
Counting basic-irreducible factors mod pk in

deterministic poly-time and p-adic applications

Ashish Dwivedi ∗ Rajat Mittal † Nitin Saxena ‡

Abstract

Finding an irreducible factor, of a polynomial f(x) modulo a prime p, is not known to be
in deterministic polynomial time. Though there is such a classical algorithm that counts the
number of irreducible factors of f mod p. We can ask the same question modulo prime-powers
pk. The irreducible factors of f mod pk blow up exponentially in number; making it hard to
describe them. Can we count those irreducible factors mod pk that remain irreducible mod p?
These are called basic-irreducible. A simple example is in f = x2 + px mod p2; it has p many
basic-irreducible factors. Also note that, x2 + p mod p2 is irreducible but not basic-irreducible!

We give an algorithm to count the number of basic-irreducible factors of f mod pk in
deterministic poly(deg(f), k log p)-time. This solves the open questions posed in (Cheng et al,
ANTS’18 & Kopp et al, Math.Comp.’19). In particular, we are counting roots mod pk; which
gives the first deterministic poly-time algorithm to compute Igusa zeta function of f . Also, our
algorithm efficiently partitions the set of all basic-irreducible factors (possibly exponential) into
merely deg(f)-many disjoint sets, using a compact tree data structure and split ideals.

2012 ACM CCS concept: Theory of computation– Algebraic complexity theory, Pseudoran-
domness and derandomization; Computing methodologies– Algebraic/ Number theory algorithms,
Hybrid symbolic-numeric methods; Mathematics of computing– Combinatoric problems.
Keywords: deterministic, root, counting, modulo, prime-power, tree, basic irreducible, unramified.

1 Introduction

Factoring a univariate polynomial, over prime characteristic, is a highly well studied problem.
Though efficient factoring has been achieved using randomization, still efficient derandomization is
a longstanding problem. A related question of equal importance is root finding, but this is known
to be equivalent to factoring in deterministic poly-time. Surprisingly, testing irreducibility, or even
counting irreducible factors, is easy in this regime. The main tool here is the magical Frobenius
morphism of prime p characteristic rings: x 7→ xp.

Though much effort has been put in prime characteristic, few results are known in composite
characteristic n [Sha93]. Even irreducibility testing of a polynomial, with the prime factorization of
n given, has no efficient algorithm known. This reduces to prime-power characteristic pk [vzGH98].
Deterministic factoring in such a ring is a much harder question (at least it subsumes deterministic
factoring mod p). In fact, even randomized algorithms, or practical solutions, are currently elusive
[vzGH96, vzGH98, Kli97, Săl05, Sir17, DMS19]. The main obstruction is non-unique factorization.

∗CSE, Indian Institute of Technology, Kanpur, ashish@cse.iitk.ac.in
†CSE, Indian Institute of Technology, Kanpur, rmittal@cse.iitk.ac.in
‡CSE, Indian Institute of Technology, Kanpur, nitin@cse.iitk.ac.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 33 (2019)

Being a non-unique factorization domain, there could be exponential number of roots, or
irreducible factors, modulo prime-powers [vzGH96]. So one could ask a related question about
counting all the irreducible factors (respectively roots) modulo prime-powers. Efficiently solving this
counting problem will give us an efficient irreducibility testing criteria, which is the first question
one wants to try. Recall that prime characteristic allows such an efficient method.

Motivated by this, we ask— Could we describe all factors which remain irreducible mod p? Such
factors are called basic-irreducible in the literature. This is much more than counting roots mod pk (as,
f(α) = 0 iff x−α is a basic-irreducible factor of f). These roots, besides being naturally interesting,
have various applications in— factoring [Chi87, Chi94, CG00], coding theory [BLQ13, Săl05], elliptic
curve cryptography [Lau04], arithmetic algebraic-geometry [ZG03, DH01, Den91, Igu74]. Towards
this we design a machinery, yielding the following result:

Given a degree d integral polynomial f(x) and a prime-power pk, we partition the set of all
basic-irreducible factors of f mod pk into at most d (compactly provided) subsets in deterministic
poly(d, k log p)-time; in the same time we count the number of factors in each of these subsets.

Also, we can compactly partition (and count) the roots of f mod pk in deterministic poly-time.

This efficient partitioning of (possibly exponentially many) roots into merely d subsets is
reminiscent of the age-old fact: there are at most deg(g) roots of a polynomial g(x) over a field.
Root sets mod pk are curious objects; not every subset of Z/pkZ is a root set (except when k = 1).
Their combinatorial properties have been studied extensively [Sie55, CP56, Bha97, DM97, Mau01].
In this regard, our result is one more step to understand the hidden properties of root-sets mod
prime-powers.

Factoring mod pk has applications in factoring over local fields [Chi87, Chi94, CG00]. Previously,
the latter was achieved through randomized factoring mod p [CZ81] and going to extensions of
Qp. Directly factoring mod pk, for arbitrary k, would imply a new and more natural factoring
algorithm over p-adic fields. In fact, our method gives the first deterministic poly-time algorithm
to count basic-irreducible factors of f ∈ Qp[x]; by picking k such that pk - discriminant(f). This
derandomization was not known before, though Qp[x] is indeed a unique factorization domain.

1.1 Previously known results

The questions of root finding and root counting of f mod pk are of classical interest, see [NZM13,
Apo13]. Using Hensel lifting (Section A) we know how to ‘lift’ a root, of multiplicity one, of f mod
p to a root of f mod pk, in a unique way. But this method breaks down when the root (mod p)
has multiplicity more than one. [BLQ13, Cor.4] was the first work to give an efficient randomized
algorithm to count, as well as find, all the roots of f mod pk. In this line of progress, very recently
[CGRW18] gave a deterministic algorithm to count roots in time exponential in the parameter k.
Extending the idea of [CGRW18], [KRRZ18] gave another efficient randomized algorithm to count
roots of f mod pk. Note that finding the roots deterministically seems a difficult problem because
it requires efficient deterministic factoring of f mod p (which is a classical open problem). But
counting the roots mod pk deterministically may be an easier first step.

Recently there has been some progress in factoring f mod pk when k is constant. [DMS19] gave
the first efficient randomized algorithm to factor f mod pk for k ≤ 4. This gives an exponential
improvement over the previous best algorithms of [Sir17, vzGH98, vzGH96] mod pk (k ≤ 4). In
fact, they generalized Hensel lifting method to mod pk, for k ≤ 4, in the difficult case when f mod p
is power of an irreducible. The related derandomization questions are all open.

2

The case of factoring f mod pk when k is “large”— larger than the maximum power of p dividing
the discriminant of the integral f —has an efficient randomized algorithm due to [vzGH98]. They
showed, assuming large k, that factorization mod pk is well behaved and corresponds to the unique
p-adic factorization of f (i.e. in Qp[x]). In turn, p-adic factoring has known efficient randomized
algorithms [Chi87, Chi94, CG00]. The derandomization questions are all open.

We now give a deterministic method to count all the roots (resp. basic-irreducible factors)
efficiently. In fact, our proof can be seen as a deterministic poly-time reduction of basic-irreducible
factor finding mod pk to root finding mod p. In particular, it subsumes all the results of [BLQ13].

1.2 Our results

Theorem 1 (Root count). Let p be a prime, k ∈ N and f(x) ∈ Z[x]. Then, all the roots of f mod pk

can be counted in deterministic poly(deg f, k log p)-time.

This is the first efficient derandomization of the randomized root counting algorithms [BLQ13,
KRRZ18], and an exponential improvement over the recent deterministic algorithm of [CGRW18].
The challenge arises from the fact that we need to count the possibly exponentially many roots
without being able to find them.

Remarks. 1) In the algorithm, the (possibly exponential) root-set of f mod pk gets partitioned into
at most deg(f)-many disjoint subsets and we output a compact representation, called split ideal, for
each of these subsets. We do count them, but do not yet know how to find a root deterministically.

2) This gives an efficient way to deterministically compute the Igusa zeta function, given an
integral univariate f and a prime p. This follows from the fact that we just need to compute
Nk(f) :=number of roots of f mod pk, for k ∈ [`] s.t. p` - discriminant(f), to estimate Poincaré
series

∑∞
i=0Ni(f)xi [Den91, Igu74]. Interestingly, it converges to a rational function!

3) This is the first deterministic poly-time algorithm to count the number of lifts of a repeated
root of f mod p to f mod pk.

4) This gives the first deterministic poly-time algorithm to count the number of p-adic integral
roots of a given p-adic polynomial f ∈ Qp[x]. (Count roots mod p` where p` - discriminant(f).)

Next, we extend the ideas for counting roots to count all the basic-irreducible factors of f mod pk

in deterministic polynomial time. Recall that a basic-irreducible factor of f mod pk is one that
remains irreducible in mod p arithmetic.

Theorem 2 (Factor count). Let p be a prime, k ∈ N and f(x) ∈ Z[x]. Then, all the basic-irreducible
factors of f mod pk can be counted in deterministic poly(deg f, k log p)-time.

We achieve this by extending the idea of counting roots to more general p-adic integers. Essentially,
we efficiently count all the roots of f(x) in OK/〈pk〉, where OK is the ring of integers of a p-adic
unramified extension K/Qp (refer [Kob77] for the standard notation). Currently, there is no fast,
practical method known to find/count roots when K is ramified.

Corollary 3. Consider (an unknown) p-adic extension K := Qp[y]/〈g(y)〉, which is unramified and
has degree ∆. Let f(x) ∈ Z[x], p, k,∆ be given as input (in binary).

Then, we can count all the roots of f , in OK/〈pk〉, in deterministic poly(deg(f), k log p,∆)-time.

Remarks. 1) This gives the first deterministic poly-time algorithm to count the number of
(unramified p-adic integral) roots of a given p-adic polynomial f ∈ K[x].

2) Our method generalizes to efficiently count all the roots of a given polynomial f(x) ∈
(F[t]/〈h(t)k〉)[x] for a given polynomial h (resp. f ∈ F[[t]][x] with power-series coefficients); assuming
that F is a field over which root counting is efficient (eg. Q,R,Fp and their algebraic extensions).

3

1.3 Proof techniques

Our implementation involves constructing a list data structure L which implicitly partitions the
root-set of f mod pk into at most deg(f)-many disjoint subsets; and count the number of roots in
each such subset. The construction of L is incremental, by doing arithmetic modulo special ideals,

Split ideals. A split ideal Il of length l + 1, and degree b, is a ‘triangular’ ideal defined as
Il = 〈h0(x0), h1(x̄1), . . . , hl(x̄l)〉, where the notation x̄i refers to the variable set {x0, . . . , xi} and
b =

∏
0≤i≤l degxi(hi). It implicitly stores a size-b subset of the root-set of f mod pk, where a root

looks like
∑

0≤i≤l xip
i till precision pl+1. Note that a root r of f mod pk is also a root of f mod pl

for all l ∈ [k]. Since we cannot access them directly, we ‘virtualize’ them in the notation x̄l.
The structure of these ideals is quite nice and recursive (Section 2). So it may keep splitting (in

Algorithm 1) till it becomes a maximal ideal, which corresponds to a single point in (Fp)l and has
degree one. Or, the algorithm may halt earlier, due to ‘stable clustering’ of roots, and then we call
the ideals– maximal split ideal; in fact, L has only maximal split ideals. These do not give us the
actual roots but do give us their count!

List data structure. L implicitly stores, and may partition, the root-set of f mod pk. Essen-
tially, L is a set of at most d maximal split ideals, i.e. L = {I1(l1, d1), . . . , In(ln, dn) }, where each
ideal Ij ⊆ Fp[x̄k−1] has two parameters— length lj and degree dj . A maximal split ideal I(l,D)
implicitly stores a size-D subset of the root-set of f mod pk. This yields a simple count of Dpk−l

for the corresponding roots. Ideals in L have the property that they represent disjoint subsets of
roots; and they collectively represent the whole root-set of f mod pk. Thus, L gives us both the
(implicit) structure and the (exact) size of the root-set of f mod pk. In the intermediate steps of
the algorithm, for efficiency reasons, we will store a tuple (Ij , fIj) in a changing stack S. Where,

fIj (x̄lj−1, x) := f(x0 + px1 + · · ·+ plj−1xlj−1 + pljx) mod Îj is a ‘shifted and reduced’ version of f
tagging along (with x as the only free variable).

