
DEEP-FRI: Sampling Outside the Box Improves Soundness

Eli Ben-Sasson∗ Lior Goldberg∗ Swastik Kopparty† Shubhangi Saraf‡

Abstract

Motivated by the quest for scalable and succinct zero knowledge arguments, we revisit worst-
case-to-average-case reductions for linear spaces, raised by [Rothblum, Vadhan, Wigderson,
STOC 2013]. The previous state of the art by [Ben-Sasson, Kopparty, Saraf, CCC 2018] showed
that if some member of an affine space U is δ-far in relative Hamming distance from a linear
code V — this is the worst-case assumption — then most elements of U are almost-δ-far from
V — this is the average case. However, this result was known to hold only below the “double
Johnson” function of the relative distance δV of the code V , i.e., only when δ < 1− (1− δV)1/4.

First, we increase the soundness-bound to the “one-and-a-half Johnson” function of δV and
show that the average distance of U from V is nearly δ for any worst-case distance δ smaller than
1− (1− δV)1/3. This bound is tight, which is somewhat surprising because the one-and-a-half
Johnson function is unfamiliar in the literature on error correcting codes.

To improve soundness further for Reed Solomon codes we sample outside the box. We
suggest a new protocol in which the verifier samples a single point z outside the box D on which
codewords are evaluated, and asks the prover for the value at z of the interpolating polynomial
of a random element of U . Intuitively, the answer provided by the prover “forces” it to choose
one codeword from a list of “pretenders” that are close to U . We call this technique Domain
Extending for Eliminating Pretenders (DEEP).

The DEEP method improves the soundness of the worst-case-to-average-case reduction for
RS codes up their list decoding radius. This radius is bounded from below by the Johnson
bound, implying average distance is approximately δ for all δ < 1 − (1 − δV)1/2. Under a
plausible conjecture about the list decoding radius of Reed-Solomon codes, average distance
from V is approximately δ for all δ. The DEEP technique can be generalized to all linear codes,
giving improved reductions for capacity-achieving list-decodable codes.

Finally, we use the DEEP technique to devise two new protocols:

• An Interactive Oracle Proof of Proximity (IOPP) for RS codes, called DEEP-FRI. This
soundness of the protocol improves upon that of the FRI protocol of [Ben-Sasson et al.,
ICALP 2018] while retaining linear arithmetic proving complexity and logarithmic verifier
arithmetic complexity.

• An Interactive Oracle Proof (IOP) for the Algebraic Linking IOP (ALI) protocol used to
construct zero knowledge scalable transparent arguments of knowledge (ZK-STARKs) in
[Ben-Sasson et al., eprint 2018]. The new protocol, called DEEP-ALI, improves soundness
of this crucial step from a small constant < 1/8 to a constant arbitrarily close to 1.

∗StarkWare Industries Ltd. {eli,lior}@starkware.co
†Department of Mathematics and Department of Computer Science, Rutgers University. Research supported in

part by NSF grants CCF-1253886, CCF-1540634, CCF-1814409 and CCF-1412958, and BSF grant 2014359. Some
of this research was done while visiting the Institute for Advanced Study. swastik.kopparty@gmail.com
‡Department of Mathematics and Department of Computer Science, Rutgers University. Research supported in

part by NSF grants CCF-1350572, CCF-1540634 and CCF-1412958, BSF grant 2014359, a Sloan research fellowship
and the Simons Collaboration on Algorithms and Geometry. Some of this research was done while visiting the
Institute for Advanced Study. shubhangi.saraf@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 44 (2019)

1 Introduction

Arithmetization is a marvelous technique that can be used to reduce problems in computational
complexity, like verifying membership in a nondeterministic language, to questions about member-
ship of vectors in algebraic codes like Reed-Solomon (RS) and Reed-Muller (RM) codes [Raz87,
LFKN92]. One of the end-points of such a reduction is the RS proximity testing (RPT) problem. It
is a problem of inherent theoretical interest, but also of significant practical importance because it is
used in recent constructions of succinct zero knowledge (ZK) arguments including Ligero [AHIV17],
Aurora [BCR+18], and Scalable Transparent ARguments of Knowledge (ZK-STARKs) [BBHR18a].
We discuss this connection after describing the problem and our results.

In the RPT problem a verifier is given oracle access to a function f : D → F, we call D ⊂ F
the evaluation domain, and is tasked with distinguishing between the “good” case that f is a
polynomial of degree at most d and the “bad” case in which f is δ-far in relative Hamming distance
from all degree-d polynomials. To achieve succinct verification time, poly-logarithmic in d, we must
allow the verifier some form of interaction with a prover — the party claiming that deg(f) ≤ d.
Initially, this interaction took the form of oracle access to a probabilistically checkable proof of
proximity (PCPP) [BGH+06] provided by the prover in addition to f . Indeed, in this model
the RPT problem can be “solved” with PCPPs of quasilinear size |D|poly log |D|, constant query
complexity and constant soundness [BS08, Din07]. However, the concrete complexity of prover
time, verifier time and communication complexity are rather large, even when considering practical
settings that involve moderately small instance sizes.

To improve prover, verifier, and communication complexity for concrete (non-asymptotic) size
problems, the Interactive Oracle Proofs of Proximity (IOPP) model is more suitable [RRR16,
BCS16, BCF+16]. This model can be viewed as a multi-round PCPP. Instead of having the prover
write down a single proof π, in the IOPP setting the proof oracle is produced over a number of
rounds of interaction, during which the verifier sends random bits and the prover responds with
additional (long) messages to which the verifier is allowed oracle access. The additional rounds of
interaction allow for a dramatic improvement in the asymptotic and concrete complexity of solving
the RPT problem. In particular, the Fast RS IOPP (FRI) protocol of [BBHR18b] has linear prover
arithmetic complexity, logarithmic verifier arithmetic complexity and constant soundness. Our goal
here is to improve soundness of this protocol and to suggest better protocols in terms of soundness
in the high-error regime (also known as the “list decoding” regime).

Soundness analysis of FRI reduces to the following natural “worst-case-to-average-case” question
regarding linear spaces, which is also independently very interesting for the case of general (non-
RS) codes. This question was originally raised in a different setting by [RVW13] and we start by
discussing it for general linear codes before focusing on the special, RS code, case.

1.1 Maximum distance vs average distance to a linear code

Suppose that U ⊂ FD is a “line”, a 1-dimensional1 affine space over F. Let u∗ ∈ FD denote the
origin of this line and u be its slope, so that U = {ux = u∗ + xu | x ∈ F}. For a fixed linear space
V ⊂ FD, pick u∗ to be the element in U that is farthest from V , denoting by δmax its relative
Hamming distance (from V). This is our worst-case assumption. Letting δx = ∆(ux, V) where ∆

1The generalization of our results to spaces U of dimension > 1 is straightforward by partitioning U into lines
through u∗ and applying these results to each line.

2

denotes relative Hamming distance, what can be said about the expected distance Ex∈F[δx] of ux
from V ?

Rothblum, Vadhan and Wigderson showed that Ex[δx] ≥ δmax
2 − o(1) for all spaces U and V ,

where, here and below, o(1) denotes negligible terms that approach 0 as |F| → ∞ [RVW13]. A
subset of the co-authors of this paper improved this to E[δx] ≥ 1 −

√
1− δmax − o(1), showing

the average distance scales roughly like the Johnson list-decoding function of δmax, where J(x) :=
1 −
√

1− x [BKS18a]. In both of these bounds the expected distance is strictly smaller than
δmax. However, the latter paper also showed that when V is a (linear) error correcting code with
large relative distance δV , if δmax is smaller than the “double Johnson” function of δV , given by
J (2)(x) := J(J(x)), then the average distance hardly deteriorates,

E[δx] ≥ min
(
δmax, J

(2)(δV)
)
− o(1) = min

(
δmax, 1− 4

√
1− δV

)
− o(1) (1)

and the equation above summarizes the previous state of affairs on this matter.
Our first result is an improvement of Equation (1) to the “one-and-a-half-Johnson” function

J (1.5)(x) = 1− (1− x)1/3. Lemma 3.1 says that for codes V of relative Hamming distance δV ,

E[δx] ≥ min
(
δmax, J

(1.5)(δV)
)
− o(1) = min

(
δmax, 1− 3

√
1− δV

)
− o(1). (2)

Our second result shows that Equation (2) is tight, even for the special case of V being an RS
code. We find this result somewhat surprising because the J (1.5)(x) function is not known to be
related to any meaningful coding theoretic notion. The counter-example showing the tightness of
Equation (2) arises for very special cases, in which (i) F is a binary field (of characteristic 2), (ii)
the rate ρ is precisely 1/8 = 2−3 and, most importantly, (iii) the evaluation domain D equals all of
F (see Section 3.1). Roughly speaking, the counter-example uses functions u∗, u : F2n → F2n that
are 3/4 = 1− ρ2/3-far from polynomials of degree ρ2n yet pretend to be low-degree because for all
x ∈ F2n \{0} the function u∗+xu is 1/2 = 3

√
ρ-close to a polynomial of degree ρ2n. See Lemma 3.3

for details.
Our next set of results, which we discuss below, show how to go beyond the above limitation

through a new interactive proximity proving technique.

1.2 Domain Extension for Eliminating Pretenders (DEEP)

The case that interests us most is when V is an RS code (although we will return to the discussion
of general linear codes later). Henceforth, the RS code of rate ρ evaluated over D is

RS[F, D, ρ] := {f : D → F | deg(f) < ρ|D|} .

RS codes are maximum distance separable (MDS), meaning that δV = 1 − ρ and so Equation (2)
simplifies to

E[δx] ≥ min(δmax, 1− 3
√
ρ)− o(1). (3)

This improved bound can be translated, using some extra work, to FRI soundness analysis with
similar guarantees. Specifically, Equation (3) implies that for f : D → F that is δ-far from
RS[F, D, ρ], the soundness error of a single invocation of the FRI QUERY test (which requires log |D|
queries) is at most max{1− δ, 3

√
ρ}, and this can be plugged into ZK-STARKs like [BBHR18a] and

ZK-SNARGs like Aurora [BCR+18]. Roughly speaking, if the rejection probability is of δ-far words

3

is max(δ, δ0) then to reach soundness error less than 2−λ for codes of blocklength n, communication
complexity (and verifier complexity) scale roughly like λ

log δ0
·c · log n for some constant c. Thus, the

improvement from Equation (1) to Equation (2) translates to a 25% reduction in verifier complexity
(from 4λ

log ρ · c · log n to 3λ
log ρ · c · log n).

To break the soundness bound of Equation (2) and thereby further reduce verifier complexity
in the afore-mentioned systems, we suggest a new method. We discuss it first for RS codes, then
generalize to arbitrary linear codes. If u∗, u : D → F are indeed the evaluation of two degree d
polynomials, say, P ∗ and P , our verifier will artificially extend the domain D to a larger one D̄,
sample uniformly z ∈ D̄ and ask for the evaluation of P ∗(z) and P (z). The answers provided
by the prover can now be applied to modify each of u∗ and u in a local manner to reflect the
new knowledge, and along the way also prune down the large list of polynomials which u∗ and u
might pretend to be. If α∗z = P ∗(z), αz = P (z) are the honest prover’s answers to the query z,
then (X − z) divides P ∗(X) − α∗z and likewise (X − z)|P (X) − αz. Letting αx = α∗ + xα and
Px(X) = P ∗(X) + xP (X) it follows that (X − z)|Px(X) − αx. Consider now the soundness of
this procedure. In the extreme case that u∗ has a small list of polynomials that, each, somewhat
agree with it, then with high probability over z, any answer provided by the prover will agree with
at most one of the polynomials in this list. The proof of our main technical result, Theorem 4.1,
formalizes this intuition. For radius δ, let L∗δ be the maximal list size,

L∗δ = max
u∗∈FD

| {v ∈ V | ∆(u∗, v) < δ} |

where ∆ denotes relative Hamming distance. Let V |ux(z)=αx be the restriction of V to codewords
that are evaluations of polynomials of degree at most d that, additionally, evaluate to αx on z.
Our main Theorem 4.1 shows that if ∆(u∗, V) = δmax then for any pair of answers α∗z, αz given in
response to query z,

Ez,x

[
∆(ux, V |ux(z)=αx)

]
≥ δmax − L∗δ ·

(
ρ|D|
|D̄|

)1/3

− o(1). (4)

The Johnson bound (Theorem 2.2) says that when δ < J(1− ρ) = 1−√ρ we have L∗δ = O(1)
and this improves the worst-case-to-average-case result from that of Equation (2) to a bound that
matches the Johnson bound:

Ez,x[∆(ux, V |ux(z)=αx)|] ≥ min (δmax, J(δV))− o(1) = min (δmax,
√
ρ)− o(1). (5)

The exact behavior of the list size of Reed-Solomon codes beyond the Johnson bound is a famous
open problem. It may be the case that the list size is small for radii far greater than the Johnson
bound; in fact, for most domains D this is roughly known to hold [RW14]. If it holds that that
list sizes are small all the way up to radius equal to the distance δV = 1− ρ (i.e., if Reed-Solomon
codes meet list-decoding capacity), then Equation (5) implies that the technique suggested here
has optimal soundness for (nearly) all distance parameters.

