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Abstract

We reprove the results on the hardness of approximating hypergraph coloring using
a different technique based on bounds on the size of extremal t-agreeing families of [q]n.
Specifically, using theorems of Frankl-Tokushige [FT99], Ahlswede-Khachatrian [AK98] and
Frankl [Fra76] on the size of such families, we give simple and unified proofs of quasi NP-
hardness of the following problems:

• coloring a 3 colorable 4-uniform hypergraph with (log n)δ many colors

• coloring a 3 colorable 3-uniform hypergraph with Õ(
√

log log n) many colors

• coloring a 2 colorable 6-uniform hypergraph with (log n)δ many colors

• coloring a 2 colorable 4-uniform hypergraph with Õ(
√

log log n) many colors

where n is the number of vertices of the hypergraph and δ > 0 is a universal constant.

1 Introduction

We study the fundamental problem of coloring hypergraphs with minimum number of colors.
A k-uniform hypergraph H(V,E) consists of a collection of vertices V and a set of hyperedges
E ⊆

(
V
k

)
.

A coloring χ : V → [c] is called a proper coloring ofH if no hyperedge e ∈ E is monochromatic
with respect to the coloring χ. The chromatic number of a hypergraph is the minimum number
of colors needed to properly color it.

In this paper we study the problem of approximating the chromatic number of a given
hypergraph. More specifically, we study the following problem: Given a c-colorable k-uniform
hypergraph, find a proper D-coloring of it in polynomial time for a given D ≥ c. There
has been rich history of studying the computational complexity of finding or approximating
the chromatic number of graphs as well as hypergraphs. It is known that unless P = NP,
approximating the chromatic number of an n vertex graph to within a factor of n1−ε is hard
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Uniformity k Colors c Hardness D

3 3 Ω((log log n)1/9) [Kho02b]

3 3 2
log log n

log log log n [GHH+14]

3 2 Ω((log log n)1/9) [DRS02] *no independent set guarantee

3 3 Ω((log log n)1/2) [this paper]

4 2 Ω( log logn
log log logn) [Hol02, GHS02]

4 q ≥ 7 (log n)Ω(q) [Kho02a]

4 2 (log n)Ω(1) [Sak14]

4 4 22
√

log log n
[GHH+14]

4 4 2(logn)Ω(1)
[Var15]

4 2 (log n)Ω(1) [Bha18] *no independent set guarantee

4 2 Ω((log n log n)1/2) [this paper]

4 3 (log n)Ω(1) [this paper]

6 2 (log n)Ω(1) [DG15]

6 2 (log n)Ω(1) [this paper]

8 2 22
√

log log n
[GHH+14]

8 2 2(logn)Ω(1)
[Var15]

8 2 2(logn)1/10−o(1)
[Hua15]

12 2 2(logn)Ω(1)
[KS14]

Figure 1: Comparison of the known results and our results on the hardness of hypergraph
coloring.

for all ε > 0 [FK98, Zuc06]. The best approximation algorithms currently known for chromatic

number give an approximation factor guarantee of O
(
n(log logn)2

(logn)3

)
[Hal93].

Given these results, a lot of attention has been devoted to understanding the complexity of
finding a proper coloring given the guarantee that the hypergraph has very small, even constant,
chromatic number. In fact, it is NP-hard to decide if a given hypergraph is 2-colorable or not,
unlike the graph case where it is easy to decide if the graph is bipartite or not in polynomial
time. The best polynomial time algorithms currently known require nΩ(1) colors to color a
2-colorable hypergraph [KNS01, CF96, AKMH96, KT17]. Since finding a proper D-coloring is
at least as hard as finding the independent set of size n/D, a lot of attention went into studying
the following (computationally easier) problem:

Definition 1.1 (HypColn(k, c,D)). Given a k-uniform hypergraph H(V,E) on n vertices
which is c-colorable, find an independent set of size n

D .

The study of the complexity of approximate hypergraph coloring was initiated by Guruswami
et al. [GHS02]. Holmerin [Hol02] and Guruswami et al. [GHS02] showed that
HypColn(4, 2, log logn

log log logn) is quasi NP-hard1. Khot [Kho02b, Kho02a] showed quasi NP-hardness

of HypColn(4, q, (log n)cq) for some c > 0 and all q ≥ 7 and HypColn(3, 3, O(log log n)1/9).
Dinur-Guruswami [DG15] showed HypColn(6, 2, (log n)c) is quasi NP-hard. Saket [Sak14] im-
proved the state for 2-colorable 4-uniform hypergraph by showing HypColn(4, 2, (log n)c) is
quasi NP-hard for some c > 0.

1Recall that if a problem is quasi NP-hard then it cannot be solved in quasipolynomial time 2poly log n unless
all problems in NP can be solved in quasipolynomial time.
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Guruswami et al. [GHH+14] broke the logarithmic barrier for the first time and showed quasi

NP-hardness of HypColn(8, 2, 22
√

log log n
), HypColn(4, 4, 22

√
log log n

) and HypColn(3, 3, 2
log log n

log log log n )
using the short code. Finally, Khot and Saket [KS14] improved the factor to almost polynomial

by showing quasi NP-hardness of HypColn(12, 2, 2(logn)Ω(1)
). Building on the work of Khot and

Saket [KS14], Varma [Var15] showed quasi NP-hardness of HypColn(8, 2, 2(logn)Ω(1)
) as well as

HypColn(4, 4, 2(logn)Ω(1)
). In the 2-colorable case, Huang [Hua15] independently showed quasi

NP-hardness of HypColn(8, 2, 2(logn)1/20−o(1)
).

