
On the Fine-grained Complexity of Least Weight1

Subsequence in Multitrees and Bounded2

Treewidth DAGs3

Jiawei Gao4

University of California, San Diego5

jiawei@cs.ucsd.edu6

Abstract7

This paper introduces a new technique that generalizes previously known fine-grained reductions8

from linear structures to graphs. Least Weight Subsequence (LWS) [30] is a class of highly sequential9

optimization problems with form F (j) = mini<j [F (i) + ci,j] . They can be solved in quadratic10

time using dynamic programming, but it is not known whether these problems can be solved faster11

than n2−o(1) time. Surprisingly, each such problem is subquadratic time reducible to a highly12

parallel, non-dynamic programming problem [36]. In other words, if a “static” problem is faster13

than quadratic time, so is an LWS problem. For many instances of LWS, the sequential versions are14

equivalent to their static versions by subquadratic time reductions. The previous result applies to15

LWS on linear structures, and this paper extends this result to LWS on paths in sparse graphs, the16

Least Weight Subpath (LWSP) problems. When the graph is a multitree (i.e. a DAG where any pair17

of vertices can have at most one path) or when the graph is a DAG whose underlying undirected18

graph has constant treewidth, we show that LWSP on this graph is still subquadratically reducible19

to their corresponding static problems. For many instances, the graph versions are still equivalent20

to their static versions.21

Moreover, this paper shows that if we can decide a property of form ∃x∃yP (x, y) in subquadratic22

time, where P is a quickly checkable property on a pair of elements, then on these classes of graphs,23

we can also in subquadratic time decide whether there exists a pair x, y in the transitive closure of24

the graph that also satisfy P (x, y).25

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness26

Keywords and phrases fine-grained complexity, dynamic programming, graph reachability27

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.1528

Funding Work supported by a Simons Investigator Award from the Simons Foundation.29

Acknowledgements I sincerely thank Russell Impagliazzo for his guidance and advice on this paper.30

I would like to thank Marco Carmosino and Jessica Sorrell for helpful comments. Also I would like31

to thank the anonymous reviewers for comments on an earlier version of this paper.32

1 Introduction33

1.1 Extending one-dimensional dynamic programming to graphs34

Least Weight Subsequence (LWS) [30] is a type of dynamic programming problems: select a35

set of elements from a linearly ordered set so that the total cost incurred by the adjacent36

pairs of selected elements is optimized. It is defined as follows: Given elements x0, . . . , xn,37

and an n× n matrix C of costs ci,j for all pairs of indices i < j, compute F on all elements,38

defined by39

F (j) =
{

0, for j = 1
min0≤i<j [F (i) + ci,j], for j = 2, . . . , n

40

© J. Gao;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 45 (2019)

mailto:jiawei@cs.ucsd.edu
https://doi.org/10.4230/LIPIcs.IPEC.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

F (j) is the optimal cost value from the first element up to the j-th element. We use the41

notation LWSC to define the LWS problem with cost matrix C. The Airplane Refueling42

problem [30] is a well known example of LWS: Given the locations of airports on a line,43

find a subset of the airports for an airplane to add fuel, that minimizes the total cost. The44

cost of flying from the i-th to the j-th airport without stopping is defined by ci,j . Other45

LWS examples include finding a longest chain satisfying a certain property, such as Longest46

Increasing Subsequence [25] and Longest Subset Chain [36]; breaking a linear structure47

into blocks, such as Pretty Printing [34]; variations of Subset Sum such as special versions48

of the Coin Change problem and the Knapsack problem[36]. These problems have O(n2)49

time algorithms using dynamic programming, and in many special cases it can be improved:50

when the cost satisfies the quadrangle inequality or some other properties, there are near51

linear time algorithms [50, 46, 26]. But for the general LWS, it is not known whether these52

problems can be solved faster than n2−o(1) time.53

A general approach to understanding the fine-grained complexity of these problems was54

initiated in [36]. Many LWS problems have succinct representations of ci,j . Usually C is55

defined implicitly by the data associated to each element, and the size of the data on each56

element is relatively small compared to n. Taking problems defined in [36] as examples,57

in LowRankLWS, ci,j = 〈µi, σj〉, where µi and σj are boolean vectors of length d � n58

associated to each element that are given by the input. The ChainLWS problem has costs59

c1, . . . , cn defined by a boolean relation P so that ci,j equals cj if P (i, j) is true, and ∞60

otherwise. P is computable by data associated to element i and element j. (For example, in61

LongestSubsetChain, P (i, j) is true iff set Si is contained in set Sj , where Si and Sj are sets62

associated to elements i and j respectively.) So the goal of the problem becomes finding a63

longest chain of elements so that adjacent elements that are to be selected satisfy property64

P . When C can be represented succinctly, we can ask whether there exist subquadratic time65

algorithms for these problems, or try to find subquadratic time reductions between problems.66

[36] showed that in many LWSC problems where C can be succinctly described in the input,67

the problem is subquadratic time reducible to a corresponding problem, which is called a68

StaticLWSC problem. The problem StaticLWSC is: given elements x1, . . . , xn, a cost matrix C,69

and values F (i) on all i ∈ {1, . . . , n/2}, compute F (j) = mini∈{n/2+1,...,n}[F (i) + ci,j] for all70

j ∈ {n+ 1, . . . , 2n}. It is a parallel, batch version (with many values of j rather than a single71

one) of the LWS update rule applied sequentially one index at a time in the standard DP72

algorithm. The reduction from LWSC to StaticLWSC implies that a highly sequential problem73

can be reducible to a highly parallel one. If a StaticLWSC problem can be solved faster74

than quadratic time, so can the corresponding LWSC problem. Apart from one-directional75

reductions from general LWSC to StaticLWSC , [36] also proved subquadratic time equivalence76

between some concrete problems (LowRankLWS is equivalent to MinInnerProduct, NestedBoxes77

is equivalent to VectorDomination, LongestSubsetChain is equivalent to OrthogonalVectors, and78

ChainLWS, which is a generalization of NestedBoxes and LongestSubsetChain, is equivalent to79

Selection, a generalization of VectorDomination and OrthogonalVectors).80

Some of the LWS problems can be naturally extended from lines to graphs. For example,81

on a road map, we wish to find a path for a vehicle, along which we wish to find a sequence82

of cities where the vehicle can rest and add fuel so that the total cost is minimized. The cost83

of traveling between cities x and y without stopping is defined by cost cx,y. Connections84

between cities could be a general graph, not just a line. Works about algorithms for special85

LWS problems on special classes of graphs include [11, 43, 24, 38].86

Using a similar approach as [36], this paper extends the Least Weight Subsequence87

problems to the Least Weight Subpath (LWSPC) problem whose objective is to find a least88

J. Gao 15:3

weight subsequence on a path of a given DAG G = (V,E). Let there be a set V0 containing89

vertices that can be the starting point of a subsequence in a path. The optimum value on90

each vertex is defined by:91

F (v) =
{

min(0,minu v[F (u) + cu,v]), for v ∈ V0

minu v[F (u) + cu,v], for v /∈ v0
92

where u v means v is reachable from u. The goal of LWSPC is to compute F (v) for93

all vertices v ∈ V . Examples of LWSPC problems will be given in Appendix B. LWSPC94

can be solved in time O(|V | · |E|) by doing reversed depth/breadth first search from each95

vertex, and update the F value on the vertex accordingly. It is not known whether it has96

faster algorithms, even for Longest Increasing Subsequence, which is an LWSC instance97

solvable in O(n logn) time on linear structures. If C is succinctly describable in similar98

ways as LowRankLWS, NestedBoxes,SubsetChain or ChainLWS, we wish to study if there are99

subquadratic time algorithms or subquadratic time reductions between problems.100

For the cost matrix C, we consider that every vertex has some additional data so that101

cx,y can be computed by the data contained in x and y. Let the size of additional data102

associated to each vertex v be its weighted size w(v). The weight of a vertex can be defined103

in different ways according to the problems. For example, in LowRankLWS, the weighted size104

of an element can be defined as the dimension of its associated vector; and in SubsetChain,105

the weighted size of an element is the size of its corresponding subset. We use m = |E| as the106

number of graph edges. Let n be the number of vertices. We study the case where the graph107

is sparse, i.e. m = n1+o(1). Let the total weighted size of all vertices be N . For LWSC and108

other problems without graphs, we use N as the input size. For LWSPC and other problems109

on graphs, we use M = max(m,N) as the size of the input.110

In this paper we will see that if we can improve the algorithm for StaticLWSC to N2−o(1),111

then on some classes of graphs we can solve LWSPC faster than M2−o(1) time.112

1.2 Fine-grained complexity preliminaries113

Fine-grained complexity studies the exact-time reductions between problems, and the com-114

pleteness of problems in classes under exact-time reductions. These reductions have estab-115

lished conditional lower bounds for many interesting problems. The Orthogonal Vectors116

problem (OV) is a well-studied problem solvable in quadratic time. If the Strong Exponential117

