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The Complexity of Finding S-factors in Regular Graphs

Sanjana Kolisetty™* Linh Lef Ilya Volkovich? Mihalis Yannakakis®

Abstract
A graph G has an S-factor if there exists a spanning subgraph F' of G such that for all v € V :
deg(v) € S. The simplest example of such factor is a 1-factor, which corresponds to a perfect matching
in a graph. In this paper we study the computational complexity of finding S-factors in regular graphs.
Our techniques combine some classical as well as recent tools from graph theory.

1 Introduction

The Constraint Satisfaction Problem (CSP for short) has been a classical topic in computer science of both
theoretical and practical importance. While CSPs can be quite general, in this paper we focus on the “fixed-
template” Boolean CSPs. That is, CSPs over the Boolean domain where the constrains come from a fixed set
of Boolean relations I'. Formally, given a fixed set of Boolean relations I' = {Ry, R, ..., Ry}, a I'-formula
is a conjunction of constraints of the form R;(z;,,...,2;,) where R; € I' and the x;,-s are propositional
variables; CSP(I") forms a decision problem where one needs to determine if a given I-formula is satisfiable.
In other words, one needs to determine whether it is possible to satisfy all the constraints as given by the
relations from I' simultaneously.

The object of study is the computational complexity of CSP(T") as per the choice of T'. In a seminal work
of [Sch78], Schaefer identified six classes of sets of Boolean relations for which CSP(I") € P and proved that
all other sets of relations generate an NP-complete problem. This result is what is known as Schaefer’s
Dichotomy Theorem which provides a complete classification of the computational complexity of CSP(T").
The two most popular examples of applications of this theorem are the NP-completeness of the 1-in-3SAT
and not-all-equal 3SAT (NAE-3SAT) problems. Subsequently, in [ABIT09], a more refined classification was
presented.

While a more general Dichotomy Theorem was recently proved for non-Boolean CSPs [Bull7, Zhul7]},
there has a been large body of work dedicated to the study of the computational complexity of a restricted
version of CSP(T"), denoted as CSP2(I") or CSPggge(I") [Ist97, Fed01, DF03, GIM03, FF06, DK15, KKR17].
Formally introduced by Feder in [Fed01], CSPy(T") corresponds to a specialization of CSP(T") to the instances
where each variable appears at most twice. Alternatively, one can think about embedding the input I'-formula
into a graph, such that edges correspond to variables and nodes to constraints, and the constraint satisfaction
problem asks for a spanning subgraph such that the set of its edges at each node satisfies the constraint at
the node.
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The main subtlety is that if CSP(I") € P then, clearly, CSP,(I") € P. However, in the general NP-hard
instances there is usually no restriction of the number of appearances of a variable. Therefore, a proof
that CSP(T") is NP-hard may not carry over to CSP»(T"). In particular, if we consider the aforementioned
examples, CSP5(1-in-3SAT) corresponds to determining existence of a perfect matching in a 3-regular graph,
which is decidable in polynomial time. In addition, CSPo(NAE-3SAT) is “trivial” since every read-twice
NAE-3SAT-formula is always satisfiable!?

Despite all the invested effort, we are still far away from the ultimate goal. Indeed, the known results do
not even provide a complete classification for the cases when I' consists of just a single relation! A natural
focus taken in [Ist97], was to consider the sets I" that consist of symmetric relations as these instances of arise
more naturally in the graph context, because incident edges to a node are typically treated symmetrically
in graph theory. This class of problems can be regarded as generalized matchings. In this paper we give a
complete classification of the computational complexity of CSPy(T"), where I' consists of a single symmetric
relation.

1.1 Results

In light of the natural interpretation of the problem in terms of finding S-factors of graphs, we present our
main results using that terminology. The CSP versions of the main results (and their proofs) can be found
in Section 4. Our first result is a Dichotomy Theorem for regulars graph of even degree. The Dichotomy is
obtained by classifying all the tractable cases.

Theorem 1. Let £ € N. There is a polynomial-time algorithm that given a 2¢-regular graph G as an input,
finds an S-factor in G, if there is one, in the following four cases:

1. S contains an even number.

2. LS.

3 {{—-1,L+1} CS.

