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Abstract

The polarization lemma for statistical distance (SD), due to Sahai and Vadhan (JACM,
2003), is an efficient transformation taking as input a pair of circuits (C0, C1) and an integer k
and outputting a new pair of circuits (D0, D1) such that if SD(C0, C1) ≥ α then SD(D0, D1) ≥
1−2−k and if SD(C0, C1) ≤ β then SD(D0, D1) ≤ 2−k. The polarization lemma is known to hold
for any constant values β < α2, but extending the lemma to the regime in which α2 ≤ β < α
has remained elusive. The focus of this work is in studying the latter regime of parameters. Our
main results are:

1. Polarization lemmas for different notions of distance, such as Triangular Discrimination
(TD) and Jensen-Shannon Divergence (JS), which enable polarization for some problems
where the statistical distance satisfies α2 < β < α. We also derive a polarization lemma
for statistical distance with any inverse-polynomially small gap between α2 and β (rather
than a constant).

2. The average-case hardness of the statistical difference problem (i.e., determining whether
the statistical distance between two given circuits is at least α or at most β), for any values
of β < α, implies the existence of one-way functions. Such a result was previously only
known for β < α2.

3. A (direct) constant-round interactive proof for estimating the statistical distance between
any two distributions (up to any inverse polynomial error) given circuits that generate
them.
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1 Introduction

The Statistical Difference Problem, introduced by Sahai and Vadhan [SV03], is a central
computational (promise) problem in complexity theory and cryptography, which is also intimately
related to the study of statistical zero-knowledge (SZK). The input to this problem is a pair of
circuits C0 and C1, specifying probability distributions (i.e., that are induced by feeding the circuits
with a uniformly random string). YES instances are those in which the statistical distance1 between
the two distributions is at least 2/3 and NO instances are those in which the distance is at most 1/3.
Input circuits that do not fall in one of these two cases are considered to be outside the promise
(and so their value is left unspecified).

The choice of the constants 1/3 and 2/3 in the above definition is somewhat arbitrary (although
not entirely arbitrary as will soon be discussed in detail). A more general family of problems can
be obtained by considering a suitable parameterization. More specifically, let 0 ≤ β < α ≤ 1. The
(α, β) parameterized version of the Statistical Difference Problem, denoted SDPα,β, has as
its YES inputs pairs of circuits that induce distributions that have distance at least α whereas the
NO inputs correspond to circuits that induce distributions that have distance at most β.

Definition 1.1 (Statistical Difference Problem). Let α, β : N→ [0, 1] with α(n) > β(n) for
every n. The Statistical Difference Problem with promise (α, β), denoted SDPα,β, is given
by the sets

SDPα,βY =
{

(C0, C1) | SD(C0, C1) ≥ α(n)
}

and

SDPα,βN =
{

(C0, C1) | SD(C0, C1) ≤ β(n)
}
,

where n is the output length of the circuits C0 and C1.2

(Here and below we abuse notation and use C0 and C1 to denote both the circuits and the respective
distributions that they generate.)

The elegant polarization lemma of [SV03] shows how to polarize the statistical distance between
two distributions. In more detail, for any constants α and β such that β < α2, the lemma gives a
transformation that makes distributions that are at least α-far be extremely far and distributions
that are β-close be extremely close. Beyond being of intrinsic interest, the polarization lemma
is used to establish the SZK completeness of SDPα,β, when α2 > β, and has other important
applications in cryptography such as the amplification of weak public key encryption schemes to
full fledged ones [DNR04, HR05].

Sahai and Vadhan left the question of polarization for parameters α and β that do not meet
the requirements of their polarization lemma as an open question. We refer to this setting of α
and β as the non-polarizing regime. We emphasize that by non-polarizing we merely mean that in
this regime polarization is not currently known and not that it is impossible to achieve (although
some barriers are known and will be discussed further below). The focus of this work is studying
the Statistical Difference Problem in the non-polarizing regime.

1Recall that the statistical distance between two distributions P and Q over a set Y is defined as SD(P,Q) =
1
2

∑
y∈Y |Py −Qy|, where Py (resp., Qy) is the probability mass that P (resp., Q) puts on y ∈ Y.

2In prior works α and β were typically thought of as constants (and so their dependence on the input was not
specified). In contrast, since we will want to think of them as parameters, we choose to let them depend on the
output length of the circuit since this size seems most relevant to the distributions induced by the circuits. Other
natural choices could have been the input length or the description size of the circuits. We remark that these different
choices do not affect our results in a fundamental way.
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1.1 Our Results

We proceed to describe our results.

1.1.1 Polarization and SZK Completeness for Other Notions of Distance

The statistical distance metric is one of the central information theoretic tools used in crypto-
graphy as it is very useful for capturing similarity between distributions. However, in information
theory there are other central notions that measure similarity such as mutual information and KL
divergence as well as others.

Loosely speaking, our first main result shows that polarization is possible even in some cases
in which β ≥ α2. However, this result actually stems from a more general study showing that
polarization is possible for other notions of distance between distributions from information theory,
which we find to be of independent interest.

When distributions are extremely similar or extremely dissimilar, these different notions of
distance are often (but not always) closely related and hence interchangeable. This equivalence is
particularly beneficial when considering applications of SZK—for some applications one distance
measure may be easier to use than others. For example, showing that the average-case hardness
of SZK implies one-way functions can be analyzed using statistical distance (e.g., [Vad99, Section
4.8]), but showing that every language in SZK has instance-dependent commitments is naturally
analyzed using entropy (e.g., [OV08]).

However, as the gaps in the relevant distances get smaller (i.e., the distributions are only
somewhat similar or dissimilar), the relation between different statistical properties becomes less
clear (for example, the reduction from SDPα,β to the Entropy Difference Problem of [GV99]
only works when roughly α2 > β). This motivates studying the computational complexity of
problems defined using different notions of distance in this small gap regime. Studying this question
can be (and, as we shall soon see, indeed is) beneficial in two aspects. First, providing a wider bag of
statistical properties related to SZK, which can make certain applications easier to analyze. Second,
the computational complexity of these distance notions might shed light on the computational
complexity of problems involving existing distance notions (e.g., SDPα,β when α2 < β).

We focus here on two specific distance notions—the triangular discrimination and the Jensen-
Shannon divergence, defined next.

Definition 1.2 (Triangular Discrimination). The Triangular Discrimination (a.k.a. Le Cam diver-
gence) between two distributions P and Q is defined as

TD(P,Q) =
1

2

∑
y∈Y

(Py −Qy)2

Py +Qy
,

where Y is the union of the supports of P and Q.
The Triangular Discrimination Problem with promise (α, β), denoted TDPα,β, is defined

analogously to SDPα,β, but with respect to TD rather than SD.

The triangular discrimination is commonly used, among many other applications, in statistical
learning theory for parameter estimation with quadratic loss, see [Cam86, P. 48] (in a similar manner
to how statistical distance characterizes the 0-1 loss function in hypothesis testing). Jumping
ahead, while the definition of triangular discrimination seems somewhat arbitrary at first glance, in
Section 2 we will show that this distance notion characterizes some basic phenomena in the study
of statistical zero-knowledge. Triangular discrimination has recently found usage in theoretical
computer science, and even specifically in problems related to SZK. Yehudayoff [Yeh16] showed that
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using TD yields a tighter analysis of the pointer chasing problem in communication complexity. The
work of Komargodski and Yogev [KY18] uses triangular discrimination to show that the average-
case hardness of SZK implies the existence of distributional collision resistant hash functions.

Next, we define the Jensen-Shannon Divergence. First, recall that the KL-divergence between
two distributions P andQ is defined3 as KL(P ||Q) =

∑
y∈Y Py log(Py/Qy). Also, given distributions

P0 and P1 we define the distribution 1
2P0 + 1

2P1 as the distribution obtained by sampling a random
coin b ∈ {0, 1} and outputting a sample y from Pb (indeed, this notation corresponds to arithmetic
operations on the probability mass functions). The Jensen-Shannon divergence measures the mutual
information between b and y.

Definition 1.3 (Jensen-Shannon Divergence). The Jensen-Shannon divergence between two distri-
butions P and Q is defined as

JS(P,Q) =
1

2
KL

(
P

∥∥∥∥P +Q

2

)
+

1

2
KL

(
Q

∥∥∥∥P +Q

2

)
.

The Jensen-Shannon Divergence Problem with promise (α, β), denoted JSPα,β, is defined
analogously to SDPα,β, but with respect to JS rather than SD.

The Jensen-Shannon divergence enjoys a couple of important properties (in our context) that
the KL-divergence lacks: it is symmetric and bounded. Both triangular discrimination and Jensen-
Shannon divergence (as well as statistical distance and KL-divergence) are types of f -divergences,
a central concept in information theory (see [PW17, Section 6] and references therein). They are
both non-negative and bounded by one.4 Finally, the Jensen-Shannon divergence is a metric, while
the triangular discrimination is a square of a metric.

With these notions of distance and corresponding computational problems in hand, we are
almost ready to state our first set of results. Before doing so, we introduce an additional useful
technical definition.

Definition 1.4 (Separated functions). Let g : N→ [0, 1]. A pair of poly(n)-time computable functi-
ons (α, β), where α = α(n) ∈ [0, 1] and β = β(n) ∈ [0, 1], is g-separated if α(n) ≥ β(n) + g(n) for
every n ∈ N.

We denote by (1/poly)-separated the set of all (1/p)-separated pairs of functions, for every
polynomial p. Similarly, we denote by (1/log)-separated the set of all (1/(c log))-separated pairs of
functions, for every constant c > 0.

We can now state our first set of results: that both TDP and JSP, with a noticeable gap, are
SZK complete.

Theorem 1.5. Let (α, β) be (1/poly)-separated functions such that there exists a constant ε ∈
(0, 1/2) such that 2−n

1/2−ε ≤ β(n) and α(n) ≤ 1−2−n
1/2−ε

, for every n ∈ N. Then, TDPα,β is SZK
complete.

Theorem 1.6. For (α, β) as in Theorem 1.5, the problem JSPα,β is SZK complete.

The restriction on 2−n
1/2−ε ≤ β(n) and α(n) ≤ 1 − 2−n

1/2−ε
should be interpreted as a non-

degeneracy requirement (which we did not attempt to optimize), where we note that some restriction

3To be more precise, in this definition we view 0 · log 0
0

as 0 and define the KL-divergence to be ∞ if the support
of P is not contained in that of Q.

4In the literature these distances are sometimes defined to be twice as much as our definitions. In our context, it
is natural to have the distances bounded by one.
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seems inherent (see Remark 3.15 below). Moreover, we can actually decouple the assumptions in
Theorems 1.5 and 1.6 as follows. To show that TDPα,β and JSPα,β are SZK-hard, only the non-
degeneracy assumption (i.e., 2−n

1/2−ε ≤ β(n) and α(n) ≤ 1 − 2−n
1/2−ε

) is needed. On the other
hand, to show that these problems are in SZK we only require that (α, β) are (1/poly)-separated.

Note that in particular, Theorems 1.5 and 1.6 imply polarization lemmas for both TD and JS.
For example, for triangular discrimination, since TDPα,β ∈ SZK and TDP1−2−k,2−k is SZK-hard,
one can reduce the former to the latter.

Beyond showing polarization for triangular discrimination, Theorem 1.5 has implications regar-
ding the question of polarizing statistical distance, which was our original motivation. It is known
that the triangular discrimination is sandwiched between the statistical distance and its square;
namely, for every two distributions P and Q it holds that (see [Top00, Eq. (11)]):

SD(P,Q)2 ≤ TD(P,Q) ≤ SD(P,Q) (1.1)

(for self containment we include a proof of this fact in Appendix A.)

Thus, the problem SDPα,β is immediately reducible to TDPα
2,β, which Theorem 1.5 shows to

be SZK-complete, as long as the gap between α2 and β is noticeable. Specifically, we have the
following corollary.

Corollary 1.7. Let (α, β) be as in Theorem 1.5, with the exception that (α2, β) are (1/poly)-
separated (note that here α is squared). Then, the promise problem SDPα,β is SZK complete.

We highlight two implications of Theorem 1.5 and Corollary 1.7 (which were also briefly mentioned
above).

Polarization with Inverse Polynomial Gap. Observe that Corollary 1.7 implies polarization
of statistical distance in a regime in which α and β are functions of n, the output length of the two
circuits, and α2 and β are only separated by an inverse polynomial. This is in contrast to most
prior works which focus on α and β that are constants. In particular, Sahai and Vadhan’s [SV03]
proof of the polarization lemma focuses on constant α and β and does not seem to extend to an
inverse polynomial gap.5 Corollary 1.7 does yield such a result, by relying on a somewhat different
approach.

Polarization Beyond α2 > β. Theorem 1.5 can sometimes go beyond the requirement that
α2 > β for polarizing statistical distance. Specifically, it shows that any problem with noticeable
gap in the triangular discrimination can be polarized. Indeed, there are distributions (P,Q) and
(P ′, Q′) with SD(P,Q) > SD(P ′, Q′) > SD(P,Q)2 but still TD(P,Q) > TD(P ′, Q′).6 Circuits
generating such distributions were until now not known to be in the polarizing regime, but can now
be polarized by combining Theorem 1.5 and Eq. (1.1).

1.1.2 From Statistical Difference to One-way Functions

We continue our study of the Statistical Difference Problem, focusing on the regime where
β < α (and in particular even when β ≥ α2). We show that in this regime the SDPα,β problem

5Actually, it was claimed in [GV11] that the [SV03] proof does extend to the setting of an inverse polynomial gap
between α2 and β but this claim was later retracted, see http://www.wisdom.weizmann.ac.il/~/oded/entropy.html.

6For example, for a parameter γ ∈ [0, 1] consider the distributions Rγ0 and Rγ1 over {0, 1, 2}: Rγb puts γ mass

on b and 1 − γ mass on 2. It holds that SD(Rγ0 , R
γ
1 ) = TD(Rγ0 , R

γ
1 ) = γ. If, say, (P,Q) = (R

1/2
0 , R

1/2
1 ) and

(P ′, Q′) = (R
1/3
0 , R

1/3
1 ), then SD(P,Q) > SD(P ′, Q′) > SD(P,Q)2 but TD(P,Q) > TD(P ′, Q′).
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shares many important properties of SZK (although we fall short of actually showing that it lies in
SZK—which is equivalent to polarization for any β < α).

First, we show that similarly to SZK, the average-case hardness of SDPα,β implies the existence
of one-way functions. The fact that average-case hardness of SZK (or equivalently SDPα,β for
β < α2) implies the existence of one-way functions was shown by Ostrovsky [Ost91]. Indeed, our
contribution is in showing that the weaker condition of β < α (rather than β < α2) suffices for this
result.

Theorem 1.8. Let (α, β) be (1/poly)-separated functions and suppose that SDPα,β is average-case
hard. Then, there exists a one-way function.

The question of constructing one-way functions from the (average-case) hardness of SDP is
closely related to a result of Goldreich’s [Gol90] showing that the existence of efficiently sampleable
distributions that are statistically far but computationally indistinguishable implies the existence
of one-way functions. Our proof of Theorem 1.8 allows us to re-derive the following strengthening
of [Gol90], due to Naor and Rothblum [NR06, Theorem 4.1]: for any (1/poly)-separated (α, β),
the existence of efficiently sampleable distributions whose statistical distance is α but no efficient
algorithm can distinguish between them with advantage more than β, implies the existence of
one-way functions.

1.1.3 Interactive Proof for Statistical Distance Approximation

As our last main result, we construct an interactive protocol that lets a verifier estimate the statis-
tical distance between two given circuits upto any noticeable precision. This implies in particular,
that SDPα,β belongs to the complexity class7 AM∩ coAM, which is believed to lie just above SZK,
for any (1/poly)-separated α and β. (Note that if we could show that SDPα,β is in SZK, that would
imply SD polarization for such α and β.)

Theorem 1.9. There exists a constant-round public-coin interactive protocol between a prover and
a verifier that, given as input a pair of circuits (C0, C1), a claim ∆ ∈ [0, 1] for their statistical
distance, and a tolerance parameter δ ∈ [0, 1], satisfies the following properties:

• Completeness: If SD(C0, C1) = ∆, then the verifier accepts with probability at least 2/3
when interacting with the honest prover.

• Soundness: If |SD(C0, C1)−∆| ≥ δ, then when interacting with any (possibly cheating)
prover, the verifier accepts with probability at most 1/3.

• Efficiency: The verifier runs in time poly(|C0|, |C1|, 1/δ).

(As usual the completeness and soundness errors can be reduced by applying parallel repetition.
We can also achieve perfect completeness using a result of [FGM+89].)

We immediately have the following corollary.

Corollary 1.10. For any (1/poly)-separated (α, β), it holds that SDPα,β ∈ AM ∩ coAM.

Actually, as described next, Corollary 1.10 (which also implies Theorem 1.9) can be derived
from existing results in the literature. Thus, we view our main contribution (beyond merely the

7Recall that AM is the class of problems that have constant-round public-coin interactive proofs. coAM is simply
the complement of AM.
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statement of Theorem 1.9) to be the proof which is via a single protocol that we find to be cleaner
and more direct than alternate approaches.

Going into a bit more detail, the fact that SDPα,β ∈ AM follows directly by taking the inte-
ractive proof for SDP presented by Sahai and Vadhan (which has completeness error (1−α)/2 and
soundness error (1 + β)/2), and applying parallel repetition (and the private-coin to public-coin
transformation of [GS89]).

As for showing that SDPα,β ∈ coAM, one approach for proving this statement is by combining
results of [GVW02] and [SV03]. Goldreich, Vadhan and Wigderson [GVW02] showed that problems
with laconic interactive proofs, that is proofs where the communication from the prover to the
verifier is small, have coAM proofs. Sahai and Vadhan [SV03], as described earlier, showed that
SDPα,β, and SZK in general, has an interactive proof where the prover communicates a single
bit. Combining these results immediately gives a coAM protocol for SDPα,β when (α, β) are Ω(1)-
separated. As for (α, β) that are only (1/poly)-separated, while the [GVW02] result as-stated does
not suffice, it seems that their protocol can be adapted to handle this case as well.8

As mentioned above, we give a different, and direct, proof of Theorem 1.9 that we find to be
simpler and more natural than the above approach. In particular, our proof utilizes the techniques
developed for our other results, which enable us to give a more general protocol—one that approx-
imates the statistical difference (as in Theorem 1.9), rather than just deciding if that distance is
large or small.