Roots-tree data structure. Most importantly, we need to prove that |L|, and the degree of
the split ideals in L, remains at most deg(f) at all times in the algorithm (while f mod pk may have
exponentially many roots). To achieve this, we use a different way to look at the data structure
L— in tree form RT where each generator hi appearing in an I ∈ L appears as an edge of the tree;
conversely, each tree node v denotes the intermediate split ideal corresponding to the path from the
root (of the tree RT) to v.

The roots-tree RT has a useful parameter at every node– degree. Degree of a node measures the
possible extensions to the next level, and it possesses the key property: it ‘distributes’ to its children
degrees. This helps us to simultaneously bound the width of RT and degree of split ideals, to be at
most the degree deg(f) of the root node. Otherwise, since we compute with k-variate polynomials,
a naive analysis of the tree-size (resp. degree of split ideals) would give a bound of deg(f)k, or a
slightly better deg(f)2k as in [CGRW18, pg.9]; which is exponential in the input size deg(f) · k log p.

1.4 Proof overview

Proof idea of Theorem 1. Let R := Z/〈pk〉; so R/〈p〉 ∼= Fp. Let ZR(f) be the zeroset of
f mod pk.

The idea to count roots of f mod pk comes from the elementary fact: Any root r ∈ R of f mod pk

can be seen in a p-adic (or base-p) representation as r =: r0 + pr1 + p2r2 + . . .+ pk−1rk−1, for each
ri ∈ Fp. Thus, we decompose our formal variable x into multi-variables x0, . . . , xk−1 being related
as, x = x0 + px1 + p2x2 + . . .+ pk−1xk−1.

4

Though, getting roots of f(x0) mod p deterministically is difficult, we can get the count on the
number of roots of f(x0) mod p from the degree of a polynomial h(x0) ∈ Fp[x0], which is the gcd
of f and Frobenius polynomial xp0 − x0 mod p. This way of implicitly representing a set of desired
objects by a polynomial and using its properties (eg. degree) to get a count on the objects is widely
termed as polynomial method.

This gives us a length-1 and degree-degx0
(h0) split ideal I0 := 〈h0(x0)〉. Since I0 represents all

roots of f mod p, we can again apply the polynomial method to incrementally build on ideal I0 to
get greater length split ideals representing roots of f with greater precision, say mod pl+1.

To do this, we trivially lift I0 to make it an ideal Î0 in R. Solve f(x0+px) ≡ pαg(x0, x) mod Î0 for
α ∈ N and g 6≡ 0 mod p. Reduce g(x0, x) over Fp again, and calculate the next set of candidates for
x1 implicitly in a polynomial h1 ∈ Fp[x0, x] defined as, h1 := GCD(g(x0, x) mod p, xp − x) mod I0.
Using the properties of split ideal (Lemma 11), multivariate-gcd modulo I0 yields h1 that ‘stores’
all the candidates for x1, for each root x0 represented by I0. So, we get a length 2 split ideal
I1 := I0 + 〈h1(x0, x1)〉.

In every iteration, we add a new variable, by solving equations like f(x0 + px1 + p2x2 + . . .+
plxl + pl+1x) ≡ pαg(x̄l, x) modulo a length l + 1 triangular ideal Îl, for α ∈ N and g 6≡ 0 mod p.
This gives us the next candidate hl+1(x̄l, x) := GCD(g(x̄l, x) mod p, xp − x) mod Il; moving to a
more precise split ideal. Sometimes we get that g and xp − x are coprime mod Il, those cases
indicate dead-end and we stop processing those branches. Finally we reach α = k, which indicates
full precision; and we get a maximal split ideal Il which we add to the list L.

Division by ‘zero’. Some computations modulo a split ideal may not be possible. These cases
arise only due to zerodivisors. In those cases, we will exploit the zerodivisor to split/factor the
current split ideal into more split ideals of smaller degree. We can keep track of all these split ideals
using a stack and keep performing the same computations iteratively. Since a split ideal has finite
length, the process must terminate. The real challenge lies in proving a good bound.

Efficiency via roots-tree. Now, we need to show that the algorithm to construct L is efficient
and that |L| ≤ deg(f) (in fact, sum of degrees of all maximal split ideals in L is at most deg(f)). In
a particular iteration, the algorithm just performs routine computations like– reduction modulo the
current split ideal I, inversion, zerodivisor testing, gcd, exponentiation, and computing p-valuations
or multiplicities; which are clearly bounded by poly(deg(f), k log p,deg(I)) (Sections C & D). It is
harder to bound the number of iterations and deg(I).

To understand the number of iterations, we review the construction of L as the formation of
a tree, which we call roots-tree RT . A node of RT corresponds to an intermediate split ideal I,
where an edge at level i on the path from the root (of RT) to the node corresponds to the generator
hi(x̄i) of I. Each time we update a split ideal Il−1 to Il := Il−1 + 〈hl〉 we add a child, to the node
corresponding to Il−1, hanging by a new edge labelled hl. Similarly, splitting of an ideal at some
generator hi(x̄i) into m ideals corresponds to creating m subtrees hanging by edges which are m
copies of the edge labelled hi. This way the roots-tree upper bounds the number of iterations;
moreover, the maximal split ideals in L appear as leaves in RT .

Degree distribution in RT . Each node N of RT has an associated parameter, ‘degree of node’
[N] (Definition 15), which is defined in such a way that it distributes to degree of its children
(i.e. [N] is at least the sum of degrees of its child nodes). This is intended to measure the possible
extensions xl modulo the corresponding split ideal Il−1, and is a suitable multiple of deg(Il−1).
Applying degree’s property inductively, we get that the degree of root node of RT , which is deg(f),
distributes to the degree of the leaves and so the sum of degrees of all maximal split ideals in L

5

is at most deg(f). The distributive property of [N], corresponding to ideal Il−1, comes from the
fact: the degree of a child C corresponding to ideal Il = Il−1 + 〈hl〉 is bounded by the multiplicity
of roots of hl(ā, x) times deg(Il−1), corresponding to some root ā of Il−1; and the overall sum of
these multiplicities for every child of N is naturally bounded by the degree of N (Lemma 16).

The details are given in Section 3.

Proof idea of Theorem 2. The idea, and even the algebra, is the same as for Theorem 1. The
definition of list L easily extends to implicitly store all the basic-irreducible factors of f mod pk

of some degree b (a generalization over roots which corresponds to degree b = 1 basic-irreducible
factors). This uses a strong property possessed by basic-irreducible factors. A basic-irreducible
factor g(x) ∈ (Z/〈pk〉)[x] of f mod pk, of degree b, completely splits over the Galois ring G(pk, b) :=
Z[y]/〈pk, ϕ(y)〉, where ϕ(y) mod p is an irreducible of degree b (Section A). Conversely, if we find a
root of f(x), in G(pk, b), then we find a degree-b basic-irreducible factor of f mod pk.

By distinct degree factorization we can assume f(x) ≡ (ϕ1 . . . ϕm)e + ph(x) mod pk, where each
ϕi(x) mod p is irreducible and degree-b. We construct L by applying the algorithm of Theorem 1,
with one change: every time to update a length-l split ideal Il−1 to a length l+1 ideal Il := Il−1+〈hl〉,
we compute hl using the Frobenius polynomial xq − x mod p, where q := pb. Basically, for x, we
focus on Fq-roots instead of the erstwhile Fp-roots.

We count the number of (distinct, monic, degree-b) basic-irreducible factors represented by each
maximal split ideal I(l,D) ∈ L as: Dqk−l/b. The details are given in Section 4.

2 Preliminaries

Here we introduce our main tool - ‘split ideals’. Proofs for this section have been moved to Section
B. Basic introduction to Galois rings (i.e. non-prime characteristic analog of finite fields), Hensel
lifting, randomized factoring over finite fields, etc. have been moved to Section A.

We will be given a univariate polynomial f(x) ∈ Z[x] of degree d and a prime power pk (for a
prime p and a positive integer k ∈ N). Wlog, we assume that f is monic over Fp.

A tuple of variables (x0, . . . , xl) will be denoted by x̄l. Often, an (l + 1)-variate polynomial
a(x0, x1, . . . , xl) will be written as a(x̄l), and the polynomial ring Fp[x0, . . . , xl] as Fp[x̄l].

We denote the ring Z/〈pk〉 by R (ring R/〈p〉 is the same as field Fp). An element a ∈ R can be
seen in its p-adic representation as a = a0 +pa1 + . . .+pk−1ak−1, where ai ∈ Fp for i ∈ {0, . . . , k−1}.
ZR(g) := {r ∈ R | g(r) ≡ 0 mod pk} denotes the zeroset of a polynomial g(x) ∈ R[x].
Zeroset of an ideal I ⊆ Fp[x0, . . . , xl] is defined as the intersection of zeroset of all polynomials

in I, ZFp(I) := {ā = (a0, . . . , al) ∈ (Fp)l+1 | g(ā) ≡ 0 mod p,∀g ∈ I}.
We will heavily use ideals of the form I := 〈h0(x̄0), h1(x̄1), . . . , hl(x̄l)〉 satisfying the condition—

for any i ∈ [l+1] and ā ∈ ZFp(〈h0(x̄0), h1(x̄1), . . . , hi−1(x̄i−1)〉), polynomial hi(ā, xi) splits completely
into distinct linear factors. They are formally defined as:

Definition 4 (Split ideal). We will call a polynomial monic wrt x if the leading-coefficient is one.
Given f(x) ∈ R[x], an ideal I, in Fp[x̄l], is called a split ideal wrt f mod pk if,
1) I is a triangular ideal of length l + 1, meaning: I =: 〈h0(x̄0), h1(x̄1), . . . , hl(x̄l)〉, for some
0 ≤ l ≤ k − 1; hi(x̄i) ∈ Fp[x̄i] is monic wrt xi, for all i ∈ {0, . . . , l},
2) |ZFp(I)| =

∏l
i=0 degxi(hi), and

3) ∀(a0, . . . , al) ∈ ZFp(I), f(a0 + pa1 + . . .+ plal) ≡ 0 mod pl+1.

The length of I is l + 1 and its degree is deg(I) :=
∏l
i=0 degxi(hi).

6

Split ideal I relates to possible roots of f mod pk. Since f, p, k are fixed, we will call I a split
ideal. The definition of a split ideal implies that its roots represent a set of “potential” roots of f ,
i.e. roots of f modulo some pl+1 for 0 ≤ l < k. Restriction of a split ideal is also a split ideal.

Lemma 5 (Restriction of a split ideal). Let Il := 〈h0(x̄0), . . . , hl(x̄l)〉 be a split ideal in Fp[x0, . . . , xl],
then ideal Ij := 〈h0(x̄0), . . . , hj(x̄j)〉 is also a split ideal in Fp[x0, . . . , xj], for all 0 ≤ j ≤ l.

Further, we show that a split ideal I can be decomposed in terms of its zeros.

Lemma 6 (Split ideal structure). A split ideal I ⊆ Fp[x0, . . . , xl] can be decomposed as I =⋂
ā∈ZFp (I) Iā, where each Iā := 〈x0 − a0, . . . , xl − al〉 corresponds to root ā =: (a0, . . . , al) ∈ ZFp(I).

By Chinese remainder theorem, R/I =
⊕

ā∈ZFp (I)R/Iā .

Let I =: 〈h0(x̄0), h1(x̄1), . . . , hl(x̄l)〉 be a split ideal. Suppose some hi factors as hi(x̄i) =
hi,1(x̄i) . . . hi,m(x̄i). Define Ij := 〈h0(x̄0), . . . , hi−1(x̄i−1), hi,j(x̄i), hi+1(x̄i+1), . . . , hl(x̄l)〉, for j ∈ [m].
The following corollary of Lemma 6 is evident because root-sets of Ij partition the root-set of I.

Corollary 7 (Splitting split ideals). Let I = 〈h0(x̄0), . . . , hl(x̄l)〉 be a split ideal of Fp[x0, . . . , xl].
Let some hi(x̄i) factor as hi(x̄i) = hi,1(x̄i) . . . hi,m(x̄i).

Then, I =
⋂m
j=1 Ij, where each Ij := 〈h0(x̄0), . . . , hi−1(x̄i−1), hi,j(x̄i), hi+1(x̄i+1), . . . , hl(x̄l)〉 is a

split ideal.