Generalization to arbitrary linear codes The DEEP method can be used to improve worst-
to-average-case reductions for general linear codes. Viewing codewords in V as evaluations of linear
forms of a domain D, we ask for the evaluation of the linear forms that supposedly correspond to
u∗ and u on a random location z ∈ D̄ where |D̄| � |D|. Lemma 4.6 generalizes Theorem 4.1 and
says that if V has near-capacity list-decoding radius (with small list size) and D̄ corresponds to

4

(columns of a generating matrix of) a good error correcting code, then we have Ex[δx] ≈ δmax.
The main difference between the RS case and that of general linear codes is that in the former, the
prover-answers α∗(x), α(x) can be processed to modify locally the entries of ux to reduce the degree
of the resulting function; this is something we cannot carry out (to best of our understanding) for
all linear codes.

1.3 DEEP-FRI

Applying the technique of domain extension for eliminating pretenders to the FRI protocol requires
a modification that we discuss next. The FRI protocol can be described as a process of “randomly
folding” an (inverse) Fast Fourier Transform (iFFT) computation. In the “classical” iFFT, one
starts with a function f (0) : 〈ω〉 → F where ω generates a multiplicative group of order 2k for
integer k. The iFFT computes (in arithmetic complexity O(k2k)) the interpolating polynomial
f̃(X) of the function f . This computation follows by computing (in linear time) a pair of functions
f0, f1 : 〈ω2〉 → F, recalling |〈ω2〉| = 1

2 |〈ω〉|. Their interpolants f̃0, f̃1 are then used to compute in

linear time the original interpolant f̃ of f .
As explained in [BBHR18b], in the FRI protocol the prover first commits to f as above. Then

the verifier samples a random x(0) ∈ F and the protocol continues with the single function f (1) :
〈ω2〉 → F which is supposedly f (1) := f0 + x(0)f1. It turns out that if f is indeed of degree less
than ρ|〈ω〉| then for all x we have that f (1) is of degree less than ρ|〈ω2〉| as well. The tricky part
is showing that when f is δ-far from RS[F, 〈ω〉, ρ] this also holds with high probability (over x) for
f (1) and some δ′ that is as close as possible to δ. (One can show that invariably we have δ′ ≤ δ,
i.e., the green line of Figure 1 is an upper bound on soundness of both FRI and the new DEEP-FRI
protocol described below.)

The worst-case-to-average-case results of Equation (2) and Lemma 3.1 can be converted to
similar improvements for FRI, showing that for δ < 1 − 3

√
ρ we have δ′ ≈ δ. This follows directly

from the techniques of [BKS18a, Section 7] (see the red line in Figure 1). But to use the new
DEEP technique of Equation (4) and Theorem 4.1 in order to improve soundness of an RS-IOPP,
we need to modify the FRI protocol, leading to a new protocol that is aptly called DEEP-FRI.
Instead of constructing f (1) directly, our verifier first samples z(0) ∈ F and queries the prover
for the evaluation of the interpolant of f (0) on z(0) and −z(0). After the answers αz(i) , α−z(i)

have been recorded, the verifier proceeds by sampling x(0) and expects the prover to submit f (1)

which is the linear combination of f ′0, f
′
1 derived from the modification f ′ of f that takes into

account the answers αz(i) , α−z(i) . Assuming f̃ is the interpolant of f , an honest prover would set

f ′(X) := (f̃(X)−U(X))/(Z(X)) where U(X) is the degree ≤ 1 polynomial that evaluates to αz(0)
on z(0) and to α−z(0) on −z(0) and Z(X) is the monic degree 2 polynomial whose roots are z(0) and

−z(0). As shown in Section 5, the soundness bounds of Equation (4) and Theorem 4.1 now apply
to DEEP-FRI. This shows that the soundness of DEEP-FRI, i.e., the rejection probability of words
that are δ-far from RS[F, D, ρ]) is roughly δ for any δ that is smaller than the maximal radius for
which list-sizes are “small”. Figure 1 summarizes the results described here.

1.4 DEEP Algebraic Linking IOP (DEEP-ALI)

In Section 1.3 we only discussed results improving the soundness of Reed-Solomon Proximity Testing
(RPT). We now discuss how to improve the soundness of IOP-based argument systems (such
as [BBHR18a, BCR+18]) that use RPT solutions. In order to reap the benefits of the improved

5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ρ

δ 0
upper bound + DEEP-FRI conjectured lower bound (Conjecture 2.3)

DEEP-FRI lower bound (Theorem 5.5)
FRI lower bound based on Lemma 3.2

FRI previous lower bound [BKS18a]

FRI initial lower bound [BBHR18b]

Figure 1: FRI and DEEP-FRI soundness threshold δ0 as a function of RS code rate ρ, for a single
invocation of the QUERY phase, as field size q → ∞. δ0(ρ) is defined to be the largest distance
parameter δ for which soundness (rejection probaiblity) of a single invocation of the FRI/DEEP-FRI
QUERY is δ − o(1). Higher lines are better. The top line is the trivial upper bound on soundness
which applies to both FRI and DEEP-FRI; the bottom line is the soundness of the original analysis of
[BBHR18b]. Dashed lines represent prior results. The red line is the (tight) soundness lower bound
for FRI and the blue line is a lower bound on DEEP-FRI soundness. Under a plausible conjecture
for Reed-Solomon list-decodability (Conjecture 2.3), the actual soundness is as high as the green
line.

soundness of RPT, we need reductions that produce instances of the RPT problem that are very
far from the relevant RS code when the input instance is unsatisfiable. One such protocol is the
Algebraic Linking IOP (ALI) of [BBHR18a]. The instances of the RPT problem derived from
an unsatisfiable instance in ALI are proven to be somewhat far from low-degree but the distance
bound proved in that paper is less than 1/8, even when used with RS codes of negligible rate ρ
(nevertheless it is conjectured and assumed in both ZK-STARK [BBHR18a] and Aurora [BCR+18]
that the distance is significantly greater). In Section 6 we use the DEEP technique to modify the
ALI protocol in a manner similar to the DEEP-FRI modification. The result of this modification
allows us to apply the soundness results of Equation (4) to the DEEP-ALI protocol and show that,
when provided with unsatisfiable instances, the distance of the received words that result from that
protocol is provably at least 1−√ρ− o(1) (and may be greater, assuming more favourable bounds
on the list decoding radius for RS codes, as in Conjecture 2.3).

Organization of the rest of the paper Section 2 presents general notation. Section 3 gives
an improved worst-to-average case reductions for general spaces and shows that the bound in the
reduction is tight (Lemma 3.3). Section 4 presents our main technical result, showing that the
DEEP method improves worst-to-average case reductions for RS codes up to the Johnson bound
(provably) and perhaps even beyond. Section 5 presents the DEEP-FRI protocol that obtains better
soundness than the state of the art FRI protocol, and Section 6 discusses the DEEP-ALI protocol.

6

2 Preliminaries

Functions For a set D, we will be working with the space of functions u : D → F, denoted FD.
For u ∈ FD we use u(z) to denote the zth entry of u, for z ∈ D. For C ⊂ D we use f |C to denote
the restriction of f to C. For two functions f, g : D → F we write f = g when the two functions are
equal as elements in FD and similarly say f |C = g|C when their restrictions are equal as elements
in FC .

Distance We use ∆D(u, v) = Prz∈D [u(z) 6= v(z)] for relative Hamming distance, and omit D
when it is clear from context. For a set S ⊂ FD we use ∆D(v, S) = mins∈S ∆D(v, s) and ∆D(S) =
mins 6=s′∈S ∆D(s, s′) denotes the minimal relative distance of S. For u ∈ FD let B(u, δ) denote the
Hamming ball in FD of normalized radius δ centered at u,

B(u, δ) =
{
u′ ∈ FD | ∆D(u, u′) < δ

}
.

Linear codes An [n, k, d]q-linear error correcting code is a linear space V ⊂ Fnq of dimension k

over Fq with minimal Hamming distance d. A generating matrix for V is a matrix G ∈ Fn×kq of

rank k such that V =
{
Gx | x ∈ Fkq

}
.

Polynomials and RS codes The interpolant of f : D → Fq is the unique polynomial of de-
gree < |D| whose evaluation on D is f . The degree of f , denoted deg(f), is the degree of its
interpolant. The RS code evaluated over domain D ⊂ F and rate ρ is denoted RS[F, D, ρ] =
{f : D → F | deg(f) < ρ|D|}. Sometimes it will be more convenient to work with degree rather
than rate, in which case we abuse notation and define RS[F, D, d] = {f : D → F | deg(f) < d}. We
use capital letters like P,Q to denote polynomials and when we say P ∈ RS[F, D, ρ] we mean that
deg(P) < ρ|D| and associate P with the RS codeword that is its evaluation on D. We also use f̃
to denote the interpolant of a function f .

2.1 List Decoding

Definition 2.1 (List size for Reed-Solomon Codes). For u ∈ FD, a set V ⊂ FD, and distance
parameter δ ∈ [0, 1], let List(u, V, δ) be the set of elements in V that are at most δ-far from u in
relative Hamming distance. Formally, using B(u, δ) to denote the Hamming ball of relative radius
δ centered around u, we have List(u, V, δ) = B(u, δ) ∩ V .

The code V is said to be (δ, L)-list-decodable if |List(u, V, δ)| ≤ L for all u ∈ FDq .

For D ⊆ Fq, let L(Fq, D, d, δ) be the maximum size of List(u, V, δ) taken over all u ∈ FDq for
V = RS[Fq, D, ρ = d/|D|].

We recall the fundamental Johnson bound, which says that sets with large minimum distance
have nontrivial list-decodability. The particular version below follows, e.g., from [Gur07, Theorem
3.3] by setting d = (1− ρ)|D| and e = (1−√ρ− ε)|D| there.

Theorem 2.2 (Johnson bound). Let V ⊂ FD be a code with minimum relative distance 1− ρ, for
ρ ∈ (0, 1). Then V is (1−√ρ− ε, 1/(2ε√ρ))-list-decodable for every ε ∈ (0, 1−√ρ).

7

In particular, for Reed-Solomon codes this implies the following list-decodability bound:

L(Fq, D, d = ρ|D|, 1−√ρ− ε) ≤ O
(

1

ε
√
ρ

)
.

Extremely optimistically, we could hope that Reed-Solomon codes are list-decodable all the
way up to their distance with moderate list sizes. Staying consistent with the known limita-
tions [BSKR10], we have the following brave conjecture.

Conjecture 2.3 (List decodability of Reed-Solomon Codes up to Capacity). For every ρ > 0,
there is a constant Cρ such that every Reed-Solomon code of length n and rate ρ is list-decodable

from 1− ρ− ε fraction errors with list size
(
n
ε

)Cρ. That is:

L(Fq, D, d = ρ|D|, 1− ρ− ε) ≤
(
|D|
ε

)Cρ
.

3 Improved High-error Distance Preservation

Our first result gives better distance preservation results for linear codes V of relative distance
λ. The previous state-of-the-art [BKS18a] said that when a 1-dimensional affine space U contains
some element u∗ that is δmax = ∆(u∗, V) far from V , then

Eu∈U [∆(u, V)] ≥ min(δmax, 1− J (2)(λ))− o(1).

