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Abstract

We provide new upper bounds on the complexity of the s-t-connectivity
problem in planar graphs, thereby providing additional evidence that this
problem is not complete for NL. This also yields a new upper bound on
the complexity of computing edit distance. Building on these techniques,
we provide new upper bounds on the complexity of several other com-
putational problems on planar graphs. All of these problems are shown
to be solvable in logarithmic time on a concurrent-read exclusive-write
(CREW) PRAM. The new upper bounds are provided by making use of a
known characterization of CREW algorithms in terms of “unambiguous”
AC1 circuits. This seems to be the first occasion where this characteri-
zation has been used in order to provide new upper bounds on natural
problems.
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1 Introduction

Is it easier to find a path in a planar graph than in a general directed graph?
Finding a path from s to t in a graph is the standard complete problem

for NL, and it is known that if one restricts this problem to planar graphs
one obtains a problem in UL [BTV09]. But since NL = UL under a plausible
derandomization hypothesis [ARZ99, KvM02], the UL upper bound for planar
reachability does not shed much light on the question of whether planar reach-
ability might also be NL-complete.

In this paper, we present a new upper bound on the complexity of pla-
nar reachability; the problem can be solved in logarithmic time on a CREW-
PRAM. By the work of [Lan93], it is known that log-time CREW PRAMs
accept precisely the sets that lie in a circuit complexity class called UAC1. As
its name suggests, UAC1 refers to logarithmic-depth circuits composed primar-
ily of unbounded fan-in “unambiguous” AND and OR gates. However, the
“unambiguity” represented by these hardware components has less to do with
“unambiguity” as represented by UL, and is more closely related to “strong un-
ambiguity” as represented by StUL.1 The connection is perhaps best illustrated
by considering semi-unbounded circuits. The class SAC1 (log-depth circuits with
unbounded-fan-in OR gates and bounded fan-in AND gates) coincides with the
class of problems logspace-reducible to context-free languages (and hence it
is also known as LogCFL [Sud78]) and is also equal to the class of problems
accepted by logspace-bounded nondeterministic auxiliary pushdown automata
(APDAs) in polynomial time. Similar to the NL vs UL situation, under a plausi-
ble derandomization hypothesis, no power is lost if the APDAs are unambiguous
[RA00, ARZ99] (meaning that, on every input, there is at most one accepting
computation path). But the semi-unbounded version of UAC1, known as USAC1,
corresponds to APDAs that satisfy the more restrictive “strong unambiguity”
condition (meaning that, between any two configurations there is never more
than one path). Unambiguous CFLs are not known to lie in USAC1, and there
is no indication that NL (or UL) should be contained in UAC1 (to say nothing
of USAC1). Although there is a large literature on CREW-PRAM algorithms
and on planar reachability, it has been unknown until now that planar reacha-
bility has a logarithmic-time CREW algorithm. We believe that this provides
stronger evidence that planar reachability is not complete for NL. It is worth-
while noting that a novel aspect of our approach is that we capitalize on the
characterization of CREW algorithms in terms of unambiguous circuits; we are
aware of no prior instance where unambiguous circuits were used as a tool to
devise CREW algorithms.

As an interesting by-product, we give a new upper bound on the edit distance
problem, which has been the subject of several important recent investigations,
mostly centering on the question of whether the there is a sequential algorithm
with a running time significantly better than quadratic (and showing that the

1For those readers who are unfamiliar with StUL, additional background and motivation
can be found in Section 2.
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existence of such an algorithm would have dramatic complexity-theoretic conse-
quences); see [BI18, AHWW16] and also see the discussion in [AB17, CDG+18].
It has been known since the work of [Mat88, AALM90] that the edit distance
problem reduces to the problem of computing the distance between two vertices
in a weighted planar digraph. Our reachability algorithm for planar graphs also
provides an algorithm for computing distance; thus we establish for the first
time that the edit distance problem lies in CREW[log n].

We also extend our techniques, to present logarithmic-time CREW algo-
rithms for several other problems that previously had been known only to lie in
AC1.

The rest of the paper is organized as follows: In Section 2 we provide back-
ground on the complexity classes and models of computation that we consider.
In Section 3 we present our main upper bounds on the complexity of reachabil-
ity in planar graphs and related problems. In Section 4 we present implications
that our reachability algorithm has, for the edit distance problem. In Section 5
we show that the problem of computing a Depth-First Search tree in a planar
graph reduces to planar distance, thereby obtaining a new upper bound on the
complexity of this fundamental problem. In Section 6 we present a number of
other applications of our techniques. Finally, we conclude in Section 7 with
some open ends.