Time Hypothesis (SETH) [31, 32] is true, then OV does not have truly subquadratic time118

algorithms [47]. The problem OV is defined as follows: Given n boolean vectors of dimension119

d = ω(logn), and decide whether there is a pair of vectors whose inner product is zero. The120

best algorithm is in time n2−Ω(1/ log(d/ logn)) [7, 23]. The Moderate-dimension OV conjecture121

(MDOVC) states that for all ε > 0, there are no O(n2−εpoly(d)) time algorithms that solve122

OV with vector dimension d. If this conjecture is true, then many interesting problems123

would get lower bounds, including dynamic programming problems such as Longest Common124

Subsequence [2, 20], Edit Distance [14, 5], Fréchet distance [18, 21, 22], Local Alignment [9],125

CFG Parsing and RNA Folding [1], Regular Expression Matching [15, 19] , and also many126

graph problems [42, 8, 16]. There are also conditional hardness results about graph problems127

based on the hardness of All Pair Shortest Path [49, 4, 10, 39] and 3SUM [6, 35].128

The fine-grained reduction was introduced in [49], which can preserve polynomial saving129

factors in the running time between problems. The statements for fine-grained complexity130

are usually like this: if there is some ε2 > 0 such that problem Π2 of input size n is in131

TIME((T2(n))1−ε2), then problem Π1 of input size n is in TIME((T1(n))1−ε1) for some ε1. If132

T1 and T2 are both O(n2) then this reduction is called a subquadratic reduction. Furthermore,133

IPEC 2019

15:4 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

the exact-complexity reduction is a more strict version that can preserve sub-polynomial134

savings factors between problems. We use (Π1, T1(n)) ≤EC (Π2, T2(n)) to denote that there135

is a reduction from problem Π1 to problem Π2 so that if problem Π2 is in TIME(T2(n)), then136

problem Π1 is in TIME(T1(n)).137

1.3 Introducing reachability to first-order model checking138

Similar to extending LWSC to paths in graphs, introducing transitive closure to first-order139

logic also which makes parallel problems become sequential. The first-order property (or140

first-order model checking) problem is to decide whether an input structure satisfies a fixed141

first-order logic formula ϕ. Although model checking for input formulas is PSPACE-complete142

[44, 45], when ϕ is fixed by the problem, it is solvable in polynomial time. We consider143

the class of problems where each problem is the model checking for a fixed formula ϕ.144

The sparse version of OV [27] is one of these problems, defined by the formula ∃u∃v∀i ∈145

[d](¬One(u, i)∨(¬One(v, i))), where relation One(u, i) is true iff the i-th coordinate of vector146

u is one.147

If ϕ has k quantifiers (k ≥ 2), then on input structures of n elements and m tuples of148

relations, it can be solved in time O(nk−2m) [28]. On dense graphs where k ≥ 9, it can149

be solved in time O(nk−3+ω), where ω is the matrix multiplication exponent [48]. Here150

we study the case where the input structure is sparse, i.e.m = n1+o(1), and ask whether151

a three-quantifier first-order formula can be model checked in time faster than m2−o(1).152

The first-order property conjecture (FOPC) states that there exists integer k ≥ 2, so that153

first-order model checking for (k + 1)-quantifier formulas cannot be solved in time O(mk−ε)154

for any ε > 0. This conjecture is equivalent to MDOVC, since OV is proven to be a complete155

problem in the class of first-order model checking problems; in other words, any model156

checking problem of 3 quantifier formulas on sparse graphs is subquadratic time reducible to157

OV [28]. This means from improved algorithms for OV we can get improved algorithms for158

first-order model checking.159

The first-order property problems are highly parallelizable. If we introduce the transitive160

closure (TC) operation on the relations, then these problems will become sequential. The161

transitive closure of a binary relation E can be considered as the reachability relation by162

edges of E in a graph. In a sparse structure, the TC of a relation may be dense. So it163

can be considered as a dense relation succinctly described in the input. In finite model164

theory, adding transitive closure significantly adds to the expressive power of first-order165

logic (First discovered by Fagin in 1974 according to [37], and then re-discovered by [12].)166

In fine-grained complexity, adding arbitrary transitive closure operations on the formulas167

strictly increases the hardness of the model checking problem. More precisely, [27] shows168

that SETH on constant depth circuits, which is a weaker conjecture than the SETH (which169

concerns k-CNF-SAT), implies the model checking for two-quantifier first-order formulas170

with transitive closure operations cannot be solved in time O(m2−ε) for any ε > 0. This171

means this problem may stay hard even if the SETH on k-CNF-SAT is refuted.172

However, we will see that for a class of three-quantifier formulas with transitive closure,173

model checking is no harder than OV under subquadratic time reductions.174

We define problem SelectionP to be the decision problem for whether an input structure175

satisfies (∃x ∈ X)(∃y ∈ Y)P (x, y). P (x, y) is a fixed property specified by the problem that176

can be decided in time O(w(x) + w(y)), where weighted size w(x) is the size of additional177

data on element x. For example, OV is SelectionP where P (x, y) iff x and y are a pair of178

orthogonal vectors. In this case w(x) is defined as the length of vector x. (If we work on the179

sparse version of OV, the weighted size w(x) is defined by the Hamming weight of x.)180

J. Gao 15:5

On a directed graph G = (V,E), we define PathP to be the problem of deciding whether181

(∃x ∈ V)(∃y ∈ V)[TCE(x, y) ∧ P (x, y)], where TCE is the transitive closure of relation E182

and P (x, y) is a property on x, y fixed by the problem. That is, whether there exist two183

vertices x,y not only satisfying property P but also y is reachable from x by edges in E. We184

will give an example of PathP in Appendix B. Also, we define ListPathP to be the problem185

of listing all x ∈ V such that (∃y ∈ V)[TCE(x, y) ∧ P (x, y)].186

Considering the model checking problems, we let PathFO3 and ListPathFO3 denote the187

class of PathP and ListPathP such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z), where ψ is188

a quantifier-free formula in first-order logic. Later we will see that problems in PathFO3 and189

ListPathFO3 are no harder than OV. In these model checking problems, the weighted size of190

an element is the number of tuples in the input structure that the element is contained in.191

Trivially, SelectionP on input size (N1, N2) can be decided in time O(N1N2), where N1192

is the total weighted size of elements in X, and N2 is the total weighted size of elements193

in Y . PathP and ListPathP on input size M and total vertex weighted size N are solvable194

time O(MN) by depth/breadth first search from each vertex, where M is defined to be the195

maximum of N and the number of edges m. This paper will show that on some graphs, if196

SelectionP is in truly subquadratic time, so is PathP and ListPathP . Interestingly, by applying197

the same reduction techniques from PathP to SelectionP , we can get a similar reduction from198

a dynamic programming problem on a graph to a static problem.199

1.4 Main results200

This paper works on two classes of graphs, both having some similarities to trees. The first201

class is where the graph G is a multitree. A multitree is a directed acyclic graph where the202

set of vertices reachable from any vertex form a tree. Or equivalently a DAG is a multitree if203

and only if on all pairs of vertices u, v, there is at most one path from u to v. In different204

contexts, multitrees are also called strongly unambiguous graphs, mangroves or diamond-free205

posets [29]. These graphs can be used to model computational paths in nondeterministic206

algorithms where there is at most one path connecting any two states [13]. The butterfly207

network, which is a widely-used model of the network topology in parallel computing, is an208

example of multitrees. We also work on multitrees of strongly connected component, which209

is a graph that when each strongly connected components are replaced by a single vertex,210

the graph becomes a multitree.211

The second class of graphs is when we treat G as undirected by replacing all directed212

edges by undirected edges, the underlying graph has constant treewidth. Treewidth [40, 41]213

is an important parameter of graphs that describes how similar they are to trees. 1 On these214

classes of graphs, we have the following theorems.215

I Theorem 1 (Reductions between decision problems.). Let t(M) ≥ 2Ω(
√

logM), and let the216

graph G = (V,E) satisfy one of the following conditions:217

G is a multitree, or218

G is a multitree of strongly connected components, or219

The underlying undirected graph of G has constant treewidth,220

then, the following statements are true:221

1 Here we consider the undirected treewidth, where both the graph and the decomposition tree are
undirected. It is different from directed treewidth defined for directed graphs by [33].