The following lemma improves the average-case distance to

Eu∈U [∆(u, V)] ≥ min(δmax, 1− J (1.5)(λ))− o(1).

Later on, in Section 3.1, we will show that this result is tight (for a sub-family of RS codes).

Lemma 3.1 (One-and-half Johnson distance preservation). Let V ⊆ Fnq be a linear code of distance

λ = ∆(V). Let ε, δ > 0 with ε < 1/3 and δ < 1− (1− λ+ ε)1/3.
Suppose u∗ ∈ Fnq is such that ∆(u∗, V) > δ + ε. Then for all u ∈ Fnq , there are at most 2/ε2

values of x ∈ Fq such that ∆(u∗ + xu, V) < δ.

This result is the contra-positive statement of the following, more informative, version of it,
that we prove below.

Lemma 3.2 (One-and-half Johnson distance preservation — positive form). Let V ⊆ FDq be a

linear code of distance λ = ∆(V). Let ε, δ > 0 with ε < 1/3 and δ < 1 − (1 − λ + ε)1/3. Let
u, u∗ ∈ FDq satisfy

Pr
x∈Fq

[∆(u∗ + xu, V) < δ] ≥ 2

ε2q
. (6)

Then there exist v, v∗ ∈ V and C ⊆ D such that the following three statements hold simultaneously:

• |C| ≥ (1− δ − ε)|D|,

• u|C = v|C , and

8

• u∗|C = v∗|C .

Observe that if u, u∗ satisfy Equation (6) then the v, v∗, C deduced by Lemma 3.2 have the
property that for all x ∈ Fq, we have ∆(u∗ + xu, V) ≤ δ + ε. In other words, the existence of v, v∗

and C almost completely explains Equation (6).

Proof. Let ux = u∗ + xu. Let
A = {x | ∆(u∗ + xu, V) < δ}.

For each x ∈ A, let vx ∈ V be an element of V that is closest to ux, and let Sx ⊆ D be the
agreement set of ux and vx, defined as Sx = {y ∈ D | ux(y) = vx(y)}.

For x, β, γ picked uniformly from A and y picked uniformly from D, we have:

Ex,β,γ [|Sx ∩ Sβ ∩ Sγ |/n] = Ey,x,β,γ [1y∈Sx∩Sβ∩Sγ]

= Ey[Ex[1y∈Sx]3]

≥ Ey,x[1y∈Sx]3

≥ (1− δ)3

> 1− λ+ ε.

The second equality above follows from the independence of the events y ∈ Sx, y ∈ Sβ, y ∈ Sγ
given y ∈ D. The first inequality is Jensen’s and the last inequality is by assumption on δ, γ, ε.

Thus
Pr
x,β,γ

[|Sx ∩ Sβ ∩ Sγ | ≥ (1− λ)|D|] ≥ ε.

Note that Prx,β,γ [x, β, γ are not all distinct] < 3/|A|. Since |A| ≥ 2/ε2 > 6
ε , we have that

3/|A| ≤ ε/2 and hence x, β, γ are all distinct with probability at least 1−ε/2. Thus with probability
at least ε/2 over the choice of x, β, γ, we have that x, β, γ are all distinct and |Sx ∩ Sβ ∩ Sγ | >
(1− λ)|D|.

This means that there are distinct x0, β0 such that

Pr
γ

[|Sx0 ∩ Sβ0 ∩ Sγ | > (1− λ)|D|] ≥ ε/2.

Fix a γ where this happens. Let S = Sx0 ∩ Sβ0 ∩ Sγ . We have that

(x0, ux0), (β0, uβ0), (γ, uγ)

are collinear. Thus
(x0, ux0 |S), (β0, uβ0 |S), (γ, uγ |S)

are all collinear. By definition of S, we get that:

(x0, vx0 |S), (β0, vβ0 |S), (γ, vγ |S)

are all collinear. Since |S| > (1− λ)|D| (and recalling that λ is the distance of V), we get that vγ
is determined by vγ |S via a linear map. This means that

(x0, vx0), (β0, vβ0), (γ, vγ)

9

are all collinear.
Thus ε/2-fraction of the γ ∈ A have the “good” property that (γ, vγ) is on the line passing

through (x0, vx0) and (β0, vβ0). Write this line as v∗ + xv and notice that for all “good” γ we
have vγ = v∗ + γv. Let A′ ⊆ A denote the set of good elements for this line, recording that
|A′| ≥ |A| · ε/2 ≥ 1/ε.

Thus for x ∈ A′, ∆(u∗ + xu, v∗ + xv) < δ.
Consider the set C ⊂ D defined by

C = {y ∈ D | u∗(y) = v∗(y) AND u(y) = v(y)} .

For each y ∈ D \ C there exists at most a single value of x ∈ Fq satisfying u∗(y) + x · u(y) =
v∗(y) + x · v(y) because

(u∗(y)− v∗(y)) + x · (u(y)− v(y))

has at most one value x on which it vanishes.
This implies

δ ≥ Ex∈A′ [∆D(ux, vx)] ≥ |D \ C|
|D|

·
(

1− 1

|A′|

)
≥
(

1− |C|
|D|

)
· (1− ε) ≥ 1− |C|

|D|
− ε.

Rearranging, we get |C||D| ≥ 1− (δ + ε) and this completes the proof.

3.1 Tightness of the one-and-a-half Johnson bound

Lemma 3.1 says that when V is a linear code with minimum distance λ, and u∗ is some element
that is δ-far from V , then for any u we have with high probability

∆(u∗ + xu, V) ≥ min(δ, J (1.5)(λ) = 1− (1− λ)1/3).

The rightmost term seems quite strange, as the J (1.5)(·) function is unfamiliar in other settings
of coding theory. However, as we show next, in certain settings this function gives the correct
bound!

Lemma 3.3 (Tightness of one-and-a-half Johnson bound). For every member Vn of following family
of RS codes

{
Vn = RS[F2n ,F2n , ρ = 2−3] | n ∈ N

}
there exist u∗n, un ∈ FF2n

2n satisfying the following:

• δmax , ∆(u∗n, Vn) = ∆(un, Vn) = 3
4 = 1− ρ2/3

• ∀x 6= 0,∆(u∗n + xun, Vn) ≤ 1
2 = 1− ρ1/3 = J (1.5)(∆(Vn))

Consequently, E[δx] ≤ J (1.5)(Vn) + o(1) ≤ δmax − 1
4 + o(1).

We shall need to following claim in our proof of the lemma.

Claim 3.4. For every x ∈ F2n \ {0} there exists a polynomial Px(Y) ∈ F2n [Y] of the form

Px(Y) = Y 2n−1
+ xY 2n−2

+ P̃x, deg(P̃x) < 2n−3.

that has 2n−1 distinct roots in F2n.

10

Proof. For x 6= 0 let βx = 1/x2, noticing βx is unique because the map β 7→ β2 is bijective on F2n .
Let Tr(Z) ,

∑n−1
i=0 Z

2i be the trace function from F2n to F2. Define

Sx = {y ∈ F2n | Tr(βxy) = 0}.

It is well known that |Sx| = 2n−1 because the trace function has 2n−1 roots in F2n . So we define

Px(Y) =
1

β2n−1

x

·Tr(βxY) = Y 2n−1
+

1

β2n−2

x

Y 2n−2
+P̃x = Y 2n−1

+xY 2n−2
+P̃x, deg(P̃x(Y)) < 2n−3.

The last equality follows because β2n−2

x = x.

Proof of Lemma 3.3. Consider Vn in this family and let F = F2n . Define u∗ : F → F to be the
function u∗(y) = y2n−1

and let u : F→ F be the function u(y) = y2n−2
.

By Claim 3.4, for every x ∈ F\{0} there is some vx ∈ Vn and Px with 2n−1 roots in F such that

Px − (u∗ + xu) + vx = 0.

Then
∆(u∗ + xu, vx) = Pr

y∈F
[u∗(y) + xu(y) 6= vx(y)] = Pr

y
[Px(y) 6= 0] = 1/2.

Thus we get that for all x ∈ F \ {0}

∆(u∗ + xu, V) ≤ 1/2.

On the other hand,
∆(u, V) ≥ 3/4,

because for all v ∈ Vn, u − v is a polynomial of degree at most 2n−2 = |F|/4. This completes the
proof.

Remark 3.5. Since this example is based on Reed-Solomon codes, it also easily translates into a
limitation on the soundness of FRI. In particular, it means that the improvment to the soundness
of FRI given in Remark 5.2 is optimal.

Discussion Lemma 3.3 raises the question of whether the one-and-a-half Johnson bound of
Lemma 3.1 is tight for all RS codes, including non-binary fields and evaluation domains that
are strict subsets of the ambient field. We point out that the technique used to prove Lemma 3.3
deteriorates rapidly even for binary fields, and even when the evaluation domain is an F2-linear
space which resembles the case above.

Indeed, consider an evaluation domain D ⊂ F2n that is a d + 1-dimensional linear space over
F2, where n > d+ 1. There are 2d+1 subspaces of dimension d in V . For such U ⊂ V,dim(U) = d,
the polynomial PU (X) =

∏
α∈U (X − α) is of the form

PU (Y) = Y 2d + xUY
2d−1 + P̂U (Y)

which resembles the structure of Claim 3.4. Moreover, as was the case there, for U ′ 6= U,U ′ ⊂
V,dim(U ′) = d we have xU 6= xU ′ . This is because PU − PU ′ is a non-zero polynomial with

11

2d−1 roots, because dim(U ∩ U ′) = d − 1. Thus, we cannot have xU = xU ′ as this would imply
deg(PU − PU ′) ≤ 2d−2 < 2d−1, contradiction.

As in Lemma 3.3, taking u∗ to be the evaluation of Y 2d on D and u be the evaluation of Y 2d−1

on the same space, we conclude there exists a set A ⊂ F, |A| = 2d, such that for x ∈ A we have
that u∗ + xu agrees with some RS codeword of rate 2−3 on half of the evaluation domain.

However, notice that |A|/2n = 2−(n−d), meaning that the probability of sampling x ∈ A dete-
riorates exponentially with the difference n − d. Thus the above counterexample fails to rule out
an improvement to Lemma 3.1 when the length of the code n is much smaller than the size of the
field q.

Conceivably, both Lemma 3.1 and the analysis of FRI can be improved significantly under the
assumption n� q. This is the case of most importance to practical implementations of STARKs.

4 The DEEP Theorem — Using Domain Extension for Eliminat-
ing Pretenders (DEEP) and Improving Soundness

We now come to the statement of our improved-soundness distance preservation result. We describe
it first for the special case of RS codes. A weighted variant of the theorem is shown in Section 4.2
because it is used later in the DEEP-FRI protocol (Section 5). We end with Section 4.3 in which
we present a general version of the folowing result, that applies to all linear codes.

4.1 DEEP Theorem for RS codes

The vectors u∗, u discussed in the previous section are now viewed as functions u∗, u : D →
Fq and we are interested in the distance of a random linear combination ux = u∗ + x · u from
the code V = RS[Fq, D, ρ], where x ∈ Fq is sampled uniformly. Lemma 3.1 established that if
max(∆(u∗, V),∆(u, V)) = δmax, then with high probability (over x), the function ux will have
distance at least ≈ min(δmax, 1− ρ1/3) from V .

Lemma 3.2 roughly gets used in the following way in the FRI protocol. There are two functions
u∗, u : D → Fq and there is a prover who claims that both are evaluations of low degree polynomials.
In order to verify this, the verifier uniformly samples x ∈ Fq and considers the function ux = u∗+x·u.
Lemma 3.2 shows that if any of u∗, u is far from being evaluations of a low degree polynomial, then
so is u∗ + x · u. This then gets exploited in the FRI protocol using FFT type ideas.