2 Preliminaries: Unambiguity, Strong Unambi-
guity and CREW PRAMs

We assume that the reader is familiar with the standard complexity classes
L,NL and P (see e.g. the text [AB09]) and with the logspace-uniform circuit
complexity classes NCk, ACk, and SACk (see, e.g., the text [Vol99]).

A nondeterministic Turing machine is said to be unambiguous if, on every
input x, there is at most one accepting computation path. If an unambiguous
machine satisfies the additional condition that on every input x and for every
two configurations C and D of the machine, there is at most one computation
path that leads from C to D, then it is said to be strongly unambiguous. If we
consider logspace-bounded nondeterministic Turing machines, then unambigu-
ous machines yield the class UL, whereas strongly unambiguous machines yield
the class StUL. There is some evidence that StUL is a weaker class than UL.
StUL ⊆ DSPACE(log2 n/ log log n) [AL98], whereas it is widely conjectured that
NL = UL. (If UL 6= NL, then every set in DSPACE(n) has circuits of size 2o(n)

for infinitely many input lengths n [RA00, ARZ99, KvM02].)
The notions of unambiguity and strong unambiguity have also been studied

in the context of auxiliary pushdown automata. A logarithmic-space bounded
auxiliary pushdown automaton (APDA) is a Turing machine with a read-only
input tape, a read-write worktape of length log n on inputs of length n, and a
pushdown store. When there is no time bound, logspace-bounded APDAs (both
deterministic and nondeterministic) characterize P [Coo71]. More relevant for
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this paper are the classes corresponding to polynomial-time bounded logspace
APDAs. For deterministic machines, DAPDA(log,poly) = LogDCFL is exactly
the class of languages accepted in logarithmic time by PRAMs that satisfy the
Concurrent Read Owner Write restriction [Sud78, DR00], as well as being the
class of languages logspace-reducible to deterministic context-free languages.
For nondeterministic machines NAPDA(log,poly) = LogCFL is exactly the class
SAC1 [Sud78, Ven91]. Under the same plausible derandomization hypothesis
that implies NL = UL, it follows that SAC1 = LogCFL = NAPDA(log,poly) =
UAPDA(log,poly) [RA00, ARZ99, KvM02].

In addition to the Turing-machine models discussed above, two other models
figure prominently in the study of NC and its subclasses: circuits and PRAMs.
We are assuming familiarity with the circuit classes AC0, NC1, SAC1 and AC1.
PRAMs come in various different flavors, depending on the types of access
to shared memory that are allowed, such as concurrent-read concurrent-write
(CRCW), concurrent-read exclusive write (CREW), and concurrent-read owner-
write (CROW). (There are other flavors also, but they are not relevant here.)
We use the notation CRCW[log n], CREW[log n], and CROW[log n] to denote the
classes of languages accepted by PRAMs running in time O(log n) on inputs
of length n, using a polynomial number of processors, with the given type of
access to shared memory. CROW[log n]= LogDCFL[DR00], and CRCW[log n]=
AC1 [SV84]. The remaining class CREW[log n] is central to our investigation.

Lange [Lan93] investigated CREW[log n] as it relates to a circuit-based notion
of unambiguity. As studied in [Lan93], circuits for a class such as AC1 consist of
both bounded fan-in AND and OR gates (with fan-in two) and NOT gates (with
fan-in one), and unbounded fan-in AND and OR gates (which are denoted as ∀
and ∃ gates, respectively). A circuit C is said to be unambiguous if, for every
input x, each ∀ gate has at most one predecessor set to 0, and each ∃ gate has
at most one predecessor set to 1. UAC1 is the class of languages accepted by
logspace-uniform circuit families of unambiguous circuits of depth O(log n) and
polynomial size. USAC1 is the class of languages accepted by logspace-uniform
circuit families of unambiguous circuits of depth O(log n) and polynomial size,
which have no ∀ gates, and where NOT gates are allowed only at the input level.

Theorem 1. [Lan93]

� UAC1 = CREW[log n].

� USAC1 = StUAPDA(log,poly).

3 Distance in Planar Graphs

The complexity of computing reachability and distance in planar graphs has a
long history. Since the problems lie in NL ⊆ AC1, the existence of a CRCW[log n]
algorithm is obvious. Attention from the algorithmic community has focused
on processor-efficient algorithms, even if this pushed the running time above
O(log n), as in [AALM90, STV95] or on polynomial-time small-space algorithms,
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as in [AKNW14, JT19]. From the standpoint of complexity theory, the main re-
sults are that planar reachability reduces to non-reachability [HRS93, ABC+09]
and that reachability lies in UL (and hence in UL ∩ co-UL) [BTV09].