In terms of approximating the chromatic number for 2 colorable hypergraphs, Dinuret
al. [DRS02] showed that it is quasi NP-hard to color 2-colorable 3-uniform hypergraph by
(log log n)1/9. This result is weaker than showing hardness for HypColn(3, 2, (log log n)1/9).
In fact, it is still open to determine the complexity of HypColn(3, 2, c) for any c = ω(1).
Very recently, the second author [Bha18] showed NP-hardness of coloring 2-colorable 4-uniform
hypergraph with (log n)c colors for some c > 0.

1.1 Our results

We give unified proofs of many of the known results on the hardness of approximate hypergraph
coloring. Our analysis makes a novel use of the maximum size of t-agreeing families.

We now state the theorems that we (re)prove. See Section 1.3 for the comparison with the
previous works on hypergraph coloring.

Our first result gives an alternate proof of the result of Khot [Kho02a] for q-colorable 4-
uniform hypergraph for smaller values of q.

Theorem 1.2. There exists a constant δ > 0 such that HypColn(4, 3, logδ n) is quasi NP-hard.

For the 3-uniform hypergraph, Khot [Kho02b] and Dinur et al. [DRS02] start with a multi-
layered Label Cover instance, which was one of the highlights of their proofs. In our proof,
we also start with this multi-layered Label Cover instance, but simplify2 the inner verification
step. Our proof is almost along the lines of proof of Dinur et al. [DRS02], but we get a stronger
independent set guarantee recovering (slightly improving) the result of Khot [Kho02b].

Theorem 1.3. HypColn(3, 3, Õ(
√

log log n)) is quasi NP-hard.

We note that the above theorem gives a weaker bound than the result of [GHH+14],

HypColn(3, 3, 2
log log n

log log log n ), which is the best known result for 3-colorable 3-uniform hypergraph.

Both the previous results have in completeness case a hypergraph which is 3-colorable. Our
next theorem shows hardness of finding independent sets for 2-colorable hypergraphs, but with
slightly larger uniformity. This gives another proof of [DG15].

Theorem 1.4. There exists a constant δ > 0 such that HypColn(6, 2, logδ n) is quasi NP-hard.

We also extend our techniques to prove the following hardness for 2-colorable 4-uniform
hypergraph which, up to a quadratic factor, recovers the result of [GHS02] and [Hol02].

Theorem 1.5. HypColn(4, 2, Õ(
√

log log n)) is quasi NP-hard.

2modulo the theorem on t-agreeing family, which we use as a black box.
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In this case too, Saket [Sak14] gets a better guarantee.

In addition to giving alternate proofs of the known results, our proofs give rise to interesting
questions about t-agreeing families. If solved in a positive way could lead to improved inap-
proximability of hypergraph coloring for lower uniformity hypergraphs. See Section 6 for more
details.

1.2 Proof overview

For the proof overview, we are going to think of a Label Cover instance as a regular graph
G(V,E, [L]) on V with the alphabet [L]. The edges of the graph are labeled with d-to-d
constraints φe for every e ∈ E, for some 1 ≤ d ≤ L. The instance is always regular which means
that there exists δ > 0 such that any induced graph on α|V | vertices has at least Ω(α) fraction
of the constraints, for α ≥ 1/Lδ.

We now give a proof overview of quasi-NPhardness of HypColn(4, 3, logδ n). The starting
point is the gap Label Cover problem where distinguishing between the cases when the Label
Cover instance is satisfiable vs. no assignment can satisfy more than L−ε fraction of the edges
is NP-hard, for some constant ε > 0. Given an instance G(V,E, L) of gap Label Cover, we
reduce it to a 4-uniform hypergraph as follows. We replace every vertex v with a cloud C[v] of
size 3L, where the vertex in a cloud is referred by a pair (v, a) for a ∈ [3]L. Thus, the number
of vertices in the hypergraph is |V | · 3L. Now for every edge e(u, v) in G we put a hyperedge
between (u, au), (u, bu) and (v, av), (v, bv) iff for every label i and j such that (i, j) satisfies the
constraint φe, {au(i), bu(i), av(j), bv(j)} are not all equal.

The completeness case is easy: Given a labeling ` : V → [L] to G satisfying all the edges, we
color (v, a) with the color a`(v). It is easy to see that any hyperedge {(u, au), (u, bu), (v, av), (v, bv)}
will get at least two distinct colors by construction.

Let us consider the more interesting soundness case. Suppose the Label Cover instance
is only 1/Lε satisfiable. Suppose the hypergraph has an independent set I of fractional size
α ∈ [0, 1]. Then by simple averaging argument, there exist at least α/2 fraction of the vertices
v ∈ V such that |I∩C[v]| ≥ α

2 ·3
L Let X ⊆ V be the set of such vertices. For every v ∈ X, using

a theorem on t-agreeing families (Theorem 3.5), there must exist av, bv ∈ I ∩ C[v] such that
they agree on at most t := O(log(1/α)) coordinates. Denote Lv be the set of such coordinates.
Now, for an edge (u, v) such that both u, v ∈ X, it must be the case that there exist i ∈ Lu
and j ∈ Lv such that (i, j) satisfies π(u,v). In fact, if this was not the case then the t-agreeing
pairs from the clouds C[v] and C[u] (which was used to define the sets Lu and Lv) form a valid
hyperedge! Thus, for every vertex v ∈ X, we have a small list of at most t labels. If we assign
a random label from Lv to v for all v ∈ X then any edge (u, v), such that both u, v ∈ X, is
satisfied with probability at least 1/t2. By the regularity of the Label Cover instance, there
are Ω(α) fraction of edges in X and hence the labeling satisfies at least Ω(α/t2) fraction of the
total edges in G in expectation. Setting α ≈ L−ε/3 gives a contradiction. Thus, if we set L such
that 3L � |V |, there is an inverse logarithmic dependency between the size of the hypergraph
(≈ 3L) and the lower bound on the fractional size of the independent set Ω(1/Lε/3) which
proves Theorem 1.2.

