
A Tight Parallel-Repetition Theorem

for Random-Terminating Interactive Arguments

Itay Berman∗ Iftach Haitner†‡ Eliad Tsfadia†

April 14, 2019

Abstract

Soundness amplification is a central problem in the study of interactive protocols. While
“natural” parallel repetition transformation is known to reduce the soundness error of some
special cases of interactive arguments: three-message protocols (Bellare, Impagliazzo, and Naor
[FOCS ’97]) and public-coin protocols (H̊astad, Pass, Wikström, and Pietrzak [TCC ’10], Chung
and Lu [TCC ’10] and Chung and Pass [TCC ’15]), it fails to do so in the general case (the
above Bellare, Impagliazzo, and Naor; also Pietrzak and Wikström [TCC ’07]).

The only known round-preserving approach that applies to the general case of interactive
arguments is Haitner’s ”random-terminating” transform [FOCS ’09, SiCOMP ’13]. Roughly
speaking, a protocol π is first transformed into a new slightly modified protocol π̃, referred as
the random terminating variant of π, and then parallel repetition is applied. Haitner’s analysis
shows that the parallel repetition of π̃ does reduce the soundness error at a weak exponential
rate. More precisely, if π has m rounds and soundness error 1 − ε, then π̃k, the k-parallel
repetition of π̃, has soundness error (1 − ε)εk/m

4

. Since the security of many cryptographic
protocols (e.g., binding) depends on the soundness of a related interactive argument, improving
the above analysis is a key challenge in the study of cryptographic protocols.

In this work we introduce a different analysis for the above method, proving that parallel
repetition of random terminating protocols reduces the soundness error at a much stronger
exponential rate: the soundness error of π̃k is (1 − ε)k/m, only an m factor from the optimal
rate of (1− ε)k, achievable in public-coin and three-message protocols. We prove the tightness
of our analysis by presenting a matching protocol.
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1 Introduction

Hardness amplification is one of the most fascinating questions in the theory of computation. Can
we transform a “weak primitive” into a hard one? And if so, can we do that while preserving the
additional properties of the original weak primitive? In this paper we focus on better understanding
the above question with respect to interactive arguments (also known as computationally sound
proofs).

In an interactive proof system, a prover tries to convince a verifier via interaction in the validity
of a statement. The basic properties of such proofs are completeness and soundness: in the former,
the prover, typically using additional computational resources or some extra information, convinces
the verifier to accept valid statements, while in the latter, a cheating prover (of a certain class)
cannot convince the verifier to accept invalid statements. The basic distinction regarding such
proof systems is whether the soundness holds unconditionally (i.e., against unbounded provers) or
only holds against computationally bounded provers. Interactive proof systems with unconditional
soundness are simply called interactive proofs, whereas proof systems in which soundness is only
guaranteed to hold against polynomial time provers are called interactive arguments. The latter
are the focus of this work. Interactive arguments are fundamental since the security of many
cryptographic protocols depends on the soundness of a related interactive argument. In particular,
having better means to amplify the hardness of interactive arguments, as discussed below, will help
us improve the security of numerous cryptographic protocols.

The question is whether, given a proof system with non-negligible soundness error (a cheating
prover can convince the verifier to accept false statements with some non-negligible probability), we
can convert it into a new system, of similar properties, with negligible soundness error (the verifier
almost never accepts false statements). The most common method to obtain such amplification
is via repetition: repeat the protocol many times with independent randomness, and the verifier
accepts only if the verifiers of the original protocol accept in all executions. Such repetition can be
done in two different ways, sequentially (known as sequential repetition), where the (i+1) execution
of the protocol starts only after the ith execution has finished, or in parallel (known as parallel
repetition), where all of the executions are simultaneous. Sequential repetition is known to reduce
the soundness error in most computational models (cf., Damgärd and Pfitzmann [DP98]), but has
the undesired effect of increasing the round complexity of the protocol. Parallel repetition, on the
other hand, does preserve the round complexity, and reduces the soundness error for (single-prover)
interactive proofs (Goldreich [Gol99]) and two-prover interactive proofs (Raz [Raz98]). Parallel
repetition was also shown to reduce the soundness error in three-message arguments ([BIN97]) and
public-coin arguments (H̊astad, Pass, Wikström, and Pietrzak [H̊as+10], Chung and Lu [CL02],
and Chung and Pass [CP15]). But, as shown by Bellare, Impagliazzo, and Naor [BIN97], and by
Pietrzak and Wikström [PW12], parallel repetition might not reduce the soundness error of any
interactive argument: using common cryptographic assumptions, Pietrzak and Wikström [PW12]
presented an 8-message interactive proof with constant soundness error, whose parallel repetition,
for any polynomial number of repetitions, still has a constant soundness error (same constant for
all k).

Faced with the above barrier, Haitner [Hai13] presented a simple method for transforming any
interactive argument π into a slightly modified protocol π̃, such that the parallel repetition of π̃
does reduce the soundness error. Given any m-round interactive protocol π = (P,V), let Ṽ be
the following random terminating variant of V: in each round, it flips a coin that takes one with
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probability 1/m and zero otherwise. If the coin outcome is one, it accepts and aborts the execution.
Otherwise, it acts as V would, and continues to the next round. At the end of the prescribed
execution, if reached, it accepts if and only if V would. Observe that if the original protocol π
has soundness error 1 − ε, then the new protocol π̃ = (P, Ṽ) has soundness error 1 − ε/4 (i.e.,
only slightly closer to one). Haitner [Hai13] proved that the parallel repetition of π̃ does reduce the
soundness error (for any protocol π). Specifically, assuming π’s soundness error is 1−ε, then π̃k, the
k-parallel repetition of π, has soundness error (1−ε)εk/m4

.1 The intuition here is that, by randomly
terminating, the verifier prevents a cheating prover from coordinating the different executions of
the protocol. Thus, it cannot do much better than acting independently in the different executions,
yielding an exponential decay in its cheating probability.2 Turning the above intuition into a formal
proof is not that simple; see further details in Section 2. While Haitner’s work [Hai13] is a strong
feasibility result, the dependency on ε and inverse dependency on m4 in the soundness error makes
the random termination approach impractical for arguments with a weak soundness guarantee or
with a large number of rounds. It also lags behind the (1 − ε)k upper bound achieved by parallel
repetition of interactive proofs, and by three-message and public-coin interactive arguments.

We emphasize that parallel repetition of the random-terminating variant of a protocol is the only
unconditional round-preserving hardness amplification technique we have for arbitrary interactive
arguments.3 For instance, parallel repetition of the random-terminating variants yields the only
known proof that constant-round weakly binding statistically hiding commitments imply constant-
round fully secure commitments.4 For additional concrete examples where the above amplification
paradigm is used, see [BC12; Chu+13].