In this section, we show that planar distance lies in UAC1, and hence by
Theorem 1 lies in CREW[log n]. We use deterministic isolation of shortest paths
in planar graphs [BTV09] as one of the main tools.2

Theorem 2. The reachability problem for planar graphs is in CREW[log n].

Proof. Let G be a planar digraph with n vertices. We can compute a planar em-
bedding for G in logspace [AM04, Rei08]. Let wuniq : E(G)→ N be a logspace-

computable weight function such that the minimum weight path between any
two vertices is unique, where wuniq(e) ≤ nO(1) [BTV09, TV12]. We construct a

graph G̃ from G by subdividing edge e ∈ E(G) into wuniq(e) many edges. For

the rest of the section we work with the digraph G̃. Let d≤(u, v, i), d>(u, v, i) be
predicates encoding whether the distance from u to v is ≤ i or > i, respectively.
For every pair (u, v) there is at most one shortest path from u to v.

Table 1 gives an inductive definition of d≤ and d>.
[(1) − (3)] are base cases to define the two basic distance predicates d≤, d>

on lengths at most 1. Both (4),(5) are guarded adaptations of Savitch’s algo-
rithm. In (4) the existential quantifier evaluates to true iff the correct distance j
between u, v and the correct mid point w is picked assuming that the predicates
hold inductively. Since the (j, w) pair is unique, unambiguity is maintained.
The argument for (5) is analogous (and dual).

The inductive definition above immediately translates into a circuit whose
gates are labeled d≤(u, v, i)and d>(u, v, i), using unambiguous ∀ and ∃ gates,
thereby establishing membership in UAC1 = CREW[log n]. Determining if there
is a path from s to t in the graph involves simply evaluating d≤(s, t, n).

Although the preceding algorithm involves computing distance in a weighted
graph, it does not immediately yield an algorithm for computing distance in the
original graph. This is addressed in the following corollary, where we introduce
the notation PlDist to refer to the problem of computing distance in a weighted
planar graph.

Corollary 3. PlDist is in CREW[log n].

2The reader may be wondering whether one could build on our approach, to show that NL
(or UL) is contained in CREW[logn], under the assumption that DSPACE(n) contains a prob-
lem that requires exponentially-large circuits. After all, our CREW[logn] algorithm for planar
reachability is based on logspace-computable weight functions that isolate minimum-weight
paths [BTV09, TV12], and similar weight functions also imply NL = UL [RA00, ARZ99]. But
there is an important difference. The argument in [TV12] shows that there is a logspace-
computable function that takes a planar graph G as input and produces one weight function
as output that is good for G, and the argument in [BTV09] produces a single weight function
that is good for every n-by-n grid graph. In contrast, the arguments in [ARZ99, KvM02]
serve only to produce a list of weight functions, one of which is guaranteed to be good for a
given graph G. It is not at all clear that one can construct unambiguous AC1 circuits that
incorporate such unreliable weight functions.
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1. ∀u d≤(u, u, 0) and ¬d>(u, u, 0)

2. ∀u, v if (u 6= v), ¬d≤(u, v, 0) and d>(u, v, 0)

3. ∀(u, v) ∈ E, d≤(u, v, 1) and ¬d>(u, v, 1)

4. ∀i > 0 : ∀u, v d≤(u, v, i) ⇐⇒

∃w∃j ≤ i, (d≤(u,w, bj/2c) ∧ d≤(w, v, dj/2e)∧
(d>(u,w, bj/2c − 1) ∧ d>(w, v, dj/2e − 1)))

5. ∀i > 0 : ∀u, v d>(u, v, i) ⇐⇒

∀w∀j ≤ i, (d>(u,w, bj/2c) ∨ d>(w, v, dj/2e)∨
(d≤(u,w, bj/2c − 1) ∨ d≤(w, v, dj/2e − 1))))

Table 1: The predicates d≤, d>

Proof. Thierauf and Wagner [TW10b, Section 4] show that the techniques of
[BTV09, RA00, ABC+09] can be combined to show that distance in planar
graphs can be computed in UL∩co-UL, by reducing the computation of distance
to the planar reachability problem. An identical argument applies, to yield a
CREW[log n] algorithm.