At a very high level, our protocol may be viewed as an application of the set-lower-bound-based
techniques of Akavia et al [AGGM06] or Bogdanov and Brzuska [BB15] to our construction of
a one-way function from the average-case hardness of SDP (i.e., Theorem 1.8), though there are
technical differences in our setting. Both these papers show how to construct a coAM protocol for
any language that can be reduced, to inverting a size-verifiable one-way function.9 While we do
not know how to reduce solving SDP in the worst-case to inverting any specific function, we make
use of the fact that associated with each instance of SDP, there is an instance-dependent function
[OW93], that is size-verifiable on the average.

1.2 Additional Related Works

Barriers to Improved Polarization. Holenstein and Renner [HR05] show that in a limited
model dubbed “oblivious polarization”, the condition α2 > β on the statistical distance is necessary
for polarizing statistical distance.10 All the past polarization reductions fit in this framework and
so do ours. Specifically, Holenstein and Renner show distributions where α2 < β and cannot be
polarized in this model. We show a condition that suffices for polarization, even for distributions
where α2 ≤ β. This does not contradict the [HR05] result because their distributions do not satisfy
this condition.

In a more general model, [LZ17, CGVZ18] showed lower bounds for SZK-related distribution

8In more detail, the [GVW02] result is stated for protocols in which the gap between completeness and soundness
is constant (specifically 1/3). In case α and β are only 1/poly-separated, the [SV03] protocol only has a 1/poly gap
(and we cannot afford repetition since it will increase the communication). Nevertheless, by inspecting the [GVW02]
proof, it seems as though it can be adapted to cover any noticeable gap.

9Informally, a function f is size-verifiable if given an output y = f(x), there exists an AM protocol to estimate
|f−1(y)|.

10Roughly speaking, an oblivious polarization is a randomized procedure to polarize without invoking the circuits;
it takes as input a bit σ and an integer k, and outputs a sequence of bits (bσ1 , . . . , b

σ
` ) and a string rσ. Given a

pair of circuits (C0, C1), such a procedure defines a pair of circuits (D0, D1) as follows: Dσ samples (bσ1 , . . . , b
σ
` ) and

rσ and outputs (Cbσ1 , . . . , Cbσ` , r
σ). We are guaranteed that if SD(C0, C1) ≥ α, then SD(D0, D1) ≥ 1 − 2−k, and if

SD(C0, C1) ≤ β, then SD(D0, D1) ≤ 2−k.
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manipulation tasks. The model they consider allows the reduction arbitrary oracle access to the
circuits that sample the distributions, as opposed to the more restricted model of oblivious polari-
zation. In this model, Lovett and Zhang [LZ17] show that efficient entropy reversal is impossible11,
and Chen, Göös, Vadhan and Zhang [CGVZ18] showed that entropy flattening requires Ω(n2) in-
vocations to the underlying circuit. Showing lower bounds for polarization in this more general
model remains an interesting open question.

Polarization for other Notions of Distance. Toward characterizing zero-knowledge in the
help model, Ben-Or and Gutfreund [BG03] and Chailloux et al. [CCKV08] gave a polarization
procedure that considers two different distances for every (1/log)-separated α > β: if the statistical
distance is at most β, then it decreases to 2−k; and if the mutual disjointness12 is at least α, then
it increases to 1− 2−k. Fehr and Vaudenay [FV17] raise the question of polarization for the fidelity
measure13 but leave resolving it as an open problem (see Section 2.3.3 for details).

SDP and Cryptography. We show that average-case hardness of SDPα,β implies one-way functi-
ons. In the reverse direction, Bitansky et al. [BDV17] show that one-way functions do not imply
even worst-case hardness of SDPα,β in a black-box manner for any (1/poly)-separated α, β.14

1.3 Organization

In Section 2 we give an overview of the techniques that we use to prove our main results. Section 3
contains preliminaries. In Section 4 we prove that TDP and JSP are SZK complete. In Section 5 we
construct a one-way function from average-case hardness of SDP. Lastly, in Section 6 we construct
an interactive proof for estimating statistical distance.

2 Techniques

We begin in Section 2.1 by describing how to construct a one-way function from the average-case
hardness of SD with any noticeable gap (Theorem 1.8). The techniques used there are also central in
our interactive protocol for SD estimation (Theorem 1.9), which is described in Section 2.2, as well
as in our proof that triangular discrimination and Jensen-Shannon divergence are SZK complete
(Theorems 1.5 and 1.6), which are outlined in Section 2.3 below.

2.1 One-Way Function From Statistical Difference with Any Noticeable Gap

We first show the existence of distributionally one-way functions. Namely, an efficiently computable
function f for which it is hard to sample a uniformly random pre-image for a random output
y (rather than an arbitrary pre-image as in a standard one-way function). This suffices since
Impagliazzo and Luby [IL89] showed how to convert a distributionally one-way function into a
standard one.

Assume that we are given a distribution over a pair of circuits (C0, C1) such that it is hard to
distinguish between the cases SD(C0, C1) ≥ α or SD(C0, C1) ≤ β, for some α > β + 1/poly. A

11Entropy reversal refers to the task of given circuit C and parameter t output (C′, t′) such that when H(C) > t,
then H(C′) < t′ − 1 and if H(C) < t− 1, then H(C′) > t′.

12For an ordered pair of distributions P and Q, their disjointness is Disj(P,Q) = Pry∼P [y 6∈ Supp(Q)], and their
mutual disjointness is MutDisj(P,Q) = min(Disj(P,Q),Disj(Q,P )).

13For two distributions P,Q, fidelity is defined as Fidelity(P,Q) =
∑
y

√
Py ·Qy.

14While [BDV17] state the result for constant α, β, the construction and analysis extend to our setting.
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natural candidate for a one-way function is the (efficiently computable) function

fC0,C1(b, x) = Cb(x). (2.1)

Namely, f is parameterized by the circuits (C0, C1) (which are to be sampled according to the hard
distribution), and the bit b chooses which of the two circuits would be evaluated on the string x.
This function appears throughout the SZK literature (e.g., it corresponds to the verifier’s message
in the SDP protocol of [SV03]).

Assume that f is not distributionally one-way, and let A be an algorithm that given (C0, C1)
and a random input y—sampled by first drawing a uniformly random bit b and a string x and
then computing y = Cb(x)—outputs a uniformly random element (b′, x′) from the set f−1

C0,C1
(y) =

{(b, x) : Cb(x) = y}. For simplicity, we assume that A is a perfect distributional invertor, that is for
every fixed (C0, C1, y) it outputs uniformly random elements of f−1

C0,C1
(y).

Arguably, the most natural approach for distinguishing between the cases of high or low statis-
tical distance given the two circuits and the inverter, is to choose x and b at random, invoke the
inverter to obtain (b′, x′), and check whether b = b′. Indeed, if SD(C0, C1) = 1, then Pr[b = b′] = 1,
and if SD(C0, C1) = 0, then Pr[b = b′] = 1

2 . Thus, we can distinguish between the cases with
constant advantage.

But what happens when the gap in the statistical distance is smaller? To analyze this case we
want to better understand the quantity Pr[b = b′]. It turns out that this quantity is characterized
by the triangular discrimination between the circuits. Let Pb denote the output distribution of Cb.
Using elementary manipulations (and the fact that 1

2(P0 + P1) is a distribution), it holds that15

Pr
[
b = b′

]
=

1

2
Pr
y∼P0

[
b′ = 0

]
+

1

2
Pr
y∼P1

[
b′ = 1

]
(2.2)

=
1

2

∑
y

P0(y)2 + P1(y)2

P0(y) + P1(y)

=
1

4

∑
y

(P0(y) + P1(y))2

P0(y) + P1(y)
+

1

4

∑
y

(P0(y)− P1(y))2

P0(y) + P1(y)

=
1

2
+

1

4

∑
y

(P0(y)− P1(y))2

P0(y) + P1(y)

=
1 + TD(C0, C1)

2
.

Based on the general bounds between triangular discrimination and statistical distance (Eq. (1.1)),
which are known to be tight, all we are guaranteed is

SD(C0, C1) ≥ α =⇒ Pr
[
b = b′

]
≥ 1 + α2

2

SD(C0, C1) ≤ β =⇒ Pr
[
b = b′

]
≤ 1 + β

2
.

So, this approach is limited to settings in which α2 > β.
To overcome this limitation we want to find a quantity that is more tightly characterized by the

statistical distance of the circuits. Actually, a suitable quantity can be found in the work of Sahai
and Vadhan [SV03]. In their SZK protocol for SDPα,β, the verifier chooses (b, x, y) as above, and

15In Section 1 we used Py to denoted the probability mass a distribution P puts on an element y, while here we
use P (y). In the rest of this work we choose which notation to use based on readability and context.
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sends y to the prover. The prover replies with the maximal likelihood bit of y; that is, the bit bml
such that Pr[b = bml|y] > Pr[b = 1− bml|y] (and breaking ties arbitrarily). The verifier accepts if
b = bml. [SV03] characterized the completeness and soundness errors of this protocol in terms of
the statistical distance between the circuits. Specifically, they show that

Pr[b = bml] =
1 + SD(C0, C1)

2
. (2.3)

Can we use the inverter A to mimic the prover’s response; namely, to find the maximal likelihood
bit? It turns out that the answer is yes. In a nutshell, rather than making one call to A(y) and
getting one response b′, we make polynomially many calls to A(y) getting polynomially many b′i’s.
Note that, by the guarantee of A being a successful distributional inverter, it is supposed to produce
an independent uniformly random sample from the set f−1(y) on each of these calls. The maximal
likelihood bit, as its name indicates, is more likely to be chosen when A draws a random element
in f−1(y). By concentration bounds, it is extremely likely that bml is the majority bit of the b′i’s.

To analyze this approach more formally, we introduce a quantity that will be central in all of
the proofs in this work. This quantity, which we call imbalance, measures how likely it is that an
output string y was generated from C1 versus C0. Formally,

θy
∆
= Pr[b = 1|y]− Pr[b = 0|y]. (2.4)

It is not difficult to see that if (b, x) is drawn uniformly at random from f−1(y), then Pr[b = 1|y] =
1+θy

2 and Pr[b = 0|y] =
1−θy

2 . So,

Pr[b = bml|y] =
1 + |θy|

2
. (2.5)

By taking expectation of Eq. (2.5) over y and equating to Eq. (2.3), we get that

E
y∼( 1

2
P0+ 1

2
P1)

[|θy|] = SD(C0, C1). (2.6)

(Recall that y is sampled by first drawing a uniform random bit b and a string x, and setting
y = Cb(x). Hence, using the notation that Pb denotes the output distributions of the circuit Cb,
the marginal distribution of y is 1

2P0 + 1
2P1.)

Eq. (2.6) naturally gives rise to the following algorithm for approximating SD(C0, C1):

Algorithm to estimate SD(C0, C1) using the inverter A:

1. Sample polynomially many y1, . . . , yt.
2. For every yi:

(a) Call A(yi) polynomially many times to get b′1, . . . , b
′
k.

(b) Let m be the number of ones in b′1, . . . , b
′
k.

(c) Set p1 = m/k, p0 = (k −m)/k and θ̂i = p1 − p0.

3. Return 1
t

∑t
i=1 |θ̂i|.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The quantities p1 and p0 are in fact the empirical distribution of b condition on y, computed
using k samples. By choosing large enough k, we get that (p1, p0) ≈ (Pr[b = 1|y],Pr[b = 0|y]) and
so θ̂i ≈ θyi . By then choosing large enough t, we get that 1

t

∑t
i=1 |θ̂i| ≈ SD(C0, C1). Hence, we can

distinguish between the cases SD(C0, C1) ≥ α or SD(C0, C1) ≤ β, for any α > β + 1/poly.
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Essentially the same proof continues to work if A is not a perfect distributional inverter, but
is close enough to being so – that is, on input y its output distribution is close to being uniform
over f−1(y) for most (but not all) tuples C0, C1, y. We therefore get one-way functions based on
the average-case hardness of SD with any noticeable gap. For the formal proof, see Section 5.

Distributional Collision Resistant Hash Function. As a matter of fact, the above proof also
shows that the average-case hardness of SDPα,β also implies that the function fC0,C1(b, x) = Cb(x)

is a distributional k-multi-collision16 resistant hash function, for k = O
(

logn
(α−β)2

)
. That is, for a

random output y of f , it is difficult to find k random preimages of y. This is because access to such
a set of k random pre-images of random yi’s is all we use the inverter A for in the above reduction,
and it could handily be replaced with a k-distributional multi-collision finder.

2.2 Interactive Proof for Statistical Distance Approximation

We proceed to describe a constant-round public-coin protocol in which a computationally unboun-
ded prover convinces a computationally bounded verifier that the statistical difference of a given
pair of circuits is what the prover claims it to be, up to any inverse polynomial (additive) error.
Such a protocol simultaneously establishes the inclusion of SDPα,β in both AM and coAM for any
α > β + 1/poly.

Our starting point is the algorithm we described above that used a one-way function inverter
to estimate the statistical distance. Specifically, that algorithm used the inverter to estimate θy for
random y’s, and then applied Eq. (2.6). We would like to use the prover, instead of the inverter,
to achieve the same task.

In our protocol, the verifier draws polynomially many y’s and sends them to the prover. The
prover responds with values θ̂i’s, which it claims are the genuine θyi ’s. But how can the verifier
trust that the prover sent the correct values? In the reduction in Section 2.1, we used k many
samples of b conditioned on y to estimate b’s true distribution. A standard concentration bound
shows that as k grows, the number of ones out of b1, . . . , bk, all sampled from (b|y), is very close to
Pr[b = 1|y] · k. Similarly, the number of zeros is very close to Pr[b = 0|y] · k. Consider the following
typical set for any fixed y and arbitrary value θ:

T k,θy =

{
(b1, x1, b2, x2, . . . , bk, xk)

∣∣∣∣∣ Cbi(xi) = y for all i, and

∑k
i=1 bi −

∑k
i=1(1− bi)

k
≈ θ

}
.

Namely, T k,θy contains every k-tuple of (bi, xi) such that all map to y, and each tuple can be used
to estimate θ well—the difference between the number of ones and the number of zeros, normalized
by k, is close to θ. Also consider the pre-image set of y: Iy = {(b, x) | Cb(x) = y}. Since as k grows

the estimation of θy improves, we expect that T k,θyy —the typical set of y with the value θy—to
contain almost all tuples. Indeed, standard concentration bounds show that∣∣∣T k,θyy

∣∣∣
|Iy|k

≥ 1− e−Ω(k). (2.7)

16Multi-collision hash functions, recently considered in several works [KNY17, KNY18, BKP18, BDRV18], are hash
functions for which it is hard to find multiple inputs that all hash to the same output.
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On the other hand, the sets T k,θ
′

y , corresponding to values θ′ that are far from θy, should be almost
empty. Indeed, if |θ′ − θy| ≥ Ω(1), then, ∣∣∣T k,θ′y

∣∣∣
|Iy|k

≤ e−Ω(k). (2.8)

So, for the verifier to be convinced that the value θ̂ sent by the prover is close to θy, the prover

can prove that the typical set T k,θ̂y is large. To do so, the parties will use the public-coin constant
round protocol for set lower-bound of [GS89], which enables the prover to assert statements of the
form “the size of the set S is at least s”.

However, there is still one hurdle to overcome. The typical set T k,θyy is only large relative to
|Iy|k. Since we do not known how to compute |Iy| it is unclear what should be the size s that we
run the set lower-bound protocol with. Our approach for bypassing this issue is as follows. First
observe that the expected value, over a random y, of the logarithm of the size of Iy is the entropy17

of (b, x) given y. Namely,

E
y
[log|Iy|] = H(B,X|Y ), (2.9)

where the jointly distributed random variables (B,X, Y ) take the values of randomly drawn (x, b, y).
Thus, if we draw t independent elements y1, . . . , yt, the average of log|Iy| gets closer to t·H(B,X|Y ),
as t grows. Specifically,

Pr

[
t∏
i=1

|Iyi | ≈ 2t·H(B,X|Y )

]
≥ 1− e−Ω(t/n2), (2.10)

where n denotes the output length of the given circuits. For large enough t, we can thus assume
that the size of this product set is approximately 2t·H(B,X|Y ), and run the set lower bound protocol
for all the yi’s together. That is, we ask the prover to send t estimates (θ̂1, . . . , θ̂t) for the values

(θy1 , . . . , θyt), and prove that the size of the product set T k,θ̂1y1 × · · · × T k,θ̂1y1 is almost 2t·H(B,X|Y ).
So far we have reduced knowing the size of Iy to knowing H(B,X|Y ), but again it seems difficult

for the verifier to compute this quantity on its own. Actually, standard entropy manipulations show
that

H(B,X|Y ) = (m+ 1)−H(Y ),

where m denotes the input length of the given circuits. It thus suffices to approximate H(Y ).
Recall that y is the output of the circuit that maps (x, b) to Cb(x), so Y is drawn according to an
output distribution of a known circuit. Luckily, Goldreich, Sahai and Vadhan [GSV99] showed that
approximating the output entropy of a given circuit is in NISZK, and thus has a constant-round
public-coin protocol (since NISZK ⊆ AM ∩ coAM).

To conclude, we describe the entirety of our protocol, which proves Theorem 1.9.

Protocol to approximate SD(C0, C1), given the circuits (C0, C1) as input:

1. First, the prover sends the verifier a claim Ĥ of the value of H(Y ).
2. The parties execute [GSV99]’s protocol to convince the verifier that this claim—that Ĥ ≈

H(Y )—is correct.

17Recall that the entropy of a random variable X over X is defined as (H(X) =
∑
x∈X Pr[X = x] log(1/Pr[X = x]).