1.1 Our Results

Recall that parallel repetition of the random-terminating variant on an interactive argument is the
only known (unconditional) round-preserving amplification method for interactive arguments. We
present a tight characterization of this amplification method.

Upper bound. Our main result is that parallel repetition of the random termination applied on
interactive arguments decreases the soundness error at a much stronger rate than that proven in
[Hai13].

1As in all known amplifications of computational hardness, and proven to be an inherent limitation (at least to
some extent) in [Dod+12], the improvement in the soundness error does not go below negligible. We ignore this
subtly in the introduction. We also ignore constant factors in the exponent.

2For those seeking further intuition for why random-termination is useful, in Section 8 we show that random-
terminating verifiers are immune to the counterexample of [BIN97].

3A conditional result proved by Chung and Liu [CL10] is the that fully homomorphic encryption (FHE) can be
used to compile any interactive argument into one (with the same soundness error) for which parallel repetition
improves the soundness (at the same rate as for public-coin arguments). Since it assumes FHE, which we only
know how to build assuming hardness of learning with errors [BV14], [CL10], it is applicable only in very restricted
settings. In addition, the compiled protocol does not have some of the guarantees the original protocol might have,
e.g., fairness. Finally, since it requires homomorphic evaluation of each of the protocol’s gates, it is highly inefficient
(computation-wise).

4Using sequential repetitions—the only other alternative—would blow up the round complexity by 1/δ for δ < 1
being the commitment (weak) binding guaranteed (we are omitting an additional logarithmic factor, where the
logarithm is over the security parameter).
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Theorem 1.1 (main theorem, informal). Let π = (P,V) be an m-round interactive argument with
soundness error 1 − ε, let Ṽ be the random terminating variant of V, and let π̃k be the k-parallel
repetition of π̃ = (P, Ṽ). Then, π̃k has soundness error (1− ε)k/m.

Suppose that we want to get from soundness error 1 − ε to soundness error δ. According to
[Hai13], we have to take m4 · log(1/δ)/ε2 repetitions of π̃, where according to our Theorem 1.1,
m·log(1/δ)/ε repetitions suffice. Specifically, for constant-round protocols, our result matches, up to
a constant factor, the dream version of parallel repetition for interactive proofs, and public-coin and
three-message arguments, and it improves over [Hai13] by a factor of 1/ε. For non-constant-round
protocols, our result is only an m factor away from the dream version, and this linear dependency
in m improves over the quartic dependency in [Hai13].

Theorem 1.1 immediately yields (see [Hai13] for details) the following improvement of the only
known round-preserving amplification of statistically hiding commitments. A commitment scheme
is ε-binding if no efficient cheating committer opens the commitment into two different values with
probability larger than ε. A commitment is statistically hiding if it does not reveal any significant
information about the committed value.

Corollary 1.2 (Amplification of statistically hiding commitment, informal). Let Com be an m-

round, (1 − ε)-binding and statistically hiding commitment scheme, and let C̃om be its variant in
which the receiver aborts following each round of the commitment phase and publishes an empty

commitment string, with probability 1/m. Then C̃om
m·log(1/δ)/ε

is a statistically hiding and δ-
binding commitment. Taking δ = n−ω(logn), for n being the security parameter, yields a full-fledged
(i.e., neg-binding) statistically hiding and computationally binding commitment scheme.

The above gives a tight result for constant-round statistically hiding commitments, and drasti-
cally improves upon the m4 · log(1/δ)/ε2 repetitions of C̃om required according to [Hai13].

Lower bound. We complete the picture by showing that the 1/m factor in the exponent in
Theorem 1.1 is unavoidable.

Theorem 1.3 (lower bound, informal). Under suitable cryptographic assumptions, for any m ∈ N
and ε ∈ [0, 1], there exists an m-round interactive argument (P,V) with soundness error 1− ε such

that (Pk, Ṽ
k
) has soundness error at least (1− ε)k/m.

Namely, m·log(1/δ)/ε repetitions are required for moving from soundness error 1−ε to soundness
error δ.

Theorem 1.1 easily yields the following lower bound for amplification of statistically hiding
commitments.

Corollary 1.4 (Lower bound on amplification of statistically hiding commitment, informal). Under
suitable cryptographic assumptions, for any m ∈ N and ε ∈ [0, 1] there exists an m-round, (1− ε)-
binding and statistically hiding commitment scheme Com, such that C̃om

m·log(1/δ)/ε
is not o(δ)

binding.

Our technique, a short overview. Below we give the highlights of our proof for Theorem 1.1.
See Section 2 for a detailed overview.
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As in all such amplification results, the proof of Theorem 1.1 is via a reduction: given an efficient
prover Pk

∗
that violates the (1 − ε)k/m soundness error of π̃k, we construct an efficient prover P∗

that violates the (1 − ε) soundness error of π = (P,V). As in Haitner [Hai13], we considered the
following cheating prover P∗ for making V accept a false statement: P∗ uniformly samples i ∼ [k],

and starts emulating an interaction of (Pk
∗
, Ṽ

k
) with V embedded as the ith verifier. Upon getting

the jth message from V, it acts as follows:

1. Samples the messages of the emulated verifiers in the jth round of (Pk
∗
, Ṽ

k
), conditioned that

all verifiers accept and the ith verifier halts in the next round.

2. Answers V according to the message sent to the ith verifier in the jth round of the emulated

execution of (Pk
∗
, Ṽ

k
).

Namely, the rejection sampling assumes the ith (real) verifier aborts in the beginning of the next
round, and thus the sampling can be done efficiently (see Section 2 for further details).

To analyze the success probability P∗, we use the standard (in this line of works) paradigm of
ideal vs. real executions: let Ideal denote the distribution induced by an accepting random execution

of (Pk
∗
, Ṽ

k
), and show that the distribution of the emulated execution of (Pk

∗
, Ṽ

k
) induced by the

above attack (denoted by the Real experiment) is close enough to Ideal. It will then follow that
the above attack succeeds with high probability. Haitner [Hai13] bounds the statistical distance
between Ideal and Real. Statistical distance, however, seems not to be the right measure to consider
in this setting. Specifically, it lacks a chain rule and does not tensor under product distributions,
two properties that seem relevant for lower bounding the prover’s success probability. So rather,
we bound a relaxed variant of their KL-divergence.5 We first give a high-level overview of the steps
in our proof.