More precisely, Thierauf and Wagner observe that, given a planar graph
G, the argument in [ABC+09] shows how to produce a grid graph G′ with
certain edges labeled as “distinguished”, with the property that every path p
between two vertices in G can be associated with a unique path p′ in G′, where
furthermore the length of the path p is equal to the number of “distinguished”
edges in p′. (Essentially, edges in G are mapped to paths in G′, and some
of the edges are G′ are marked as corresponding to “real” edges in G.) They
then show that a modification of the [BTV09] weight function has the property
that, given the weight of a path in G′, one can easily determine the number of
“distinguished” edges in the path, and thereby determine the distance between
two vertices in G.

Corollary 4. Breadth-first search trees for planar directed graphs can be com-
puted in CREW[log n].

Proof. Given a graph G, select a vertex r to be its root. (If there is a directed
breadth-first search tree that spans the entire graph, then r can be selected
so that there is a path from r to every other vertex, using the CREW[log n]
algorithm for reachability.) For each vertex v, compute the distance from r to
v. Partition the vertex set into blocks Vd consisting of those nodes at distance
d from r. For each v ∈ Vd, select the lexicographically first neighbor x of v in
Vd−1, and include an edge from x to v.
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All of the final steps can easily be computed in logarithmic space, and thus
can be accomplished in CREW[log n].

The following is immediate from Theorem 3 and [LMN10]:

Corollary 5. There is a CREW[log n] algorithm to find a longest path in a
weighted planar directed acyclic graph.

Proof. It is shown in [LMN10] (in particular) that the longest path problem for
weighted planar DAGs L-reduces to the problem of finding a shortest path in
weighted planar DAGs (where weights in both graphs are polynomially bounded).

We remark that the results of this section also hold for graphs of bounded
genus, since embeddings of such graphs can be computed in logspace [EK14]
and since reachability in such graphs reduces to the planar case [KV10].

4 Minimum Edit Distance

The edit distance or the Levenshtein distance is a way of measuring distance
between two strings a, b over some alphabet Σ by counting the minimum number
of insertions, deletions, and substitutions required to convert a to b. More
formally:

Let Σ = {σ1, σ2, . . . , σ`} be an alphabet, and a = a1 . . . am, b = b1 . . . bn be
two strings on the alphabet. The following are the set of allowed operations on
string a,

� Deletion : Delete a letter ai appearing in the string a.

� Insertion : Insert a letter bi in the string a.

� Substitution: Substitute a letter ai in the string a by a letter bj .

Substituting a character by itself has zero cost. In Levenshtein’s original
definition, each of these operations has unit cost, so the distance is equal to the
minimum number of operations required to transform a to b. A more general
definition that we consider here associates non-negative weight functions Dai , Ibi
and Sai,bj with the operations. In the following we assume that these weights
and m are all bounded by poly(n). It is known that the edit distance can be
computed in AC1 and in CREW[log2 n] [AALM90]. In this paper we show that
it can be computed in CREW[log n].

The problem was shown earlier to be reducible to finding distance in a (pla-
nar) grid graph (the dynamic programming graph) Ga,b [Mat88, AALM90]; it is
clear that the reduction presented in [Mat88, AALM90] is logspace-computable.

Proposition 6. [Mat88, AALM90] The minimum edit distance between a and
b is equal the minimum weight path from the vertex (0, 0) to (m,n) in Ga,b.

Corollary 7. The edit distance problem lies in CREW[log n].
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Related Problems The length of the Longest common subsequence (LCS) of
two given strings a, b is edit distance with insertion and deletion as the only two
edit operations, both at unit cost. The longest increasing subsequence problem
is closely related to the longest common subsequence problem: the longest in-
creasing subsequence of a sequence S is the longest common subsequence of S
and S∗, where S∗ is obtained by sorting S. The previous best known bounds
for these problems were CREW[log2 n] [LL94] and CRCW[log n] [BS97].

5 Planar Depth-First Search

In this section we show the following,

Theorem 8. There is a CREW[log n] algorithm to compute a depth-first search
tree of an undirected planar graph. (More precisely, this problem is logspace-
Turing-reducible to PlDist.)

Our algorithm is a refinement of an AC1 algorithm presented by Hagerup
[Hag90]; we therefore introduce some terms and notation from [Hag90]:

5.1 Notations and Definitions

Definition 9. Let PlDFS be the class of all functions that map an embedded
undirected (connected) planar graph G and a vertex r ∈ V (G) to a set of arcs
(or directed edges) A that constitutes a depth-first search tree rooted at r.

Let G = (V,E) be an embedded undirected planar graph. Let F be the set
of G’s faces. Consider the face-incidence graph GD. (This is similar to, but not
identical to, the dual graph. Namely, the vertices of GD are the faces of G, and
two faces are adjacent in GD if they share a vertex of G.)

