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Abstract

We show that strong-enough lower bounds on monotone arithmetic
circuits or the non-negative rank of a matrix imply unconditional lower
bounds in arithmetic or Boolean circuit complexity. First, we show that
if a polynomial f ∈ R[x1, . . . , xn] of degree d has an arithmetic circuit
of size s then (x1 + · · · + xn + 1)d + εf has a monotone arithmetic cir-
cuit of size O(sd2 + n logn), for some ε > 0. Second, if f : {0, 1}n →
{0, 1} is a Boolean function, we associate with f an explicit exponential-
size matrix M(f) such that the Boolean circuit size of f is at least
Ω(minε>0(rk+(M(f) − εJ)) − 2n), where J is the all-ones matrix and
rk+ denotes the non-negative rank of a matrix. In fact, the quantity
minε>0(rk+(M(f) − εJ)) characterizes how hard is it to distinguish re-
jecting and accepting inputs of f by means of a linear program. Finally,
we introduce a proof system resembling the monotone calculus of Atse-
rias et al. [2] and show that similar ε-sensitive lower bounds on monotone
arithmetic circuits imply lower bounds on proof-size in the system.

1 Introduction

The paper investigates three topics connected by one underlying theme. We
show that strong-enough monotone lower bounds imply lower bounds on arith-
metic circuit size, Boolean circuit size, and in proof complexity. In contrast
to similar earlier results, the unique feature of our ”strong-enough” monotone
lower bounds is that they are highly discontinuous: in each case, we are required
to have a hard polynomial/matrix which is ε-close to an easy one.

Arithmetic circuits. In arithmetic circuit complexity, the major open prob-
lem is to find an explicit polynomial which requires arithmetic circuits of su-
perpolynomial size. See, for example, [22, 6, 23] for more details. On the
other hand, it is comparatively easy to prove such a lower bound for monotone
arithmetic circuits – circuits over the reals where we allow non-negative con-
stants only. For example, the permanent polynomial requires monotone circuits
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of size 2Ω(n) and the central symmetric polynomial requires monotone depth
Ω(log2 n). This can be found in the works of Valiant [24] and Shamir and Snir
[20], see also [22, 14, 12]. This creates the impression that monotone arith-
metic lower bounds are easy in all cases. However, we observe that in general,
monotone lower bounds are essentially as hard as unrestricted ones. Given a
polynomial f of degree d, we show that if f has a small arithmetic circuit then
gε := (x1 + · · ·+xn+1)d+ εf has a small monotone arithmetic circuit, for some
ε > 0. In other words, a monotone lower bound on gε which works for every
ε > 0 gives an unconditional lower bound for f . This result is reminiscent of a
similar result of Valiant in Boolean circuit complexity concerning the so-called
slice functions [26, 28]. Observe that g0 has a small monotone arithmetic circuit
and hence hardness of f requires that monotone circuit size of gε displays signif-
icant discontinuity as ε approaches zero. Our current techniques for obtaining
monotone lower bounds seem inapplicable in this situation, and an improvement
of these techniques would be desirable.

Boolean circuits and linear programs. In Boolean circuit complexity, we
point out that lower bounds on the non-negative rank of a matrix imply circuit
lower bounds. The non-negative rank of a matrix, rk+, is a quantity which has
found several applications in communication complexity and extension com-
plexity of polytopes. See, for example, the seminal paper of Yannakakis [29]
or [19, 8]. Given a Boolean function f : {0, 1}n → {0, 1}, we associate with
f an explicit exponential-size matrix M(f) with positive integer entries. Basi-
cally, M(f) records Hamming distances between rejecting and accepting inputs
of f . Given ε > 0, Mε(f) is obtained by subtracting ε from every entry of
M(f). We show that the quantity minε>0 rk+(Mε(f)) is a lower bound on the
Boolean circuit size of f . We again note that M0(f) = M(f) itself has small
non-negative rank and hence, for our estimate to be interesting, there must be
a large gap between rk+(M0(f)) and limε→0+

rk+(Mε(f)). It therefore seems
that understanding possible discontinuities of the non-negative rank would give
some insight into circuit complexity; we also give some results in this direction.

A similar phenomenon has been noted earlier: in [10] and [9], it was observed
that rk+(M1(f)) (the case of ε = 1) is a lower bound on Boolean formula size.
Furthermore, Goos et al. in [9] used this strategy to obtain new lower bounds
on monotone formula size. Given the connection between non-negative rank
and extension complexity of polytopes, it is not surprising that rk+(Mε(f)) has
a geometric interpretation: it captures how hard it is to distinguish accepting
and rejecting inputs of f by means of a linear program. This intuition is used
extensively in our arguments. Among other things, it implies that there exists a
(non-explicit) f such that minε>0 rk+(Mε(f)) is exponential. Therefore, at least
in principle, rk+ can yield exponential circuit lower bounds. One can compare
this with the result of Razborov [17] which says that the usual matrix rank
cannot give non-trivial circuit lower bounds. In contrast, we assert here that
non-negative rank can – the price being that rk+ is way less understood (and
NP -hard to compute [27]).
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Proof complexity. The major open problem in proof complexity is to obtain
superpolynomial lower bounds on proof-size in the Frege proof system (see, e.g.,
[13]). In [2], Atserias et al. consider the so-called monotone calculus, MLK.
In its inference rules, MLK resembles the Frege system except that it proves
implications A→ B where A,B are monotone Boolean formulas. Nevertheless,
it was shown in [2] that this restricted system quasipolynomially simulates the
full Frege system. In this paper, we introduce a proof system called algebraic
monotone calculus, AMC. The system proves inequalities of the form f�g,
where f and g are monotone polynomials. The intended interpretation of a
line f�g is that every monomial which appears in f with a non-zero coefficient
appears also in g. The system AMC can be viewed as a weakening of the
Boolean monotone calculus MLK, in the same way that an arithmetic circuit
can be seen as weakening of a Boolean circuit. We will show that the size of an
AMC-proof of f�g can be characterized by the minimum monotone circuit size
of g − εf , over all ε > 0. This means that monotone arithmetic lower bounds
of this form imply AMC lower bounds. It is however not clear how this reflects
on the complexity of MLK or Frege proofs: we do not know whether AMC is
actually weaker than MLK, or whether they might simulate each other, at least
on inputs of a specific form.

2 Overview of main results

2.1 Monotone arithmetic circuits

Unless stated otherwise, an arithmetic circuit will always be an arithmetic cir-
cuit over R with binary operations addition and multiplication (see, e.g., [22, 12]
for an exact definition). The size of a circuit is the number of its gates. A mono-
tone arithmetic circuit is one in which all the constants are non-negative. As
the first main result, we prove in Section 4:

Theorem 1. Let f ∈ R[x1, . . . , xn] be a polynomial of degree d which can be
computed by an arithmetic circuit of size s. Then there exists ε0 > 0 such for
every 0 < ε < ε0, (x1 + · · · + xn + 1)d + εf can be computed by a monotone
arithmetic circuit of size O(sd2 + n log n).

In other words, in order to prove a lower bound on arithmetic circuit size of f ,
it is enough to prove a monotone circuit lower bound on gε = (

∑
i xi + 1)d + εf ,

for ε > 0 sufficiently small. Observe that the ”universal polynomial” U =
(
∑
i xi + 1)d itself has a small monotone circuit (of size O(n + log d)). Hence,

the bound of Theorem 1 is qualitatively tight for small d: if gε can be computed
by a small monotone circuit for some ε > 0 then f = (gε − U)ε−1 has a small
arithmetic circuit as well.

Another way to interpret the result is as follows. It is well-known that
every arithmetic circuit can be simulated by an arithmetic circuit with only one
subtraction (see [24] or Lemma 23 below). That is, if f has a circuit of size s
then f can be written as f = f+ − f−, where f+, f− are monotone polynomials
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of monotone circuit size O(s). Then Theorem 1 simply asserts that f− can
be chosen as a scalar multiple of a fixed universal polynomial independent of
f . Theorem 1 is also reminiscent of the so-called slice functions in Boolean
complexity. Recall that a Boolean function h is a slice function, if there exists a
k such that h accepts on all inputs of Hamming weight > k, rejects on inputs of
Hamming weight < k, and is arbitrary on inputs with weight k. In [26], Valiant
has shown that for slice functions, general and monotone Boolean circuits are
of essentially the same power. This resembles Theorem 1 because the universal
polynomial U is constant on inputs with fixed

∑
xi.