IPEC 2019

15:6 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

If SelectionP is in time N1N2/t(min(N1, N2)), then PathP is in time M2/t(polyM).2222

If PathP is in time M2/t(M), then ListPathP is in time M2/t(polyM).223

When P (x, y) is of form ∃zψ(x, y, z) or ∀zψ(x, y, z) where ψ is a quantifier-free first-order224

formula, SelectionP is in time N1N2/t(min(N1, N2)) iff PathP is in time M2/t(polyM)225

iff ListPathP is in time M2/t(polyM).226

This theorem implies that OV is hard for classes PathFO3 and ListPathFO3 . By the227

improved algorithm for OV [7, 23], we get improved algorithms for PathFO3 and ListPathFO3 :228

I Corollary 2 (Improved algorithms.). Let the graph G be a multitree, or multitree of strongly229

connected components, or a DAG whose underlying undirected graph has constant treewidth.230

Then PathFO3 and ListPathFO3 are in time M2/2Ω(
√

logM).231

Next, we consider the dynamic programming problems. If the cost matrix C in LWSPC232

is succinctly describable, we get the following reduction from LWSPC to StaticLWSC .233

I Theorem 3 (Reductions between optimization problems.). On a multitree graph, or a DAG234

whose underlying undirected graph has constant treewidth, let t(N) ≥ 2Ω(
√

logN), then,235

1. if StaticLWSC of input size N is in time N2/t(N), then LWSPC on input size M is in236

time M2/t(poly(M)).237

2. if LWSPC is in time M2/t(M), then LWSC is in time N2/t(poly(N)).238

If there is a reduction from a concrete StaticLWSC problem to its corresponding LWSC prob-239

lem (e.g. there are reductions from MinInnerProduct to LowRankLWS, from VectorDomination240

to NestedBoxes and from OV to LongestSubsetChain [36]), then the corresponding LWSC ,241

StaticLWSC and LWSPC problems are subquadratic-time equivalent. From the algorithm for242

OV [23] and SparseOV [28], we get improved algorithm for problem LongestSubsetChain:243

I Corollary 4 (Improved algorithm). On a multitree or a DAG whose underlying undirected244

graph has constant treewidth, LongestSubsetChain is in time M2/2Ω(
√

logM).245

The reduction uses a technique that decomposes multitrees into sub-structures where it246

is easy to decide whether vertices are reachable. So we also get reachability oracles using247

subquadratic space, that can answer reachability queries in sublinear time.248

I Theorem 5 (Reachability oracle). On a multitree of strongly connected components, there249

exists a reachability oracle with subquadratic preprocessing time and space that has sublinear250

query time. On a multitree, the preprocessing time and space is O(m5/3), and the query time251

is O(m2/3).252

1.5 Organization253

In Section 2 we prove the first part of Theorem 1, by reduction from PathP to SelectionP254

on multitrees. The case for bounded treewidth DAGs will be presented in Appendix D.255

Section 3 proves Theorem 3 by presenting a reduction from LWSPC to StaticLWSC , and the256

proof of correctness will be left to Appendix E. Section 4 discusses about open problems.257

Appendix A lists the definitions of problems, and Appendix B shows some concrete problems258

2 This reduction also applies to optimization versions of these two problems. Let PathF be a problem to
compute minx,y∈V,x y F (x, y) and SelectionF be a problem to compute minx∈X,y∈Y F (x, y), where F
is a function on x, y, instead of a boolean property. Then the same technique gives us a reduction from
PathF to SelectionF .

J. Gao 15:7

as examples. Appendix C gives a weighted version of Lemma 7. Appendix F proves the259

second part of Theorem 1 by reduction from ListPathP to PathP . Appendix G proves the last260

part of Theorem 1, the subquadratic equivalence of SelectionP , PathP and ListPathP when261

P is a first-order property. Appendix H talks about the reachability oracle for multitrees.262

2 From sequential problems to parallel problems, on multitrees263

We will prove the first part of Theorem 1 by showing that if t(M) ≥ 2Ω(
√

logM), then264

(PathP ,M2/t(polyM)) ≤EC (SelectionP , N1N2/t(min(N1, N2))). This section gives the re-265

duction for multitrees and multitrees of strongly connected components. For constant266

treewidth graphs, the reduction will be shown in Appendix D.267

2.1 The recursive algorithm268

The algorithm uses a divide-and-conquer strategy. We will consider each strongly connected269

component as a single vertex, whose weighted size equals the total weighted size of the270

component. In the following algorithm, whenever querying SelectionP or exhaustively271

enumerating pairs of reachable vertices and testing P on them, we can extract all the vertices272

from a strongly connected component. Thus we will be working on a multitree, instead of273

a multitree of strongly connected components. Testing P on a pair of vertices (or strongly274

connected components) of total weighted sizes N1, N2 is in time O(N1N2).275

Let CutPathP be a variation of PathP . It is the property testing problem for (∃x ∈276

S)(∃y ∈ T)[TCE(x, y) ∧ ϕ(x, y)], where (S, T) is a cut in the graph, such that all the edges277

between S and T are directed from S to T . CutPathP on input size M and total vertex278

weighted size N can be solved in time O(MN) if P (x, y) is decidable in time O(w(x) +w(y)):279

start from each vertex and do depth/breadth first search, and on each pair of reachable280

vertices decide if P is satisfied.281

I Lemma 6. For t(M) ≥ 2Ω(
√

logM), if SelectionP (N,N) is in time N2/t(N) and CutPathP (M)282

is in time M2/t(M), then PathP (M) is in time M2/t(poly(M)).283

Proof. Let γ be a constant satisfying 0 < γ ≤ 1/4. Let TΠ(M) be the running time of284

problem Π on a structure of total weighted size M . We show that there exists a constant285

c where 0 < c < 1 so that if TPathP
(M ′) is at most M ′2/t(M ′c) for all M ′ < M , then286

TPathP
(M) ≤ M2/t(M c). We run the recursive algorithm as shown in Algorithm 1. The287

intuition is to divide the graph into a cut S, T , recursively compute PathP on S and T , and288

deal with paths from S to T .289

It would be good if the difference of total weighted sizes between S and T is at most Mγ .290

Otherwise, it means by the topological order, there is a vertex of weighted size at least Mγ
291

in the middle, adding it to either S or T would make the size difference between S and T292

exceed Mγ . In this case, we use letter x to denote the vertex. We will deal with x separately.293

We temporarily set aside the time of recursively running SelectionP on x (when x is shrunk294

from a strongly connected component) in all the recursive calls, and consider the rest of the295

running time.296

Let MS and MT be the sizes of sets S and T respectively. Without loss of generality,297

IPEC 2019

15:8 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

Algorithm 1: PathP (G) on a DAG
// Reducing PathP to SelectionP and CutPathP

1 if G has only one vertex then return false.
2 Let M be the weighted size of the problem.
3 Topological sort all vertices.
4 Keep adding vertices to S by topological order, until the total weighted size of S

exceeds M/2. Let the rest of vertices be T .
5 if |S| − |T | > Mγ then
6 Let x be the last vertex added to S. Remove x from S.
7 Run PathP on the subgraph induced by S.
8 Run CutPathP (S, T).
9 if x exists then

10 Run CutPathP (S, x).
11 If x is originally a strongly connected component, run SelectionP on it.
12 Run CutPathP (x, T)
13 Run PathP on the subgraph induced by T .
14 if any one of the above three calls returns true then return true.

assume MS ≥MT , and let ∆ = MS −MT , which is at most Mγ . Then we have298

TPathP
(M) = TPathP

(MS) + TPathP
(MT) + 3TCutPathP

(M) +O(M)299

= TPathP
(MT + ∆) + TPathP

(MT) + 3TCutPathP
(M) +O(M)300

≤ 2TPathP
(M/2 + ∆) + 3TCutPathP

(M) +O(M)301

= 2(M/2 + ∆)2/t((M/2 + ∆)c) + 3M2/t(M) +O(M).302
303

Because t(M) < M and is monotonically growing, The term 3M2/t(M) +O(M) is bounded304

by 4M2/t(M) ≤ 16(M/2)2/t(M) ≤ 16(M/2 + ∆)2/t((M/2 + ∆)c). Thus the above formula305

is bounded 18(M/2 + ∆)2/t((M/2 + ∆)c). By picking small enough constant γ and c, this306

sum is less than M2/t(M c).307

For the time of running SelectionP on x where x is originally a strongly connected308

component, we consider all recursive calls of PathP . Let the size of each such x be Mi. The309

total time would be
∑
iM

2
i /t(Mi) < (

∑
iM

2
i)/t(Mγ). Because

∑
iMi ≤M , the sum is at310

most M2/t(Mγ), a value subquadratic to M , with M being the input size of the outermost311

call of PathP . J312

2.2 A special case that can be exhaustively searched313

The following lemma shows that if no vertex has both a lot of ancestors and a lot of314

descendants, then the total number of reachable pairs of vertices is subquadratic to m. This315

lemma holds for any DAG, not just for multitrees. We will use this lemma in the next316

subsection to show that in a subgraph where all vertices have few ancestors and descendants,317

we can test property P on all pairs of reachable vertices by brute force. Actually, we will use318

a weighted version of this lemma, which will be proved in Appendix C.319

I Lemma 7. If in a DAG G = (V,E) of m edges, every vertex has either at most n1320

ancestors or at most n2 descendants, then there are at most (m · n1 · n2) pairs of vertices s, t321

such that s can reach t.322

J. Gao 15:9

In a DAG G = (V,E) of m edges, let S, T be two disjoint sets of vertices where edges323

between S and T only direct from S to T . If every vertex has either at most n1 ancestors in324