4. S={p,p+2,--- ,p+2r} for some p,r > 0.
Otherwise, finding an S-factor is NP-Hard.

As could be observed, all the tractable cases reduce to the case of finding a perfect matching in a graph
(see Section 2.1 for details). Consequently, an algorithm for perfect matching in graphs (e.g. [Edm65])
could be used to find these S-factors, for the “yes”-instances of the problem. For regulars graph of odd
degree, we obtain a somewhat weaker result: we show that for each set S, the decision problem is either
polynomial-time solvable or NP-hard, yet we are unable to classify explicitly all the tractable cases. Closing
this gap will require resolving several conjectures in graph theory (see [AK85, LWY13, AK14, BKM™16] for
more details).

Theorem 2. Let £ € N. There is a polynomial-time algorithm that given a (2¢ + 1)-regular graph G as an
input, decides if G has an S-factor, in the following two cases:

1. Every (20 + 1)-regular graph has an S factor.
2. S={p,p+2,--- ,p+2r} for some p,r > 0.
Otherwise, deciding if G has an S-factor is NP-Hard.

There are specific sets S, for which it is an open problem in graph theory whether every (2¢ + 1)-regular
graph has an S-factor. A simple concrete example is the case of S = {1, 4} for degree-5 graphs (the conjecture
in this case is that there is always an S-factor). The theorem tells us that, even though we may not know
the answer to the open problem for a particular S, if it does not hold trivially for all graphs and there is
a counterexample, then the corresponding S-factor problem is NP-hard; that is, there is a way to use any
counterexample (as a black box) to generate an NP-hardness reduction.

2This follows immediately from Tutte’s Theorem (Lemma 2.8), however there is a more direct way to see that.



1.2 Comparison to Previous Results

In [Ist97], Istrate studied the special case when I' consist of symmetric relations. In this work, several
“patterns” for which CSPy(T") € P were identified. In particular, one such pattern corresponds to Case 4 of
Theorem 1. This result was obtained via connections to covering problems. In addition, Istrate formulated
a sufficient condition under which the computational complexity of CSP2(I") and CSP(I") is the same, with
the additional “constants for free” assumption. That is, one can fix some variables to either 0 and 1 (for
more details, see Lemma 2.25 and the preceding discussion). Later on, Feder [Fed01], extended the condition
to non-symmetric relations, introducing Delta Matroids, and showed that if I' contains some relation that
is not a Delta matroid then CSPy(I") and CSP(I") have the same complexity (in the presence of constants).
Several subsequent works [DF03, DK15, KKR17] introduced further refinements to Delta Matroids. Yet,
“constants for free” remained a prevalent assumption in these and other CSP-related works. Nonetheless,
even with the assumption, no classification for the mere case of a single symmetric relation was known prior
to our work.

We also would like to point out that the “constants for free” assumption is implicitly equivalent to adding
two more relations P(z) = x and Q(x) = -z to I'. It is important to stress that adding these relations can
completely tilt the scale. For example, consider a single 8-ary symmetric relation “two or six out of eight”.
Formally, R(Z) = 1 iff wy(x) = 2 or 6. In the graph view, this corresponds to the problem of finding a
{2,6}-factor of an 8-regular graph. Now by Tutte’s Theorem (Lemma 2.8), every 8-regular graph has a
2-factor. Hence CSP3(R) € P in a “trivial” way. On the other hand, CSP2({R,z, —x}) is NP-hard (follows
e.g. from [Ist97]). Our results do not rely on the “constants for free” assumption. In fact, they complement
it: roughly speaking, we show that either CSP2(I") € P or there exist I-formulas that “implement” the
relations  and —z. See Lemmas 3.2 and 3.3 for more details.

There is, of course, extensive work in graph theory on factors in graphs, (see e.g. the surveys [AK85, Plu07]
and references therein), with the development of a rich theory of matchings, as well as more general factors.
This includes structural results on the existence of factors, starting from Petersen’s theorem from 1891
[Pet91]; algorithmic results, including e.g. Edmonds’ matching algorithm [Edm65] and its extensions and
refinements; and hardness results, starting e.g. with Lovdsz’s theorem [Lov72] that for any a,b € N such
that 1 < a < b— 3, the problem of deciding whether a graph has an {a, b}-factor is NP-hard even for simple
graphs (not necessarily of a given, regular degree). We will leverage several of these graph theoretic results
on (generalized) matchings and the existence of suitable factors in graphs. We review some of these theorems
that we use in the next section.