First round. For the first round interaction, we show that while the KL-divergence between Ideal
and Real might be huge, the resulting divergence is small when we ignore carefully defined
events in Ideal. We then show that this “smooth” variant of KL-divergence suffices for the
proof.

Next rounds. Our first round analysis critically relies on the fact that the position i of the real
verifier among the k emulated ones is uniformly chosen by the cheating prover P∗. When
analyzing the next rounds, however, the relevant distribution to consider is the position of
the real verifier conditioned that the interaction so far led to the previous rounds’ transcript.
It turns out that this conditional distribution might be very far from uniform.

We show that when sampling the transcript according to Ideal, as done when computing the
(smooth) KL-divergence between Ideal and Real, the conditional distribution of the index
i induces a martingale sequence (this fact holds for any prover strategy that hides the real
verifier among the emulated ones). We then show that in our setting, this martingale sequence
converges well. It follows that with high probability over Ideal, the distribution of the location
i conditioned on the transcripts is “uniform enough” to allow the same approach we take for
the first round to go through.

We believe that the above observations will turn out to be useful in analyzing the parallel repetition
on other interactive proof systems.

5For these reasons, Chung and Pass [CP15] use the standard notion of KL-divergence for bounding the soundness
error of parallel repetition of public-coin interactive arguments.
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1.2 Related Work

1.2.1 Interactive Arguments

Positive results. Bellare, Impagliazzo, and Naor [BIN97] proved that the parallel repetition of
three-message interactive arguments reduces the soundness error at an exponential but not optimal
rate. Canetti, Halevi, and Steiner [CHS05] later showed that parallel repetition does achieve an op-
timal exponential decay in the soundness error for such arguments. Pass and Venkitasubramaniam
[PV12] have proved the same for constant-round public-coin arguments. For public-coin arguments
of any (polynomial) round complexity, H̊astad et al. [H̊as+10] were the first to show that parallel
repetition reduces the soundness error exponentially, but not at an optimal rate. The first optimal
analysis of parallel repetition in public-coin arguments was that of Chung and Liu [CL10], who
showed that the soundness error of the k repetitions improves to (1− ε)k. Chung and Pass [CP15]
gave an arguably simpler proof for public-coin arguments, via KL-divergence arguments, a result
that is the starting point of our analysis (see Section 2). For non-public coin and with any round
complexity argument, Haitner [Hai13] introduced the random-terminating variant of a protocol,
and proved that the parallel repetition of these variants improves the soundness error at a weak ex-
ponential rate. An alternative proof, with essentially the same parameters, was given by [H̊as+10].
Their proof holds for 1/m-simulatable verifiers [H̊as+10] that contain random-terminating verifiers
as a special case.6 All the above results extend to “threshold verifiers”: the parallel repetition is
considered accepting if the number of accepting verifiers is above a certain threshold. Our result
rather easily extends to such verifiers, but we defer the tedious details to the next version.

Chung and Pass [CP11] proved that full independence of the parallel executions is not necessary
to improve the soundness of public-coin arguments, and the verifier can save randomness by carefully
correlating the different executions. It is unknown whether similar savings in randomness can be
achieved for random-terminating arguments.

Negative results. Bellare, Impagliazzo, and Naor [BIN97] presented for any k ∈ N, a four-
message interactive argument of soundness error 1/2, whose k-parallel repetition soundness remains
1/2. Pietrzak and Wikström [PW12] ruled out the possibility that enough repetitions will eventually
improve the soundness of an interactive argument. They presented a single 8-message argument for
which the above phenomenon holds for all polynomial k simultaneously. Both results hold under
common cryptographic assumptions.

1.2.2 Two-Prover Interactive Proofs

The techniques used in analyzing parallel-repetition of interactive arguments are closely related to
those for analyzing parallel repetition of two-prover one-round games, which we now very briefly
describe. In such a game, two unbounded isolated provers try to convince a verifier in the validity
of a statement. Given a game of soundness error (1−ε), one might expect the soundness error of its
k parallel repetition to be (1−ε)k, but as in the case of interactive arguments, this turned out to be
false [Fei91; FV02; FRS90]. Nonetheless, and although not true for arguments, Raz [Raz98] showed
that parallel repetition does achieve an exponential decay for any two-prover one-round game, and

6Roughly, a verifier is δ-simulatable if given any partial transcript, the verifier’s future messages can be sampled
efficiently with probability δ (over its coins), without knowing the internal state of the verifier. Our proof seems
to easily extend to 1/m-simulatable verifiers, but since the only examples for such verifiers are random terminating
verifiers, we chose to give our proof in the simpler language of the latter.
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in particular reduces the soundness error to (1 − ε)εO(1)k/ log s, letting s being the provers’ answer
length. These parameters were later improved by Holenstein [Hol09], and improved further for
certain types of games by Rao [Rao11], Dinur and Steurer [DS14], and Moshkovitz [Mos14].

The core challenge in the analysis of parallel repetition of interactive arguments and of two-
prover one-round games is very similar: how to simulate a random accepting execution of the
proof/game given the verifier message. In interactive arguments, this is difficult since the prover
lacks computational power. In two-prover one-round games, the issue is that the two provers
cannot communicate. We hope that our new tight understanding of parallel repetition of interactive
arguments will turn out to be useful for achieving tighter analysis of parallel repetition of (certain
types of) two-prover one-round games.

Paper Organization

We overview the proof of our main theorem (Theorem 1.1) in Section 2. Basic notations, definitions
and tools used throughout the paper are given in Section 3. The formal statement of our main
theorem and its proof using Lemma 4.9, our main technical lemma, are given in Section 4. The
road map towards proving Lemma 4.9 is given in Section 5, and the proof details are given in
Sections 6 and 7. Our matching lower bound on the effect of parallel repetition on random-
terminating arguments is stated and proved in Section 8. Finally, the missing proofs can be found
in Appendix A.

2 Our Technique

In this section we give a high-level overview of the proof of our main result (Theorem 1.1). We
start by describing the simpler case of parallel repetition of public-coin arguments, while focusing on
bounding a distance measure known as KL-divergence (following Chung and Pass [CP15]). Moving
to random-terminating arguments, we explain the reduction of Haitner [Hai13] and present our
analysis that bounds a relaxed (“smooth”) variant of the KL-divergence.