The reduction and the analysis of 6-uniform hypergraph construction (Theorem 1.4) is ex-
actly the same as before. Instead of 2-wise t-agreeing family of [3]L, we use 3-wise t-agreeing
family of {0, 1}L (Theorem 3.6).
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The reduction and analysis in the proofs of Theorems 1.3 and 1.5 are similar to each other
where the starting point is the layered Label Cover instance.

1.3 Comparison with previous works

Previous reductions [Kho02b, Kho02a, GHH+14, KS14] showing independent set guarantee
require smoothness property of the Label Cover instance (See Section 3.1 for the definition of
Label Cover). The smoothness property roughly says that for any small list of labels to u ∈ U ,
these labels are projected to different labels, with high probability, if we choose a random
constraint attached to u. The reason they need this property is rather technical and there is
no intuitive reason for it. Saket’s work [Sak14] uses following structural property of the Label
Cover instance: There is a universal constant c0 > 0, such that for any u ∈ U and S ⊆ [L]

Pr
v∼N(u)

[|φu→v(S)| < |S|c0 ] ≤ |S|−c0 .

Therefore, all the previous proofs of Theorem 1.2 and 1.3 exploited the special structure of the
Label Cover instance constructed from the PCP Theorem [AS98, FGL+96, ALM+98] and the
parallel repetition theorem of Raz [Raz98].

In our proofs of Theorem 1.2, and 1.4, we do not need any structure on the projection
constraints of the Label Cover. In fact, for Theorem 1.2 and 1.4, we can start with a gap
instance of 2-CSP over alphabet [L] and arbitrary constraints with completeness 1 and soundness
1
Lε for some ε > 0.3 In the current exposition though, we start with the usual gap Label Cover
instance to keep things simple. For our proofs of Theorem 1.3 and Theorem 1.5 though, we
need the smoothness property of the layered Label Cover instance.

Previous works including [DRS02] and [Bha18] which use agreement based decoding (like
ours), only show hardness for approximating chromatic number. In fact, their hypergraphs
always contain an independent set of size around half in both the completeness and soundness
cases. Our reductions and analyses are very similar to [DRS02] and [Bha18], but we get
independent set guarantee by using theorems on the extremal t-agreeing families.

We also like to point out that although our proofs are modular and require weaker conditions
on the Label Cover instance (in two cases), the earlier reductions which use Fourier analysis
often prove a stronger statement. More specifically, in the soundness case, we show that the
maximum sized independent set is upper bounded by αn, whereas the previous reductions
usually prove a robust statement of the form - every subset of vertices of size αn contains at
least f(α) fraction of edges. We make no attempt to confirm the stronger soundness guarantees.
Nonetheless, it would be interesting to know if this holds for our reduction.

2 Organization

We start with preliminaries first, where we define Label Cover and variants of it in Section 3.1.
We then state and prove results on the size of k-wise t-agreeing of [q]n in Section 3.2. In
Section 4, we prove a general Theorem 4.1, where the starting point is the Label Cover instance.
Theorem 1.2 and 1.4 follow as corollaries of Theorem 4.1.

3to get the quasi NP-hardness, we would still need the reduction from 3-SAT of size n to the gap instance of

2-CSP to run in time n(log L)C for some constant C ≥ 0.

5



In Section 5, we prove a general Theorem 5.1, where the starting point is a multi-layered
Label Cover instance. Theorem 1.3 and 1.5 follow as corollaries of Theorem 5.1.

3 Preliminaries

We use [q] to denote the set {1, 2, · · · , q} and for a string x ∈ [q]n, we use x(i) to denote the
element at its ith location. We use A tB to denote a disjoint union of two sets A and B.

3.1 Label Cover

A Label Cover instance is given by a tuple L = (U, V,E, [L], [R],Φ). The variables of the
instance are U t V , with the variables in U taking values in [L] and the variables in V taking
values in [R]. We have a set of edges E ⊆ U × V and for every (x, y) ∈ E, there is a constraint
φx→y ∈ Φ. Moreover, these constraints are projection constraints: this means (slightly abusing
notation), that there is a map φx→y : [L]→ [R] for every (x, y) ∈ E such that, for every i ∈ [L],
φx→y(i) is the unique assignment to y that satisfies φx→y.

We will use φx→y to denote both the projection map as well as the constraint itself, when
there is no ambiguity. For A ⊆ U and B ⊆ V , we define

Φ(A,B) := {φx→y | (x, y) ∈ (A×B) ∩ E}.

For an x ∈ U and A ⊆ V , we define

NA(x) = {y | (x, y) ∈ E and y ∈ A}.

In the case that A = V , we drop the subscript and denote N(x) = NV (x). These notations are
symmetric and by a slight abuse of notation, will also be used when x ∈ V and A ⊂ U .

