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Quantum hardness of learning shallow classical circuits
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Abstract

In this paper, we study the quantum learnability of constant-depth classical circuits under
the uniform distribution and in the distribution-independent framework of PAC learning. In
order to attain our results, we establish connections between quantum learning and quantum-
secure cryptosystems. We then achieve the following results.

1. Hardness of learning AC® and TC’ under the uniform distribution. Our first result
concerns the concept class TC? (resp. AC?), the class of constant-depth and polynomial-
sized circuits with unbounded fan-in majority gates (resp. AND, OR,NOT gates). We show
that if there exists no quantum polynomial time (resp. sub-exponential time) algorithm
to solve the Learning with Errors (LWE) problem, then there exists no polynomial time
quantum learning algorithm for TC? (resp. AC®) under the uniform distribution (even
with access to quantum membership queries). The main technique in this result uses
explicit pseudo-random generators that are believed to be quantum-secure to construct
concept classes that are hard to learn quantumly under the uniform distribution.

2. Hardness of learning TC) in the PAC setting. Our second result shows that if there
exists no quantum polynomial-time algorithm for the LWE problem, then there exists no
polynomial-time quantum-PAC learning algorithm for the class TCg, i.e., depth-2 TCO cir-
cuits. The main technique in this result is to establish a connection between the quantum
security of public-key cryptosystems and the learnability of a concept class that consists
of decryption functions of the cryptosystem.

This gives a strong conditional negative answer to one of the “Ten Semi-Grand Challenges
for Quantum Computing Theory” raised by Aaronson [Aar05], who asked if AC® and TCY can be
PAC-learned in quantum polynomial time.
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1 Introduction

Machine learning is a diverse field of research with many real-world applications and has received
tremendous attention in the past decade. From a theoretical perspective, since the seminal paper
of Valiant [Val84], there has been a lot of theoretical effort in considering different learning models
that formalize what we mean by learning and understanding which problems can (or cannot) be
efficiently learned within these models.

In recent years, due to the considerable development of quantum computation (both on the
theoretical and experimental fronts), there has been an increased focus on understanding the
tasks for which quantum computers can offer speedups. Machine learning tasks have emerged as
a candidate in this respect. To this end, results in quantum learning theory aim to identify learning
problems for which quantum computers provably provide a (significant) advantage.

More concretely, in learning theory, the goal is to devise a learning algorithm (or learner) for a
set of functions which is called a concept class. The functions in the concept class C are referred to
as concepts. In this paper, we will consider (without loss of generality) concepts that are Boolean
functions c : {0,1}" — {0,1}. The learner is provided with examples of the form (x,c(x)), where c is
an unknown concept lying in C and x is picked uniformly at random from {0, 1}" and the goal of
the learner is to learn c, i.e., it should output a hypothesis 4 that is close to c.! We say that a learner
A learns C, if for every c € C, A learns c. In learning theory, the intent is to devise efficient learning
algorithms for an interesting concept class C, i.e., the learner should use few examples and not too
much time in order to learn C.

In quantum learning theory, the goal is still to learn concept classes C, but now with the access
to quantum resources. Bshouty and Jackson [BJ99] introduced a quantum learning model wherein
the learner is a quantum algorithm and is provided with quantum examples of the form
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for some concept ¢ € C. In order to see why quantum examples generalize classical examples,
observe that a quantum learner could choose to measure the quantum example in the computa-
tional basis, which results in a classical example (x,c(x)) for a uniformly random x € {0,1}". The
advantage of quantum learning usually comes from the fact that one can perform arbitrary uni-
tary operations on these quantum examples, enabling one to improve sample or time complexity
for learning the concept class C.

The first example of a quantum advantage for a learning problem was showed by Bernstein and
Vazirani [BV97]. They showed how to learn the concept class of linear functions C = {c(x) =} ; s;x;
mod 2 : s € {0,1}"} with a constant number of quantum examples. Classically, in order to learn this
concept class efficiently, it is necessary and sufficient to obtain ©(n) examples. With these many
examples a classical learner can use Gaussian elimination and learn the unknown target concept
in polynomial time.

Subsequently, Bshouty and Jackson [BJ99] showed that the class of Boolean functions that
can be represented as polynomial-sized DNF formulas can be learned in quantum polynomial

'More formally, this is referred to as the uniform-distribution learning setting. In learning theory there are several
variations of this model that we skip for the sake of simplicity. See Section 1.1 for a brief introduction and Section 2.4
for more details.



time.> One crucial ingredient for their quantum learning algorithm was the ability to perform
Fourier sampling using quantum examples (which we discuss in Section 1.2). Classically, Ver-
beurgt [Ver90] showed that DNFs can be learned in quasi-polynomial time using classical exam-
ples and this has remained the state-of-the art for the last thirty years! This emphasizes the power
of quantum examples for learning. There have been many other instances (which we discuss in
Section 1.2) where quantum examples give an advantage for quantum learning algorithms.

A natural follow-up question to the quantum-efficient learnability of DNF formulas, i.e., depth-
2 circuits, is:

Can the concept class of shallow, i.e., constant-depth, classical circuits be learned more
efficiently using quantum resources as compared to classical resources?

In particular, are there efficient (i.e., polynomial-time) quantum learning algorithms for Boolean
functions that can be represented by AC? circuits, i.e., constant-depth circuits with unbounded fan-
in AND,OR,NOT gates? More ambitiously, can we quantum-efficiently learn TCY, i.e., constant-
depth circuits with majority gates.> This question was raised by Aaronson [Aar05] as one of the
“Ten Semi-Grand Challenges for Quantum Computing Theory”.

In this work we address this question and give evidence that efficient quantum algorithms
do not exist for learning AC? and TC®. More concretely, under the assumption that the Learning
with Errors problem (LWE) [Reg09] cannot be solved in polynomial time by quantum computers,
the class of TC? functions cannot be learned in quantum polynomial time. Also, under the less-
standard assumption that LWE cannot be solved in sub-exponential time by quantum computers,
we show that polynomial-time learning algorithms for ACY do not exist. LWE is one of the leading
candidates for public-key post-quantum cryptography and it is believed to be hard to solve, even
for quantum computers. For instance, the current best-known quantum algorithms for it run in
exponential time [BKWO03, AG11].

1.1 Learning models

In this section, we first recall the definitions of the classical and quantum learning models. For a
detailed introduction to these models, we refer the reader to Section 2.4.

Classical learning model. Inthe Probably Approximately Correct (PAC) model of learning [Val84],
a concept class C is a subset of Boolean functions, i.e., C C {c: {0,1}" — {0,1}} and every element
c:{0,1}* - {0,1} in C is referred to as a concept . The goal of the learning algorithm A is to learn
an unknown target concept c € C given labeled examples of the form (x, c(x)) where x is drawn from
an unknown distribution D : {0,1}" — [0,1]. We say that a learning algorithm A learns C if it sat-
isfies the following: for every ¢ € C and every distribution D : {0,1}" — [0, 1], with probability at
least 2/3, A outputs a hypothesis h : {0,1}" — {0,1} that satisfies Pr,_p[h(x) = c(x)] > 1 —¢. The
advantage of the learner over a random guess is f := % — 5 and f is called the bias of the learner.
The learner A properly learn the concept class C if its output hypothesis is always in the concept
class, i.e., h € C. Else, A is an improper learner for C. Similarly, A is a weak learner if f = n=¢ for
some constant ¢ > 0. In this paper all our lower bounds will be for weak improper learners (which
makes the lower bounds stronger).

2 A DNF formula is a disjunction of conjunctions of variables and their negations.
3 A majority gate on  bits outputs 1 if |#/2|+1 bits evaluate to 1 and 0 otherwise.



The sample complexity of a learning algorithm A is the worst-case number of labeled examples
it uses and the time complexity of A is the worst-case running time (where the worst-case is taken
with respect to the hardest concept ¢ € C and distribution D). The sample/time complexity of a
concept class C is the sample/time complexity of the most efficient learning algorithm for C.

In this work, we also consider learning models that relax the PAC learning framework in two
ways. First we allow the learner to make membership queries to a target concept ¢, i.e., A is allowed
to ask “what is c(x)” for an arbitrary x of its choice. Second, instead of the learner succeeding
under every distribution D, we consider the learnability of C when D is fixed and known to the
learner. We say A learns PAC learns C under D with membership queries if: for every c € C,
with probability > 2/3, A, takes labeled examples and makes membership queries, and outputs a
hypothesis h such that Pr,_p[h(x) = c(x)] < e.

Quantum learning model. Bshouty and Jackson [B]99] introduced the model of quantum-PAC
learning, which naturally generalizes the classical PAC model. Here, a quantum learning algo-
rithm A has to learn the unknown concept ¢ € C given quantum examples of the form

) VD& c(x)),

where D : {0,1}" — [0,1] is an unknown distribution. The goal of the quantum learner and the
notion of sample and time complexities are analogous to the classical model.

As described in the classical setting, we also consider the model where the quantum learning
algorithm is given access to an oracle O, : |x,b) — |x,b@®c(x)) that allows it to make quantum mem-
bership queries. Additionally, instead of requiring the learner to succeed for all distributions D,
we also consider quantum learners that learn C under a fixed distribution D. For quantum learn-
ing algorithms, a natural choice of D is the uniform distribution over {0,1}", and in this case
a quantum example is given by \/%Zx |x, c(x)). We discuss the utility of such examples in the

next section. We say a learner uniform quantum-PAC learns C with membership queries if: for ev-
ery c € C, with probability > 2/3, A, uses uniform quantum examples and quantum membership
queries to output a hypothesis h such that Pr,_p[h(x) # c(x)] < €.

1.2 Strengths of quantum examples under the uniform distribution

One of the main tools in quantum learning theory, when considering learning under the uniform
distribution, is the ability to efficiently perform Fourier sampling. In order to explain it, we first
introduce the following. For a Boolean function c : {0,1}" — {-1,1}, the Fourier coefficients of c
are given by ¢(S) = 21725 c(x)(=1)*S. The Fourier distribution {€(S)? : S € {0,1}"} is given by the
squared Fourier coefficients of ¢ and they satisfy } ¢¢(S)? = 1. Fourier sampling refers to the task
of sampling from the Fourier distribution {c{S)?}s.

An advantage of having uniform quantum examples is that, using standard ideas from quan-
tum information theory, a quantum learner can efficiently perform the operation
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given O(1) copies of \/%lex,c(x)) Measuring the resulting state allows a quantum learner to
obtain a sample from the Fourier distribution. Hence, using uniform quantum examples, one
can sample from the Fourier distribution {¢{S)?}s. Classically, we do not know how to perform
this sampling process (or even approximately sample) efficiently, since the Fourier coefficients



€(S) depends on 2" values of x. Therefore, one avenue to obtain quantum speedups with uniform
quantum examples arises from the use of Fourier sampling.

Indeed, quantum Fourier sampling has been profitably used in many applications. This idea
was first used in the aforementioned paper of Bernstein and Vazirani [BV97], where they observe
that the Fourier support of linear functions is concentrated on a single point. Therefore, unknown
linear functions can be learned using just one uniform quantum example. Fourier sampling was
later used by Bshouty and Jackson [B]J99] to show that DNFs can be learned quantum-efficiently.
A classical analogue of this question is a long-standing open question.* Kanade et al. [KRS18]
extended the result of Bshouty and Jackson and showed how to learn DNFs quantum-efficiently
even under product distributions.

In fact, a notorious bottleneck in classical learning theory is obtaining a polynomial time
learning algorithm for the class of O(logn)-juntas® which are a subset of polynomial-sized DNFs.
By contrast, Atici and Servedio [AS09] showed that O(logn)-juntas can be learned quantum-
efficiently under the uniform distribution. In fact the time-efficient learnability of O(log n)-juntas
can be used to time-efficiently quantum learn the concept class NC° under the uniform distribu-
tion (for a proof of this, see Appendix A).® Subsequently, Arunachalam et al. [ACLW 18] showed
that the concept class of k-Fourier-sparse Boolean functions (which includes both (logk)-juntas
and linear functions) can be learned query-efficiently given quantum examples.

One thing common to all these results was the application of the Fourier sampling to learn a
concept class under the uniform distribution, which was key for the large quantum speedup.

Related works. In the context of learning, apart from the uniform distribution setting, some
works have focused on understanding the power of quantum learning under arbitrary distribu-
tions [SG04, AS05, AW18]. In particular, [AW18] showed that quantum examples do not provide
an advantage over classical examples for PAC learning.

Recently, both shallow circuits and the Learning with Errors problem have been used in dif-
ferent contexts to understand the capabilities of quantum computation. Grilo et al. [GKZ18]
showed that polynomially many quantum examples suffice to solve the LWE problem in quantum
polynomial time, while this remains classically a hard problem when given just classical exam-
ples. Bravyi et al. [BGK18] exhibited a problem which can be solved using shallow quantum
circuits but requires logarithmic depth classical circuits (with bounded fan-in) to solve. Bene
Watts et al. [BKST19] improved their result by removing the “bounded fan-in” assumption. In an-
other context, under the assumption that the Learning with Errors problem is hard for quantum
computers (given just classical examples), Mahadev [Mah18] demonstrated a classical protocol to
classically verify the result of an efficient quantum computation.

1.3 Our results

In this paper we address two natural questions that arise from the work of Bshouty and Jack-
son [BJ99], which showed the quantum-efficient learnability of depth-2 circuits.

The first question is, can the work of [BJ99] be extended to learn depth-3 circuits, or more gen-
erally, constant-depth polynomial-sized circuits (i.e., TC® and AC?) in quantum polynomial time?

4With classical membership queries, DNF formulas can be learned in classical polynomial time [Jac97].
5A k-junta is a Boolean function on # bits, whose output only depends on k out of the 1 input bits.
6NCY is the concept class of constant-depth circuits consisting of fan-in 2 AND, OR,NOT gates.



Classically, in a seminal result, Linial, Mansour and Nisan [LMN93] constructed an nOUogn) _time

learning algorithm for AC® by approximately learning the Fourier spectrum of an unknown AC°
circuit. Subsequently, Kharitonov [Kha93] showed that their learning algorithm is optimal as-
suming that factoring cannot be solved in quasi-polynomial time. Since factoring can be solved in
quantum polynomial time with Shor’s algorithm [Sho97], the lower bound of Kharitonov doesn’t
apply to quantum learners. Moreover, since Fourier sampling is easy quantumly (under the uni-
form distribution), it seems plausible that one could efficiently learn important properties of the
Fourier spectrum of ACC circuits (similar to the work of Linial et al. [LMN93]). This could possibly
result in efficient quantum learning algorithms for AC® under the uniform distribution (similar to
many results discussed in the previous section).

The second question is, can the work of [BJ99] be extended to the class of depth-2 threshold cir-
cuits (known as TCY), i.e., can TC) be learned quantum-efficiently? We notice that these threshold
circuits (i.e., TC?, TCY) are practically very relevant since constant-depth polynomial-sized feed-
forward neural networks with weights (of the neurons) bounded by some polynomial in the input
size, can be implemented as circuits in TCC. If there were efficient quantum algorithms for learn-
ing TCY, then it is plausible that quantum computers could have given an enormous advantage in
approximately learning the weights for neural networks.