Consider some initial face F0. The type of a face F , denoted Type(F ), is its
distance from F0 in GD. For α ∈ V ∪ E define Type(α) = {k ≥ 0|α has an
incident face F with Type(F ) = k}.

Note that GD need not be planar. We will show in the algorithm how to
compute distances of vertices in GD using the face-vertex incidence graph which
is planar.

For every α ∈ V ∪E, Type(α) is an element of the sequence {0}, {0, 1}, {1},
{1, 2}, {2}, · · · . This allows us to define a total order < on set of vertex and
edge types by

{0} < {0, 1} < {1} < {1, 2} < {2} < {2, 3} < . . . (1)

Call α white if |Type(α)| = 1 and black if |Type(α)| = 2.
Let GB be the subgraph of G spanned by black edges. We start from a few

lemmas extracted from [Hag90]:

Lemma 10. GB contains all black vertices of G. Also, all vertices and edges
inside a connected component of GB have the same type.
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Lemma 11. Let C be a simple cycle. If F0 lies in the interior (exterior) of C
and the exterior (interior) of C contains a face of type k, then C must contain
a vertex of type < k.

Following [Hag90], we refer to a biconnected component of a graph as a block
of the graph.

Lemma 12. Every block of GB is a simple cycle.

From now on, we will assume that F0 is the external face of a connected
graph G. It follows from Lemma 12 that the black edges of G constitute a set of
cycles. Given any two black cycles in G, they are either disjoint, or they share
a single vertex.

Next we diverge from [Hag90] and introduce some new machinery and ter-
minology:

Definition 13. Let Vk denote the (white) vertices of type {k} and let Vk,k+1

denote the (black) vertices of type {k, k + 1}. We call the set Vk ∪ Vk,k+1 the

k + 1th layer, denoted by Lk+1. Observe that every vertex of G lies in some
Lk+1. We call the connected components of a layer layered connected compo-
nents or LCCs. LCCk+1 denotes the set of connected components of the k+ 1th

layer; we will use the notation Lk+1 to refer to an element of LCCk+1.

Observe that L1 consists of all edges that are adjacent to the external face
F0, along with all vertices that are adjacent to F0. The black edges of L1 form
a set of cycles, and every other black edge of G lies in the interior of some black
cycle of L1. There are no cycles consisting of white edges in L1 (because any
such cycle would necessarily enclose a face, meaning that the edge would not be
white).

The vertices in L2 are adjacent to the external face of the graph G−L1 (and
in general the vertices in Lk are adjacent to the external face of G−

⋃
i<k Li).

Thus, in particular, each Lk ∈ LCCk is outerplanar. Also, each Lk+1 ∈ LCCk+1

lies in the interior of a black cycle in Lk, and there are no cycles consisting
entirely of white edges in Lk for any k.

Since each Lk ∈ LCCk is outerplanar, given any starting vertex v in Lk, it
is easy to construct a depth-first search tree Tv(L

k):

� The root of Tv(L
k) is v.

� For a white vertex x of Tv(L
k), all edges adjacent to x are white. Since

there are no white cycles, attach the acyclic collection of white edges that
are adjacent to x.

� For a black vertex x of Tv(L
k), if x is not a cut vertex (that is, x is an

element of only one black cycle C) where x is the first element of C to be
added to the tree, append the path through C starting at x (but do not
add the edge that comes back into x, to maintain acyclicity) There are
two directions that one could choose to walk along C; arbitrarily choose
the counterclockwise traversal. Call this vertex x the lead vertex of C in
Tv(L

k).
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� For a black vertex x of Tv(L
k), if x is a cut vertex that is an element of

different cycles C1, . . . C` not already in the tree, then (as in the previous
case) append the path around each Ci in the counterclockwise direction,
and make x the lead vertex of Ci in Tv(L

k).

� Repeat until Tv(L
k) spans Lk.

The important properties are (1) In a depth-first traversal of Tv(L
k), when

the lead vertex of a cycle C is encountered, all of the other vertices of C are
visited before any other vertex is visited, and (2) the lead vertex for each cycle
is determined entirely by v. We can thus denote this by lead(C, v).