2.1 Public-Coin Arguments

Let π = (P,V) be an m-round public-coin interactive argument (the verifier simply sends its random
coins) with soundness error 1−ε, and let k ∈ N be such that (1−ε)k is noticeable (as we mentioned
in Footnote 1, we cannot expect the soundness to get below noticeable). The goal is to show an
optimal exponential decay of the soundness error when repeating the protocol in parallel, that is,
to prove that the soundness error of πk = (Pk,Vk), the k-fold repetition of π, is at most (1− ε)k.
As in all such hardness amplification results, the proof is via a reduction: given an efficient prover
Pk
∗

violating the (1− ε)k soundness error of πk, we use Pk
∗

to construct an efficient prover P∗ that
violates the (1− ε) soundness error of π. More specifically, to interact with V on a false statement,
the cheating prover P∗ uses Pk

∗
to emulate a winning (all verifiers accept) execution of (Pk

∗
,Vk)

on the false statement, while embedding the messages of the real interaction as those of one of the
k verifiers. Since an all-accepting emulation yields that the embedded real verifier accepts in the
real execution, the challenge reduces to showing that such an emulation can be done successfully.

To present and analyze the above reduction, we need to be a bit more formal. Assume for
simplicity that Pk

∗
is deterministic. Let Xm×k = (Xk

1 , . . . , X
k
m) be the messages (in this case,

random coins) of Vk in a random execution of (Pk
∗
,Vk), where Xj,i consists of the jth message
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sent by the ith verifier. Let W be the event that Vk accepts in (Pk
∗
,Vk) (namely, in this case W

is simply a subset of Supp(Xm×k)).
The cheating prover P∗ emulates a winning execution of (Pk

∗
,Vk) as follows: before interacting

with V it uniformly samples i ∼ [k]; the messages from V would be embedded as the messages of
the ith verifier in (Pk

∗
,Vk). Upon getting the jth message xj,i from V, it acts as follows:

1. Samples xkj ∼ Xk
j |Xk

<j=x
k
<j ,Xj,i=xj,i,W

. (Letting Xk
<j = (Xk

1 , . . . , X
k
j−1) and similarly for xk<j ,

where the latter denotes the verifiers’ messages thus far.)

2. Sends bj,i back to V, for bkj = (bj,1, . . . , bj,k) being the message tuple Pk
∗

sends back to Vk in

the jth round of (Pk
∗
,Vk), induced by xkj (recall that Pk

∗
is assumed to be deterministic).

The sampling in Step 1 is done via rejection sampling : keep sampling values forXk
≥j |Xk

<j=x
k
<j ,Xj,i=xj,i

until W happens and set xkj = Xk
j . Since V is public-coin, as long as Pr[W |Xk

<j = xk<j , Xj,i = xj,i]

does not get too low, such rejection sampling can be done efficiently. For a tuple of messages xm×k,
let Succ(xm×k) be the indicator for the event that Pr[W |Xk

<j = xk<j , Xj,i = xj,i] does not get too

low for every j ∈ [m]. Let Real denote the random tuple of messages Xm×k induced by the above
execution of (P∗,V), whose soundness error can now be lower-bounded by Pr[Succ(Real)]. Thus,
showing that Pr[Succ(Real)] > 1− ε would complete the analysis.

The standard technique to show the above lower-bound is by change of measure: describe a
different distribution under which Succ occurs with high probability, and bound the difference
between that distribution and Real. A natural choice for such a distribution is that of Xm×k|W ,
which we refer to as Ideal. This is the distribution that would arise if the messages of the real verifier
would also have been chosen, as are the messages of the other emulated verifiers, by conditioning
on W (and not uniformly at random). Since, by assumption, Pr[W ] ≥ (1 − ε)k is noticeable, a
Markov argument yields that Pr[Succ(Ideal)] ≈ 1, and we will assume it is equal to 1 for the rest
of this analysis.

It is left to show that the difference between Real and Ideal is small. Note that up until now
we have not specified which measure of difference to use. Indeed, different choices of measure yield
different results. Early results in this line of works (e.g., [H̊as+10; Hai13]) bounded the statistical
distance between Ideal and Real.7 It seems, however, that statistical distance is not the right
measure to consider in this setting. Specifically, it lacks a chain rule and does not tensor under
product distributions, two properties that seem relevant for lower bounding the prover’s success
probability. The chain rule can be used to split the transcripts of Ideal and Real per round and
analyze their difference on a round basis. Tensorizing under product distributions is useful since
the messages of the public-coin verifiers are chosen from a product distribution. The analysis in
the above works does suffer from these disadvantages, and as a result they do not achieve optimal
exponential decay.

A more suitable choice of measure would seem to be the Kullback-Leibler divergence (KL-
divergence) between Ideal and Real, denoted by D(Ideal ||Real).8 The KL–divergence does have
a chain rule and is (appropriately) tensorized under product distributions. Indeed, using the KL-

7The statistical distance between two distributions P and Q over the same domain X is defined as SD(P,Q) :=
maxS⊆X P [S]−Q[S].

8The KL-divergence (also known as divergence and relative entropy) between two distributions P and Q is defined

as D(P ||Q) = Ex∼P log P (x)
Q(x)

.
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divergence, Chung and Pass [CP15] gave an elegantly simple proof for the optimal exponential
decay of the soundness error for public-coin protocols that we review next.9

Recall that our goal is to show that Pr[Succ(Real)] > 1 − ε. The first step is to apply the
data-processing inequality for KL-divergence:10

D(Ideal ||Real) ≥ D(Bern(Pr[Succ(Ideal)])||Bern(Pr[Succ(Real)])) = log
1

Pr[Succ(Real)]
(1)

for Bern(p) denoting the Bernoulli distribution with parameter p, and where the equality follows
since we assumed that Pr[Succ(Ideal)] = 1. The second step is to upper-bound D(Ideal ||Real).
Chung and Pass [CP15], generalizing over [Raz98] and using the chain-rule for KL-divergence,
showed that

D(Ideal ||Real) ≤ 1

k
·D(Xm×k|W ||Xm×k) ≤ 1

k
· log

1

Pr[W ]
(2)

The above equations now yield that

Pr[Succ(Real)] ≥ exp(−D(Ideal ||Real)) ≥ Pr[W ]1/k > 1− ε (3)

where we used that, by assumption, Pr[W ] > (1− ε)k.
Our proof (see below) adopts the above paradigm to the more complicated setting that arises

when analyzing parallel repetition of random-termination arguments. In particular, we bound a
relaxed variant of the KL-divergence between the Ideal and Real distributions, and show that such
a bound suffices for the reduction.

2.2 Random-Terminating Arguments

For arbitrary (non-public coin) arguments, the above analysis fails to hold because of the possible
infeasibility of the rejection sampling used by the above attacker for choosing its response in each
round. Indeed, such sampling requires finding random coins for the real and emulated verifiers that
are consistent with the current transcript. This requires inverting at random the transcript function
of the real verifier (i.e., the function mapping the parties’ coins to the protocol’s transcripts), and for
the emulated verifiers (for which the attacker holds one set of consistent coins), it requires finding
a second random preimage of the transcript function. Each of these tasks is infeasible assuming
one-way functions exist [IL89; Rom90], and indeed the sampling should be infeasible since parallel
repetition of arbitrary arguments might not improve the hardness at all [BIN97; PW12]. Random-
terminating arguments enable us to bypass the two obstacles above (inverting the real verifier
transcript function, and finding a second pre-image for the emulated verifiers).