We have the following theorem as a result of the PCP Theorem [AS98, FGL+96, ALM+98]
and the parallel repetition theorem of Raz [Raz98].

Theorem 3.1. There is a C > 0 such that the following holds: For any parameter b ∈ N,
there exists a reduction from a 3-SAT instance of n variables to a Label Cover instance with at
most nO(b) variables over an alphabet of size at most 2O(b). The Label Cover instance has the
following completeness and soundness conditions:

1. If the 3-SAT instance is satisfiable, then there exists an assignment to the Label Cover
instance that satisfies all the constraints.

2. If the 3-SAT instance is not satisfiable, then every assignment to the Label Cover instance
satisfies at most a 2−Cb fraction of the constraints.

Moreover, the Label Cover instance produced is bi-regular and the reduction runs in time nO(b).

3.1.1 Multi-layered Label Cover

We also have the multilayered Label Cover problem, which will be used as a starting point for
proving Theorems 1.3 and 1.5. An `-layered Label Cover instance is a tuple L = (U ,R, E,Φ)`.
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Here, U = {Ui | i ∈ [`]} where each Ui is a set of variables. The variables in Ui take values in
[Ri] and R = {[Ri] | i ∈ [`]} are the sets of labels. We also have a set of edges E = {Ei,j ⊆
Ui × Uj | 1 ≤ i < j ≤ `} and a set of constraints Φ where for 1 ≤ i < j ≤ `, the constraints in
Φ(Ui, Uj) project from the variables in Ui to the variables in Uj .

In using multi-layered Label Covers, we will require a bit more of structure on them.

Definition 3.2 (Weakly Dense). A multi-layered Label Cover instance L = (U ,R, E,Φ)` is
weakly dense if for any 1 ≤ m ≤ `, any sequence of distinct integers 1 ≤ i1 < · · · · · · im ≤ `,
and any sequence of sets Sj ⊆ Uij such that |Sj | ≥ 2

m |Uij | for all j ∈ [m], there are two sets Sk
and Sk′ such that Φ(Sk, Sk′) ≥ 1

m2 |Φ(Uik , Uik′ )|.

Definition 3.3 (Smoothness). A multi-layered Label Cover instance L = (U ,R, E,Φ)` is T -
smooth if for every 1 ≤ i < j ≤ `, x ∈ Ui and S ⊆ [Ri], it holds that

Pr
y∈NUj

(x)
[|φx→y(S)| < |S|] ≤ |S|

2`

T
.

We have the following theorem which gives us hardness for the smooth weakly dense multi-
layered Label Cover problem.

Theorem 3.4. [DRS02, DGKR05, Kho02b] For any parameters T � ` ≥ 2, r ∈ N, there
exists a reduction from 3-SAT instances of size n to `-layered weakly dense T -smooth Label
Cover instances with layers U1, . . . , U`, and nO((T+`)r) variables over a range of size 2O(`r). The
Label Cover instance has the following completeness and soundness conditions:

1. If the 3-SAT instance is satisfiable, then there exists an assignment to the Label Cover
instance that satisfies all the constraints.

2. If the 3-SAT instance is not satisfiable, then for every 1 ≤ i < j ≤ `, every assignment to
the Label Cover instance satisfies at most 2−Ω(r) fraction of the constraints between layers
Ui and Uj.

Moreover, the reduction runs in nO((T+`)r) time.

3.2 Bounds on t-agreeing Families

For an alphabet Σ and strings a1, . . . , ak ∈ Σn we define the agreement ag(a1, . . . , ak) to be the
set of coordinates where all k strings agree, i.e.,

ag(a1, . . . , ak) = {i ∈ [n] | a1(i) = a2(i) = . . . = ak(i)}.

If | ag(a1, . . . , ak)| ≥ t, we say that a1, . . . , ak are t-agreeing. We say that a family F ⊆ Σn

is k-wise t-agreeing if all subsets of k strings a1, . . . , ak ∈ F are t-agreeing. For the special case
k = 2 we drop the “k-wise” and simply call the family t-agreeing for brevity.

We have the following bound on the maximal t-agreeing subfamily of [3]n:

Theorem 3.5 ([FT99, AK98]). Let n and t be integers such that n ≥ 3t − 1. Then for every
t-agreeing family F ⊂ [3]n it holds that

|F| ≤ 3n−3t+1
t−1∑
i=0

(
3t− 1

i

)
2i.
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It is easy to check that such a family F as described above has size at most 3n−t/10 for large
enough t.

For the proofs of Theorems 1.4 and 1.5, we need a similar theorem, but for a family of subsets
of {0, 1}n. Note that here, there are t-agreeing families of {0, 1}n of size at least 2n−1(1− o(1))
for t = o(

√
n) (by taking all strings of Hamming weight ≤ (n−t)/2). However, for the maximum

size of a 3-wise t-agreeing family we have a similar upper bound as Theorem 3.5.

Theorem 3.6. Let n and t be integers such that n ≥ t. Then for every 3-wise t-agreeing
F ⊂ {0, 1}n it holds that

|F|
2n
≤

(√
5− 1

2

)t
.

We say that a family F ⊂ {0, 1}n is 3-wise t-intersecting if for every a, b, c ∈ F it holds that
|{i ∈ [n] | a(i) = b(i) = c(i) = 1}| ≥ t.