We now precede the random process of sampling x ∈ Fq with a step of domain extension, ex-
plained next. Assume a prover claims that both u and u∗ are evaluations of low degree polynomials
(say P (Y) and P ∗(Y)). So these polynomials can be evaluated also outside of D. Based on this, a
verifier first samples z ∈ Fq uniformly and asks the prover to reply with two field elements a∗, a ∈ Fq
which are supposedly equal to P ∗(z), P (z), respectively. After receiving these answers, the verifier
proceeds as before, sampling uniformly x ∈ Fq. Then, setting b = a∗+x ·a, we examine the distance
of ux from the sub-code Vz,b ⊂ V comprised of all members of V whose interpolating polynomial
evaluates to b on input z. The code Vz,b is the additive coset (shifted by b) of a low-degree ideal,
the ideal generated by (X − z) (cf. Lemma 5.3).

Using the Johnson Bound (Theorem 2.2) we prove that with high probability ux is at least
≈ min(δmax, 1− ρ1/2) far from Vz,b. Assuming RS codes have a larger list-decoding radius (Conjec-
ture 2.3), we show that with high probability ux is ≈ δmax-far from Vz,b for nearly all values of δmax.

12

Later, in Section 5, we shall use the improved distance preservation to construct the DEEP-FRI
protocol for testing proximity to the RS code with improved soundness.

The statement we give below is given more generally in terms of the list size bound L(Fq, D, d =
ρ|D|, δ); we instantiate it later with the Johnson bound and with Conjecture 2.3. It is useful to
keep in mind that this will be used in a setting where q is much larger than |D| (and hence d), and
where L∗δ is small.

Theorem 4.1 (DEEP method for RS codes). Let ρ > 0 and let V = RS[Fq, D, ρ]. For z, b ∈ Fq,
we let

Vz,b = {Q(Y)|D ∈ V | Q(z) = b} .

For δ > 0 let L∗δ = L(Fq, D, d = ρ|D|, δ).
Let u, u∗ ∈ FDq . For each z ∈ Fq, let Bz(X) ∈ Fq[X] be an arbitrary linear function. Suppose

that for some 1/3 > ε > 0 the following holds,

Pr
x,z∈Fq

[∆(u∗ + xu, Vz,Bz(x)) < δ] ≥ max

(
2L∗δ

(
d

q
+ ε

)1/3

,
4

ε2q

)
, (7)

Then there exist v, v∗ ∈ V and C ⊂ D such that:

• |C| ≥ (1− δ − ε)|D|,

• u|C = v|C ,

• u∗|C = v∗|C .

Consequently, we have ∆(u, V),∆(u∗, V) ≤ δ + ε.

Proof. To simplify notation set η = max

(
2L∗δ

(
d
q + ε

)1/3
, 4
ε2q

)
, and let ux = u∗ + xu.

Let E [x, z] denote the event “∃P (Y) ∈ List(ux, V, δ), P (z) = Bz(x)”.
The assumption of Equation (7) now reads as

Pr
x,z∈Fq

[E [x, z]] ≥ η.

Thus we get,

Pr
x

[Pr
z

[E [x, z]] ≥ η/2] ≥ η/2 (8)

Let
A =

{
x ∈ Fq | Pr

z
[E [x, z]] ≥ η/2]

}
and notice |A| ≥ ηq/2.

For x ∈ Fq, pick Px ∈ V to be a member P ∈ List(ux, V, δ) that maximizes Prz∈Fq [P (z) = Bz(x)].
Let Sx = {z ∈ Fq | Px(z) = Bz(x)} and set µx = |Sx|/q. By definition, |List(ux, V, δ)| ≤ L∗δ , and so
by the pigeonhole principle, for each x ∈ A we have µx ≥ η

2L∗δ
.

For x, β, γ picked uniformly from A, and z picked uniformly from Fq, we have:

Ex,β,γ [|Sx ∩ Sβ ∩ Sγ |/q] = Ez,x,β,γ [1z∈Sx∩Sβ∩Sγ]

13

= Ez[Ex[1z∈Sx]3]

≥ Ez,x[1z∈Sx]3

≥
(

η

2L∗δ

)3

>
d

q
+ ε.

The second equality above follows from the independence of x, β, γ. The first inequality is an
application of Jensen’s inequality and the last inequality is by assumption on η.

Thus
Pr
x,β,γ

[|Sx ∩ Sβ ∩ Sγ | > d] ≥ ε.

Note that Prx,β,γ [x, β, γ are not all distinct] < 3/|A|. Since |A| ≥ ηq/2 ≥ 2/ε2 ≥ 6/ε we have
3/|A| ≤ ε/2. Thus Prx,β,γ [x, β, γ are all distinct and |Sx ∩ Sβ ∩ Sγ | > d] ≥ ε/2.

This means that there are distinct x0, β0 such that

Pr
γ

[|Sx0 ∩ Sβ0 ∩ Sγ | > d] ≥ ε/2.

Consider some γ where this happens. Let S = Sx0 ∩ Sβ0 ∩ Sγ . By construction we know that
for all z ∈ Fq,

(x0, Bz(x0)), (β0, Bz(β0)), (γ,Bz(γ))

are collinear. So, in particular, for z ∈ S this holds.
By definition of S, we get that for each z ∈ S,

(x0, Px0(z)), (β0, Pβ0(z)), (γ, Pγ(z)) ∈ Fq × Fq

are collinear. Since |S| > d, we have that Pγ is uniquely determined by Pγ |S by a linear map. This
allows us to conclude that

(x0, Px0), (β0, Pβ0), (γ, Pγ) ∈ Fq × Fq[Y]

are collinear in the Fq-vector space Fq × Fq[Y].
Thus, an ε/2-fraction of the γ ∈ A have the “good” property that (γ, Pγ) is on the line passing

through (x0, Px0) and (β0, Pβ0). Write this line as P ∗ + xP and notice that for all “good” γ we
have Pγ = P ∗ + γP . Let A′ ⊆ A denote the set of good elements for this line, recording that
|A′| ≥ |A| · ε/2 ≥ 1/ε. By definition of List(ux, V, δ) and the assumption Px ∈ List(ux, V, δ), we have
that ∆(ux, Px) < δ for x ∈ A′.

Consider the set C ⊂ D defined by

C = {y ∈ D | u∗(y) = P ∗(y) AND u(y) = P (y)} .

For each y ∈ D\C there exists at most a single value of x ∈ Fq satisfying ux(y) = Px(y) because

ux(y)− Px(y) = (u∗(y)− P ∗(y)) + x · (u(y)− P (y))

has at most one value x on which it vanishes. This implies

δ ≥ Ex∈A′ [∆D(ux, vx)] ≥ |D \ C|
|D|

·
(

1− 1

|A′|

)
≥
(

1− |C|
|D|

)
· (1− ε) ≥ 1− |C|

|D|
− ε.

Rearranging, we get |C||D| ≥ 1− (δ + ε). Taking v = P and v∗ = P ∗ completes the proof.

14

Remark 4.2. One could extend the domain even further, and sample z from an extension field

Fqa. This gives even better soundness; the expression 2L∗δ ·
(
d
q + ε

)1/3
by 2L∗δ ·

(
d
qa + ε

)1/3
. This

can give interesting results even if L∗δ = qO(1) by taking a = O(1).

4.2 Weighted version

For application to Reed-Solomon Proximity Testing, it is more convenient to have a weighted version
of the previous result. We briefly introduce some notation for dealing with weights, and then state
the new version.

Let u, v ∈ FDq . Let η ∈ [0, 1]D be a vector of weights. We define the η-agreement between u and
v by:

agreeη(u, v) =
1

|D|
∑

i∈D|ui=vi

η(i).

For a subspace V ⊆ Fnq , we define

agreeη(u, V) = max
v∈V

agreeη(u, v).

Theorem 4.3. Let ρ > 0 and let V = RS[Fq, D, d = ρ · |D|]. For z, b ∈ Fq, we let

Vz,b = {Q(Y) ∈ V | Q(z) = b}.

For α < 1, let L∗ = L(Fq, D, d = ρ|D|, 1−α) be the list-size for list-decoding V from (1−α)-fraction
errors (without weights).

Let u, u∗ ∈ FDq . For each z ∈ Fq, let Bz(X) ∈ Fq[X] be an arbitrary linear function. Suppose
that

Pr
x,z∈Fq

[agreeη(u
∗ + xu, Vz,Bz(x)) > α] ≥ max

(
2L∗

(
d

q
+ ε

)1/3

,
4

ε2q

)
, (9)

Then there exist v, v∗ ∈ V and C ⊂ D such that:

•
∑

y∈C η(y) > (α− ε)|D|,

• u|C = v|C ,

• u∗|C = v∗|C .

Consequently, we have agreeη(u, V), agreeη(u
∗, V) ≥ α− ε.

The proof is nearly identical to the proof of Theorem 4.1 so we only highlight the changes. First,
we observe that if η1 : D → [0, 1] is the the constant function with value 1, then agreeη(u, v) ≤
agreeη1(u, v) = 1−∆(u, v). Thus the set

{Q(Y) ∈ Fq[Y] | deg(Q) ≤ d, agreeη(u∗ + xu,Q) > α}

is contained in
{Q(Y) ∈ Fq[Y] | deg(Q) ≤ d,∆(u∗ + xu,Q) < 1− α}.

The size of this latter set is bounded by L∗, and thus the size of the former set is too. The proof
then proceeds as before, until the very end, where we have a set A′ ⊆ Fq, with |A′| ≥ 2

ε , and

15

polynomials P, P ∗ ∈ V such that for each x ∈ A′, agreeη(u∗ + xu, P ∗ + xP) > α. Then we take
C = {y ∈ C | u∗(y) = P ∗(y), u(y) = P (y)}, and our goal is to show that

∑
y∈C η(y) > (α − ε)|D|.

To this end, consider:

α <
1

|A′|
∑
x∈A′

agreeη(u
∗ + xu, P ∗ + xP)

=
1

|D| · |A′|
∑
x∈A′

∑
y∈D

(η(y) · 1u∗(y)+xu(y)=P ∗(y)+xP (y))

=
1

|D|
∑
y∈D

η(y)

(
1

|A′|
∑
x∈A′

1u∗(y)+xu(y)=P ∗(y)+xP (y)

)

≤ 1

|D|
∑
y∈C

η(y) +
1

|D|
∑

y∈D\C

η(y) · 1

|A′|

≤ 1

|D|
∑
y∈C

η(y) + ε/2.

This implies that
∑

y∈C η(y) > (α− ε)|D|, and the rest of the proof is the same as before.

4.3 DEEP Lemma for general linear codes

Theorem 4.1 can be generalized to apply to arbitrary linear codes, and this is the focus of this
section. We explain the basic principles for an [n, k, d]q-linear code V with generating matrix
G ∈ Fk×nq , viewing codewords as evaluations of linear forms on the columns of G.

Let D ⊂ Fkq be the set of columns of G. A linear form ` ∈ F kq can be “evaluated” at any any

element x of D. Similarly, if we fix a set of points S ⊆ Fkq (thinking |S| � |D|), we may evaluate
the linear form ` at any point of S – this corresponds to evaluation outside the original domain D.

If we are given a function u : D → Fq which is supposed to be the evaluations of a linear form
` on D, we can ask about what the evaluation of this linear form at a point z ∈ S is. This is the
viewpoint from which the DEEP lemma generalizes to general codes.

We start with two functions u, u∗ : D → Fq (which are supposed to correspond to linear forms,
say ` ∈ Fkq and `∗ ∈ Fkq . We have a verifier who samples z ∈ S and asking for a = `(z) and
a∗ = `∗(z). Given these answers, the verifier now samples x ∈ Fq and computes b = a∗ + xa which
is supposedly equal to `∗(z) + `(z) (if u∗ and u are indeed codewords of V). The result below says
that if S is the set of columns of an error correcting code with good distance, and V has small
list size for list-decoding up to radius δ, then with high probability, the function ux = u∗ + xu has
distance at least ≈ min{∆(u∗, V), δ} from the sub-code of V corresponding to the linear forms that
evaluate to b on z.

Definition 4.4 (Robust). A set S ⊆ Fk is called σ-robust if every subset of S of size σ contains a
basis for Fk.

The following claim is well-known in coding theory (cf. [Rot06, Problem 2.8]).

Claim 4.5. Fix a full-rank matrix G ∈ Fk×Nq , N ≥ k, and let C =
{
x ·M | x ∈ Fkq

}
be the linear

code generated by it. Then the set of columnss of G is σ-robust if and only if the minimum distance
of C is at least N − σ + 1.