Let π = (P,V) be an (arbitrary) m-round argument and let Ṽ be the random-terminating
variant of V, i.e., at the beginning of each round, Ṽ halts and accepts with probability 1/m, and
let k ∈ N be such that (1 − ε)k/m is noticeable. Let Pk

∗
be an efficient adversary violating the

(1 − ε)k/m soundness error of π̃k (note that we are no longer aiming for the optimal exponential
decay). As in the public-coin case, we use Pk

∗
for constructing an efficient prover P∗ violating the

(1− ε) soundness error of π.

9An optimal exponential decay for public-coin protocols was already shown by [CL10]. That proof does not use
the Ideal vs. Real paradigm, and is harder to follow.

10The data-processing inequality for KL-divergence states that for any (possibly random) function F , it holds that
D(P ||Q) ≥ D(F (P )||F (Q)).
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To present and analyze the reduction, we again need to be a bit more formal. We keep the
simplifying assumption that Pk

∗
is deterministic, and further assume without loss of generality that

V flips all its coins before the interaction begins. It follows that the random-terminating variant
Ṽ flips a string of coins before the interaction starts, to be used by V, and then flips a single
(1/m, 1 − 1/m) coin before each round, to determine whether it aborts (and accepts) or acts as

V would in the current round. Let (Zk, Xm×k = (Xk
1 , . . . , X

k
m)) be the coins flipped by Ṽ

k
in a

random execution of (Pk
∗
, Ṽ

k
): Zi are the coins the ith verifier flips for the use of its internal copy

of V, and Xj,i is the coin it flips before the jth round to decide whether to halt (set to 0 in case of

an abort in a previous round). Let W be the event that Vk accepts (Pk
∗
, Ṽ

k
) (i.e., W is simply a

subset of Supp(Zk, Xm×k)).
Haitner [Hai13] considered the following cheating prover P∗ for making V accept a false state-

ment: before interacting with V, it samples uniformly i ∼ [k], embeds V as the ith verifier in the
emulated interaction (Pk

∗
,Vk), and samples zk ∼ Zk|Zi=zi,X1,i=1,W , for zi being the random coins

of V. (As explained below, this sampling does not require knowing zi, which is not known to P∗.)
Upon getting the jth message from V, it acts as follows:

1. Samples xkj ∼ Xk
j |Zk=zk,Xk

<j=x
k
<j ,Xj+1,i=1,W .

2. Sends bj,i back to V, for bkj = (bj,1, . . . , bj,k) being the message tuple Pk
∗

sends back to Vk in

the jth round of (Pk
∗
,Vk) induced by zk, xk1, . . . , x

k
j .

Namely, the rejection sampling assumes the real verifier aborts in the beginning of the next
round. This yields that the rejection sampling can be carried out efficiently, as long as the con-
ditional winning (all verifiers accept) probability is not too low. Indeed, since the conditioning
is on the verifier coins (and not its messages), finding coins for the emulated verifiers boils down
to choosing their next round coins uniformly at random. In addition, since the condition is that
the real verifier aborts in the beginning of the next round, its random coins have no effect on the
conditional distribution we aim to sample from, and thus we can sample from this distribution
without knowing their value.

As in the public-coin setting, we would like to bound the KL-divergence between the Ideal
distribution—that in this case is defined as ZkXm×k|W , and the Real distribution—the random
tuple ZkXm×k induced by a random execution of (P∗,V). As mentioned above, we were only able
to bound a relaxed variant of the KL-divergence between Ideal and Real, and had to consider a
relaxed variant of this measure; see details in the next subsection.

2.2.1 Bounding the KL-Divergence between Ideal and Real

Bounding the KL-divergence between Ideal and Real turned to be a much more challenging task
than in the public-coin case considered above. First, the conditional distribution used in the rejec-
tion sampling is very different than its ideal variant. Therefore, even bounding the KL-divergence
of a single interacting round is complicated. Second, in the public-coin case it can be assumed
without loss of generality that Xm×k|W is a product distribution—the attacker consists of k in-
dependent attackers,11 an assumption that drastically simplifies the analysis. Unfortunately, this

11This is not easy to see at first glance but it implicitly arises by the proof of Chung and Pass [CP15].
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simplifying assumption cannot be made for non-public-coin random-terminating arguments.12 In-
stead, the attacker may induce complicated non-product distributions Ideal and Real such that the
KL-divergence between them is too large to be useful. Fortunately, it turns out that when ignoring
the distribution of small probability events over Ideal, the resulting “smooth” KL-divergence is low,
and this bound suffices to make the reduction go through.

To illustrate our technique, we focus only on Zk = (Z1, . . . , Zk)—the coins for the internal
copies of V, and on Xk

1 = Xk = (X1, . . . , Xk)—the random termination coins for the first round
(in particular, Xi ∼ Bern(1/m)). The distribution Ideal in this case is (ZkXk|W ), and in this
explanation we focus only on the “Z-part” of Ideal—Zk|W (but as we will see shortly, the “X-
part” will be very relevant). The “Z-part” of Real is more complicated. First an index i ∼ [k]
is drawn and then zi ∼ Zi is sampled uniformly at random. The rest of Zk is now drawn from
Zk|Zi=zi,Xi=1,W . Our goal is to bound the divergence between these two “Z-parts”. Actually, for
this discussion, we also want to assume for simplicity that Zi is sampled the same as the rest of
Zk; that is, we consider Zk|Xi=1,W , which we call Real′. While Real′ is different from Real, the
insights as to how to bound the KL-divergence for this distribution carry over to the actual Real
distribution. To summarize, our goal is to bound D(Zk|W ||Zk|XI=1,W ), for I being drawn uniformly
from [k].

Our first observation is as follows: conditioned on Xk being some fixed xk, Zk is distributed
the same under Ideal and Real′—both sample from Zk|Xk=xk,W . The difference between these

distributions is thus traced to how Xk is sampled. By the data-processing inequality for KL-
divergence, it holds that

D(Zk|W ||Zk|XI=1,W ) ≤ D(Xk|W ||Xk|XI=1,W ) (4)

So, instead of bounding the KL-divergence of the “Z-parts”, we bound it for the “X-parts”, without
first drawing the “Z-parts”.