S or at most n2 descendants in T , then there are at most (m · n1 · n2) pairs of vertices s ∈ S325

and t ∈ T such that s can reach t.326

Proof. We define the ancestors of an edge e ∈ E to be the ancestors (or ancestors in S) of327

its incoming vertex, and its descendants to be the descendants (or descendants in T) of its328

outgoing vertex. Let the number of its ancestors and descendants be denoted by anc(e) and329

des(e) respectively.330

For each edge e, it belongs to exactly one of the following three types:331

Type A: If anc(e) ≤ n1 but des(e) > n2, then let count(e) be anc(e).332

Type B: If des(e) ≤ n2 but anc(e) > n1, then let count(e) be des(e).333

Type C: If anc(e) ≤ n1 and des(e) ≤ n2, then let count(e) be anc(e) · des(e).334 ∑
e∈E count(e) ≤ m · n1 · n2 because the count value on each edge is bounded by n1 · n2. We335

will prove that this value upper bounds the number of reachable pairs of vertices.336

For each pair of reachable vertices (u, v) (or (u, v) s.t.u ∈ S and v ∈ T), let (e1, . . . , ep)337

be the path from u to v. Along the path, anc does not decrease, and dec does not increase.338

A path belongs to exactly one of the following three types:339

Type a: Along the path anc(e1) ≤ anc(e2) ≤ · · · ≤ anc(ep) ≤ n1, and des(e1) ≥ des(e2) ≥340

· · · ≥ des(ep) > n2. That is, all the edges are Type A.341

Type b: Along the path des(ep) ≤ des(ep−1) ≤ · · · ≤ des(e1) ≤ n2, and anc(ep) ≥342

anc(ep−1) ≥ · · · ≥ anc(e1) > n1. That is, all the edges are Type B.343

Type c: Along the path there is some edge ei so that anc(ei) ≤ n1 and des(ei) ≤ n2. That344

is, it has at least one Type C edge.345

There will not be other cases, for otherwise if a Type A edge directly connects to a Type B346

edge without a Type C edge in the middle, then the vertex joining these two edges would347

have more than n1 ancestors and more than n2 descendants.348

If a path from u to v is Type a, then its last edge ep is Type A. If it is Type b, then its349

first edge e1 is Type B. If it is Type c, then there is some edge ei in the path that is Type C.350

This means:351

1. For each Type A edge e, count(e) is at least the number of all Type a pairs (u, v) whose352

path has e as its last edge.353

2. For each Type B edge e, count(e) is at least the number of all Type b pairs (u, v) whose354

path has e as its first edge.355

3. For each Type C edge e, count(e) is at least the number of all Type c pairs (u, v) whose356

path contains e.357

Therefore each path is counted at least once by the count(e) of some edge e. J358

2.3 Subroutine: reachability across a cut359

Now we will show the reduction from CutPathP to SelectionP . The high level idea of CutPathP360

is that we think of the reachability relation on S × T as an |S| × |T | boolean matrix whose361

one-entries correspond to reachable pairs of vertices. If we could partition the matrix into362

all-one combinatorial rectangles, then we can decide all entries within these rectangles by a363

query to SelectionP , because in the same rectangle, all pairs are reachable.364

B Claim 8. Consider the reachability matrix of on sets S and T . Let MS and MT be the365

sizes of S and T . If there is a way to partition the matrix into non-overlapping combinatorial366

rectangles (S1, T1), . . . , (Sk, Tk) of sizes (r1, c1), . . . , (rk, ck), and if there is some t so that367

IPEC 2019

15:10 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

Algorithm 2: CutPathP (S, T) on a multitree
1 Compute the total weighted size of ancestors anc(v) and descendants des(v) for all

vertices.
2 Insert all vertices with at least Mα ancestors and Mα descendants into linked list L.
3 while there exists a vertex v ∈ L do

// we call v a pivot vertex
4 Let A be the set of ancestors of v in S.
5 Let B be the set of descendants of v in T .
6 Add v to A if v ∈ S, otherwise add v to B.
7 Run SelectionP on (A,B). If it returns true then return true.
8 for each a ∈ A do
9 let des(a) = des(a)− |B|.

10 if des(a) < Mα and a ∈ L then remove a from L.
11 for each b ∈ B do
12 let anc(b) = anc(b)− |A|.
13 if anc(b) < Mα and b ∈ L then remove b from L.
14 Remove v from the graph.
15 for each edge (s, t) crossing the cut(S, T) do
16 Let A be the set of ancestors of s (including s) in S.
17 Let B be the set of descendants of t (including t) in T .
18 On all pairs of vertices (a, b) where a ∈ A, b ∈ B, check property P . If P is true

on any pair of (a, b) then return true.

computing each subproblem of size (ri, ci) takes time ri · ci/t(min(ri, ci)), and all ri ≥ `, and368

all ci ≥ ` for a threshold value `, then all the computation takes total time O(MS ·MT /t(`)).369

Proof. Let the minimum of all ri be rmin and the minimum of all ci be cmin. Then the370

factor of time saved for computing each combinatorial rectangle is at least t(min(rmin, cmin)),371

greater than t(`). So the time spent on all rectangles is at most O((
∑t
i=1 ci)(

∑t
i=1 ri)/t(`)),372

also we have (
∑t
i=1 ci)(

∑t
i=1 ri) ≤MS ·MT because the rectangles are contained inside the373

matrix of size MS ·MT and they do not overlap. So the total time is O(MS ·MT /t(`)). J374

The algorithm CutPathP (S, T) is shown in Algorithm 2. It tries to cover the one-entries375

of the reachability matrix by combinatorial rectangles as many as possible. Finally, for the376

one-entries not covered, we go through them by exhaustive search, which takes less than377

quadratic time.378

In the beginning, we can compute the total weighted size of ancestors (or descendants) of379

all vertices in the DAG in O(M) time by going through all vertices by topological order (or380

reversed topological order).381

In each query to SelectionP (A,B), all vertices in A can reach all vertices in B, because382

they all go through v. For any pair of reachable vertices s ∈ S, t ∈ T , if they go through383

any pivot vertex, then the pair is queried to SelectionP . Otherwise it is left to the end, and384

checked by exhaustive search on all pairs of reachable vertices.385

The calls to SelectionP correspond to non-overlapping all-one combinatorial rectangles386

in the reachability matrix. This is because the graph G is a multitree. For each call to387

SelectionP , the rectangle size is at least Mα×Mα. Thus the total time for all the SelectionP388

calls is O(M2/t(Mα)) by Claim 8.389

J. Gao 15:11

Each time we remove a pivot vertex v, there will be no more paths from set A to set B,390

for otherwise there would be two distinct paths connecting the same pair of vertices. Thus,391

removing a v decreases the total number of weighted-pairs3 of reachable vertices by at least392

Mα ×Mα. There are M ×M weighted-pairs of vertices, so the total weight (and thus the393

total number) of pivot vertices like v is at most (M ×M)/(Mα ×Mα) = M2−2α.394

Each time we find a pivot vertex v, we update the total weighted size of descendants for all395

its ancestors, and update the total weighted size of ancestors for all its descendants. Because396

it has at least Mα ancestors and Mα descendants, the value decrease on each affected vertex397

is at least Mα. So each vertex has decreased its ancestors/descendants values for at most398

M/Mα = M1−α times. In other words, each vertex can be an ancestor/descendant of at399

most M1−α pivot vertices. The total time to deal with all ancestors/descendants of all pivot400

vertices in the while loop is in O(M ·M1−α) = O(M2−α).401

Finally, after the while loop, there are no vertices with both more than Mα ancestors402

and Mα descendants. In this case, by a weighted version of Lemma 7 (See Appendix C), the403

number of weighted-pairs of reachable vertices is bounded by M ·Mα ·Mα = M1+2α. So404

the total time to deal with these paths is O(M1+2α).405

Thus the total running time is O(M2/t(Mα) +M2−α +M1+2α). By choosing α and γ406

to be appropriate constants, we get subquadratic running time.407

If t(M) = M ε, then by choosing α = 1/(2 + ε), we get running time M2−ε/(2+ε).408

3 Application to Least Weight Subpath409

In this section we will prove Theorem 3. The reduction from LWSPC to StaticLWSC uses the410

same structure as the reduction from PathP to SelectionP in the proof of Theorem 1 shown411

in Section 2. Because in LWSP we only consider DAGs, there are no strongly connected412

components in the graph.413

Process LWSPC(G,F0) computes values of F on initial values F0 defined on all vertices of414

G. On a given LWSPC problem, we will reduce it to an asymmetric variation of StaticLWSC .415

Process StaticLWSC(A,B, FA) computes all the values of function FB defined on domain B,416

given all the values of FA defined on domain A, such that FB(b) = mina∈A[FA(s) + ca,b].417