The conditional entropy of X given Y is H(X|Y ) = Ey∼Y [H(X|Y = y)].

13



3. The verifier uses Ĥ to compute Ĥ(B,X|Y ) as ((m+ 1)− Ĥ).
4. The verifier samples y1, . . . , yt from C0+C1

2 and sends them to the prover.

5. The prover responds with θ̂1, . . . , θ̂t as claims for the values θy1 , . . . , θyt .

6. The parties run a set lower-bound protocol to prove that the set T θ̂1,ky1 × · · · × T θ̂t,kyt is almost
as large as (Iy1 × · · · × Iyt)k.
• Here, they use 2tkĤ(B,X|Y ) as a proxy for (|Iy1 | · · · · · |Iyt |)k.

7. If the verifier has not rejected so far, it outputs 1
t

∑t
i=1 |θ̂i|.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 TDP and JSP are SZK-Complete

We show that both TDPα,β and JSPα,β with α > β + 1/poly are SZK-complete. Since the proof of
the former uses that of the latter we start by giving an outline that JSPα,β is SZK-complete.

2.3.1 Jensen-Shannon Divergence Problem is SZK-complete

We need to show that JSPα,β with α > β + 1/poly is both in SZK and SZK-hard. In both parts
we use the following characterization of the Jensen-Shannon divergence, which follows from its
definition. Given a pair of circuits C0 and C1, consider the jointly distributed random variables
(B,X, Y ), where B is a uniformly random bit, X is a uniformly random string and Y = CB(X).
Then, it follows from some elementary manipulations (see Proposition 4.1 below) that:

JS(C0, C1) = 1−H(B|Y ). (2.11)

We use this characterization to tie Jensen-Shannon Divergence Problem to another SZK-
complete problem—Entropy Difference Problem (EDP) with a gap function g. The input
to EDPg is also a pair of circuits C0 and C1. YES instances are those in which the entropy gap
H(C0) − H(C1) is at least g(n) (where n is the output length of the circuits) and NO instances
are those in which the gap is at most −g(n). Goldreich and Vadhan [GV99] showed that EDPg is
SZK-complete for any noticeable function g. Our proof that JSPα,β is SZK-complete closely follows
the reduction from the reverse problem of SDP (i.e., in which YES instances are distributions that
are statistically close) to EDP [Vad99, Section 4.4].

JSPα,β is in SZK: We reduce JSPα,β to ED(α−β)/2. Given C0 and C1, the reduction outputs a pair
of circuits D0 and D1 such that D1 outputs a sample from (B, Y ) and D0 outputs a sample
from (B′, Y ), where B′ is an independent random bit with H(B) = 1− α+β

2 . The chain rule
for entropy18 implies that

H(D0)−H(D1) = 1− α+ β

2
−H(B|Y ) = JS(C0, C1)− α+ β

2
,

where the second equality follows from Eq. (2.11). Thus, if JS(C0, C1) ≥ α, then H(D0) −
H(D1) ≥ α−β

2 ; and if JS(C0, C1) ≤ β, then H(D0)− H(D1) ≤ −α−β
2 . And since ED(α−β)/2 ∈

SZK, we get that JSPα,β ∈ SZK.

JSPα,β is SZK-hard: We reduce SDP1−2−k,2−k to JSPα,β, for some large enough k. This suffices
since SDP1−2−k,2−k is known to be SZK-hard [SV03].19 In the presentation of related results

18For a jointly distributed random variables X and Y , it holds that H(X,Y ) = H(X) + H(Y |X).
19For the simplicity of presentation, we are ignoring subtle details about the relation of k to the output length of

the circuits. See Section 4.1 for the formal proof.
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in his thesis, Vadhan relates the statistical distance of the circuits to the entropy of B given
Y [Vad99, Claim 4.4.2]. For example, if SD(C0, C1) = 0 (i.e., the distributions are identical),
then B|Y is a uniformly random bit, and so H(B|Y ) = 1; and if SD(C0, C1) = 1 (i.e., the
distributions are disjoint), then B is completely determined by Y , and so H(B|Y ) = 0. More
generally, Vadhan showed that if SD(C0, C1) = δ, then20

1− δ ≤ H(B|Y ) ≤ h
(

1 + δ

2

)
. (2.12)

By taking k to be large enough (as a function of α and β), and applying Eqs. (2.11) and (2.12),
we have that if SD(C0, C1) ≥ 1 − 2−k, then JS(C0, C1) ≥ α; and if SD(C0, C1) ≤ 2−k, then
JS(C0, C1) ≤ β. Thus, the desired reduction is simply the identity function that outputs the
input circuits.

2.3.2 Triangular Discrimination Problem is SZK-complete.

We need to show that TDPα,β with α > β + 1/poly is both in SZK and SZK-hard. Showing
the latter is very similar to showing that JSPα,β is SZK-hard, but using Eq. (1.1) to relate the
triangular discrimination to statistical distance (instead of Eq. (2.12) that relates the Jensen-
Shannon divergence to statistical distance). We leave the formal details to the body of this paper
and focus here on showing that TDPα,β is in SZK.

A natural approach to show that TDPα,β is in SZK is to follow Sahai and Vadhan’s proof that
SDP2/3,1/3 is in SZK. Specifically, a main ingredient in that proof is to polarize the statistical
distance of the circuits (to reduce the simulation error). Indeed, if we can reduce TDPα,β to, say,
TDP0.9,0.1 by polarizing the triangular discrimination, then Eq. (1.1) would imply that we also
reduce TDPα,β to SDP2/3,1/3, which we know is in SZK.

We are indeed able to show such a polarization lemma for triangular discrimination (using
similar techniques to [SV03]’s polarization lemma). However, this lemma only works when the gap
between α and β is roughly 1/ log. Actually, the polarization lemma of [SV03] also suffers the same
limitation with respect to the gap between α2 and β.

Still, we would like to handle also the case that the gap between α and β is only 1/poly. To do
so we take a slightly different approach. Specifically, we reduce TDPα,β to JSPα

′,β′ , where α′ and
β′ are also noticeably separated.

An important step toward showing this reduction is to characterize the triangular discrimination
and the Jensen-Shannon divergence via the imbalance θy (see Eq. (2.4)), as we already did for
statistical distance. Recall that given Y = y, the random variable B takes the value 1 with
probability

1+θy
2 , and 0 otherwise. Hence, Eq. (2.11) can also be written as

JS(C0, C1) = 1− E
y∼Y

[
h

(
1 + θy

2

)]
. (2.13)

As for the triangular discrimination, it follows from the definition that

TD(C0, C1) = E
y∼Y

[
θ2
y

]
. (2.14)

Furthermore, by Taylor approximation, for small values of θ, it holds that

h

(
1 + θ

2

)
≈ 1− θ2. (2.15)

20The function h is the binary entropy function. That is, h(p) = −p log(p)− (1− p) log(1− p) is the entropy of a
Bernoulli random variable with parameter p.

15



As we can see, the above equations imply that if all the θy’s were small, a gap in the triangular
discrimination would also imply a gap in the Jensen-Shannon divergence. Thus, we would like an
operation that reduces all the θy.

The main technical tool we use to reduce θy is to consider the convex combination of the two
input circuits. Given a pair of circuits C0 and C1, consider the pair of circuits D0 and D1 such that
Db = λ · Cb + (1 − λ) · C0+C1

2 .21 Let Qb denote the output distribution of Db, and recall that Pb
denotes the output distribution of Cb. We also let θ′y be defined similarly to θy, but with respect

to D0 and D1 (rather than C0 and C1). Using this notation, we have that θy = P1(y)−P0(y)
P1(y)+P0(y) , and it

may be seen that

θ′y =
Q1(y)−Q0(y)

Q1(y) +Q0(y)
= λ · θy. (2.16)

So, our reduction chooses a sufficiently small λ, and outputs the circuits D0 and D1. Some
care is needed when choosing λ. Eqs. (2.14) and (2.16) yield that TD(D0, D1) = λ2 · TD(C0, C1).
Hence, the convex combination also shrinks the gap in triangular discrimination. We show that by
choosing λ ≈

√
α− β, the approximation error in Eq. (2.15) is smaller than the aforementioned

shrinkage, and the reduction goes through. The resulting gap in the Jensen-Shannon divergence is
roughly (α− β)2, which is noticeable by the assumption that α > β + 1/poly.

This shows that TDPα,β is in SZK if α > β + 1/poly. By the relationship between TD and
SD (Eq. (1.1)), this implies that SDPα,β is in SZK if α2 > β + 1/poly. This, in turn, by the
SZK-hardness of SDP2/3,1/3 and the known polarization lemma that applies for the same, implies
polarization for statistical distance for any (α, β) such that α2 > β + 1/poly.

2.3.3 Reflections and an Open Problem

Many f -divergences of interest can be expressed as an expectation, over y ∼ Y , of a simple function
of θy. That is, an expression of the form Ey∼Y [g(θy)], for some function g : [−1, 1] → [0, 1]. For
example:

• SD(C0, C1) = Ey∼Y [|θy|] (i.e., g(z) = |z|, see Eq. (2.6));

• TD(C0, C1) = Ey∼Y
[
θ2
y

]
(i.e., g(z) = z2, see Eq. (2.14)); and

• JS(C0, C1) = Ey∼Y
[
1− h

(
1+θy

2

)]
(i.e., g(z) = 1− h

(
1+z

2

)
, see Eq. (2.13)).

To reduce TDP to JSP, we took a convex combination of the two circuits and used the fact

that 1 − h
(

1+θy
2

)
≈ O(θ2

y) for small values of θy. While this worked for polarization of TD

(which corresponds to g(z) = z2), it seems unlikely to yield a polarization lemma for SD for an
arbitrarily small (but noticeable) gap. The reason is that the function g(z) = |z| — the g-function
corresponding to SD — in not differentiable at 0 and in particular does not act like z2 for small
values of z. As we find this similarity between the different notions of distance striking, and indeed
our proofs leverage the relations between them, we provide in Fig. 2.1 a plot comparing the different
choices for the function g.

Another popular f -divergence that we have not discussed thusfar22 is the squared Hellin-

ger distance, defined as H2(P,Q) = 1
2

∑
y

(√
Py −

√
Qy
)2

. It can be shown that H2(C0, C1) =

21This definition of convex combination is more convenient to analyze than perhaps the more natural definition of
Db = λ · Cb + (1− λ) · C1−b.

22Actually we will use the squared Hellinger distance in Section 4.2.2 to analyze triangular discrimination of direct
product distributions. Also, the squared Hellinger distance is closely related to the Fidelity distance: Fidelity(P,Q) =
1−H2(P,Q).
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Ey∼Y
[
1−

√
1− θ2

y

]
, and so also this distance falls within the above framework (i.e., by considering

g(z) = 1−
√

1− z2).
Interestingly, the squared Hellinger distance also acts like JS (and TD) around 0; namely,

1 −
√

1− θ2
y ≈ O(θ2

y) for small values of θy. However, unlike TDPα,β, we do not know how to

show that the Hellinger Difference Problem, denoted HDPα,β and defined analogously to
TDPα,β (while replacing the distance TD with H2), is in SZK for all (1/poly)-separated (α, β). We
do mention that H2(P,Q) ≤ TD(P,Q) ≤ 2 H2(P,Q), and thus HDPα,β is in SZK if α and β/2 are
(1/poly)-separated. However, the proof described above does not go through if we try to apply it
to the Hellinger distance—we cannot guarantee that the gap in the Hellinger distance after taking
the convex combination is larger than the error in the Taylor approximation. Indeed, the question
whether HDPα,β is in SZK for any (1/poly)-separated (α, β), first raised by Fehr and Vaudenay
[FV17], remains open.
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Figure 2.1: Comparison between the difference choices of the function g that were discussed. Since
all functions are symmetric around 0, we restrict to the domain [0, 1]. Recall that g1(θ) = |θ|
corresponds to SD, g2(θ) = θ2 to TD, g3(θ) = 1− h

(
1+θ

2

)
to JS and g4(θ) = 1−

√
1− θ2 to H2.

3 Preliminaries

We use calligraphic letters to denote sets, uppercase for random variables, lowercase for values and
functions, and uppercase sans-serif (e.g., A) for algorithms (i.e., Turing Machines). All logarithms
considered here are in base two.

Given a random variable X, we write x ∼ X to indicate that x is selected according to the
distribution of X. Similarly, given a finite set S, we let s ∼ S denote that s is selected according to
the uniform distribution on S. We denote the probability mass that a distribution P (over a finite
set Y) puts on an element y ∈ Y by either Py or P (y), where we choose which notation to use based
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on readability and context. The support of a distribution P over a finite set Y, denoted Supp(P ),
is defined as {y ∈ Y : P (y) > 0}. The support of a discrete random variable X is the support of
its probability mass function, that is Supp(X) = Supp(PX), where PX is the distribution of the
random variable X.

The product distribution between two distributions P and Q is denoted by P ⊗Q. The product
distribution of k independent copies of P is denoted by P⊗k. Given a boolean statement S (e.g.,
X ≥ 5), let 1{S} be the indicator function that outputs 1 if S is a true statement and 0 otherwise.

We let poly denote the set all polynomials over the integers. Given a probabilistic polynomial-
time algorithm A, we denote by A(x; r) the output of A given input x and randomness r. A function
ν : N → [0, 1] is negligible, denoted ν(n) = negl(n), if ν(n) < 1/p(n) for every p ∈ poly and large
enough n.

A function f : {0, 1}∗ → {0, 1}∗ is efficiently computable if there exists a probabilistic polynomial-
time algorithm that on input x ∈ {0, 1}∗ outputs f(x).

3.1 Information Theory Preliminaries

3.1.1 Statistical Distance and Imbalance

The statistical distance between two distributions P and Q over a finite set Y, is defined as

SD(P,Q)
∆
= maxS⊆Y P (S)−Q(S) = 1

2

∑
y∈Y |Py −Qy|. The definition of statistical distance imme-

diately implies the following property.

Proposition 3.1. Let P be a distribution over a finite set Y and let U be the uniform distribution
over Y. Then SD(P,U) ≥ 1− |Supp(P )|

|Y| .

Proof. Let S = Supp(P ). Then

SD(P,U) ≥ P (S)− U(S) = 1− |Supp(P )|
|Y|

.

In this work, we will use the following view of statistical distance.

Definition 3.2 (The imbalance between P and Q). Let P and Q be two distributions over a finite
set Y. Let (B, Y ) be the jointly distributed random variables defined as follows: B ∼ {0, 1} and if
B = 1, then Y ∼ P (that is, Y is a random variable drawn according to P ), and if B = 0, then
Y ∼ Q. For every y ∈ Supp(Y ) we define the imbalance θP,Qy = Pr[B = 1|Y = y]−Pr[B = 0|Y = y].

We will typically omit the distributions in the superscript from the notation (i.e., write θy
instead of θP,Qy ) when they are clear from the context.

Proposition 3.3. Let P and Q be two distributions as in Definition 3.2. Then, SD(P,Q) =
Ey∼Y [|θy|].

Proof. The proof follows from the definitions of θy and statistical distance, details follow.

It is easy to verify that for every y ∈ Supp(Y ), it holds that Pr[Y = y] =
Py+Qy

2 and θy =
Py−Qy
Py+Qy

.
Thus,

E
y∼Y

[|θy|] =
∑

y∈Supp(Y )

Pr[Y = y] · |θy| =
∑

y∈Supp(Y )

Py +Qy
2

· |Py −Qy|
Py +Qy

= SD(P,Q).
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The following claim is in the heart of [SV03]’s protocol for SDP.

Proposition 3.4. Let P and Q be two distributions and let B and Y be random variables as in
Definition 3.2. Let B′ be a random variable that depends only on Y . That is, we have the following
Markov chain: B → Y → B′.

Then,

Pr
[
B = B′

]
≤ 1

2
+

SD(P,Q)

2
,

where equality holds if B′(y) = 1 if θy ≥ 0 and B′(y) = 0 if θy < 0 (that is, B′ is the maximal
likelihood estimator of B).

Proof. Let θ′y = Pr[B′ = 1|Y = y]− Pr[B′ = 0|Y = y].

Pr
[
B = B′

]
= E

y∼Y

[
Pr
[
B = B′|Y = y

]]
= E

y∼Y

[
Pr[B = 1|Y = y] · Pr

[
B′ = 1|Y = y

]
+ Pr[B = 0|Y = y] · Pr

[
B′ = 0|Y = y

]]
= E

y∼Y

[(
1 + θy

2

)
·
(

1 + θ′y
2

)
+

(
1− θy

2

)
·
(

1− θ′y
2

)]
=

1

2
+

Ey∼Y
[
θy · θ′y

]
2

≤ 1

2
+

Ey∼Y [|θy|]
2

=
1

2
+

SD(P,Q)

2
,

where the second equlity follows since condition on Y = y, the random variables B and B are
independent, and the inequality follows since θ′y ∈ [−1, 1]. Moreover, if θ′y = sign(θy) then the
inequality is actually an equality. B′ satisfying the latter condition is exactly the maximal likelihood
estimator for B.

3.1.2 Entropy

Definition 3.5 (Entropy). The entropy of a discrete random variable X is defined as

H(X) = E
x∼X

[
log

(
1

Pr[X = x]

)]
.

The binary entropy function h : [0, 1]→ [0, 1] is defined to be the entropy of X ∼ Bernoulli(p). That
is, h(p) = −p log(p)− (1− p) log(1− p), where we use the convention that h(0) = h(1) = 0.

Definition 3.6 (Conditional entropy). Let X,Y be jointly distributed random variables. The con-
ditional entropy of X given Y is defined as

H(X|Y ) = E
y∼Y

[H(X|Y = y)] = E
(x,y)∼(X,Y )

[
log

(
1

Pr[X = x|Y = y]

)]
.

Fact 3.7 (Chain rule for entropy). Let X,Y be jointly distributed random variables. Then

H(X,Y ) = H(X|Y ) + H(Y ).
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3.1.3 Concentration Bounds

We use the following well-known concentration bound.