Let us mention that the classical lower bounds [24, 20] are insufficient to
prove monotone lower bounds for polynomials of the form required by Theo-
rem 1. These lower bounds take into account only the monomial structure of a
polynomial. For example, not only that the permanent is hard but any polyno-
mial which has the same set of monomials with non-zero coefficients is hard for
monotone circuits. However, the polynomial (1 +

∑
i xi)

d contains all monomi-
als of degree d with a non-zero coefficient. There is at least one recent lower
bound which goes beyond monomial counting due to Yehudayoff [30]. However,
the bound is continuous in the coefficients of the polynomial in focus.

In Section 4, we also note that Theorem 1 holds in several other settings –
we can choose a different universal polynomial, or consider restricted algebraic
models of computation.

2.2 Boolean circuits and non-negative rank

LetM ∈ Rn×m be a non-negative matrix. The non-negative rank of M , rk+(M),
is defined as the smallest k so that there exist non-negative matrices A ∈ Rn×k,
B ∈ Rk×m with M = AB. In other words, it is the smallest k so that M can be
written as a sum of k non-negative rank-one matrices. If M contains a negative
entry, we set rk+(M) :=∞

Let f : {0, 1}n → {0, 1} be a Boolean function. Let f−1(0) be the set of
rejecting inputs of f and f−1(1) the set of its accepting inputs. Based on f , we
define the matrix M(f) as follows. M(f) is a |f−1(0)| × |f−1(1)| matrix whose
rows are indexed by rejecting inputs and the columns by accepting inputs of f .
For every y ∈ f−1(0), x ∈ f−1(1),

M(f)y,x := h(x, y) ,

where h(x, y) is the Hamming distance of x and y.
Hence, M(f) is an exponential size matrix with non-negative integer entries

from {1, . . . , n}. Since every accepting input differs from every rejecting input,
we emphasize that every entry of M(f) is greater or equal to one. Let J be the
matrix of the same dimension as as M whose every entry equals 1. This means
that for every ε ≤ 1, M(f)− εJ is non-negative.

Define L(f) as the smallest number of leaves in a de Morgan formula com-
puting f , and C(f) the size of a smallest Boolean circuit computing f . In [10],
it was observed
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Proposition 2. [10] Let f : {0, 1}n → {0, 1} be a Boolean function. Then
L(f) ≥ rk+(M(f)− J)/(2n− 1).

This was independently noted by Goos et al. [9]. There, a similar strategy
was applied to prove lower bounds on monotone formula size. In Section 3, we
will present a similar connection with circuit size:

Theorem 3. Let f : {0, 1}n → {0, 1} be a Boolean function. Then minε>0 rk+(M(f)−
εJ) ≤ O(C(f)+n). Moreover, there exists a (non-explicit) f with minε>0 rk+(M(f)−
εJ) ≥ 2Ω(n).

Hence, Theorem 3 lower-bounds the circuit size of f in terms of the smallest
non-negative rank of M(f)− εJ with ε > 0. Let us give some comments on how
the non-negative rank varies with ε. First, one can see (cf. Observation 12)

rk+(M(f)) ≤ 2n ,

and hence the non-negative rank is small if ε = 0. Since M−ε1J = (M−ε2J)+
(ε2 − ε1)J and rk+(J) = 1, we can see that

rk+(M(f)− ε1J) ≤ rk+(M(f)− ε2J) + 1 , if ε1 ≤ ε2 .

This means that as ε > 0 increases, rk+(M(f)−εJ) can decrease at most by one.
Moreover, it can be shown (cf. Observation 13) that limε→0+

rk+(M(f) − εJ)
exists and differs from minε>0 rk+(M(f)− εJ) by at most one. Hence, Theorem
3 requires limε→0+ rk+(M(f) − εJ) to be much larger than rk+(M(f)) – the
non-negative rank is heavily discontinuous at ε = 0.

Discontinuities of non-negative rank. In Section 3.2, we give some prop-
erties of possible discontinuites of non-negative rank. For example we, show
that if M is positive then

lim
ε→0+

rk+(M − εJ) ≤ O(2rk+(M))

Strictly positive rank rk++. We introduce the concept of strictly positive
rank, or simply strict rank. This is defined as non-negative rank, except that
one needs to express M in terms of positive rank one matrices. More exactly, let
M ∈ Rn×m be a positive matrix. The strict rank of M , rk++(M), is defined as
the smallest k so that there exist positive matrices A ∈ Rn×k, B ∈ Rk×m with
M = AB. In Section 3.3 we will outline some properties of rk++. In particular,
we will see that

rk++(M)− 1 ≤ min
ε>0

rk+(M − εJ) ≤ rk++(M) + 1

This also entails rk++(M(f)) ≤ O(C(f) + n).
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2.2.1 Extended formulations and separation complexity

The lower bound in Theorem 3 is in fact a bound on a different quantity, which
we call linear separation complexity. Informally, it captures how hard it is to
distinguish rejecting and accepting inputs by means of linear programs.

Following [29, 19, 5], let us give some definitions from extension complexity
of polytopes. A polyhedron is a subset of Rn defined by a finite set of linear
inequalities. A polytope is a bounded polyhedron. An extended formulation of
a polyhedron P is a linear system L(x, y) in variables x and d new variables y

Ax+By ≥ b , A0x+B0y = b0 (1)

such that P = {x ∈ Rn : ∃y ∈ Rd L(x, y) holds }. The size of the formulation
is the number of inequalities in the system. Extension complexity of P , xc(P ),
is defined as the size of a smallest extended formulation of P .

Let f : {0, 1}n → {0, 1} be a Boolean function. A polyhedron P ⊆ Rn will
be called a separating polyhedron for f if

f−1(1) ⊆ P , and f−1(0) ∩ P = ∅ .

We define the linear separation complexity, or simply separation complexity,
sep(f), as the minimum extension complexity of a separating polyhedron for
f . In other words, sep(f) is the smallest r so that there exists a linear system
L(x, y) with r inequalities (and any number of equalities) so that

f−1(1) = {x ∈ {0, 1}n : ∃y ∈ Rd L(x, y) holds} .

In Section 3, we give the following characterisation of sep(f):

Theorem 4. Let R := minε>0 rk+(M(f)−εJ). Then R−2n−1 ≤ sep(f) ≤ R.

While the phrase ”linear separation complexity” was introduced in [11], the
same concept has appeared earlier. Already in [25], Valiant has observed that
linear separation complexity is, up to a constant factor, a lower bound on the
Boolean circuit complexity of f . This appears again in the seminal paper of
Yannakakis [29]. In the context of proof complexity, Pudlák and Oliveira [15]
investigated a host of related complexity measures, including monotone sepa-
ration complexity. Recently, Atserias et al. [1] gave a lower bound on sep(f)
under an additional symmetry assumption1.

Observe that the smallest separating polyhedron for f is simply the polytope
Pf := conv(f−1(1)), the convex hull of accepting inputs of f . The Yannakakis’
paper started a fruitful direction of research into the extension complexity of
0/1-polytopes. These polytopes are well-studied. Rothvoß [19] has shown that
there exists an f such that Pf has extension complexity 2Ω(n). In an ensuing
body of research, the same was proved for explicit functions (see, e.g., [18]
and references within). However, Pf is just one of infinitely many separating
polytopes for f and these results do not imply a lower bound on sep(f). The
paper [11] has made a modest step in this direction: it was shown that there
exists a (non-explicit) f with sep(f) ≥ 2Ω(n).

1Moreover, they measure the complexity of a polytope differently: namely, as the size of
the bit-representation of its defining constraints.
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Monotone separation complexity sep+(f). In Section 3.4, we focus on
monotone Boolean functions and give an analogy of Theorem 4 for monotone f
and monotone separating polyhedra.

2.3 A related proof system

We define a new proof system AMC called Algebraic Monotone Calculus.
The lines of AMC are of the form f�g where f, g are monotone polynomials.

The axioms are

f�f (A1) , a�b (A2) , if a, b ∈ R, a ≥ 0, b > 0 .