2 Preliminaries

Definition 2.1 (Zebras and Holes). Let S C N be a subset of N. Following [Ist97], we say that S contains
a hole of size ¢ if there exist i such that: i,i+t+1€ S and [i +1,t]NS = 0.

Let a < b € N such that a = b(mod2). We say that S is an (a,b)-zebra if S = {a,a+2,a+4,...,b}. We
call a set S a zebra, if it is an (a,b)-zebra for some a,b € N.

Remark: A set S = {a} also constitutes a zebra since it is an (a, a)-zebra. The following is a simple
observation about the structure of finite subsets of N, that will be useful for us later.

Observation 2.2. Let S C N be a finite, non-empty subset of N then (at least) one of the following holds:

e S contains two consecutive numbers.
e S is zebra.

e S contains a hole of size at least 2.

2.1 Graphs

In this paper we consider graphs G = (V, E). Unless specified otherwise, all the graphs considered in the
paper are general graphs (i.e. with self-loops and parallel edges). The focus of this paper is the complexity
of finding a particular kinds of subgraphs in graphs, known as factors. We define this formally now.

Definition 2.3 (Factors). Let G = (V, E) be a graph with V vertices and E edges. [AK85]

1. H-factor: Let H be a set function associated with G that maps V. — 2N. We say that G has an H-factor
if there exists a spanning subgraph F of G such that for allv € V : degp(v) € H(v).

f-factor is a specialization to the case when¥v € V : H(v) = {f(v)}, for some function f : V(G) — Z.
S-factor is a specialization to the case when H(v) =S for allv € V, for some fixed set S C N.

[a, b]-factor is a further specialization to the case when S is the interval [a,b).

AN S

k-factor is a further specialization to the case when S = {k}.

The simplest case of a graph factor is a 1-factor which corresponds to a perfect matching of a graph.
This problem has a well-known efficient algorithm known as “Blossom Algorithm”.

Lemma 2.4 ([EAdm65]). There exists a polynomial-time algorithm that given a graph G = (V,E) as an
input, outputs a 1-factor F of G, if one exists.

The algorithm can be easily extended to handle f-factors due to the following observation:

Lemma 2.5 ([Ber73]). There exists a polynomial-time algorithm that given a graph G = (V,E) and a
function f:V — Z (as a vector) as an input, outputs a graph G’ such that G' has a 1-factor F' iff G has
an f-factor F. Moreover, F' can be computed in polynomial time given F’.

In addition, using the simple idea of [KMO1] of introducing self-loops, the algorithm can be further
extended to H-factors, where each H(v) is a zebra (See Definition 2.1).

Lemma 2.6 ([KMO1]). There exists a polynomial-time algorithm that given a graph G = (V,E) and a
function H : V. — 2N where each H(v) is zebra, as an input, outputs a graph G’ and a function f:V — 7
such that G' has a f-factor F' iff G has an H-factor F. Moreover, F can be computed in polynomial time
given F'.

The following is immediate given the above reductions to the perfect matching case.



Corollary 2.7. There exists a polynomial-time algorithm that given a graph G = (V,E) and a function
H :V — 2N where each H(v) is zebra, as an input, outputs an H-factor F of G, if one erists.

We note that an efficient algorithm for this kind of H-factors has been obtained in [Ist97] using a different
argument. Recently in [KKR17], the algorithm was extended to also handle the “asymmetric” version. Next,
we require the following results regarding the existence of regular factors in regular graphs.

Lemma 2.8 (Regular Factors of Regular Graphs).
1. [Tut78] Let r,k € N such that 1 < k <r —1. Then any r-regular graph has a [k, k + 1]-factor.
2. [Pet91] Let v and k be even integers such that 1 < k <r. Then any r-reqular graph has a k-factor.

3. [Gal50] Suppose r is even and & is odd. Then any connected r-regular graph of even order has a
T
Z-factor.
2

As a corollary we obtain the following, which was observed for simple graphs in [AK14]. We also note
that the proof of [AK14] is merely existential whereas our proof is algorithmic.

Lemma 2.9. Let r € N such that both r and 5 are even. Then any r-regular graph of even order has a
{% -1,5+ 1}-fact0r.