In the following, fix xk ∈ Supp(Xk|W ) and let 1xk = {i ∈ [k] : xi = 1} denote the set of 1-indexes
in xk. It holds that

Pr
[
Xk = xk | XI = 1,W

]
= Ei∼[k]

[
Pr
[
Xk = xk |W,Xi = 1

]]
(5)

=
1

k

∑
i∈1

xk

Pr
[
Xk = xk |W,Xi = 1

]

=
1

k

∑
i∈1

xk

Pr
[
Xk = xk |W

]
Pr[Xi = 1 |W ]

.

Combining the above we get

D(Zk|W ||Zk|XI=1,W ) ≤ Exk∼Xk|W

[
log

k∑
i∈1

xk

1
Pr[Xi=1|W ]

]
(6)

Our first round analysis focuses on characterizing
∑

i∈1
xk

1
Pr[Xi=1|W ] for a random xk ∼ Xk|W . We

take the following approach: for i ∈ [k], let pi = Pr[Xi = 1 |W ], let Yi be a random variable taking

12We actually know that for certain arguments, the attacker can improve its winning probability by correlating
between the different verifiers (e.g., see our counterexample in Section 8).
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the value 1/pi if xi = 1, and 0 otherwise, for a randomly drawn xk ∼ Xk|W , and let Y =
∑k

i=1 Yi.
Note that the Yi’s are dependent, since their distributions are determined by the same xk ∼ Xk|W .
It is easy to verify that EXk|W [Y ] = k.13 That is, the expected value of the denominator in
Equation (6) is equal to the nominator. Let ∆ be a random variable measuring how far Y is from
its mean; that is, Y = (1 + ∆) · k. It follows that EXk|W [∆] = 0 and that

D(Zk|W ||Zk|XI=1,W ) ≤ EXk|W

[
log

1

1 + ∆

]
(7)

Naturally, we would like to approximate the logarithm in the above equation with a low-degree
polynomial. We can only do that, however, if ∆ is far away from −1. In particular, if ∆ = −1
(which happens if W allows for none of the verifiers to abort in this round), the above expectation
is unbounded. Luckily, it turns out that ∆ is far from its expected value 0 under Xk|W with only
small probability. We somehow want to ignore the chance that ∆ is far from 0 when bounding the
KL-divergence. We would like a smooth variant of the KL-divergence.

2.2.2 Smooth KL-Divergence

The KL-divergence between P and Q is a very sensitive distance measure. An event x with
P (x) � Q(x) might make D(P ||Q) huge even if P (x) is tiny (e.g., P (x) > 0 = Q(x) implies
D(P ||Q) = ∞). While in some settings one might care about low probability events, this is not
the case in our setting. Recall that our ultimate goal is to use the KL-divergence for a change-of-
measure: if PrP [E] is large for some event E, then we would like to argue that PrQ[E] is also large.
Since an element x with small P (x) does not contribute much to the probability of E, omitting it
still keeps PrQ[E] high and thus we can exclude it from our analysis.

So we need a less sensitive measure that still maps events of high probability in P to events of
high probability in Q. A natural attempt would be to define it as infP ′,Q′{D(P ′||Q′)}, where the
infimum is over all pairs of distributions such that both SD(P, P ′) and SD(Q,Q′) are small. This
relaxation, however, requires an upper bound on the probability of events with respect to Q, which
in our case is the Real distribution. But bounding the probability of events with respect to the
Real distribution is exactly what we are trying to do to begin with.

So rather, we take advantage of the asymmetric nature of the KL-divergence to propose a
relaxation that only requires upper-bounding events with respect to P , which in our case is the
much simpler Ideal distribution.14

Assume P and Q are over domain U . The α-smooth KL-divergence of P and Q is defined by

Dα(P ||Q) = inf
(FP ,FQ)∈F

{D(FP (P )||FQ(Q))}, (8)

for F being the set of randomized function pairs, such that for every (FP , FQ) ∈ F :

13Note that pi > 0 for all i since all the verifiers might abort and accept in the first round. In the body of this
work we refer to this property as termination consistent.

14At least syntactically, the notion of smooth KL-divergence we consider here is similar to the distance measure
used by the (coefficients) H-Technique tool, introduced by Patarin [Pat90], for upper-bounding statistical distance.

Consider the following alternative definition of statistical distance: SD(P,Q) = Ex∼P max{0, 1 − Q(x)
P (x)
}. The H-

Technique approach considers a smooth variant of the above formulation: small events with respect to P are ignored.
However, while smooth KL-divergence is useful in settings when the actual KL-divergence might be unbounded, as in
our settings, the above smooth variant of statistical distance is always very close to the actual statistical distance,
and as such, it is more of a tool for bounding statistical distance than a measure of interest for its own sake.
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1. Prx∼P [FP (x) 6= x] ≤ α.

2. ∀x ∈ U : Supp(FP (x)) ∩ U ⊆ {x} and Supp(FQ(x)) ∩ U ⊆ {x}.

Note that for any pair (FP , FQ) ∈ F and an event E over U , it holds that PrQ[E] ≥ PrFQ(Q)[E],
and PrFP (P )[E] ≥ PrP [E]− α. Thus, if PrP [E] is high, a bound on D(FP (P )||FQ(Q)) implies that
PrQ[E] is high as well. Namely, large events in P happen with high probability also in Q.

Of course, it might be difficult to bound the KL-divergence for any such pair (FP , FQ), since we
now must consider also the elements outside U . We leave further details on how to achieve such a
bound to the body of this work and steer our attention back to bounding the divergence between
Ideal and Real′. In the remainder of this discussion we allow ourselves to assume that some bad
events, as long as they occur with small probability under P , are irrelevant.

2.2.3 Bounding the Smooth KL-divergence Between Ideal and Real′

We pick up from Equation (7)—where we derived a bound on the KL-divergence between the “Z-
part” of Ideal and that of Real′—with the difference that now we consider the smooth variant of
the KL-divergence:

Dε(Zk|W ||Zk|XI=1,W ) ≤ EXk|W

[
log

1

1 + ∆

]
(9)

The fact that we are bounding only the smooth KL-divergence essentially allows us to assume that
|∆| ≤ 1/2. Using that − log(1 + x) ≤ −x+ x2 for all −1/2 ≤ x ≤ 1/2,15 it holds that

Dε(Zk|W ||Zk|XI=1,W ) ≤ EXk|W
[
−∆ + ∆2

]
(10)

= EXk|W
[
∆2
]
,

where we used that EXk|W [∆] = 0.

