′
` are defined analogously for ` ∈ [2]. Thus, using Bayes’s rule we have

E
M1,M2

[
A|E(R1,T2)|+|E(R2,T1)|] ≤ EM ′

1,M
′
2

[
A|E(R′

1,T
′
2)|+|E(R′

2,T
′
1)|]

PrM ′
1,M

′
2
[Ei,j,k(M ′

1) ∧ Ei,j,k(M ′
2)]
≤ A3γm/4

where the last inequality uses the fact that (i, j, k) is heavy. Plugging the above into (7), we
have

C ≤ BmAm/2−5γm/8 = BmAm/2 exp(−Ω(n)).

As this holds for any heavy (i, j, k), using (6) and (5), we obtain the statement of the
lemma.
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