Fact 3.8 (Chernoff-Hoeffding bound). Let X1, X2, . . . , Xn be independent random variables taking
values in [a, b] and let X = 1

n

∑n
i=1Xi. Then, for every ε > 0 it holds that

Pr
[
X − E

[
X
]
≥ ε
]
≤ e−2nε2/(b−a)2

Pr
[
X − E

[
X
]
≤ −ε

]
≤ e−2nε2/(b−a)2 .

We also use the following fact, showing that computing the empirical distribution from large
enough number of samples approximates the original distribution well.

Fact 3.9 (Folklore (see, e.g., [Gol17, Exercise 11.4])). Let P be a distribution over n elements and
let P̂ be the empirical distribution obtained from taking N samples P1, . . . , PN from P , namely,

P̂ (i) = |{j : Pj = i}|/N . Then, if N ≥
⌈
n+log(1/δ)

2ε2

⌉
, it holds that

Pr
[
SD(P, P̂ ) ≥ ε

]
≤ δ.

3.2 Statistical Zero-Knowledge Interactive Proofs

In this section we give the standard definitions for statistical zero-knowledge proofs and recall
classical results regarding such proofs. We follow [Vad99].

Definition 3.10 (View of interactive protocol). Let (P,V) be an r-message interactive proto-

col. The view of V on a common input x is defined by viewP,V(x)
∆
= (m1,m2, . . . ,mr; ρ), where

m1,m2, . . . ,mr are the messages sent by the parties in a random execution of the protocol, and ρ
contains of all the random coins V used during this execution.

We allow cheating verifiers to be non-uniform by giving them an auxiliary input. For an
algorithm A and a string z ∈ {0, 1}∗ (all auxiliary inputs will be binary strings, regardless of
the properties’ alphabet), let A[z] be A when z was given as auxiliary input. Following [Vad99],
we adopt the convention that the running time of A is independent of z, so if z is too long, A will
not be able to access it in its entirety. We also allow probabilistic algorithms to fail by outputting
⊥. An algorithm A is useful if Pr[A(x) =⊥] ≤ 1/2 for every x, and let Ã(x) denote the output
distribution of A(x), conditioning on A(x) 6=⊥.

Definition 3.11 (Statistical zero-knowledge interactive proofs). Let Π = (YES,NO) be a promise
problem. A statistical zero-knowledge interactive proof system for Π is an interactive protocol (P,V)
if the following holds:

• Efficiency: The verifier V is a probabilistic polynomial-time algorithm.

• Completeness: If x ∈ YES, then, when V(x) interacts with P(x), with probability 2
3 it

accepts.

• Soundness: If x ∈ NO, then for every prover strategy P∗, when V(x) interacts with P∗, with
probability 2/3 it rejects.
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• Zero-Knowledge: For every probabilistic polynomial-time V∗, there exists a useful probabi-
listic polynomial-time S and a negligible function ν such that for all x ∈ YES and z ∈ {0, 1}∗,
it holds that

SD
(

S̃[z](x), viewP,V∗
[z]

(x)
)
≤ ν(|x|).

SZK denotes the class of promise problems possessing statistical zero-knowledge interactive proof
system.

3.2.1 Complete Problems

Central in the study of statistical zero-knowledge are problems dealing with properties of distribu-
tions encoded by circuits.

Definition 3.12 (Distributions encoded by circuits). Let C be a Boolean circuit with m input
gates and n output gates. The distribution encoded by C is the distribution induced on {0, 1}n by
evaluating C on a uniformly selected string from {0, 1}m. By abuse of notation, we also write C
for the distribution defined by the circuit C.

Two particularly interesting problems are the Statistical Difference Problem (see Defi-
nition 1.1) and the Entropy Difference Problem.

Definition 3.13 (Entropy Difference Problem). Let g : N → R+. The Entropy Diffe-
rence Problem with promise g, denoted by EDPg, is given by the sets

EDPgY = {(C0, C1) | H(C0) ≥ H(C1) + g(n)},
EDPgN = {(C0, C1) | H(C1) ≥ H(C0) + g(n)}.

where n is the output length of the circuits C0 and C1.

Both SDP and EDP are known to be complete for SZK, though for different setting of parame-
ters.

Theorem 3.14 ([SV03, GSV98]). Let α, β be such that (α2, β) are (1/poly)-separated functions

and that there exists a constant ε ∈ (0, 1/2) with 2−n
1/2−ε ≤ β(n) and α(n) ≤ 1−2−n

1/2−ε
for every

n ∈ N. Then, the promise problem SDPα,β is SZK complete. Furthermore, the problem remains
complete if it is restricted to length-preserving pair of circuits.

Remark 3.15. The restrictions placed on α and β in Theorem 3.14—that they are not closer than
2−n

1/2
to 1 or 0—are a result of the extent to which the polarization lemma of [SV03] can polarize.

While, for some small constant c, it might be possible to push this to allow them to be 2−cn-close to
1 or 0 using a more efficient polarization technique (see, for instance, the proof of Theorem 12 in
[AARV17]), there are reasons to believe that this restriction cannot be weakened much more. For
instance, if α = 1, then SDPα,β is in PZK, and is thus unlikely to be complete for SZK (indicated by
a known oracle separation between these classes [BCH+17]). Similarly, if α/β ≥ 2n/2, then SDPα,β

is contained in the class PP, which SZK is again oracle-separated from [BCH+17].
With regard to the separation between α and β, in the extreme case that |α(n)− β(n)| ≤ 2−n,

we note that SDPα,β can be shown to be NP-hard by a reduction from Circuit-SAT, and thus is not
contained in SZK unless the polynomial hierarchy collapses [BHZ87].

Since the furthermore part of Theorem 3.14 was not stated in prior works (but will be used by
us for technical reasons), we include a proof sketch.
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Proof Sketch of Theorem 3.14. While this theorem is not stated in this generality in [SV03], it
extends to this by setting some parameters appropriately. We show how to do this using the proof of
the equivalent theorem in [Vad99]. The approach is to first establish the SZK-hardness of SDP2/3,1/3,

and then use the polarization lemma [Vad99, Lemma 3.1.12] to reduce this to SDP1−2−k,2−k , to
show that the former is in SZK. Here we sketch how, for every α > β such that (α2, β) are (1/poly)-
separated and any ε ∈ (0, 1/2), the problem SDPα,β is reduced—via the polarization lemma—to

SDP1−2−k,2−k , for k = n1/2−ε and n being the input and output length of the circuit (since the
furthermore clause requires us to produce length-preserving circuits).

The polarization lemma, for some α and β and an integer k, gives a way to take a pair of
circuits (C0, C1) and efficiently produce another pair (D0, D1) such that if SD(C0, C1) ≥ α, then
SD(D0, D1) ≥ 1 − 2−k, and if SD(C0, C1) ≤ β, then SD(D0, D1) ≤ 2−k. While it can do this for
any k, the output lengths of D0 and D1 grow as k grows, and we are interested in k as a function
of these output lengths. In particular, we wish to show that, for any constant ε ∈ (0, 1/2), we can
end up with an output length n for D0 and D1 such that k ≥ n1/2−ε. Actually, since we want the
resulting circuits to be length-preserving, we analyze how the polarization lemma also affects the
input length.

The proof of [Vad99, Lemma 3.1.12] makes use of the following two transformations on pairs of
circuits:

• `-fold Repetition: the input circuits (C0, C1) are mapped to (D0, D1), where Db is the con-
catenation of ` copies of Cb. If m and n are the input and output lengths of C0 and C1, then
m · ` and n · ` are the input and output lengths of D0 and D1.

• r-fold XOR: the input circuits (C0, C1) are mapped to (D0, D1), where Db first samples
(b1, . . . , br) ∼ {0, 1}r conditioned on b1 ⊕ · · · ⊕ br = b and outputs the concatenation of
Cb1 , . . . , Cbr . Notice that in order to sample the desired b1, . . . , br, it suffices to have r uni-
formly random bits: if b1 ⊕ · · · ⊕ br = b, then use these bits; otherwise, flip the first bit b1.
The resulting sampled bits satisfy the desired distribution. Hence, if m and n are the input
and output lengths of C0 and C1, then (m ·r+r) and n ·r are the respective input and output
lengths of D0 and D1.

Initially, the polarization lemma sets λ = min(α2/β, 2) and ` = dlogλ 4ke, and proceeds as
follows:

1. Repeat (C0, C1) for ` times to get circuits C
(1)
0 and C

(1)
1 .

2. XOR (C
(1)
0 , C

(1)
1 ) for r = λ`/(2α2`) times to get circuits C

(2)
0 and C

(2)
1 .

3. Repeat (C
(2)
0 , C

(2)
1 ) for k times to get circuits D0 and D1.

The fact that D0 and D1 are polarized is proved in [SV03]. Here we only focus on showing the
dependence of k on the input and output lengths.

Based on the above description, the input lengths ofD0 andD1 arem′ =
((
m · ` · λ`

2α2` + λ`

2α2`

)
· k
)

and their output length are n′ =
(
` · λ`

2α2` · k · n
)

, where m (resp., n) is the input (resp., output)

length of the input circuits C0 and C1. Note that if the input circuits are length-preserving, then
the input of the resulting circuits is longer than their output.

We follow the proof of [CCKV08, Lemma 38] and note that the above setting guarantees the
following. First, note that ` = O

(
ln k
lnλ

)
. Moreover, since λ ∈ (1, 2], we have that ln(λ) = ln(1 + (λ−
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1)) ≥ (λ−1)/2 ≥ Ω
(
α2−β
β

)
, where we used that ln(1+x) ≥ x/2 for all x ∈ [0, 1]. So, ` = O

(
β ln k
α2−β

)
.

Also note that r ≤ 1/2 · (2/α2)` = exp
(
O
(
β ln k ln(2/α2)

α2−β

))
.

Our starting point is an instance of SDPα,β. We would first like to use the polarization lemma to
reduce it to an instance of SDP3/4,1/4. Set k = 2, and so ` ≤ O(log(n)), where we used that α2−β ≥
Ω(1/ log(n)), for n being the output length of the given circuits. Further, it holds that β ln(2/α2) ≤
β ln(2/β) ≤ 1 for all β ∈ (0, 1), and hence, r = poly(n). The resulting polarization procedure is
polynomial in the description of the input circuits, and thus reduces SDPα,β to SDP3/4,1/4. This
shows that SDPα,β ∈ SZK. To show that SDPα,β is SZK-hard, we further reduce SDP3/4,1/4 to
SDP1−2−k,2−k , for k(n) = n1/2−ε.

We are given a pair of circuits that are an instance of SDP3/4,1/4. First, pad the input and
output to get a length-preserving circuits whose input and output lengths are some integer m. We
apply the polarization lemma twice, each time appropriately setting the parameter k. In the second
time we apply it with k to be determined by the analysis below. This k also sets the parameters
for the first application of the polarization lemma as follows.

Let ` = log2 4k—this is the ` set by the second application of the polarization lemma (we are
in a regime that α2 > 2β, so λ = 2). We first polarize the circuits so that α ≥ (1 − 1/`). To do
this, set k′ = log ` and `′ = log2 k

′. The input length of the resulting polarized circuits is m′ =((
m · `′ · 2`

′

2(3/4)2`′
+ 2`

′

2(3/4)2`′

)
· k′
)

= O(m · polylog(log(k))). Now, apply the polarization lemma

one more time with k and ` = log2 4k ≥ 2 (that we already set) to get our (almost) final circuits

D0 and D1. The input length of D0 or D1 is given by n =
((
m′ · ` · 2`

2(1−1/`)2`
+ 2`

2(1−1/`)2`

)
· k
)

=

O(mk2polylog(k)), where we used that (1− 1/`)` = Ω(1). The statistical distance between D0 and
D1 is now either at least 1− 2−k or at most 2−k. Also note that the output length of the circuits
is shorter than their input length n.

We would like that (D0, D1) be an instance of SDP1−2−n
1/2−ε

,2−n
1/2−ε

. It hence suffices that

2−k ≤ 2−n
1/2−ε

, namely k ≥ n1/2−ε. Let c = 2ε
1−2ε and assume that k ≥ m1/c (we will shortly set

k to satisfy this assumption). This setting guarantee that (mk2)1/2−ε ≤ k1−ε. Thus, it holds that
n1/2−ε ≤ O(k1−εpolylog(k)) ≤ k, where the last inequality holds for all k > k(ε), for k(ε) being a
constant depends on ε and the hidden constants in the O notation of n. We are now finally able
to set k = max(m1/c, k(ε)).

Lastly, we also want to produce length-preserving circuits. Since the input length of the circuits
is longer than their output, and we set k according to the input length, we can simply pad the output

so it equals the input length n. The resulting circuits are thus instance of SDP1−2−n
1/2−ε

,2−n
1/2−ε

,
as required.

Theorem 3.16 ([GV99, GSV98]). For every efficiently computable p = p(n) ∈ poly(n), the problem
EDP1/p is SZK-complete.

4 Complete Problems for SZK

In this section we prove Theorems 1.5 and 1.6. That is, we show that the Triangular Discrimi-
nation Problem (TDP) and Jensen-Shannon Divergence Problem (JSP) are SZK-complete
for any noticeable gap between the YES and NO promises.

The outline of this section is as follows. We begin, in Section 4.1, with proving that JSP is SZK-
complete (Theorem 1.6). This proof is closely related to known results in SZK, and in particular
closely follow reductions related to the Entropy Difference Problem (EDP). In Section 4.2
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we prove that TDP is SZK-complete (Theorem 1.5). The latter proof is actually via a reduction to
the SZK completeness of JSP.

4.1 JSP is Complete for SZK

In this section we show that the promise problem JSPα,β (see Definition 1.3) is complete for SZK.
To do so, we need to show that JSPα,β is both in SZK and hard for SZK. The proofs of both parts
rely on the following characterization of the Jensen-Shannon divergence.

Proposition 4.1. Let P and Q be two distributions over a universe Y. Let (B, Y ) be the jointly
distributed random variables defined as follows: B ∼ {0, 1} and if B = 1, then Y ∼ P (that is, Y
is a random variable drawn according to P ), and if B = 0, then Y ∼ Q.

Then, JS(P,Q) = 1−H(B|Y ).

Proof. Assume without loss of generality that Y is the union of the supports of P and Q (otherwise,
exclude those elements from Y and the following calculations remain intact). For y ∈ Y, recall that

we defined the imbalance (wrt P and Q) as θy = Pr[B = 1|Y = y] − Pr[B = 0|Y = y] =
Py−Qy
Py+Qy

(see Definition 3.2). Observe that (B|Y = y) is a Bernoulli random variable with parameter
1+θy

2 =
Py

Py+Qy
.

We proceed to a straightforward but somewhat tedious calculation that establishes the propo-
sition (in the following y is always summed over Y).

JS(P,Q) =
1

2
KL

(
P

∥∥∥∥P +Q

2

)
+

1

2
KL

(
Q

∥∥∥∥P +Q

2

)
=

1

2

(∑
y

Py log
2Py

Py +Qy
+
∑
y

Qy log
2Qy

Py +Qy

)

= 1 +
1

2

(∑
y

Py log
Py

Py +Qy
+
∑
y

Qy log
Qy

Py +Qy

)

= 1 +

(∑
y

Py +Qy
2

·
(

Py
Py +Qy

log
Py

Py +Qy
+

Qy
Py +Qy

log
Qy

Py +Qy

))

= 1−

(∑
y

Py +Qy
2

· h
(

1 + θy
2

))

= 1− Ey∼Y
[
h

(
1 + θy

2

)]
= 1−H(B|Y ),

where we recall that h is the binary entropy function (see Definition 3.5).

The above characterization naturally relates the Jensen-Shannon Divergence Problem to
the Entropy Difference Problem (EDP), a promise problem already known to be complete for
SZK (see Theorem 3.16). In particular, the proofs of the next two lemmas closely follow techniques
from the reduction of Statistical Closeness (i.e., the reversal problem of SDP) to EDP [Vad99,
Section 4.4].

Lemma 4.2 (JSP is in SZK). For every (1/poly)-separated pair of functions (α, β) (according to
Definition 1.4), the promise problem JSPα,β is in SZK.
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Proof. The proof reduces JSPα,β to EDPg, where g(n) = (α(n− 1)− β(n− 1))/2 for every n ≥ 2,
and g(1) = g(2).23 Since (α, β) are polynomially separated, Theorem 3.16 completes the proof.

Given a pair of circuits (C0, C1) whose output length is n, let (B, Y ) be the jointly distributed
random variables from Proposition 4.1 with respect to the distributions C0 and C1 . The reduction
outputs the pair of circuits (D0, D1) such that D1 outputs a sample from (B, Y ) and D0 outputs a

sample from (B′, Y ), where B′ is an independent random bit with H(B′) = 1 − α(n)+β(n)
2 .24 Note

that the output length of D0 or D1 is n+ 1 ≥ 2. It holds that

H(D0)−H(D1) = H(B′, Y )−H(B, Y ) = H(B′)−H(B|Y ) = 1− α(n) + β(n)

2
−H(B|Y ).

If JS(C0, C1) ≥ α(n), then by Proposition 4.1, H(B|Y ) ≤ 1− α(n). It holds that

H(D0)−H(D1) ≥ 1− α(n) + β(n)

2
− (1− α(n)) =

α(n)− β(n)

2
= g(n+ 1).

If JS(C0, C1) ≤ β(n), then by Proposition 4.1, H(B|Y ) ≥ 1− β(n). It holds that

H(D0)−H(D1) ≤ 1− α(n) + β(n)

2
− (1− β(n)) = −α(n)− β(n)

2
= −g(n+ 1).

Finally, since the output length of D0 or D1 is n + 1, the mapping (C0, C1) 7→ (D0, D1) is a
polynomial-time reduction from JSPα,β to EDPg.

Lemma 4.3 (JSP is Hard for SZK). Let α, β : N→ [0, 1] be efficiently- computable functions such

that there exists a constant ε ∈ (0, 1/2) such that 2−n
1/2−ε ≤ β(n) and α(n) ≤ 1−2−n

1/2−ε
for every

n ∈ N. Then, the promise problem JSPα,β is hard for SZK.