In this paper, we give a conditional negative answer to both questions. In particular, we show
that under the assumptions that support the security of current post-quantum cryptography: (i)
TC? cannot be learned efficiently by quantum computers under the uniform distribution and AC®
cannot be learned in sub-exponential time on quantum computers; (ii) TCS cannot be PAC learned
efficiently by quantum computers. We summarize these results in the table below.”

No polynomial-time . .
learner in this model For the complexity class Assuming
ACO No sub-exponential time
Uniform-distribution PAC algorithm for LWE
(with membership queries) TCO LWE ¢ BQP
Distribution-free PAC TCY LWE ¢ BQP

These results give a strong conditional refutation to a question of Aaronson [Aar(05]. Aaronson
asked if, TC? and AC® can be quantum-PAC learned in polynomial time? Our first result gives a
conditional negative answer for the case when we fix the uniform distribution and we additionally
allow the learner to make quantum membership queries. Our second result gives a conditional
refutation to the PAC learnability of TC? even when restricted to depth-2 threshold circuits.

In order to achieve our results, we follow a strategy proposed by Valiant [Val84], who showed
the hardness of proper learning the class of polynomial-sized circuits based on the security of cryp-
tographic objects. This strategy was subsequently improved upon to give conditional improper
learning lower bounds and used to prove the classical hardness of various concept classes [Kha92,
Kha93, KV94, KS09]. These results have the following structure: assuming there exists an effi-
cient learning algorithm for some concept class C, there exists an adversary that is able to break
some cryptographic construction using the learning algorithm as a subroutine. Here, the adver-
sary provides the resources to the learning algorithm based on the cryptographic primitive it is
trying to break. This implies that if the cryptographic construction is secure, then such a learning
algorithm cannot exist.

"BQP, or bounded-error quantum polynomial time, is the class of decision-problems that be solved in polynomial time
on a quantum computer with bounded-error.



In this paper, we quantize these well-studied classical proof-of-hardness techniques. The dif-
ficulties in quantizing such results are three-fold. First, many of the classical hardness of learning
results rely on cryptographic primitives whose security is based on the hardness of factoring. As
stated previously, this would not hold in the quantum regime due to Shor’s quantum polynomial-
time factoring algorithm [Sho97]. Second, the fact that adversaries can efficiently create classical
examples from some distribution D does not imply that quantum examples can be created accord-
ing to the same distribution. An important issue we run into in this case is solving the index-
erasure problem, which is known to be hard to solve on quantum computers [AMRR11, LR19].
Finally, some of the hardness results implicitly use the fact that the learning algorithm they are
considering is classical and the proof techniques do not follow through in the quantum setting.
For example, Kharitonov [Kha93] uses collision arguments to bound the amount of information
retrieved by the learner, but this approach does not work quantumly. We discuss these issues in
further detail in the next section.

In subsequent sections, we delineate the connections between the hardness of quantum learn-
ing and the security of certain cryptographic primitives — specifically, quantum-secure pseudo-
random generators and public-key encryption schemes. Next, we sketch how to use these connec-
tions to show hardness of quantum learning for some interesting concept classes.

1.3.1 Pseudo-random generators vs. quantum learning

Pseudo-random generators (PRG) are cryptographic objects that “stretch” random strings. More
concretely, a PRG is a deterministic algorithm G that takes an n-bit string as input and outputs an
{(n)-bit string for {(n) > n, which we refer to as the pseudo-random string. Further, G satisfies the
condition that: if the seed x is picked uniformly at random from {0, 1}", then no efficient adversary
can distinguish G(x) from uniformly random ¢(n)-bit strings, with negligible advantage over a ran-
dom guess.® If polynomial time quantum adversaries cannot distinguish pseudo-random strings
from uniformly random strings, then we say that the PRG is quantum-secure. We informally state
our first result below (see Theorem 4.2 for a full statement).

Result 1 If there is a quantum-secure PRG G, then there exists a concept class Cg (i.e., Cg depends on
G) such that Cg does not have an efficient uniform weak quantum-PAC learner with membership queries.

Kharitonov [Kha93] established the connection between PRGs and classical learning by con-
structing a circuit class such that the PRG is computed by the circuit class. He then proceeds to
show that if a learning algorithm for such a concept class exists, then it is possible to break the
PRG. Our main technical contribution here is to quantize Kharitonov’s result. While the structure
of our proof is largely inspired by his proof, we would like to reiterate that the quantization is
not straightforward. For instance, the crux of his proof, which is based on determining the prob-
ability of collision in the classical examples, does not make sense in the quantum regime. Clearly,
each quantum example contains information about every x € {0,1}" but efficiently accessing this
information simultaneously for all x is information-theoretically impossible. Furthermore, unlike
with its classical counterpart, we need to account for a quantum learner’s added ability to sample
from the Fourier distribution of the target concept c.

We now sketch a proof of Result 1. For a PRG G : {0,1}" — {0, 1}"), where £(n) is a polynomial
in n, define a concept class
Cg = {Cz : {0’1}11 —1{0,1} | Cz(x) = Zx (mod {(n))r 2 € range(G)},

8By negligible advantage, we mean: for every ¢ > 0 the advantage is at most 1/n°.



where x € {0,1}" is viewed as an integer in {0,1,...,2" — 1} and range(G) = {G(y) : vy € {0, 1}"*}.

By contradiction, let us assume there exists an efficiently uniform-PAC quantum learning al-
gorithm for Cg. Using this efficient learner, we construct a quantum distinguisher for the PRG G.
Since G is assumed to be quantum-secure, this contradicts our assumption and proves the result.
More concretely, let z be an ¢(n)-bit string and suppose that the distinguisher has to determine if z
is a pseudo-random string or a uniformly random string. Consider a distinguisher that simulates
a quantum learning algorithm A by preparing copies of the following state that will serve as a
quantum example for A

1
\/? Z|x>|zx (mod €(n))>-
X

Since ¢(n) is a polynomial (in n), this quantum state can be prepared efficiently by the quantum
distinguisher. A uses the copies of these quantum examples and outputs a hypothesis / that
approximates c,. The distinguisher then picks a random challenge x* € {0,1}" and outputs 1 if
and only if h(x*) = zy (mod ¢(n))- One technical aspect that we show here is that, if the learning

algorithm has bias f(n), then the distinguisher has an advantage > # in distinguishing pseudo-

random strings from a uniformly random string. In particular, if there is a polynomial time weak
quantum learning algorithm for C under the uniform distribution, then there exists a polynomial-

time quantum distinguisher D that satisfies
1

Pr [D(G - Pr [D > —, 1
el oﬂ}n[ (G(x))] ye{o,f}am[ W= -3 (1)
for some ¢ > 0. In order to prove that a quantum learner with advantage (1) implies a dis-

tinguisher with advantage @, we provide two different proofs — using distinct techniques and

imposing two (incomparable) dependencies on the parameters. The first proof supplies an intu-
itive argument based on an information-theoretic approach while the second is a more involved
hybrid-method based argument. In terms of the trade-offs between the PRG’s stretch and the sam-
ple/query complexity of the learning algorithm, the former is better suited to algorithms using
a super-linear number of queries while the latter to those using a sub-linear number of queries.
This allows for a more fine-grained analysis of the query complexity of various concept classes. In
fact, using the second proof-technique, we consider PRGs arising from the Subset — sum problem
(which is another problem believed to be hard to solve on a quantum computer for some parame-
ters) and show that: assuming that the Subset — sum PRG is quantum-secure, then every quantum
learning algorithm for AC® needs to make Q(v/) queries. We define the Subset —sum problem,
the corresponding PRG and the proof of the query lower bound in Appendix B.

1.3.2 Public-key encryption schemes vs. quantum learning

A public-key encryption scheme consists of a triple of algorithms (Key-generator, Enc, Dec). Key-
generator is a randomized algorithm that on input 1* (where A is a security parameter) outputs
a tuple (Kyup, Kpriv), where Kpyp, is a publicly known key used to encrypt messages and Ky is a
private key used to decrypt messages. Enc is a deterministic algorithm that receives as input the
public key K, some randomness r and a message b € {0, 1} and outputs Enc(Kpyp, 7, b), which we
denote by Ency (1, b) for simplicity. Dec receives as input the private key Ky and Encg, (7", 0%)
and outputs ¢ € {0,1} (we write DecKpriv in order be explicit about the dependence of Dec on
Kpriv)- The public-key encryption scheme is said to be correct if: for uniformly random values r*

and b* Decg (EncKpub(r*, b*)) # b* with negligible probability, i.e., at most n~¢ for some ¢ > 0. An



encryption scheme is (quantum) secure if, given Ky, and Ency_, (r*,b%), a (quantum) polynomial
time adversary can output b* with at most a negligible advantage over a random guess.

We connect quantum-secure public-key encryption schemes to the hardness of learning as
follows (see Theorem 5.1 for a full statement).

Result 2 Let S be a quantum-secure public-key cryptosystem. If Cg is the concept class containing the
decryption functions of the cryptosystem S, then there is no efficient weak quantum-PAC learner for Cs.

The works of Kearns and Valiant [KV94] and Klivans and Sherstov [KS09] provide a connection
between public-key encryption schemes and learning functions. They showed that if there exists
a PAC learning algorithm for a concept class that contains the decryption function Deck__ , then
it is possible to predict b* from Ky, and Enck , (r*,b%) with a 1/poly(n) bias. They prove this
by simulating the learning algorithm as follows: the distinguisher prepares examples of the form
(r, EncKpub (r,b)) for (uniformly) random r and b. Using the guarantees of the classical PAC learning
algorithm and the correctness of the encryption scheme, they show that the hypothesis h output

by the learner satisfies
1 1
Pr [h(Enc r, b ) = b*] > —+—,
r*,b* Kp“b( ) 2 nc
for some ¢ > 0. In this paper, we quantize their argument, but the situation is much more intricate
than in the classical case. Classically, r and b can be picked uniformly at random at each step in

order to create a new training example (EncKpub(r,b),b). Quantumly, however, we do not know

of an efficient way to create a quantum example —= b |EncKpub(r,b))|b>, where R is the space

V2[R|
of the possible randomness. Notice that a straightforward way of preparing this state involves
solving the index-erasure problem [AMRR11, LR19], which is conjectured to be a hard problem

to solve on a quantum computer. See Section 5 for more details.

Instead, we first define a distribution D as follows: pick poly(n)-many uniformly random (r, b)
and let D be the uniform distribution over {EncKpub(r,b)} where the set ranges over the poly(n)-
many observed (r,b). Our hope is to run the quantum learner on this distribution D (which we
are allowed to since we assumed that it is a quantum-PAC learner). However, we run into an
issue which [KS09] need not worry about. Let Encg , (r*,b") be the challenge string that the dis-
tinguisher needs to correctly decrypt to b*. Observe that Enck_, (r*,b%) need not even lie in the
support of D, so running a quantum learner on the distribution D might not even help the distin-
guisher in predicting b”*. In contrast, in the simulation argument of Klivans and Sherstov [KS09]
the pair (EncKPub (r*,b%),b") is always in the uniform distribution, since r and b are picked uniformly
at random to create the classical example (EncKpub(r, b),b).

Ideally, we would like to use our PAC learner on a distribution D’ for which (EncKpub(r*, b*),b")
is the support of D’. This would enable the distinguisher to use the guarantees of a quantum
learner when run on D’. The challenge here is that the distinguisher would need to find such a D’
without prior knowledge of Encx_, (r*,b") and b*! We circumvent this issue with the following ob-
servation: if two distributions are sufficiently close to each other, then the learner should perform
“essentially equivalently” on both distributions. In particular, we use a training distribution D
that is close enough to the testing distribution D’ containing (EncKpub (r*,b%), b") so that the learning
algorithm is unable to distinguish them.

We now provide more details here. Suppose we have a quantum-secure public-key cryptosys-
tem with a (randomized) encryption function EncKpub’r :{0,1} — {0,1}" and decryption function



DecKpriv : £ —>{0,1}", where £ is the set of all valid encryptions and (K,up, Kpriy) is the output of
the Key-generation algorithm. Assume that the challenge string is Enck_,, (r*,b") for a uniformly
random r*,b* and an adversary for this cryptosystem has to correctly guess b*.

In order to construct such an adversary, first define the concept class C = {DecKpn Kopriv}, the
set of all decryption functions (one for each private key). Furthermore, assume that there is a
weak quantum-PAC learner for C that uses L examples, i.e., a polynomial-time quantum learning
algorithm A which receives L quantum examples }  +/D(x)|x,c(x)) (for an unknown distribution
D and concept c € C) and outputs a hypothesis & that is close to the concept c.

As discussed previously, we now define a meaningful distribution D on which the distin-
guisher runs the quantum learner: consider a set S with L3 tuples (r;, b;) that are chosen uniformly
at random from their respective domains; let D be the uniform distribution over {EncKpub(r,b) :
(r,b) € S}. The adversary behaves as follows: run the quantum-PAC learner A under the distribu-
tion D and provide it L quantum examples of the form

$y=—= ) [Bnck,, (r,b)Ib).
\/_ (r,b)eS
When A outputs the hypothesis 4, the adversary outputs h(EncKpub(r*, b*)) as its guess for b*. No-
tice that with overwhelming probability, S does not contain the tuple (r*,b*) corresponding to the

challenge. So there is no guarantee on the value of h(EncKpub(r*, b*)). In order to overcome this,
consider a quantum example state

1

En r, b)) b* En r, b))b) |.
T | B (7 D) + (T%J K, (1 D))ID)
We show that as the learner uses only L quantum examples, [))®F, the output statistics of every
quantum learning algorithm, when run on |¢) and [¢"), is very similar. In fact, we show that the
distribution on the hypothesis set is almost the same in each case. Now, using the performance
guarantees of a quantum-PAC learning algorithm and the closeness of the distributions between
the hypothesis sets, we conclude that h(EncKPub (r", b*)) equals b* with probability at least %+

¥’ =

1
. . ) poly(n)’
This contradicts the quantum-secure assumption on the cryptosystem.

1.3.3 Conditional hardness of learning TC’ and AC’

The first consequence of Result 1 is to give a strong conditional negative answer to the question of
Aaronson [Aar05] regarding the quantum learnability of TC? circuits.

Result 3 If the Learning with Errors problem cannot be solved in quantum polynomial time, then there
is no polynomial-time uniform weak quantum-PAC learner for TC® with membership queries.