Let NA and NB be the total weighted size of A and B respectively. It is easy to see that418

if StaticLWSC on |NA| = |NB | is in time N2
A/t(NA), then StaticLWSC on general A,B is in419

time O(NA ·NB/t(min(NA, NB))).420

We also define process CutLWSPC(S, T, FS), which computes all the values of FT defined421

on domain T , given all the values of FS on domain S, where FT (t) = mins∈S,s t[FS(s)+cs,t].422

The reduction algorithm is adapted from the reduction from PathP to SelectionP . LWSPC423

is analogous to PathP , StaticLWSC is analogous to SelectionP , and CutLWSPC is analogous424

to CutPathP . In PathP , we divide the graph into two halves, recursively call PathP on the425

subgraphs, and use CutPathP to deal with paths from one side of the graph to the other side.426

Similarly in LWSPC , we divide the graph into two halves, recursively compute function F427

on the source side of the graph, then based on these values we call CutPathP to compute428

the initial values of function F on the sink side of the graph, and finally we recursively call429

LWSPC on the sink side of the graph. In CutPathP , we first identify large all-one rectangles430

in the reachability matrix, and then use SelectionP to solve them, and finally we go through431

all reachable pairs of vertices that are not covered by these rectangles. Similarly, in LWSPC ,432

3 The number of weighted-pairs is defined to be the sum of w(u) · w(v) for all pairs of reachable vertices
u v.

IPEC 2019

15:12 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

Algorithm 3: LWSPC(G = (V,E, V0), F0) on a DAG
1 if G has only one vertex v then
2 if v ∈ V0 then
3 return min(0, F0(v)).
4 return F0 on v.
5 Let M be the weighted size of the problem.
6 Topological sort all vertices.
7 Keep adding vertices to S by topological order, until the total weighted size of S

exceeds M/2. Let the rest of vertices be T .
8 if |S| − |T | > Mγ then
9 Let x be the last vertex added to S. Remove x from S.

10 Compute F on domain S, by F ← LWSPC(GS , F0), where GS is the subgraph of G
induced by S.

11 Let FT ← CutLWSPC(S, T, F).
12 For each vertex t ∈ T , let F0(t)← min(F0(t), FT (t)).
13 if x exists then
14 Compute Fx ← CutLWSPC(S, x, F) for vertex x.
15 Compute F on vertex x by F (x)← min(F0(x), Fx(x)).
16 Let F ′T ← CutLWSPC(x, T, F).
17 For each vertex t ∈ T , let F0(t)← min(F0(t), F ′T (t)).
18 Compute F on domain T , by F ← LWSPC(GT , F0), where GT is the subgraph of G

induced by T .
19 return F on domain V .

we will use the similar method to identify large all-one rectangles in the reachability matrix433

and use StaticLWSC to solve them, and finally we go through all reachable pairs of vertices434

and update F on each of them.435

The algorithm LWSPC is similar as PathP (Algorithm 1), and is defined in Algorithm 3.436

Initially, we let F (v) ← 0 for all v ∈ V0, and let F (v) ← +∞ for all v /∈ V0. We run437

LWSPC(G,F0) on the whole graph.438

The algorithm CutLWSPC(S, T, FS) is adapted from CutPathP (Algorithm 2), with the439

following changes:440

1. In the beginning, FT (t) is initialized to ∞ for all t ∈ T .441

2. Each query to SelectionP (A,B) in CutPathP is replaced by442

a. Compute FB on domain B by StaticLWSC(A,B, FS).443

b. For each vertex b in B, let FT (b) be the minimum of the original FT (b) and FB(b).444

3. Whenever processing a pair of vertices s, t such that s is can reach t in either the445

preprocessing phase or the final exhaustive search phase, we let FT (t)← FS(s) + cs,t if446

FS(s) + cs,t < FT (t).447

4. In the end, the process returns FT , the target function on domain T .448

The proof of correctness will be shown in Appendix E. The time complexity of this449

reduction algorithm follows from the argument of Section 2.450

J. Gao 15:13

4 Open problems451

One open problem is to study PathP and LWSPC on general DAGs. Also, we would like to452

consider the case where the graph is not sparse, where we can use O(MN) as the baseline453

time complexity instead of O(M2).454

It would also be desirable to study the fine-grained complexity of the DAG versions of455

other quadratic time solvable dynamic programming problems, e.g. the Longest Common456

Subsequence problem.457

References458

1 Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained459

complexity of analyzing compressed data: Quantifying improvements over decompress-and-460

solve. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on,461

pages 192–203. IEEE, 2017.462

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for463

lcs and other sequence similarity measures. In Foundations of Computer Science (FOCS),464

2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.465

3 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower466

bounds for subset sum and bicriteria path. In Proceedings of the Thirtieth Annual ACM-SIAM467

Symposium on Discrete Algorithms, pages 41–57. SIAM, 2019.468

4 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences469

between graph centrality problems, APSP and diameter. In Proceedings of the twenty-sixth470

annual ACM-SIAM symposium on Discrete algorithms, pages 1681–1697. SIAM, 2014.471

5 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.472

Simulating branching programs with edit distance and friends: or: a polylog shaved is a473

lower bound made. In Proceedings of the forty-eighth annual ACM symposium on Theory of474

Computing, pages 375–388. ACM, 2016.475

6 Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjecture. In476

International Colloquium on Automata, Languages, and Programming, pages 1–12. Springer,477

2013.478

7 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method479

to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on480

Discrete Algorithms, pages 218–230. SIAM, 2015.481

8 Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and fixed482

parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings483

of the twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms, pages 377–391.484

SIAM, 2016.485

9 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster align-486

ment of sequences. In International Colloquium on Automata, Languages, and Programming,487

pages 39–51. Springer, 2014.488

10 Udit Agarwal and Vijaya Ramachandran. Fine-grained complexity for sparse graphs. In489

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC490

2018, pages 239–252, New York, NY, USA, 2018. ACM. doi:10.1145/3188745.3188888.491

11 Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a minimum-weight k-link492

path in graphs with the concave monge property and applications. Discrete & Computational493

Geometry, 12(3):263–280, 1994.494

12 Alfred V Aho and Jeffrey D Ullman. Universality of data retrieval languages. In Proceedings of495

the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages496

110–119. ACM, 1979.497

13 Eric Allender and Klaus-Jörn Lange. StUSP ACE(log n) ⊆ DSP ACE(log2 n/ log log n). In498

International Symposium on Algorithms and Computation, pages 193–202. Springer, 1996.499

IPEC 2019

http://dx.doi.org/10.1145/3188745.3188888

15:14 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

14 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic500

time (unless SETH is false). In Proceedings of the forty-seventh annual ACM symposium on501

Theory of computing, pages 51–58. ACM, 2015.502

15 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In503

Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages504

457–466. IEEE, 2016.505

16 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.506

Towards tight approximation bounds for graph diameter and eccentricities. In Proceedings of507

the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 267–280. ACM,508

2018.509

17 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.510

SIAM Journal on computing, 25(6):1305–1317, 1996.511

18 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-512

ratic algorithms unless SETH fails. In Foundations of Computer Science (FOCS), 2014 IEEE513

55th Annual Symposium on, pages 661–670. IEEE, 2014.514

19 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular515

expression membership testing. In Foundations of Computer Science (FOCS), 2017 IEEE516

58th Annual Symposium on, pages 307–318. IEEE, 2017.517

20 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string518

problems and dynamic time warping. In Foundations of Computer Science (FOCS), 2015519

IEEE 56th Annual Symposium on, pages 79–97. IEEE, 2015.520

21 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on521

c-packed curves matching conditional lower bounds. International Journal of Computational522

Geometry & Applications, 27(01n02):85–119, 2017.523

22 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.524

Journal of Computational Geometry, 7(2):46–76, 2015.525

23 Timothy M Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and More:526

Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual527

ACM-SIAM Symposium on Discrete Algorithms, pages 1246–1255. SIAM, 2016.528

24 S.C. Chen, J.Y. Wu, G.S. Huang, and R.C.T. Lee. Finding a longest increasing subsequence on529

a galled tree. In the 28th Workshop on Combinatorial Mathematics and Computation Theory,530

Penghu, Taiwan, 2011.531

25 Michael L Fredman. On computing the length of longest increasing subsequences. Discrete532

Mathematics, 11(1):29–35, 1975.533

26 Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-dimensional dynamic534

programming. 1989.535

27 Jiawei Gao and Russell Impagliazzo. The fine-grained complexity of strengthenings of first-536

order logic. Electronic Colloquium on Computational Complexity (ECCC), 26:9, 2019. URL:537

https://eccc.weizmann.ac.il/report/2019/009.538

28 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for539

first-order properties on sparse structures with algorithmic applications. In Proceedings of540

the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages541

2162–2181, 2017.542

29 Jerrold R Griggs, Wei-Tian Li, and Linyuan Lu. Diamond-free families. Journal of Combinat-543

orial Theory, Series A, 119(2):310–322, 2012.544

30 Daniel S Hirschberg and Lawrence L Larmore. The least weight subsequence problem. SIAM545

Journal on Computing, 16(4):628–638, 1987.546

31 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of547

Computer and System Sciences, 62(2):367–375, 2001.548

32 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly549

exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.550

https://eccc.weizmann.ac.il/report/2019/009

J. Gao 15:15

33 Thor Johnson, Neil Robertson, Paul D Seymour, and Robin Thomas. Directed tree-width.551

Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.552

34 Donald E Knuth and Michael F Plass. Breaking paragraphs into lines. Software: Practice and553

Experience, 11(11):1119–1184, 1981.554

35 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.555

In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,556

pages 1272–1287. SIAM, 2016.557

36 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained Com-558

plexity of One-Dimensional Dynamic Programming. In 44th International Colloquium on559

Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International560

Proceedings in Informatics (LIPIcs), pages 21:1–21:15, 2017.561

37 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.562

38 Guan-Yu Lin, Jia jie Liu, and Yue-Li Wang. Finding a longest increasing subsequence from563

the paths in a complete bipartite graph. 2012.564

39 Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest565

cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM566

Symposium on Discrete Algorithms, pages 1236–1252. Society for Industrial and Applied567

Mathematics, 2018.568

40 Neil Robertson and Paul D Seymour. Graph minors. iii. planar tree-width. Journal of569

Combinatorial Theory, Series B, 36(1):49–64, 1984.570

41 Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal571

of Algorithms, 7(3):309 – 322, 1986. doi:https://doi.org/10.1016/0196-6774(86)90023-4.572

42 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the573

diameter and radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium574

on Theory of computing, pages 515–524. ACM, 2013.575

43 Baruch Schieber. Computing a minimum weightk-link path in graphs with the concave monge576

property. Journal of Algorithms, 29(2):204–222, 1998.577

44 Larry Joseph Stockmeyer. The complexity of decision problems in automata theory and logic.578

PhD thesis, Massachusetts Institute of Technology, 1974.579

45 Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the fourteenth580

annual ACM symposium on Theory of computing, pages 137–146. ACM, 1982.581

46 Robert Wilber. The concave least-weight subsequence problem revisited. Journal of Algorithms,582

9(3):418–425, 1988.583

47 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.584

Theoretical Computer Science, 348(2):357–365, 2005.585

48 Ryan Williams. Faster decision of first-order graph properties. In Proceedings of the Joint586

Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)587

and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),588

page 80. ACM, 2014.589

49 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix590

and triangle problems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE591

Symposium on, pages 645–654. IEEE, 2010.592

50 F Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proceedings593

of the twelfth annual ACM symposium on Theory of computing, pages 429–435. ACM, 1980.594

A List of problem definitions and class definitions595

Here we list the main problems studied in this paper.596

LWSC : Given elements x1, . . . , xn and value F (0) = 0, compute F (j) = min0≤i<j [F (i)+ci,j]597

for all j ∈ {1, . . . , n}.598

StaticLWSC : Given elements x1, . . . , x2n and values of F (i) on all i ∈ {1, . . . , n}, compute599

F (j) = mini∈{1,...,n}[F (i) + ci,j] for all j ∈ {n+ 1, . . . , 2n}.600

IPEC 2019

http://dx.doi.org/https://doi.org/10.1016/0196-6774(86)90023-4

15:16 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

LWSPC : Given graph G = (V,E) and starting vertex set V0 ⊆ V , compute on each v ∈ V ,601

the value of F (v), where602

F (v) =
{

min(0,minu v[F (u) + cu,v]), for v ∈ V0

minu v[F (u) + cu,v], for v /∈ v0
603

CutLWSPC : On DAG G with a cut (S, T) where edges are only directed from S to T , given604

the values of function FS on S, for all t ∈ T compute FT (t) = mins∈S,s t[FS(s) + cs,t].605

SelectionP : On two sets X,Y , decide whether (∃x ∈ X)(∃y ∈ Y)P (x, y).606

PathP : On graph G = (V,E), decide whether (∃x ∈ V)(∃y ∈ V)[TCE(x, y) ∧ P (x, y)].607

ListPathP : On graph G = (V,E), for all x ∈ V , decide whether (∃y ∈ V)[TCE(x, y) ∧608

P (x, y)].609

CutPathP : On graph G = (V,E) with cut (S, T) where edges only direct from S to T , decide610

whether (∃x ∈ S)(∃y ∈ T)[TCE(x, y) ∧ P (x, y)].611

PathFO3 : class of PathP problems such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z),612

where ψ is a quantifier-free logical formula.613

ListPathFO3 : class of ListPathP problems such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z),614

where ψ is a quantifier-free logical formula.615

B Problem examples616

We give a list of problems that can be considered as instances of LWSPC or PathP .617

Trip Planning (LWSP version of Airplane Refueling)618

On a DAG where vertices represent cities and edges are roads, we wish to find a path for619

a vehicle, along which we wish to find a sequence of cities where the vehicle can rest and add620

fuel so that the cost is minimized. The cost of traveling between cities x and y is defined by621

cost cx,y. cx,y can be defined in multiple ways, e.g. cx,y is cost(y) if dist(x, y) ≤M and ∞622

otherwise. dist(x, y) is the distance between x, y that can be computed by the positions of623

x, y. M is the maximal distance the vehicle can travel without resting. cost(y) is the cost624

for resting at position y.625

Longest Subset Chain on graphs (LWSP version of Longest Subset Chain)626

On a DAG where each vertex corresponds to a set, we want to find a longest chain in a627

path of the graph such that each set is a subset of its successor. Here cx,y is −1 if Sx is a628

subset of Sy, and ∞ otherwise.629

Multi-currency Coin Change (LWSP version of Coin Change)630

Consider there are two different currencies, so there are two sets of coins. We need to631

find a way to get value V1 for currency #1 and value V2 for currency #2, so that the total632

weight of coins is minimized. Each pair of values v1 ∈ {0, . . . , V1} and v2 ∈ {0, . . . , V2} can633

be considered as a vertex. We connect vertex (v1, v2) to (v′1, v′2) iff v′1 = v1 + 1 or v′2 = v′2 + 1.634

The whole graph is a grid, and we wish to find a subsequence of a path from (0, 0) to635

(V1, V2) so that the cost is minimized. The cost is defined by C(v1,v2),(v′
1,v2) = w1,v′

1−v1 and636

C(v1,v2),(v1,v′
2) = w2,v′

2−v2 , where wi,j is the weight of a coin of value j from currency #i.637

Pretty Printing with alternative expressions (LWSP version of Pretty Printing)638

The Pretty Printing problem is to break a paragraph into lines, so that each line have639

roughly the same length. If a line is too long or too short, then there is some cost depending640

on the line length. The goal of the problem is to minimize the cost.641

For some text, it is hard to print prettily. For example, if there are long formulas in the642

text, then sometimes its line gets too wide, but if we move the formula into the next line,643

the original line has too few words. One solution for this issue is to use alternate wording for644

J. Gao 15:17

the sentence, to rephrase a part of a sentence to its synonym. These sentences have different645

lengths, and formulas in some of them will be displayed better than others. These different646

ways can be considered as different paths in a graph, and we wish to find one sentence that647

has the minimal Pretty Printing cost.648

A PathP instance649

Say we have a set of words, and we want to find a word chain (a chain of words so that650

the last letter of the previous word is the same as the first letter of the next word) so that the651

first word and the last word satisfy some properties, e.g. they do not have similar meanings,652

they have the same length, they don’t have the same letters on the same positions, etc. Each653

word corresponds to a vertex in the graph. For words that can be consecutive in a word654

chain, we add an edge to the words.655

C Weighted version of Lemma 7656

I Lemma 9. If in a vertex-weighted DAG G = (V,E) of m edges, every vertex has either657

ancestors of total weight at most n or descendants of total weight at most n, then there are658

at most (m · n2) weighted-pairs of vertices (s, t) such that s can reach t.659

In a vertex-weighted DAG G = (V,E) of m edges, let S, T be two disjoint sets of vertices660

where edges between S and T only direct from S to T . If every vertex has either ancestors in661

S of total weight at most n or descendants in T of total weight at most n, then there are at662

most (m · n2) weighted-pairs of vertices s ∈ S and t ∈ T such that s can reach t.663

Let w(v) be the weight of vertex v. The number of weighted-pairs is defined to be the664

sum of w(u) · w(v) for all pairs of reachable vertices u v.665

Proof. We define the ancestors of an edge e ∈ E to be the ancestors (or ancestors in S) of666

its incoming vertex, and its descendants to be the descendants (or descendants in T) of its667

outgoing vertex. Let the total weight of its ancestors and descendants be denoted by anc(e)668

and des(e) respectively.669

For each edge e = (v1, v2), it belongs to exactly one of the following three types:670

Type A: If anc(e) ≤ n1 but des(e) > n2, then let count(e) be anc(e) · w(v2).671

Type B: If des(e) ≤ n2 but anc(e) > n1, then let count(e) be w(v1) · des(e).672

Type C: If anc(e) ≤ n1 and des(e) ≤ n2, then let count(e) be anc(e) · des(e).673 ∑
e∈E count(e) ≤ m · n1 · n2 because the count value on each edge is bounded by n1 · n2. We674

will prove that this value upper bounds the number of weighted-pairs of reachable vertices.675