16

Lemma 4.6 (DEEP method for general linear codes). Let V be an [n, k, d]q-code that is (δ, L∗δ)-list
decodable for some δ > 0, and fix G ∈ Fk×nq to be its generating matrix. Let S ⊂ Fkq be a σ-robust
set of size N . For z ∈ S, b ∈ Fq, let

Vz,b = {v ∈ V | v = G · `v AND 〈`v, z〉 = b}

where 〈v, z〉 =
∑k

i=1 vi, zi.
Let u, u∗ ∈ Fnq . For each z ∈ S, let Bz(X) ∈ Fq[X] be an arbitrary linear function. Suppose

that for some ε > 0 the following holds,

Pr
x∈Fq ,z∈S

[∆(u∗ + xu, Vz,Bz(x)) < δ] ≥ max

(
2L∗δ

(σ
N

+ ε
)1/3

,
4

ε2q

)
, (10)

Then there exist v, v∗ ∈ V and C ⊂ [n] such that:

• |C| ≥ (1− δ − ε)n,

• u|C = v|C ,

• u∗|C = v∗|C .

Consequently, we have ∆(u, V),∆(u∗, V) ≤ δ + ε.

The proof is analogous to the proof in the Reed-Solomon case, and appears in Appendix A.

Discussion For the special case of RS codes, the DEEP method can be used to locally modify
the problem and reduce degree. Indeed, the subcode Vz,b in the case of RS codes corresponds is
comprised of functions f : D → F that are evaluations of polynomials of degree d whose interpolat-
ing polynomial Pf satisfies Pf (z) = b. From such a codeword, one can construct a new codeword

fz,b : D → F defined by fz,b(x) = f(x)−b
z , which is well-defined for all z 6∈ D. Notice that the

transformation from f to fz,b is 1-local, meaning that each entry of fz,b is constructed by making a
single query to f . Furthermore, this transformation maps a subset of the code RS[F, D, d] to the
code RS[F, D, d− 1], so we may use this transformation in RS IOPPs (as will done in the following
section).

In contrast, for a general k-dimensional linear code V , the subcode Vz,b, while being an affine
subspace of V , has less structure. In particular, it is not clear how to locally convert this subcode
to a “nice” code of dimension k − 1. An interesting middle ground, left to future work, is the case
of algebraic codes like Reed Muller codes and Algebraic Geometry codes which resemble RS codes.

5 DEEP-FRI

In this section we describe the new fast RS IOPP, called DEEP-FRI. We start by recalling the FRI
protocol from [BBHR18b], describing it nearly verbatim as in [BKS18b, Section 7].

17

5.1 FRI

Our starting point is a function f (0) : L(0) → F where F is a finite field, the evaluation domain
L(0) ⊂ F is a coset of a group2 contained in F, and |L(0)| = 2k

(0)
. We assume the target rate is

ρ = 2−R for some positive integer R. The FRI protocol is a two-phase protocol (the two phases are
called COMMIT and QUERY) that convinces a verifier that f (0) is close to the Reed-Solomon code
RS[F, L(0), ρ].

The COMMIT phase of the FRI protocol involves r = k(0)−R rounds. Before any communication,
the prover and verifier agree on a sequence of (cosets of) sub-groups L(i), where |L(i)| = 2k

(0)−i.
Let RS(i) denote the Reed-Solomon code RS[F, L(i), ρ|L(i)|].

The main ingredient of the FRI protocol is a special algebraic hash function Hx, which takes a
seed x ∈ F, and given as input a function f : L(i) → F, it produces as output a hash whose length
is 1/2 as long as f . More concretely, Hx[f] is a function

Hx[f] : L(i+1) → F

with the following properties:

1. locality: For any s ∈ L(i+1), Hx[f](s) can be computed by querying f at just two points in
its domain (these two points are (q(i))−1(s)).

2. completeness: If f ∈ RS(i), then for all x ∈ F, we have that Hx[f] ∈ RS(i+1).

3. soundness: If f is far from RS(i), then with high probability over the choice of seed x, Hx[f]
is quite far from RS(i+1).

These last two properties roughly show that for random x, Hx preserves distance to Reed-Solomon
codes. For the precise description of Hx see Appendix B and [BKS18a].

The high-level idea of the FRI protocol can then be described as follows. First we are in the
COMMIT phase of the protocol. The verifier picks a random x(0) ∈ F and asks the prover to
write down the hash Hx(0) [f

(0)] : L(1) → F. By Properties 2 and 3 above, our original problem of
estimating the distance of f (0) to RS(0) reduces to estimating the distance of Hx(0) [f

(0)] to RS(1)

(which is a problem of 1/2 the size). This process is then repeated: the verifier picks a random
x(1) ∈ F and asks the prover to write down Hx(1) [Hx(0) [f

(0)]], and so on. After r rounds of this,
we are reduced to a constant sized problem which can be solved in a trivial manner. However, the
verifier cannot blindly trust that the functions f (1), . . . that were written down by the prover truly
are obtained by repeatedly hashing f (0). This has to be checked, and the verifier does this in the
QUERY phase of the protocol, using Property 1 above.

We describe the phases of the protocol below.

COMMIT Phase:

1. For i = 0 to r − 1:

(a) The verifier picks uniformly random x(i) ∈ F and sends it to the prover.

(b) The prover writes down a function f (i+1) : L(i+1) → F. (In the case of an honest prover,
f (i+1) = Hx(i) [f

(i)].)

2The group can be additive, in which case F is a binary field, or multiplicative, in which case it is not.

18

2. The prover writes down a value C ∈ Fq. (In the case of an honest prover, f (r) is the constant
function with value = C).

QUERY Phase: (executed by the Verifier)

1. Repeat ` times:

(a) Pick s(0) ∈ L(0) uniformly at random.

(b) For i = 0 to r − 1:

i. Define s(i+1) ∈ L(i+1) by s(i+1) = q(i)(s(i)).

ii. Compute Hx(i) [f
(i)](s(i+1)) by making 2 queries to f (i).

iii. If f (i+1)(s(i+1)) 6= Hx(i) [f
(i)](s(i+1)), then REJECT.

(c) If f (r)(s(r)) 6= C, then REJECT.

2. ACCEPT

The previous state of the art regarding the soundness of FRI is given by the following statement
from [BKS18a]. In what follows let Jε(x) = 1−

√
1− x(1− ε).

Theorem 5.1 (FRI soundness (informal)). Suppose δ(0) , ∆(f (0),RS(0)) > 0. Let n = |L(0)|. Then
for any ε > 0 there exists ε′ > 0 so that with probability at least

1− 2 log n

ε3|F|
(11)

over the randomness of the verifier during the COMMIT phase, and for any (adaptively chosen)
prover oracles f (1), . . . , f (r), the QUERY protocol with repetition parameter ` outputs accept with
probability at most (

1−min
{
δ(0), 1− (ρ1/4 + ε′)

}
+ ε log n

)`
. (12)

Remark 5.2. Using the improved distance preservation of Lemma 3.2 in the analysis of FRI
from [BKS18a], one immediately improves the factor 1/4 in the exponent in Equation (14) to
an exponent of 1/3 (details omitted).

5.2 DEEP-FRI

We now describe our variation of FRI, that we call DEEP-FRI, for which we can give improved
soundness guarantees, at the cost of a small increase in the query complexity (but no increase in
the proof length or the number of queries to committed proofs – which is important in applications).

Before we can describe our protocol we introduce the operation of “quotienting”, which allows
us to focus our attention on polynomials taking certain values at certain points.

19

5.2.1 Quotienting

Suppose we a set L ⊆ Fq and a function f : L → Fq. Suppose further that we are given a point
z ∈ Fq and a value b ∈ Fq.

We define the function QUOTIENT(f, z, b) : L → Fq as follows. Let Z(Y) ∈ Fq[Y] be the
polynomial Z(Y) = Y − z. Then we define QUOTIENT(f, z, b) to be the function g : L→ Fq given
by:

g(y) =
f(y)− b
Z(y)

(or more succinctly, g = f−b)
Z).

Lemma 5.3. Let L ⊆ Fq. Let z ∈ Fq with z 6∈ L. Let d ≥ 1 be an integer.
Let f : L→ Fq, and b ∈ Fq. Let g = QUOTIENT(f, z, b). Then the following are equivalent:

• There exists a polynomial Q(X) ∈ Fq[X] of degree at most d− 1 such that ∆(g,Q) < δ.

• There exists a polynomial R(X) ∈ Fq[X] of degree at most d such that ∆(f,R) < δ and
R(z) = b.

Proof. If there is such a polynomial Q,deg(Q) ≤ d− 1 that agrees with g on all but a δ-fraction of
entries, we can take R = QZ + b. Notice deg(R) ≤ d because deg(Z) = 1.

Conversely, if there is such a polynomial R that agrees with f on all but a δ-fraction of entries,
we can take Q = (R− b)/Z. This is indeed a polynomial because R− b vanishes on z, so Z|(R− b)
in the ring of polynomials.

Finally, by construction R agrees with f whenever g agrees with R and this completes the
proof.

5.3 DEEP-FRI

Recall: We have linear spaces L(0), L(1), . . . , L(r), with dimensions k, k − 1, . . . , k − r. We further

have 1 dimensional subspaces L
(0)
0 , L

(1)
0 , . . . , L

(r)
0 with L

(i)
0 ⊆ L(i).

For this, it will be helpful to keep in mind the case that the domain L(0) is much smaller than
the field Fq (maybe q = |L(0)|Θ(1)).

Protocol 5.4 (DEEP-FRI).
Input: a function f (0) : L(0) → Fq which is supposed to be of degree < d(0).

COMMIT Phase:

1. For each i ∈ [0, r − 1]:

(a) The verifier picks a uniformly random z(i) ∈ Fq.

(b) The prover writes down a degree one polynomial B
(i)

z(i)
(X) ∈ Fq[X] (which is supposed

to be such that B
(i)

z(i)
(x) equals the evaluation of the low degree polynomial Hx[f (i)] at

z(i)).

(c) The verifier picks uniformly random x(i) ∈ Fq.

20

(d) The prover writes down a function

f (i+1) : L(i+1) → Fq.

(which on input y is supposed to equal QUOTIENT(Hx(i) [f
(i)], z(i), B

(i)

z(i)
(x)).)

2. The prover writes down a value C ∈ Fq.

QUERY Phase:

1. Repeat ` times:

(a) The verifier picks a uniformly random s(0) ∈ D.

(b) For each i ∈ [0, r − 1]:

i. Define s(i+1) ∈ L(i+1) by s(i+1) = q(i)(s(i)).

ii. Compute Hx(i) [f
(i)](s(i+1)) by making 2 queries to f (i).

iii. If Hx(i) [f
(i)](s(i+1)) 6= f (i+1)(s(i+1)) · (s(i+1) − z(i)) +B

(i)

z(i)
(x(i)), then REJECT.

(c) If f (r)(s(r)) 6= C, then REJECT.

2. ACCEPT.

5.4 Analysis

The following theorem proves the soundness of the DEEP-FRI protocol.

Theorem 5.5 (DEEP-FRI). Fix degree bound d(0) = 3 · 2r − 2 and RS(0) = RS[Fq, L(0), d(0)]. Let
n = |L(0)|.

For some ε, δ > 0, let
δ∗ = δ − 2rε,

L∗ = L(Fq, L(0), d(0), δ∗),

ν∗ = 2L∗
(
d(0)

q
+ ε

)1/3

+
4

ε2q
.

Then the following properties hold when the DEEP-FRI protocol is invoked on oracle f (0) : L(0) →
Fq,

1. Prover complexity is O(n) arithmetic operations over F

2. Verifier complexity is O(log n) arithmetic operations over F for a single invocation of
the QUERY phase; this also bounds communication and query complexity (measured in field
elements).

3. Completeness If f (0) ∈ RS(0) and f (1), . . . , f (r) are computed by the prover specified in the
COMMIT phase, then the DEEP-FRI verifier outputs accept with probability 1.