As previously mentioned, the Learning with Errors problem (LWE) is a cornerstone of current
post-quantum cryptosystems and is widely believed to be hard for quantum computers. The
starting point for proving Result 3 is the pseudo-random generator presented by Banerjee, Peikert
and Rosen [BPR12]. They show that their PRG is quantum secure under the assumption that the
Learning with Rounding (LWR) problem cannot be solved by quantum computers efficiently. We do
not define the LWR problem here (see Section 3.2.2 for details), but point out that LWR is at least as
hard as LWE. The PRG G : {0,1}" — {0, 1}’ proposed in [BPR12] satisfies the following properties:
(i) for every x € {0,1}", every bit of G(x) can be computed by a TC® circuit, (ii) the stretch function
{(n) can be an arbitrary polynomial in 7, and (iii) suppose there exists a distinguisher D for G, i.e.,



a polynomial-time algorithm D that satisfies

Pr [DG)]- Pr [D)]> 2)

x€{0,1}" pe{0,1}m n¢
for some ¢ > 0, then there exists a polynomial-time algorithm that solves LWE. Notably, when D
is a quantum distinguisher for the PRG G, it implies the existence of a quantum polynomial-time
algorithm for LWE. Therefore, the PRG G is quantum-secure and accessible in TC’. We can then
use our connection between PRGs and hardness of quantum learning (Result 1) to prove Result 3.
Using a similar approach (albeit, with notable subtleties), we also prove the hardness of learning
AC® under less standard assumptions.

Result 4 If the Learning with Errors problem cannot be solved in quantum sub-exponential time, then
there is no polynomial-time uniform weak quantum-PAC learner for ACY with membership queries.

In order to better understand this assumption, we remark that the current best known classical
algorithms for LWE require exponential time [LLL82, BKW03, Wag02, AG11] and any straightfor-
ward quantization of these results gives only a polynomial speedup. Therefore, a sub-exponential
time algorithm for LWE would result in a threat to the security of LWE-based cryptography and be
a breakthrough for the algorithms and cryptanalysis communities.

We now point out a key difference involved in proving Result 4, as compared to Result 3. An
inherent problem in considering the known LWE-based PRGs to prove Result 4 is that, any circuit
computing a given pseudo-random bit (for an arbitrary seed) needs to compute a matrix-vector
product. While this can be done directly through a TCY circuit, it cannot be computed using an
ACO circuit. In fact, it is a priori unclear if we could devise a PRG having polynomial stretch whose
hardness is based on a quantum-hard problem while also being computable in AC°.

Similar to Kharitonov [Kha93], we overcome this issue by considering PRGs with stretch super-
polynomial in the seed length. Specifically, we obtain a pseudo-random string whose size is poly-
nomial in # while the seed length is poly-logarithmic in #n. We show that an arbitrary bit of such a
pseudo-random string can be computed by an AC circuit (with a fixed seed). However, since the
stretch of the PRG is sub-exponential in the seed length, a stronger assumption is needed to guar-
antee its security. To this end, by assuming that LWE cannot be solved in sub-exponential time
by quantum computers, the PRG that we consider here is quantum-secure. With this new PRG,
we can repeat the arguments of Result 3 and derive the polynomial-time hardness of quantum
learning for ACC.

Using similar proof techniques, we also obtain an incomparable (conditional) lower bound
for learning quasi-polynomially-sized ACY circuits. Assume that Learning with Rounding cannot
be solved in quantum sub-exponential time, then quasi-polynomial size AC° circuits cannot be
learned in quantum quasi-polynomial time, under the uniform distribution. By contrast, Linial
et al. [LMN93] showed that, classically, polynomial-sized AC® circuits can be learned in quasi-
polynomial time. To find a matching lower bound for quantum learning is left for future work.

It is worth noting that our result implies also conditional hardness results for classical learning
of TC? and AC®, under the assumption that solving LWE is hard for classical computers (instead
of factoring in the case of Kharitonov [Kha93]). Additionally, we provide explicit proofs of many
lemmas and theorems in [Kha93], which were omitted in the conference version of that paper.’

9We have been unable to find a full version of this paper.
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1.3.4 Conditional hardness of PAC learning TC)

Our third hardness result is the following.

Result 5 If the Learning with Errors problem cannot be solved in quantum polynomial time, then there
is no polynomial-time weak quantum-PAC learner for TCY.

In contrast to our first hardness result for TC?, we stress that the quantum learners in this result
are quantum-PAC learners. The main idea to prove this result is to consider the LWE-based public-
key cryptosystem proposed by Regev [Reg09] (see Section 3.1.2). Klivans and Sherstov [KS09]
considered this cryptosystem and showed that the decryption functions in this cryptosystem can
be implemented by circuits in TCJ. We can then use our connection between quantum learning
and quantum-secure cryptosystems (Result 2) to derive Result 5.

As previously mentioned, understanding the learnability of TCS (and TCP), apart from be-
ing theoretically important, also sheds light on the question: can quantum computers help learn
the weights of neural networks faster? It is well-known [MSS91, GHR92] that constant-depth
polynomial-sized feed-forward neural networks, where the weights of neurons are bounded by a
polynomial in the input size, can be implemented by TC? circuits. So our conditional negative
results on learning TC? gives an indication that, quantum resources do not give an exponential
advantage in learning the weights of such neural networks (assuming LWE is quantum-hard).

1.4 Open questions
This work raises a number of interesting open questions, which we list below.

Learning ACg. What is the smallest d for which we can prove that quantum learning ACg is
(conditionally) hard? Bshouty and Jackson [B]J99] gave a quantum polynomial-time algorithm for
ACY and for some universal constant d’ > 3 (independent of the input-size of the ACY, circuit),
our work rules out polynomial-time learning algorithms for ACg,, assuming there exists no sub-
exponential time quantum algorithm for the LWE problem. Classically, using the constant-depth
construction of PRGs by Naor and Reingold [NR04] in Kharitonov’s [Kha93] result, one can show
that ACY is hard to learn (assuming factoring is hard on a classical computer).

Improving the (conditional) lower bound for learning AC’. Can we show that there exists no
quasi-polynomial-time algorithm for learning AC’? Specifically, can we show a conditional lower
bound that matches the upper bound of Linial, et al. [LMNO93]? If this were true, then (assum-
ing the conditional lower bound) quantum examples and membership queries would not give
any advantage in learning AC circuits. One way to approach this problem would be to find a
quantum-secure PRG that achieves a super-polynomial stretch with respect to seed size while still
being computable in AC?. We believe that applying our techniques to such a PRG would help
provide a tight lower bound that matches the upper bound of [LMN93].

Uniform learning of TC). The conditional hardness results of TC? under the uniform distribu-
tion and hardness of quantum-PAC learning TCY do not rule out the possibility that TCY admits
polynomial-time quantum learning algorithms under the uniform distribution. It is an open ques-
tion to show if TCY can be learned quantum-efficiently under the uniform distribution or if we can
show a conditional hardness result.

11



Hardness of (quantum) learning quantum shallow circuits Linial et al. [LMN93] showed the
quasi-polynomial time learnability of shallow classical circuits. Correspondingly, what would be
the time/sample complexity of learning shallow quantum circuits with a quantum learner?

Hardness of quantum learning from other assumptions Finally, we leave as an open question
the possibility of proving the hardness of quantum learning from other complexity-theoretic as-
sumptions. We now point to some potential directions:

* Recent results have proved Strong Exponential Time Hypothesis (SETH)-based hardness of
the Gap-SVP [AS18] problem and the Subset —sum [ABHS19] problem (actually, they prove
the limit of a specific approach to solve the Subset —sum problem). These hardness results
do not imply any hardness for learning problems directly and we wonder if they can be
tightened in order to make it possible.

* Oliveira and Santhanam [OS17] established a connection between learning theory, circuit
lower bounds and pseudo-randomness. Is it possible to quantize such connections?

* Daniely and Schwartz [DS16] showed a complexity-theoretic hardness of PAC learning DNFs.
Could we also show hardness for quantum-PAC learning DNFs as well?

Organization

In Section 2 we state some required lemmas, cryptographic primitives and formally define the
classical and quantum learning models. In Section 3 we discuss the Learning with Errors problem
and its variants along with the pseudo-random generators constructed from these problems. In
Section 4 we describe the connection between quantum-secure PRGs and quantum learning un-
der the uniform distribution. In Section 5 we describe the connection between quantum-secure
public-key cryptosystems and quantum-PAC learning. Finally, in Section 6 we describe our main
results showing the hardness of learning ACO,TCO,TCg.
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2 Preliminaries

2.1 Notation and basic claims

We define some widely used definitions below. For k € IN, we let [k] :={0,...,k—1}. All logarithms
will be taken with respect to the base 2. A function p: IN — Ris said to be negligible in a parameter
A > 1, which we denote negl(A), if it satisfies the following:

for every integer t > 0, there exists an integer K; > 0 such that for all A > K;, we have |u(1)| < A7
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Similarly, a function # : IN — IR is said to be non-negligible in A if there exists an integer ¢ > 0 and
K; > 0 such that 1(A) > A~ for all A > K;. For a distribution D : {0,1}"" — [0,1], we write x ~ D
to say that x is drawn according to the distribution D. We say there is a non-negligible advantage
in distinguishing D from another distribution D’ if for every poly(n)-time adversary Adv (i.e.,
algorithm) we have

[Adv(xl, Lx)=1]- Pr D/[Adv(xl,...,xL) =1]| = #n(n),

X1peeer XL X1peer X~

where #(n) is a non- neghglble function and L is a polynomial in n. For simplicity, we say that a

function f(n) = poly(n), if there exist constants a,b > 0 such that n < f(n) < n”.

For function f : {0,1}" — {0,1}" and for all 1 < k < n, we say that g : {0,1}" — {0,1}% is a
k-extension of f if
d 2% if k<logm,
Vxe(01), glo= /0 g2 kS logn
fx)=27m if logm<k<mn,
where f(x) is viewed as an integer in [2"”"] and * denotes Boolean multiplication. In other words,

g either truncates the output of f to 2 bits when 2X < m or trivially pads the output of f up to 2%
bits with trailing 0s when 2 > m.

A half-space in n dimensions is a Boolean function f : {0,1}" — {0, 1} of the form

Flx)= |lZaixi > 9]]

1
where ay,...,a, and 0 are fixed integers and [[-]] denotes the indicator function which evaluates to 1
if and only if } ;a;x; > 0. The intersection of k half-spaces is a function of the form g(x) = A\;_ 1f1
where the f;s are half-spaces and A is the AND function. A polynomial threshold functzon (PTF) of
degree d is a Boolean function of the form f(x) = [[p(x) > 0]], where p is a degree-d polynomial with
integer coefficients. Note that a half-space is a degree-1 PTF. A PTF f, defined as f(x) = [p(x) > 0],
is called light if the sum of the absolute value of the coefficients in p is at most polynomial in n.

The following claim is a well-known fact in quantum information theory.

Fact 2.1 Let the binary random variable b € {0, 1} be uniformly distributed and |iy), |(1) be two quan-
tum sates. Suppose that an algorithm is given |iy) (for unknown b) and is required to guess whether

b =0o0r b= 1. It will guess correctly with probability at most & + 3+/1 —[(Polth1 )I2.

Note that if we can distinguish |¢g) and [i; ) with probability > 1-&, then |(1,b0|1,b1)| <2¢E(1=€).
If £ = 5 — 7 (for some 7 > 0) and we can distinguish i) and [¢; ) with probability >1 5+ 7T, then

o) =1l = V2 = 2(olip1) =2 V2 -2V1 Vi-4e2> \2-2(1-272) =21, (3)

where we used (iolt)| < 24/E(1-&) < 2V1 - 472 (for & = %— 7) in the second inequality and
V1-a <1-a/2 (for a >0 in the second inequality).

2.2 Information theory and communication complexity

We describe some basic concepts in information theory that we use later. Given a probability
distribution D : X — [0, 1], the entropy of a random variable X ~ D is given by

Z Pr X=x log( [X :x]).

xeX
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The binary entropy of € € [0,1] is defined as Hy(¢e) = —eloge — (1 —€)log(1 — ). Moreover, Hy(¢)
can be upper bounded as follows.

Fact 2.2 For all € € [0,1/2] we have the binary entropy Hy(e) < O(elog(1/¢)), and from the Taylor
series expansion of Hy(€), we have
1-Hy(1/2+¢) < 2e%/In2 + O(e*).

Given a probability distribution D : X x ) — [0,1], and the random variables (X,Y) ~ D, the
conditional entropy of X given Y is

_ B Prix,v)~p[(X,Y) = (x,9)]
HXlY) = _xexzy'ey(x,I;)HD[(X' Y)= (x'y)]log( Prx.p[X = x] )

Given a probability distribution D : X x ) x Z — [0,1], the random variables (X,Y,Z) ~ D, the
mutual information between X and Y given Z is
I(X:Y|Z)=H(X|Z)-H(X|Y, Z).

The following fact about conditional entropy and prediction errors will be useful for us.

Lemma 2.3 (Fano’s inequality) Let X be a random variable taking values in {0,1} and Y be a random
variables taking values in ). Let f : Y — {0,1} be a prediction function, which predicts the value
of X based on an observation of Y. Suppose € = Pr[f(Y) = X] is the probability of error made by the
prediction function, then H(X|Y) < Hy(e).

We now briefly describe communication complexity. For details, we refer the reader to [Toul5,
KLGR16]. Here, we are interested in the setup with two parties Alice (denoted A) and Bob (de-
noted B). A (resp. B) receives input X (resp. Y) such that (X,Y) ~ D for a publicly known prob-
ability distribution D. A and B then follow some protocol 7 in which they exchange quantum
information back-and-forth. Finally, B outputs a random variable Z. The quantum communica-
tion complexity of the protocol QCC(r) is the number of qubits communicated in the protocol 7.

Touchette [Toul5] defined the notion of quantum information complexity for a protocol, de-
noted QIC(rr), which is rather subtle and out of the scope of this work. In [Toul5, Theorem 1],
Touchette showed that for all protocols 7, we have QIC(rr) < QCC(m). Similarly, Kerenidis et
al. [KLGR16, Theorem 1] showed that QIC(7) is at most the classical information complexity of
the protocol CIC(7r), whose definition we omit here. Also, it is not hard to see that if B outputs
some value Z, then

I(Z : X|Y) < CIC(m).
Putting together [Toul5, Theorem 1] and [KLGR16, Theorem 1] along with the inequality above,
we obtain the following corollary.

Corollary 2.4 Given a quantum communication protocol 1t between two parties A and B whose inputs
are X and Y, respectively, drawn from a distribution D. Let Z be the output of B. Then,
I(Z:X]Y) < QCC(m).

2.3 Cryptographic primitives
Definition 2.5 (One-way functions) A deterministic function f : {0,1}" — {0,1}" is a one-way

function if there is a polynomial-time algorithm that computes f and for every constant ¢ > 0 and
every polynomially bounded adversary Adv, we have

Pr [Av(f() € f ]S

x€{0,1}"
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for sufficiently large n. If Adv is allowed to be a quantum polynomial-time algorithm, then f is called a
quantum one-way function.

Definition 2.6 (Pseudo-random generators) A deterministic function G : {0,1}° — {0,1}/®) is a
pseudo-random generator if the function € : IN — IN satisfies {(s) > s for all s and every probabilis-

tic algorithm Adv that runs in poly(s)-time and for every constant ¢ > 0 we have

1
Pr [Adv(G =1]- P Ad =1]|<—,
o [Aa(GW) =11= Pr[Adviy) =1]|<
where the probability is taken over uniform x € {0,1})° and y € {0,1}¢6). Additionally, s is the seed

length, £(s) is the stretch function and {(s) — s is the stretch of the pseudo-random generator G.