The rules are

f1�g , g�f2

f1�f2
(R1) ,

f1�g1, f2�g2

f1 ◦ f2�g1 ◦ g2
(R2), ◦ ∈ {+,×}

An AMC-proof of f�g is a sequence f1�g1, . . . fm�gm such that fm = f ,
gm = g and every line in the sequence is either an axiom (A1) or (A2), or has
been obtained from previous lines by means of the rules (R1) or (R2). The size of
the proof is defined as the smallest s ≥ m so that there exists a monotone circuit
of size s which simultaneously computes the polynomials f1, g1, . . . , fm, gm

Note that the axiom (A2) gives a�b and b�a for every a, b > 0. This amounts
to taking a homomorphism of R+ into the Boolean semiring. The intended
interpretation of lines f�g is as follows. For a polynomial f , let supp(f) denote
the set of monomials which have a non-zero coefficient in f . For example,
supp(2xy +

√
3z) = {xy, z}. We stipulate that supp(0) = ∅ and supp(a) = {∅},

if a ∈ R \ {0}. Then f�g can be interpreted as asserting supp(f) ⊆ supp(g).
The system AMC is sound and complete in the following sense:

Proposition 5. Let f, g be monotone polynomials. Then the following are
equivalent.

(i). supp(f) ⊆ supp(g),

(ii). there exists ε > 0 such that g − εf is monotone,

(iii). there exists an AMC-proof of f�g.

Our main result concerning AMC is:

Theorem 6. Assume that f�g has an AMC-proof of size s. Then there exists
ε > 0 such that g − εf has a monotone arithmetic circuit of size O(s). Con-
versely, assume that ε > 0 is such that f, g and g − εf have monotone circuits
of size ≤ s. Then f�g has an AMC-proof of size O(s).

Our motivation for introducing the system AMC is manifold. First, the
system arises quite naturally in the context of Theorem 1. As we remark in
Section 5.1, Theorem 1 can be seen as an application of Theorem 6. Second,
the theorem gives a concrete approach to proving lower bounds on the AMC
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proof-size. Finally, AMC is related to the monotone calculus MLK from [2]
and, by extension, to the Frege system (cf. Section 5.2). It is possible that
understanding AMC would give some insight into the Frege system.

We prove Theorem 6 in Section 5. There, we also explain connections be-
tween AMC and other proof systems.

Some notation. As customary, [m] = {1, . . . ,m}. For a vector v = (v1, . . . , vn) ∈
Rn, supp(v) = {i ∈ [n] : vi 6= 0} is the set of non-zero coordinates of v. For a
matrix M ∈ Rn×m, supp(M) is defined similarly. A vector or a matrix will be
called non-negative/positive if every entry is non-negative/positive. Jn,m will
denote the n×m matrix with every entry equal to one. We set Jn := Jn,n and
sometimes drop the subscript if the dimension is clear from context. rk(M) will
denote the usual linear algebraic rank of a matrix.

Organization. Theorem 1 is proved in Section 4. There, we also present
some variants of the theorem. Section 3 contains proofs of Theorems 3 and 4.
Section 3.3 contains some results on the strict rank of a matrix, and Section 3.2
presents facts about discontinuities of non-negative rank. Section 3.4 deals with
monotone polyhedra and monotone Boolean functions. In Section 5, we prove
Theorem 6 as well as discuss the system AMC in some detail.

3 Linear separation complexity

In this section, we prove Theorems 3 and 4. Recall the definition of separation
complexity from Section 2.2. There, we also mentioned the following results:

Proposition 7. (i). [29, 25] For every Boolean function f , sep(f) ≤ O(C(f)).

(ii). [11] There exists f : {0, 1}n → {0, 1} with sep(f) ≥ 2Ω(n).

For x, y ∈ Rn, let

h(x, y) :=
n∑
i=1

xi(1− yi) +
n∑
i=1

(1− xi)yi .

If x, y are Boolean vectors, h(x, y) is simply their Hamming distance. Let f :
{0, 1}n → {0, 1} be a Boolean function. For a parameter r, let Sr(f) be the
polyhedron

Sr(f) := {x ∈ Rn : ∀y ∈ f−1(0), h(x, y) ≥ r} . (2)

Note that
Sr1(f) ⊇ Sr2(f) , if r1 ≤ r2 .

Let r0 := minx∈f−1(1),y∈f−1(0) h(x, y). Then r0 ≥ 1. The key property of Sr
is the following:
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Lemma 8. For every 0 < r ≤ r0, Sr(f) is a separating polyhedron for f .
Conversely, assume that P is a separating polyhedron for f . Then there exists
0 < ε ≤ r0 such that P ∩ [0, 1]n ⊆ Sε.

Proof. If 0 < r ≤ r0, Sr is a separating polyhedron for f : Sr contains all
accepting inputs x of f since for every rejecting input y of f , h(x, y) ≥ r0 ≥ r.
Sr(f) contains no rejecting input y of f since h(y, y) = 0 < r.

For the second part, assume that P is a separating polyhedron for f . Fix
y ∈ f−1(0). We claim that h(x, y) > 0 for every x ∈ P ∩ [0, 1]n. This is because
h(x, y) = 0 implies x = y on x ∈ [0, 1]n. Since P ∩ [0, 1]n is compact, there
exists εy > 0 such that h(x, y) > εy for every x ∈ P . Setting ε := miny∈f−1(0) εy
shows that P ∩ [0, 1]n ⊆ Sε.

Following [29, 5], we now define slack matrices. Let V be a sequence v1, . . . , vm1

of points in Rn and L(x) a system `1(x) ≥ b1, . . . , `m2
(x) ≥ bm2

of inequalities
in Rn. The slack matrix with respect to V and L(x) is the m2 ×m1 matrix T
such that

Ti,j = `i(vj)− bi .

Let P0 := conv(V ) be the convex hull of V and P1 := {x ∈ Rn : L(x) holds}.
If P0 ⊆ P1 then T is non-negative. In [5], we can find:

Lemma 9 ([5]). Let P0 ⊆ P1 and T be as above. Define xc(P0, P1) as the
minimum xc(P ) over all polyhedra with P0 ⊆ P ⊆ P1. Then

rk+T − 1 ≤ xc(P0, P1) ≤ rk+T .

Theorem 4 (restated). Let f : {0, 1}n → {0, 1} be a Boolean function. Let
R := minε>0 rk+(M(f)− εJ). Then R− 2n− 1 ≤ sep(f) ≤ R.

Proof. We first observe that M(f)− εJ is a slack matrix defined by the points
conv(f−1(1)) and the inequalities in (2) defining Sε. Hence, if M(f) − εJ is
non-negative then Sε is a separating polyhedron by Lemma 8. By the previous
lemma, sep(f) ≤ xc(Sε) ≤ rk+(M − εJ) and so sep(f) ≤ R. To prove the
opposite inequality, assume that P is a separating polyhedron for f with xc(P ) =
t. Let P ′ := P ∩ [0, 1]n. Then xc(P ′) ≤ t+ 2n. By Lemma 8 there exists ε > 0
such that P ′ ⊆ Sε. Since f−1(1) ⊆ P ′, Lemma 9 gives rk+(M(f) − εJ) ≤
xc(P ′) + 1. Therefore, R ≤ t+ 2n+ 1 and so t ≥ R− 2n− 1.

3.1 Consequences and comments

As a consequence of Theorem 4, Proposition 7 implies Theorem 3:

Corollary (Theorem 3 restated). Let f be an n-variate Boolean function. Then
minε>0 rk+(M(f) − εJ) ≤ O(C(f) + n). Furthermore, there exists an f such
that minε>0 rk+(M(f)− εJ) ≥ 2Ω(n).

Moreover, we also obtain that non-negative rank is heavily discontinuous:
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Corollary 10. For every n there exists n × n matrix M with positive integer
entries such that rk+(M) = O(log(n)) but for every ε > 0, rk+(M−εJ) ≥ nΩ(1).

Another implication is that sep(f) and sep(¬f) are almost the same, a fact
not entirely apparent from the definition of sep(f):

Corollary 11. |sep(f)− sep(¬f)| ≤ 2n+ 1.

Proof. Note that M(¬f) is the transposition of M(f) and apply Theorem 4.

Let Hn be the 2n × 2n matrix whose rows and columns are indexed by
Boolean strings of length n and (Hn)x,y is the Hamming distance of x and y.
Note that M(f) is a submatrix of Hn for every n-variate Boolean function f .

Observation 12. (i). rk(Hn + aJ2n) = n+ 1 whenever a ≥ 0.

(ii). n+ Ω(log n) ≤ rk+(Hn) ≤ 2n.