Theorem 3.7 ([Fra76]). Let n and t be integers such that n ≥ t. Then for every 3-wise
t-intersecting F ⊂ {0, 1}n it holds that

|F|
2n
≤

(√
5− 1

2

)t
.

Theorem 3.7 essentially follows4 from a beautiful proof of Frankl [Fra76] (see also [Fra18]
where this statement is made explicit), on the size of 3-wise t-intersecting families. The proof
of Theorem 3.6 now follows using a standard shifting argument.

Proof of Theorem 3.6. Let F ⊆ {0, 1}n be any 3-wise t-agreeing family. Iteratively for every

i = 1, 2, · · · , n we do the following shifting of F0
def
= F to get families F1,F2, · · · ,Fn. If x ∈ Fi−1

is such that x(i) = 0 and x⊕ ei /∈ Fi−1
5, then in Fi we replace x with x⊕ ei (and otherwise we

keep x in Fi).
We have following two invariants after every iteration: (1) the size of the family remains

unchanged. (2) the modified family is still a 3-wise t-agreeing family. (1) is obvious. To see
that (2) holds, we assume for contradiction that Fi is no longer a 3-wise t-agreeing family,
whereas Fi−1 is a 3-wise t-agreeing family. This means that there exists a′, b′, c′ ∈ Fi such that
ag(a′, b′, c′) < t. Since in the ith iteration, only the ith location gets affected, it must be the
case that a′(i), b′(i), c′(i) are not all the same. Without loss of generality, assume a′(i) = 0 and
a′ ∈ Fi−1. This means that a′ ⊕ ei ∈ Fi−1. Up to symmetry between b′ and c′ we have two
cases to handle:

Case 1: b′ ∈ Fi−1 and c ∈ Fi−1 such that c(i) = 0 and c′ = c⊕ ei.
In this case, ag(a′, b′, c′) = ag(a′ ⊕ ei, b′, c) < t, regardless of b′(i), contradicting the fact
that Fi−1 is a 3-wise t-agreeing family, as {a′ ⊕ ei, b′, c} ⊆ Fi−1

Case 2: b, c ∈ Fi−1 such that b(i) = c(i) = 0 and b′ = b⊕ ei and c′ = c⊕ ei.
In this case, ag(a′⊕ ei, b, c) = ag(a′, b′, c′) < t. contradicting the fact that Fi−1 is a 3-wise
t-agreeing family, as {a′ ⊕ ei, b, c} ⊆ Fi−1.

4Frankl proves this for t = 3 but the proof can easily be seen to work by a minor modification of Proposition
3 in [Fra76].

5the operation x⊕ ei flips the ith bit of x.
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We keep reiterating the above n-step process until F0 = Fn (by letting F0 ← Fn at the
start). The process must halt, since at each n-step iteration if F0 6= Fn, then we have increased
the total hamming weights of strings in F0 by at least 1. If at the end of the n-step process,
we have F0 = Fn, then this condition means that Fn is a monotone 3-wise t-agreeing family. 6

We now claim that Fn is in fact a 3-wise t-intersecting family. Suppose not, this means
that there are a, b, c ∈ Fn such that S1 = {i ∈ [n] | a(i) = b(i) = c(i) = 1} and |S1| < t. Let
S0 = {i ∈ [n] | a(i) = b(i) = c(i) = 0}. Now, the monotonicity of Fn gives that there exists
a′ ∈ Fn such that a′(i) = a(i) for all i ∈ [n] \ S0 and a′(i) = 1 for all i ∈ S0. We can conclude
that ag(a′, b, c) = |S1| < t, contradicting the fact that Fn is a 3-wise t-agreeing family.

Using Theorem 3.7, we then have

|Fn|
2n
≤

(√
5− 1

2

)t
,

and since |F| = |Fn|, the theorem follows.

3.3 Other combinatorial lemmas

We will use another simple combinatorial lemma:

Lemma 3.8. Let F be a family of multisets of subsets of [n] of size at most t. Suppose for
every S1, . . . , Sd ∈ F , there are distinct i, j ∈ [t] such that Si ∩ Sj 6= ∅, then there exists an
i ∈ [n] such that

|{S ∈ F | i ∈ S}| ≥ 1

t(d− 1)
|F|.

Proof. Let S1, . . . , Sr ∈ F be a maximal pairwise disjoint subfamily of F , and note that r ≤
d − 1. Consider S

def
=
⊔
i∈[r] Si, and for s ∈ S let Fs

def
= {T ∈ F | s ∈ T}. Because S1, . . . , Sr

form a maximal pairwise disjoint family, we have that F = ∪s∈SFs. On the other hand
|S| = tr ≤ t(d− 1). Therefore, there is some s ∈ S such that |Fs| ≥ 1

t(d−1) |F|.

In particular, setting d = 2 in the above lemma, we have the following simple corollary:

Corollary 3.9. Let F be a family of multisets of subsets of [n] of size at most t that is also
intersecting, then there exists an i ∈ [n] such that

|{S ∈ F | i ∈ S}| ≥ 1

t
|F|.

4 Poly-logarithmic hardness with large uniformity

Theorem 4.1. Let k, q, and c be such that for some δ = 1/ polym and all sufficiently large m,
no family of [q]m of size at least δ · qm is k-wise δ−c-agreeing. Then HypColn(2k, q,poly log n)
is quasi NP-hard.