Proof. We reduce SDP1−2−n
1/2−ε/2

,2−n
1/2−ε/2

with length-preserving circuits to JSPα,β. This suffices
since the former problem is SZK-hard (Theorem 3.14).

Let (C0, C1) be a pair of circuits whose output length is n, and let (B, Y ) be the jointly
distributed random variables defined in Proposition 4.1 w.r.t. the distributions C0 and C1. Assume
for now that n ≥ n(ε), where n(ε) is some constant dependent on ε to be determined by the analysis
later. Vadhan [Vad99, Claim 4.4.2] showed the following relation between the statistical difference
of C0 and C1 to H(B|Y ). Specifically, if SD(C0, C1) = δ, then

1− δ ≤ H(B|Y ) ≤ h
(

1− δ
2

)
. (4.1)

If SD(C0, C1) ≥ 1− 2−n
1/2−ε/2

, then Proposition 4.1 yields that

JS(C0, C1) = 1−H(B|Y ) ≥ 1− h

(
1− (1− 2−n

1/2−ε/2
)

2

)
= 1− h

(
2−n

1/2−ε/2−1
)

≥ 1− 2 · 2−(n1/2−ε/2+1)/2 ≥ α(n),

23Seeting g(1) = g(2) is done for technical reasons so g would be defined for all n ∈ N. As we will soon see, the
reduction always outputs circuits whose output length is at least 2.

24To sample such B′ we require that p = h−1((α+β)/2) can be described using polynomially many bits. While this
might not always be true, we can efficiently compute p′ ≈ p such that the difference between their binary entropies
are negligible. For simplicity, we ignore this issue in this proof.
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where we used that h
(

1−δ
2

)
is decreasing in 0 ≤ δ ≤ 1, that h(p) ≤ 2

√
p for all p ∈ [0, 1] and we set

n(ε) so that the last inequality holds. Specifically, recall that α(n) ≤ 1− 2−n
1/2−ε

so there exists a

constant n(ε) such that 1− 2 · 2−(n1/2−ε/2+1)/2 ≥ 1− 2−n
1/2−ε

for all n ≥ n(ε).

On the other hand, if SD(C0, C1) ≤ 2−n
1/2−ε/2

, it holds that

JS(C0, C1) = 1−H(B|Y ) ≤ 1− (1− 2−n
1/2−ε/2

) = 2−n
1/2−ε/2 ≤ β(n),

where the last inequality holds for n ≥ n(ε) (recall that β(n) ≥ 2−n
1/2−ε/2

).

Hence, the identity mapping (C0, C1) 7→ (C0, C1) is a reduction from SDP1−2−n
1/2−ε/2

,2−n
1/2−ε/2

to JSPα,β, as long as the output length of the given circuits is larger than n(ε). For circuits of
shorter output, we use that the circuits are length-preserving, so their input is also shorter than
n(ε). For such input circuits the reduction can go over all inputs (at most 2n(ε) strings, which is
constant) and compute exactly the statistical distance. If that statistical distance is larger than

1 − 2−n
1/2−ε

, the reduction outputs arbitrary disjoint circuits; and if that statistical distance is
smaller than 2−n

1/2−ε
, the reduction outputs arbitrary identical circuits.

Lemmas 4.2 and 4.3 imply that JSPα,β is SZK-complete, for the desired set of (α, β), thereby
proving Theorem 1.6.

4.2 TDP is Complete for SZK

In this section we show that the promise problem TDPα,β (see Definition 1.2) is SZK complete. To
do so, we need to show that TDPα,β is both in SZK and hard for SZK. We start by proving the
latter.

Lemma 4.4 (TDP is Hard for SZK). Let α, β : N→ [0, 1] be efficiently- computable functions such

that there exists a constant ε ∈ (0, 1/2) such that 2−n
1/2−ε ≤ β(n) and α(n) ≤ 1−2−n

1/2−ε
for every

n ∈ N. Then, the promise problem TDPα,β is hard for SZK.

We prove Lemma 4.4 by using the fact that the triangular discrimination is polynomially related
to the statistical distance.

Proof. We reduce SDP1−2−n
1/2−ε/2

,2−n
1/2−ε/2

with length-preserving circuits to TDPα,β. This suffi-
ces since the former problem is SZK-hard (Theorem 3.14).

We will use the fact that triangular discrimination is sandwiched between the statistical diffe-
rence squared and the statistical difference. Specifically, recall Eq. (1.1): for every distributions P
and Q, it holds that

SD(P,Q)2 ≤ TD(P,Q) ≤ SD(P,Q).

Let (C0, C1) be a pair of circuits whose output length is n. Assume for now that n ≥ n(ε),
where n(ε) is some constant dependent on ε to be determined by the analysis later. If SD(C0, C1) ≥
1− 2−n

1/2−ε/2
, then

TD(C0, C1) ≥ (1− 2−n
1/2−ε/2

)2 ≥ 1− 2−n
1/2−ε/2+1 ≥ α(n),

where we set n(ε) so that the last inequality holds. Specifically, recall that α(n) ≤ 1− 2−n
1/2−ε

so

there exists a constant n(ε) such that 1− 2−n
1/2−ε/2+1 ≥ 1− 2−n

1/2−ε
for all n ≥ n(ε).
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On the other hand, if SD(C0, C1) ≤ 2−n
1/2−ε/2

it holds that

TD(C0, C1) ≤ 2−n
1/2−ε/2 ≤ β(n),

where the last inequality holds for every n by the assumption on β.

Hence, the identity mapping (C0, C1) 7→ (C0, C1) is a reduction from SDP1−2−n
1/2−ε/2

,2−n
1/2−ε/2

to JSPα,β, as long as the output length of the given circuits is larger than n(ε). For circuits of
shorter output, we use the same procedure described at the end of the proof of Lemma 4.3.

It is left to show that TDPα,β is in SZK. Given that the triangular discrimination is polynomially
related to statistical difference, a natural approach to achieve such goal is to polarize the triangular
discrimination of the given distributions. Namely, design an efficient procedure that takes as input
a pair of circuits (C0, C1) and outputs a pair of circuits (D0, D1) such that if TD(C0, C1) ≥ α
then TD(D0, D1) ≥ 1 − 2−k, and if TD(C0, C1) ≤ β then TD(D0, D1) ≤ 2−k. Using Eq. (1.1), we
would now be able to reduce TDPα,β to SDP2/3,1/3. Indeed, Sahai and Vadhan [SV03] used such a
polarization lemma for statistical difference to show that SDP2/3,1/3 is in SZK.

We can adapt the polarization lemma of [SV03] to polarize triangular discrimination as well,
because triangular discrimination behaves sufficiently like statistical distance under the repetition
and xor operations. Analogous to the statistical distance polarization, where α2 and β can be
(1/log)-separated, this approach allows us to show that TDPα,β ∈ SZK for all (1/log)-separated α
and β.

To show the stronger claim that TDPα,β is in SZK for (1/poly)-separated α and β we take a
different approach—we reduce TDPα,β to JSPα

′β′ for some (1/poly)-separated α′ and β′. Since we
already showed that JSPα

′β′ is in SZK (see Lemma 4.2), this shows that TDPα,β is also in SZK.
The reduction from TDPα,β to JSPα

′β′ is given in Section 4.2.1. Since we find the (direct)
polarization lemma for triangular discrimination and its analogy to [SV03]’s polarization lemma
for statistical difference interesting, we prove it in Section 4.2.2.

4.2.1 From TDP to JSP

In this section we prove that TDP with any noticeable gap is in SZK. This proof is via a Karp
reduction to JSP with a noticeable gap, which we have already shown to be in SZK (see Lemma 4.2).
Since SZK is closed under Karp reductions, this implies that TDP with any noticeable gap is in
SZK.

Lemma 4.5. Let (α, β) be (1/poly)-separated (according to Definition 1.4). Then there exist
(1/poly)-separated (α′, β′) such that TDPα,β is polynomially (Karp) reducible to JSPα

′,β′.

Corollary 4.6. For every (1/poly)-separated (α, β), the promise problem TDPα,β is in SZK.

Lemma 4.4 and Corollary 4.6 together imply that TDPα,β is SZK-complete, for the desired set
of (α, β), thereby proving Theorem 1.5.

The main technical tool we use to prove Lemma 4.5 is to consider the convex combination of
a pair of circuits. Given a pair of circuits (C0, C1), consider the circuits (D0, D1), where Db =
λCb + (1− λ)C0+C1

2 . Unsurprisingly, such an operation reduces the difference between the circuits.
To analyze its exact effect on the triangular discrimination, it will be convenient to characterize
the triangular discrimination in terms of the random variables (B, Y ) and the imbalance θy (see
Definition 3.2).
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Proposition 4.7. Let P and Q be two distributions over a universe Y. Let (B, Y ) be the jointly
distributed random variables defined as follows: B ∼ {0, 1} and if B = 1, then Y ∼ P (that is, Y
is a random variable drawn according to P ), and if B = 0, then Y ∼ Q. Finally, for y ∈ Supp(Y ),

recall that θy = Pr[B = 1|Y = y]− Pr[B = 0|Y = y] =
Py−Qy
Py+Qy

.

Then, TD(P,Q) = Ey∼Y [θ2
y].

Proof. In the following y is summed over Supp(Y ).

TD(P,Q) =
1

2

∑
y

(Py −Qy)2

Py +Qy
=
∑
y

Py +Qy
2

· (Py −Qy)2

(Py +Qy)2
= Ey∼Y [θ2

y].

It is easy to see the effect of the convex combination operation on θy.

Proposition 4.8. Let P and Q be two distributions over a universe Y and let 0 ≤ λ ≤ 1. Define
the distributions P ′ = λ · P + (1− λ) · P+Q

2 and Q′ = λ ·Q+ (1− λ) · P+Q
2 .

Then, for every y ∈ Supp(P )∪Supp(Q), equivalently Supp(P ′)∪Supp(Q′), it holds that θP
′,Q′

y =

λ · θP,Qy .

Proof.

θP
′,Q′

y =
P ′y −Q′y
P ′y +Q′y

=
λ · (Py −Qy)

λ · (Py +Qy) + (1− λ) · (Py +Qy)
=
λ · (Py −Qy)
Py +Qy

= λ · θP,Qy .

Propositions 4.7 and 4.8 immediately yield that TD(D0, D1) = λ2 · TD(C0, C1). So, as long
as λ is not too small, a noticeable gap in the triangular discrimination is preserved. We can now
finally prove Lemma 4.5. The main insight in the proof is that for small θy’s the Jensen-Shannon
divergence behaves like θ2

y. The first step in the proof is to reduce the magnitude of the θy’s by
taking via a convex combination with some small parameter λ. Since, by Proposition 4.7, the
triangular discrimination is exactly characterized by θ2

y, we can now relate the two measures. One
difficulty arises when performing the convex combination—the gap in triangular discrimination
between the Yes and the No cases shrinks as well. We show that with a careful choice of λ, the
Jensen-Shannon divergence is “closer” to θ2

y than the degree to which the gap decreases, thus
ensuring that we preserve a noticeable gap.

Proof of Lemma 4.5. The proof relies on the Taylor series of the function g(θ) = 1−h((1+θ)/2)
around 0:

g(θ) =
θ2

2 ln 2
+

1

2 ln 2

∞∑
n=2

θ2n

n(2n− 1)
.

(This series is obtained from the Taylor series of the binary entropy function h around 1/2.) The
above series yields that for all 0 ≤ λ ≤ 1 and −1 ≤ θ ≤ 1,

λ2θ2

2 ln 2
≤ g(λθ) ≤ λ2θ2

2 ln 2
+

λ4

2 ln 2
. (4.2)
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To see that the right-hand side inequality holds, note that

1

2 ln 2

∞∑
n=2

(λθ)2n

n(2n− 1)
≤ λ4

2 ln 2

∞∑
n=2

θ2n

n(2n− 1)
≤ λ4

2 ln 2

∞∑
n=2

1

n(2n− 1)
≤ λ4

2 ln 2

∞∑
n=2

1

n2
=

λ4

2 ln 2

(
π2

6
− 1

)
.

Let λ be the largest number such that 1/λ is a power of 2 and that λ2 ≤ (α−β)/2. This implies
that 1/λ ≤ 2

√
2/(α− β), and thus λ2 ≥ (α− β)/8. Let (C0, C1) be a pair of circuits and consider

the pair of circuits (D0, D1), where Db = λ · Cb + (1− λ) · C0+C1
2 . We wish to analyze JS(D0, D1).

Let (B, Y ) be the random variables defined in Proposition 4.7 w.r.t. distributions C0 and C1,
and let (B′, Y ′) be defined similarly for D0 and D1. Note that Y is distributed the same as Y ′.
Indeed, Y ′ is sampled according to the distribution

D0 +D1

2
=
λ · (C0 + C1) + (1− λ) · (C0 + C1)

2
=
C0 + C1

2
,

and the latter is the distribution by which Y is sampled.
Assume that TD(C0, C1) ≥ α. Then, Propositions 4.1 and 4.7 and Eq. (4.2) yield that

JS(D0, D1) = Ey∼Y ′
[
g(λ · θy)

]
≥
λ2 · Ey∼Y [θ2

y]

2 ln 2
=
λ2 · TD(C0, C1)

2 ln 2
≥ λ2 · α

2 ln 2
.

On the other hand, if TD(C0, C1) ≤ β, then

JS(D0, D1) = Ey∼Y ′
[
g(λ · θy)

]
≤
λ2 · Ey∼Y [θ2

y] + λ4

2 ln 2
=
λ2 · TD(C0, C1) + λ4

2 ln 2

≤ λ2 · (β + (α− β)/2)

2 ln 2
=

λ2

2 ln 2
·
(
α+ β

2

)
.

Set α′ = λ2α
2 ln 2 and β′ = λ2

2 ln 2 ·
(
α+β

2

)
. The mapping (C0, C1) 7→ (D0, D1) establishes the

reduction from TDPα,β to JSPα
′,β′ . Note that the output lengths of the circuits is preserved, so

the above calculation indeed guarantees the desired gap in the Jensen-Shannon divergence, as a
function of the output length of D0 and D1. Since 1/λ is polynomial in 1/(α − β), the reduction
runs in polynomial time. Finally, it holds that

α′ − β′ = λ2

2 ln 2
·
(
α− β

2

)
≥ (α− β)2

32
,

and since (α, β) are (1/poly)-separated, then so are (α′, β′).

4.2.2 A Polarization Lemma for Triangular Discrimination

In this section we give a procedure that polarizes the triangular discrimination of two input circuits.
The procedure is practically identical to that of Sahai and Vadhan’s polarization lemma [SV03,
Lemma 3.3]. While [SV03, Lemma 3.3] requires that α2 > β, the polarization lemma for triangular
discrimination only needs that α > β. As already stated, the polarization that we show here
is inferior to the (indirect) polarization obtained in Section 4.2.1, as it only supports an inverse
logarithmic gap. Nevertheless, we include it since we find the approach appealing.
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Lemma 4.9 (Polarization Lemma for triangular discrimination). There is an algorithm that takes
as input the tuple (X0, X1, α, β, k), where X0 and X1 are circuits and α > β, and outputs a pair of
circuits (Y0, Y1) such that:

TD(X0, X1) ≥ α =⇒ TD(Y0, Y1) ≥ 1− 2−k

TD(X0, X1) ≤ β =⇒ TD(Y0, Y1) ≤ 2−k.

The running time of the algorithm is polynomial in the description of X0 and X1 as well as in k

and exp
(
β log(1/α)
α−β

)
.

The proof of [SV03, Lemma 3.3] is done by considering two operations on a pair of circuits—the
repetition (i.e., direct product) operation and the XOR operation. We analyze the effect of these
operations on the triangular discrimination of the distributions.

Lemma 4.10 (Direct Product Lemma for triangular discrimination). Let P,Q be distributions
such that TD(P,Q) = δ. Then for all k ∈ N,

1− exp(−δk/2) ≤ TD(P⊗k, Q⊗k) ≤ 2kδ.

This lemma is where the main difference between polarizing triangular discrimination and sta-
tistical difference lies. Specifically, the lower bound in the analogous lemma for statistical difference
([SV03, Lemma 3.4]) depends on δ2, rather than δ here. This dependence is exactly why α2 must
be larger than β for statistical difference, but not for triangular discrimination.

Proof. The proof is done by considering the Squared Hellinger distance:

H2(P,Q)
∆
=

1

2

∑
i

(√
Pi −

√
Qi

)2
= 1− EX∼Q

[√
P (X)

Q(X)

]
.

The squared Hellinger distance is useful in our context because of two properties: the triangular
discrimination is sandwiched by constant factors of the squared Hellinger distance, and the squared
Hellinger distance tensorizes under product distributions. For the first property, Le Cam [Cam86,
P. 48] showed that

H2(P,Q) ≤ TD(P,Q) ≤ 2 H2(P,Q). (4.3)

For the second property, that P⊗k, Q⊗k are product distributions yield that

H2(P⊗k, Q⊗k) = 1− EXk∼Q⊗k

[√
P⊗k(Xk)

Q⊗k(Xk)

]
(4.4)

= 1− EXk∼Q⊗k


√√√√ k∏

i=1

P (Xi)

Q(Xi)


= 1−

k∏
i=1

EXi∼Q

[√
P (Xi)

Q(Xi)

]
= 1− (1−H2(P,Q))k.
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Equipped with the above properties, we are now ready to prove the lemma. For the upper
bound, it holds that

TD(P⊗k, Q⊗k) ≤ 2 H2(P⊗k, Q⊗k)

= 2(1− (1−H2(P,Q))k)

≤ 2(1− (1− kH2(P,Q)))

= 2kH2(P,Q)

≤ 2kTD(P,Q),

where the second inequality follows since (1− x)k ≥ 1− kx for all x and integer k.
For the lower bound, it holds that

TD(P⊗k, Q⊗k) ≥ H2(P⊗k, Q⊗k)

= (1− (1−H2(P,Q))k)

≥ (1− (1− δ/2)k)

≥ 1− exp(−δk/2),

where the last inequality follows since 1− x ≤ e−x for all x.