Proof. Let V be the 2n × n matrix whose rows consist of all 0, 1-vectors of
length n and let  the all-ones column vector of length 2n. Then Hn + aJ2n =
(V, J2n,n−V, )·(J2n,n−V, V, a)t. The 2n+1 columns of (V, J2n,n−V, ) lie in the
linear span of the columns of V and  which implies that rk(aJ2n +Hn) ≤ n+1.
Setting a := 0, this also show rk+(Hn) ≤ 2n. To see that rk(aJ2n +Hn) ≥ n+1,
consider the (n+ 1)× (n+ 1) submatrix of Hn with rows and columns indexed
by strings of hamming weight 0 or 1. The matrix has full rank. The lower
bound rk+(Hn) ≥ n+ Ω(log n) follows by noting that Hn has zero diagonal, is
non-zero everywhere else, and applying the result [7] (see also [4]).

The following example shows that some dependency on n in Theorem 4 is
inevitable.

Example. Let f(x1, . . . , xn) be the Boolean function such that f(x1, . . . , xn) =
x1. Then sep(f) = 0 because accepting and rejecting inputs can be distinguished
by the equation x1 = 1 (recall that equations do not contribute to separation
complexity). On the other hand, M(f) is the matrix J2n−1 + Hn−1. Hence,
rk+(M(f)− εJ2n−1) ≥ n for every ε > 0.

A different example would come from f(x1, . . . , xn) :=
∨
i<j xi∧xj , which is

more convincing in that f depends on all its variables. The reason for the gap
between R−2n−1 and R in Theorem 4 is the following. R is an upper bound on
the extension complexity of a separating polyhedron P , whereas R−1 is a lower
bound on extension complexity of P intersected with [0, 1]n. Indeed, the gap
would disappear had we defined separation complexity differently, by explicitly
requiring the separating polytope P to satisfy P ⊆ [0, 1]n. This would be at the
cost of replacing M(f) and J in Theorem 4 by more complicated matrices.

10



3.2 On continuity of non-negative rank

We now present some facts about the behavior of rk+(M + εN). We start with
a general fact:

Observation 13. Let M,N be matrices of the same dimension. For n ∈ N,
let Tn := {x ∈ R : rk+(M + xN) ≤ n}. Then Tn is a finite union of closed
intervals. In particular, if M is non-negative and supp(N) ⊆ supp(M), then
limε→0+

rk+(M + εN) exists and rk+(M) ≤ limε→0+
rk+(M + εN).

Proof. That Tn is a closed set follows from the definition of rk+. That it is
a finite union of intervals follows from Tarski-Seidenberg theorem (see, e.g.,
[3]).

Recall that, by Corollary 10, rk+(M − εJ) can be much larger than rk+(M),
even if J is a rank-one positive matrix. In the rest of this section, we want to
estimate how large the gap between rk+(M) and limε→0+

rk+(M + εN) can be.
The following lemma is interesting in its own right. It asserts that we can add
to M a positive rank one matrix V so that rk+(M + V ) and rk(M + V ) are
virtually the same. Geometrically, this can be interpreted as saying that every
finite set of points in Rn is contained inside a polytope with n+ 1 facets.

Lemma 14. Let V,N ∈ Rm×n where V is a positive rank-one matrix. Then
for every t ≥ 0 large enough, rk+(N + tV ) ≤ rk(N) + 1.

Proof. Let r := rk(N). Fix t0 such that N1 := N+ t0V is non-negative. We can
write V = v1v

t
2 where v1 ∈ Rm, v2 ∈ Rn are column vectors. Since rk(N1) ≤

r + 1, we can write N1 = AB with A ∈ Rn×(r+1), B ∈ R(r+1)×n. Furthermore,
we can choose A,B in such a way that A is non-negative and Aw = v1, where
w is a positive vector. To see that, pick a basis u1, . . . , ur of the columns of N .
Let the columns of A consist of the vectors v1−δu1, . . . , v1−δur, v1 +δ

∑r
i=1 ui,

where δ > 0 is small enough. Then v1, u1, . . . , ur lie in the span of columns of
A and A · (1, . . . , 1)t = (r + 1)v1.

To proceed, let t1 be such that B + t1wv
t
2 is non-negative. Then N2 :=

A(B + t1wv
t
2) has non-negative rank at most r + 1. Furthermore,

N2 = AB + t1Awv
t
2 = N1 + t1v1v

t
2 = N + t0V + t1V ,

and hence rk+(N + tV ) ≤ r + 1 for every t large enough.

Theorem 15. Let M,N be matrices of the same dimension with M non-
negative and supp(N) ⊆ supp(M). Then

(i). limε→0+
rk+(M + εN) ≤ 2rk+(M)(rk(N) + 2),

(ii). limε→0+
rk+(M + εN) ≤ 2rk+(M)+2 + rk(N), assuming M is positive.
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Proof. We first note that (i) implies (ii). If M is positive, write M + εN =
(M − ε1/2V ) + ε1/2(V + ε1/2N), where V is a positive rank-one matrix. Using
the previous lemma and part (i), we obtain rk+(V + ε1/2N) ≤ rk(N) + 1 and

rk+(M−ε1/2V ) ≤ 3 ·2rk+(M), if ε is small enough. This gives limε→0+ rk+(M+

εN) ≤ 3 · 2rk+(M) + rk(N) + 1 ≤ 4 · 2rk+(M) + rk(N).
Part (ii) is proved by induction on rk+(M). Fix k ∈ N. For r ∈ N, let g(r)

denote the smallest s so that

lim
ε→0+

rk+(M + εN) ≤ s ,

for every M,N with rk+(M) ≤ r, rk(N) ≤ k, and supp(N) ⊆ supp(M). Lemma
14 implies

g(1) ≤ k + 1 . (3)

We now want to bound g(r+1) in terms of g(r). Let M,N ∈ Rn×m be such that
supp(N) ⊆ supp(M), rk(N) ≤ k, rk+(M) = r+1. We have M = V +M ′, where
V is a non-negative rank-one matrix and rk+(M ′) = r. We have supp(V ) =
S×T , where S ⊆ [n], T ⊆ [m]. For a matrix Q ∈ Rn×m, and S′ ⊆ [n], T ′ ⊆ [m]
let Q(S′, T ′) ∈ Rn×m be obtained by replacing every row not in S′ and every
column not in T ′ by zero in Q. Furthermore, let

Q(0) := Q(S, T ), Q(1) := Q(S, [m] \ T ), Q(2) := Q([n] \ S, [m]) .

This guarantees that Q(0), Q(1), Q(2) have disjoint support and Q = Q0 +Q1 +
Q2. Hence,

(M + εN) =

2∑
i=0

(M(i) + εN(i)) , and rk+(M + εN) ≤
2∑
i=0

rk+(M(i) + εN(i)) .

By definition, V = V (0), andM(0)+εN(0) can be written asM ′(0)+(V+εN(0))
where supp(N(0) ⊆ supp(V ). Using Lemma 14, we have

rk+(M(0) + εN(0)) ≤ r + k + 1 ,

if ε is small enough. Furthermore, V (1), V (2) are zero matrices, and we have
M(i)+εN(i) = M ′(i)+εN(i) for i ∈ {1, 2}. Since, rk+(M ′(i) ≤ r and rk(Ni) ≤
k, we have

rk+(M(i) + εN(i)) ≤ g(r) , for i ∈ {1, 2} .

We have therefore established that

g(r + 1) ≤ r + k + 1 + 2g(r) .

Every such recursion has a solution g(r) ≤ a2r − r − k − 2. To meet the
initial condition (3), it is enough to set a := k + 2. Hence we have proved
g(r) ≤ (k + 2)2r − r − k − 2 ≤ (k + 2)2r, as required.
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3.3 Strict rank rk++

Recall the definition of rk++(M) in Section 2.2. We now explain that Theorem
4 can be stated in terms of the strict rank of M(f). We also give some bounds
on rk++ in terms of rk+.

The following lemma gives some equivalent definitions of the strict rank:

Lemma 16. Let M be an m×n positive matrix. Then the following are equiv-
alent:

(i). rk++(M) ≤ r

(ii). M can be written as M = V1 + · · ·+ Vr where V1, . . . , Vr are non-negative
rank-one matrices and V1 is positive.

(iii). M can be written as M = AB, where A ∈ Rm×r is non-negative and
B ∈ Rr×n is positive.