In order to see that Tv(L
k) can be constructed in logspace, note first that

(using reachability in undirected graphs [Rei08]) it is easy to find all of the cut
vertices (see [AM04]) and hence to list all of the cycles, and to create a graph
T ′v(L

k) that is a spanning tree of the graph that results when each cycle in Lk

is contracted to a single vertex. Tv(L
k) is trivial to compute, given T ′v(L

k).
Each Lk+1 ∈ Lk+1 is contained in a black cycle C in Lk. There may be more

than one connection between C and Lk+1. A contribution of [Hag90] is to show
that there is an edge which we denote e(v, Lk+1) connecting C to some vertex
u in Lk+1 such that that a depth-first search tree for G incorporating Tv(L

k)
and Tu(Lk+1) can be constructed using the edge e(v, Lk+1). (Some figures are
provided toward the end of this article, which help illustrate the process by which
LCCs are attached to the surrounding black cycle.) By induction, if we know
the root of the depth-first tree for L1, this determines the lead vertex of every
black cycle in G and thus also uniquely determines the connection between every
black cycle C and every LCC L connected to C. Let us denote this connection
e′(r, L), where e′(r, Lk+1) is e(v, Lk+1) for the choice v = e′(r, Lk). Connecting
the forest consisting of the trees Tx(L) for various x and L along with the edges
e′(r, L) results in a depth-first tree for G.

We can now describe the algorithm at a high level:

1. Given an undirected graph G and a vertex r, determine if G is planar and
connected, and if so, compute an embedding of G in the plane with r on
the external face.

2. Construct the face-vertex incidence graph G′D of G. This is the undirected
bipartite graph on vertex set V ∪ F that contains an edge {u, F}, for all
u ∈ V and F ∈ F , exactly if F is incident on u in G. G′D is clearly planar.

3. For each face of G (i.e., each vertex of GD), compute its distance from the
external face F0. This is clearly half of its distance from the external face
in G′D, which is planar. This gives us distances in GD.

4. Using this distance information, compute the type of each vertex and edge
of G. This allows us to partition the vertex set of G into the graphs Lk.

5. Partition each Lk into connected components, to obtain the set LCCk+1.

6. For each Lk ∈ LCCk+1 and for each v in Lk construct Tv(L
k).
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7. For each k, for each Lk+1 ∈ LCCk+1, identify the black cycle C in Lk that
contains Lk+1.

8. Construct a tree S whose nodes consist of vertices vC for each black cycle
of G and vL for each LCC L. The root of S is the unique LCC L1 ∈ L1.
(It is unique because G is connected.) The children of any LCC Lk ∈ Lk
are the black cycles in Lk. The children of any black cycle C in Lk are
the LCCs Lk+1 that are in the interior of C.

9. Label each edge (L,C) in the tree S with the name of the lead vertex of
the black cycle C in the depth-first traversal of G starting at r, and label
each edge (C,L) in the tree S with the name of the vertex of L that is
traversed in the edge e′(r, L).

10. Start constructing the tree T by incorporating the tree Tr(L
1) (rooted at

the root r).

11. Output the tree T that is composed of the trees Tv(L) for each L ∈
⋃
k Lk

and each v ∈ L, along with the edges e′(r, Lk+1) for each Lk+1 ∈ Lk+1,
using the information computed in step 8. (Discard all of the trees Tv(L)
that are not connected to T , i.e., those trees where v is the “wrong” root.)

The first step is computable in logspace [AM04, Rei08]. The second step is
computable in logspace. The third step is computable in logspace with an oracle
for computing distance in planar graphs. Each of the remaining steps is easy
to compute in logspace, using the fact that reachability in undirected graphs
is logspace-computable [Rei08]. The step that requires the most explanation is
step 9. In order to label an edge (L,C) in the tree, start a traversal of T (r, L1),
which allows us in logspace to compute the lead vertex of each black cycle C ′ in
L1. If C is not one of these cycles C ′, then the edge (L,C) is a descendent of one
such C ′, and we can determine which one in logspace. Knowing the lead vertex
of C ′, we can determine the edge of G that connects this cycle C ′ to the LCC
L′ such that the edge (C ′, L′) is followed from the root of S to (L,C). Knowing
this edge, we can determine the lead vertex of each cycle C ′′ such that (L′, C ′′)
is an edge of S. If C is also not any one of these cycles C ′′, then again we can
in logspace determine the next node of S that needs to be traversed, and we
can continue in this way until we finally reach the edge (L,C). It is important
to note that we do not need to maintain the entire list of lead vertices that
are encountered along the way. Note also that this procedure also gives us the
information that is required to label vertices of the form (C,L). This procedure
is repeated for each edge of S (and thus the lead vertices of each black cycle are
recomputed many times).

The argument showing that the tree produced in this way is a depth-first
tree is similar to the argument in [Hag90].

This completes the proof.
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6 Other Applications

As direct applications of the CREW[log n] algorithms for planar Depth-First and
Breadth-First search, we directly obtain CREW[log n] algorithms for problems
such as finding strongly-connected (or 2-connected, 3-connected, etc.) compo-
nents in planar graphs. Below we discuss some more applications.