Next we analyze the XOR operation for triangular discrimination, and see that it is idendical
to the effect of this operation on statistical difference ([SV03, Lemma 3.5]).

Lemma 4.11 (XOR Lemma for triangular discrimination). There is a polynomial algorithm that
takes as input (X0, X1, 1

k), where X0 and X1 are circuits, and outputs a pair of circuits (Y0, Y1)
such that TD(Y0, Y1) = TD(X0, X1)k. Specifically, Y0 and Y1 are defined as follows:

Y0: Sample (b1, . . . , bk) ∼ {0, 1}k uniformly at random condition that b1 ⊕ · · · ⊕ bk = 0 and output
a sample from Xb1 ·Xb2 · · · · ·Xbk .

Y1: Sample (b1, . . . , bk) ∼ {0, 1}k uniformly at random condition that b1 ⊕ · · · ⊕ bk = 1 and output
a sample from Xb1 ·Xb2 · · · · ·Xbk .

The proof of Lemma 4.11 follows from the next proposition and a straightforward induction.

Proposition 4.12. Let P, P ′, Q,Q′ be any distributions over Y, and let R = 1
2(PP ′ + QQ′) and

R′ = 1
2(PQ′ +QP ′) be distributions over Y × Y.

Then TD(R,R′) = TD(P,Q) · TD(P ′, Q′).

Proof. It is easy to verify that for every i, j ∈ X , it holds that

Rij = 0 ∧R′ij = 0⇐⇒ (Pi = 0 ∧Qi = 0) ∨ (P ′j = 0 ∧Q′j = 0). (4.5)

Hence, the set A = {(i, j) : Rij > 0 ∨ R′ij > 0} is exactly the product of B = {i : Pi > 0 ∨Qi > 0}
and C = {j : P ′j > 0 ∨Q′j > 0}.
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Compute

TD(R,R′) =
1

2

∑
(i,j)∈A

(
1
2(PiP

′
j +QiQ

′
j)− 1

2(PiQ
′
j +QiP

′
j)
)2

1
2(PiP ′j +QiQ′j) + 1

2(PiQ′j +QiP ′j)

=
1

4

∑
(i,j)∈A

(Pi(P
′
j −Q′j)−Qi(P ′j −Q′j))2

Pi(P ′j +Q′j) +Qi(P ′j +Q′j)

=
1

4

∑
i∈B,j∈C

((Pi −Qi)(P ′j −Q′j))2

(Pi +Qi)(P ′j +Q′j)

=

(
1

2

∑
i∈B

(Pi −Qi)2

Pi +Qi

)
·

1

2

∑
j∈C

(P ′j −Q′j)2

P ′j +Q′j


= TD(P,Q) · TD(P ′, Q′).

Using the above analysis we can now prove Lemma 4.9. This proof follows similar lines to that
of [SV03, Lemma 3.5].

Proof of Lemma 4.9. Let λ = min(α/β, 2) > 1,25 and let ` = dlogλ 8ke. Apply the XOR Lemma
(Lemma 4.11) to the input (X0, X1, 1

`) to produce (X ′0, X
′
1) such that

TD(X0, X1) ≥ α =⇒ TD(X ′0, X
′
1) ≥ α`

TD(X0, X1) ≤ β =⇒ TD(X ′0, X
′
1) ≤ β`.

Let m = λ`/(4α`) ≤ 1/(4β`), let X ′′0 = (X ′0)⊗m and X ′′1 = (X ′1)⊗m. The Direct Product Lemma
(Lemma 4.10) now yields that

TD(X0, X1) ≥ α =⇒ TD(X ′′0 , X
′′
1 ) ≥ 1− exp(−α`m/2) ≥ 1− e−k

TD(X0, X1) ≤ β =⇒ TD(X ′′0 , X
′′
1 ) ≤ 2mβ` ≤ 1/2.

Finally, apply the XOR Lemma (Lemma 4.11) again to the input (X ′′0 , X
′′
1 , 1

k) to produce Y0, Y1

such that

TD(X0, X1) ≥ α =⇒ TD(Y0, Y1) ≥ (1− e−k)k ≥ 1− ke−k ≥ 1− 2−k

TD(X0, X1) ≤ β =⇒ TD(Y0, Y1) ≤ 1/2k.

The last derivation holds for sufficiently large k, which we can obtain by increasing it at the start.
As for the running time, the analysis is similar to the one done in the proof sketch of Theo-

rem 3.14 (which in turn follows [CCKV08, Lemma 38]), and we refer the reader there.

5 One Way Functions from SDP with Any Noticeable Gap

In this section we construct a one-way function assuming the average case hardness of the Sta-
tistical Difference Problem (SDP), with any inverse polynomial gap. Actually, we will only
construct a distributional one-way function but by a result of Impagliazzo and Luby [IL89], this
yields a full-fledged one-way function. We first recall the (standard) definitions of a one-way function
and a distributional one-way function.

25This is the only place this proof diverges from that of [SV03, Lemma 3.5]. The latter sets λ = α2/β.
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Definition 5.1 (One-Way Function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is one-way if for every probabilistic polynomial-time algorithm A,

Pr
[
A(1n, Y ) ∈ f−1(Y )

]
= negl(n),

where Y = f(X) for X ∼ {0, 1}n (and the probability is also over the coin tosses of A).

Definition 5.2 (Distributionally One-Way Function). A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is distributionally one-way if there exists a polynomial p such that for every
probabilistic polynomial-time algorithm A and all large enough n

SD
((
X,Y

)
,
(
A(1n, Y ), Y

))
≥ 1

p(n)
,

where X ∼ {0, 1}n and Y = f(X).

Any one-way function is also a distributionally one-way function. While the other direction is
not always true, [IL89] showed that the existence of both primitives is equivalent.

Lemma 5.3 ([IL89, Lemma 1]). If there exists a distributionally one-way function then there exists
a one-way function.

Hence, to show the existence of one-way functions, it suffices to show that distributionally
one-way functions exist. As noted above we will do so based on the average-case hardness of SDP.

Definition 5.4 (Average-case Hardness). We say that a promise problem Π = (YES,NO) is
average-case hard if there exists a probabilistic polynomial-time algorithm S such that S(1n) out-
puts samples from YES ∪NO, and for every probabilistic polynomial-time distinguisher D,

Pr
x∼S(1n)

[
D(1n, x) = Π(x)

]
≤ 1

2
+ negl(n),

where Π(x) = 1 if x ∈ YES and Π(x) = 0 if x ∈ NO. The above probability is taken also over the
randomness of D. We call S a hard-instance sampler for Π.

The main result of this section is that the average-case hardness of SDP with any noticeable
gap implies the existence of distributionally one-way functions.

Theorem 5.5. Let (α, β) be (1/poly)-separated functions (according to Definition 1.4). Assume
that SDPα,β is average-case hard with hard-instance sampler S. Then, the function f defined as

f(1n, r, b, x) = (1n, C0, C1, y),

where26 (C0, C1) = S(1n; r) and y = Cb(x), is distributionally one-way.27

26Recall that S(1n; r) stands for the output of S(1n) when its random coins are set to be r.
27Definition 5.2 only considers functions whose domain is {0, 1}∗, i.e., functions defined for every input length.

Although this function is not defined for every input length (and has 1n as an input), using the fact that it is defined

on {0, 1}q(n) for some q(n) ∈ poly(n) and standard padding techniques, such restricted distributionally one-way
function imply the existence of standard distributionally one-way function, per Definition 5.2. In the rest of this
section we ignore this issue and assume that distributionally one-way functions can be defined for inputs in {0, 1}q(n),
for some q(n) ∈ poly(n).
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It may be useful for the reader to think of f as a collection of functions indexed by the pair of
circuits (C0, C1) that map (b, x) to Cb(x). We refrain from describing the function as a collection
as the definition of collections of distributionally one-way functions is slightly more cumbersome.

Theorem 5.5 immediately proves Theorem 1.8. Furthermore, our proof implicitly implies two
additional results. First, it proves that the function f is distributional k-multi-collision resistant

hash function, for k = O
(

logn
(α−β)2

)
; that is, for a random output (c0, c1, y) of f , it is difficult to

find k random preimages of (c0, c1, y). Second, the proof of Theorem 5.5 also implicitly shows
the following strengthening of Goldreich’s [Gol90] result: the existence of efficiently sampleable
distributions whose statistical distance is α but no efficient algorithm can distinguish between them
with advantage more than β, for any (1/poly)-separated (α, β), implies the existence of one-way
functions.

The rest of this section is dedicated to proving Theorem 5.5.

5.1 Proving Theorem 5.5

The proof of Theorem 5.5 is via a reduction. We show that given an adversary that distributionally
inverts f , we can construct a distinguisher that breaks the average case hardness of SDPα,β.

We begin with defining the following jointly distributed random variables with respect to the
security parameter n: Let R ∼ {0, 1}ρ(n), for ρ(n) being a bound on the number of random bits

that S(1n) uses, let (C0, C1) ∼ S(1n;R), let B ∼ {0, 1}, let X ∼ {0, 1}m(n), for m(n) being a
bound on the input length of C0 and C1, and let Y = CB(X). Finally, let W = (1n, R,B,X) and
Z = (1n, C0, C1, Y ). Note that C0 and C1 are random variables taking values of circuits (i.e., a
description of the circuit itself). This is in contrast to other parts of this paper in which we (abuse
notation and) use C to denote also the output distribution of the circuit C. To avoid confusion, in
this section we denote by P0 and P1 the output distributions of the circuits C0 and C1, respectively.

Assume toward a contradiction that f is not distributionally one-way and let p(n) ∈ poly(n) be
some polynomial to be determined by the analysis. Then, there exists a probabilistic polynomial-
time inverter A such that

SD
((
W,Z

)
,
(
A(1n, Z), Z

))
<

1

p(n)
, (5.1)

for every n in an infinite set I ⊆ N.
Using the inverter A we construct a distinguisher D such that for large enough n ∈ I, it holds

that28

Pr
[
D(1n, (C0, C1)) = 1{SD(P0, P1) ≥ α(n)}

]
≥ 1

2
+

1

q(n)
, (5.2)

for some q(n) ∈ poly(n) to be determined by the analysis.29 The existence of such a D contradicts
the average-case hardness of SDPα,β and so it remains to establish Eq. (5.2).

Fix some large enough n ∈ I. When it is clear from the context, we will sometimes omit n from
the notations. Our first step is to show that for a large fraction of the circuit pairs sampled by S,
the inverter A inverts the function well. Let R′, B′, X ′ be random variables induced by the output

28Recall that for a boolean statement S (e.g., X ≥ 5), 1{S} stands for the indicator function that outputs 1 if S
is a true statement and 0 otherwise.

29The probability is over the choices of (C0, C1) and the randomness of D. The statistical difference in the probability
is between the output distributions of C0 and C1 after those circuits were drawn and fixed.
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of A(1n, Z). By Eq. (5.1) (and using the data-processing inequality for statistical distance) it holds
that

SD
(
(B, Y,C0, C1), (B′, Y, C0, C1)

)
<

1

p
.

Let

U =
{

(c0, c1) : SD
((

(B, Y )|(C0, C1) = (c0, c1)
)
,
(
(B′, Y )|(C0, C1) = (c0, c1)

))
< 1/

√
p
}
. (5.3)

Namely, U is the set containing the pair of circuits for which the inverter’s output B′, when given
a random Y , is statistically close to B. It follows that

1

p
> SD

(
(B, Y,C0, C1), (B′, Y, C0, C1)

)
≥ Pr[(C0, C1) /∈ U ] · 1

√
p
, (5.4)

and thus Pr[(C0, C1) ∈ U ] > 1− 1√
p .

We design a distinguisher D that works particularly well when it is given a circuit pair belonging
to U . Specifically, we describe D for which, for all (c0, c1) ∈ U , it holds that

Pr
[
D(c0, c1) = 1{SD(P0, P1) ≥ α(n)}

]
≥ 1− 4

n
, (5.5)

where the probability is over the randomness of D. Such a distinguisher yields Eq. (5.2) as follows:

Pr
[
D(C0, C1) = 1{SD(P0, P1) ≥ α(n)}

]
≥ Pr[(C0, C1) ∈ U ] ·

(
1− 4

n

)
≥

(
1− 1√

p(n)

)
·
(

1− 4

n

)
≥ 1

2
+

1

q(n)
,

for large enough q(n) ∈ poly(n).
In the rest of the proof we establish Eq. (5.5). For (c0, c1, y) ∈ Supp(C0, C1, Y ), let

θc0,c1(y)
∆
= Pr

[
B = 1|C0 = c0, C1 = c1, Y = y

]
− Pr

[
B = 0|C0 = c0, C1 = c1, Y = y

]
.

Namely, θc0,c1(y) measures the difference between the likelihoods that each circuit outputs y. A

perfect inverter for such f , when given an output y, would return 1 with probability
1+θc0,c1 (y)

2 ,

and 0 with probability
1−θc0,c1 (y)

2 .
The quantity θc0,c1(y) plays a crucial role in the proof. First, we show that it can be used to

characterize the statistical distance between the output distributions of c0 and c1. Second, we show
that it can be well-approximated using the inverter A, specifically using random samples of B′.
Thus, the distinguisher D uses A to approximate SD(P0, P1) and answers accordingly. We proceed
to the actual proof.

For (c0, c1) ∈ Supp(C0, C1), let Yc0,c1 denote the random variable sampled according to (Y |(C0, C1) =
(c0, c1)) (i.e., Yc0,c1 drawn from the distribution P0+P1

2 ). For y ∈ Supp(Yc0,c1) let Bc0,c1,y denote the
random variable sampled according to (B|(C0 = c0, C1 = c1, Y = y)), and similarly for B′c0,c1,y.

Using the above notations, Proposition 3.3 states that for every (c0, c1) ∈ Supp(C0, C1), it holds
that

SD(P0, P1) = E
y∼Yc0,c1

[|θc0,c1(y)|]. (5.6)
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Namely, the statistical distance between the output distributions of c0 and c1 is the expected value
over y ∼ Yc0,c1 of |θc0,c1(y)|. So, the distinguisher’s task is to approximate the expected value
of |θc0,c1(y)|, for (c0, c1) ∈ U . We design such a distinguisher in two steps. First, we show how
to estimate θc0,c1(y) for a random y. Then, we use this estimator and Eq. (5.6) to calculate an
approximation for the statistical distance (up to some inverse polynomial additive error). In the

following we let ε = α−β
4 , k =

⌈
log(n)
ε2

⌉
and ` =

⌈
2+log(k·n)

2(ε/2)2

⌉
. Note that since α > β are noticeably

separated, it holds that k, ` ∈ poly(n).

5.1.1 Estimating θc0,c1(y)

Consider the following algorithm Est whose goal is to estimate θc0,c1(y). The algorithm gets access
to an oracle O that takes as input (c0, c1, y) ∈ Supp(C0, C1, Y ) and outputs a bit b′.

Estimator EstO(c0, c1, y):

1. For every i ∈ [`], run O(c0, c1, y) to get (b′1, . . . , b
′
`).

2. Let m = |{b′i : b′i = 1}| be number of ones in (b′1, . . . , b
′
`).

3. Set P̂B(1) = m/` and P̂B(0) = (`−m)/`.
4. Return P̂B(1)− P̂B(0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next claim shows that if the oracle O(c0, c1, y) perfectly samples from Bc0,c1,y, then indeed
the output of EstO(c0, c1, y) is a good estimator for θc0,c1(y).

Claim 5.1. Let (c0, c1, y) ∈ Supp(C0, C1, Y ) and assume that O(c0, c1, y) ∼ Bc0,c1,y. Then, it holds
that

Pr
[∣∣∣θC0,C1(y)− EstO(c0, c1, y)

∣∣∣ > ε
]
≤ 1

kn
,

where the above probability is over the randomness of O.

Proof. We use Fact 3.9 to show that EstO(c0, c1, y) indeed approximates θc0,c1(y). Let PB denote
the distribution of Bc0,c1,y. By the assumption on O(c0, c1, y) and the definition of Est it follows

that P̂B (defined in line 3 of Est) is the empirical distribution of PB, computed using ` samples.
Since the domain size of B is 2, the setting of ` and Fact 3.9 yield that

Pr
[∣∣∣θc0,c1(y)− EstO(c0, c1, y)

∣∣∣ > ε
]

= Pr
[∣∣∣(PB(1)− PB(0))− (P̂B(1)− P̂B(0))

∣∣∣ > ε
]

(5.7)

≤ Pr
[
SD(PB, P̂B) ≥ ε/2

]
≤ 1

kn
.

Unfortunately, even with the inverter A we cannot implement an oracle O that perfectly samples
Bc0,c1,y. However, we can show that for (c0, c1) ∈ U , the inverter approximates such an oracle for a

random y. In the following we let Ã be the projection variant of A that outputs A’s second output
(i.e., the bit b′).
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Claim 5.2. Let (c0, c1) ∈ U (see Eq. (5.3)). Then

Pr
y∼Yc0,c1

[∣∣∣θc0,c1(y)− EstÃ(c0, c1, y)
∣∣∣ > ε

]
≤ 1

kn
+
`+ 1

4
√
p
,

where the above probability is also over the randomness of Ã.

Proof. Consider the set

V =

{
y : SD

(
Bc0,c1,y, B

′
c0,c1,y

)
<

1
4
√
p

}
.

Similar calculations as those made in Eq. (5.4), and also using that (c0, c1) ∈ U (and thus

SD
(

(Bc0,c1,Y , Yc0,c1), (B′c0,c1,Y , Yc0,c1)
)
≤ 1/

√
p), show that Pry∼Yc0,c1 [y /∈ V] ≤ 1

4
√
p . Let y ∈ V.

It follows that SD(Ã(c0, c1, y),O(c0, c1, y)) ≤ 1/ 4
√
p, where the oracle O is from Claim 5.1. Since

Est makes ` oracle calls, a standard argument using the data-processing inequality for statistical
distance and Claim 5.1 yield that for every y ∈ V

Pr
[∣∣∣θc0,c1(y)− EstÃ(c0, c1, y)

∣∣∣ > ε
]
≤ Pr

[∣∣∣θc0,c1(y)− EstO(c0, c1, y)
∣∣∣ > ε

]
+ ` · SD(Ã(c0, c1, y),O(c0, c1, y))

≤ 1

kn
+

`
4
√
p
.