In this work, we also consider quantum polynomial-time distinguishers. In short, when we
say that a pseudo-random generator is secure, we mean that it satisfies Definition 2.6 and it is
quantum-secure if it satisfies a variation of Definition 2.6 where Adv is a polynomial-time quantum
algorithm.

We point out that such a distinction is important. For example, the security of the Blum, Blum
and Shub pseudo-random generator [BBS86] is based on the assumption that factoring is hard for
polynomial-time algorithms. While this assumption is reasonable for classical algorithms, and
therefore this PRG would be secure, factoring can be solved in quantum polynomial time [Sho97],
and thus this PRG is not quantum-secure.

2.4 Learning models
2.4.1 Classical distribution-independent learning

We begin by introducing the classical Probably Approximately Correct (PAC) model of learning
which was introduced by Leslie Valiant [Val84]. A concept class C is a collection of Boolean func-
tions ¢ : {0,1}" — {0, 1}, which are often referred to as concepts. In the PAC model, a learner A is
given access to a random example oracle EX(c, D) where ¢ € C is an unknown target concept (which
the learner is trying to learn) and D : {0, 1}" — [0, 1] is an unknown distribution. At each invocation
of EX(c, D) the oracle returns a labelled example (x, c(x)) where x is drawn from the distribution D.!°
Then A outputs a hypothesis h and we say that A is an (¢, 6)-PAC learner for a concept class C if it
satisfies the following:

for every ¢,0 € [0,1], for all ¢ € C and distributions D, when A is given ¢, and access
to the EX(c, D) oracle, with probability > 1 -9, A outputs a hypothesis h such that
PrD[h(x) zc(x)]<e
X~

The learner’s advantage over a random guess is given by g = % —5and 2p =1 - ¢ is called the
bias of the learner.

The sample complexity of A is the maximum number of invocations of the EX(c, D) oracle which
the learner makes when maximized over all ¢ € C and all distributions D. Finally the (¢, 9)-PAC
sample complexity of C is defined as the minimum sample complexity over all A that (¢, 0)-PAC
learn C. The time complexity of (¢,0)-PAC learning C is the minimum number of time steps of an
algorithm A that (¢,9)-PAC learns C (where the minimum is over all A that (¢, )-PAC learn C). In

the weak learning setting, we say that A (&, 0)—weakly learns (resp. strongly learns) C if ¢ = % -n°

10Note that the oracle EX(c, D) doesn’t take any input and simply returns a labelled example.
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(resp. € = 1/3) for some constant ¢ > 0 and input size n. Freund et al. [FSA99] showed that weak-
PAC learning C is equivalent to strong-PAC learning.

2.4.2 Quantum distribution-independent learning

The quantum model of PAC learning was introduced by Bshouty and Jackson [BJ99]. Instead of
having access to an EX(c, D) oracle, here a quantum-PAC learner has access to a QEX(c, D) oracle

QEX(c,D):[0",0) = ) D), c(x)),

and we leave the QEX(c, D) oracle undefined on other basis states. We refer to the state produced
by QEX(c, D) as a quantum example, which is a coherent superposition over classical labeled ex-
amples. A quantum-PAC learner is given access to copies of quantum examples and performs a
POVM (positive-valued-operator measurement), where each outcome of the POVM corresponds
to a hypothesis. Similar to the classical distribution-independent learning setting, the quantum
sample complexity of an algorithm A is the maximum number of invocations of the QEX(c, D)
oracle which the learner makes, when maximized over all ¢ € C and all distributions D. The (¢, 0)-
quantum PAC sample complexity of C is defined as the minimum quantum sample complexity over
all A that (¢, 6)-quantum-PAC learn C.

2.4.3 Uniform distribution learning

The classical PAC model of learning places a strong requirement on learners, i.e., the learner needs
to (&,0)-PAC learn C for every unknown distribution D. In classical learning theory, there has been
a lot of work in understanding a weaker model of learning — when D is restricted to the uniform
distribution on {0, 1}" (which we denote as ¢{). In this restricted model, a classical learner is given
access to EX(c,U) (known to the learner) which generates (x,c(x)) where x is sampled according
to the uniform distribution ¢//. An algorithm A is said to (¢, 0)-learn C under U if it satisfies the
following:

for every €,0 € [0,1], for all c € C, when A is given ¢, 6 and access to the EX(c, /) oracle,
with probability > 1 — 9, A outputs a hypothesis h such that Pr,_p[h(x) = c(x)] < ¢

The sample complexity and time complexity of learning C under the uniform distribution is
defined similar to Section 2.4.1 when we fix D =U.

One can similarly consider the case when a quantum learner is given access to QEX(c, /)

QEX(c,U) : |0",0) — \/% le,c(x)).

We leave QEX undefined on other basis states and assume the learner does not have access to the
inverse of QEX(c, /). The quantum sample complexity and time complexity of learning a concept
class C under the uniform distribution is defined similar to Section 2.4.2 when we restrict D = U.
A powerful advantage of being given access to QEX(c, ) is Fourier sampling. We do not introduce
Fourier sampling here and refer the interested reader to [AW17, Section 2.2.2].

2.4.4 Learning with membership queries

The classical model of PAC learning places yet another strong requirement on learners, i.e., the
learner is only given access to labelled examples generated by the oracle EX(c, D) (for an unknown
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c € C and distribution D). Angluin [Ang87] relaxed this requirement and introduced the model of
learning with membership queries. In this scenario, in addition to EX(c, D), a learner is given access
to a membership oracle MQ(c) for the unknown target concept ¢, which takes as input x € {0,1}"
and returns c(x). An algorithm A is said to (¢, 0)-learn C under D with membership queries if it
satisfies the following:

for every €,0 € [0,1], for all c € C, when A is given ¢, 0 and access to EX(c, D), MQ(c) ora-
( ()] < e

cles, with probability > 1-9, A outputs a hypothesis h such that Pr,_p[h(x) = c(x

We abuse notation by saying the sample complexity of A is the maximum number of invocations of
an oracle!! when maximized over all ¢ € C under distribution D. The sample complexity and time
complexity of learning C under D given membership queries is defined similar to Section 2.4.1
(where the classical learner now has access to MQ(c) in addition to EX(c, D)).

One can similarly consider the case when a quantum learner is additionally given access to a

quantum membership query oracle QMQ(c)
QMQ(c) : |x,b) = |x, b® c(x)),

for x € {0,1}" and b € {0,1}. The quantum learner is allowed to perform arbitrary unitary opera-
tions in between applications of the QMQ(c) oracle. In this paper, we will also view as c € {0,1}?",
described by the truth-table of ¢ : {0,1} — {0,1}. The quantum sample complexity and time
complexity of learning C under D given quantum membership queries is defined similar to Sec-
tion 2.4.2 (where the classical learner now has access to QMQ(c) in addition to QEX(c, D)). More
generally, when we say a learning algorithm is allowed to make queries to a string ¢ € {0,1}V, it
means that the algorithm is given access to the oracle QMQ(c) : |x,b) — [b@®c,) for x € [N] and
b €{0,1}. The query complexity of such an algorithm is the number of invocations of QMQ(c).

Learning with membership queries under the uniform distribution. Finally, one can combine
the learning models in this section with Section 2.4.3 and consider (quantum) learners which are
given access to (quantum) membership queries and (quantum) labelled examples when the under-
lying distribution D is restricted to the uniform distribution ¢/. We say A is an (¢, §)-uniform PAC
learner for C with membership queries if A (¢, 0)-learns C under ¢ with membership queries. Sim-
ilarly we can define a (¢, 0)-uniform quantum-PAC learner for C with quantum membership queries.
In this paper we will consider such learners in the weak learning setting (for which ¢ = % -n°
for some c > 0) and let 6 = 1/3. For simplicity we will omit the (¢, 0)-dependence when referring
to weak classical-PAC or quantum-PAC learners. The sample complexity and time complexity of
such learners is defined similar to Section 2.4.1, 2.4.2 (wherein the classical learner now has access

to EX(c,U/) and MQ(c) and the quantum learner has access to QEX(c, /) and QMQ(c)).

In order to further understand the theoretical aspects of quantum machine learning, we refer
the reader to [SP18, AAD"15, AW17].

2.5 Circuits and neural networks

In this paper we will be concerned with the class of shallow or constant-depth Boolean circuits
that consist of AND, OR,NOT and Majority gates. We define these classes formally now.

I Note that an invocation of either EX(c, D) MQ(c) counts as one application of the oracle.

17



2.5.1 The circuit classes AC® and TC’

An ACP circuit on 7 bits consists of AND,OR and NOT gates whose inputs are x1,...,X,,X,..., X,.
Fan-in to the AND and OR gates are unbounded. The size of the circuit (i.e., the number of gates
in the ACY circuit) is bounded by a polynomial in 7 and the depth of the circuit is a constant (i.e.,
independent of n). We can further assume that the gates at level i of the circuit have all their
inputs coming from the (i —1)-th level and all the gates at the same level are AND or OR gates. The
class of Boolean functions that can be expressed by such a depth-d circuit is written as ACg and
ACY = J5ACY.

A depth-d threshold circuit, denoted TCY, is similar to an ACS circuit, except that the circuit
is also allowed to have Majority gates MAJ : {0,1}" — {0,1}, where the MAJ(x) = 1 if and only if
Y ;x; > n/2. Note that TC® contains AC® since AND, OR gates can be written in terms of the majority
gate as follows: AND(xy,...,x,) = MA](O”‘l,xl,...,xn) and OR(xy,...,x,) = MA](l"‘l,xl,...,xn) for
every x € {0,1}". Finally, denote TC® = Uaso Tcg.

2.5.2 Neural networks and TC’

One motivation for learning the concept class TC? is that it presents a theoretical way to model
neural networks with polynomially bounded weights. Although we do not deal with neural net-
works in this paper, we briefly mention their connection to TC? circuits. A feed-forward neural
network can be modeled as an acyclic directed graph where the nodes consist of neurons. We do
not define neurons here since it is beyond the scope of our paper, instead one can think of neu-
rons as real-valued function associated with weights. In order to make the connection to TC?
we will consider a subclass of neural networks called feed-forward neural networks. A sequence
of works [MTT61, Mur71, Par90, MSS91, GHR92] showed that constant-depth polynomial-sized
neural networks with neuron-weights bounded by polynomial in the input size,!? can be imple-
mented as a circuit in TC?. Equivalently, learning the concept class TC? broadly translates to the
ability of an algorithm that approximately learns the weights of neural networks.

3 Hardness assumptions and cryptographic constructions

In this section we give a detailed introduction to lattice-based problems and some cryptographic
primitives built using them. Our motivation in doing this, firstly, is to highlight the subtleties
inherent in the hardness results and security proofs associated with these lattice-based problems
and primitives respectively. Secondly, the details also help in explaining the subtleties that are
reflected in our utilization of these primitives for showing the hardness of quantum learning.

Let x be a distribution over Z and assume that we can efficiently sample from x.!3 Let B > 0.
We say that x is B-bounded if Pr,_,[le| > B] < u(n), where e, B are at most n bits long and u is
a function that is negligible in n. In other words, a distribution x is B-bounded if, with high
probability, the magnitude of e when drawn according to x is at most B.

Throughout this section, we use the following notation. For a,s € ZZ, let a - s be defined as
Z]-E[d] ajsj mod q. For g > p > 2, we define |-, : Z, — Z, as | x], = [(p/q) - x] where | -] denotes the

12Here the size of the neural network is the number of neurons in the network.
13The distribution x is dependent on input size 1, but we drop the n-dependence for notational simplicity.
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closest integer. A discrete Gaussian is the standard normal Gaussian distribution on the real line
when restricted to take integer values.

3.1 Learning with Errors (LWE)

Now, we can define the decision version of the Learning with Errors (LWE) problem.

Definition 3.1 (LWE, 4, m) The (decision) Learning with Errors problem with dimension d, modu-
lus q and a B-bounded distribution x over Z is defined as follows: On input m independent samples
{(a;,b;) € Zg X Z,}i, where the a; are uniformly sampled from Z’; and Z, respectively, distinguish (with
non-negligible advantage) between the following two cases:

* (LWE-samples) The b;s are noisy products with respect to a fixed secret s distributed uniformly
in Zg, i.e., bjs are of the form b; = a; -s + ¢; (mod q) where e; € Z is sampled according to x
conditioned on |e;| < B.

* (Uniform samples) For every i, b; is uniformly sampled from Z, and is independent of a;.

When the number of samples m is arbitrary (i.e., not bounded in terms of the dimension d), we
will simply denote the problem as LWE; , , .

Consider an efficient distinguisher D as defined in Definition 2.6 that distinguishes a distribu-
tion D from being uniformly random. Clearly, if D is the distribution generated by LWE-samples,
then the distinguisher D would also serve as an efficient algorithm to solve the (decision) LWE
problem. We formally define this below.

Definition 3.2 (Distinguishers for LWE, , , .,) An algorithm D is a distinguisher for the (decision)

LWEy,g,x,m problem if, given m independent samples from Zg X Zg, it distinguishes m LWE-samples
(2)

{ai,bﬁl)}i from m uniformly random samples {a;, b;

non-negligible function 1 : IN — R such that
Pr [D({ai,bgl)}i) outputs 1]— Pr [D({ai,b§2)}i) outputs 1]| > n(d).
(aib") (a;,0)
When D is a poly(d, m)-time probabilistic (resp. quantum) algorithm, it is said to be an efficient classical
(resp. quantum) distinguisher.

}; with non-negligible advantage i.e., there exists a

3.1.1 Hardness of LWE

For a suitable choice of parameters, it is believed that LWE is a hard problem to solve. This is based
on believed the worst-case hardness of lattice-based problems such as GapSVP,, (decision version
of the shortest vector problem) or SIVP (shortest independent vectors problem) [Reg09, Pei09]. We
do not introduce these problems or discuss their hardness here; an interested reader can refer to
Peikert’s survey [Peil 6] on the topic. The following theorems will be important for us in this paper.

Theorem 3.3 (Quantum Reduction [Reg09, Pei09]) Let d,q > 1 and «a € (0,1) be such that aq >
2Vd. Let Dgz,,q denote the discrete Gaussian distribution over Z, with standard deviation aq. Then
there exists a quantum reduction from worst-case hardness of the d-dimensional GapSVPg ;) problem

to the LWE; 4 p, , problem.'*
PR

1411 order to view LWE4 4.Dz , in the framework of Definition 3.1, we can set B as a suitable function of ag, possibly
14Dz,

a constant multiple of ag or even poly(aq) and this ensures that x := Dz,,ais B-bounded.
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We remark that this theorem statement combines two distinct steps — (1) showing the hardness
of the search version of the LWE problem (which asks to find the secret s when given m indepen-
dent LWE-samples) from GapSVP and (2) proving the sample preserving equivalence of the search
and decision versions of LWE [Reg09, Pei09]. Subsequent works succeeded in de-quantizing the
reduction from [Reg09] except that the dependence on the dimension changed. Initially, the clas-
sical reduction in [Pei09] from GapSVPg /) to LWEd,q,qu,a required that g > 2%/2, Later, Braverski

et al. [BLP"13] built on this result and other techniques from fully homomorphic encryption ob-
tained a reduction with a polynomial modulus.