6In fact, after just the first n-step iteration, the family becomes monotone.
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As immediate corollaries, it follows by plugging in Theorem 3.5 that HypCol(4, 3, poly log n)
is quasi NP-hard (Theorem 1.2), and plugging in Theorem 3.6 that HypCol(6, 2, poly log n)
is quasi NP-hard (Theorem 1.4). We note that those Theorems on t-agreeing families in fact
give bounds of the form O(log 1/δ) on the amount of agreement, much better than the poly 1/δ
needed by Theorem 4.1.

We now proceed to prove the theorem and begin by describing the reduction. Consider a
Label Cover instance L = (U, V,E, [R], [L],Φ). We reduce it to a hypergraph H = (V, E) whose
vertices and edges are as follows:

Vertices V: The vertex set is obtained by replacing each variable x ∈ U by a cloud [q]L of
vertices: for a variable x ∈ U , denote

Vx := {(x, a) | a ∈ [q]L}.

The vertex set of H is given by

V =
⋃
x∈U
Vx.

Edges E: For every y ∈ V and x1, x2 ∈ N(y), there is a hyperedge on a set of 2k vertices
{(x1, a1), . . . , (x1, ak), (x2, b1), . . . , (x2, bk)} if they have the property that for every i1, i2 ∈
[L] such that φx1→y(i1) = φx2→y(i2), it holds that∣∣∣∣∣∣

k⋃
j=1

{ aj(i1), bj(i2) }

∣∣∣∣∣∣ ≥ 2.

4.1 Completeness

Lemma 4.2. If there is an assignment to the variables of U tV that satisfies all the constraints
in Φ, then χ(H) ≤ q.

Proof. Let A : U tV → [L]∪ [R] be the assignment that satisfies all the constraints of L. Con-
sider the coloring that colors vertex (x, a) ∈ U×[q]L with the color a(A(x)). Suppose for contra-
diction that this yields a monochromatic hyperedge {(x1, a1), . . . , (x1, ak), (x2, b1), . . . , (x2, bk)}
for some x1, x2 ∈ N(y) and some y ∈ V .

Monochromaticity implies that∣∣∣∪kj=1{aj(A(x1)), bj(A(x2))}
∣∣∣ = 1.

However, since A satisfies both φx1→y and φx2→y, we also have that

φx1→y(A(x1)) = φx2→y(A(x2)) = A(y).

Taken together, these contradict the condition for being an edge.
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4.2 Soundness

Lemma 4.3. If α(H) > 2δ then there exists an assignment to U t V that satisfies at least a
δ1+2c fraction of the constraints Φ (where δ and c are as in Theorem 4.1).

Proof. Let I be an independent set in H of size |I| ≥ 2δ|V|. For every variable x ∈ U , let

Ix
def
= I ∩ Vx. By an averaging argument there exists an X ⊆ U such that:

1. |X| > δ|U |.

2. |Ix| > δ|Vx| for every x ∈ X.

We will henceforth restrict our attention to variables in X.

By the Theorem assumption that all k-wise δ−c-agreeing families of [q]n have size at most
δqn, it follows that for every x ∈ X, there are k vertices (x, ax,1), . . . , (x, ax,k) in Ix such that

| ag(ax,1, . . . , ax,k)| < δ−c
def
= t. Define Lx = ag(ax,1, . . . , ax,k) ⊆ [L].

Another observation is that for y ∈ V ,

φx1→y(Lx1) ∩ φx2→y(Lx2) 6= ∅ for every x1, x2 ∈ NX(y). (1)

Indeed, if this were not the case, one can check that

{(x1, ax1,1), . . . , (x1, ax1,k), (x2, ax2,1), . . . , (x2, ax2,k)}

is a hyperedge, contradicting our assumption that these vertices are from an independent set.

We now define a (randomized) labelling A : U t V → [L]∪ [R] of L. For x ∈ X, pick a label
A(x) from Lx at random.

For y ∈ N(X), define the (multi-)family F(y)
def
= {φx→y(Lx) | x ∈ NX(y)} of subsets of [R].

By (1), F(y) is an intersecting family where every set has size at most t. Therefore, Lemma 3.9
implies that there is a label i ∈ [R] that is present in at least 1

t · |F(y)| sets in F(y). Define
A(y) to be that label. For the remaining variables x ∈ U \X and y ∈ V \N(X), assign a label
arbitrarily.

By the choice of A(y), for every y ∈ N(X), a 1
t fraction of all x ∈ NX(y) have a label i ∈ Lx

such that φx→y(i) = A(y), and each such constraint is satisfied by A with probability at least
1/|Lx| ≥ 1/t. It follows that the expected number of constraints satisfied by the labelling A is
at least 1

t2
|Φ(X,V )|.

By the regularity of the Label Cover instance, |Φ(X,V )| = |X|
|U | |Φ| = δ|Φ|. Thus A satisfies

(in expectation) at least a δ/t2 = δ1+2c fraction of all constraints. This proves the existence of
an assignment that achieves the above guarantee.

Proof of Theorem 1.2. Start with a 3-SAT instance Π on n variables. Setting b = log log n,
Theorem 3.1 gives us a Label Cover instance L = (U, V,E, [L], [R],Φ) with nO(log logn) variables
taking values over an alphabet of size at most 2O(b) = poly log n. Applying the reduction above
gives us a hypergraph H on |V| = qpoly logn ·nO(b) = 2poly logn vertices. In the completeness case,
Lemma 4.2, gives us χ(H) ≤ q. On the other hand, in the soundness case, then no assignment
to L will satisfy more than 2−Cb = (log n)−C fraction of the constraints, where C is the constant
from Theorem 3.1, and so by Lemma 4.3, α(H) ≤ (log n)−C/(1+2c) = 1/ poly log |V|.
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Remark 4.4. In the analysis, we never use the fact that the constraints are projection con-
straints. Thus, one can start with any gap 2-CSP over [L] and carry out the reduction.