6.1 Minimum s− t Cut

Here we show that the minimum s− t cut problem in undirected planar graphs
logspace-reduces to finding shortest paths in the same class of graphs, via the
well-known technique of cut/cycle duality [IS79]. Given an undirected graph
with a source vertex s and a sink vertex t, an s− t cut is a minimal set of edges
X whose removal disconnects s and t. The goal here is to find an s − t cut
of minimum size. From the Max Flow-Min Cut Theorem this also corresponds
to the size of the maximum s − t flow in the graph. It was known that the
problem is in CRCW[log2 n] [Joh87]. In this paper we show that it can be solved
in CREW[log n].

Theorem 14. The minimum s − t cut problem in undirected planar graphs
logspace-Turing reduces to PlDist.

Proof. We follow the proof technique of [IS79] and show that other than shortest
path computation all other steps can be carried out in L. Let G = (V,E)
be the given undirected planar graph with two designated vertices s, t. Let
G∗ = (V ∗, E∗) be the dual graph of G. Consider the faces in G∗ containing the
vertices s and t and denote them f∗s and f∗t , respectively. It is not hard to show
that if X is the minimum s − t cut then X∗ = {v∗|v ∈ X} is a cycle in G∗ of
minimum length enclosing t∗. Such a cycle is called a cut-cycle.

Next, find the shortest path between some s∗ ∈ f∗s and some t∗ ∈ f∗t in
G∗ and call it Π = {v∗1 , v∗2 , . . . , v∗` }. (This is easy to do in logspace if one
has a Breadth-First Search (BFS) tree, which can be obtained with an oracle
for PlDist, by Corollary 4. Assume an ordering on the edges on Π from s∗

towards t∗. Let O∗Π denote the set of edges that have exactly one end point on
Π. Consider any such edge (v∗i , u

∗) ∈ O∗Π. Let us say that (v∗i , u
∗) is Π-left if u∗

occurs after v∗i−1 and before v∗i+1 in the clockwise order of neighbours around
v∗i . Otherwise call it Π-right. Call a cut-cycle nice if it contains exactly one
Π-left edge and one Π-right edge. It was shown in [IS79] that, among all of the
shortest cut-cycles, there exists at least one shortest cut-cycle that is nice.

To find such a cycle we do the following. Direct the Π-left edges away from
the vertices on Π and the Π-right edges towards the Π vertices. All the other
edges are replaced by bi-directed edges. Call this graph ~G∗. Now for each v∗i ∈ Π
find the shortest directed path to itself which gives the shortest cycle enclosing
t and so the corresponding primal edges give the minimum s− t cut.

Corollary 15. Given an n vertex undirected planar graph with two specified
vertices s, t the minimum s− t cut can be found in CREW[log n].
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6.2 Maximal Matching

In this section, we consider the problem of finding a maximal matching in an
undirected planar graph. This should not be confused with the problem of
finding a maximum matching in a planar graph, which has also been studied
recently [DKKM18], as has the related problem of finding a perfect matching in
a planar graph [AV18].

Theorem 16. A maximal matching of an undirected planar graph with n ver-
tices can be computed in CREW[log n].

Proof. Let G = (V,E) be the given undirected planar graph. Find a Depth-
First Search tree T of G using our CREW[log n] algorithm from Section 5. Next,
using Lemma 17 we find a matching that covers all internal vertices of the tree
T .

It is easy to see that such a matching is maximal, because every edge in the
graph is either a tree edge (and therefore has an internal vertex as an endpoint)
or a non-tree edge (which, by the properties of a Depth-First Search tree, must
have an internal vertex as an endpoint).

Lemma 17 shows that a matching of the tree covering all internal vertices
can be computed in LogDCFL = CROW[log n], and hence the cost of computing
the matching is dominated by the cost of computing the Depth-First Search
tree, which can be done in CREW[log n].

Lemma 17. Given an undirected planar graph G and a spanning tree T of G,
a matching covering all the internal vertices in T can be found in LogDCFL.

Proof. We assume that the spanning tree T , rooted at a vertex r, is presented in
the following form: for each vertex u a linked list of all children of u is given. The
“eldest” child of u is provided by the link e(u), and given any child v, the “next”
sibling is reached by the link next(v). A logspace-bounded APDA running in
polynomial time can easily execute the following recursive pseudocode:

def match(r,already_matched):

If r is a leaf, then return.

Else v = e(r).