We call a split ideal Il := 〈h0, . . . , hl〉 to be maximal split ideal if,
1) for any ā = (a0, . . . , al) ∈ ZFp(Il), g(x) := f(a0 + pa1 + . . .+ plal + pl+1x) vanishes identically
mod pk,
2) the restriction Il−1 := 〈h0, . . . , hl−1〉 does not follow the previous condition.

Lemma 8 (Roots represented by a root of maximal split ideal). Let I be a maximal split ideal of
length l + 1, then a zero ā = (a0, . . . , al) ∈ ZFp(I) maps to exactly pk−l−1 zeros of f in ZR(f). We
will say that these pk−l−1 roots of f are represented by ā.

3 Proof of Theorem 1

The algorithm to compute a compact data-structure which stores roots of f mod pk will be described
in Section 3.1. Algorithm’s correctness will be proved in Section 3.2, which involves studying the
algebraic structure underlying the algorithm. Its efficiency will be shown in Section 3.3, by devising
an auxiliary structure called roots-tree and the important notion of ‘degree of a node’.

3.1 Algorithm to implicitly partition the root-set of f(x) mod pk

We describe our algorithm in this section. It takes a monic univariate polynomial f(x) ∈ Z[x] of
degree d and a prime-power pk as input (in binary), and outputs a list of at most d maximal split
ideals whose roots partition the root-set of f modulo pk.

A maximal split ideal Ij =: 〈h0(x̄0), . . . , hl(x̄l)〉 has |ZFp(Ij)| =
∏l
i=0 degxi(hi) zeros, and each

such zero ‘represents’ pk−l−1 actual zeros of f mod pk (Lemma 8). Thus, this algorithm gives an
exact count on the number of zeros of f in R.

Overview of Algorithm 1: Since any root of f mod pk is an extension of a root modulo
p, the algorithm starts by initializing a stack S with the ideal I := 〈h0(x0)〉, where h0(x0) :=

7

gcd(xp0 − x0, f(x0)). This is a split ideal containing all the roots of f mod p. By a lift Î ⊂ R[x0]
of I, we mean the ideal generated by the generator {h0} when viewed as a polynomial in R[x0]
(i.e. char pk).

At every intermediate iteration (Steps 4− 21), we pop a split ideal from the stack and try to
increase the precision of its root-set (equivalently, lengthen the split ideal). This step mostly results
in two cases: either we succeed and get a split ideal whose root-set has increased precision (Step 18)
by a new placeholder xl+1, or the split ideal factors into more split ideals increasing the size of the
stack S (Steps 10, 14, 20). We update the relevant ‘part of f ’ to fI(x̄l, xl+1 +px) mod Ĵ (J is the new
split ideal) that we carry around with each split ideal. This helps in efficiently increasing the precision
of roots in the next iteration. Otherwise, computing f

(
x0 + px1 + · · ·+ plxl + pl+1x

)
/pα mod I is

too expensive, in Step 6, due to the underlying degree-d (l + 1)-variate monomials blowup.
If we reach a maximal split ideal (Step 7), it is moved to a list L. Sometimes the split ideal

cannot be extended and we get a dead-end (Step 16). The size of the stack decreases when we get
a maximal split ideal or a dead-end. The algorithm terminates when stack becomes empty. List
L contains maximal split ideals which partition, and cover, the root-set of f (implicitly). This
becomes our output.

The main intuition behind our algorithm: If two roots of a split ideal (representing potential
roots of f) give rise to different number of roots of f , the split ideal will get factored further. Though
not at all apparent immediately, we will show that the algorithm takes only polynomial number of
steps (Section 3.3).

We will use four subroutines to perform standard ring arithmetic modulo split ideals; they are
described in the Appendices C & D.

1. Modify f (Steps 3, 18, 20) whenever pushing in the stack (Lemma 30 & 31).

2. Reduce(a(x̄l), Jl) gives the reduced form of a mod triangular ideal Jl (over a Galois ring).

3. Test-Zero-Div(a(x̄l), Il) either reports that a is a not a zero-divisor modulo triangular ideal
Il or outputs a non-trivial factorization of one of the generators of Il when true.

4. GCD(a(x̄l, x), b(x̄l, x), Il) either successfully computes a monic gcd, wrt x, of two multivari-
ates modulo a triangular ideal Il, or encounters a zerodivisor in intermediate computation
(outputting False and a non-trivial factorization of one of the generators of Il).

Algorithm 1 Root-counting mod pk

1: Let L = {} be a list and S = {} be a stack (both initially empty).

2: Let f̃(x0) := f(x0) mod p for a monic univariate f̃ ∈ Fp[x0] of degree d.

3: [Initializing the stack S] Let h0(x0) := gcd(f̃(x0), xp0 − x0), I := 〈h0〉, Î ⊆ R[x0] be a lift of

I. Compute fI(x0, x) := f(x0 + px) mod Î using Lemma 30. Update S ← push(({h0}, fI)).
4: while S is not empty do
5: Stop ← pop(S). Let Stop = ({h0(x0), . . . , hl(x0, . . . , xl)}, fI(x̄l, x)) where I = 〈h0, . . . , hl〉 ⊆

Fp[x̄l] is a split ideal. Let Î ⊆ R[x0, . . . , xl] be a lift of I.

6: [Valuation computation] Compute α ∈ N and g ∈ R[x̄l, x] such that fI ≡ pαg(x̄l, x) mod Î

and p 6 |g mod Î.

7: [Maximal split ideal found] if(α ≥ k) then update List L ← L ∪ {I}. Go to Step 4.

8

8: Let g̃ := g(x̄l, x) mod I be the polynomial in Fp[x̄l, x], and let g1(x̄l) be the leading coefficient
of g̃(x̄l, x) wrt x.

9: if Test-Zero-Div(g1(x̄l), I)= True then
10: Test-Zero-Div(g1(x̄l), I) returns a factorization hi(x̄i) =: hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i)

modIi−1 of some generator hi(x̄i) of I. Go to Step 20.
11: end if

[Filter out distinct virtual Fp-roots by taking gcd with xp − x]
12: Recompute g̃ := g(x̄l, x) · g1(x̄l)

−1 mod I (Lemmas 29, 28). Compute xp by repeatedly
squaring and reducing modulo the triangular ideal I + 〈g̃〉 (Algorithm 2 and Lemma 28).
This yields h̃l+1(x̄l, x) := xp − x mod I in a reduced form.

13: if GCD(g̃, h̃l+1, I) = False then
14: The call GCD(g̃, h̃l+1, I) returns factorization hi(x̄i) = hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i) mod

Ii−1 of a generator hi(x̄i) of I. Go to Step 20.

15: else if g̃ and h̃l+1 are coprime then
16: [Dead End] The ideal I cannot grow more, go to Step 4.
17: else
18: [Grow the split ideal I] Here gcdx(g̃, h̃l+1) mod I is non-trivial, say hl+1(x̄l, x) (monic

wrt x). Substitute x by xl+1 in hl+1(x̄l, x) and update J ← I + 〈hl+1(x̄l+1)〉.
Let Ĵ ⊆ R[x0, . . . , xl+1] be a lift of J . Substitute x by xl+1 + px in fI(x̄l, x), and
compute fJ(x̄l+1, x) := fI(x̄l, xl+1 + px) mod Ĵ using Lemma 30. Update S ←
push(({h0, . . . , hl+1}, fJ)), and go to Step 4.

19: end if
20: [Factoring split ideals] We have a factorization hi(x̄i) = hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i) mod

Ii−1 of a generator hi of I. Push Stop back in stack S. For every entry (U, f〈U〉) ∈ S, where
hi(x̄i) appears in U , find m (smaller) split ideals Uj (using Corollary 7); using Lemma 31
compute f〈Uj〉 and push (Uj , f〈Uj〉) in S, for j ∈ [m].

21: end while
22: Return L (the list of maximal split ideals partitioning the root-set ZR(f)).

3.2 Correctness of Algorithm 1

Our main goal is to prove the following result about partitioning of root-set.

Theorem 9 (Algo 1 partitions ZR(f)). Algorithm 1 yields the structure of the root-set ZR(f)
through a list data structure L (a collection of maximal split ideals I1, . . . , In) which partitions the
zeroset ZR(f) =:

⊔
j∈[n] Sj, where Sj is the set of roots of f mod pk represented by ZFp(Ij).

Later, we will show a surprising property: n ≤ d (Section 3.3).

Proof of Theorem 9. From Lemmas 12, 13 and the definition of maximal split ideal, it is clear that
Algorithm 1 returns a list L containing maximal split ideals I1, . . . , In, for n ∈ N. Further, we show:
1) The root-set of Ij (1 ≤ j ≤ n) yields a subset Sj of ZR(f), and they are pairwise disjoint.
2) Given a root r ∈ ZR(f), there exists j such that r is represented by a root in ZFp(Ij).

For the first part, root-sets for different maximal split ideals Ij are pairwise disjoint because
of Lemma 12. Each of these root-set yields a subset of the zeroset of f mod pk (follows from the
definition of maximal split ideal).

9

For the second part, let r =:
∑k−1

i=0 rip
i be a root in ZR(f). Stack S was initialized by the split

ideal 〈h0 := gcd(f(x0) mod p, xp0 − x0)〉; so r0 ∈ ZFp(I0), as f(r0) ≡ f(r) ≡ 0 mod p.
Assume that I0 is not a maximal split ideal (otherwise we are done). Applying Lemma 14, there

must exist an I1 whose root-set contains (r0, r1). Repeated applications of Lemma 14 show that we
will keep getting split ideals of larger lengths, partially representing r; finally, reaching a maximal
split ideal (say Ij) fully representing r.

We showed that each root r of f mod pk is represented by a unique maximal split ideal I, given
by Algorithm 1, and they collectively represent exactly the roots of f modulo pk. Hence, root-sets
of ideals in L partition the zeroset ZR(f).

Now, let us see the properties of our algorithm which go in proving Theorem 9. Given a
polynomial g(x̄l) ∈ Fp[x̄l] and an element ā ∈ Flp, consider the projection gā(xl) := g(ā, xl). Using
Chinese remainder theorem (Lemma 6) we easily get the following degree condition. (Here, lcx
refers to the leading coefficient wrt variable x.)

Claim 10. Let I be a split ideal of Fp[x̄l−1] and g ∈ Fp[x̄l]. Then, lcxl(g) is unit mod I iff
∀ā ∈ ZFp(I), deg(gā(xl)) = degxl(g(x̄l) mod I).

Chinese remaindering also gives us a gcd property under projections.

Lemma 11. Let w(x̄l), z(x̄l) ∈ Fp[x̄l] and Il−1 ⊆ Fp[x̄l−1] be a split ideal. Suppose Algorithm 4
succeeds in computing gcd of w and z mod Il−1: define h(x̄l) := GCD(w(x̄l), z(x̄l), Il−1). Then, for
all ā ∈ ZFp(Il−1): hā(xl) equals gcd(wā(xl), zā(xl)) up to a unit multiple (in F∗p).

Proof. Lemma 33 proves, h(x̄l) is a monic polynomial mod Il−1, s.t., h|w and h|z (mod Il−1). Fix
ā ∈ ZFp(Il−1). Since hā(xl) 6≡ 0 mod p (∵ h is monic), restricting x̄l−1 to ā gives hā|wā and hā|zā,
showing hā| gcd(wā, zā), in Fp[xl].

Lemma 33 also shows that there exists u, v ∈ (Fp[x̄l−1]/Il−1)[xl], such that, h = uw + vz.
Restricting first l co-ordinates to ā, we get hā = uāwā + vāzā. This equation implies gcd(wā, zā)|hā.
Thus, we get an equality up to a unit multiple.

Let I ⊆ Fp[x̄i], J ⊆ Fp[x̄j] be two split ideals (say i ≤ j). I and J are called prefix-free iff
@ ā = (a0, a1, . . . , ai) ∈ ZFp(I), b̄ = (b0, b1, . . . , bj) ∈ ZFp(J) : ak = bk ∀k ≤ i.

(Note that it may still happen that (a0, . . . , ai−1) = (b0, . . . , bi−1) above.)
Our next lemma shows an invariant about Algorithm 1.

Lemma 12 (Stack contents). Stack S in Algorithm 1 satisfies following conditions at every point:
1) l < k and in Step 6, α > l.
2) All ideals in S are split ideals.
3) Any two ideals in S are prefix-free.