5 poly log log-hardness with smaller uniformity

In this section, we prove a following general theorem.

Theorem 5.1. Let k, q, and c be such that for some δ = 1/ polym and all sufficiently large
m, no family of [q]m of size at least δ · qm is k-wise (c log(1/δ))-agreeing. Then HypColn(k+
1, q, Ω̃(

√
log logn)) is quasi NP-hard.

As immediate corollaries, it follows using Theorem 3.5 that HypCol(3, 3, Ω̃(
√

log logn)) is
quasi NP-hard (Theorem 1.3), and using Theorem 3.6 that HypCol(4, 2, Ω̃(

√
log logn)) is quasi

NP-hard (Theorem 1.5).

For this reduction, we start with an `-layered Label Cover L = (U ,R, E,Φ)`, where U =
{Ui | i ∈ [`]} is the set of layers, R = {[Ri] | i ∈ [`]} are the sets of labels, Φ = {Φi→j | i, j ∈ [`]}
are the sets of constraints. We reduce it to a hypergraph H = (V, E) whose vertices and edges
as follows:

Vertices V: The vertex set is obtained by replacing each variable x in each layer Ui by a cloud
[q]Ri of vertices: for a variable x ∈ Ui, denote

Vx := {(x, a) | a ∈ [q]Ri}.

The vertex set is
V =

⋃
Ui∈U

⋃
x∈Ui

Vx.

Edges E: For every 1 ≤ i < j ≤ `, y ∈ Uj and x ∈ NUi(y), k + 1 vertices

{(x, a1), (x, a2), . . . , (x, ak), (y, b)}

forms a hyperedge if for every r ∈ [Ri], it holds that

|{a1(r), a2(r), . . . , ak(r), b(φx→y(r))}| ≥ 2. (2)

In what follows we write U =
⊔`
i=1 Ui to denote the set of all variables of L.

5.1 Completeness

Lemma 5.2. If the there is an assignment to the variables of U that satisfy all the constraints
of Φ, then the χ(H) ≤ q.

Proof. Let A : U →
⋃
i∈[`][Ri] be an assignment that satisfies all the constraints in Φ. A proper

q-coloring is given by coloring a vertex (x, a) ∈ Ui × [q]Ri with the color a(A(x)). Suppose
for contradiction that this is not a proper coloring and that there is a monochromatic edge
{(x, a1), . . . , (x, ak), (y, b)} for some y ∈ Uj and x ∈ NUi(y).

Since A satisfies φx→y, we have φx→y(A(x)) = A(y). However, monochromaticity implies
that

|{a1(A(x)), . . . , a2(A(x)), b(A(y))}| = 1

This contradicts the condition for {(x, a1), . . . , (x, ak), (y, b)} being a hyperegde.
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5.2 Soundness

Lemma 5.3. Let k, q, c and δ be as in Theorem 5.1, t = c log(1/δ), ` = 2/δ2, and suppose that

L is T -smooth for some T ≥ 16(c log 1/δ)2`
δ2 . Then if α(H) ≥ 4δ then there exists 1 ≤ i < j ≤ `

and an assignment to L which satisfies at least a δ4+2qc

poly log δ fraction of Φi→j.

Proof. Let I be an independent set of size |I| ≥ 4δ|V|. For x ∈ U , let us denote Ix := I ∩ Vx.
An averaging argument gives us that there is a U ′ ⊆ U such that:

1. |U ′| ≥ 2δ|U |.

2. |Ix| ≥ 2δ|Vx| for x ∈ U ′.

A similar averaging argument gives us that there is a set W =
{
Ui1 , . . . , Ui|W|

}
of layers with

the following properties:

1. |W| = δ`.

2. For every layer W ∈ W, |W ∩ U ′| ≥ δ|W |.

For j ∈ [|W|], let us denote Zj
def
= Uij ∩ U ′. From the two properties of W we have |Zj | ≥

δ|Uij | = δ2`
|W| |Uij |. By assumption ` = 2/δ2 and thus |Zj | ≥ 2

|W| |Uij |, so from the Weakly Dense
property of L it follows that there are Zk ⊆ Uik and Zk′ ⊆ Uik′ such that

|Φ(Zk, Zk′)| ≥
1

|W|2
· |Φ(Uik , Uik′ )| =

δ2

4
|Φ(Uik , Uik′ )|. (3)

By yet another averaging argument, at least a δ2

8 fraction of x ∈ Zk has at least a δ2

8 fraction of

their constraints in Zk′ . Let us denote those x by X ⊆ Zk and let Y
def
= Zk′ . We will henceforth

restrict our attention to the constraints between X and Y . We have that for every x ∈ X, Ix
there are k vertices, (x, ax,1), . . . , (x, ax,k) such that | ag(ax1 , . . . , ax,k)| ≤ c log 1/δ

def
= t. Let us

denote Lx = ag(ax,1, . . . , ax,k).