All in all,

Pr
y∼Yc0,c1

[∣∣∣θc0,c1(y)− EstÃ(c0, c1, y)
∣∣∣ > ε

]
≤ Pr

y∼Yc0,c1

[∣∣∣θc0,c1(y)− EstÃ(c0, c1, y)
∣∣∣ > ε

∣∣∣y ∈ V]+ Pr
y∼Yc0,c1

[y /∈ V]

≤ 1

kn
+

`
4
√
p

+
1
4
√
p
,

as required.

5.1.2 Approximating the Statistical Distance

Using the θc0,c1(y) estimator Est, we now describe the distinguisher D (recall that Ã is the projection
variant of A that outputs A’s second output (i.e., the bit b′)).

Distinguisher DA(c0, c1):

1. For every i ∈ [k], draw bi ∼ B, xi ∼ X, and set yi = cbi(xi).

2. Compute ∆̂ = 1
k

∑k
i=1 |EstÃ(c0, c1, yi)|.

3. Output 1 if ∆̂ > α+β
2 and 0 otherwise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We show that for (c0, c1) ∈ U , the distinguisher approximates the relevant statistical distance
well.
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Claim 5.3. Let (c0, c1) ∈ U and let ∆̂(c0, c1) be the value set to ∆̂ in line 2 in a random execution
of DA on input (c0, c1).

It holds that

Pr

[∣∣∣∆̂(c0, c1)− SD(P0, P1)
∣∣∣ ≥ α− β

2

]
≤ 4

n
,

where the probability is over the randomness of D and A.

The proof of Claim 5.3 goes as follows. First, using a union bound, we argue that with high
probability for every yi sampled by D, it holds that Est(c0, c1, yi) is close to θc0,c1(yi). Then, we
use Eq. (5.6) and the Chernoff-Hoeffding bound to argue that the average of |Est(c0, c1, yi)|’s is a
good approximation for the statistical distance.

Before formally proving Claim 5.3, let us use it to derive Theorem 5.5.

Proof of Theorem 5.5. Recall that in order to prove Theorem 5.5 it suffices to establish Eq. (5.5).

Let (c0, c1) ∈ U . Note that if
∣∣∣∆̂(c0, c1)− SD(P0, P1)

∣∣∣ < α−β
2 , then the distinguisher D always

outputs the correct answer. Indeed, if SD(P0, P1) ≥ α, then ∆̂(c0, c1) > α+β
2 and D outputs 1;

and if SD(P0, P1) ≤ β, then ∆̂(c0, c1) < α+β
2 and D outputs 0. Hence, Claim 5.3 immediately

establishes Eq. (5.5).
Lastly, since k, ` ∈ poly(n), the pair of function α and β are efficiently computable, and A runs

in polynomial time, then so does DA. This completes the proof of Theorem 5.5.

It it left to prove Claim 5.3.

Proof of Claim 5.3. For i ∈ [k] let Yi be the values set to yi in a random execution of DA(c0, c1).

Let Vi = |θc0,c1(Yi)| and V̂i =
∣∣∣EstÃ(c0, c1, Yi)

∣∣∣. The definition of ∆̂ yields that

Pr

[∣∣∣∆̂(c0, c1)− SD(P0, P1)
∣∣∣ ≥ α− β

2

]
= Pr

[∣∣∣∣∣1k
k∑
i=1

V̂i − SD(P0, P1)

∣∣∣∣∣ ≥ α− β
2

]
(5.8)

≤ Pr

[∣∣∣∣∣1k
k∑
i=1

Vi − SD(P0, P1)

∣∣∣∣∣ ≥ α− β
4

]

+ Pr

[∣∣∣∣∣1k
k∑
i=1

Vi −
1

k

k∑
i=1

V̂i

∣∣∣∣∣ ≥ α− β
4

]
.

We bound each summand in the right-hand side of Eq. (5.8) separately.
To bound the first summand, note that by definition Yi is always drawn from Yc0,c1 . Hence,

Proposition 3.3 yields that E[Vi] = SD(P0, P1) for every i ∈ [k]. Fact 3.8 now yields that

Pr

[∣∣∣∣∣1k
k∑
i=1

Vi − SD(P0, P1)

∣∣∣∣∣ ≥ α− β
4

]
= Pr

[∣∣∣∣∣1k
k∑
i=1

Vi − SD(P0, P1)

∣∣∣∣∣ ≥ ε
]

(5.9)

≤ 2e−2kε2

≤ 2

n
,

where the last inequality follows from the definition of k.
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To bound the second summand in the right-hand side of Eq. (5.8), we apply Claim 5.2.

Pr

[∣∣∣∣∣1k
k∑
i=1

Vi −
1

k

k∑
i=1

V̂i

∣∣∣∣∣ ≥ α− β
4

]
= Pr

[∣∣∣∣∣1k
k∑
i=1

Vi −
1

k

k∑
i=1

V̂i

∣∣∣∣∣ ≥ ε
]

(5.10)

≤ Pr
[
∃i ∈ [k] :

∣∣∣Vi − V̂i∣∣∣ ≥ ε]
≤

k∑
i=1

Pr
[∣∣∣Vi − V̂i∣∣∣ ≥ ε]

≤
k∑
i=1

Pr
[∣∣∣θc0,c1(Yi)− EstÃ(c0, c1, Yi)

∣∣∣ ≥ ε]
≤ k ·

(
1

kn
+
`+ 1

4
√
p

)
≤ 2

n
,

where the first inequality follows since |x− y| ≥ ||x| − |y|| for all x and y, the penultimate inequality
follows from Claim 5.2, and the last inequality follows by setting p = (k(`+ 1)n)4 ∈ poly(n).

Plugging Eqs. (5.9) and (5.10) into Eq. (5.8) completes the proof of the claim.

6 Estimating Statistical Distance in AM ∩ coAM

In this section, we present a constant-round public-coin interactive protocol in which, given circuits
C0 and C1 and a parameter ∆ ∈ [0, 1], a computationally unbounded prover can prove to a compu-
tationally bounded verifier that SD(C0, C1) ≈ ∆, upto any arbitrary inverse-polynomial precision
(and thereby proving Theorem 1.9). This immediately gives an AM as well as a coAM protocol for
the Statistical Difference Problem problem SDPα,β for any noticeably separated α and β.
As shown in [SV03] (and mentioned in earlier sections), if α2 and β are noticeably separated, then
SDPα,β is complete for SZK, and hence contained in AM ∩ coAM.30 Thus, our protocol improves
on this state of affairs by showing that SDPα,β ∈ AM ∩ coAM under the weaker condition that α
and β are polynomially separated.

As already discussed in Section 1.1.3, separate AM and coAM protocols for such SDPα,β are
implicitly implied by known protocols results on laconic interactive proofs [SV03, GVW02]. Ne-
vertheless, we believe the protocol presented here is still interesting on its own as it allows one to
interactively estimate the statistical distance of a pair of distributions given just oracle access to
their samplers, and is quite natural given the view of statistical distance we take throughout the
paper.

Fix a pair of circuits C0, C1 : {0, 1}m → {0, 1}n, and define the circuit C : {0, 1}m+1 → {0, 1}n
that on input (b, x) outputs Cb(x).31 For any y, define the “pre-image set” Iy = {(b, x) | Cb(x) = y}.
We shall once more use the imbalance θy, defined in Definition 3.2. In terms that will be more
convenient for our application, for any y in the support of C, we note that θy may be written as

30Actually, [SV03] only shows membership of SDPα,β in SZK if (α2(n) − β(n)) is at least Ω(1/ log(n)), but our
results from Section 4 show this for all noticeably separated α and β.

31The output distribution of C is exactly C0+C1
2

– the distribution from which the random variable Y from
previous sections was drawn. In this section is will be convenient to explicitly describe this distribution as an output
distribution of a circuit.
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follows:

θy = Pr
(b,r)∼Iy

[b = 1]− Pr
(b,r)∼Iy

[b = 0] = E
(b,r)∼Iy

[b]−
(

1− E
(b,r)∼Iy

[b]

)
= 2 · E

(b,r)∼Iy
[b]− 1.

Our protocol for statistical distance is based on the relation between statistical distance and
statistics of the above quantity θy, which we proved in Proposition 3.3. Specifically, for any pair of
circuits C0 and C1,

SD(C0, C1) = E
y∼C

[|θy|] (6.1)

In our protocol, the verifier will estimate this expectation by picking several y’s at random from
the distribution of C, and asking the prover for the values of the corresponding θy’s. The prover
is then asked to prove that the values of the θy’s that it provided are (approximately) correct. In
order to do this, we make use of the following formulation of “typical sets” that will provide us
with a measure that distinguishes between values close to θy and those far from it.

For any y in the co-domain of C, any θ ∈ [−1, 1] and δ ∈ [0, 1], and any k ∈ N, define the set

T θ,δ,ky as:

T θ,δ,ky =

{
(b1, x1, . . . , bk, xk) | Cbi(xi) = y for all i, and

(
2 ·
∑

i bi
k
− 1

)
∈ [θ − δ, θ + δ]

}
We refer to the set T θy ,δ,ky (where θ is set to be θy) as the typical set corresponding to y, and sets

T θ,δ,ky for values of θ close to θy as “nearly typical sets”. We claim that, after sufficient repetition
(that is, for large enough k), any nearly typical set contains a large fraction of the pre-images of y.

Proposition 6.1. Consider any y ∈ Supp(C) and θ ∈ [−1, 1], and let ε = |θ − θy|. For any δ ≥ ε
and k ∈ N, the following holds: ∣∣∣T θ,δ,ky

∣∣∣
|Iy|k

≥ 1− 2e−k(δ−ε)2/2

This proposition follows from concentration of measure. We relegate the formal proofs of this
and later propositions to the end of this section. Next, we claim that if θ is far from θy, then the

set T θ,δ,ky contains very few pre-images of y under C.

Proposition 6.2. Consider any y ∈ Supp(C) and θ ∈ [−1, 1], and let ε = |θ − θy|. For any δ < ε
and k ∈ N, the following holds: ∣∣∣T θ,δ,ky

∣∣∣
|Iy|k

≤ e−k(ε−δ)2/2

Thus, in order for the prover to prove that a value θ is approximately equal to θy for a given

y, all it has to do is show that the set T θ,δ,ky is large (relative to |Iy|k). In order to do this, we will
be using the set lower-bound protocol of Goldwasser and Sipser [GS89] (with the tighter analysis
of Aiello and Hastad [AH91]).

Lemma 6.3 ([AH91], Lemma 4.1). There is a constant-round public-coin interactive protocol that,
for any set S ⊆ {0, 1}n such that membership in S can be computed in time t and for any b ∈ N,
proves the statement “|S| ≥ 2b”. More precisely, the protocol satisfies the following properties for
every such set S:
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• Completeness: When interacting with the honest prover, the verifier accepts with probability
at least 1− 2b

|S|

• Soundness: When interacting with any (possibly cheating) prover, the verifier accepts with

probability at most |S|
2b

• Efficiency: The verifier runs in time poly(n, t).

Finally, note that the size of the set T θ,δ,ky has to be shown to be large relative to |Iy|k. Hence,
in order to be able to use the above set lower-bound protocol for this purpose, the verifier needs to
know the value of |Iy|k, which it may not be able to compute efficiently.32 However, as a random
variable (when y is drawn from C), the quantity |Iy| behaves predictably.

Let B, X and Y denote the random variables induced by drawing a bit b and a string x ∈ {0, 1}m
uniformly at random and y computed as C(b, x). By the definition of conditional entropy, we can
write the expectation of log|Iy| as follows:

E
y∼Y

[log|Iy|] = H(B,X|Y ).

So if we pick several y’s independently, the mean of the log|Iy|’s will be concentrated around
H(B,X|Y ). We state this in a more convenient form as follows.

Proposition 6.4. For any t ∈ N, suppose y1, . . . , yt are independently sampled as C(bi, xi) for bi
and xi chosen uniformly at random. Let Ī = Iy1 × · · · × Iyt. Then, for any η ≥ 0,

Pr
[∣∣Ī∣∣ ∈ [2t·(H(B,X|Y )−η), 2t·(H(B,X|Y )+η)

]]
≥ 1− 2e−2tη2/(m+1)2

Thus, if the verifier can estimate H(B,X|Y ) reliably, we can then implement the earlier lower-
bound protocol collectively for all the yi’s sampled without knowing any of the individual |Iyi |’s,
but confident that the product of all of them is approximately 2t·H(B,X|Y ).

We will use the prover to enable the verifier to perform this estimation, using the fact that the
problem of approximating the entropy of the output of a given circuit is in NISZK [GSV99], and
hence can has a constant-round interactive protocol. While (B,X|Y ) is not the output distribution
of any circuit, computing this conditional entropy reduces to computing the entropy of just Y by
the following calculation:

H(B,X|Y ) = H(B,X, Y )−H(Y ) = H(B,X)−H(Y ) = (m+ 1)−H(Y ),

where the first equality follows the chain rule for Shannon entropy (Fact 3.7), and the second
from the fact that Y is a deterministic function of (B,X). Noting that Y is the random variable
corresponding to the output of the circuit C, the following lemma is now implied by the results of
Goldreich, Sahai and Vadhan [GSV99].

Lemma 6.5. There is a constant-round public-coin interactive protocol that takes as input a tuple
of the form (C, h, γ), where C is a circuit, h ∈ R is an entropy estimate, and γ > 0 is a gap
parameter, and has the following properties:

32An alternative to deal with this would be to ask the prover to prove to the verifier that Iy is of a certain size
using set lower-bound and upper-bound protocols (an example of the latter may be found in [For89]). However, it is
unclear how to perform the upper-bound protocol with sufficiently small soundness error given the inability of the
verifier to sample at will several random elements from Iy.
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• Completeness: If H(C) ∈ [h − γ, h + γ], the verifier accepts with probability at least 0.9
when interacting with the honest prover.

• Soundness: If H(C) 6∈ [h− 3γ, h+ 3γ], then for every (possibly cheating) prover, the verifier
accepts with probability at most 0.1.

• Efficiency: The verifier runs in time poly(|C|, 1/γ).

The entirety of our protocol is described formally as Protocol 6.1; Lemma 6.6 states its properties
and immediately implies Theorem 1.9.

Input: Pair of circuits C0, C1 : {0, 1}m → {0, 1}n, claimed distance ∆, and tolerance δ

Set η = δ2/200, t =
⌈
8 ln(40)(m+ 1)2/η2

⌉
, and k =

⌈
4 ln(2t)/η2

⌉
. All numerical quantities in the

protocol will be specified to within an additive error of η—to write down any q ∈ R like this uses
(logd|q|e+O(log(1/η)) bits. We denote the result of rounding the quantity q in this manner by dqc.

We will be using the following sub-protocols:

• The entropy approximation protocol from Lemma 6.5, denoted by Πent, which takes input of the
form (C, k, γ).

• The set lower-bound protocol from Lemma 6.3, denoted by Πlb, which takes input of the form
(S, b).

Prover Verifier

Ĥ← dH(C)c
Ĥ

Πent(C, Ĥ, η)

For i ∈ [t] :

bi ∼ {0, 1}, xi ∼ {0, 1}m

yi ← C(bi, xi)y1, . . . , yt

For i ∈ [t] :

θi ← dθyic θ1, . . . , θt

T ← T θ1,2η,ky1 × · · · × T θt,2η,kyt

H̄← (m+ 1)− Ĥ

Πlb(T , tk(H̄− 2η))

Accept if and only if both

Πent and Πlb accept and:∣∣∣∆− 1
t

∑t
i=1|θi|

∣∣∣ ≤ 2δ

Protocol 6.1: Estimating Statistical Distance
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Lemma 6.6. There is a constant-round public-coin interactive protocol that, given as input a pair
of circuits (C0, C1), a claim ∆ ∈ [0, 1] for their statistical distance, and a tolerance δ ∈ [0, 1],
satisfies the following properties:

• Completeness: If |SD(C0, C1)−∆| ≤ δ, the verifier accepts with probability at least 2/3
when interacting with the honest prover.

• Soundness: If |SD(C0, C1)−∆| ≥ 3δ, when interacting with any (possibly cheating) prover,
the verifier accepts with probability at most 1/3.

• Efficiency: The verifier runs in time poly(|C0|, |C1|, 1/δ).

That is, it proves that SD(C0, C1) is within an additive error δ of ∆, failing with probability
at most 1/3. Setting the tolerance factor δ in the above protocol to be a third of the one from
Theorem 1.9 proves the latter. We now prove Lemma 6.6 by the approach outlined so far.

Proof of Lemma 6.6. We show that Protocol 6.1 satisfies the properties required by the lemma.

Completeness. Fix an input (C0, C1, δ), and suppose that |SD(C0, C1)−∆| ≤ δ. We now show
that the prover makes the verifier accept with high probability.

First, if the prover computes Ĥ correctly then
∣∣∣Ĥ−H(C)

∣∣∣ ≤ η by the precision of our chosen

representation of numbers. So by Lemma 6.5, the execution of the subprotocol Πent accepts except
with probability 0.1.

Next, by Lemma 6.3 the subprotocol Πlb accepts with probability at least 1−2(tk(H̄−2η))/|T |. So
if |T | is more than 2tk(H̄−3η/2), then Πlb accepts with probability more than 1− 2−tkη/2 > 1− 1/20,
where we use that t ≥ 1 and kη ≥ 1/η ≥ 200. We claim that, if the θi’s are reported correctly, this
happens with high probability. Recall that H̄ = (m+ 1)− Ĥ is supposed to be roughly H(B,X|Y ).

Claim 6.1. Suppose that for all i ∈ [t], we have θi = dθyic, and that Ĥ = dH(C)c. Then,

Pr
[
|T | < 2tk(H̄−3η/2)

]
≤ 1

20
.