Proof. (i) implies (ii) and (iii) by definition of rk++(M).
(ii) =⇒ (iii). If M is as in (ii) then it can be written as M = AB where

A ∈ Rm×r, B ∈ Rr×n are non-negative and, moreover, the first column of A
and the first row of B are positive. Let Eδ := Ir+δvt1v2 where v1 = (0, 1, . . . , 1),
v2 = (1, 0, . . . , 0). If δ > 0 then EδB is positive. If δ is small enough then AE−1

δ

is non-negative. Hence, (AE−1
δ )(EδB) is as required in (iii).

(iii) =⇒ (i). Let A,B be as in the assumption of (iii). Let Dδ := Ir + δJr.
If δ is small enough then D−1

δ B is positive. Since M is positive, every row of
A is non-zero and so ADδ is positive. Hence M = (ADδ)(D

−1
δ B) is a positive

factorization of M .

For example, part (iii) of the proposition implies that rk++(M) ≤ min (m,n).
Furthermore:

Proposition 17. Let M,V be positive matrices of the same dimension such
that V has rank one. Then

lim
ε→0+

rk+(M − εV )− 1 ≤ rk++(M) ≤ min
ε>0

rk+(M − εV ) + 1 .

Proof. Let r := rk++(M). By definition, M = V1+· · ·+Vr, where Vi are positive
rank one matrices. By Lemma 14, rk+(V1− εV ) ≤ 2, for every ε > 0 sufficiently
small. This gives limε→0+

(M − εV ) ≤ r+ 1. Furthermore, M = (M − εV ) + εV .
Hence if rk+(M − εV ) = s, Lemma 16 part (ii) gives r ≤ s+ 1.

Using Theorem 4, Proposition 17 implies:

Corollary 18. Let f : {0, 1}n → {0, 1} be a Boolean function. Then rk++(M(f))−
2(n+ 1) ≤ sep(f) ≤ rk++(M(f)) + 1.

We shall note below that the bound in Corollary 18 can be slightly improved.
As for the connection between rk+(M) and rk++(M), we observe:
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Proposition 19. (i). If M is positive then rk++(M) ≤ O(2rk+(M)).

(ii). For every n, there exists n×n matrix M with positive integer entries such
that rk+(M) = O(log(n)) but rk++(M) ≥ nΩ(1).

Proof. The first part follows from Theorem 15 and Proposition 17. The second
part follows from Proposition 17 and Corollary 10.

Strict rank can be interpreted geometrically. Let P0 := conv(v1, . . . , vm1
) ⊆

Rn be a polytope and P1 ⊆ Rn be a set defined by strict inequalities `1(x) >
b1, . . . , `m2

(x) > bm2
. Define the slack matrix T ∈ Rm2×m1 as above, i.e.,

Si,j = `i(vj) − bi. If P0 ⊆ P1, T is a positive matrix. Without a proof, we
remark that Lemma 9 can be stated in terms of rk++(T ):

(i). Assume P0 ⊆ P1. Define xc(P0, P1) as the minimum xc(P ) over all poly-
hedra P0 ⊆ P ⊆ P1. Then rk++T − 1 ≤ xc(P0, P1) ≤ rk++T .

(ii). The proof of Theorem 4 could be carried out directly using rk++(M(f))
giving a slight improvement of Corollary 18:

rk++(M(f))− 2n− 1 ≤ sep(f) ≤ rk++(M(f)) .

3.4 Monotone polyhedra

We now focus on monotone Boolean functions. We present an analogy of The-
orem 4 for monotone functions and monotone polyhedra. We define monotone
separation complexity of f which captures how hard it is do distinguish accept-
ing inputs of f from rejecting inputs by means of a linear program in which the
variables of f have non-negative coefficients. This is interesting for at least two
reasons. First, in this restricted version there is a greater hope to prove un-
conditional lower bounds for an explicit function f . Second, such lower bounds
may have applications in proof complexity, see [15].

For x, y ∈ Rn, we write x ≤ y if y − x is non-negative. A polyhedron P
will be called monotone if for every x ≤ y ∈ Rn, x ∈ P implies y ∈ P . One
can see that a monotone P can be defined as {x ∈ Rn : Ax ≥ b} where A is
non-negative. For a polyhedron P ⊆ Rn, let

P ∗ := {x ∈ Rn : ∃y ∈ P, x ≥ y}

be the monotone closure of P . Recall that a Boolean function f is monotone
if for every x ≤ y ∈ {0, 1}n, f(x) = 1 implies f(y) = 1. Given a monotone
Boolean function f , we define its monotone separation complexity, sep+(f), as
the smallest r so that there exists a polyhedron P with xc(P ) = r such that P ∗

is a separating polyhedron for f . In other words, there exists a polyhedron Q ⊆
Rn+d which can be defined using r inequalities (and any number of equalities)
such that

f−1(1) = {x ∈ {0, 1}n : ∃y ∈ Rn∃z ∈ Rd , x ≥ y , (y, z) ∈ Q} .
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We do not include the inequalities x ≥ y as contributing to the complexity of
the system. An equally reasonable definition would be to define sep+(f) as the
smallest extension complexity of a monotone separating polyhedron for f . But
note that xc(P ∗) ≤ xc(P ) + n and hence the two alternatives are related:

(i). If P is a monotone separating polyhedron for f then sep+(f) ≤ xc(P ),

(ii). There exists a monotone separating polyhedron P for f with xc(P ) ≤
sep+(f) + n.

For x, y ∈ Rn, let

h+(x, y) :=

n∑
i=1

xi(1− yi) .

If x, y are Boolean vectors, h+(x, y) equals the number of coordinates i such
that xi = 1, yi = 0. Define M+(f) as the |f−1(0)| × |f−1(1)| matrix whose rows
are indexed by rejecting inputs and columns by accepting inputs of f and, given
y ∈ f−1(0), x ∈ f−1(1),

M+(f)y,x := h+(x, y) .

We note that rk+(M+(f)) ≤ n. An analogy of Theorem 4 is the following:

Theorem 20. Let f : {0, 1}n → {0, 1} be a monotone Boolean function. Then
minε>0 rk+(M+(f)− εJ)− 2n− 1 ≤ sep+(f) ≤ minε>0 rk+(M+(f)− εJ).

Proof. For a parameter r, let Sr(f) be the polyhedron

Sr := {x ∈ Rn : ∀y ∈ f−1(0), h+(x, y) ≥ r} .

Let r0 be the minimum h+(x, y) over x ∈ f−1(1) and y ∈ f−1(0). Then r0 ≥ 1.

Claim. For every 0 < r ≤ r0, Sr is a monotone separating polyhedron for f .
Conversely, assume P is a polyhedron such that P ∗ is separating for f . Then
P ∩ [0, 1]n ⊆ Sε for some ε > 0.

Proof of the claim. Sr is monotone because it is defined by inequalities with
non-negative coefficients. If r ≤ r0, Sr ⊇ f−1(1) by the definition of r0. If
r > 0, Sr contains no rejecting input y because h+(y, y) = 0. For the second
part, assume that P ∗ is a separating polyhedron for f . Fix y ∈ f−1(0). Then
for every x ∈ P ∩ [0, 1]n, h+(x, y) > 0. For otherwise, assume that h+(x, y) = 0.
Since x ∈ [0, 1]n, we then have x ≤ y and so y ∈ P ∗ – contradicting the
assumption that P ∗ is separating. Hence there exists εy > 0 such that for every
x ∈ P ∩ [0, 1]n, h+(x, y) ≥ εy. Setting ε := miny εy gives P ∩ [0, 1]n ⊆ Sε.

The rest of the proof proceeds using the Claim in the same manner as the
proof of Theorem 4.
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3.4.1 Gap between rk+ and rk++ implies a lower bound on sep+

As in Corollary 18, Theorem 20 could be stated in terms of rk++(M+(f)). Since
rk+(M+(f)) is small, this shows that any lower bound on sep+(f) implies a gap
between rk++(M(f)) and rk+(M(f)). We now note that the converse is also
true: any separation between rk++ and rk+ yields a lower bound on sep+(f)
for some f .

Let N ∈ Rn×m be a positive matrix of non-negative rank r, together with its
non-negative factorization N = A ·B, where A ∈ Rn×r, B ∈ Rr×n. With N , we
associate the following monotone Boolean function fN : {0, 1}r → {0, 1}. Given
x ∈ {0, 1}r, fN (x) = 1 iff there exists a column u of B with supp(u) ⊆ supp(x).
In other words fN accepts x if there is a column u of B and a > 0 such that
ax ≥ u.

Observation 21. sep+(fN ) ≥ rk++(N)− (4r + 2).