Proof. Let G = (V, E) be a graph satisfying the preconditions. For every v € V', we add a self-loop. Call this

new resulting graph G’ = (V, E’). Observe that G’ is a (r+2)-regular graph of even order and “£2 = £ +1 is

odd. Therefore, by Lemma 2.8, G’ has a (§ + 1)-factor. Now, consider two cases: if v € V uses the self-loop

to fulfill its factor, then the induced degree of v in G is § — 1. Otherwise, the induced degree of v in G is

Z41. 0

2.2 Boolean Relations

Definition 2.10. The Hamming Weight of a vector v € {0,1}" is defined as: wyu(v) = {i |v; #0}|. That
is, the number of its non-zero coordinates.

Definition 2.11 (Symmetric Relation). We say that an m-ary relation R(x1,22,...,Tmy) is symmetric if
there exist a set Spec(R) C {0...m} such that R(Z) = 1 if and only if wu(Z) € Spec(R). The set Spec(R)
is called the spectrum of R.

The following are examples of particular symmetric relations we will be utilizing.
Example 2.12.

o NE(z1,z2) is a binary relation with Spec(NE) = {1}.

o Let k € N. EQy is a k-ary relation with Spec(EQ,,) = {0,k}.

Definition 2.13 (Dual Relation). Let R(x1,...,2m») be a relation. We define the dual relation of R as:

A
R*(x1,...,Zm) = R(—x1, " %o, ..., " %p).

The following observation is immediate with respect to symmetric relations.

Observation 2.14. For a symmetric m-ary relation R we have: Spec(R*) = {m — i | i € Spec(R) }.



2.2.1 TI'-Instances, CSP(I"), Triviality

In what follows, let I' = {R1, Ra, ..., R¢} be a fized set of Boolean relations. We will use I'* to denote the
set of dual relations. Formally, T'* = {R{,R5,...,R}}, where R} is the dual relation of R;.

Definition 2.15. A I'-instance or I-formula ® is a conjunction of constraints of the form R;(xiy,...,%;,)
where R; € ' and the x;;-s are propositional variables. The read of a variable x; in ® is the number of
occurrences of x; in ®. The read of a formula ® is the mazrimal read of a variable in it.

In this paper we will focus on read-twice formulas, that is formulas in which all the variables appear at most
two times. We now formally introduce the main problem we will study.

Problem 2.16. CSP(T") forms a decision problem where one needs to determine if a given I'-formula is
satisfiable. In other words, one needs to determine whether it is possible to satisfy all the constraints as
given by the relations from T, simultaneously. For k > 1, CSP(T") is a specialization of CSP(T') to read-k
instances. If T' = {R} has a single relation R, we will write CSP(R) and CSPy(R).

As was pointed out in the introduction, in this paper we are interested in the computational complexity
of CSP4(T"), as per the choice of I'. We now recall Schaefer’s Dichotomy Theorem [Sch78].

Lemma 2.17 ([Sch78]). CSP(T") € P in the following siz cases:

1. VR; €T : R;(0) =1

1

2. VR; €T : R;j(1)
3. VR; € I' : R; 1is equivalent to a conjunction of binary relations
4. VR; € I' 1 R; is equivalent to a conjunction of Horn clauses
5. VR; € I' 1 R; is equivalent to a conjunction of dual-Horn clauses
6. YR; € I': R; is equivalent to a conjunction of affine forms
Otherwise, CSP(T") is NP-Hard.
The following is an instantiation of the Theorem to the case of a single symmetric relation.

Corollary 2.18. Let R(x1,...,Zm) be a symmetric relation. Then CSP(R) € P in the following cases:

1. R(0)=1
2. R(1)=1
3 m<2

4. Spec(R) contains all odd numbers in {1,...,m}

Definition 2.19 (Triviality). We say that CSPy(T") is trivial if every instance of CSPy(T') (i.e. every read-k
T-instance) is satisfiable.

To put the above definitions into a context, observe the first two of the six tractable classes correspond
to cases when CSP(T") and CSP(I'*) are trivial. Similarly, observe that Cases 4 and 5 correspond the same
conditions applied to both CSP(I") and CSP(I'*). With some extra work, you can see that the same holds
true for Cases 3 and 6. In the same vein, the following lemma is immediate from the definition.

Lemma 2.20. 1. CSP(I") is trivial, as long as T' does not contain a contradiction.

2. For any k € N and any I': CSPy(T") is trivial iff CSPy(I'*) s trivial.



2.2.2 Induced Relations and Implementation

Definition 2.21 (Induced relation). For a relation R(Z,y) we define the induced relation 3gR(Z,y) on T
as
JyR(z,y) =1 <= Ty such that R(Z,y) = 1.