Proof. We first prove the invariant 1. Step 6 defines g via fI as, fI =: pαg(x̄l, x) mod Î. Looking at
the fI analogues pushed in Steps 3, 18, 20, one easily deduces the invariants:

f
(∑

0≤i≤l xip
i + xpl+1

)
≡ fI(x̄l, x) mod Î, and

f
(∑

0≤i≤l xip
i
)
≡ 0 mod Î + 〈pl+1〉 .

Thus, f
(∑

0≤i≤l xip
i
)
≡ pαg(x̄l, x) ≡ 0 mod Î + 〈pl+1〉. Since, p - g mod Î, we deduce α > l.

Moreover, by Step 7 we know that l < k throughout the algorithm.

10

There are three ways in which a new ideal is added to stack S. We show below that the invariant
is maintained in all three cases.

(Step 3) S is initialized with the ideal I = 〈h0(x0)〉 ⊆ Fp[x0]. The triangular ideal I is a split
ideal, because |ZFp(I)| = degx0

(h0) and its root are all the distinct roots of f(x0) mod p.

(Step 20) Ideal Il is popped from S, and some generator hi of Il splits. In this case, we update
S with the corresponding factors of any (U, f〈U〉) ∈ S, wherever currently U has hi. Corollary 7
shows that the factors of U are split ideals themselves, and their root-sets partition that of U . Thus,
these root-sets are prefix-free among themselves. Moreover, they are prefix-free with any other ideal
J appearing in S, because U was prefix-free with J .

(Step 18) Ideal Il is popped, it grows to Il+1 by including hl+1(x̄l, x) = gcdx(g̃(x̄l, x), xp −
x) mod Il (g̃ is defined in Step 8). First (resp. third) condition for Il+1 being a split ideal follows
from the definition of g̃ (resp. hl+1).

For the second condition for Il+1 being a split ideal, fix a particular root ā ∈ ZFp(Il). Using
Lemma 11, the projection hl+1,ā(x) equals gcd(g̃ā(x), xp−x) (up to a unit multiple). By Lemma 33,
hl+1 is monic mod Il; giving deg(hl+1,ā) = degxl+1

(hl+1). Since hl+1|xp − x, there are exactly
degx(hl+1)-many al+1 ∈ Fp, such that hl+1,ā(al+1) ≡ 0 mod p. So, every root ā ∈ ZFp(Il) can be

extended to degx(hl+1)-many roots; giving |ZFp(Il+1)| = degx(hl+1) ·
∏l
i=0 degxi(hi). This makes

Il+1 a split ideal.
Il+1 remains prefix-free with any other ideal J of S, because roots of Il+1 are extension of roots

of Il (recall: Il was prefix-free with J and it was popped out of S).

This proves all the invariants for the stack S.

Using the invariant, we prove that Algorithm 1 terminates on any input.

Lemma 13. Algorithm 1 finishes in finite number of steps for any f ∈ Z[x] and a prime power pk.

Proof. We show that the number of iterations in Algorithm 1 are finite. Assume that all the ideals
which result in a dead-end are moved to a list D; say C is the disjoint union of all ideals in S,
L and D. Whenever a split ideal I from S is moved to L or D, the underlying roots (of I) stop
extending to the next precision. Togetherwith Lemma 12, we deduce that in fact all the ideals in C
are prefix-free. Now by Step 18, and the rate of growth of split ideals up to length l+ 1 ≤ k, we get
a lazy estimate of |C| ≤ min(dk, pk).

Let len(I) denote the length of an ideal I, it is bounded by k. Notice that factoring/growing
an ideal increases

∑
I∈C len(I); and getting a maximal split ideal/ dead-end increases |L| + |D|.

Thus, every iteration of the algorithm strictly increases the quantity (
∑

I∈C len(I)) + |L|+ |D|. By
the estimate on |C|, all the terms in this quantity are bounded; thus, the number of iterations are
finite.

The following lemma shows: if we see a restriction of r ∈ ZR(f) (say, up to length l+ 1) at some
point in Algorithm 1, we will again see its restriction of length l+ 2 at a later point in the algorithm.

Lemma 14 (Getting roots with more precision). Assume that at some time (say t), Algorithm 1
pops an ideal I of length l + 1, that is not yet a maximal split ideal. Let ā = (a0, . . . , al) ∈ ZFp(I)

partially represent a “root” r =:
∑

0≤i≤l+1 aip
i such that f(r) ≡ 0 mod pl

′
, but f(r− al+1p

l+1) 6≡ 0

mod pl
′
, for some l + 2 ≤ l′ ≤ k. Then, there exists a time t′ > t, when stack S will pop an ideal J

of length l + 2, such that, (ā, al+1) ∈ ZFp(J).

11

Proof. We again consider three possible situations.

(Step 18) Ideal I grows to another split ideal, say J . Notice, J is obtained by adding hl+1 :=
GCD(g(x̄l, x), xp − x) mod I to I (setting x 7→ xl+1).

Step 6 defines g via fI as, fI =: pαg(x̄l, x) mod Î. Looking at the fI analogues pushed in Steps

3, 18, 20, one can deduce the invariant: f
(∑

0≤i≤l xip
i + xpl+1

)
≡ fI(x̄l, x) mod Î.

Now, let us project to (suitable integral lifts of) ā and consider f
(∑

0≤i≤l aip
i + xpl+1

)
≡

fI(ā, x) ≡ pαg(ā, x) mod Î. By Step 9, and Claim 10, we are assured that g(ā, x), g(x̄l, x) mod I
are equi-degree (wrt x). Thus, by non-maximality hypothesis we have α < l′. Hypothesis tells

us that f
(∑

0≤i≤l+1 aip
i
)
≡ 0 mod pl

′
. So, by the previous paragraph, pαg(ā, al+1) ≡ 0 mod pl

′
.

Whence, g(ā, al+1) ≡ 0 mod p. Clearly, apl+1 − al+1 ≡ 0 mod p. Thus, hl+1(ā, al+1) ≡ 0 mod p. So
(ā, al+1) is a root of J .

(Step 16) Proof of the previous case shows that hl+1(ā, x) has degree at least 1, so I could not
result in a dead-end.

(Step 20) Ideal I factors into (smaller) split ideals. In this case, ā will be included in exactly
one of those ideals (by Corollary 7). This ideal will be handled later in the algorithm and will give
an ideal J with (ā, al+1) as root.

3.3 Time complexity of Algorithm 1— introducing roots-tree RT

We know that Algorithm 1 takes finite amount of time and terminates (Lemma 13). To show that
it is efficient, note that the time complexity of the algorithm can be divided into two parts.

1) Number of iterations taken by Algorithm 1, which is clearly bounded by the number of
updates on Stack S in the algorithm.

2) Time taken by the various algebraic operations in one iteration of the algorithm: reduction
by a triangular ideal, valuation computation modulo a split ideal, testing if some polynomial is
a zerodivisor modulo a split ideal, performing repeated squaring modulo a triangular ideal and
computing gcd of two multi-variates modulo a split ideal.

For the purpose of bounding iterations, we define a ‘virtual’ tree, called roots-tree (RT), which
essentially keeps track of the updates on Stack S. We will map a node N = (I, fI) in roots-tree
to the element (I, fI) in stack S. Each push will create a new node in RT . The nodes are never
deleted from RT .

Construction of roots-tree (RT): Denote the root of RT by N〈0〉 := (〈0〉, f〈0〉 := f(x)). Add
a child node NI0 to the root corresponding to the initialization of Stack S by (I0, fI0), where
I0 := 〈h0(x0)〉 (label the edge h0 in RT).

If, at some time t, the algorithm pops (Il−1, fIl−1
) from S then the current node in RT will be

the leaf node NIl−1
= (Il−1, fIl−1

). We map the updates on stack S to RT as follows:
(Step 18) If ideal Il−1 grows to Il := Il−1 + 〈hl〉 and (Il, fIl) is pushed in S, then create a child

of NIl−1
in RT using an edge labelled hl (label the node NIl := (Il, fIl)).

(Steps 7, 16) If the algorithm reached dead-end (no update in stack S or list L), then add a
child labelled D to node NIl−1

. It indicates a dead-end at the current branch. Analogously, if the
algorithm finds a maximal split ideal, we add a child labelled M to Node NIl−1

(indicating Il−1 is a
maximal split ideal).

12

(Step 20) Suppose, processing of length-l split ideal Il−1 results in factoring each ideal U in S,
containing hi, to m split ideals. We describe the duplication process for a particular U (repeat it for
each split ideal containing hi).

Let Ui−1 be the length-i restriction of U . First, we move to the ancestor node NUi−1 :=
(Ui−1, fUi−1) of NU . Make m copies of the sub-tree at Node NUi−1 , each of them attached to NUi−1

by edges labelled with hi,1, . . . , hi,m respectively. The copy of each old node N = (V, fV), in sub-tree
corresponding to hi,j , will be relabelled with (Vj , fVj) corresponding to the factor split ideal Vj of V
and the newly computed fVj .

This step does not increase the height of the tree, though it increases the size.

For the rest of this section, RT denotes the final roots-tree created at the end of the above
process. We state some easy properties of RT , which will help us in analyzing the time complexity.

1) By construction, size of the roots-tree increases at every iteration. We never delete a node or
an edge (though relabelling might be done). So, the size of RT bounds the number of iterations
taken by Algorithm 1.

2) Consider a node NI =: (I, fI) in RT . Here fI(x̄l, x) ∈ R[x̄l, x], and let gI ∈ R[x̄l, x] be defined
as in Algorithm 1, gI := fI(x̄l, x)/pα mod Î, where pα || fI mod Î, and Î is a lift of I over R. Then,
gI mod I is a nonzero polynomial over Fp.

3) For each node NI =: (I, fI(x̄l, x)) and its child NJ =: (J, fJ(x̄l+1, x)), we have the relation,
fJ = fI(x̄l, xl+1 + px) mod Ĵ .

Bounding |RT |: To bound the size of RT , we define a parameter for a node N of RT , called the
degree of the node N and denoted by [N].

Definition 15 (Degree of a node in RT). The degree of root node N〈0〉 is [N〈0〉] := d (= deg(f)).
Degree of leaves D resp. M is defined to be 1.

Let NI =: (I, fI) be a node corresponding to a split ideal I ⊆ Fp[x̄l], where fI(x̄l, x) belongs to
R[x̄l, x]. Let pα || fI mod Î and gI(x̄l, x) := fI/p

α mod Î. Except, gI := 0 if α ≥ k.
Then, the degree of N is defined as, [N] := max (1, degx(gI mod I)× deg(I)).

We show that the degree of a parent node bounds the sum of the degree of its children.

Lemma 16 (Degree distributes in RT). Let N be a node in roots-tree RT and des(N) denote the
set of all children of N . Then, [N] ≥

∑
C∈des(N)[C].

So, the sum of the degrees of all nodes, at any level l, is at least the sum of the degrees of all
nodes at level l + 1.

Proof. Let N = (I, fI), where I = 〈h0, . . . , hl〉 and fI(x̄l, x) ∈ R[x̄l, x]. Define g̃I ∈ Fp[x̄l, x] as
g̃I := gI(x̄l, x) mod I. Assume α < k, otherwise we are done. So, gI mod I is nontrivial wrt x; by
Step 9 (failure) and Claim 10, we get,

∀ā ∈ ZFp(I) : degx(g̃I mod I) = degx(g̃I(ā, x)) . (1)

Recall hl+1(x̄l, x) := gcd(g̃I(x̄l, x), xp − x).Let C be a child node of N in RT such that C =:
(JC , fJC), where JC =: I + 〈hl,C(x̄l+1)〉 and fJC (x̄l+1, x) := fI(x̄l, xl+1 + px) mod ĴC . This gives us
the factorization hl+1(x̄l, x) =

∏
C∈des(N) hl,C(x̄l, x) mod I (Step 20, and ‘duplication step’ when

we constructed RT). Again,

∀b̄ ∈ ZFp(JC) : degx(g̃JC mod JC) = degx(g̃JC (b̄, x)) . (2)

13

If gJC =: fJC/p
v′ mod ĴC for some v′ ∈ N, by property 3 of RT , we have gJC = fI(x̄l, xl+1 +

px)/pv
′

mod ĴC .
By definition, [N] = deg(I) · degx(g̃I) and [C] = deg(JC) · degx(g̃JC). Since deg(JC) = deg(I) ·

degx(hl,C(x̄l, x)), the lemma statement is equivalent to showing,

degx(g̃I) ≥
∑

C∈des(N)

degx(hl,C(x̄l, x)) · degx(g̃JC) . (3)

Continuing with the notation of a particular child C, fix an ā ∈ ZFp(I). Since JC is a split

ideal, hl,C(ā, x) (of degree d′C) can be written as
∏d′C
i=1(x− ci), where each ci ∈ Fp and are distinct.