Proof. Let A0 be the 0, 1-matrix with supp(A0) = supp(A) and similarly for B0

and B. Let N0 := A0 · B0. There exists δ > 0 such that rk+(N − δN0) ≤ 2r.
Since N = (N − δN0) + δN0, Lemma 16 part (ii) implies

rk++(N) ≤ 2r + rk++(N0) .

Let N ′0 be the matrix obtained by removing from N0 identical rows and columns.
From definition of fN , we obtain that N ′0 is a submatrix of M+(fN ). Theorem
20 and Proposition 17 give that sep+(fN ) ≥ rk++(M+(fN )) − 2(r + 1). This
gives sep+(fN ) ≥ rk++(N ′0)− 2(r + 1) ≥ rk++(N)− 4r − 2.

4 Monotone arithmetic circuits

We now want to prove Theorem 1. A polynomial f will be called homogeneous,
if every monomial in f with non-zero coefficient has the same degree. If f has
degree d, we can always write f =

∑d
k=0 f

(k) where f (k) is homogeneous of
degree k. Let C be an arithmetic circuit. Given a gate u in C, let û be the
polynomial computed by u and deg(u) := deg(û) be its degree. C will be called
homogeneous, if for every sum gate u1 + u2 in C, we have deg(u1) = deg(u2).

Theorem 1 relies on the following main lemma:

Lemma 22. Let C be a monotone homogeneous circuit of size s in variables
x1, . . . , xn. Then to every gate u in C we can assign Ru > 0 such that for all
gates

Ru · (
∑
i∈[n]

xi)
deg(u) − û

can be simulateously computed by a monotone circuit of size O(s+ n log n).

Proof. Let L := x1 + · · ·+xn. By induction on the depth of u, we construct Ru
as well as the circuit computing hu := Ru · Ldeg(u) − û.
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If u is an input gate, we let Ru = u, if u is a constant, and Ru = 1, if u
is a variable xj . In the former case, hu = 0, and the latter, hu = L − xj =∑
i∈[n]\{j} xi.

If u = u1 +u2 is a sum gate, let Ru := Ru1 +Ru2 . Since deg(u) = deg(u1) =
deg(u2), this guarantees

hu = hu1
+ hu2

. (4)

If u = u1 × u2 is a product gate, let Ru := Ru1Ru2 . We have deg(u) =
deg(u1) + deg(u2), and hence

hu = Ru1
Ru2

Ldeg(u) − û1û2

= (Ru1L
deg(u1) − û1)Ru2L

deg(u2) + û1(Ru2L
deg(u2) − û2)

= hu1
Ru2

Ldeg(u2) + û1hu2
(5)

To construct the circuit, we first note that:

(i). L−x1, . . . , L−xn can be simultaneously computed by a monotone circuit
of size O(n log n),

(ii). all powers Lk such that k is the degree of some gate in C can be simulta-
neously computed by a circuit of size O(s+ n).

The circuit in (i) is easily constructed recursively (doubling n at each step). For
part (ii), remove from C all its sum gates, by replacing each sum gate by one
of its inputs. Next, replace each constant in the circuit by 1 and each variable
by L.

Part (i) means that all hu’s corresponding to input gates can be simultane-
ously computed by a monotone circuit of size O(n log n). Equations (4) and (5)
imply that, for a non-input gate u, we can compute hu using hu1

, hu2
, polyno-

mials from (i) or (ii), plus a constant number of extra gates. This gives overall
complexity O(s+ n log n).

The following lemma is quite standard and we omit the proof:

Lemma 23. Assume that f has degree d and an arithmetic circuit of size s.
Then f can be written as f = f+ − f− where f+, f− can both be computed by a
monotone arithmetic circuit of size O(s). Furthermore, the homogeneous parts

f
(0)
+ , . . . , f

(d)
+ , f

(0)
− , . . . , f

(d)
− can be simultaneously computed by a homogeneous

monotone circuit of size O(sd2).

Theorem 1 (restated). Let f ∈ R[x1, . . . , xn] be a polynomial of degree d which
can be computed by a circuit of size s. Then there exists ε0 > 0 such for every
0 < ε < ε0, the polynomial (1 +

∑n
i=0 xi)

d + εf has a monotone circuit of size
O(sd2 + n log n).

Proof. Write f = f+ − f− as in the previous lemma. Then also f = f ′+ − f ′−,

where f ′+ =
∑d
k=0 f

(k)
+ and f ′− =

∑d
k=0 f

(k)
− . Setting L :=

∑
i∈[n] xi, Lemma 22

gives a monotone circuit simultaneously computing RkL
k − f (k)

− , 0 ≤ k ≤ d, of
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size O(sd2 + n log n). Let R :=
∑d
k=0Rk. Then R(L+ 1)d −

∑d
k=0RkL

k has a
monotone circuit of size O(n+ d). Hence we obtain a monotone circuit for

(R(L+ 1)d −
d∑
k=0

RkL
k) + (

d∑
k=0

RkL
k − f (k)

− ) = R(L+ 1)d − f ′−

of size O(sd2 + n log n). This gives the required circuit for R(L + 1)d + f =
f ′+ + (R(L + 1)d − f ′−). The same holds for every R′ ≥ R. To conclude the
theorem, it is enough to set ε0 := (R)−1.

4.1 Modifications of Theorem 1

The theorem can be reproduced in many shapes and forms, depending on the
choice of the ”universal polynomial” and the computational model one has in
mind. The polynomial (

∑
i∈[n] xi + 1)d could be replaced by several other poly-

nomials U – the minimum requirements being that U contains all monomials of
degree ≤ d and that it has a small monotone circuit. In Proposition 25 below,
we give an example of such an alternative choice. Moreover, the same argu-
ment applies to restricted models such as multilinear circuits or bounded-depth
circuits, which we also discuss below.

Let
Hd
n =

∑
0≤k1,...,kn≤d :

∑
ki≤d

xk11 · · ·xknn ,

be the complete symmetric polynomial of degree d in variables x1, . . . , xn. Hd
n

contains all monomials of degree at most d in n variables with coefficient 1.
It has the same set of monomials as (

∑
i∈[n] xi + 1)d, but Hd

n has zero-one
coefficients. We note that it can recursively defined by

Hd
0 = 1 , Hd

n =

d∑
j=0

xjn ·H
d−j
n−1 , if n > 0 , (6)

which shows that H0
n, . . . ,H

d
n can be simultaneously computed by a monotone

circuit of size O(nd2).

Lemma 24. There exists r = r(n, d) > 0 such that rHd
n − (1 +

∑
i∈[n] xi)

d has

a monotone circuit of size O(nd2).

Proof. Let

hkn(r) := rHk
n − (1 +

∑
i∈[n]

xi)
k .

We shall construct a sequence r0, r1, . . . of positive numbers such that for every
n, the polynomials h0

n(rn), . . . , hdn(rn) can be simultaneously computed by a
monotone circuit of size O(nd2).
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Let r0 := 1. Assume we have already constructed rn−1. Setting ` :=∑
i∈[n−1] xi + 1, (6) gives

hkn(r) =

k∑
j=0

xjn

(
rHk−j

n−1 −
(
k

j

)
`k−j

)

=

k∑
j=0

xjn

(
k

j

)
hk−jn−1(rn−1) +

d∑
j=0

xjnH
k−j
n−1

(
r −

(
k

j

)
rn−1

)
. (7)

It is now enough to set rn large enough so that all the terms rn −
(
k
j

)
rn−1 are

non-negative. Then (7) allows to compute hkn(rn) from h0
n(rn−1), . . . , hdn(rn−1)

and H0
n, . . . ,H

d
n using O(d) extra gates.

The following is an analogy of Theorem 1:

Proposition 25. Let f ∈ R[x1, . . . , xn] be a polynomial of degree d which can be
computed by a circuit of size s. Then there exists ε0 > 0 such for every 0 < ε <
ε0, the polynomial Hd

n+εf has a monotone circuit of size O((s+n)d2 +n log n).

Proof. By Theorem 1, we have a small monotone circuit for U + εf for every
0 < ε < ε′0, where U := (1 +

∑
i∈[n] xi)

d. Lemma 24 gives a small circuit for

rHd
n − U for some r > 0. Hence rHd

n + εf = rHd
n − U + (U + εf) has a small

circuit for every ε < ε′0 and it is enough to set ε0 := ε′0/R.