Definition 2.22 (Implementation). Let R(Z) be an arbitrary relation. We say that I implements R, denoted
by I imp R, if there exists a I'-instance ®(z,y) such that R(z) = JyP(z,y). Furthermore, we say that T
read-twice-implements R, denoted by I' impy R, if in addition:

1. Fach x; is read-once in ®.
2. Each y; is (at most) read-twice in ®.

The intuition behind the definition is that if I" read-twice-implements R then we can, effectively, consider
the set I' U {R} instead of I'. The following lemma showcases this intuition further, by showing that a
three-way Equality EQs can be used to implement k-way equality EQ, for any &£ > 3.

Lemma 2.23. IfI' read-twice-implements EQg then I' read-twice-implements EQ,, for any k > 3.

Proof. By induction on k. The base case k = 3 is trivial. Let ®; denote a I'-instance that read-twice
implements EQy (1, ...,2). Given ®, we can read-twice implement EQ,., (21, ..., 2x41) in the following
way:

Q. (1, 2r-1,Y) A P3(y, Th, Trt1)-

Given our inductive hypothesis and the fact that we can read-twice implement EQ5, we can conclude that
I' read-twice-implements EQ,, ;. O

We note this was already observed in [Ist97, Fed01]. Similar ideas can be used to show that if T' read-
twice-implements particular relations, then read-twice I'-formulas exhibit some interesting closure properties.

Lemma 2.24 (Read-Twice Implementing Particular Relations).

1. Closure Under Variable Negation: Suppose I' read-twice-implements NE. Then read-twice I'-
formulas are closed under variable negation. Formally, if I' impy R(x, ) then T imp, R(—z, 7).

2. Closure Under Setting Variables to Constants: Suppose I' read-twice-implements x or —x.
Then read-twice I'-formulas are closed under setting variables to either 1 or 0, respectively. Formally,
if T impy R(z,7) then T impy R(1,7) or R(0,%), respectively.

3. Closure Under Variable Repetition: Suppose I' read-twice-implements EQ,. Then read-twice
I'-formulas are closed under repetition of any variable arbitrary number of times.

We will use the above implicitly. We finish this section with the following simple observation from [Ist97].

Lemma 2.25 ([Ist97]). Let R be a symmetric relation such that Spec(R) contains a hole of size at least 2.
Then {R,x,—z} read-twice-implements EQ;.

We note that Feder [Fed01] extended this claim to a non-symmetric case defining Delta Matroids. In
the same paper it was observed that WLOG every variable in a read-twice formula occurs ezactly twice.
Furthermore, such formulas have very natural interpretation as graph where edges play the role of variables
and nodes the role of constraints.

Lemma 2.26 (Graph View of CSPy [Fed01]). Every read-twice formula can be efficiently transformed into
an exact read-twice formula, and furthermore viewed as a graph.



3 Main Technical Tools

In this section we present our main technical tools, which we will use to prove Theorems 1 and 2. We begin
by showing that the sets T' for which CSP3(T") is non-trivial (in the sense of Definition 2.19), read-twice
implement NE(z,y) or {z,~z}. Consequently, by Lemma 2.24, such read-twice I'-formula are closed under
variable negation or setting variables to constants {0,1}. Note that the result holds for general relations
(not necessarily symmetric).

Lemma 3.1. Suppose that CSPy(T") is non-trivial. Then T’ read-twice-implements NE(z,y) or {z, -x}.

Proof. Since CSPy(T") is non-trivial, there exists an unsatisfiable read-twice I'-instance ®. On the other hand,
recall (e.g. Lemma 2.20) that any read-once I'-instance is satisfiable. Consider the “unpaired” version @' of
®. Formally, for each variable x; we replace one of the occurrences with a fresh new variable y;. Observe
that the resulting ®’ is read-once and hence satisfiable. Now, consider the process of gradually pairing the
variables of ®’, that will eventually recover ®. Formally, ® EX 2 @) results from ®f by setting 1 = y;.
More generally, ®; results from ®,_; by setting x; = y;. As & = @’ is satisfiable and @), = ® is not, by a
hybrid argument, there exist ¢ such that ®;_, is satisfiable and ®} is not. Let ¢(x;,y;) be the relation given
by ®._, induced to the variables x; and y; (Recall Definition 2.21). By the above, ©(0,0) = ¢(1,1) = 0 and
either ¢(0,1) =1 or ¢(1,0) = 1 (or both). Consider three case:

e ©(0,1) = ¢(1,0) = 1. In this case: ¢(x;,y;) = NE(z;, y;).
e ©(0,1) =0,(1,0) = 1. In this case: Jy;o(x;,y;) = x; and Jx;p(z;, ¥5) = ;.

e ©(0,1) =1,¢(1,0) = 0. In this case: Jy;o(x;,y;) = ~x; and Iz;0(T;, Yi) = Yi- .