Proof of Claim 6.1. This follows from Proposition 6.1 and Proposition 6.4. Recall that T is defined
as T θ1,2η,ky1 × · · · × T θt,2η,kyt , that for each i we assume that |θi − θyi | ≤ η, that t ≥ 1, and that
k ≥ 4 ln(2t)/η2. By Proposition 6.1, we have:

|T |
(|Iy1 | · · · |Iyt |)k

≥
(

1− 2e−k(2η−η)2/2
)t
≥ 1− 2te−kη

2/2 (6.2)

= 1− e−kη2/2+ln(2t) ≥ 1− e−2 ln(2t) ≥ 3/4 ≥ 2−tkη/4.

Let Ī = Iy1 × · · · × Iyt . Proposition 6.4 now lets us approximate
∣∣Ī∣∣k as follows.

Pr
[∣∣Ī∣∣k ≥ 2tk(H̄−5η/4)

]
≥ Pr

[∣∣Ī∣∣k ≥ 2tk(H(B,X|Y )−η/4)
]

= Pr
[∣∣Ī∣∣ ≥ 2t(H(B,X|Y )−η/4)

]
≥ 1− 2e−tη

2/8(m+1)2 ≥ 1− 1/20, (6.3)

where the first inequality follows from the precision of H̄ (since Ĥ = dH(C)c, we have that∣∣H̄ −H(B,X|Y )
∣∣ is at most η), the second from Proposition 6.4, and the last from the chosen

setting of t. Eqs. (6.2) and (6.3) together imply the claim.
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Claim 6.1 along with the argument just preceding it now implies that the probability that the
execution of Πlb rejects is at most (1/20 + 1/20) = 1/10.

And third, we need to argue that the final check of the verifier passes. As the prover is honest,
the mean

∑
i|θi|/t is within η = δ2/200 of

∑
i|θyi |/t. By Eq. (6.1), Eyi∼C [|θyi |] = SD(C0, C1) for

each i. And by our hypothesis, |∆− SD(C0, C1)| ≤ δ. Using these facts and by the Chernoff-
Hoeffding bound (Fact 3.8), noting that the yi’s sent by the verifier are indeed sampled from C,
we have:

Pr

[∣∣∣∣∣∆− 1

t

∑
i

|θi|

∣∣∣∣∣ > 2δ

]
≤ Pr

[∣∣∣∣∣∆− 1

t

∑
i

|θyi |

∣∣∣∣∣ > 3δ

2

]

≤ Pr

[∣∣∣∣∣SD(C0, C1)− 1

t

∑
i

|θyi |

∣∣∣∣∣ > δ

2

]
≤ 0.1, (6.4)

where the last inequality follows from the choice of t.
Thus, we have shown that if this prover strategy is used, then the execution of Πent rejects with

probability at most 0.1, that of Πlb with probability at most 0.1, and the final check of the verifier
fails with probability at most 0.1. By the union bound, the whole protocol rejects with probability
less than 1/3, proving completeness.

Soundness. Now suppose that |SD(C0, C1)−∆| ≥ 3δ. First, consider the case where the Ĥ sent

by the prover is such that
∣∣∣Ĥ−H(C)

∣∣∣ ≥ 3η. In this case, by Lemma 6.5, the probability that

Πent(C, Ĥ, η) accepts is less than 0.1.

Next, consider the case where
∣∣∣Ĥ−H(C)

∣∣∣ < 3η, but the estimate
∑

i|θi|/t differs substantially

from
∑

i|θyi |/t (because the prover reported wrong values for θi). In this case, we would like to
show that the execution of Πlb rejects with high probability.

Specifically, suppose we have:

1

t

∑
i

|θi| −
1

t

∑
i

|θyi | ≥
δ

2

This implies the following: ∑
i

|θi − θyi | ≥
∑
i

|θi| −
∑
i

|θyi | ≥
δt

2
(6.5)

By Lemma 6.3, Πlb accepts with probability at most |T |/2tk(H̄−2η). Recall that T = T θ1,2η,ky1 ×· · ·×
T θt,2η,kyt . Let Ī = Iy1 × · · · × Iyt . We show that the condition (6.5) implies that T is much smaller

than
∣∣Ī∣∣k; this is because (6.5) implies that a number of the θi’s are far from the corresponding

θyi ’s, and thus the sets formed using them are not typical.

Claim 6.2. If
∑

i|θi − θyi | ≥ δt/2, then:

|T |∣∣Ī∣∣k ≤ e−2tkδ2/25
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Proof of Claim 6.2. For each i ∈ [t] such that |θi − θyi | > 2η, Proposition 6.2 implies that:∣∣∣T θi,2η,kyi

∣∣∣ ≤ e−k(|θi−θyi |−2η)
2
/2 · |Iyi |

k.

Noting that T θi,2η,kyi is at most as large as |Iyi |
k, we multiply this bound by a correcting factor of

ek(2η)2/2 to handle the case of |θi − θyi | ≤ 2η, so that the following holds for all i ∈ [t],∣∣∣T θi,2η,kyi

∣∣∣ ≤ e−k(|θi−θyi |−2η)
2
/2 · ek(2η)2/2 · |Iyi |

k.

Taking the product of this over all i gives us:

|T |∣∣Ī∣∣k ≤ exp

(
−k
∑
i

(θi − θyi)2/2 + 2kη
∑
i

|θi − θyi |

)

By the Cauchy-Schwarz inequality and (6.5), we have
∑

i(θi − θyi)2 ≥ δ2t/4. Further, we know
that

∑
i|θi − θyi | ≤ 2t (since θi, θyi ∈ [−1, 1]). Together with these and the fact that η = δ2/200,

the above expression gives us:

|T |∣∣Ī∣∣k ≤ exp
(
−ktδ2/8 + 4ktδ2/200

)
≤ e−2ktδ2/25.

Under the other part of our current hypothesis – that
∣∣∣Ĥ−H(C)

∣∣∣ < 3η (which implies that∣∣H̄−H(B,X|Y )
∣∣ < 3η) – we show that Ī is, most of the time, not very large.

Claim 6.3. Suppose that
∣∣H̄−H(B,X|Y )

∣∣ < 3η. Then,

Pr
[∣∣Ī∣∣ ≥ 2t(H̄+7η/2)

]
≤ 1

20

Proof of Claim 6.3. This follows from Proposition 6.4. We have:

Pr
[∣∣Ī∣∣ ≥ 2t(H̄+7η/2)

]
≤ Pr

[∣∣Ī∣∣ ≥ 2t(H(B,X|Y )+η/2)
]
≤ 2e−tη

2/2(m+1)2 ≤ 1

20

where the first inequality is from the accuracy of H̄, the second from Proposition 6.4, and the last
from the value of t.

Together, Claims 6.2 and 6.3 imply the following. If
∣∣∣Ĥ−H(C)

∣∣∣ < 3η then, except with

probability 1/20 over the choice of the yi’s, unless the estimate
∑

i|θi|/t is within δ/2 of
∑

i|θyi |/t,
the subprotocol Πlb accepts with probability at most:

|T |
2tk(H̄−2η)

≤
e−2tkδ2/25 ·

∣∣Ī∣∣k
2tk(H̄−2η)

≤ e−2tkδ2/25 · 2tk(H̄+7η/2)

2tk(H̄−2η)
≤ 1

20

where the first inequality follows from Claim 6.2, the second from our conditioning that the event
from Claim 6.3 does not happen, and the last from the values of the quantities involved.

The case we are left with is where
∑

i|θi|/t is within δ/2 of
∑

i|θyi |/t. The final check by the
verifier is whether

∑
i|θi|/t is within 2δ of ∆. For this to happen, as |∆− SD(C0, C1)| ≥ 3δ, the

mean
∑

i|θyi |/t has to be more than δ/2 away from SD(C0, C1). For random yi’s drawn from C, as
calculated in Eq. (6.4) in the proof of completeness, this happens with probability less than 0.1.

We summarize the argument for soundness as follows:

45



1. If the prover sends Ĥ that is 3η-far from H(C), the verifier rejects except with probability at
most 0.1.

2. Otherwise, except with probability at most 1/20 over the choice of the yi’s, unless
∑

i|θi|/t
is within δ/2 of

∑
i|θyi |/t, the verifier rejects except with probability at most 1/20.

3. Also, except with probability at most 0.1 over the choice of the yi’s, if
∑

i|θi|/t is within δ/2
of
∑

i|θyi |/t, the verifier rejects.

Thus, the total probability of the verifier accepting is at most (0.1 + 1/20 + 1/20 + 0.1) < 1/3, as
required.

Efficiency. The running time of the verifier is the sum of those of the verifiers in the calls to
Πent and Πlb, and poly(t, 1/δ) (for sampling and the final check). Membership in the set T can be
verified using its definition in time poly(|C|, k, t). The entire running time may now be verified to
be poly(|C0|, |C1|, 1/δ), as required.

While the protocol as written is private-coin, note that, since Πent and Πlb are both public-coin,
the only instance where the verifier’s coins are not sent over is when it sends the yi’s to the prover.
This is remedied by having the verifier send the (bi, xi)’s to the prover instead, and noting that this
does not affect the soundness of the protocol.

6.1 Proofs of Intermediates

We complete this section by proving the intermediate propositions and lemmas used in the proof
of Lemma 6.6.

Proof of Proposition 6.1. The proposition is proven using the additive Chernoff bound. Under
the uniform distribution over Iy, we have Pr(b,x)∼Iy [b = 1] = (1 + θy)/2. So if we take many
independent samples (b, x) from this distribution and looked at the empirical mean of the b’s, it
would be concentrated around (1 + θy)/2. Then, if θ is close to θy, this empirical mean is, with
good probability, close to θ as well.

We abuse notation slightly and write bk ∼ Iky to indicate the vector (b1, . . . , bk) obtained by
sampling (bi, xi)i∈[k] uniformly and independently from Iy and dropping the x’s. Observe that:∣∣∣T θ,δ,ky

∣∣∣
|Iy|k

= Pr
bk∼Iky

[
2

∑
bi
k
− 1 ∈ [θ − δ, θ + δ]

]
≥ Pr

bk∼Iky

[∑
bi
k
∈
[

1 + θy
2
− δ − ε

2
,
1 + θy

2
+
δ − ε

2

]]
≥ 1− 2 · e−k(δ−ε)2/2

where the first inequality follows from the observation that an interval of size δ around θ contains
an interval of size (δ− ε) around θy, and the second inequality follows from the Chernoff-Hoeffding
Bound (Fact 3.8).

Proof of Proposition 6.2. The proof of this proposition also uses the Chernoff-Hoeffding bound.
The central idea here is that this claimed typical set is almost disjoint from the actual typical set,
and most probability mass lies inside the actual typical set.
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Consider the case where θy > θ; the argument for the other case is identical. We abuse notation
slightly and write bk ∼ Iky to indicate the vector (b1, . . . , bk) obtained by sampling (bi, xi)i∈[k]

uniformly from Iy and dropping the r’s. Let b̄ =
∑
bi/k. Observe that:∣∣∣T θ,δ,ky

∣∣∣
|Iy|k

= Pr
bk∼Iky

[
2b̄− 1 ∈ [θ − δ, θ + δ]

]
≤ Pr

bk∼Iky

[
b̄ ≤ 1 + θ

2
+
δ

2

]
= Pr

bk∼Iky

[
b̄ ≤ 1 + θy

2
− ε− δ

2

]
≤ e−k(ε−δ)2/2

where the first equality follows from the definition of the distribution, the second equality follows
from the definition of ε and the assumption that θy > θ, and the final inequality follows from the
Chernoff-Hoeffding bound (Fact 3.8).

Proof of Proposition 6.4. We prove this again using the Chernoff-Hoeffding bound on indepen-
dent instances of the random variable log |Iy|, which is contained in [0,m + 1]. This is done as
follows.

Pr
[∣∣Ī∣∣ ∈ [2t(H(B,X|Y )−η), 2t(H(B,X|Y )+η)

]]
= Pr

[
log
∣∣Ī∣∣
t
∈ [H(B,X|Y )− η,H(B,X|Y ) + η]

]
.

We now note that log
∣∣Ī∣∣/t is simply the mean of several i.i.d. variables:

log
∣∣Ī∣∣
t

=
1

t

t∑
i=1

log|Iyi |,

where for each i we know that log|Iyi | is contained in [0,m + 1] (as Iyi is a set of (b, x) where b
is a bit and x is of length m), and its expectation is H(B,X|Y ). Applying the Chernoff-Hoeffding
bound (Fact 3.8), after scaling the values withing the probability expression down by (m+ 1), now
gives us what we want:

Pr

[
log
∣∣Ī∣∣
t
∈ [H(B,X|Y )− η,H(B,X|Y ) + η]

]
≥ 1− 2e−2tη2/(m+1)2

Proof of Lemma 6.5. The protocol is a straightforward combination of the NISZK and coNISZK
protocols for the Entropy Approximation and its complement from Goldreich et al [GSV99]. We
make use of the following lemma from their work (with the inequalities made non-strict for ease of
use).

Lemma 6.7 ([GSV99, Lemma 3.2]). There is a polynomial-time computable function that takes
input (1s, C, h), where C is a circuit, h ∈ R+, and s ∈ N, and produces a circuit C ′ that outputs `
bits such that:

1. If H(C) ≥ h+ 1, then SD(C ′, U`) ≤ 2−s, where U` is the uniform distribution on {0, 1}`; and
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2. If H(C) ≤ h− 1, then |Supp(C′)|
2`

≤ 2−s

We start with a constant-round private-coin protocol to approximate entropy that works as follows
given input (C, k, γ):

1. Let s = 3, let t = d1/γe, and let Ct denote the circuit obtained by concatenating t copies of
C.

2. The verifier invokes the function from Lemma 6.7 with the input (1s, Ct, tk + 2) to get a
circuit Cupper that outputs `upper bits.

3. The verifier picks a random bit b. If b = 0, it samples a random output of Cupper and sends

it to the prover. Else it samples a uniform string from {0, 1}`upper and sends it to the prover.

4. The prover responds with a bit b′. If b′ 6= b the verifier rejects.

5. The verifier then invokes the function from Lemma 6.7 with the input (1s, Ct, tk − 2) to get
a circuit Clower that takes nlower bits as input and outputs `lower bits.

6. The verifier picks a uniformly random string y from {0, 1}`lower and sends it to the prover.

7. The prover responds with a string x ∈ {0, 1}nlower .

8. If Clower(x) = y, the verifier accepts. Else it rejects.

That the running time of the verifier above is poly(|C|, 1/γ) may be verified by inspection,
noting the efficient computability of the function from Lemma 6.7.

To show completeness, suppose H(C) ∈ [k − γ, k + γ]. For the sake of simplicity, suppose
that 1/γ ∈ N (so that t = 1/γ); the arguments for the more general case are identical. Then,
H(Ct) ∈ [t(k−γ), t(k+γ)] = [tk−1, tk+ 1]. By Lemma 6.7, this implies two things for the circuits
constructed in our protocol:

|Supp(Cupper)|
2`upper

≤ 1

8

SD(Clower, U`lower) ≤
1

8

Together with Proposition 3.1, these properties imply, respectively, that:

SD(Cupper, U`upper) ≥
7

8
(6.6)

|Supp(Clower)|
2`lower

≥ 7

8
(6.7)

Eq. (6.6) and Proposition 3.4 imply that there is a prover strategy (specifically, to send the maximal
likelihood bit) such that the probability that b′ 6= b in step 4 of our protocol is at most 1/2 −
(7/8)/2 = 1/16. And Eq. (6.7) implies that the probability that the prover is not able to produce
a valid x in step 7 is at most 1/8. Thus, the total probability that the verifier rejects is less than
3/16.

To show soundness, first consider the case where H(C) > k+ 3γ. This implies that H(Ct) is at
least (tk + 3). By the guarantees of Lemma 6.7, this means that SD(Cupper, U`upper) ≤ 1/8, which
implies, together with Proposition 3.4, that the probability that the verifier does not reject in step 4
is at most 1/2 + (1/8)/2 = 9/16.
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On the other hand, if H(C) < k − 3γ, then H(Ct) is at most (tk − 3). In this case, Lemma 6.7
impies that |Supp(Clower)|/2`lower ≤ 1/8. Thus, the probability that the prover is able to produce
a valid pre-image x in step 7 is at most 1/8.

Overall, we have a protocol with completeness at least 1−3/16 = 13/16 and soundness error at
most 9/16. By repetition in parallel, with an O(1) blowup in the complexity of the verifier, both
completeness and soundness error can be made smaller than 0.1, giving the desired parameters.
And finally, it can be made public-coin while retaining a constant number rounds and an efficient
verifier using the results of Goldwasser and Sipser [GS89].
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A Triangular Discrimination Inequalities

Proposition A.1 ([Top00]). For distributions P,Q it holds that:

SD(P,Q)2 ≤ TD(P,Q) ≤ SD(P,Q).

Proof. Let Y be the union of the supports of P and Q. Observe that,

TD(P,Q) =
1

2

∑
y∈Y

(Py −Qy)2

Py +Qy
= E

y∼( 1
2
P+ 1

2
Q)

[(
Py −Qy
Py +Qy

)2
]
,

and

SD(P,Q) =
1

2

∑
y∈Y
|Py −Qy| = E

y∼( 1
2
P+ 1

2
Q)

[∣∣∣∣Py −QyPy +Qy

∣∣∣∣].
It follows that,

TD(P,Q)− SD(P,Q)2 = E
y∼( 1

2
P+ 1

2
Q)

[(
Py −Qy
Py +Qy

)2
]
− E
y∼( 1

2
P+ 1

2
Q)

[∣∣∣∣Py −QyPy +Qy

∣∣∣∣]2

= Var

(∣∣∣∣Py −QyPy +Qy

∣∣∣∣) ≥ 0.

Hence, that SD(P,Q)2 ≤ TD(P,Q) follows from the non-negativity of variance. That TD(P,Q) ≤
SD(P,Q) follows from the fact that

∣∣∣Py−QyPy+Qy

∣∣∣ ≥ (Py−QyPy+Qy

)2
.
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