Theorem 3.4 (Classical Reduction [BLP*13]) Let d,q > 1 and « € (0,1) be such that q = poly(d)
and aq > 2d. Let Dz, be the discrete Gaussian distribution over Z, with standard deviation agq.
Then there exists a classical reduction from the worst-case hardness of the d-dimensional GapSVP54/a)
problem to the LWEs2,4,D,, problem.

The corollary below provides a suitable choice for parameters that lead to hard LWE instances.

Corollary 3.5 Let d’ € N and a,q be parameters such that o = 1/Nd’ and aq > 2Nd’. Let x = Dz, ,ar
the discrete Gaussian distribution over Z, with standard deviation aq. If there exists a polynomial-time
quantum distinguisher for LWEy , . ., then there exists a polynomial-time quantum algorithm for the

Vd’-dimensional GapSVPg415) problem.

It is believed that there exists no polynomial-time quantum algorithms for the d-dimensional
GapSVPg45) problem [GGO00], which implies that there are no quantum polynomial-time algo-
rithms for LWE with the parameters as stated in Corollary 3.5.

3.1.2 Public-key encryption scheme based on LWE

In this section we describe the public-key cryptosystem proposed by Regev [Reg09] whose security
is based on the hardness of LWE.

Definition 3.6 (LWE — PKE [Reg09]) The LWE —PKE,, ,, public-key encryption scheme consists of:

Key-generation: Pick s € Zg and A € Z;”Xd uniformly at random from the respective supports. Draw
ee€ Z‘; from the distribution x, as defined in the LWE problem. Let b = As + e and output Ky, = s and
Kpub = (A, D).

Encryption: To encrypt a bit c using Kpup, = (A, b), pick S C [m] uniformly at random and the encryption
is (lg -A,lg ‘b +c|_%]), where 15 € {0, 1} is defined as 15(i) = 1 if and only if i € S

Decryption: In order to decrypt the ciphertext (a, b) using Kyriy = s, output 0 if b— a’s (mod q) < |1,
otherwise output 1.

Theorem 3.7 Let d € N, € > 0 be a constant, q = poly(d) and m > (1 + ¢)(d + 1)logq be polynomially
bounded in d. Then, the probability of decryption error for LWE —PKE , ,, is 2-@(d*/m) - Moreover, an
adversary can distinguish an encryption of 0 from an encryption of 1 in polynomial time with non-
negligible advantage over a random guess iff there is a polynomial-time distinguisher for LWEg g .

The following property of LWE — PKE was proven by Klivans and Sherstov [KS09].

Lemma 3.8 (Lemma 4.3 [KS09]) The decryption function of LWE —PKE can be computed by light
degree-2 PTFs.
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3.2 Learning with Rounding (LWR)

While the hardness results for LWE suggest that it is a good candidate for quantum-secure cryp-
tographic primitives, the amount of randomness that LWE schemes need to generate samples
make it unsuitable for the construction of pseudo-random generators. For this reason, we con-
sider the Learning with Rounding problem (LWR) which was introduced by Banerjee, Peikert and
Rosen [BPR12] and can be seen as a deterministic variant of LWE.

Definition 3.9 (LWRg 4 ;, ) The (decision) Learning with Rounding problem with dimension d, mod-
ulus q and rounding modulus p < q is defined as follows: on input m independent samples {(a;, b;) €
Zg X Z,}; where the a;’s are sampled uniformly from 78, distinguish (with non-negligible advantage)
between the following two cases:

* (LWR-samples) There is a fixed secret s uniformly sampled from Zg such that the b;s are rounded
products with respect to s, i.e., b; = |a; -7, for every i.

* (Uniform samples) For every i, b; is uniformly sampled from Z, and is independent of a;.

Again, when the number of samples is arbitrary, the corresponding problem is denoted LWR; , ,,.
Similar to Definition 3.2 of distinguishers for LWE; ; , ,, one could analogously define classical and
quantum distinguishers for the LWR; ; , ;, problem as well.

3.2.1 Hardness of LWR

There have been many results studying the hardness of the LWR problem. We first discuss a result
of Banerjee et al. [BPR12] which is simple-to-state and shows the hardness of the LWR problem
based on the hardness of the LWE problem. Although their reduction is sub-optimal in terms of
the parameters, we later state a result of Bogdanov et al. [BGM*16] which improves upon their
result with better dependence on the parameters.

Theorem 3.10 ([BPR12, Theorem 3.2]) Let d > 0 and x be an efficiently sampleable B-bounded distri-
bution over Z. Fix q > p-B-d®). Then, for any distribution over secrets s € Zg, solving LWR , , is as
hard as solving LWE , . for the same distribution over secrets.

One advantage of the reduction by Banerjee et al. [BPR12] is that this result holds for an un-
bounded number of samples but the caveat is that q is required to be super-polynomial in d. The
reduction proceeds by showing that a distinguisher for LWR; , , can act as a distinguisher for
LWE, 4, Specifically, they prove that this occurs with high probability for a fixed secret s, if the
distribution of LWR, , ,-samples is statistically close to the distribution of LWE; , ,-samples. In
other words, they require that except for a few “bad cases”, most likely |a; s, = [a;-s+¢;], when
e; is sampled from x. However for this to hold with high probability, the LWE error e; needs to be
very small in magnitude relative to g/p. Since the error ¢; scales as 1/poly(d) for hard instances of
LWE, when the modulus g scales super-polynomially in d, the bad cases where |a;-s7, # |a;-s+e;],
occur with negligible probability.

We now connect the hardness of LWR to the hardness of LWE. Suppose there exists an efficient
distinguisher for LWR; ; , ;, that distinguishes LWR-samples from uniform samples with an ad-
vantage 6. Then, the using the reduction from Theorem 3.10, we can construct an efficient distin-
guisher for the LWE; ; , ,, problem for g > d®1), with an advantage 6 — O(mBp/q). Unfortunately,
this does not suffice to, a priori, prove the quantum hardness for LWR since there are no known
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reductions from worst-case hard lattices problems to LWE, , , when g scales super-polynomially
ind.

However, the result of Banerjee et al. [BPR12] has been improved upon in recent years by a
number of works [AKPW13, BGM*16, AA16] with more sophisticated analysis. In these results it
suffices to pick g > poly(d) and in the regime where g = ©(poly(d)), we can relate the hardness of
LWR from that of LWE. We now state the hardness reduction from [BGM*16] as it introduces the
least number of new parameters.

Lemma 3.11 (LWR hardness from [BGM*16]) Let B> 0, x be a B-bounded distribution and d € IN.
Let g,p,m = poly(d) such that q > 2mBp. Let d’ € IN such that d’ > d/logq. If there exists an efficient
distinguisher for the LWRy, , ,, with advantage ¢ > 1/poly(d), then there exists an efficient distin-
guisher for the \WEy, o . ,,, problem that has advantage ¢’ > O((e/qm)?).

This lemma now allows us to connect distinguishers for LWR to the distinguishers for LWE.

Corollary 3.12 Let B> 0 and d € IN. Also, let p,q,m = poly(d) such that ¢ > 2mBp. Let d’ > d/logq,
ae{2Vd'/q,...,B/6q)and x = Dz, o If there exists a quantum distinguisher for the L\WRy o\, ., problem
that runs in time polynomial in d, then there exists a quantum distinguisher for the AWEy, , . ., problem
with run-time also polynomial in d.

3.2.2 PRGs from the LWR problem

We define a pseudo-random generator based on the LWR problem following the construction
in [BPR12]. In the rest of this paper, for the sake of simplicity, we will assume p and q are powers
of 2 ensuring that log p and logq are integral values.

Definition 3.13 (LWR—PRG) The LWR; , ,, ,, problem for q,p, m = poly(d) and plq defines a pseudo-
random generator LIWR-PRGy , , , as follows: on input a uniformly random (public) matrix A € ng’”
and a secret seed s € Zg, the PRG outputs a pseudo-random vector in Z}, defined by G4 : Z‘; - Zy

where G(s) = A" -s1,. The seed length of this PRG is s := dlogq bits and its stretch function is given
by € := mlogp bits.

Note that, for a suitable choice of g,p and m that are polynomially bounded in d, it is possible
to achieve an arbitrary polynomial for the stretch function, i.e., £ = O(poly(d)).

Lemma 3.14 Letd € N. Let q,p, m = poly(d) such that p < q. Then, the LWR-PRGy ; ,, , is a quantum-
secure PRG.

Proof. The proof derives the security of the LWR—PRG from the conjectured quantum hardness
of LWE and GapSVP for a suitable choice of parameters. Let A € Zf;x’" denote the random public
matrix used to instantiate the PRG. By way of contradiction, suppose that the LWR—PRGy 4, m Ga
is not quantum-secure. Let ¢ denote the stretch function of G4. Then, there exists a polynomial-
time quantum distinguisher D that can determine if the bit sequence z = zyz;...z,_; is an output
of G4 or is a uniformly sampled bit string. From Definition 3.13, ¢ = mlogp and so one can
view the bit sequence z as m numbers {b;}; where each b; € Z,. Using this m-number sequence
and the matrix A used by the PRG Gy4, we can construct m samples {a;, b;}; where a; is the ith
column of A and b; is the ith number in the m-number sequence. Clearly, when z is an output
of G4, these samples correspond to m-LWR samples. Otherwise, they correspond to m uniform
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samples from Z,. In this way, D becomes a distinguisher that can differentiate between m LWR-
samples and m uniformly sampled numbers from Zp. Then, from Corollaries 3.5 and 3.12, we can
use D to construct polynomial-time quantum algorithms for the corresponding LWE and GapSVP
problems. This contradicts the original assumption on the LWE hardness [Reg09, Pei09], and
thereby contradicts the assumption that LWR—PRGy , ,, ,» is not quantum-secure. This concludes
the proof of the lemma. O

A corollary of this lemma is that the parameters of the LWR—PRG can be chosen such that it is
quantum-secure for every polynomial stretch.

Lemma 3.15 Let d € N and q,p = poly(d). Also, let s := dlogq. Then, for every polynomial €(s) > s
there exists an m and for every uniformly sampled A € ngm, there is an LWR—PRGy ;. G4 that
outputs the bit sequence zyzy ---z¢s)-1 and is a quantum-secure pseudo-random generator. Moreover,
given an index 0 < i < {(s), the output bit z; can be computed by a TC® circuit.

Proof. For every choice of {(s), set m = {(s)/logp. Now consider the LWR-PRG,, , » G4 whose
stretch is exactly mlogp = {(s). Then from Lemma 3.14, G4 is quantum-secure.

Additionally, given an index i € {0,...,¢(s) — 1}, we can choose j € {0,...,m} and t € {0,...,log p}
be such that they satisfy the following three equalities
i=jlogp+t, j=|i/logp] and =1 (mod logp). (4)
Note that since i < {(s) = mlogp, it follows that j < m. In order to compute the output bit z;, take
the j" column of the matrix A and calculate the binary representation of [(A j»$)1p- By definition,
the t'" bit of this binary number equals z;.

Observe that all the operations performed to determine j,t and b; are arithmetic operations
either taken modulo p or modulo g. The inner product can be viewed as a sum of d binary scalar
products modulo g. Since g = poly(d), the d-dimensional inner product (A;,s) can be performed
by a TC? circuit on d bits. As p and g are assumed to be powers of 2, the |-, task effectively
reduces to just truncating some of the most significant digits of the inner product. Using the
fact that, the inner product, the arithmetic operations and rounding modulo p can be efficiently
computed by TC circuits for p,q,m < poly(d) [RT92, HAB02], it follows that, given an index i, z;
can be computed by a TC? circuit on O(d) bits. m]

One problem that prevents us from computing an arbitrary bit of the quantum-secure LWR—-PRG
in a smaller circuit class, say AC?, lies in the inner product operation where we need to add d num-
bers modulo g. However, using the observation that arithmetic operations on O(log#) bit numbers
can be computed by an AC? circuit [MT98] helps us overcome this issue.!> For this reason, we
consider the LWR—PRG with a shorter seed length i.e., by setting d = polylog(n) and considering
poly(n)-sized ACC circuits. This resembles the technique used by Kharitonov [Kha93] to show that
some instances of the BBS PRG can be implemented in ACY.

Lemma 3.16 Consider an AC? circuit on n bits. Let d,q,p be such that d = log? n for some constant
y > 2, p = poly(d) and q = n°1°8") where p | q and p is a power of 2. Let s(n) := dlogq. Then, for every
polynomial £(n) > s(n), there exists an m and for every uniformly sampled A € ngm, there exists an
LWR-PRGy 4 p,m Ga : {0,111 — {0, 1} such that: given z € range(Gy) and i € {0,...,€(n) — 1}, the
bit z; can be computed by a poly(n)-sized AC? circuit.

15Basic arithmetic operations can be expressed by circuits containing AND,NOT, OR and MAJ gates. MAJ gates with
O(polylog n)-bit fan-in can be computed by AC? circuits.
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Proof. The proof follows the ideas used in the second part of the proof of Lemma 3.15. We show
that an arbitrary output bit of the PRG G4 can be computed by an AC? circuit. As before, set
m := {(n)/logp. Note that with g = nOogn) = 20(d*”) ang m = {(n)/logp = O(poly(n)) = 207,
both g and m grow super-polynomially with respect to d. In order to compute the bit z;, observe
that the operation [(A;,s)], requires the ability to multiply and add numbers from Z, and round
it to a value in Z,. It is known that addition, subtraction and multiplication of O(polylogn)-
bit numbers can be performed in AC® [MT98]. This would let us determine the indices j and ¢,
defined as in Eq. 4, in AC°. Since the length of numbers in Z, can be bounded by O(log? n) bits
and the vectors are of length O(polylogn), the inner product (A;, s can also be calculated in ACO 16
Since p is a power of 2, in order to compute |-],, we would only need to consider the last logp =
O(logd) = O(loglogn) digits to obtain the number modulo p and this can efficiently be calculated
in AC’. Hence, the LWR-PRG G, with O(polylog n)-sized dimension can be implemented using
an ACY circuit. O

4 Quantum-secure PRGs vs. quantum learning

In this section we prove our main theorem which shows the connection between efficient quantum
learning and quantum algorithms which serve as distinguishers for pseudo-random generators.
We give two proofs of the main theorem, an information-theoretic argument and a hybrid-method
argument. The information-theoretic argument is fairly intuitive and follows ideas similar to the
original work of Kharitonov [Kha93]. The second proof technique uses the hybrid-method argu-
ment (introduced by Bennett et al. [BBBV97]) and gives a different (incomparable) dependence on
the parameters of the PRG and the learning algorithm.