As an illustration, we present other possible variants of Theorem 1. We
choose the examples of multilinear circuits, ΣΠΣ-circuits and high-degree com-
putations. Recall that a syntactically multilinear circuit [16] is an arithmetic
circuit C such that for every product gate u1 × u2, the sub-circuits of C rooted
at u1 and u2 share no common variable. We define ΣΠΣ-circuit of type (m, k)
to be an expression of the form ∑

i∈[m]

∏
i∈[k]

fi,j ,

where fi,j are polynomials of degree at most one. We observe the following:

(i). Assume that f has a syntactically multilinear circuit of size s. Then there
is an ε > 0 such that

∏
i∈[n](xi + 1) + εf has a monotone circuit of size

O(sn).

(ii). Assume that f has a ΣΠΣ circuit of type (m, k). Then there is an ε >
0 such that (

∑
i∈[n] xi + 1)k + εf has a monotone ΣΠΣ-circuit of type

(O(mk2), k).

(iii). Assume f ∈ R[x] is a univariate polynomial with a circuit of size s. Then
there is an ε > 0 such that (1 + x)2s

+ εf has a monotone circuit of size
O(s2).
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Observe that the bounds no longer depend on the degree of f . This is important
especially in the case (iii), where the factor of d2 in Theorem 1 would be quite
meaningless. We take the liberty to omit the proofs of (i)-(iii): they proceed in
a similar way as Theorem 1. In the case of (ii), one must reproduce Lemma 23
in bounded depth - which can be achieved by the interpolation trick of Ben-Or
(cf. [21]).

4.2 A comparison between Theorems 1 and 4

Let us now explain differences and similarities between the results of this sec-
tion and Section 3. In order to do this, we need to bring them to a common
language. For a polynomial f , denote µ(f) as the smallest number of non-scalar
multiplications needed to compute f by means of an arithmetic circuit, and sim-
ilarly for µ+(f) and a monotone arithmetic circuit. The results of this section
could have been stated in terms of µ(f) instead of total circuit size: namely,
if µ(f) is small then so is µ+(U + εf), where U is a suitable universal polyno-
mial. Furthermore, let us assume that f is a bilinear degree-two polynomial,
f =

∑
i,jMi,jxiyj , where M is a real matrix. Observe that, up to a constant

factor, µ(f) equals rk(M) and, if M is non-negative, µ+(f) = rk+(M). Taking
the universal polynomial U as U :=

∑
i,j xiyj , Theorem 1 could be rephrased

as asserting µ+(U + εf) ≤ O(µ(f)) for some ε > 0. In the language of matrices,
this means that rk+(J + εM) ≤ O(rk(M)). This is something we already know,
for Lemma 14 gives

min
ε>0

rk+(J + εM) ≤ rk(M) + 1 . (8)

In this sense, we have obtained a lower bound on rk(M) in terms of rk+(J+εM)
– a rather paradoxical thing to say, since rk+ is way harder to understand than
rk. In contrast, Theorem 4 lower bounds sep(f) in terms of rk+(M − εJ). This
is similar to the bound in (8), except that the roles of M and J are exchanged.
But the difference is significant: in (8) we have a rank-one matrix J which is
ε-perturbed by a complicated matrix M , whereas in rk+(M − εJ), we have a
complicated matrix M which is ε-perturbed by a rank-one matrix J .

5 The system AMC

As an exercise on AMC proofs, we start with a lemma:

Lemma 26. (i). Assume that f1, . . . , fm can be simultaneously computed by
a monotone circuit of size s and u, v ∈ Rm are non-negative vectors with
supp(u) ⊆ supp(v). Then

∑
i∈[m] uifi�

∑
i∈[m] vifi has an AMC-proof of

size s+O(m).

(ii). Assume that f1�g1, . . . , fm�gm can be (simultanously) proved by a proof
of size s. Then

∑
i∈[m] fi�

∑
i∈[m] gi and

∏
i∈[m] fi�

∏
i∈[m] gi have a

proof of size s+O(m).
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Proof. Part (ii) is obtained by applying the rule (R2) m times. For (i), first
prove uifi�vifi using the axioms fi�fi, ui�vi and the rule (R2). Then we can
apply part (ii).

We now prove Proposition 5 and Theorem 6.

Proof of Proposition 5. (i)≡ (ii) is obvious.
(iii) =⇒ (i) can be directly proved by induction on the number of lines in a

AMC-proof: supp(f) ⊆ supp(g) holds for an axiom f�g and the rules preserve
this property.

(ii) =⇒ (iii). We can write g = h + εf where h := g − εf . By Lemma 26
part (i), there is an AMC-proof of f�h+ εf and hence of f�g.

Proof of Theorem 6. The ”converse” part has been explained in the proof of
Proposition 5 and it remains to prove the main part of the theorem. In order
to simplify the argument, it is convenient to restrict the rule (R2). We will call
an application of the rule simple, if at least one of its assumptions is an axiom
(A1). That is, we modify the rule as

f1�g1, f�f
f1 ◦ f�g1 ◦ f

, (◦ ∈ {+,×}) .

We note this does not affect proof size:

Claim. Assume that f�g has a AMC-proof of size s. Then it has an AMC-
proof with only simple applications of (R2) of size O(s).

Proof. We want to derive f1 ◦ f2�g1 ◦ g2 from f1�g1 and f2�g2 by means of
simple applications of (R2). To do that, we may first derive f1 ◦ f2�f1 ◦ g2 and
f1 ◦ g2�g1 ◦ g2, and then apply (R1).

Let f1�g1, . . . , fm�gm be an AMC-proof of size s. By the Claim, we can
assume that all the applications of (R2) in the proof are simple. For every j ∈
[m], we will find 0 < εj ≤ 1 such that the polynomials {fi, gi, gi − εifi : i ≤ m}
can be simultaneously computed by a monotone circuit of size O(s). Let

hi(ε) := gi − εfi .

If fi�gi is an axiom (A1), we set εi := 1. If it is an axiom of the form (A2), fix
εi so that b − εia is non-negative. Assume fi�gi, was derived from fp�gp and
fq�gq by means of (R1). Then gp = fq and fp = fi, gq = gi. Set εi := εpεq.
This gives

hi(εi) =(gi − εqfq) + εq(fq − εpfi) = (gq − εqfq) + εq(gp − εpfp)
=hq(εq) + εqhp(εp) . (9)

Assume fi�gi, was derived from fp�gp and an axiom fq�fq by means of (R2).
Then let εi := εp. If ◦ = +, we have

hi(εi) = hp(εp) + fq(1− εp) . (10)
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If ◦ = ×, we have
hi(εi) = hp(εp) · fq . (11)

Equations (9)-(11) give a prescription how to compute hi(εi) from the polyno-
mials f1, g1, . . . , fm, gm and h1(ε1), . . . , hi−1(εi−1) using a constant number of
additional gates. Altogether, we have shown that {fi, gi, gi − εifi : i ≤ m} can
be simultaneously computed by a monotone circuit of size O(s+m). Since we
have explicitly defined prooof size so that m ≤ s, we obtain that gm − εmfm
has a monotone circuit of size O(s).

A comment on the power of AMC In the definition of size of AMC-proof,
we care only about the circuit size of the polynomials in a line f�g, ignoring
the question whether the circuits computing f and g make sense in the rest of
the proof. For example, we can derive f�f + g as in Lemma 24, but it may
happen that the smallest circuit for f + g will have nothing to do with f or
g. In other words, we gave AMC the power to decide polynomial identities for
free. For this reason, the proof of Proposition 5 also shows that f�g has an
AMC-proof with a constant number of lines (regardless the complexity of f or
g). If desired, the system could be made more realistic: we could require AMC
to work with arithmetic circuits to begin with, and add more syntactic axioms
such as f(g1 + g2)�fg1 + fg2.

5.1 A comparison between Theorems 1, 4 and 6

Observe that Theorem 1 can be seen as a corollary of Theorem 6. For, assume
that f is a homogeneous polynomial of degree d with monotone arithmetic
circuit of size s. Then, by induction on s, we can easily construct an AMC-
proof of f�(

∑
i xi + 1)d of size O(s+ n log n) – indeed, this is what Lemma 22

implicitly does. This by Theorem 6 gives that (
∑
i xi+1)d− εf has a monotone

circuit of size O(s+ n log n). (For non-monotone or inhomogeneous f , we then
invoke Lemma 23.) Furthermore, the proof of Lemma 24 can be interpreted as
constructing an AMC-proof of (

∑
i xi + 1)d�Hd

n.
For comparison with Theorem 4, recall the definition of µ and µ+ from Sec-

tion 4.2 and the discussion therein. Furthermore, given an AMC-proof S, define
the µ+-complexity as the smallest k so that all the polynomials in S can be
simultaneously computed by a monotone arithmetic with k non-scalar multipli-
cations. Then a lower bound on minε>0 rk+(M − εJ), or on linear separation
complexity, can be viewed as a rudimentary AMC lower bound:

Observation 27. For every n, there exist degree two polynomials f, g with
µ+(f), µ+(g) ≤ O(log n) and supp(f) ⊆ supp(g) such that every AMC-proof of
f�g has µ+-complexity nΩ(1).