Next, we show that for symmetric relations we can derive further closure properties under some technical
conditions.

Lemma 3.2. Let R be a symmetric 2(-ary relation such that: ¢ € Spec(R) and {£ — 1,0+ 1} < Spec(R).
Then {R,NE} read-twice-implements EQs or {z,—z}.

Proof. We define the following two sets: S_ = {a | Rl —a)=1} and S; = {a | R({ +a) = 1}. Further-
more, let a_ = min S_ and a4 = min S;. We define a_ or a4 to be infinity if S_ or S is empty, respectively.
We consider three cases:

e Case 1: a; = a_. Observe that a_ > 2. Using NE and Lemma 2.24, we plug ¢ — a_ pairs z;, 7z; into
the relation R. Formally, consider,

>

R(Z,9) = R(21, 721,y Z0—a_s "Z—a_s Y1y - -, Y2a_ )-
By definition, wi(z) = ¢ —a_ and 0 < wy(y) < 2a_. Now, since ay =a_:
R(z,5) =1 < wu(y) € {0,2a_}.
Consequently, 3ZR(z,7) = EQ4(7), where k = 2a_ > 4.
e Case 2: ay > a_. Observe that a_ > 1 and consider R(Z, ) as above. Now, however, since a4 > a_:
R(z,y) =1 < wyu(y) =0.
Hence, we obtain —y;. Using NE, we can obtain y;.

e Case 3: a_ > ay. Observe that ay > 1. We repeat the argument of Case 2 for the dual relation R*
of R. As R* read-twice-implements {z, -z}, so does R. 0



We use a similar argument for relations of odd arity.

Lemma 3.3. Let R be a symmetric 2 + 1-ary relation such that: {¢,£+ 1} € Spec(R). Then {R,NE}
read-twice-implements EQg or {z, -x}.

Proof. We define the following two sets: S_ = {a | Rl —a)=1} and St = {a | R¢l+1+a)=1}. Fur-
thermore, let a— = minS_ and a4 = minS;. We define a_ or ay to be infinity if S_ or S} is empty,
respectively. We consider three cases:

e Case 1: a; = a_. Observe that a_ > 1. Consider,

>

R(Z,7) = R(21, 721, -+, Z0—a_s " Z0—a_s Y1y - - s Y2a_ +1)-
By definition, wi(z) = ¢ —a_ and 0 < wy(y) < 2a_ + 1. Now, since ay = a_:
R(z,5) =1 < wu(y) € {0,2a_ + 1}.
Consequently, 3zR(z,y) = EQj(y), where k = 2a_ +1 > 3.
e Case 2: ay > a_. Observe that a_ > 0 and consider R(Z, ) as above. Now, however, since a1 > a_:
R(z,5) =1 < wu(y) =0.
Hence, we obtain —y;. Using NE, we can obtain y;.

e Case 3: a_ > ay. Observe that ay > 0. We repeat the argument of Case 2 for the dual relation R*
of R. As R* read-twice-implements {x, —z}, so does R.

O

4 Characterization Proof

In this sections we give our main results, thus proving Theorems 1 and 2.

Theorem 4.1 (Characterization of Even-Arity Relations). Let R be a symmetric 2¢-ary relation which is
not constantly false. Then CSPo(R) € P in the following four cases:

1. There is an even k € Spec(R).

2. £ € Spec(R).

3. {£—1,0+1} C Spec(R).

4. Spec(R) is a zebra.
Otherwise, CSP3(R) is NP-Hard.

Proof. For Cases 1-4, will take the graph view (Lemma 2.26). Indeed, the problem corresponds to finding
an S-factor of a given 2¢-regular graph, where S = Spec(R).

1. Follows from Lemma 2.8.

2. We can assume WLOG that S contains only odd numbers. In particular, ¢ is odd. Consider the
following algorithm:

e Find all the connected components Cy,Co,...,C; of G.

e If each C; is of even order, return “true”; otherwise, return “false”.