The first step while considering a quantum learning algorithm is to define a suitable concept
class which the learner aims to learn. For n,n” > 0, and f : {0,1}" — {0,1}", we define a generic
concept class Cy which depends on f. For simplicity of notation, we drop the dependence on f
and just denote the class as C — the function used to create C will be clear from context. It is
formally defined as follows:

Definition 4.1 (Concept Class) Let G, : {0,1}" — {0,1}(") be a function where £(n) > n. For k > 1,
let G, denote the k-extension of G,,. Define the concept class C := \Jy_, C where
Cr:={c;: {0, 1}n —{0,1} [ cx(x) = Zx (mod 2F)y 2€ range(Gn,k) } (5)

The use of the k-extension allows us define the concept class independent of any assumption on
the function G. We also remark that x in the expression zy (med 2¢) is viewed as an integer in [2"].
Now, one can connect an efficient learner for concept class C to the existence of a distinguisher for
G, (i.e., identify if a Boolean string is part of the output sequence of G,, or is uniformly random)
using the main theorem stated below.

Theorem 4.2 Let n > 2. For £(n) > n, let G,, : {0,1}) — {0,1}*"). For every k > 1, let Gur:{0,1}" —
{0, 1}2k denote the k-extension of G,,. For this G,, let C be the concept class as defined in Definition 4.1.
Suppose there exists a t(n)-time uniform quantum-PAC learner for C (given access to q quantum mem-
bership queries and uniform quantum examples) with bias f(n). If

. [n-q 49
5(n)>m1n{W,W}, (6)

16The complexity of adding (logn) n-bit integers is in AC? as sketched in [Fil15]
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then there exists a (t(n) + q(n)€(n))-time quantum algorithm D : {0,1}*") — (0,1} that satisfies:

n)
- Bm)
D PG =11= Pr D) =11 5,

(7)
where the probability is taken over uniform x € {0,1}" and y € {0, 1}

A key part of the proof for this theorem hinges on bounding how well a quantum algorithm
predicts a random bit of an unknown uniformly random string z. We assume that the algorithm is
allowed to a query some bit of the string (in superposition) at most g times and call this perform-
ing a membership query to z. Then, we can upper bound the probability of predicting a random
bit of z as stated below.

Lemma 4.3 Let n> 1 and z € (0,1} be a uniformly random string. Consider a quantum algorithm
that makes q quantum membership queries to z. Given a uniformly random question x € {0,1}", the
probability of the quantum algorithm predicting z, (mod ¢(n)) correctly is

1 n-q 2q
Pr [hy = 2y (mod ¢(n) ]<2+ { o) } (8)

xe{0, 1} ) \/M

where h,, is the output of the algorithm given the question x.

We now make a remark on the two bounds in the lemma above. Firstly note that for q = ((n),

n-q(n) 2q . .
we have o < Vi Generally, when proving the hardness of learning concept classes, the

number of membership queries (i.e., ) could be an arbitrary polynomial in #, in which case it

always suffices to consider the upper bound of % + ,/% in Eq. 8. So, a critical reader might

wonder the need to prove the upper bound of %+ \/2;—)
n

for a more fine-grained analysis to give a lower bound on the query complexity of polynomial-time
quantum learning algorithms. More concretely, in Appendix B.3, we use the second bound in
Eq. 8 to show that efficient quantum learning algorithms for AC needs to make Q (/1) quantum
membership queries based on the hardness of the Subset —sum problem. In order to prove this
lower bound, we use a PRG that can be computed in AC? on n bits but has only logarithmic
stretch [IN96] (i.e., the stretch function is n+ O(logn)), and in this case the term in the first bound
in Eq. 8 does not give us anything meaningful.

in Eq. 8. Later, we will use the second bound

We now proceed to the proof of Lemma 4.3.

Proof of Lemma 4.3.  This proof combines two cases namely, showing that for some x drawn

uniformly from {0, 1}", Prye 0,1)1[Ix = Zx (mod ¢(n))] 18: (a) at most % + /;(q) using an information-

2q
V(n)
bounds hold, then by combining them and using the smaller of the two, Eq. 8 also holds. We now
prove each case separately.

theoretic approach; and (b) at most &

using the hybrid method. Clearly, if both of these

n-q
N &)
some index x, view h, as the output of a “hypothesis function” h: {0,1}" — {0, 1}, such that
h, = h(x). By contradiction, let us assume that the hypothesis function h satisfies

_ 1 B(n)
xe{lgﬂ}n [Zx (mod €(n)) = h(x)] >t 9)

(a) Information-theoretic proof: Without loss of generality, assume f(n) = On input
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where x is drawn uniformly from {0, 1}". In this case, the mutual information between the
random string z and the truth-table of the hypothesis 4 is given by

z:h)= ) Kz:h)= ) (H(z)-Hzlh) =0n)- ) Hizlh), (10)

x€[l(n)] x€[l(n)] x€[l(n)]

where the first and last equality used the independence of the z,s since z € {0,1}(") was
uniformly random. By Fano’s inequality (in Lemma 2.3), it follows that H(z.|h) < Hy(py),
where Hy () is the binary entropy function and p, is the probability of error on guessing z,
by an arbitrary estimator whose input is h : {0,1}" — {0,1}. By assumption of h in Eq. 9, it

follows that ﬁ Y Px < % - @ Using this, we then have that

n)
E H(z,|h <max§ Hy(py),
(x) ol e bx)

where the maximization is over {p,} in the set {px : €+m Y Px < %— T} Since H, is a con-
cave function, the maximum is obtained when all the p,s are equal (this also follows from
Jensen’s inequality). Given our upper-bound on the sum ), p,, it follows that }  Hy(p,) is

maximized when p, = % - @ for every x. In this case, we have

1 B(n)) 1 B(n) 2B(n)
TEE}X;Hb(Px)S;Hb(z—T)—Z(”)'Hb(E—T)Sf(”)(l— o ); (11)

where we use Fact 2.2 in the last inequality. Putting together Eq. 10 and 11, we obtain

2By
In2

We now upper bound the mutual information between the output hypothesis 4 and the uni-
formly random string z. One way to view the quantum algorithm is as a protocol where a
quantum membership query to z is a message from the algorithm to an oracle hiding z and
the oracle’s output is a message from the oracle to the algorithm. In this case, using Corol-
lary 2.4 the mutual information between the output hypothesis & and the random string z
can be upper-bounded by the communication complexity of the protocol,

I(h:z2)<(n+1)-q. (13)

I(z: h) >2-n-q. (12)

However, since n > 2 and by the assumption on (), the lower bound in Eq. 12 contradicts
Eq. 13, which in turn contradicts our assumption in Eq. 9.

Hybrid method proof: Let the random index x for which the algorithm outputs &, be de-
noted as x*. Since x* € [2"] is picked uniformly at random and the algorithm has to predict
Zy+ (mod €(n)), W€ could without loss of generality assume that a algorithm is instead given
x* € [€(n)] uniformly at random and has to predict z,.. So from here on, we let x* € [{(n)].

For x* € [¢(n)] and b € {0,1}, let z € {0,1}*") be a uniformly random string conditioned on
zy- = b. One way to view the task is: given query access to O, - for uniformly random x* €
[£(n)], b € {0,1} and z € {0,1}") (conditioned on z,. = b), an algorithm needs to distinguish
between O,,_y and O, ,_;. Here we show that a g-query algorithm has success probability
2q

V(n)

use an argument based on the hybrid method. A standard g-membership query quantum
algorithm has the following structure

Uq+1 Oz quz e U2OZU1 |0>;
where z € {0,1)Y™") and the |0) register includes the workspace of the quantum algorithm and

of at most % +

in distinguishing between these two oracles. In order to prove this, we
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the action of O, is given by O, : |x,b,w) — (=1)b%|x, b, w).
Fix x* € [€(n)], z € {0,1}!"). For b € {0, 1}, consider the final states of a q-query algorithm
|§bjx b> = +1Oz —bU Oz =b- UZOZ —pU10).
For notational convenience, we will drop the |-) around l,bz . below. By writing out the
action of the oracles, it is not hard to see that for every x* € [¢(n)], we have
Ozt = Oz = 2", 1), 1| ® Ty, (14)
where Iy is the identity on the workspace register. We now show that for t > 0, we have

1} 0= 9o 1||<X||2Uk+1|x D6 1@ Ty - 953 (15)

First observe that,
k _ k U O k-1 U o) k-1
||‘1bz,x*,0 ¢z,x*,]||_ || k+1 XjZOl)Dz,x",O k+1 .-11,[12 ||
= ||Uk+1oxj=0¢§,}3,o— Uks1(Ox=0 = 2027, 1(x7, 1Ty st
< [1Uk+1 Ox;=0( N o — P DI+ 12Uk I I, L @ Ty - i ]

<5t o =i+ 120k I, DG 1@ Ty - il
where the second equality used Eq. 14 and both inequalities used the triangle inequality.
Using the above inequalities, we now have

Zuwzxo . 1||<Z||¢zx0 i 1||+Z||2Uk+1|x (@ - it

Cancehng the terms in the summatlon and observmg 2 . o =2 .|l =0 (since these states
are independent of the query) gives us Eq. 15.

Consider a g-query algorithm satisfying the following: for a uniformly random x* € [{(n)]
and z € {0,1}¢(") conditioned on z,. € {0,1}, with probability at least 1/2+ p the algorithm can
distinguish between I,l)zx*'o and 1,!)236*,1 . Using Eq. 2.1 and Eq. 3, we have

By (1970 = P20 112 > 2B. (16)

Using Eq. 15, we have

i) a n)

Y Mo =92 <)) 12Ukl DG U@y - k2

x'=1 k=1x=1 (17)

<Ve(n ZZ||2Uk+1|x 16 1@ Ty - i 111 < 4qye(n
k=1 x*=1

The second inequality was by Cauchy-Schwartz-inequality and the final inequality follows from

{(n)
2||2Uk+1|x I 1@y - b 1P

_4Z le Tl IS, 1 @y Uy Upr X5, 1T, 1| @ Ty - ‘zble

—4Z ) I 1 @ Ty - k) 1_4ZZ<¢“ 1, w)? < 4,

where the last 1nequahty used the fact that 1/) 1 is a quantum state. Putting together

27



Egs. 16 and 17, we have

4q q q
= IEZ,X* [”lpz,x*,o - Bbz,x*,l ”] 2 2/3’
(n)
hence the bias in obtaining the correct outcomes is at most 2; 3
n

O

Now, we can prove Theorem 4.2. It suffices to show that there is some sub-class of concepts
in C, say Cy for some specific k, that is hard to learn thereby making the whole class hard to learn.

Proof of Theorem 4.2. Let A be a f(n)-time uniform quantum-PAC learner that makes at most q
quantum queries to a concept ¢ € C and outputs a hypothesis /1 : {0,1}" — {0, 1} such that
1
P [el) = h(0) 2 5+ i)
where the probability is over x drawn uniformly from {0,1}". Note that A can obtain a uniform
quantum example by making a single quantum membership query, so without loss of generality
we assume A makes membership queries.

The goal is to use A to construct a quantum distinguisher D for the PRG G,, with stretch €(n)
such that D satisfies Eq. 7. Notice that, when k = logf(n), G, x = G, i.e., there is neither any
truncation nor any padding of the output. Hence, in the remainder of the proof, we consider
concepts ¢ € Cloge(n) in which case, z € {0,160, By showing that Cjyg¢() is hard to learn, we
conclude that C is hard to learn.

Let z € {0,1}Y") be the input string to a distinguisher D, whose goal is to decide if z is a uni-
formly random string or if z € range(G,,). In order to do this, the distinguisher D proceeds by first
running the quantum learning algorithm A as follows: when A makes a quantum membership
query, D performs the following unitary transformation

U, 10b) = [X)|b ® 2y (mod ¢(ny))  for every x € {0,1}",b € {0, 1}. (18)
We remark that U/, can be performed efficiently (i.e., in time £(n)) by D since the function z, (mod ¢(n)
is cyclicin x, i.e., it only depends on the ¢(#n) bits of the input string z. After making g membership
queries, A then outputs a hypothesis h. The distinguisher D outputs 1 (i.e., z is a pseudo-random
string) if and only if h(x) = zx (mod ¢(n)) for @ uniformly random x € {0, 1}".

The running time of D is at most #(n)+ q-¢(n) since A runs in time #(n) and makes at most q(n)
membership queries, and each unitary transformation ¢/, in Eq. 18 used to implement a member-
ship query takes time at most £(1). We now show that D satisfies Eq. 7. Suppose z € {0,1}(") was
the output of a PRG G,,, then the the unitary transformation i, exactly corresponds to a quan-
tum membership query for the concept c, (since we have defined ¢,(x) = zy (mod ¢(n)) for every x).
Hence, we have

Do DG ) =11= Pr [cfx) = h(x)] > 5 + o), (19)
where the inequality follows from the correctness of the quantum learning algorithm A.

On the other hand, if z was a random string, we have from Lemma 4.3, that

_1]= _ 1 imin) 9 20 [ 1, B
ye{glr}a”)[D(}’) =1]= xe{%ﬂ}n[cz(x) =h(x)] < 5 +m1n{ ) \/5(_71)} <5t

where the last inequality uses the definition of f(n) in the theorem statement.
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In this case, the bias of the distinguisher D is
p(n)
Pr [D(G =1]- Pr [D(y)=1]=—.
cetohy AP(Gu(3) = 1] ye{ollr}[(m[ ¥ =1]|2=
This concludes the proof. O

5 Quantum-secure encryption vs. quantum learning

In this section, we prove a theorem relating the security of quantum public-key cryptosystems
and the hardness of quantum learning the class of decryptions functions in the cryptosystem.

Kearns and Valiant [KV94] showed the following simple, yet powerful connection between
learning and public-key cryptography: consider a secure public-key cryptosystem and define a
concept class C as the set of all decryption functions (one for every public and private key). Let us
assume that there was an efficient PAC learner for C. Given a set of encryptions (which should be
viewed as labelled examples), supposing an efficient learner for C was able to learn an unknown
decryption function with non-negligible advantage, then this learner would break the cryptosys-
tem. This contradicts the assumption that the cryptosystem was secure and, in turn, shows the
infeasibility of learning C. Kearns and Valiant used this connection to give hardness results for
learning polynomial-sized formulas, deterministic finite automata, and constant-depth threshold
circuits based on the assumption that Blum integers are hard to factor or that it is hard to invert
the RSA function. Our main contribution is to quantize the theorem by Kearns and Valiant [KV94]
and draw a relation between quantum learning and security of quantum cryptosystems.