For each pair of reachable vertices (u, v) (or (u, v) s.t.u ∈ S and v ∈ T), let (e1, . . . , ep)676

be the path from u to v. Along the path, anc does not decrease, and dec does not increase.677

A path belongs to exactly one of the following three types:678

Type a: Along the path anc(e1) ≤ anc(e2) ≤ · · · ≤ anc(ep) ≤ n1, and des(e1) ≥ des(e2) ≥679

· · · ≥ des(ep) > n2. That is, all the edges are Type A.680

Type b: Along the path des(ep) ≤ des(ep−1) ≤ · · · ≤ des(e1) ≤ n2, and anc(ep) ≥681

anc(ep−1) ≥ · · · ≥ anc(e1) > n1. That is, all the edges are Type B.682

Type c: Along the path there is some edge ei so that anc(ei) ≤ n1 and des(ei) ≤ n2. That683

is, it has at least one Type C edge.684

There will not be other cases, for otherwise if a Type A edge directly connects to a Type B685

edge without a Type C edge in the middle, then the vertex joining these two edges would686

have more than n1 ancestors and more than n2 descendants.687

IPEC 2019

15:18 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

If a path from u to v is Type a, then its last edge ep is Type A. If it is Type b, then its688

first edge e1 is Type B. If it is Type c, then there is some edge ei in the path that is Type C.689

This means:690

1. For each Type A edge e, count(e) is at least the weight product w(u) ·w(v) of all Type a691

pairs (u, v) whose path has e as its last edge.692

2. For each Type B edge e, count(e) is at least the weight product w(u) ·w(v) of all Type b693

pairs (u, v) whose path has e as its first edge.694

3. For each Type C edge e, count(e) is at least the weight product w(u) ·w(v) of all Type c695

pairs (u, v) whose path contains e.696

Therefore the weight product of the endpoints of each path is counted at least once by the697

count(e) of some edge e. J698

D CutPathP for bounded-treewidth DAGs699

We prove the first part of Theorem 1 on DAGs whose underlying undirected graphs have700

constant treewidth. The algorithm PathP for constant treewidth graphs is the same as the701

one for multitrees. In this section we will show the reduction algorithm CutPathP for constant702

treewidth graphs on a cut (S, T).703

Let T be the decomposition tree of a graph G. Recall that by the definition of tree704

decomposition, each node z of the tree corresponds to a set B(z) which is a subset of vertices705

of G. Because the treewidth is constant, each set B(z) has a constant number of vertices.706

Every vertex of G appears in at least one set of a tree node. Also, for every edge of G, there707

is at least one tree node whose set contains both its endpoints. And if a vertex v appears708

both in B(z1) and B(z2), then along the path from z1 to z2, v must appear in all the sets709

of the tree nodes. Here we consider the decomposition tree as rooted, where all edges are710

directed from the root to leaves.711

We use a similar reduction idea as Section 2.3. In the decomposition tree, each time we712

find a node z to split the tree into two connected components. We first deal with all the713

paths that go through the vertices in B(z). Any other path in the graph must be completely714

contained in one of the connected components we have created. In the end, all connected715

components are so small that we can go through all pairs of reachable vertices by exhaustive716

search. The algorithm is defined in Algorithm 4.717

The following claim uses a 1/3− 2/3 trick on trees:718

B Claim 10. In a vertex-weighted rooted tree of total weight n, we can find a connected719

subgraph of weighted size between (1/3)n and (2/3)n in O(n) time.720

Proof. For each node z in the tree, we will compute the weighted size of the subtree rooted721

at z, denoted by f(z). We compute f(z) from the leaves up to the root, by a reversed722

topological order. If z is a leaf then let size(z)← w(z) where w(z) is the weight of z.723

On each parent node p, we initially let f(p)← w(p), and then for each child ci of p, add724

the value f(ci) to f(ci). If before we add the f(ci) of certain child ci to f(p), f(p) < (1/3)n,725

and after we add f(ci) to f(p), f(p) ≥ (1/3)n, then there are two cases:726

If f(p) ≤ (2/3)n, then the subgraph formed by p and its subtrees c1, . . . , ci is the connected727

subgraph we want.728

If f(p) > (2/3)n, then it must be f(ci) ≥ (2/3)n− (1/3)n = (1/3)n. That is, the subtree729

rooted at ci has weighted size between (1/3)n and (2/3)n. But then we should have already730

returned the subtree rooted ci instead. So this case would not happen.731

J. Gao 15:19

Algorithm 4: CutPathP (S, T) on constant treewidth DAG
1 Compute T , the tree decomposition of the underlying undirected graph.
2 for each z in T do
3 Let size(z) be the number of nodes of T .
4 while there exists a tree node z in T so that there is a connected subgraph of T

rooted at z with weighted size between (1/3)size(z) and (2/3)size(z) do
// z can be found in time O(size(z)) by Claim 10.

5 for each v ∈ B(z) do
// Deal with all paths going through v.

6 Let A be the set of ancestors of v in S.
7 Let B be the set of descendants of v in T .
8 Add v to A if v ∈ S, otherwise add v to B.
9 if both A and B have at least Mα vertices then

10 Run SelectionP on (A,B). If it returns true then return true.
11 else
12 Exhaustively check P on all pairs of a ∈ A and b ∈ B. If P is true on any

(a, b) then return true.
13 Remove v from the graph, and from the sets of all the tree nodes.
14 Remove z from T .
15 for each tree node z′ who was originally in the same connected component with z

do
16 Update size(z′) to be the new size of the connected component z′ is in.

17 for each edge (s, t) crossing the cut(S, T), do
18 Let A be the set of ancestors of s (including s) in S.
19 Let B be the set of descendants of t (including t) in T .
20 On all pairs of vertices (a, b) where a ∈ A, b ∈ B, check property P . If P is true

on any pair of (a, b) then return true.

After we have added the sizes of all the children of p to f(p), we have finished computing732

f(p). If f(p) is still less than 1/3, we will continue to let the next vertex by the reversed733

topological order be the current parent. J734

Next we will analyze the reduction algorithm. First, if a the treewidth of a graph is735

constant, then the corresponding decomposition tree can be computed in linear time [17].736

Unlike multitrees, here the calls to SelectionP are not non-overlapping rectangles: different737

v from the same B(z) may share the same ancestors or descendants. However, each time738

after removing a z, the connected components of the decomposition tree correspond to non-739

overlapping rectangles in the reachability matrix, and will not overlap with the rectangles740

corresponding to the ancestors and descendants for any v ∈ B(z). Thus, the overlapping741

only happens when dealing with the ancestors and descendants of different v from the same742

B(z), and these SelectionP rectangles will not overlap with other SelectionP rectangles after743

z is removed. Because in each non-overlapping rectangle corresponding to a connected744

component, we only computed the SelectionP for |B(z)| times, which is a constant. So by745

Claim 8, the total time spent on all the calls to SelectionP is still O(M2/t(Mα)).746

When we remove all vertices v ∈ B(z), the graph vertices from sets of different connected747

IPEC 2019

15:20 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

components of the decomposition tree are not reachable to each other. Because any path748

from one connected component to another must go through some vertex in B(z).749

Unlike multitree graphs, this time some vertex v in B(z) may have fewer than Mα
750

ancestors or descendants. If so, then we do exhaustive search on the sets of v’s ancestors and751

descendants, since calling SelectionP will not save time. Each time we find a v, the connected752

component of the decomposition tree that v belongs to loses at least (1/3)size(v) of its vertices,753

thus each vertex can be the ancestor/descendants of at most O(log3/2M) such v’s. There754

are at most M vertices in the graph, each of which can take part in at most Mα such paths755

going through each such v. So the total time is O(M · log3/2M ·Mα) = O(M1+α · log3/2M).756

Also, because each vertex can be the ancestor/descendants of at most O(log3/2M) such757

v’s, the total time for updating size for all of them is also bounded by O(M · log3/2M).758

In the end, each remaining vertex has O(Mα) ancestors and O(Mα) descendants. The759

total running time for the exhaustive search is O(M ·Mα ·Mα) = O(M1+2α) by Lemma 7.760

The overall running time is O(M2/t(Mα) +M1+α · log3/2M +M1+2α). By choosing α761

and γ to be appropriate small constants, we get subquadratic running time.762

E Correctness of the LWSPC algorithm763

For the correctness proof, we consider the case where there is no x between S and T . The764

case where there is an x is similar.765

Correctness of CutLWSPC .766

The correctness of CutLWSPC follows from the correctness of CutPathP . We claim that767

after running CutLWSPC(S, T, FS), for any vertex t ∈ T , there is FT (t) = mins∈S,s t[FS(s)+768

cs,t]. Because for any pair s ∈ S, t ∈ T , such that s reachable to t, they are either769

processed in a query to StaticLWSC(A,B) where s ∈ A, t ∈ B, or computed separately thus770