Then, each ci is also a root of g̃I(ā, x), say with multiplicity mi ∈ N. So, there exists G(x) ∈ Fp[x]
(coprime to x− ci), such that, g̃I(ā, x) ≡ (x− ci)mi ·G(x) mod p. Lifting this equation mod pk,
there exists G1(x) ∈ R[x], of degree less than mi, and a unique lift G2(x) ∈ R[x] of G(x) (Hensel
lemma (21)) : gI(ā, x) ≡ ((x− ci)mi + pG1(x)) ·G2(x) mod pk . Substituting x→ ci + px, we get,
gI(ā, ci + px) ≡ ((px)mi + pG1(ci + px)) ·G2(ci + px) mod pk .

Let b̄i = (ā, ci) ∈ ZFp(JC). We know that g̃JC (b̄i, x) = fI(ā, ci + px)/pv
′

mod p is nontrivial.

This implies that, ((px)mi + pG1(ci + px))/pv
′

mod p is a nonzero polynomial of degree at most mi

(∵ p - G2(ci)).
Since G2(ci + px) 6≡ 0 mod p is a unit, degx(g̃JC (b̄i, x)) = degx(g̃JC) ≤ mi (Eqn. 2). Summing

up over all the roots ci of g̃I(ā, x),

d′C∑
i=1

degx(g̃JC (b̄i, x)) = d′C · degx(g̃JC) ≤
d′C∑
i=1

mi =: dC(gI) .

Summing over all children C ∈ des(N) (using Eqn. 1, factorization of hl+1 & distinctness of Fp-roots),
we deduce, ∑

C∈des(N)

degx(hl,C) degx(g̃JC) ≤
∑
C

dC(gI) ≤ degx(g̃I(ā, x)) = degx(g̃I) .

This proves Eqn. 3, and hence the lemma.

Define the degree of list L as, deg(L) := ΣI∈L deg(I).

Lemma 17 (Bounding |RT |, deg(I), deg(L), |L|). Let RT be the roots-tree constructed from the
execution of Algorithm 1. The number of leaves of RT , resp. deg(L), is at most d = deg(f(x)).
Also, the size |RT | of the roots-tree (hence, the number of iterations by Algorithm 1) is bounded by
dk.

Proof. Applying Lemma 16 inductively, sum of the degrees of nodes at any level is bounded by the
degree d of the root node. In particular,

1) We can extend every leaf to bring it to the last level (create a chain of nodes of same degree)
without changing the degree distribution property. So, deg(L) = ΣI∈L deg(I) ≤ d. Since the number
of leaves is ≥ |L|, we get |L| ≤ d.

2) For any split ideal I in stack S, deg I ≤ d.
3) Since the depth of the roots-tree is at most k, |RT | ≤ kd.

14

Lemma 18 (Computation cost at a node). Computation cost at each node of RT (time taken by
Algorithm 1 in every iteration of the while loop) is bounded by poly(d, k log p).

Proof. During an iteration, the major computations performed by the algorithm are— testing
for zerodivisors (Step 9), computing modular gcd (Step 13), computing reduced fI (Steps 3, 18),
performing reduction for repeated squaring (Step 12), and factoring ideals (Step 20).

These operations are described by Lemmas 28, 29, 30, 32 and 33. All of them take time
poly(d, k log p, deg(I)), where I is the concerned triangular ideal.

For any split ideal I (or its lift Î), we know that deg(I) ≤ d (Lemma 17). So, Steps 3, 9, 13, 18, 20
take time poly(d, k log p). Step 12 to compute repeated squaring modulo I + 〈g̃〉 takes time
poly(degx(g̃),deg(I), k log p) (using Lemma 28). Since I is a split ideal with deg(I) ≤ d, and degree
of g̃ is at most d, so Step 12 also takes poly(d, k log p) time.

Hence the computation cost at each node is poly(d, k log p).

Proof of Theorem 1. The definition of roots-tree shows that the number of leaves upper bound the
number of all maximal split ideals in L. Lemmas 17 and 18 show that the time complexity of
Algorithm 1 is bounded by poly(d, k log p) (by bounding both number of iterations and the cost of
computation at each iteration). Using Lemma 8 on the output of Algorithm 1, we get the exact
count on the number of roots of f mod pk in time poly(d, k log p).

4 Proof of Theorem 2

A polynomial f can be factored mod pk if it has two basic-irreducible factors of different degree
(using distinct degree factorization [vzGP01] and Hensel Lemma 21).

If two basic-irreducible factors appear with different exponents/multiplicities, then again f can
be factored (using formal derivatives [vzGP01] and Hensel Lemma 21).

So, for factoring f mod pk, we can assume f ≡ (ϕ1 . . . ϕt)
e + ph mod pk, where every ϕi ∈

(Z/〈pk〉)[x] is a basic-irreducible polynomial of a fixed degree b. Also, d := deg(f) = bte. Let us fix
this assumption for this section, unless stated explicitly.

A basic-irreducible factor of f mod pk has the form ϕi + pwi(x) mod pk, for i ∈ [t] (Lemma 22).
If b = 1, counting basic-irreducible factors of f is equivalent to counting roots of f .
When b > 1, we prove a simple generalization of this idea; it is enough to count all the roots of

f in the ring extension Z[y]/〈pk, ϕ(y)〉, where ϕ(y) is an irreducible mod p of degree-b. These rings
are called Galois rings, we denote them by G(pk, b) (unique, for fixed k and b, up to isomorphism).

4.1 Reduction to root-counting in G(pk, b)

By Lemma 22, any basic-irreducible factor of f mod pk is a factor of a unique (ϕi
e + pwi(x)); and

ϕi are coprime mod p. So in this subsection, for simplicity of exposition, we will assume that f(x)
equals ϕe mod p (ϕ is a monic degree-b irreducible mod p).

Define G := G(pk, b). Let y0, y1, . . . , yb−1 be the roots of ϕ(x) in G (Claim 24). Wlog, taking
y := y0, yi ≡ yp

i
mod p, for all i ∈ {0, . . . , b − 1} (Frobenius conjugates in Fp). Note that

G ∼= (Z/〈pk〉)[y] =: G′. We will prefer to use G′ below.
The lemma below associates a root of f , in G or G′, to a unique basic-irreducible factor of f in

(Z/〈pk〉)[x].

15

Lemma 19 (Root to factor). Let r(y) ∈ G′ be a root of f(x). Then, h(x) :=
∏b−1
i=0(x − r(yi)) is

the unique basic-irreducible factor of f having root r(y). We say: h(x) is the basic-irreducible factor
associated to root r(y).

Proof. The coefficients of h are symmetric polynomials in r(yi) (over 0 ≤ i < b). Since the
automorphism ψ1 : y → y1 of G′ (as defined in Claim 25) permutes r(yi)’s (∵ it permutes yi’s),
it fixes all the coefficients of h. From Claim 25, all these coefficients are then in Z/〈pk〉. Hence,
h ∈ (Z/〈pk〉)[x].

If r(y) is a root of another polynomial h′ in (Z/〈pk〉)[x], then r(yi)’s are also roots of h′ (applying
automorphisms ψi of G′). Since these roots are coprime mod p, we actually get: h|h′. Thus, h is
the unique monic irreducible factor of f containing r(y).

Looking mod p, r(yi)’s are a permutation of the roots of ϕ(x), so h(x) ≡ ϕ(x) mod p. Hence,
h(x) is the unique monic basic-irreducible factor of f .

Following is the reduction to counting all roots of f in G.

Theorem 20 (Factor to root). Any degree-b basic-irreducible factor of f mod pk has exactly b
roots in G. Conversely, if f has a root r(y) ∈ G, then it must be a root of a unique degree-b
basic-irreducible factor of f mod pk.

So, the number of degree-b basic-irreducible factors of f mod pk is exactly the number of roots,
of f in G, divided by the degree b.

Proof. By Lemma 19 (& uniqueness of Galois rings), for every root r(y) ∈ G of f , we can associate
a unique basic-irreducible factor of f(x).

Conversely, let h(x) =: ϕ(x) + pw(x) be a basic-irreducible factor of f(x). It splits completely
in G (as, h(x) ≡ ϕ mod p; first factor in G/〈p〉 and then Hensel lift to G). So, h has exactly b roots
in G, each of them is also a root of f in G.

Hence the theorem statement follows.

Remark. This ‘irreducible factor vs root’ correspondence, for f mod pk, breaks down if G is
not a Galois ring. Eg. for the ring Z[y]/〈pk, y2 − p〉?

4.2 Counting roots in G(pk, b)– Wrapping up Thm. 2

In this section, we show how to count the roots of f ≡ (ϕ1ϕ2 . . . ϕt)
e + ph(x) mod pk in G(pk, b).

Since G := G(pk, b) is a Galois ring, so G/〈p〉 = Fpb =: Fq. (Recall: R = Z/〈pk〉.)
Split ideals and zerosets in the Galois ring: First, we will modify the definition of

zerosets (Section 2) to include zeros of f in G. A G-zeroset of f(x) ∈ R[x] will be defined as
ZG(f) := {r ∈ G | f(r) ≡ 0 mod pk}. Similarly, for an ideal I ⊆ Fp[x̄l], its Fq-zeroset is defined as
ZFq(I) := {ā = (a0, . . . , al) ∈ (Fq)l+1 | g(ā) ≡ 0 mod pk, ∀g ∈ I}.

The definition of triangular ideals, split ideals and maximal split ideals will remain exactly same
(generators defined over Fp, Section 2), except that in the third condition for split ideals, zeroset
will be over Fq instead of Fp. But, they can now be seen as storing potential roots of f(x) in G (or,
storing potential basic irreducible factors of f mod pk). The reason is, a root r(y) ∈ G of f mod pk

can be viewed as, r(y) = r0(y)+pr1(y)+p2r2(y)+ . . .+pk−1rk−1(y), where each ri(y) ∈ G/〈p〉 = Fq.
So, the decomposition of formal variable x =: x0 + px1 + p2x2 + . . . + pk−1xk−1, now represents
candidates for r0, r1, and so on, over Fq.

16

A split ideal Il ⊆ Fp[x̄l], defined as Il := 〈h0(x0), . . . , hl(x̄l)〉, now implicitly stores the candidates
for (r0) in h0, (r0, r1) in h1, and so on. These, in turn, give candidates for basic-irreducible factors
of f mod pl

′
(some l′ ≤ k).

In particular, when Il is a maximal split ideal, an r̄l implicitly denote a basic-irreducible factor
of f mod pk. The number of such factors is deg(Il) · pk−l−1/b (Theorem 20 & Lemma 8).

Split ideals follow all the properties given in Section 2, just by replacing the fact that roots
belong to Fq and not Fp.

Description of the modified algorithm: Algorithm 1, to count roots in R, extends directly
to count roots in G. The algorithm is exactly same except one change: to compute GCD (Steps 3
and 13), we now use the Frobenius polynomial xq −x instead of the prior xp−x (GCD computation
implicitly stores the candidate roots, they are in Fq now).

So the algorithm works as follows:

1. It gets f(x) ≡ (ϕ1 . . . ϕt)
e + pw(x) mod pk as input, computes gcd h0(x) := gcd(f(x), xq − x)

over Fp. Since xq − x, over Fp, is the product of all irreducible factors of degree dividing b, we
deduce: h0(x) = ϕ1 . . . ϕt mod p; and define the first split ideal I0 := 〈h0〉. (Note– We do not
have access to ϕi’s themselves.)

Remark. The length 1 split ideal stores all the roots of f in G/〈p〉, or all the basic irreducible
factors of f mod p; as h0(x) = ϕ1 . . . ϕt. Also, its degree is tb, which when divided by b, gives
the count of the basic-irreducible factors of f mod p.

2. The algorithm then successively looks for the next precision candidates. It computes hl by
taking gcd with xq − x, and adds it to the previous ideal Il−1 like before.

3. All the supporting algebraic algorithms and lemmas (given in appendix) work the same as
before; since they are being passed the same parameters— a split ideal, or a triangular ideal,
or a polynomial over R.

Thus, a similar proof of correctness and time complexity can be given as before.