We now trim bad constraints from Φ(X,Y ) as follows. For every x ∈ X, we have from the

smoothness property that at most t2`
T ≤

δ2

16 fraction of constraints φx→y where y ∈ Uik′ are such
that |φx→y(Lx)| < |Lx|; Call such constraints bad. We remove all such bad constraints from

Φ(X,Y ). This gives that at least δ2

16 fraction of the y ∈ NY (x) are such that |φx→y(Lx)| =
|Lx|, i.e., no two labels from Lx project on the same label and we retain all such constraints.
We use N ′X(y) to denote only the neighbors with no bad constraints. Thus we are left with
δ2

4 ·
δ2

16 · |Φ(Uik , Uik′ )| constraints in Φ(X,Y ). Let us call these Φgood.

Claim 5.4. For any y ∈ Y , consider any set {x1, . . . , xs} ⊆ N ′X(y) such that for every i, j ∈ [s],
we have φxi→y(Lxi) ∩ φxj→y(Lxj ) = ∅. Then

s ≤ log(1/δ)

δ2qc
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Proof. For every i ∈ [s] and (y, b) ∈ Iy, condition (2) implies that b(·) at locations ∪r∈Lxi
φxi→y(r)

can take at most q|Lxi |− (q− 1)|Lxi | different values. This is because if all values at b(φxi→y(r))
are from [q]\axi,1(r) (which by definition equals [q]\axi,j(r) for all j ∈ [k]), then (xi, axi,1), . . . ,
(xi, axi,k), (y, b) forms a hyperedge in H, which is a contradiction as they all belong to I. Since
φxi→y(Lxi) ∩ φxj→y(Lxj ) = ∅, these restrictions for each i ∈ [s] are disjoint from each other.
Given this, we can upper bound the size of Iy by

|Iy| ≤

(
1−

(
q − 1

q

)t)s
|Vy| ≤ exp(−s exp(−2qt))|Vy| = exp(−sδ2qc)|Vy|.

On the other hand, we have that |Iy| ≥ δ|Vy|. Combining these two facts gives us our desired
bound.

The rest of the proof proceeds exactly as the proof of Lemma 4.3. We now define a (ran-
domized) labelling A : X t Y → [Rik ] ∪ [Rik′ ]. For x ∈ X, pick a label A(x) from Lx at
random.

For y ∈ Y , define the (multi-)family F(y)
def
= {φx→y(Lx) | x ∈ N ′X(y)} of subsets of [Rk′ ].

By Claim 5.4 and Lemma 3.8, it follows that there is a label `y ∈ [Rik′ ] that is present in at
least a 1

t(s−1) |F(y)| sets in F(y). Define A(y) to be that label.

By the choice of A(y), for every y ∈ N ′(X), a 1
t(s−1) fraction of all x ∈ NX(y) have a label

`x ∈ Lx such that φx→y(i) = A(y), and each such constraint is satisfied by A with probability at
least 1/|Lx| ≥ 1/t. It follows that the expected number of constraints satisfied by the labelling
A is at least 1

t2(s−1)
|Φgood|.

As noted earlier, |Φgood| ≥ δ4

64 |Φ(Uik , Uik′ )| and thus A satisfies at least a δ4+2qc

poly log δ fraction of
all constraints between layers Uik and Ui′k .

Proof of Theorem 5.1. Start with a 3-SAT instance Π on n variables. Set ` = c1
log logn

log log logn , T =

(log log n)3 and r = c2 log log log n. Theorem 3.4 gives us an `-layered Label Cover instance L =
(U ,R, E,Φ) on nO((T+`)r) = npoly log logn vertices over alphabets of size 2O(`r) = 2O(c1c2 log logn)

with soundness 2−Ω(r), and we choose the constants c1 and c2 such that the alphabet size is
log n and the soundness is a sufficiently large power of log log n to apply Lemma 5.3 below.

The above reduction gives us a (k+ 1)-uniform hypergraph H on |V| = 3logn ·npoly log logn =
npoly log logn vertices and in particular log log |V| = O(log log n). In the completeness case, we
have χ(H) ≤ q. Setting δ =

√
2/` = (log log n)−1/2+o(1) in the soundness case, we get that

from Lemma 5.3 that α(H) ≤ (log log n)−1/2+o(1) = (log log |V|)−1/2+o(1).

6 Conclusion

We hope that although we do not improve upon previous results, our proof technique will be
useful in improving hypergraph coloring hardness for lower uniformity. The reduction has an
outer verifier (Label Cover instance) and an inner verifier (gadget) as two components. It might
be the case that our inner verifier is stronger than the previous inner verifiers and hence we do
not require extra structural property on the Label Cover instance (for Theorem 1.2, and 1.4).
It will be interesting to understand this trade-off.
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It is interesting that all of our results follow from a general framework and uses t-agreeing
families. This can be thought as a unified proofs for results which otherwise had somewhat
different proofs. We hope that this sheds light on the hardness of hypergraph coloring results
regardless of its uniformity and the completeness guarantee.

We now give a concrete open problem which will improve the proven hardness results in this
paper. Consider the following property of a family F ⊂ [q]n, parameterized by t and T = T (t):
For any subset S ⊆ F such that |S| ≥ 1

T |F| there exists a, b ∈ S such that | ag(a, b)| ≤ t. We

say that such a family F has property P(t, T ). Theorem 3.5 shows that [3]n satisfies P(t, 2O(t))
for any t. We pose the following problem, which, to the best of our knowledge has not been
investigated yet:

Open Problem: For q ≥ 3, is there a family F ⊂ [q]n such that |F| ≤ qpoly(logn) that has
property P(t, tω(1))?
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