21

4. Soundness Suppose ∆(f (0),RS(0)) > δ. Then with all but probability

errCOMMIT ≤ r · ν∗ ≤ (log n) · ν∗. (13)

and for any (adaptively chosen) prover oracles f (1), . . . , f (r), the QUERY protocol with repe-
tition parameter ` outputs accept with probability at most

errQUERY ≤ (1− δ∗ + (log n) · ε)` (14)

Consequently, the soundness error of FRI is at most

err (δ) ≤ (log n) · ν∗ + (1− δ∗ + (log n) · ε)` (15)

We give a consequence below with a specific setting of parameters based on the Johnson bound.

Example 5.6. Continuing with the notation of Theorem 5.5, fix degree bound d(0) = 3 · 2r − 2 and
assume n = |L(0)| < √q. Let RS(0) = RS[Fq, L(0), d(0)] and let ρ = d(0)/n be its rate.

Let f (0) : L(0) → Fq be a function, and let δ(0) = ∆(f (0), RS(0)). Then with all but probability
errCOMMIT ≤ O(q−Ω(1)), the query phase will accept with probability at most: errQUERY ≤ (max(1−
δ(0),
√
ρ) + o(1))` as n→∞.

Proof. Note that d(0) ≤ n ≤ √q.
Set δ = min(δ(0), 1−√ρ− q−1/13), and apply the previous theorem. Theorem 2.2 implies that

L∗ < q1/13/(2
√
ρ) = O(q1/13). Set ε = q−6/13. Hence

ν∗ = 2L∗
(
d(0)q−1 + q−6/13

)1/3
+ 4q−6/13 = O(q−1/13),

which implies errCOMMIT ≤ Õ(q−1/13).
If δ = δ(0), then 1− δ∗ + (log n)ε = 1− δ + o(1). Otherwise δ = 1−√ρ− q−1/13, and so

1− δ∗ + (log n)ε =
√
ρ+ q−1/13 + (log n)ε =

√
ρ+ q−1/13 + (log n)q−6/13.

Thus errQUERY ≤ (max(1− δ,√ρ) + o(1))`.

We now give an example setting of DEEP-FRI under the optimistic Conjecture 2.3.

Example 5.7. Assume Conjecture 2.3. Continuing with the notation of Theorem 5.5, fix degree
bound d(0) = 3 · 2r − 2 and n = |L(0)|. Let RS(0) = RS[Fq, L(0), d(0)] and let ρ = d(0)/n be its rate.

Let C = Cρ be the constant given by Conjecture 2.3. Suppose q > n24C .
Let f (0) : L(0) → Fq be a function, and let δ(0) = ∆(f (0), RS(0)). Then with all but probability

errCOMMIT ≤ O(q−Ω(1)), the query phase will accept with probability at most: errQUERY ≤ (1− δ(0) +
o(1))` as n→∞.

Proof. Set ε = q−1/(6C).
Set δ = min(δ(0), 1− ρ− q−1/(6C)). Conjecture 2.3 gives us:

L∗ < nCq1/6.

22

We then apply the previous theorem. We get ν∗ � O(L∗ · (d/q + ε)1/3 + 1
ε2q

) � q−1/12, and
this gives us the claimed bound on errCOMMIT.

For the bound on errQUERY, we note that δ = δ(0) + o(1). This is because every function is
within distance 1− ρ of RS(0) (this follows easily from polynomial interpolation). Thus

1− δ∗ + (log n)ε = δ + o(1),

and we get the desired bound on errCOMMIT.

The prover and verifier complexity as well as completeness follow by construction (see, e.g.,
[BBHR18b] for detailed analysis of these aspects). In the rest of the section we prove the soundness
bound of Theorem 5.5.

5.5 Preparations

We do the analysis below for the case ` = 1. The generalization to arbitrary ` easily follows.
Define d(0) = 3 · 2r − 2, and d(i+1) = d(i)/2 − 1. It is easy to check that d(r) = 1. Define

RS(i) = RS[Fq, L(i), d(i)]. In the case of the honest prover (when f (0) ∈ RS(0)), we will have

f (i) ∈ RS(i) for all i.
Our analysis of the above protocol will track the agreement of f (i) with RS(i). This agreement

will be measured in a certain weighted way, which we define next.

5.5.1 The success probability at s ∈ L(i)

There is a natural directed forest that one can draw on the vertex set

L(0) ∪ L(1) ∪ . . . ∪ L(r),

namely, where s ∈ L(i) is joined to q(i)(s) ∈ L(i+1) (and we say that s is a child of q(i)(s)). Note
that every vertex not in L(0) has two children.

Let i ≤ r − 1 and s0 ∈ L(i). Let s ∈ L(i+1) be the parent of s0, and let s1 ∈ L(i) the sibling of
s0. We color s0 GREEN if f (i+1)(s) is consistent with f (i) |{s0,s1} according to the test

Hx(i) [f
(i)](s) = f (i+1)(s) · (s− z(i)) +B

(i)

z(i)
(x(i))

and we color s0 RED otherwise. Notice that a vertex and its sibling get the same color.
For s ∈ L(r), we color s GREEN if f (r)(s) = C and RED otherwise.
The QUERY phase of the protocol can be summarized as follows: we pick a uniformly random

s(0) ∈ L(0) and consider the path s(0), s(1), s(2) . . . , s(r) going through all its ancestors. If all these
vertices are GREEN, then we ACCEPT, otherwise we REJECT.

To capture this, we define functions η(i) : L(i) → R as follows. For s ∈ L(i), let η(i)(s) be the
fraction of leaf-descendants s(0) of s for which the path from s(0) to s (including s(0) but not including
s) consists exclusively of GREEN vertices. Observe that pACCEPT = Es∈L(r) [η(r)(s) · 1f (r)(s)=C]
equals the probability that the QUERY phase accepts.

The exact quantity that we will track is as i increases is the weighted agreement:

α(i) = agreeη(i) [f
(i),RS(i)].

23

Notice that
α(0) = 1−∆(f (0),RS(0)),

and the acceptance probability, pACCEPT satisfies:

pACCEPT ≤ α(r).

Our main intermediate claim is that with high probability over the choice of x(i), z(i), B
(i)

z(i)
, we

have that α(i+1) is not much more than α(i). This gives us that pACCEPT is not much more than
1−∆(f (0),RS(0)), as desired.

5.5.2 Operations AVG and ZERO

We define two important operations.

1. AVG. For a function w : L(i−1) → R, we define the function AVG[w] : L(i) → R as follows. Let
s ∈ L(i), and let {s0, s1} = (q(i−1))−1(s). Then define:

AVG[w](s) =
w(s0) + w(s1)

2
.

2. ZERO. For a function w : L(i) → R, and a set S ⊆ L(i), we define the function ZERO[w, S] :
L(i) → R as follows. For s ∈ L(i), we set:

ZERO[w, S](s) =

{
0 s ∈ S
w(s) s 6∈ S

.

We can use these two operations to express η(i+1) in terms of η(i). Let E(i+1) denote the set of
all s ∈ S(i+1) both of whose children are RED (i.e., the test

Hx(i) [f
(i)](s) = f (i+1)(s) · (s− z(i)) +B

(i)

z(i)
(x(i))

fails at s).
Define θ(i+1) : L(i+1) → R by

θ(i+1) = AVG[η(i)].

Then we have:
η(i+1) = ZERO(θ(i+1), E(i+1)).

Analogous to our definition of
α(i) = agreeη(i)(f

(i),RS(i)),

we define

β(i+1) = agreeθ(i+1)(Hx(i) [f
(i)], {P (Y) ∈ Fq[Y] | deg(P) ≤ d(i+1) and P (z(i)) = B

(i)

z(i)
(x(i))}).

The following two lemmas control the growth of α(i) and β(i).

Lemma 5.8. For all i, with probability at least 1− ν∗ over the choice of x(i), z(i), we have:

β(i+1) ≤ max(α(i), 1− δ∗) + ε.

24

We prove this using Theorem 4.3 in Appendix C.

Lemma 5.9. For all i,
α(i) ≤ β(i).

We prove this using Lemma 5.3 in Appendix C.
We can now complete the proof of Theorem 5.5.

Proof. As observed earlier, α(0) = 1−∆(f (0),RS(0)) < 1− δ.
The two lemmas above imply that with probability at least 1− rν∗,

α(r) ≤ max(α(0), 1− δ∗) + r · ε < (1−min(δ, δ∗) + r · ε).

Finally, we use the observation that pACCEPT ≤ α(r) to complete the proof.

6 The DEEP Algebraic Linking IOP (DEEP-ALI) protocol

The techniques used earlier in Theorem 4.1 and Section 5 can also be used to improve soundness in
other parts of an interactive oracle proof (IOP) protocol. We apply them here to obtain a Scalable
Transparent IOP of Knowledge (STIK) [BBHR18a, Definition 3.3] with better soundness than the
prior state of the art, given in [BBHR18a, Theorem 3.4].

Proof systems typically use a few steps of reduction to convert problems of membership in a
nondeterministic language L to algebraic problems regarding proximity of a function (or a sequence
of functions) to an algebraic code like Reed-Solomon (or, in earlier works, Reed-Muller). The goal
of such a reduction is to maintain a large proximity gap γ, meaning that for instances in L, an
honest prover will provide information that leads to codewords, whereas for instances not in L,
any oracles submitted by the prover will be converted by the reduction, with high probability, to
functions that are γ-far from the code. Considerable effort is devoted to increasing γ because it is
the input to the proximity protocols (like FRI and DEEP-FRI) and the soundness of those protocols
is correlated to γ (as discussed earlier, e.g., in Theorem 5.5).

The STIK protocol is a special case of this paradigm. It requires the prover to provide oracle
access to a function f : D → F that is supposedly an RS encoding of a witness for membership
of the input instance in L. A set of t-local constraints is applied to f to construct a function
g : D → F, along with a gap-gurantee: If f is indeed an encoding of a valid witness for the instance,
then the resulting function g : D → F is also be a member of an RS code. One of the tests that the
verifier performs is a consistency test between f and g, and, prior to this work, this consistency
test was applied to the functions f and g directly. This leads to a rather small gap γ ≤ 1

8 which
results in a small soundness guarantee from the RPT protocol applied to f, g later on.

In this section we apply the DEEP technique to this setting. After f and g have been provided,
the verifier samples a random z ∈ Fq and asks for the values of the interpolating polynomials of
f, g on all t entries needed to check the consistency test. Our verifier now applies the QUOTIENT
operation to f, g, using the information obtained from the prover. Crucially, we prove that a single
consistency test, conducted over a large domain D′ ⊃ D, suffices to improve the proximity gap to
roughly 1 −√ρ, a value that approaches 1 as ρ → 0. Assuming Conjecture 2.3 the proximity gap
is nearly-optimal, at γ ≈ 1 − ρ (compare with with the value γ ≤ 1/8 obtained by prior works).
Details follow.

25

We focus on the the Algebraic linking IOP protocol (ALI) of [BBHR18a, Theorem B.15], and
present a new protocol that we call DEEP-ALI (Protocol 6.4) that obtains the aforementioned
improved proximity gap(s).

In what follows, we will first recall (a variant of) the language (or, more accurately, binary
relation) which was the input to the ALI protocol of [BBHR18a] and is likewise the input to our
DEEP-ALI protocol. The description of the protocol follows in Section 6.2. Its basic properties are
specified in Section 6.3 and we analyze its soundness in Theorem 6.2 and Section 6.4.

6.1 The Algebraic Placement and Routing (APR) Relation

In what follows we use the notation f̃ to refer to a polynomial in F[x]. Note that the operator |D
for D ⊆ F takes a polynomial to a function: f̃ |D: D → F.

We start by defining a simplified version of the Algebraic placement and routing relation (APR).
See [BBHR18a, Definition B.10]. In particular, we only use one witness polynomial. This relation
will be the input to the reduction used in Protocol 6.4.

Definition 6.1. The relation RAPR is the set of pairs (x,w) satisfying:

1. Instance format: The instance x is a tuple (Fq, d, C) where:

• Fq is a finite field of size q.

• d is an integer representing a bound on the degree of the witness.

• C is a set of |C| tuples (M i, P i, Qi) representing constraints. M i is the mask which is

a sequence of field elements M i = {M i
j ∈ Fq}|M

i|
j=1 . P i is the condition of the constraint

which is a polynomial with |M i| variables. Qi ∈ Fq[x] is the domain polynomial of the
constraint which should vanish on the locations where the constraint should hold.