Theorem 5.1 Consider a public-key cryptosystem which encrypts bits by n-bit strings. Suppose the
(randomized) encryption function is given by CK ot {0,1} — {0, 1}" (where K = (Kpup, Kpriv) consists
of the public and private keys and r is a random string) and decryption function is given by dy
{0,1}* > {0,1}. Let C = {cleriv :{0,1}" = {0, 1}}Kpriv be a concept class. Let

e(1) = Prldic, (0, (0) 7 0 07 dic (e, (1) 1]

be the probability of decryption error (where the probability is taken over uniformly random K =
(Kpubs Kpriv) and r). If there exists a weak quantum-PAC learner for C in time t(n) > n that satisfies

priv. *

t(n)B(n) = 1/n“WY), then there exists a t(n)-time quantum algorithm Adv that satisfies
K,I:*r,b*[Adv(Kp“b’ e (07) = b ]_K,B*r,b*[AdV(KPub' K (1) = 07| 2 poly(n)’
where the probability is taken over uniformly random K,r*,b* over their respective domains.

(20)

Proof. For notational simplicity, for a fixed Ky, let e, := EncKpub’r(b) and € = {e,}, : ,b} be the
set of all encryptions for the public key Ky, Our goal here is to devise a quantum algorithm
Adv that satisfies the following: on input (K,up, €*), where e* = ¢, - is uniformly randomly chosen
from &, Adv outputs b such that b = b* with 1/poly(n) advantage over a random guess. Adv would
clearly serve as our quantum algorithm that satisfies Eq. 20, thereby proving the theorem.

Our approach is to devise an Adv so that the remainder of our reasoning resembles the (clas-
sical) proof of this theorem by Klivans and Sherstov [KS09] (who in turn re-derived the proof of
Kearns and Valiant [KV94] in their paper). However the quantization of their proof is not straight-
forward. Classically, it is possible to generate samples from the uniform distribution supported
on £ as follows: pick r and b uniformly at random from their respective domains and then output
the uniform classical examples (e, ;,b). Quantumly, it is not clear how an adversary Adv could
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create a quantum example

7 L Jecnlb) (21)
r,b

Notice that if an adversary could prepare the state in Eq. 21, then it could directly pass t(n) quan-
tum examples to the quantum-PAC learner (assumed in the theorem statement) and a similar
analysis as in Klivans and Sherstov [KS09] give a quantum algorithm that satisfies Eq. 20. How-
ever, one issue while preparing the state in Eq. 21 is the following: the straightforward way to
prepare the state Eq. 21 would be create the uniform superposition ﬁ|r>|b>|0} and then in su-

perposition prepare ﬁh’ﬂbﬂ@nb)- If there was a way to erase the first register, then we would get

the state in Eq. 21. However, erasing this register is equivalent to solving the index-erasure prob-
lem [AMRR11, LR19] and in general solving the index-erasure problem needs exponential time.

In order to circumvent the issue mentioned above, we now show how to tweak the proof and
construct an adversary Adv,, that correctly decrypt a challenge encryption (i.e., e, ;<) with non-
negligible probability. Before constructing Adv,e,;, we first present an adversary Adviqe, that is
able to create specific samples (see Eq. 22) that Adv,e, could not create and analyze its success
probability. Then we show that the success probability of Adv,e,; and Advjge, in predicting the
challenge encryption (i.e., e, ;<) are very close.

Let S;gea1 = {(r;,b;);} be a fixed set of size L = 2n°t(n) that contains (r*,b*) and let us assume
AdV;gea has access to S;gea1. Then Advigear can create the quantum example

[ideat) = —= f Y e b (22)

(7,b)€S;qeal

Notice that since Adv,e,; does not know the decryption of e, -, it would most likely not be able to
obtain such an Sjge,; and consequently would not be able to create [1);gcq1) efficiently. Advjge, then
passes on t(n) copies of |i)jgea) to the quantum-PAC learning algorithm for C (which is assumed by
the theorem statement). Let H(D) be the distribution of the hypothesis output by the quantum-
PAC learning algorithm when the samples come from the distribution D. For S = {(r;, b;)};, let Dg
be the uniform distribution on the training set {(e, 3, b) : (r,b) € S}. Suppose the learning algorithm
outputs a hypothesis h € supp(H(Ds)), then Ajq.q; outputs ke, j+) as its guess for b*. We now
analyze the probability that output of Advjge,; is in fact the correct decryption of e*:

Pr [Advigeal(€’) = b"] = PflExl[Adewﬂf)Z *6*65/W5|=L]
e*e UE e'e UE

= e%Ie’lrJElEng [h~P(r S)[h(e )=b"]le* € SAIS| = L]
eeUEZ Pr[S=Sle*€SAlS|= ]hwg(rps)[h(e )= b7
=Y Y pels=sisi=1) pr w=e] Pr [he)=p] 2
SCEe'eS ~H(Ds)
=) pris=siisi=1] [ ceslhe) = ]|
SCE
1 1 1 1
> = = — —_— = — [
_;Srspgl}s[s SISl L](2+nc) 2+nC

In the first equality, the expectation is taken over uniformly random S C E conditioned on |S| =
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and e € S, second equality describes the operations of Advige,, the fourth equality holds because

-1 -1
1(E-1 Ey\ "1
P P = * =Ll=— = - = P = =L| P =¢
2y Y pnis=sieesalsi=n=(; 1) =(F) 1= XY pyis=sisi=) p w=el
SCE SCEe*eS

and the inequality comes from the guarantees of the quantum learning algorithm.!” Hence Eq. 23
shows that the ideal quantum algorithm Adv;ge, satisfies the following: on input a uniformly
random e* = ¢« ;- from the set E, Advjqe, outputs b* with probability at least 1/2+ n™°.

We now consider Adv,.,. Let

1
|l;breal> =T |er,b; b}, (24)
L-1 (T,b)gireal

where Sieal = Sideal \ {€°}. The idea is that for L = 2n°t(n), the distance between the two states
|thidea1) and [ireq1) is small. Also notice that the state in Eq. 24 can be constructed efficiently by
AdV,e,: pick O(L-t(n)) many (r;, b;)-pairs uniformly at random from their respective domains and
set Speal = {(;,b;);}. From these classical values, the learner can create f(n) many copies of the
state [trea1)- We now show that a hypothesis sampled from H(Ds__ ) behaves “almost similar” to a
hypothesis sampled from H(Ds,, ). For every y € {0,1}" and b € {0, 1}, observe that

Pr [Wy)=bl=  Pr (Wy)=bl- Pr [hy)=bl+ Pr [ky)=b]

h~H(D5rea1 ) hNH(DSreal ) Sideal ) ~ Sideal )
25)
t(n)) (
> Pr h(y)=b]-0O[—|.
ok Ji=11-0(%

The inequality holds since the statistical distance of the output of an algorithm A in inputs |¢$)
and |¢’) is upper-bounded by || |¢p) - |¢p”) |I?, and we have that
2 t(n
100 Wt I = 0 gt = W) =0 7 20
by the definition of |();gea1) and |¢rea1) in Eq. 22 and 24 respectively. We now analyze the probabil-
ity that Adv,., outputs the right decryption b, when given a uniformly random sample e* € E:

Pr [Adviei(e) =b] = Pr Eg  cp|Adviea(e’) = b"||Sreall = L — 1]
C*EUE E*EUE |
= Pr E Pr h(e*) = b*]||S =L=1
eely StealSE h“‘H(DS,ea])[ ( ) ] | reall :i
' (27)
> Pr E Pr [h(e") = b)|1Suuy = L—1| - O V)
= cely Sreal €E thH(Dsideal) real I

1 1 tn)\_ 1 1
>—+—-0—]|>=-0(—).
=2 e O(L)_2 O(nC)
In the equations above, recall that Sijes] = Srea1 U {(€",b7)}, the first inequality used Eq. 25, the
second inequality used the same analysis as in Eq. 23 and the last inequality used L = 2n°t(n).

This shows that Adv,¢,;, on input a uniformly random e* = Encg_  ,+(b*) from the set £, outputs b*
pub-
with probability at least 1/2 + O(n™).

17Note that we have assumed for simplicity that (i) deriv(erub’r(b)) = b with probability 1 and (ii) the quantum
learning algorithm outputs a hypothesis with probability 1. If we take into account the decryption probability error
&(n) and that the learning algorithm succeeded with probability 1 -6, then the lower bound in Eq. 23 would be % +(1-
6)n~¢ — ¢(n) and the remaining part of the analysis remains the same.
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It remains to show that Adv satisfies Eq. 20, which is equivalent to
|2K,I:}:b*[AdV(Kpubr erub,r*(b*)) =b']-1]. (28)

Letting Adv be Adv,., in the calculation above, we have

1 1
2 Pr [Adv(Kyup, (b)) =b"1-1|>0[—]= ,
| K,T*I:b*[ V( pub erub,T (b )) b ] | O(nc) poly(n)
where the inequality used Eq. 27. This concludes the proof of the theorem. O

6 Hardness of learning

We now use Theorems 4.2 and 5.1 and the discussion on LWE-based PRGs in Section 3 to prove
the following results.

6.1 Hardness of learning TC°

For completeness, we formally state Result 3 and follow with its proof.

Theorem 6.1 Let n,n’ € N such that n’ = [n/logn). Assuming that the n’-dimensional LWE problem
is hard for a poly(n)-time quantum computer, there is no poly(n)-time uniform weak quantum-PAC
learner for the concept class of TC circuits on O(n) bits.

Proof. We proceed by a proof of contradiction. First, we construct a concept class C which is a
subset of TC. By contradiction, suppose there is an efficient quantum learning algorithm for C, we
show that it would imply an efficient quantum distinguisher for the LWR problem for a suitable
choice of parameters. Using Corollary 3.12 we can translate the hardness of LWR to provide a
polynomial-time quantum distinguisher for an LWE problem, contradicting the assumption that
LWE is hard for quantum computers.

We give more details below. Let 4,c > 0 be constants. Let us assume that there exists a learner
A for C that uses n” queries/samples and achieves advantage f(n) = n¢. Let d = n and pick p,g > d
such that p,q € O(poly(d)), p < g and p | . Let us set the seed length s(n) = dlogq = O(nlogn) =
5(n). Then by Lemma 3.15, one can use the pseudo-random generator G,; : {0,111 — {0,1}¢™ to
construct an instance of the LWR-PRGy ;, ; ,, for the polynomial stretch function ¢(n) = ﬁ(n“z”l)
by choosing m = [€(n)/logp] (without loss of generality, we can pick €(n) to be a power of 2).

Consider the following concept class C defined as in Definition 4.1. For every k > 1, let
Gk : 10, 15 — o, 1}2k denote the k-extension of G,, and define
Cro={e. {0, 11" 5 {0,1) | €2(%) = 2 (mod 2t Z € range(Gyx) } (29)
and letC = UZ(:nl) Ci. Observe that for every concept c € C, there exists a TC? circuit that computes c.
This can be inferred as follows. Since G, is an LWR-PRGy ,, ; ,», an arbitrary output bit of G, (x) can

be computed in TC? by Lemma 3.15 and the task x” = x (mod 2*) can also be performed by a TC?
circuit (by simply considering the last k digits of x to obtain x”). For z= G, x(x) for some 1 <k <n
and x, observe that computing an arbitrary bit of the k-extension requires either truncating an
£(n)-bit string or outputting 0 when k > log 1, both of which can be performed by a TC? circuit.

Now consider the learner A that learns TC® in polynomial time. In particular A is also a
learner for C C TCY and by Theorem 4.2, there exists a polynomial time-quantum distinguisher
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D:{0,1}Y™ — {0,1} that satisfies the following:
Pr [DG,)=1]- Pr [D(y)=1]]> L% (30)
x€{0,1)5(m pe{0,1)¢m 2
for uniformly chosen x,y. Hence D serves as a poly(n)-time quantum distinguisher for the LWR , ;
problem. Using Corollary 3.12, D also serves as a polynomial-time quantum distinguisher for the
LWE,; 4 x,m Problem since n’ = [n/logn] > d/logq when g > d. This contradicts our assumption
and concludes the proof. O

Remark 6.2 (LWE is easy when given quantum examples.) In the proof of Theorem 6.1, we as-
sume that LWE is hard with classical examples, and we use them to construct quantum samples for
TCO. We notice that this does not contradict the work by Grilo et. al [GKZ18], where they prove that
LWE is easy when quantum examples are provided. In Theorem 6.1 the quantum computer is only
provided classical examples to solve the LWE problem.

6.2 Hardness of learning AC°

The proof for the hardness of learning ACY is similar to the proof in the previous section. In or-
der to prove the AC? hardness, we make two changes. We first consider “smaller instances” of
the LWR—PRG in order to access the output bits of the PRG in AC? (instead of TC? as we showed
in Lemma 3.15). Secondly, we “weaken” the statement of our hardness result by showing that,
polynomial time weak quantum learners for AC? imply sub-exponential time quantum distin-
guishers for LWE (instead of polynomial-time quantum distinguishers for LWE as we showed in
Theorem 6.1).

We first give reasons as to why the sub-exponential time assumption is justified. The best
known algorithms for d-dimensional LWE using various methods from lattice reduction tech-
niques [LLL82], combinatorial techniques [BKW03, Wag02] or algebraic ones [AG11] all require
20@_time in the asymptotic case. Even by quantizing any techniques, the improvements so far
only affect the constants in the exponent and do not provide general sub-exponential time algo-
rithms for LWE. Hence, we are justified in weakening our statement of hardness to the assumption
that LWE does not have 24 -time algorithms for any small constant 0 < & < 1.

Before going into the proof, we provide some intuition on how the choice of parameters as
defined in Lemma 3.16 forces us to impose stronger hardness assumptions — (1) the circuits are
poly(n)-sized and the algorithms run in poly(n)-time but, the LWR—PRG we use has smaller di-
mension i.e., d = O(polylogn). However, from the perspective of seed size d, this means that
the algorithms run in time sub-exponential in 4. Hence, we need to use the stronger “no sub-
exponential time algorithms for LWE” assumption. (2) The reduction in Corollary 3.12 requires
all parameters of LWR ; , »» to be polynomially bounded in the dimension d. This is violated by
choosing modulus g = n°1°8") and sample size m = poly(n). Hence, we use the slightly weaker
reduction from Theorem 3.10 as it is independent of the number of samples and allows for a super-

polynomial modulus.

In order to prove our AC? hardness, we modify the concept class from Section 6.1 so that the
PRGs can be accessed through an AC® circuit. Using the PRG from Lemma 3.16 and following
the ideas from Theorem 6.1, we now show the existence of AC circuits that cannot be weakly
learned under the uniform distribution in polynomial time using quantum examples/queries. We
formally restate Result 4 below and proceed with its proof.
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Theorem 6.3 Consider AC? circuits on n bits and let d = O(polylogn). Assuming that quantum al-
gorithms for d-dimensional LWE instances require 224) time for some e > 0, there is no poly(n)-time
uniform weak quantum-PAC learner for the concept class of ACC circuits on n bits.

Proof. Let a,c> 0 be constants and let us assume that there exists a weak learner A for a concept
class C, that runs in time t(n) = O(n?), uses q(n) = n* queries/samples and achieves advantage

Y€y for a constant y > 2, g = nOogn) = 20(@*7) 4ng
2+y/e n)'

B(n) = n=¢. Pick the parameters d = log
p = poly(d) such that p | g and p is a power of 2. Set the seed length s := dlogg = O(log
In order to obtain the stretch ¢(n) = Q(n*"2*!), we pick a suitable polynomial such that m =
£(n)/logp = O(poly(n)) = 207, Using Lemma 3.16, these parameters define an LWR-PRGg ; ,
instance, G,, : {0,1" — {0,1}¢") that achieves a super-polynomial stretch with respect to seed
size and an arbitrary bit of G,,’s output can be computed in ACC.