So, our goal is to bound EXk|W
[
∆2
]

with some function of D(Xk|W ||Xk). Specifically, we sketch
how to derive the following bound:

EXk|W
[
∆2
]
≤ m

k
·D(Xk|W ||Xk) (11)

Before deriving the above inequality, let’s use it to show a contradiction. We do so by using the
chain rule for KL-divergence and moving back to Real (instead of Real′). Then, Equation (11)
implies that

D(Ideal ||Real) ≤ m

k
·D(ZkXm×k|W ||ZkXm×k) ≤ m

k
· log

1

Pr[W ]
(12)

Similar calculations to the ones in the public-coin setting (Equation (3)) show that

Pr[Succ(Real)] ≥ Pr[W ]m/k ≥ 1− ε (13)

where we used the assumption that Pr[W ] ≥ (1−ε)k/m, and which yields a contradiction. The factor
of m difference in the exponent between this bound and the one in Equation (3) (i.e., Pr[W ]1/k) is

15All logarithms in this paper are natural logarithms.
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exactly the reason we must assume that Pr[W ] ≥ (1−ε)k/m (rather than (1−ε)k in the public-coin
case). This is the cause for the non-optimal exponent in our result (i.e., exponent of k/m rather
than k), which we also show is necessary (see Theorem 1.3).

We now proceed to derive Equation (11). In fact, we derive the following weaker bound:

EXk|W
[
∆2
]
≤ m

k
·
(
D(Xk|W ||Xk) + 1

)
(14)

Namely, we derive an additional additive loss of m/k, which is actually necessary.16 To bound
the effect of this loss, we assume for now that k > c ·m2/ε for some large enough constant c; in
Section 2.2.5 we explain how to eliminate this assumption. When this loss is accumulated for every
round (when using the chain rule), the right-hand side of Equation (12) becomes m

k log 1
Pr[W ] + ε/c.

Such a bound still allows us to achieve exponential decay of (1 − ε)Ω(m/k), albeit with a slightly
worse constant in the exponent.

To derive Equation (14), we use the following inequality, due to Donsker and Varadhan [DV83]:17

EP [f(X)] ≤ log EQ[exp(f(X))] +D(P ||Q) (15)

for any distributions P and Q with D(P ||Q) < ∞ and any f with EQ[exp(f(X))] < ∞. An
immediate choice for deriving Equation (14) using the above inequality would be P = Xk|W and
Q = Xk. For this choice to work, however, we must show that ∆ has super-exponential moment
(i.e., E[exp(∆2)] <∞) under Xk. Since this moment exists for well-concentrated random variables
(i.e., sub-Gaussian random variables), it suffices to argue that ∆ is well-concentrated. We prove
this concentration under the (simpler) distribution

∏k
i=1Xi|W , the product distribution of the

marginals of Xk|W . This suffices to derive Equation (14) since Xk is a product distribution and
the chain rule for KL-divergence implies that

D(Xk|W ||Xk) ≥ D(Xk|W ||
k∏
i=1

Xi|W ) (16)

So, we wish to show that ∆ is concentrated under
∏k
i=1Xi|W ; equivalently, we argue that Y

under
∏k
i=1Xi|W is concentrated. Since under

∏k
i=1Xi|W the random variable Y =

∑k
i=1 Yi is a

sum of independent random variables, we can use standard concentration bounds (e.g., Hoeffding’s
inequality) to show that ∆ is concentrated. However, such bounds require the Yi’s to be bounded,
and if pi = Pr[Xi = 1|W ] is very small, then Yi, which is equal to 1/pi with probability pi, might
be huge. Here again we use the fact that we bound the smooth KL-divergence—we can show (see
Section 7 for details) that for most i’s, pi ≈ 1/m. Thus, we can assume that the index i sampled
by the prover is not one of these “bad” indexes—for which pi 6≈ 1/m, and Y would be summed
only over non-bad indexes.

Actually, even after the concentration bounds are applied, large values of ∆ are not sufficiently
concentrated. Specifically, those bounds show that ∆ is a sub-exponential random variable, for
which the super-exponential moment might not exist (if ∆ were sub-Gaussian, such a bound would
exist). It turns out that we can avoid the loss in concentration for large ∆ using our assumption

16If Pr[W ] = 1, it holds that D((Xk|W )||Xk) = 0, but the divergence D(Xk|W ||Xk|XI=1,W ) roughly equals m/k.
17The original theorem by Donsker and Varadhan [DV83] (see Theorem A.2) is stronger; it states the following

variational characterization for KL-divergence: D(P ||Q) = supf EP [f(X)]− log EQ[exp(f(X))].
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that |∆| ≤ 1/2 under Xk|W , and we indeed show that the super-exponential moment of ∆ is
bounded; that is, E∏k

i=1 Xi|W

[
exp(∆2/(m/k))||∆| ≤ 1/2

]
≤ e. This bound would also suffice to

establish Equation (14). We leave further details to the body of this paper.

2.2.4 Bounding the Smooth KL-Divergence Induced by Next Rounds

So far we have only focused on bounding the smooth KL-divergence between the Ideal and Real′

distributions induced by the first round of the protocol. In this part we explain how to extend the
first round analysis for the next (non-first) rounds. We bound the smooth KL-divergence between
the Ideal and Real′ distributions induced by next rounds by reducing it to the first round case, a
reduction that we believe to be of interest for amplification of arbitrary interactive arguments and
proofs.

The main challenge for analyzing the non-first rounds is that the distribution of I conditioned on
the previous rounds is not necessarily uniform.18 (Recall that I is the index of the real interaction
embedded as one of the k interactions). The uniformity of I was critical for our first round analysis
(for instance, in Equations (5) and (6)). When bounding the divergence induced by non-first
rounds, however, we do that conditioned on the previous rounds’ coins. This conditioning might
leak information about the value of I, making it non-uniform under the conditioning, and the
analysis becomes much more complicated.

One way to tackle the above is to assume that the distribution of I conditioned on previous
rounds is uniform, and pay the statistical distance per round between the uniform distribution and
the actual (conditioned) distribution of I. This approach was taken by H̊astad et al. [H̊as+10]
and Haitner [Hai13], but the cost of moving to the uniform distribution in each round yields a
non-optimal bound.

Here we take a more holistic approach to perform the per-round analysis without assuming that
I is uniform. In particular, we prove the following fact on the distribution of I conditioned on the
previous rounds: with high probability over zkxm×k = (zk, xk1, . . . , x

k
m) ∼ Ideal, the following holds

for most i ∈ [k]:

∀j ∈ [m] : PrReal′

[
I = i | ZkXk

<j = zkxk<j

]
∈ Θ(1/k) (17)

That is, in all rounds the distribution of I in Real′ under the conditioning is close (up to a constant
multiplicative factor) to being uniformly distributed over a very large set of indices. Note that
zkxm×k is sampled according to Ideal, since we are bounding D(Ideal ||Real′), in which the previous
rounds are sampled according to Ideal, where the conditioning of I is on Real′(ZkXk

<j) = zkxk<j ,
since we care about the distribution of I in Real′ under the conditioning (note that I is not even
defined in Ideal).