FT (t)← min(FT (t), F (s) + cs,t).771

Correctness of LWSPC .772

The LWSPC algorithm has the following facts:773

1. Whenever a process LWSPC on domain V1 ⊆ V returns, the values of F on V1 are fixed774

and will not be changed henceforth.775

2. Whenever there is an edge from u to v, then the value of F on u is always fixed before the776

value on v. So the final values of function F on all vertices are fixed by topological order.777

3. Each time we call LWSPC on a subset of vertices V1 ⊆ V , the F values on all ancestors778

of any vertex in V1 that are not in V1 have been fixed by some previous calls to LWSPC .779

Assume that when we call LWSPC on subgraph with cut (S, T), initially there is780

F0(v) =
{

minu∈R(v)\(S∪T),u v[F (u) + cu,v], if v /∈ V0

min(0,minu∈R(v)\(S∪T),u v[F (u) + cu,v]), if v ∈ V0
(1)781

where R(v) is the set of vertices that can reach v. Then, if LWSPC(S, F0) is correct, after782

running LWSPC(S, F0), for any s ∈ S\V0, there is F (s) = minu∈R(s)\T,u s[F (u) + cu,s]. And783

after running CutLWSPC(S, T, F), we have FT (t) = mins∈S,s t[F (s)+cs,t]. Then after taking784

F0(t) = min(F0(t), FT (t)) on all t, for any t ∈ T\V0, we get F0(t) = minu∈R(t)\T,u t[F (u) +785

cu,t]. Similarly for any t ∈ T ∩V0, F0(t) gets the the minimum of this value and 0. Therefore,786

on each call of LWSPC(V1, F0) on a subset V1 ⊂ V with initial values F0, F0 keeps the787

invariant in formula (1).788

J. Gao 15:21

F From listing problems to decision problems789

In this section we prove the second part of Theorem 1, that ListPathP is reducible to PathP .790

Consider a star graph, which is a graph with its vertex set partitioned in X,Y and791

another single vertex c. Every x ∈ X is connected to c, and c is connected to every y ∈ Y .792

Let problem FindXP be the following problem: on a star graph, find an x ∈ X satisfying793

(∃y ∈ Y)P (x, y). We will prove that ListPathP is reducible to FindXP and FindXP is reducible794

to PathP .795

I Lemma 11. Let t(M) ≥ 2Ω(
√

logM). (ListPathP ,M2/(t(polyM))) ≤EC (FindXP ,M2/t(M)))796

Proof. We use a grouping reduction technique similar as the trick in [49] and [8].797

We modify the algorithm for PathP in Section 2 to get the algorithm for ListPathP . That798

is, we divide the graph into two subgraphs and call ListPathP recursively in a similar wa as799

PathP . PathP needs to call SelectionP as queries, and in the counterpart of ListPathP we will800

call FindXP as queries.801

Whenever we need to call SelectionP (X,Y), we partition X and Y into groups of weighted802

size at most
√
M . Thus there are O((|X|/

√
M)× (|Y |/

√
M)) groups. For each pair of group803

Xi, Yj , we construct a star graph and call FindXP on it. The star graph is constructed as804

follows: Connect every x ∈ Xi to a dummy vertex c, and connect c to every y ∈ Yj . Thus if805

there exist some satisfying x in Xi, FindXP will find a satisfying x.806

Every time a satisfying vertex x in Xi is found by FindXP , we mark it and add it into the807

list of satisfying x, and then call the FindXP on the same star again with x removed from808

the graph. We keep calling FindXP on this graph, ignoring all marked vertices, until either809

all elements in Xi are marked and removed, or FindXP cannot find a satisfying x.810

Because there are at most M vertices that can be listed, there are at most M calls to811

FindXP that returns a satisfying x. Each call has instance size
√
M . The running time is812

O(M · (
√
M)2/t(

√
M)). The total time spent on the rest of the algorithm is the same as the813

running time of PathP . J814

I Lemma 12. Let t(M) ≥ 2Ω(
√

logM). (FindXP ,M2/(t(polyM))) ≤EC (PathP ,M2/t(M)))815

Proof. First, we pick an arbitrary element x1 ∈ X, and construct a graph by letting x1816

connect to all y in Y . Then we call PathP on this graph. If it returns yes, then we return x1.817

Otherwise, on the star graph we will replace the center vertex c by x1, remove the original818

x1, and call PathP on this graph. After each call to PathP , if it returns yes, we divide X in819

two halves and call PathP again. Using binary search and shrinking the size of X by half820

each time, we will finally find a satisfying x. J821

Lemmas 11 and 12 imply the reduction (ListPathP ,M2/(t(polyM))) ≤EC (PathP ,M2/t(M)))822

for t(M) ≥ 2Ω(
√

logM).823

G From parallel problems to sequential problems824

We prove the third part of Theorem 1, the other direction of the reduction. The reduction825

from PathP to ListPathP is straightforward.826

To reduce from SelectionP to PathP , we can construct a graph with dummy vertex c in827

the middle, such that each x in set X is connected to c, and c is connected to every y in828

set Y . If P is expressible by first-order logic, then we will let c act like one of the y’s when829

computing R(x, c), and act like of the x’s when computing predicates on P (c, y). Let x1 be an830

IPEC 2019

15:22 On the Fine-grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

arbitrary element in X, and y1 be an arbitrary element in Y . We create c by merging x1 and831

y1 into a single element. c has all the relations x1 and y1 have. Thus, on any x ∈ X,x 6= x1,832

the value of P (x, c) is the same as P (x, y1). Symmetrically on any y ∈ Y, y 6= y1, the value833

of P (c, y) is the same as P (x1, y). Therefore, there exists x, y such that P (x, y) is true iff834

SelectionP on this graph returns true.835

In general, if we are allowed to define another property P ′ such that P ′(x, y)← (P (x, y)∧836

(x 6= c) ∧ (y 6= c)), we have a reduction from SelectionP to PathP ′ .837

H Reachability Oracle838

This section presents a proof of Theorem 5. A reachability oracle on a graph takes in a839

pair of vertices u, v in the graph, and answers whether v is reachable from u. A naive840

approach is to use O(n2) space to store the reachability of all pairs of vertices. By adapting841

the PathP algorithm on multitrees, we get sublinear time reachability oracles for multitrees842

using subquadratic space and subquadratic preprocessing time. If the graph is a multitree of843

strongly connected components, we can first treat each strongly connected component as a844

single vertex, whose weighted size is the total weighted size of all vertices in the component.845

The reachability oracle for multitrees can be adapted directly from the PathP algorithm.846

In the recursion tree of calling PathP , we take down the final subproblem that each vertex847

belongs to, and when querying a pair of vertex, we find the PathP instance corresponding to848

the least common ancestor of the two final subproblems corresponding to these vertices, and849

consider the CutPathP process called by this PathP instance.850

Next we modify the CutPathP algorithm. Among all pivot vertices, we call the ones851

who have no other pivot vertices as descendants “sink pivot vertices”. After computing the852

number of ancestors and descendants for all vertices, we can decide if a vertex is a sink in853

time linear to the degree of the vertex.854

We create another graph G′. Similar to CutPathP , we keep finding pivot vertices who855

have at least Mα ancestors and Mα descendants in the remaining graph, and then remove856

them. Whenever finding a pivot vertex v, we create edges from all its ancestors to v, and857

from v to all its descendants in G′.858

Thus, when querying a pair of vertices a, b, if a can reach b, there are three cases:859

Case 1: b is a pivot vertex. Then there is an edge from a to b in G′.860

Case 2: The path from a to b goes through at least a pivot vertex. In this case, it must861

go through a sink pivot vertex. We decide if there is a sink pivot vertex v adjacent to862

a in G′ who is also adjacent to b. Each vertex can be an ancestors of at most M/Mα
863

sink pivot vertices, because each sink pivot vertex has more than Mα descendants, and864

different sink pivot vertices have disjoint set of descendants. So this checking can be done865

in time M/Mα.866

Case 3: The path from a to b does not go through any pivot vertex. Then we can do867

a DFS starting from a that traverses through at most Mα of a’s descendants in the868

remaining graph G to find b. The time taken is O(Mα).869

Thus, the query time is O(M/Mα +Mα), which is sublinear to M .870

If the graph is a multitree, not a multitree of strongly connected components, then every871

vertex has unit weighted size. In this case, the modified CutPathP process runs in time872

O(m2/mα+m2−α+m1+2α), because now we do not use SelectionP thus the function t(m) is873

O(m), and there are no large-size vertices thus we can pick γ = 0. If we choose α = 1/3, then874

the running time is O(m5/3). The modified PathP algorithm has running time satisfying the875

J. Gao 15:23

recursion T (m) = 2T (m/2) + O(m5/3), which is O(m5/3). So the preprocessing time and876

space is O(m5/3), and the query time is O(m2/3).877

IPEC 2019
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