Proof of Theorem 2. Consider a univariate f(x) mod pk. As discussed in the beginning of this
section, f mod pk can be efficiently factorized as f ≡

∏m
i=1 fi mod pk, where each fi(x) is a power

of a product of degree-bi irreducible polynomials mod p (i.e. of the form ≡ (ϕ1ϕ2 . . . ϕt)
e + ph(x),

where ϕj is a degree-bi irreducible mod p).
On each such fi mod pk, we use Algorithm 1 with the new Frobenius polynomial (xqi − x)

(qi = pbi), in Steps 3 and 18, as discussed above. Let the final list output, for fi mod pk, be
Li =: {I1(l1, D1), . . . , In(ln, Dn)}. Thus, we get the count on the G(pk, bi)-roots of fi mod pk as

Σn
j=1Djq

k−lj
i (Lemma 8). Using Theorem 20, the number of the degree-bi basic-irreducible factors

of f mod pk is Bk(fi) := (1/bi)× Σn
j=1Djq

k−lj
i .

Using Lemma 22, we get the count on the basic-irreducible factors of f mod pk as, Bk(f) =
Σm
i=1Bk(fi).

For the time complexity, only difference is the repeated-squaring to compute the reduced form
of polynomial xqi − x (Steps 3, 12), it will take bi log p operations instead of log p operations. But
bi ≤ d, so the algorithm runs in time poly(d, k log p) (& remains deterministic).

17

5 Conclusion

There are well known efficient deterministic algorithms to count the number of roots/irreducible
factors over prime characteristic. Surprisingly, not many results are known when the characteristic
is a prime-power. The main difficulty is that the ring has non-unique factorization.

We give the first efficient deterministic algorithm to count the number of basic-irreducible
factors modulo a prime-power. Restricting it to degree-one irreducibles, we get a deterministic
polynomial-time algorithm to count the roots too. This is achieved by storing and improving roots
(wrt precision) virtually using split ideals (we do not have access to roots directly). As a corollary:
we can compute the Igusa zeta function deterministically, and we also get a deterministic algorithm
to count roots in p-adic rings (resp. formal power-series ring).

Many interesting questions still remain to be tackled. For p-adic fields, there is only a randomized
method to count the number of irreducible factors. Analogously, the question of counting irreducible
factors modulo a prime-power also remains open; no efficient method is known even in the randomized
setting. The ramified roots seem to elude practical methods. On the other hand, the problem of
actually finding an irreducible factor (resp. a root) deterministically, seems much harder; it subsumes
the analogous classic problem in prime characteristic.

Acknowledgements. We thank Vishwas Bhargava for introducing us to the open problem of
factoring f mod p3 and the related prime-power questions. A.D. thanks Sumanta Ghosh for the
discussions. N.S. thanks the funding support from DST (DST/SJF/MSA-01/2013-14). R.M. would
like to thank support from DST through grant DST/INSPIRE/04/2014/001799.

References

[Apo13] Tom M Apostol. Introduction to analytic number theory. Springer Science & Business
Media, 2013. 2

[Bha97] Manjul Bhargava. P-orderings and polynomial functions on arbitrary subsets of dedekind
rings. Journal fur die Reine und Angewandte Mathematik, 490:101–128, 1997. 2

[BLQ13] Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. Polynomial root find-
ing over local rings and application to error correcting codes. Applicable Algebra in
Engineering, Communication and Computing, 24(6):413–443, 2013. 2, 3

[CG00] David G Cantor and Daniel M Gordon. Factoring polynomials over p-adic fields. In
International Algorithmic Number Theory Symposium, pages 185–208. Springer, 2000.
2, 3

[CGRW18] Qi Cheng, Shuhong Gao, J Maurice Rojas, and Daqing Wan. Counting roots of polyno-
mials over prime power rings. In Thirteenth Algorithmic Number Theory Symposium,
ANTS-XIII. Mathematical Sciences Publishers, 2018. arXiv:1711.01355. 2, 3, 4

[Chi87] AL Chistov. Efficient factorization of polynomials over local fields. Dokl. Akad. Nauk
SSSR, 293(5):1073–1077, 1987. 2, 3

[Chi94] AL Chistov. Algorithm of polynomial complexity for factoring polynomials over local
fields. Journal of mathematical sciences, 70(4):1912–1933, 1994. 2, 3

18

[CP56] M Chojnacka-Pniewska. Sur les congruences aux racines données. In Annales Polonici
Mathematici, volume 3, pages 9–12. Instytut Matematyczny Polskiej Akademii Nauk,
1956. 2

[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, pages 587–592, 1981. 2, 21

[Den91] Jan Denef. Report on Igusa’s local zeta function. Astérisque, 730-744(201-203):359–386,
1991. 2, 3

[DH01] Jan Denef and Kathleen Hoornaert. Newton polyhedra and Igusa’s local zeta function.
Journal of number Theory, 89(1):31–64, 2001. 2

[DM97] Bruce Dearden and Jerry Metzger. Roots of polynomials modulo prime powers. European
Journal of Combinatorics, 18(6):601–606, 1997. 2

[DMS19] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Efficiently factoring polynomials
modulo p4. arXiv preprint arXiv:1901.06628, 2019. 1, 2

[Hen18] Kurt Hensel. Eine neue theorie der algebraischen zahlen. Mathematische Zeitschrift,
2(3):433–452, Sep 1918. 20

[Igu74] Jun-ichi Igusa. Complex powers and asymptotic expansions. i. functions of certain types.
Journal für die reine und angewandte Mathematik, 268:110–130, 1974. 2, 3

[Kli97] Adam Klivans. Factoring polynomials modulo composites. Technical report, Carnegie-
Mellon Univ, Pittsburgh PA, Dept of CS, 1997. 1

[Kob77] Neal Koblitz. P-adic numbers. In p-adic Numbers, p-adic Analysis, and Zeta-Functions,
pages 1–20. Springer, 1977. 3

[KRRZ18] Leann Kopp, Natalie Randall, J Maurice Rojas, and Yuyu Zhu. Randomized polynomial-
time root counting in prime power rings. arXiv preprint arXiv:1808.10531, 2018. (to
appear in Math.Comp.). 2, 3

[Lau04] Alan GB Lauder. Counting solutions to equations in many variables over finite fields.
Foundations of Computational Mathematics, 4(3):221–267, 2004. 2

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge university press, 1994. 21

[Mau01] Davesh Maulik. Root sets of polynomials modulo prime powers. Journal of Combinatorial
Theory, Series A, 93(1):125–140, 2001. 2

[McD74] Bernard R McDonald. Finite rings with identity, volume 28. Marcel Dekker Incorporated,
1974. 21

[NZM13] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An introduction to the
theory of numbers. John Wiley & Sons, 2013. 2

[Săl05] Ana Sălăgean. Factoring polynomials over Z4 and over certain galois rings. Finite fields
and their applications, 11(1):56–70, 2005. 1, 2

19

[Sha93] Adi Shamir. On the generation of multivariate polynomials which are hard to factor. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
796–804. ACM, 1993. 1

[Sho09] Victor Shoup. A computational introduction to number theory and algebra. Cambridge
university press, 2009. 24, 27

[Sie55] Wac law Sierpiński. Remarques sur les racines d’une congruence. Annales Polonici
Mathematici, 1(1):89–90, 1955. 2

[Sir17] Carlo Sircana. Factorization of polynomials over Z/(pn). In Proceedings of the 2017
ACM on International Symposium on Symbolic and Algebraic Computation, pages
405–412. ACM, 2017. 1, 2

[vzGH96] Joachim von zur Gathen and Silke Hartlieb. Factorization of polynomials modulo small
prime powers. Technical report, Paderborn Univ, 1996. 1, 2

[vzGH98] Joachim von zur Gathen and Silke Hartlieb. Factoring modular polynomials. Journal of
Symbolic Computation, 26(5):583–606, 1998. (Conference version in ISSAC’96). 1, 2, 3

[vzGP01] Joachim von zur Gathen and Daniel Panario. Factoring polynomials over finite fields:
A survey. Journal of Symbolic Computation, 31(1-2):3–17, 2001. 15

[Zas69] Hans Zassenhaus. On hensel factorization, I. Journal of Number Theory, 1(3):291–311,
1969. 20

[ZG03] WA Zuniga-Galindo. Computing Igusa’s local zeta functions of univariate polynomials,
and linear feedback shift registers. Journal of Integer Sequences, 6(2):3, 2003. 2

A Preliminaries

Lifting factorization: Below we state a lemma, originally due to Kurt Hensel [Hen18], for I-adic
lifting of factorization of a given univariate polynomial. Over the years, Hensel’s lemma has acquired
many forms in different texts, version presented here is due to Zassenhaus [Zas69].

Lemma 21 (Hensel’s lemma [Hen18]). Let R be a commutative ring with unity, denote the polyno-
mial ring over it by R[x]. Let I ⊆ R be an ideal of ring R. Given a polynomial f(x) ∈ R[x], suppose
f factorizes as

f = gh mod I,

such that gu+ hv = 1 mod I (for some g, h, u, v ∈ R[x]). Then, given any l ∈ N, we can efficiently
compute g∗, h∗, u∗, v∗ ∈ R[x], such that,

f = g∗h∗ mod I l.

Here g∗ = g mod I, h∗ = h mod I and g∗u∗+h∗v∗ = 1 mod I l (i.e. pseudo-coprime lifts). Moreover
g∗ and h∗ are unique up to multiplication by a unit.

Using Hensel’s lemma, for the purpose of counting roots (resp. basic-irreducible factors), a
univariate polynomial f(x) ∈ Z[x] can be assumed to be a power of an irreducible modulo p.

20

Lemma 22. By the fundamental theorem of algebra, a univariate f(x) ∈ Z[x] factors uniquely,
over Fp, into coprime powers as, f ≡

∏m
i=1 ϕi

ei , where each ϕi ∈ Z[x] is irreducible mod p and
m, ei ∈ N. Then, for all k ∈ N,

1. f factorizes mod pk as f = g1g2 . . . gm, where gi’s are mutually co-prime mod pk and gi ≡
ϕi
ei mod p, for all i ∈ [m].

2. any basic-irreducible factor of f(x) mod pk is a basic-irreducible factor of a unique gj mod pk,
for some j ∈ [m]. Let Bk(h) denote the number of (coprime) basic-irreducible factors of
h(x) mod pk. Then, Bk(f) = Σm

i=1Bk(gi) .

3. any root of f mod pk is a root of a unique gi mod pk. Let Nk(h) denote the number of (distinct)
roots of h(x) mod pk. Then, Nk(f) = Σm

i=1Nk(gi).

Proof. We can apply Hensel’s lemma by taking ring R := Z and ideal I := 〈p〉. The co-prime
factorization of f mod p lifts to a unique coprime factorization f ≡ g1g2 . . . gm mod pk, for any
k ∈ N and gi ≡ ϕiei mod p.

Any basic-irreducible factor h(x) of f(x) mod pk has to be h ≡ ϕi mod p for some i ∈ [m];
otherwise, h will become reducible mod p. Since gi’s are co-prime and h|f mod pk, h must divide a
unique gi. So, any basic-irreducible factor h of f(x) mod pk is a basic-irreducible factor of a unique
gj mod pk. Clearly, any basic-irreducible factor of a gi is also a basic-irreducible factor of f mod pk.
This proves Bk(f) = Σm

i=1Bk(gi).
The third part follows from a similar reasoning as the second part.

Root finding over a finite field: The following theorem, called CZ in this paper and given
by Cantor-Zassenhaus [CZ81], finds all roots of a given univariate polynomial over a finite field in
randomized polynomial time. (Equivalently, it finds all irreducible factors as well.)

Theorem 23 (Cantor-Zassenhaus Algo (CZ)). Given a univariate degree d polynomial f(x) over a
finite field Fq, all roots of f in Fq can be found in randomized poly(d, log q) time.

A.1 Properties of Galois rings– Analogues of finite fields

A Galois ring, of characteristic pk and size pkb, is denoted by G(pk, b) (where p is a prime, k, b ∈ N).
It is known that two Galois rings of same characteristic and size are isomorphic to each other. We
will define Galois ring G(pk, b) as the ring G := Z[y]/〈pk, ϕ(y)〉, where ϕ(y) ∈ Z[y] is an irreducible
mod p of degree b [McD74]. Let us prove some useful properties of G below.

Claim 24 (Roots of ϕ). Let ϕ′(x) ∈ Z[x] be any irreducible mod p of degree b. There are b distinct
roots of ϕ′(x) in G. Let r denote one of the roots, then all other roots, modulo p, are of the form
rp

i
(i ∈ {0, . . . , b− 1}).