Proof. Let M be the matrix from Corollary 10. Let f :=
∑
i,j∈[n] xiyj and

g :=
∑
i,j∈[n]Mi,jxiyj . Then µ+(f) = 1, µ+(g) = rk+(M) ≤ O(log n), and

µ+(g − εf) = rk+(M − εJ) ≥ nΩ(1) for every ε > 0. We leave as an exercise to
show that Theorem 6 remains valid when measuring the µ+-complexity: that
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is, if f�g has a proof of µ+-complexity s then µ+(g − εf) ≤ O(s). This gives
the required bound.

5.2 Connections to other proof systems

Let A be a DNF formula in variables x1, . . . , xn. Namely,

A =

m∨
j=1

Aj , where Aj =
∧
i∈Sj

xi ∧
∧
i∈S̄j

¬xi , (12)

and Sj , S̄j are some disjoint subsets of [n]. With A, we associate its character-
istic polynomial, χn(A), as follows. χn(A) is in 2n variables x0

1, x
1
1, . . . , x

0
n, x

1
n,

representing the original variables and their negations. For σ ∈ {0, 1}n, let
xσ :=

∏n
i=1 x

σi
i . Then

χn(A) :=
∑

σ∈{0,1}n
cσx

σ , where cσ := |{j ∈ [m] : σ satisfies Aj}| .

In other words, the coefficient of xσ is the number of terms Aj satisfied by σ.
Hence, χn(A) is a homogeneous polynomial of degree n with integer coefficients
from {0, . . . ,m}.

Setting

χn(1) :=
∏
i∈[n]

(x0
i + x1

i ) ,

the definition of χn(A) guarantees:

Observation 28. A is a tautology if and only if supp(χn(1)) ⊆ supp(χn(A)).

Note that χn(A) has a monotone arithmetic circuit of size O(nm): given
that no Aj contains simultaneously a variable and its negation, we can write

χn(A) =

m∑
j=1

(
∏
i∈Sj

x1
i

∏
i∈S̄j

x0
i

∏
i∈([n]\(Sj∪S̄j))

(x0
i + x1

i )) .

Resolution. Recall that Resolution is a proof system designed to refute un-
satisfiable CNFs, see, e.g., [13] for details. More exactly, a clause is a set of
variables or their negations. A CNF formula can be viewed as a set of clauses
C. Resolution has a single rule of inference

C ∪ {x}, D ∪ {¬x}
C ∪D

.

A resolution refutation starts from clauses in C and derives the empty clause by
means of the resolution rule.

Proposition 29. Let A be a DNF as in (12). Assume that ¬A has a resolution
refutation with k lines. Then χn(1)�χn(A) has an AMC-proof of size O((m+
k)n).
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Proof. Assume that C := ¬A has a resolution refutation R with k lines. Without
loss of generality, we can assume that no clause in R contains both a variable
and its negation, and that in the resolution rule above C,D themselves do not
contain x or ¬x.

For a clause C, let

αi(C) =


x0
i , xi ∈ C
x1
i , ¬xi ∈ C
x0
i + x1

i , otherwise.

Let α(C) :=
∏n
i=1 αi(C). This guarantees that

χn(A) =
m∑
j=1

α(¬Aj) , χn(1) = α(∅) . (13)

Claim. Assuming C,D do not contain xi,

α(C ∪D)�α(C ∪ xi) + α(D ∪ ¬xi)

has an AMC-proof of size O(n).

Proof of the Claim. By definition, α(C∪D) = α(C∪D∪{xi})+α(C∪D∪{¬xi}).
Hence, it is enough to construct proofs of α(C∪D∪{xi})�α(C∪{xi}) and α(C∪
D∪{¬xi})�α(D∪{¬xi}). Both these inequalities are of the form α(D1)�α(D2)
with D2 ⊆ D1. But for every i, αi(D1)�αi(D2) has a constant size proof:
either αi(D1) = αi(D2), or αi(D1) = xei , e ∈ {0, 1} and αi(D2) = x0

i + x1
i .

Using Lemma 26 part (ii), we obtain a proof of
∏
i αi(D1)�

∏
i αi(D2) of size

O(n).

Using the Claim, we can construct a proof of α(C)�χn(A) for every clause
C in R. If C = ¬Aj is an initial clause in C, this follows from Lemma 26
and (13). If C was obtained by resolving clauses C ′, D′, we use the claim to
derive α(C)�χn(A) from α(C ′) ≤ χn(A) and α(D′)�χn(A). This will give
an AMC-proof of α(∅)�χn(A). Altogether, the proof will have size at most
O((m+ k)n).

Corollary 30. Let A be as in Proposition 29. Then there exists ε > 0 such that
χn(A)− εχn(1) has a monotone arithmetic circuit of size O(n(k +m)).

We believe that Proposition 29 and its corollary can be improved to give
monotone ΣΠΣ-circuits (as defined in Section 4.1).

Monotone calculus. Recall the monotone calculus proof system, MLK, as
considered by Atserias et al. in [2]. In this system, one proves tautologies A→ B
where A,B are monotone formulas. The system starts from axioms such as
A→ A, and derives new formulas by means of inference rules of the flavor

A→ B

A→ B ∨ C
,
A→ B , B → C

A→ C
.
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In [2], it was shown that MLK quasipolynomially simulates the Frege system.
Moreover, if we allow MLK to work with Boolean circuits rather than formulas,
the system polynomially simulates the Extended Frege system.

For a monotone Boolean circuit A, let A∗ be the monotone arithmetic circuit
obtained by replacing ∧,∨ in A by ×,+, respectively. Let FA be the monotone
polynomial computed by A∗. Observe that supp(FA) ⊆ supp(FB) implies that
A → B is a tautology. The converse is not true: for example x ∧ y → y is
a tautology, whereas supp(Fx∧y) = {xy} and supp(Fx) = {x}. This means
there exist tautologies A→ B such that FA�FB is not even provable in AMC.
We remark without a proof that one can simulate MLK by AMC augmented
with the Boolean axioms f�1 and f�f2. In this sense, AMC can be seen as a
weakening of the monotone calculus. It is, however, an open problem whether
the Boolean axioms can help in proving χn(1)�χn(A).

6 Open problems

We end by giving some open problems. The first one asks for new monotone
arithmetic lower bounds. Recall that the permanent polynomial is defined as
permn =

∑
σ

∏n
i=1 xi,σ(i), where σ ranges over all permutations of [n].

Open problem 1. Show that
∏n
i=1(

∑n
j=1 xi,j) − permn requires a monotone

arithmetic circuit of superpolynomial size. How about
∏n
i=1(

∑n
j=1 xi,j)+permn?

The next problem concerns continuity of non-negative rank as discussed in
Section 3.2.

Open problem 2. Given M,V ∈ Rn×m and z ∈ R, let r(z) := rk+(M − zV ).
Assuming M,V are positive and V is a rank-one matrix, how many disconti-
nuities can the function r(z) have? How many times can r(z) decrease as z
increases?

The next two questions concern monotone separation complexity and strict
rank from Sections 3.4 and 3.3. They are closely related due to the discussion
in Section 3.4.1.

Open problem 3. Find an explicit monotone Boolean function f such that
sep+(f) is superpolynomial.

Open problem 4. Find an explicit positive matrix M such that rk++(M) is
superpolynomial in terms of rk+(M).

The final problems are related to the system AMC from Section 2.3 and 5:

Open problem 5. Find a pair of monotone polynomials f, g with supp(f) ⊆
supp(g) such that for every ε > 0, g − εf requires monotone arithmetic circuit
of size superpolynomial in the monotone arithmetic circuit size of f and g.

Open problem 6. Does AMC polynomially simulate the Frege system? More
exactly, assume that a DNF A has a Frege proof of size s. Is there an AMC-proof
of χn(1)�χn(A) of size polynomial in s?
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