We further introduce the following notation:

• Let M = {M i
j | 1 ≤ i ≤ |C| and 1 ≤ j ≤ |M i|} ⊆ Fq be the full mask.

• Let dC = maxi deg(P i) be the maximal total degree of the P is.

• Let Qlcm ∈ Fq[x] be the least common multiple of the Qis.

2. Witness format: The witness w is a polynomial f̃ ∈ Fq[x]. A constraint (M,P,Q) is said
to hold at a location x ∈ Fq if P (f̃(x ·M1), . . . , f̃(x ·M|M |)) = 0. We say that f̃ satisfies the
constraint if the constraint holds at every x ∈ Fq for which Q(x) = 0.

We say that w satisfies the instance if and only if deg(f̃) < d and f̃ satisfies all of the
constraints.

To see that the notion of the RAPR relation defined above is strong enough, we follow the ideas
from [BBHR18a] and show a reduction from an Algebraic Intermediate Representation (AIR, see
[BBHR18a, Definition B.3]) to an APR. The following uses the notation from [BBHR18a, Definition
B.3]. Let x = (Fq, T,w,P, C,B) be an instance of RAIR. Pick a multiplicative subgroup 〈γ〉 ⊆ F×q of

size T ·w and pick f̃ such that f̃(γtw+j) = wj(t) for t ∈ [T] and i ∈ [w] (here [n] = {0, . . . , n−1}). For
all the constraints in P, choose the mask M = {1, γ, . . . , γ2w−1} and choose the domain polynomial
whose zeros are {γtw}t∈[T−1] (Q(x) = (xT − 1)/(x − γ−w)). Replace each boundary constraint
(i, j, α) ∈ B with a regular constraint with mask M = {1}, P (x) = x− α and Q(x) = x− γiw+j .

26

6.2 The DEEP-ALI protocol

We now describe our new protocol, that achieves improved soundness, as stated in the following
theorem.

Theorem 6.2 (DEEP-ALI soundness). Fix a code rate 0 < ρ < 1 and a distance parameter 0 < δ ≤
1 − ρ. Let D,D′ ⊆ Fq be two evaluation domains such that |D| = dρ−1 and |D′| = d · dCρ−1. Let
RPTD, RPTD′ be two IOPPs with perfect completeness for the codes RS[Fq, D, (d−|M|)/|D|]) and
RS[Fq, D′, (ddC − 1)/|D′|]) respectively. Let ε, ε′ be the bounds on the soundness error (acceptance
probability) for words that are at least δ-far from the corresponding code. Denote

L = max{L(Fq, D, d, δ),L(Fq, D′, d · dC , δ)}.

Then, there exists an IOP for RAPR with perfect completeness and soundness error ε + ε′ +
2L2(d·dC+deg(Qlcm))

q .

Example 6.3. Fix a code rate 0 < ρ < 1. Choosing DEEP-FRI as the RPT protocol and setting
δ = 1−√ρ−q−1/13 as in Example 5.6, using ` repetitions, we obtain an IOP for RAPR with perfect

completeness and soundness error that approaches 2ρ`/2 as q →∞ assuming the parameters d, dC,
deg(Qlcm) of the APR are constant with respect to q.

Proof. Theorem 2.2 implies that L ≤ q1/13/(2
√
ρ) = O(q1/13). Hence the expression 2L2(d · dC +

deg(Qlcm))/q approaches 0 as q →∞. Moreover, Example 5.6 implies that ε, ε′ approach ρ`/2.

We now describe the protocol that achieves the soundness of Theorem 6.2.

Protocol 6.4 (DEEP-ALI).

1. The prover sends an oracle f : D → F (which should be f̃ |D).

2. The verifier sends random coefficients α = (α1, . . . , α|C|) ∈ F|C|q .

3. The prover sends an oracle gα : D′ → F (which should be g̃α |D′ , where

g̃α(x) =

|C|∑
i=1

αi ·
P i(f̃(x ·M i

1), . . . , f̃(x ·M i
|M i|))

Qi(x)
. (16)

Note that deg(g̃α) < d · dC).

4. The verifier sends a random value z ∈ Fq.

5. DenoteMz = {z·M i
j | 1 ≤ i ≤ |C| and 1 ≤ j ≤ |M i|}. The prover sends aα,z :Mz → F (which

should be f̃ |Mz). The verifier deduces bα,z, the alleged value of g̃α(z), using Equation (16).

6. Let U(x), Z(x) as defined in Section 5.2.1 for QUOTIENT(f, aα,z) and let

h1(x) = h1
α,z(x) = QUOTIENT(f, aα,z) =

f(x)− U(x)

Z(x)
,

h2(x) = h2
α,z(x) = QUOTIENT(gα, {z 7→ bα,z}) =

gα(x)− bα,z
x− z

,

and note that the verifier has oracle access to h1 and h2 using the oracles f and gα.

27

7. They use RPTD and RPTD′ to prove that h1 is at most δ-far from RS[Fq, D, (d− |M|)/|D|]
(in other words, it is close to a polynomial of degree < d− |M|) and that h2 is at most δ-far
from RS[Fq, D′, (ddC − 1)/|D′|].

6.3 Properties of DEEP-ALI

Note that in the original ALI protocol, the equivalent to the expression P i(f̃(x · M i
1), . . . , f̃(x ·

M i
|M i|))/Q

i(x) is sampled at Q random locations from the evaluation domain, where Q is the

number of queries.
The main idea in DEEP-ALI is to use Quotienting to allow the verifier to choose one random

element z from the entire field, and check the consistency between f̃ and g̃ only at x = z.
The fact that DEEP-ALI allows to sample from the entire field introduces several advantages

over the ALI protocol from [BBHR18a]:

Soundness As described above, the reduction in ALI has lower bound 1/8 on the distance from
the code for inputs that are not in the language, even for ρ → 0. In DEEP-ALI the lower
bound on the distance is 1−√ρ.

Query complexity In ALI the verifier queries |M| · Q field elements as we need |M| elements to
evaluate P i(f̃(x ·M i

1), . . . , f̃(x ·M i
|M i|)). In DEEP-ALI the verifier queries O(|M| + Q) field

elements as the evaluation of P i is done once.

Verifier complexity Previously, the verifier complexity was Ω(Q·Tarith) (where Tarith is the arith-
metic complexity of evaluating all the constraints). The verifier complexity in DEEP-ALI
depends on Q + Tarith as we evaluate the constraints only once.

Prover complexity It is possible to alter Definition 6.1 and DEEP-ALI to work with several
witness polynomials f1, . . . , fw (as was done in ALI). The prover complexity in this case will
depend on (wρ−1 + dCρ

−1 + TarithdC) · d instead of (wdCρ
−1 + TarithdC) · d (in ALI).

6.4 Soundness analysis

The proof of Theorem 6.2 will follow from the following lemma:

Lemma 6.5. Let E be the event that the DEEP-ALI verifier accepts. If

Pr[E] ≥ ε+ ε′ +
2L2(d · dC + deg(Qlcm))

q
,

then there exists a polynomial of degree < d satisfying the constraints.

Proof. Let L(f) ⊆ RS[Fq, D, ρ] be the set of codewords that are at most δ-far from f . Similarly
define L(gα). We have |L(f)|, |L(gα)| ≤ L.

Let E1 be the event where the verifier accepts and h1 and h2 are at most δ-far from the corre-
sponding codes. Denote η = 2L2(d · dC + deg(Qlcm))/q. Then, Pr[E1] ≥ η. E1 implies that there

exists a polynomial h̃1 = h̃1
α,z of degree < d− |M| such that

∣∣{x ∈ D : h̃1(x) 6= f(x)−U(x)
Z(x) }

∣∣ < δ|D|.
Hence Z(x)·h̃1(x)+U(x) ∈ L(f). Similarly there exists a polynomial h̃2 = h̃2

α,z of degree < d·dC−1

such that (x− z)h̃2(x) + b ∈ L(gα).

28

Fix r̃1(x) (independent of α and z) to be the element in L(f) maximizing the probability that
r̃1(x) = Z(x) · h̃1(x) + U(x) given E1. Let E2 ⊆ E1 be the event that r̃1(x) = Z(x) · h̃1(x) + U(x).
It follows that Pr[E2] ≥ η/L.

Fix r̃2
α(x) ∈ L(gα) maximizing the probability that r̃2

α(x) = (x − z)h̃2(x) + b given E2 (note
that r̃2

α depends on α as the oracle gα was sent only after the verifier sent α), and let E3 ⊆ E2 be
the event where r̃2

α(x) = (x − z)h̃2(x) + b. We have Pr[E3] ≥ η/L2. This implies, Prα[Prz[E3] ≥
η/(2L2)] ≥ η/(2L2).

The event E3 implies

r̃1 |Mz= U |Mz= aα,z,

r̃2
α(z) = bα,z.

Recall that bα,z was defined according to (16), so

bα,z =

|C|∑
i=1

αi ·
P i(aα,z(z ·M i

1), . . . , aα,z(z ·M i
|M i|))

Qi(z)
.

Substituting values for aα,z and bα,z and multiplying by Qlcm(z) we obtain:

Qlcm(z) · r̃2
α(z) =

|C|∑
i=1

αi · P i(r̃1(z ·M i
1), . . . , r̃1(z ·M i

|M i|)) ·
Qlcm(z)

Qi(z)
. (17)

Both sides of the equation are polynomials of degree < d · dC + deg(Qlcm) in z. For every α
for which Prz[E3] ≥ η/(2L2) = (d · dC + deg(Qlcm))/q, we have at least d · dC + deg(Qlcm) many
z’s satisfying (17) and thus the two polynomials in (17) are identical. Let Gα(x) denote the the
right-hand side of (17) (replacing z with x).

So far we have:
Pr
α

[Gα(x) is divisible by Qlcm(x)] ≥ η/(2L2) > 1/q.

Note that the set of α’s satisfying this event forms a vector space. If its dimension was less than
|C| then the probability would have been ≤ 1/q. Hence this event holds for every α. Substituting
the elements of the standard basis, we get that for every 1 ≤ i ≤ |C|,

P i(r̃1(x ·M i
1), . . . , r̃1(x ·M i

|M i|)) ·
Qlcm(x)

Qi(x)
is divisible by Qlcm(x).

Substituting any x for which Qi(x) = 0 gives P i(r̃1(x ·M i
1), . . . , r̃1(x ·M i

|M i|)) = 0 which implies

that r̃1 satisfies all the constraints, as required.

6.5 Further optimizations for practical implementation

As we saw, it makes sense to work with several witness polynomials rather than one, as it improves
the prover complexity. Another optimization is to apply the RPT only once for both h1 and h2 by
taking a random linear combination of the two (and using Theorem 4.1). To make this work, the
prover writes the degree < d · dC polynomial g̃(x) as:

g̃(x) =

dC−1∑
i=0

xig̃i(x
dC),

29

where the g̃is are of degree < d, and it sends oracles to g̃i |D instead of g̃ |D′ . In total, we will have
to run RPT on w+dC polynomials of degree < d, so we choose only one evaluation domain D ⊆ Fq
satisfying |D| = dρ−1.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In Proceed-
ings of the 24th ACM Conference on Computer and Communications Security, October
2017.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,
Report 2018/046, 2018. Available at https://eprint.iacr.org/2018/046.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In Proceedings of the 45th International Col-
loquium on Automata, Languages, and Programming (ICALP), 2018.

[BCF+16] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Ri-
abzev, and Nicholas Spooner. On probabilistic checking in perfect zero knowledge.
Electronic Colloquium on Computational Complexity (ECCC), 23:156, 2016.

[BCR+18] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. IACR
Cryptology ePrint Archive, 2018:828, 2018.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing,
China, October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal
on Computing, 36(4):889–974, 2006.

[BKS18a] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case
reductions for the distance to a code. In 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 24:1–24:23, 2018.

[BKS18b] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case
reductions for the distance to a code. Electronic Colloquium on Computational Com-
plexity (ECCC), 25:90, 2018.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity.
SIAM Journal on Computing, 38(2):551–607, 2008. Preliminary version appeared in
STOC ’05.