Analysis: If each C; is of even order, then by Lemma 2.8, each C; has an /-factor and so does
G. Conversely, suppose some C; is of odd order. Then by Handshaking Lemma, C; cannot have an
S-factor, as otherwise the overall sum of the degrees will be odd.

3. As before, we can assume WLOG that S contains only odd numbers. Hence, ¢ is even. Apply the
procedure outlined in the proof of Lemma 2.9. This will reduce the problem to the previous case.

4. Apply Corollary 2.7.

For the NP-Hardness proof, we take the CSP view of the problem. We show that if none of the Cases 1-4
hold, then CSP»(R) is as hard as CSP(R). That is, we can lift the restriction on the read. The hardness then
follows from Schaefer’s Dichotomy Theorem instantiated to a single symmetric relation - Corollary 2.18.

Claim 4.2. If Spec(R) does not fall into any of the four cases, then Spec(R) contains a hole of size at least
2 and {R} read-twice-implements EQ;.

Proof. First, observe that Spec(R) cannot have two consecutive numbers (as one of them will be even) and
is not a zebra (Case 4). Therefore, by Observation 2.2, Spec(R) must contain a hole of size at least 2.
Next, consider the relation:

A
N(x,y) = FZR(21, 21,22, 225 -« +» Z0—1, Z4—1, T, Y).

Since Spec(R) does not contain even numbers (Case 1), N(x,y) = NE(z,y). Thus, by Lemma 3.2 given
Cases 2 and 3, {R} read-twice-implements EQ or {x, —z}. In the former case, we are done. In the latter
case, Lemma 2.25 completes the proof. O

O
For symmetric relations of odd arity, we obtain a somewhat weaker result.

Theorem 4.3 (Characterization of Odd-Arity Relations). Let R be a symmetric (20 + 1)-ary relation which
is not constantly false. Then CSPy(R) € P in the following cases:

1. CSPy(R) is trivial.
2. Spec(R) is a zebra.
Otherwise, CSP3(R) is NP-Hard.

Proof. Case 1 is trivial and Case 2 follows from Corollary 2.7.. For the NP-Hardness proof, we use a similar
argument as in Theorem 4.1 to conclude that CSP2(R) is as hard as CSP(R). Here is the high-level idea:

e {R} read-twice-implements NE(x,y) or {z, z} - Lemma 3.1.
e Spec(R) cannot contain two consecutive numbers - Lemma 2.8.

e Spec(R) contains a hole of size at least 2 - Observation 2.2.

{R} read-twice-implements EQg or {z, -z} - Lemma 3.3.

{R} read-twice-implements EQ5 - Lemma 2.25.

First observe that Spec(R) cannot contain two consecutive numbers since by Lemma 2.8, this case is
trivial, using the graph view. Consequently, by Observation 2.2, Spec(R) must contain a hole of size at least
2. In addition, by Lemma 3.3, { R} read-twice-implements EQ, or {z, —x}. In the former case, we are done.
In the latter case, Lemma 2.25 completes the proof.

O
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5 Discussion & Open Questions

In this paper we obtain the first classification of the computational complexity of CSPy(R), where R is a
single symmetric relation. Alternatively, we obtain a classification of the complexity of the S-factor problem
for regular graphs. The characterization is explicit for even degree graphs (even arity), while for odd degrees
it states that all nontrivial cases, except for zebras, are NP-hard. An obvious open question is to identify
for which sets S, an S-factor is always guaranteed to exist; this amounts to resolving certain open problems
in graph theory, even for some small specific S, and looks rather challenging.

More generally, the goal of this line of research is to obtain a complete classification of the computational
complexity of CSPy(T"), analogous to Schaefer’s Dichotomy Theorem. While an explicit classification may
encounter difficult graph-theoretic questions, even for some specific I'; it may well be possible to prove a
general complexity dichotomy theorem, as we have done here, without having to resolve explicitly all the
hard graph-theoretic questions.

One can observe that all the NP-hardness results of CSP5(T"), for the special case when I' consists of
symmetric relation(s), are established via the route of showing that T' implements the Equality relation.
This, in turn, allows to apply Schaefer’s Dichotomy Theorem. One interesting open question is whether
there exist a set I' as above that does not implement Equality, yet for which CSP5(T") is NP-hard. This
would imply that Schaefer’s Dichotomy does not cover all the cases of bounded read.
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