Proof. G/〈p〉 is isomorphic to the finite field of degree b over Fp. So, irreducible ϕ′(x) ∈ Fp[x]
has exactly b roots in G/〈p〉 [LN94, Ch.2]. By Hensel Lemma 21, roots in G/〈p〉 can be lifted to
G uniquely. Hence, ϕ′(x) has exactly b distinct roots in G. Modulo p, they are of the form rp

i

(i ∈ {0, . . . , b− 1}) for a root r (lifted from roots in G/〈p〉).

Using Claim 24, denote roots of ϕ(x) as y0, . . . , yb−1; here yi ≡ yp
i

0 mod p for all i ∈ {0, . . . , b−1}.
For all roots yj , G ≡ R[yj]. In other words, yj generate the extension G over R.

21

Claim 25 (Symmetries of G). There are exactly b automorphisms of G fixing R = Z/〈pk〉, denoted
by ψj (j ∈ {0, . . . , b− 1}). Each of these automorphisms can be described by a map taking y0 to one
of the roots of ϕ(x) and fixing R. Wlog, assume ψj maps y0 → yj.

Moreover, for all j coprime to b, ψj fixes R and nothing else.

Proof. Since coefficients of ϕ(x) belong to R, an automorphism fixing R should map the root y0 =: y
to another of its roots yj . We only need to show that ψj is an automorphism (it is a valid map
because yj ∈ G)

Writing elements of G in terms of y0 (i.e. G ∼= R[y0]), it can be verified that ψj(ab) = ψj(a)ψj(b)
and ψj(a+ b) = ψj(a) + ψj(b), so ψj is a homomorphism.

Similarly, if ψj(g) = 0, writing g in terms of y0, we get that g = 0. So, kernel of ψj is the set
{0}; thus, it is an isomorphism.

For the moreover part, let ψj be such that j is coprime to b. We will show a stronger statement
by induction: for any i ≤ k − 1, if a(y0) = ψj(a(y0)) in G/〈pi〉, then a(y0) ∈ Z/〈pi〉.

Base case: If i = 1 and j = 1, then a(y0) = ψ1(a(y0)) mod p⇒ a(y0) = a(y0)p mod p. It means
a(y0) ∈ Z/〈p〉.

If j is coprime to b, then ψj generates ψ1 modulo p. So, a(y0) = ψj(a(yj)) mod p implies that,
a(y0) mod p =: a0 ∈ Z/〈p〉.

This argument also proves: for any i ≤ k, if a(y0) = a(yj) in G/〈pi〉, then a(y0) ∈ Fp (in other
words, a(y0) is y0 free).

Induction step: Let us assume that a(y0) = ψj(a(y0)) in G/〈pi〉. By the previous argument,
a(y0) = a0 + pa′(y0), where a0 ∈ Z/〈p〉 and a′(y0) ∈ G/〈pi−1〉.

From the definition, a(y0) = ψj(a(y0)) iff a′(y0) = ψj(a
′(y0)) in G/〈pi−1〉. By induction

hypothesis, the latter is equivalent to a′(y0) ∈ Z/〈pi−1〉. So, a(y0) ∈ Z/〈pi〉.
Hence, the only fixed elements under the map ψj (j coprime to b) are integers; in Z/〈pk〉.

B Proofs of Section 2

Proof of Lemma 5. It is enough to show the lemma for j = l − 1. It is easy to observe that Il−1 is
triangular.

Looking at the second condition for being a split ideal, |ZFp(Il−1)| ≤
∏l−1
i=0 degxi(hi) follows

because a degree d ≥ 1 polynomial can have at most d roots in Fp.
To show equality, notice that for any ā = (a0, . . . , al−1) ∈ ZFp(Il−1), degxl(hl(ā, xl)) is bounded

by degxl(hl). This implies hl(ā, xl) can have at most degxl(hl) roots in Fp. If |ZFp(Il−1)| <∏l−1
i=0 degxi(hi) then |ZFp(Il)| < degxl(hl) ·

∏l−1
i=0 degxi(hi), contradicting that Il is a split ideal. 1

For the third condition, since Il is a split ideal, for any (a0, . . . , al−1) ∈ ZFp(Il−1), f(a0 + pa1 +
. . .+ plal) ≡ 0 mod pl+1 ⇒ f(a0 + pa1 + . . .+ pl−1al−1) ≡ 0 mod pl.

Lemma 6 shows that a split ideal I can be decomposed in terms of ideals Iā := 〈x0−a0, . . . , xl−al〉,
where ā =: (a0, . . . , al) is a root of I. Before we prove this structural lemma, let us see some properties
of these ideals Iā’s.

Claim 26. Let I be a split ideal.

1. For any ideal Iā, quotient Fp[x0, . . . , xl]/Iā ∼= Fp is a field.

1This argument also shows that every Fp-zero of Il−1 ‘extends’ to exactly degxl
(hl) many Fp-zeros of Il.

22

2. Iā and Ib̄ are coprime for any two distinct roots ā, b̄ ∈ ZFp(I). This is because there exists i,
for which ai 6= bi; yielding (ai − bi)−1 ((xi − bi)− (xi − ai)) = 1 in the sum-ideal Iā + Ib̄.

3. Iā ∩ Ib̄ = IāIb̄ for any two distinct roots ā, b̄ ∈ ZFp(I). It follows because there exist rā ∈ Iā
and rb̄ ∈ Ib̄, s.t., rā + rb̄ = 1. So, r ∈ Iā ∩ Ib̄ ⇒ r = r(rā + rb̄) ∈ IāIb̄. On the other hand,
IāIb̄ ⊆ Iā ∩ Ib̄ follows from the definition of the product-ideal.

4. Generalizing the previous point— for a set A of distinct roots ā’s,
⋂
ā∈A Iā =

∏
ā∈A Iā.

Proof of Lemma 6. We will prove this decomposition by applying induction on the length of the
split ideal. For the base case, length of I is 1 and I = 〈h0(x̄0)〉 ⊆ Fp[x0]. Since I is a split ideal,

h0(x0) =
∏deg(h0)
i=1 (x0 − ai) for distinct ai ∈ Fp. So, I =

∏deg(h0)
i=1 Iai =

⋂deg(h0)
i=1 Iai by Claim 26.

Let I be a split ideal of length l + 1, I =: 〈h0(x̄0), . . . , hl(x̄l)〉 ⊆ Fp[x0, . . . , xl]. Define ideal
I ′ := 〈h0(x̄0), . . . , hl−1(x̄l−1)〉. By Lemma 5, I ′ is a split ideal. From the induction hypothesis (&
Claim 26), we have I ′ =

⋂
ā∈ZFp (I) I

′
ā =

∏
ā I
′
ā, where I ′ā := 〈x0 − a0, . . . , xl−1 − al−1〉 for a zero

ā =: (a0, . . . , al−1) of I ′. We know that,

I = I ′ + 〈hl(x̄l)〉 =
∏

ā∈ZFp (I′)

(
I ′ā + 〈hl(x̄l)〉

)
. (4)

Claim 10 shows deg(hl(ā, xl)) = degxl(hl) for all ā ∈ ZFp(I ′), and hl(ā, xl) splits completely over Fp.

So, for any ā ∈ ZFp(I ′), I ′ā + 〈hl(x̄l)〉 =
∏degxl

(hl)

i=1 Iā,bi , where (ā, bi) are roots of I extended from ā.
From Eqn. 4 (& Claim 26), I =

∏
b̄∈ZFp (I) Ib̄ =

⋂
b̄∈ZFp (I) Ib̄.

This finishes the inductive proof, completely factoring I.

Lemma 8 shows that a root of a maximal split ideal represents a set of roots of f mod pk and
provides the size of that set.

Proof of Lemma 8. By definition of a maximal split ideal, for any ā = (a0, . . . , al) ∈ ZFp(I), pk|g(x)
where g(x) = f(a0 + pa1 + p2a2 + . . .+ plal + pl+1x). So, g(x) = 0 mod pk for any pk−l−1 choices of
x. For each such fixing of x, a0 + pa1 + p2a2 + . . .+ plal + pl+1x is a distinct root of f(x) mod pk.
Hence proved.

C Computation modulo a triangular ideal– Reduce & Divide

For completeness, we show that it is efficient to reduce a polynomial a(x̄l) ∈ G[x̄l] modulo a
triangular ideal Jl = 〈b0(x̄0), b1(x̄1), . . . , bl(x̄l)〉 ⊆ G[x̄l], where G is any Galois ring (in particular,
R = Z/pk, or Fp).

Note: Jl need not be a split ideal for f mod pk, though the algorithms of this section work for
split ideals (∵ they are triangular by definition).

Assumptions: In the generators of the triangular ideal we assume degxi bi(x̄i) ≥ 2 (for 0 ≤ i ≤ l).
Otherwise, we could eliminate variable xi and work with fewer variables (& smaller length triangular
ideal). Additionally, each bi(x̄i) (for 0 ≤ i ≤ l) is monic (leading coefficient is 1 wrt xi), and presented
in a reduced form modulo the prior triangular ideal Ji−1 := 〈b0(x̄0), . . . , bi−1(x̄i−1)〉 ⊆ G[x̄i−1].

Let us first define reduction mod an ideal (assume G to be the Galois ring G(pk, b)).

23

Definition 27 (Reduction by a triangular ideal). The reduction of a multivariate polynomial
a(x̄l) ∈ G[x̄l] by a triangular ideal Jl = 〈b0(x̄0), . . . , bl(x̄l)〉 ⊆ G[x̄l] is the unique polynomial
ã(x̄l) ≡ a(x̄l) mod Jl, where degxi(ã) < degxi(bi), for all i ∈ {0, . . . , l}.

Idea of reduction: The idea behind the algorithm is inspired from the univariate reduction.
If l = 0, then reduction of a(x0) modulo b0(x0) is simply the remainder of the division of a by b0 in
the underlying polynomial ring G[x0]. For a larger l, the reduction of a(x̄l) modulo the triangular
ideal Jl = 〈b0(x0), . . . , bl(x̄l)〉 is the remainder of the division of a(x̄l) by bl(x̄l) in the polynomial
ring (G[x0, . . . , xl−1]/Jl−1)[xl]. The fact that bl is monic, helps in generalizing ‘long division’.

Input: An a(x̄l) ∈ G[x̄l] and a triangular ideal Jl = 〈b0(x̄0), . . . , bl(x̄l)〉 ⊆ G[x̄l].
Output: Reduction ã of a mod Jl as defined above.

Algorithm 2 Reduce a(x̄l) modulo Jl

1: procedure Reduce(a(x̄l), Jl)
2: if l = 0 then
3: [Reduce a(x0) by b0(x0)] return remainder of univariate division of a by b0 in R[x0].
4: end if
5: da ← degxl(a) and db ← degxl(bl).

6: Let a(x̄l) =: Σda
i=0ai(x̄l−1)xil be the polynomial representation of a(x̄l) with respect to xl.

7: Recursively reduce each coefficient ai(x̄l−1) of a modJl−1:
ãi(x̄l−1)← Reduce(ai(x̄l−1), Jl−1), for all i ∈ {0, . . . , da}.

8: while da ≥ db do

9: a(x̄l)← a−
(
ada · x

da−db
l · bl

)
10: Update da ← degxl(a). Update ai’s such that a(x̄l) =: Σda

i=0ai(x̄l−1) · xil .
11: Call Reduce(ai(x̄l−1), Jl−1) for all i ∈ {0, . . . , da}: recursively reduce each coefficient

ai(x̄l−1) mod Jl−1 (like Step 7).
12: end while
13: return a(x̄l).
14: end procedure

Following lemma shows that reduction modulo a triangular ideal (Algorithm 2) is efficient.

Lemma 28 (Reduction). Given a(x̄l) ∈ G[x̄l] and Jl ⊆ G[x̄l], to reduce a(x̄l) mod Jl, Algorithm 2

takes time poly
(∏l

i=0 degxi(a), log |G|,deg(Jl)
)

.

In particular, if each coefficient ai(x̄l−1) of a(x̄l) (viewed as a polynomial in xl) is in reduced
form mod Jl−1, then reduction takes time poly (da, log |G|, deg(Jl)), where da = degxl(a).