If already_matched is true

then \% try to find a match for v

match(v,false)

Else \% match r with v, and continue

output ((r,v))

match(v,true)

While v has a next sibling

v = next(v)

match(v,false)

Endwhile

return.
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It is easy to see that the edges produced as output constitute a partial matching.
Some leaves might not be included in the matching, but every internal vertex
is covered. An APDA can easily implement the recursive algorithm, using the
stack to store the current value of v and r. The runtime is easily seen to be
polynomial in the size of T .

This also shows that a 2-factor approximation of the minimum vertex cover
problem on planar graphs can be obtained in CREW[log n]. However, as we
will see next, for minimum vertex cover and a host of other NP-hard opti-
mization problems on planar graphs there is actually an approximation scheme
computable in CREW[log n].

6.3 Approximation Schemes via Baker’s Method

Here we present approximation schemes, that is, (1 ± ε) approximation algo-
rithms for every ε > 0, running in CREW[log n] for a class of monadic-second-
order-definable (MSO-definable) optimization problems on planar graphs which
are amenable to Baker’s method [Bak94].

There are two main general approaches for designing a Polynomial-Time Ap-
proximation Scheme (PTAS) for problems on planar graphs. The first approach
is based on planar separators [LT80]. The second approach, first introduced by
Baker [Bak94] and known as the shifting technique, is based on decomposition
into overlapping subgraphs of bounded outerplanarity, which are of bounded
treewidth. For a general account on these, see [DH08].

Baker’s method was originally designed to give PTASs for a host of NP-
hard optimization problems on planar graphs, such as minimum vertex cover,
minimum dominating set, maximum independent set, etc., which are hard to
approximate in general graphs. Many of these remain NP-hard even in planar
graphs. Later the technique was generalized to a broader class of graphs called
graphs of bounded local treewidth [Epp00, DH04].

Baker’s Algorithm The main two computational parts are,

1. decomposing the graph into bounded treewidth graphs, and

2. solving the optimization problem on bounded treewidth graphs optimally
and combining these solutions.

Step (1) requires performing BFS on the graph G and considering the in-
duced subgraphs Gi,j (which can be seen to have treewidth O(k)) that lie be-
tween layers ki + j and k(i + 1) + j, for i ≥ 0 and offset 0 ≤ j ≤ k − 1. These
subgraphs are formed by deleting (or including in both the adjacent slices) the
vertices/edges in every k = O(1/ε)-th BFS layer. (Particular details differ, de-
pending on the problem). By choosing the right offset, we can make sure this
affects the optimum solution at most by a factor of ε.

For Step (2), given an MSO-definable problem, using Bodlaender’s theo-
rem [Bod96] and Courcelle’s theorem [Cou90] on bounded treewidth graphs,
one can find the optimal solution in polynomial time.
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As observed by [DK14], to get efficient parallel algorithms, for Step (2) above
one can make use of the work of [EJT10], which proves a logspace version of
Bodlaender’s and Courcelle’s theorems. The distance computation in Step (1)
dominates the complexity bound. As a consequence of Corollary 4, we obtain
the following:

Theorem 18. MSO-definable optimization problems which are amenable to
Baker’s method have CREW[log n] approximation schemes in planar graphs.

7 Conclusion

The reachability problem for planar graphs is one of the most prominent ex-
amples of a problem in NL that is known to be hard for L [Ete97] and is not
known to be hard for NL. After Bourke, Tewari, and Vinodchandran showed
that the problem lies in UL, the isomorphism problem for an important class of
planar graphs was shown to lie in UL [TW10a], before ultimately planar graph
isomorphism was shown to be complete for L [DLN+09]. A natural question is
whether planar graph reachability is also destined to find a home in L.

At some level, it is surprising that so many natural computational problems
turn out to be complete for one of the complexity classes that arise using a small
vocabulary of notions from circuit complexity and resource-bounded nondeter-
ministic or alternating Turing machines. There is no strong reason to believe
that planar reachability will also turn out to be complete for one of these “stan-
dard” complexity classes, no matter how much our prior experience with other
problems has conditioned us to expect that this is the “normal” outcome.

Our main contribution is to give a new upper bound on the complexity of
planar reachability: a bound that is not widely believed to hold for NL-complete
problems. It will be interesting to see if additional upper bounds can be placed
on planar reachability; does it lie in LogDCFL? Or in USAC1?

A second contribution is to show that the characterization of CREW[log n] in
terms of unambiguous circuits can be useful in the design of PRAM algorithms,
which we have illustrated by presenting the first CREW[log n] algorithms for
depth-first search trees, maximum flow in planar graphs, edit distance, and
other problems.

We do not believe that this is the final word on the complexity of planar
reachability, and we look forward to further developments.
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