We use the concept class from Definition 4.1. For every k > 1, let G,k : {0, 13 — Ao, l}zk
denote the k-extension of G,, let Ci be a set of concepts
Cy = {CZ 0,15 5 10,1} | ¢,(x) = Zy (mod 2v) Z €range(G,x) } (31)

and let C = Ui(:nl) Cy be the concept class. An arbitrary bit of the k-extension either truncates z or
trivially outputs 0 when the index is > €(n). These require arithmetic operations on O(polylogn)-
bits and are computable in AC? [MT98]. By extending this argument for all k, observe that every
concept ¢ € C can be computed with a corresponding AC? circuit.

Based on the assumption that a weak quantum learner A exists for AC? circuits, .A can be used
to learn C and using Theorem 4.2, there exists a distinguisher D : {0, 1}¢0" — 10,1} that satisfies
the following condition for uniformly chosen x, y:

Pr [D(Gu(x))=1]- Pr [D(y)=1]=

- 32
x€{0,1)5(" pe(0,1}¢ 2 (32)

Additionally, the distinguisher D runs in time T = t(n)+ q(n){(n). We can simplify this term to
upper bound the running time of D as follows:
t(n)+q(n)l(n) < (€(n )+ 1)maX{ (n), a(m)}
< O

on (Since t(n) = O(q(n)))
1)
< ( (n+ ) (Using Eq. 6)
< O(n 2a+2c+1) (Since q(n) =n* and B(n) =n"°)
— O(logn) _ 2O(dé/y) < 20(d) (For every y > 2)

The reduction in Theorem 3.10 implies that (irrespective of the number of samples observed)
a distinguisher for the LWR; , , problem can be used as a distinguisher for the LWE, , , problem
as long as g grows super-polynomially with respect to d.'® This would give us a distinguisher for
d-dimensional LWE that runs in time 20@“”") < 20(@°) which contradicts our sub-exponential time
hardness assumption for LWE. O

One weakness of our result is we only get a polynomial-time hardness result for learning
ACY, whereas Kharitonov [Kha93] obtains a Q(nP°Y1°8") Jower bound for learning AC® assum-
ing factoring is hard. In particular, his lower bound also matches the O(nP°¥198") sample and

18 A5 discussed in Section 3.2, for the LWE distinguisher constructed using Theorem 3.10 to have 1/poly() advantage,
we need m/q < negl(n) which is satisfied by our choice of q and m.
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time complexity upper bound for learning AC? circuits as demonstrated by Linial, Mansour and
Nisan [LMN93].

Using PRGs based on LWR and our proof technique, we believe that it may not be possible to
find a stronger lower bound for polynomial-sized AC® circuits. This is because, starting with a
quasi-polynomial time learner for some concept class, we require the stretch function to satisfy
£(n) = O(nP°Y198")  This means we would need 5(€(n)) samples for the instance to be quantum-
secure which would, in turn, would result in a 5(€(n))—sized ACO circuits. Additionally, it is un-
clear if the reduction in Theorem 3.10 is robust for this choice of parameters. We leave the ques-
tion of whether a different choice of quantum-secure PRGs could improve the lower bound open
for future work. However, we remark on how further non-standard assumptions on the hard-
ness of LWR may help us achieve super-polynomial lower bounds for super-polynomial sized AC’
circuits.

Remark 6.4 (Lower bounds for learning quasi-polynomial sized AC® circuits) Assuming there are
no sub-exponential time quantum algorithms for the d-dimensional LWR problem Then, for d = O(polylogn),
there exists no O(nP°Y198")-time uniform weak quantum-PAC learner for the class of O(nP°Y198")sized

ACO circuits on n bits.

Proving this remark follows the same steps as in the proof of Theorem 6.3 and it is omitted here.
6.3 Hardness of learning TC)

We show here a conditional hardness of quantum learning depth-2 threshold circuits.

Theorem 6.5 Let n € IN. Assuming that the n-dimensional LWE problem is hard for a poly(n)-time
quantum computer, there is no poly(n)-time weak quantum-PAC learner for the concept class of TCS

circuits on O(n)-bit inputs.

The main point of difference between the proof of Theorem 6.5 and the (classical) result of
Klivans and Sherstov [KS09] is in the connection between quantum learning and public-key quan-
tum cryptosystems which we already discussed in the previous section. The remaining part of our
proof follows their structure very closely. For brevity, we state a simple lemma from their paper
without a proof.

Lemma 6.6 [KS09, Lemma 4.1] Fix € > 0 to be a constant. Assume that the intersection of n® light
half-spaces is weakly quantum-PAC-learnable. Then for every constant ¢ > 0, the intersection of n° light
degree-2 PTFs are weakly quantum-PAC learnable.'”

We are now ready to prove our main theorem.

Proof of Theorem 6.5.  In order to prove the hardness of TC), we first consider a subclass of
TCY, intersection of polynomially-many half-spaces, and prove the conditional quantum hardness
of learning this subclass.

Fix € > 0 to be a constant. Let C be the concept class of n® light half-spaces and C’ be the
concept class of degree-2 light PTFs. Let us assume that C is quantum-PAC learnable. Then
by Lemma 6.6, the assumed learnability of C implies the quantum-PAC learnability of C’. By
Lemma 3.8, the decryption function of the LWE-cryptosystem is in C’. Using Theorem 5.1, we

191n [KS09, Lemma 4.1], they state the classical version of this lemma. The exact same proof goes through when we
replace classical learners by quantum learners.
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now relate the quantum-PAC learnability of C” to the LWE-cryptosystem as follows: suppose that
there exists a quantum-PAC learning algorithm for C’, then Theorem 5.1 implies the existence
of a distinguisher that can differentiate the encryptions of 0 and 1 in the LWE-cryptosystem. As
a consequence, by Theorem 3.7 this would result in a quantum polynomial-time distinguisher
for LWE.

In order to conclude the theorem, we show that C C TC), i.e., every polynomial-sized half-
space can be written as a depth-2 threshold circuit. In order to see this, first observe that each
half-space is already a majority gate (with the inputs suitably negative and replicated based on
the coefficients ay,...,a,) and the top gate AND(fy,..., f;) can be replaced by the majority gate
MAJ(-t, f1,..., f;). Putting together our observation in the previous paragraph about the quantum-
PAC learnability of C, and the fact that C C TCY, we get the theorem statement. O
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A Time-efficient learning of NC°

We prove the following theorem, which is straightforward from known results in quantum learn-
ing theory. Since we didn’t find an explicit reference to the proof of such an explicit theorem in
literature, we make it formal here.

Theorem A.1 Let ¢ > 0 be a constant. Let C be the concept class of all Boolean functions on n bits which
are computable by polynomial number of gates with at most 2 inputs and depth at most d. Then C can be
learned under the uniform distribution with error at most €, using at most O(2%/¢) quantum examples,

O(22d) classical examples and time O(n2%/e + 2% log(1/¢)).
The proof directly follows from Atic1 and Servedio’s theorem on learning k-juntas.

Theorem A.2 ([AS09]) There exists a quantum algorithm for learning k-juntas under the uniform
distribution that uses O((klogk)/€) uniform quantum examples, O(2%) uniform classical examples, and
O(nk/e + 2Xlog(1/¢)) time.

Now we proceed with proving our theorem.

Proof of Theorem A.1. Suppose that f :{0,1}" — {0,1} is computed by a circuit with depth at
most d. Since the gates of the circuit have fan-in at most 2, clearly the output of the circuit for
f (on an arbitrary input x) depends only on 27 bits of x. Hence every f € C is a 2%-junta. Using
Theorem A.2, it follows that the concept class of 2¢-juntas can be learned using O(2%/¢) quantum

examples, O(22d) classical examples and time O(124/¢ + 22 log(1/¢)). O

Corollary A.3 Let c > 0bea constant. Let C be the concept class of n-bit functions which are computable
by polynomial number of gates with fan-in at most 2, depth at most log(clogn). Then C can be learned
using at most O(n/¢) quantum examples, O(n°) classical examples and time O(n/e).

Proof. The proof immediately follows from Theorem A.1 by plugging in d = log(clogn). O

Observe that, since NC is the class of circuits on n-bits with depth O(1), NC' is contained in
the concept class C considered in the corollary above.

B Hardness of learning from hardness of Subset-sum

In this section, we consider the scenario where a breakthrough in algorithm design results in a
quantum polynomial-time algorithm for LWE. Then, all our conditional lower bounds for ACY, TC®
and TC) would be moot. In this case, one possibility is to consider another candidate problem
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whose hardness with respect to quantum computers is not connected to the hardness of LWE. In
this section, we consider the Subset sum problem and show the conditional hardness of learning
NC!. Our main theorems connecting PRGs and quantum learning are robust enough that similar
proofs as in the body of the paper carry through.

In this section we discuss constructing PRGs whose security is based on the hardness of the
Subset-sum problem. Let us first define this problem.

Definition B.1 (Subset-sum,, ,) The Subset-sum problem is the following. Given n numbers ay,...a,,
each p(n) bits long and a number T, find some S C{1,...,n} such that } ;.sa; =T (mod 2p(m),

Even in the worst-case scenario, the hardness of Subset-sum is tightly related to function p:
the cases when p(n) = O(logn) can be solved efficiently by a dynamic programming algorithm,
whereas the Subset-sum problem, in general, is NP-harde.

For cryptographic applications, we are interested in the hardness of Subset-sum for random
instances, which has been fairly well studied [LO85, Fri86, FP05, Lyu05, Sha08]. Again, the hard-
ness in this case, is intimately related to the function p(n). For p(n) > n?, random instances of
the subset-sum problem can be solved efficiently via a reduction to the Shortest-vector prob-
lem [LOS85, Fri86] followed by using the LLL algorithm for the desired approximation factor
[LLL82]. For p(n) = O(logz(n)), it is possible to divide the input into smaller and efficiently solv-
able instances (using the dynamic-programming algorithm, for instance), and then the solutions
for these smaller problems can be combined to yield a solution for the original problem [FP05].
Finally, there are also sub-exponential time algorithms for the case where p(n) = n® for 0 <e <1
based on the k-set birthday problem [Lyu05, Sha08].

As far as we know, for p(n) = O(n) the Subset-sum is considered to be hard even in the average
case scenario and the current, best algorithms for this setup-up still need exponential time [HJ10,
MMT11, BCJ11, BJMM12]. Unfortunately, there has not been extensive research on the average-
case hardness of Subset-sum in the quantum setting. The first work to consider this case was
Bernstein et al. [BJLM13], where they achieve an exponential time quantum algorithm which
outperforms the current classical algorithms.

B.1 PRGs from Subset-sum

The Subset-sum problem can be seen as inverting the function

flay,..,a,,S)= [al,...,an, Zai

i€$

and its hardness means that f is one-way. Impagliazzo and Naor [IN96] then noticed that this

property could be used to devise PRGs.?’ For some publicly known values aj,...,a, € [2P(")], the

PRG maps a seed s € {0,1}" to the integer }_;.;._ a; (mod 2P(") [IN96]. Choosing p(n) > (1 + c)n

for some constant ¢ > 0 gives a PRG with linear stretch, which can be pushed up to polynomial

stretch just by composing this PRG a constant number of times. We also notice that one only needs

to compute iterated additions in order to output the pseudo-random bits, which makes this PRG
highly parallelizable and therefore, computable in NC!.

20A generalized reduction from one-way functions to PRGs was later shown by Héstad, Impagliazzo, Levin and
Luby [HILL99].
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Lemma B.2 (Theorem 2.2 of [IN96]) Let p(n) > (1+c)n for ¢ > 0. If the Subset —sum,, , is quantum
one-way, then for every polynomial {(n) > n, there exists a quantum-secure pseudo-random generator in
NC! that outputs £(n) pseudo-random bits.

Impagliazzo and Naor also provided a second construction of PRGs based on the Subset-sum
problem, with only logarithmic stretch, but computable in AC?. These PRGs in AC’, instead of
fixing the values ay,...,4, and then computing the sum of a random subset of values (which cannot
be computed in ACY), generate both ay,...,a, and the sum of a random subset at the same time.
We refer interested readers to Section 6 of [IN96] for the technicalities of such a construction.

Lemma B.3 [IN96, Claim 6.1] Let p(n) = n+logn. If Subset —sum,, , is quantum one-way, then for
any constant a and £(n) = n+ alogn, there is a quantum secure pseudo-random generator in AC® that
outputs {(n) pseudo-random bits.

Notice that, with these parameters, we cannot achieve polynomial stretch for the pseudo-
random string, and devising such a PRG in AC is currently an open-problem.

B.2 Hardness of learning NC!

As in Section 6.1, we are able to show the following conditional hardness of learning NC! circuits
based on the hardness of the Subset-sum problem. We omit the proof here.

Theorem B.4 Let p be a polynomial. Assuming that the problem Subset —sum,, , is hard for quantum
computers, there is no polynomial-time quantum learning algorithm for the concept class NC.

We can prove it by repeating the proof of Theorem 6.1 with the the PRG from Lemma B.2.
B.3 Query lower bound on learning AC® based on subset-sum PRGs

Theorem B.5 Let p(n) = n+logn. Assuming that Subset —sum,, , is hard for quantum computers,

there is no polynomial-time uniform quantum-PAC learner for the concept class AC? with query com-
plexity q(n) = o(\/n) and advantage M.

Proof. The proof again goes on the same lines as the proof of Theorem 6.1, but since it is more
subtle, we now go over the details. Let us assume that there exists a learner A for C that uses

_ : . _ léq(n)® _ .
q(n) = o(y/n) queries and samples and achieves advantage (1) = —,— = w(1). Let us consider

the PRG G,, from Lemma B.3, with seed length s(n) = n and stretch €(n) = n + logn. Consider the
following concept class C defined as

n
€ = Jlez 10,1 = (0,1} | €2(%) = 2y (mod ¢ Z € range(Gy)}
k=1

Observe that for every c € C, there exists an AC® circuit that computes c because the string z, as the
output of Subset-sum,, ,, can be computed in AC® (by Lemma B.3), and the test x” = x (mod £(s))
can also be performed by an AC? circuit. Given the assumption that the AC learner A with the
stated parameters exists, by Lemma 4.3 (in particular, using the bound of % + —2L_) there exists a

V(n)

polynomial-time quantum distinguisher D : {0,1}¢") — {0, 1} that satisfies the following:

B(n)
Pr [D(G,(x)=1]- Pr [Dly)=1]>E2=w(), 33
L PG @) =)= Pr1D6)=1][> 5 < w) (33)
for uniformly chosen x,y. Hence D is an efficient quantum distinguisher for the Subset-sum,, , prob-
lem and contradicts our assumption. O
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