Proof. We prove the lemma by induction on the length l + 1 of the ideal Jl.
For l = 0, we have a standard univariate reduction which takes at most O(deg(a) deg(b)) ring

operations in G. Since addition/multiplication/division in G take time at most Õ(log |G|) [Sho09],
we get the lemma.

Assume that the lemma is true for any ideal of length less than l.

Coefficients ai(x̄l−1) can be reduced, in time poly
(∏l−1

i=0 degxi(a), log |G|,deg(Jl−1)
)

, mod

Jl−1 using induction hypothesis. We need to make da + 1 such calls; total time is bounded

by poly
(∏l

i=0 degxi(a), log |G|, deg(Jl−1)
)

. In the same time we can compute Step 9.

24

After the update at Step 9, individual-degrees degxi(a) (for 0 ≤ i < l) can become at most
double the previous degree (safely assuming 2 ≤ degxi(bi) ≤ degxi(a)). By induction hypothesis,

each call to reduce ai(x̄l−1) mod Jl−1 takes time poly
(∏l−1

i=0 degxi(a), log |G|,deg(Jl−1)
)

. Algorithm

makes at most da such calls and the while-loop runs at most da times. Hence, the algorithm takes

time poly
(∏l

i=0 degxi(a), log |G|, deg(Jl)
)

; and we are done.

If coefficients of a are already reduced modulo Jl−1, then degxi(a) < degxi(bi) for all 0 ≤ i < l.
Hence, Algorithm 2 takes time d2

a · poly (log |G|, deg(Jl−1)).

Lemma 29 (Division mod triangular ideal). Given a triangular ideal Jl ⊆ G[x̄l] and a unit a(x̄l) ∈
G[x̄l]/Jl. We can compute a−1 mod Jl, in reduced form, in time poly

(∏l
i=0 degxi(a), log |G|, deg(Jl)

)
.

Proof. Let u(x̄l) ∈ G[x̄l]/Jl be such that u · a ≡ 1 mod Jl. We can write u as∑
ē ≥ 0̄

∀ 0≤i≤l, ei < degxi
(bi)

uē · x̄ēl .

We want to find the unknowns uē in G, satisfying u · a ≡ 1 mod Jl. This gives us a linear system
in the unknowns; it has size deg(Jl). The linear system can be written down, using Algorithm 2,
by reducing the monomial products x̄ēl · x̄ē

′
l that appear in the product u · a. This takes time

poly
(∏l

i=0 degxi(a), log |G|,deg(Jl)
)

.

Since there exists a unique u, our linear system is efficiently solvable, by standard linear algebra,
in the required time.

Let us see two direct applications of the reduction Algorithm 2 to compute valuation and to
compute reduced form of split ideals.

First, we explain how Algorithm 1 (Steps 3, 18) computes reduced fJ modulo the lift Ĵ of the
newly computed split ideal J , when x is replaced by xl+1 + px in the intermediate polynomial
fI(x̄l, x).

Lemma 30 (Updating stack with reduced polynomial). Let I ⊆ Fp[x̄l] be a split ideal and fI(x̄l, x) ∈
R[x̄l, x] be reduced modulo Î (the lift of I over R). Define split ideal J ⊆ Fp[x̄l+1] as J :=
I + 〈hl+1(x̄l+1)〉, and Ĵ be the lift of J over R.

Then, in time poly (log |R|,degx(fI),deg(J)), we can compute a reduced polynomial fJ modulo
Ĵ defined by, fJ(x̄l+1, x) := fI(x̄l, xl+1 + px) mod Ĵ .

Proof. Since fI(x̄l, x) is already reduced modulo Î, degxi(fI) < degxi(hi). Define D := degx(fI),
perform the shift x→ xl+1 + px in fI , and expand fI using Taylor series,

fJ(x̄l, x) = fI(x̄l, xl+1 + px) =: g0(x̄l+1) + g1(x̄l+1)(px) + . . .+ gD(x̄l+1)(px)D ,

where gi could also be seen as the i-th derivative of fI(x̄l, xl+1) (wrt xl+1) divided by i!. To compute
fJ mod Ĵ , we call Reduce(gi, Ĵ) (for all i) to get the reduction of each term mod Ĵ .

To calculate the time complexity of Reduce(gi, Ĵ), note that coefficients of each gi, wrt xl+1,
is already reduced mod Î. Since J = I + 〈hl+1〉, using Lemma 28, time complexity of reducing each
gi by Ĵ is at most poly(degxl+1

(gi), log |R|, deg(J)) (deg(J) = deg(Ĵ)).
Since degxl+1

(gi) ≤ degx(fI) (for i ≤ D), total time complexity is poly (log |R|,degx(fI), deg(J)).

25

Next, we explain Step 20 in Algorithm 1 a bit more.

Lemma 31 (Ideal factors in reduced form). Consider the tuple (U := {h0(x̄0), . . . , hl(x̄l)}, f〈U〉) ∈ S
and consider a non-trivial factorization hi =: hi,1 . . . hi,m for some hi ∈ U . Wlog each factor hi,j is
monic wrt xi.

Then, we can compute the factor-related tuples (Uj , f〈Uj〉), for all j ∈ [m], in time poly(deg(〈U〉),
log |R|, degx(f〈U〉)) (f〈Uj〉 will be in reduced form mod 〈Uj〉).

Proof. First, we successively reduce hi+t (1 ≤ t ≤ l − i) modulo triangular ideal Ii+t,j :=
〈h0, . . . , hi−1, hi,j , hi+1, . . . , hi+t〉. Time complexity of each of these steps is bounded by poly(deg(〈U〉),
log |R|) (Lemma 28). This ensures that the degree of hi+t in a variable xs (s < i+ t) is less than
the individual-degree of the s-th generator of ideal 〈Uj〉.

Then, f〈Uj〉 can be calculated by reducing each degx(f〈U〉) + 1 coefficients of f〈Uj〉 (wrt x) by the

lifted triangular ideal Îl,j = Ûj . By Lemma 28, this takes time poly(
∏l
i=0 degxi(f〈U〉), degx(f〈U〉), log |R|,

deg(〈U〉)). Since coefficients (wrt x) of f〈U〉 were already reduced modulo 〈U〉,
∏l
i=0 degxi(f〈U〉) ≤

deg(〈U〉).
So, the computation time is bounded by poly

(
deg(〈U〉), log |R|, degx(f〈U〉)

)
.

D Computation modulo a triangular ideal— Zerodivisor test &
GCD

Test-Zero-Div(a(x̄l), Il), for a triangular ideal Il =: 〈h0, . . . , hl〉, either reports that a(x̄l) is not a
zerodivisor modulo Il, or returns a non-trivial factorization of a generator hi =: hi,1 · · ·hi,m (into
monic, wrt xi, factors mod prior ideal). In this section we assume F to be a finite field.

Idea: In the quotient ring F[x̄l]/〈Il〉, a monic (wrt xi) polynomial a(x̄i) is a zerodivisor iff it
contains a factor of hi(x̄i)— generator of triangular ideal Il with variables {x0, . . . , xi}. So, firstly
the algorithm checks if the given polynomial a(x̄l) is monic (recursively, from variables xl−1 to x0).
If it fails, it factors some generator hi for i < l. After making a(x̄l) monic, we take gcd of a with
hl— if it finds non-trivial gcd it factors hl, else a(x̄l) is not a zerodivisor.

Algorithm 3 Zerodivisor test of a(x̄l) modulo Il

1: procedure Test-Zero-Div(a(x̄l),Il)
2: if l = 0 then
3: [Take univariate GCD] gcd← gcd(a(x0), h0(x0)).
4: if gcd is non-trivial then
5: Factorize h0(x0) =: gcd · h0

gcd ; return (True, gcd · h0
gcd).

6: else
7: return (False).
8: end if
9: end if

10: Let the leading coefficient of a(x̄l) wrt xl be ã(x̄l−1).
11: Call Test-Zero-Div(ã(x̄l−1), Il−1).
12: if The test returned True then
13: return the result of the test including the factorization of a generator hi(x̄i).

26

14: end if
[Now, we will take gcd of a and hl using iterated division method (Euclid’s method).]

15: Define b(x̄l)← hl(x̄l).
16: while b(x̄l) 6= 0 do
17: Let b̃(x̄l−1) be the leading coefficient of b(x̄l) wrt xl.

18: if Test-Zero-Div(b̃(x̄l−1), Il−1) = True then
19: return result of Test-Zero-Div(b̃(x̄l−1),Il−1), factorization of a generator hi(x̄i).
20: end if
21: Let c(x̄l)← Reduce(a(x̄l), Il−1 + 〈b(x̄l)/b̃〉) (same as taking remainder of a(x̄l) when

divided by the monic polynomial b(x̄l)/b̃ modulo Il−1).

22: a(x̄l)← b(x̄l)/b̃, b(x̄l)← c(x̄l). [Invariant: degxl(b) has fallen.]
23: end while

[Gcd of original a(x̄l) and hl(x̄l) mod Il is stored in a(x̄l).]
24: if gcd a(x̄l) is non-trivial then
25: return (True, a non-trivial factorization of hl(x̄l)).
26: else
27: return (False). [a(x̄l) is not a zerodivisor.]
28: end if
29: end procedure

Lemma 32 (Efficiency of testing zerodivisors). Assuming, coefficients of a(x̄l) wrt xl are in reduced
form modulo Il−1, Algorithm 4 takes time poly(degxl(a), log |F|, deg(Il)).

Proof. We apply induction on the length l + 1 of ideal Il.
For l = 0, it runs univariate gcd and takes time poly(deg(a),deg(h0), log |F|) [Sho09].
Assume lemma statement holds true for ideals of length l.

By induction, checking ã(x̄l−1) is a zerodivisor mod Il−1, takes poly(degxl−1
(ã), log |F|,deg(Il−1))

time.
To compute gcd of a and hl, Euclidean gcd algorithm will run at most degxl(a) + degxl(hl) while-

loops. From induction hypothesis, and Lemmas 28-29, each loop takes at most poly(degxl(a), log |F|,
deg(Il)) time. So, we are done.

GCD(a(x̄l, x), b(x̄l, x), Il) computes gcd of two polynomials a(x̄l, x) and b(x̄l, x) modulo a
triangular ideal Il = 〈h0(x0), . . . , hl(x̄l)〉 resp. False. It computes the monic gcd resp. returns a
non-trivial factorization of some hi.

Algorithm 4 GCD computation modulo Il

1: procedure GCD(a(x̄l, x), b(x̄l, x), Il)
2: Let b̃(x̄l) be the leading coefficient of b with respect to x.

3: if Test-Zero-Div(b̃(x̄l), Il) = True then
4: return False, Test-Zero-Div(b̃(x̄l), Il) factors some generator hi(x̄i).
5: end if
6: Let c(x̄l, x)←Reduce(a, Il + 〈b/b̃〉).
7: if c = 0 then
8: return b/b̃.
9: else

27

10: return GCD(b(x̄l, x), c(x̄l, x), Il).
11: end if
12: end procedure

Lemma 33 (Multivariate GCD). Algorithm 4 either factors a generator hi (& outputs False),
or computes a monic polynomial g(x̄l, x) ∈ F[x̄l, x], such that, g divides a, b modulo Il. Moreover,
g = ua+ vb mod Il, for some u(x̄l, x), v(x̄l, x) ∈ F[x̄l, x].

If a and b are in reduced form mod Il, then it takes time poly (degx(a),degx(b), log |F|,deg(Il)).

Proof. Algorithm 4 is just an implementation of multivariate Euclidean gcd algorithm over the
coefficient ring Fp[x̄l]/Il =: R′. If the algorithm outputs g(x̄l, x) ∈ R′[xl] then, by standard Euclidean
gcd arguments (using recursion), there exists u(x̄l, x), v(x̄l, x) ∈ R′[x], such that, ua+ vb = g, and g
divides both a and b modulo Il.

The algorithm works fine if in each step it was able to work with a monic divisor. Otherwise,
it gets stuck at a ‘division’ step, implying that the divisor’s leading-coefficient is a zerodivisor,
factoring some generator of Il.

For time complexity, each recursive step makes one call each to Test-Zero-Div, Reduce, and
division procedures. They take time poly (degx(a), degx(b), log |F|, deg(Il)) (∵ coefficients of a and
b are in reduced form mod Il, and use Lemmas 28, 29 & 32). Since number of recursive steps are
bounded by degx(a) + degx(b), total time is bounded by poly (degx(a), degx(b), log |F|,deg(Il)).

28

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