[BSKR10] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace polyno-
mials and limits to list decoding of reed-solomon codes. IEEE Trans. Information
Theory, 56(1):113–120, 2010.

30

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12,
2007.

[Gur07] Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and
Trends R© in Theoretical Computer Science, 2(2):107–195, 2007.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical notes of the Academy of Sciences
of the USSR, 41(4):333–338, 1987.

[Rot06] Ron M. Roth. Introduction to coding theory. Cambridge University Press, 2006.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 49–62, 2016.

[RVW13] Guy N. Rothblum, Salil Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 793–802. ACM, 2013.

[RW14] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has abundant
near-optimal rate puncturings. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 764–773, 2014.

A Proof of the DEEP lemma for general codes

Proof of Lemma 4.6. To simplify notation set η = max
(

2L∗δ
(
σ
N + ε

)1/3
, 4
ε2q

)
, and let ux = u∗+xu.

Let E [x, z] denote the event “∃v ∈ List(ux, V, δ), 〈v, z〉 = Bz(x)”.
The assumption of Equation (10) now reads as

Pr
x∈Fq ,z∈S

[E [x, z]] ≥ η.

Thus we get,

Pr
x∈Fq

[Pr
z∈S

[E [x, z]] ≥ η/2] ≥ η/2 (18)

Let

A =

{
x ∈ Fq | Pr

z∈S
[E [x, z]] ≥ η/2]

}
and notice |A| ≥ ηq/2.

For x ∈ Fq, pick vx ∈ V to be a member of List(ux, V, δ) that maximizes Prz∈S [P (z) = Bz(x)].
Let Sx = {z ∈ S | 〈vx, z〉 = Bz(x)} and set µx = |Sx|/s. By definition, |List(ux, V, δ)| ≤ L∗δ , and so
by the pigeonhole principle, for each x ∈ A we have µx ≥ η

2L∗δ
.

31

For x, β, γ picked uniformly from A we have

Ex,β,γ∈A

[
|Sx ∩ Sβ ∩ Sγ |

s

]
= Ez∈S,x,β,γ∈Fq [1z∈Sx∩Sβ∩Sγ]

= Ez∈S [Ex∈Fq [1z∈Sx]3]

≥ Ez∈S,x∈Fq [1z∈Sx]3

≥
(

η

2L∗δ

)3

>
σ

N
+ ε.

The second equality above follows from the independence of x, β, γ. The first inequality is an
application of Jensen’s inequality and the last inequality is by assumption on η.

Thus
Pr
x,β,γ

[|Sx ∩ Sβ ∩ Sγ | > σ] ≥ ε.

Note that Prx,β,γ [x, β, γ are not all distinct] < 3/|A|. Since |A| ≥ ηq/2 ≥ 2/ε2 ≥ 6/ε we have
3/|A| ≤ ε/2. Thus Prx,β,γ [x, β, γ are all distinct and |Sx ∩ Sβ ∩ Sγ | > σ] ≥ ε/2.

This means that there are distinct x0, β0 such that

Pr
γ

[|Sx0 ∩ Sβ0 ∩ Sγ | > d] ≥ ε/2.

Consider some γ where this happens. Let S̃ = Sx0 ∩Sβ0 ∩Sγ . Extend each of u∗, u to functions
over domain S by defining for all z ∈ S \ [n] u∗(z) = Bz(0) and u(z) = Bz(1), and for x ∈ Fq let
ux(z) = u∗(z) + xu(z). Since V is systematic, we define vx(z) = 〈vx|[k], z〉 and thus extend vx to

domain S̃. By construction we know

(x0, ux0), (β0, uβ0), (γ, uγ)

are collinear. So, in particular,

(x0, ux0 |S̃), (β0, uβ0 |S̃), (γ, uγ |S̃) ∈ Fq × FS̃q

are likewise collinear, as a special case. By definition of S̃, we get that:

(x0, vx0 |S̃), (β0, vβ0 |S̃), (γ, vγ |S̃) ∈ Fq × FS̃q

are also collinear. Since |S̃| > σ and S is σ-robust we conclude that vγ is uniquely determined by
vγ |S̃ . This allows us to conclude that

(x0, vx0), (β0, vβ0), (γ, vγ) ∈ Fq × Fnq

are all collinear, recalling that vx0 ∈ List(ux0 , V, δ).
Thus, an ε/2-fraction of the γ ∈ A have the “good” property that (γ, vγ) is on the line passing

through (x0, vx0) and (β0, vβ0). Write this line as v∗ + xv and notice that for all “good” γ we
have vγ = v∗ + γv. Let A′ ⊆ A denote the set of good elements for this line, recording that

32

|A′| ≥ |A| · ε/2 ≥ 1/ε. By definition of List(ux, V, δ) and the assumption vx ∈ List(ux, V, δ), we have
that ∆(ux, vx) < δ for x ∈ A′.

Consider the set C ⊂ [n] defined by

C = {y ∈ [n] | u∗(y) = v∗(y) AND u(y) = v(y)} .

For each y ∈ [n] \ C there exists at most a single value of x ∈ Fq satisfying ux(y) = vx(y)
because

ux(y)− vx(y) = (u∗(y)− v∗(y)) + x · (u(y)− v(y))

has at most one value x on which it vanishes. This implies

δ ≥ Ex∈A′ [∆[n](ux, vx)] ≥ |[n] \ C|
n

·
(

1− 1

|A′|

)
≥
(

1− |C|
n

)
· (1− ε) ≥ 1− |C|

n
− ε.

Rearranging, we get |C|n ≥ 1− (δ + ε) and this completes the proof.

B The algebraic hash function

We now describe the algebraic hash function Hx.
The description of the hash function requires fixing some choices of certain subspaces. For each

i ∈ [0, r] we choose F2-subspaces L
(i)
0 and L(i), satisfying the following properties.

1. L
(i)
0 ⊆ L(i) with dim(L

(i)
0) = 1,

2. L(i+1) = q(i)(L(i)), where q(i)(X) is the subspace polynomial of L
(i)
0 ,

q(i)(X) =
∏

α∈L(i)
0

(X − α),

thus this is an F2-linear map with kernel L
(i)
0). In particular, dim(L(i+1)) = dim(L(i))− 1.

Let S(i) denote the set of cosets of L
(i)
0 contained in L(i).

Given x ∈ F and f : L(i) → F, the hash of f with seed x is defined to be the function
Hx[f] : L(i+1) → F as follows. For s ∈ L(i+1), let s0, s1 ∈ L(i) be the two roots of q(i)(X)− s. Let
Pf,s(X) ∈ F[X] be the unique degree ≤ 1 polynomial satisfying

Pf,s(s0) = f(s0),

Pf,s(s1) = f(s1).

Then we define
Hx[f](s) = Pf,s(x). (19)

Observe that Hx[f](s) can be computed by querying f on the set {s0, s1} (this set is a coset of L
(i)
0 ,

and we denote it by S
(i)
s).

To understand Hx better, it is instructive to see what it does to RS(i). Let f ∈ RS(i). The
underlying polynomial f(X) thus has degree at most ρ|L(i)|. We may write f(X) in base q(i)(X)
as:

f(X) = a0(X) + a1(X)q(i)(X) + . . .+ at(X)(q(i)(X))t, (20)

33

where each ai(X) has degree at most 1, and t ≤ ρ|L(i)|/2. Since the polynomials f(X) and Pf,s(X)
agree on the roots of q(X)−s, we get that f(X) ≡ Pf,s(X) mod (q(i)(X)−s). From Equation (20),
we get that

Pf,s(X) = a0(X) + a1(X)s+ . . .+ at(X)st.

In particular, for all x ∈ F,

Hx[f](s) = Pf,s(x) = a0(x) + a1(x)s+ . . .+ at(x)st,

and thus
Hx[f] ∈ RS(i+1).

C Proof of Lemma 5.8 and Lemma 5.9

We first prove Lemma 5.8.

Proof. Set γ = max(α(i), 1− δ∗).
For simplicity, denote f (i) by f .
Recall the notation Pf,s from the definition of the algebraic hash function Hx in Section B.

We have that for each s ∈ L(i+1), Hx[f](s) = Pf,s(x) is a linear function of x. Thus we can write

Hx[f] = u∗ + xu for u∗, u ∈ FL(i+1)

q , and for any fixed s, we have the formal polynomial equality
Pf,s(X) = u∗(s) +Xu(s).

We are interested in bounding the probability of the event β(i+1) > γ + ε. In other words, we
want to bound the probability that there exists a polynomial Q(Y) ∈ Fq[Y] with deg(Q) < d(i+1)+1
such that:

• agreeθ(i+1)(u∗ + xu,Q) > γ + ε,

• Q(z(i)) = B
(i)

z(i)
(x).

This is exactly the scenario of Theorem 4.3. That Lemma tells us that if the probability in
question is larger than ν∗, then there exist polynomials P (Y), P ∗(Y) of degree ≤ d(i+1) and a set
T ⊆ L(i+1) such that:

•
1

|L(i+1)|
∑

s∈L(i+1)

θ(i+1) > γ,

• u|T = P |T ,

• u∗|T = P ∗|T .

Let
P̂ (X,Y) , P ∗(Y) +X · P (Y)

and notice that degX(P̂) ≤ 1, degY (P̂) ≤ d(i+1).
Consider the polynomial R(X) , P̂ (X, q(i)(X)). We have

deg(R) ≤ 2d(i+1) + 1 = d(i) − 1 < d(i).

34

We claim that R agrees with f on T̃ =
⋃
s∈T S

(i)
s .

Take any s ∈ T and let S
(i)
s = {s0, s1} ∈ S(i) be the pair of roots of the polynomial q(i) (X)− s.

First we show that the polynomials Pf,s(X) and P̂ (X, s) are identical. Indeed, P̂ (X, s)) =
P ∗(s) +XP (s) = u∗(s) +Xu(s) = Pf,s(X). It follows that

f (s0) = P̂ (s0, s) = P̂
(
s0, q

(i) (s0)
)

= R (s0)

and similarly f (s1) = R (s1). Therefore, R and f agree on T̃ , as claimed.
We now use the above information to show that α(i) = agreeη(i)(f,R) > γ, which contradicts

the definition of γ. Indeed,

agreeη(i)(f,R) =
1

|L(i)|
∑

r∈L(i)|f(r)=R(r)

η(i)(r)

≥ 1

|L(i)|
∑
r∈T̃

η(i)(r)

=
1

|L(i)|
∑
s∈T

∑
r∈S(i)

s

η(i)(r)

=
1

|L(i)|
∑
s∈T
|S(i)
s | · θ(i)(s) Since θ(s) equals the average of η(r) | r ∈ S(i)

s

=
1

|L(i+1)|
∑
s∈T

θ(i)(s)

> γ.

This is the desired contradiction.

Next we prove Lemma 5.9.

Proof. By definition,

β(i) = agreeθ(i)(Hx(i−1) [f (i−1)], {P (Y) ∈ Fq[Y] | deg(P) ≤ d(i) and P (z(i−1)) = B
(i−1)

z(i−1)(x
(i−1))})

Next, by the properties of quotienting, Lemma 5.3,

β(i) = agreeθ(i)(Hx(i−1) [f (i−1)], {P (Y) ∈ Fq[Y] | deg(P) ≤ d(i) and P (z(i−1)) = B
(i−1)

z(i−1)(x
(i−1))})

= agreeθ(i)(QUOTIENT(Hx(i−1) [f (i−1)], z(i−1), B
(i−1)

z(i−1)(x
(i−1))), {P (Y) ∈ Fq[Y] | deg(P) ≤ d(i) − 1}).

Now observe that η(i) is obtained from θ(i) by zeroing out coordinates in E(i), and the only

coordinates where f (i) can differ from QUOTIENT(Hx(i−1) [f (i−1)], z(i−1), B
(i−1)

z(i−1)(x
(i−1))) are in E(i).

Thus:

β(i) ≥ agreeθ(i)(f
(i), {P (Y) ∈ Fq[Y] | deg(P) ≤ d(i) − 1})

= agreeθ(i)(f
(i),RS(i))

= α(i).

This completes the proof.

35

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