The characterization given in Equation (17) is strong enough so that we can employ the strat-
egy we described for the first round in all other rounds. Hence, proving that it holds with high
probability over zkxm×k ∼ Ideal, as we argue below, yields that the smooth KL-divergence between

18For instance, let m = 2 and assume that if X2,1 = 1 then the adversary Pk
∗

fails unless X1,i = 1 ∨X2,i = 1 for
all i ∈ [k] (i.e., Pk

∗
does not fail in this case only if all the k verifiers abort). Since the probability that all verifiers

abort in a uniform execution is much smaller than the assumed winning probability of Pk
∗
, we expect the number

of ones in xk1 ∼ Ideal1 to be ≈ k/2. On the other hand, a simple calculation yields that the expected number of
ones in xk1 ∼ Real′1 |I=1 is ≈ 2k/3. This means that for a typical ≈ k/2 ones xk1 ∼ Ideal1, the probability that I = 1
conditioned on Real′1 = xk1 is tiny, much smaller than the 1/k probability this event has with respect to a uniform I.
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Ideal and Real′ is small. The proof of Equation (17) is the main technical part of our paper. To a
large extent it is rather general, not limited to the proof system under consideration, and we hope
it will find applications in other parallel repetition theorems.

Proving Equation (17). We present a rather general approach for proving Equation (17) that
might be of use for other parallel repetition proofs. In particular, we prove the following fact.

Proposition 2.1 (informal). Let P be a distribution over an m-size tuple (Y1, . . . , Ym) and let
{Ej,i}j∈[m],i∈[k] be a set of (arbitrary) events over P . Let Q be the distribution defined by the
following process:

1. Sample uniformly I ∼ [k].

2. For j = 1 to m: sample yj ∼ Yj |Y<j=y<j ,Ej,I .

3. Output (y1, . . . , ym).

Finally, let αj,i(y≤j) =
∏j
j′=1

PrP [Ej′,i|Y≤j′=y≤j′ ]
PrP [Ej′,i|Y<j′=y<j′ ]

. Then

• For all i ∈ [k]: the sequence α0,i = 1, α1,i(Y≤1), . . . , αm,i(Y≤m) is a martingale sequence with
respect to P (i.e., EPYj |Y<j [αj,i(Y≤j))] = αj−1,i(Y<j) for all j ∈ [m]).

• For all i ∈ [k], j ∈ [m] and y≤j ∈ Supp(Y≤j): PrQ[I = i | Y≤j = y≤j ] =
αj,i(y≤j)∑k

i′=1 αj,i′ (y≤j)
.

By letting P = Ideal (and thus (Y1, . . . , Ym+1) = (Zk, Xk
1 , . . . , X

k
m)|W ), and letting Ej,i be the

event that Xj,i = 1, we get Q ≡ Real′. Proposition 2.1 characterizes the conditional distribution
of I in terms of {αj,i}. For this choice of P and {Ej,i}, we are able to prove that for most i’s the
martingale sequence α0,i, α1,i, . . . , αm,i is well concentrated around its mean (i.e., 1). It follows that
for most i’s it holds that PrQ[I = i | Y≤j = y≤j ] ≈ 1/k holds simultaneously for all j ∈ [m], and
Equation (17) follows.19

2.2.5 Small Number of Repetitions

Recall that the analysis above requires the number of repetitions, k, to be at least m2/ε. In the
following we explain how to handle arbitrary numbers of repetitions by reducing the analysis to
a variant of the large number of repetitions case. The reduction is applicable to any “natural”
hardness amplification proof, and not only the one considered above.

Let k < m2/ε, and let Pk
∗

be an adversary violating the noticeable (1− ε)k/m soundness error
of π̃k. Let ` = m2/(εk), and assume for simplicity that ` ∈ N . Consider the “product” cheating
prover P`k

∗
that attacks protocol π̃k` by invoking ` independent copies of Pk

∗
, one for each k

copies of π̃ in π̃`k. It is clear that P`k
∗

breaks the soundness of π̃k` with probability greater than
(1− ε)`k/m. This, however, does not immediately result in a contradiction to the large number of
repetitions case, since it might be that (1− ε)`k/m is not noticeable (even if (1− ε)k/m is), and our
result requires the success probability to be noticeable. In particular, what fails in the proof for

19Actually, for proving Equation (17) we also need to show that for all j ∈ [m],
∑
i′∈B aj,i′ is not too large (namely,

not more than Θ(k)), where B is the (small) set of i’s that do have large jumps in their sequence α0,i, α1,i, . . . , αm,i.
We leave further details to the actual proof.
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not noticeable (1− ε)`k/m is that the rejection sampling in each round might not run in polynomial
time. Fortunately, we prove that for the specific product prover P`k

∗
defined above, the rejection

sampling can be done efficiently: since P`k
∗

invokes ` independent copies of Pk
∗
, the rejection

sampling can be done independently for each copy. By assumption, the probability of breaking the
soundness of each copy, i.e., (1 − ε)k/m, is noticeable. Thus, each of the ` sampling tasks can be
carried out in polynomial time, and thus the whole sampling process runs in polynomial time.

3 Preliminaries

3.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. All logarithms considered here are natural logarithms (i.e., in base e). For a ∈ R
and b ≥ 0, let a± b stand for the interval [a− b, a+ b]. Given sets S1, . . . ,Sk and k-input function
f , let f(S1, . . . ,Sk) := {f(x1, . . . , xj) : xi ∈ Si}, e.g., f(1± 0.1) = {f(x) : x ∈ [.9, 1.1]}. For n ∈ N,
let [n] := {1, . . . , n} and (n) := {0, . . . , n}.

Let poly denote the set all polynomials, ppt denote for probabilistic polynomial time, and
pptm denote a ppt algorithm (Turing machine). A function ν : N → [0, 1] is negligible, denoted
ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and large enough n. Function ν is noticeable,
denoted ν(n) ≥ 1/poly(n), if exists p ∈ poly such that ν(n) ≥ 1/p(n) for all n.

We denote by vn = (v1, . . . , vn) a vector of length n and by vm×n = (vn1 , . . . , v
n
m) a matrix of

size m × n. We sometimes write 0n as the n-bit vector (0, . . . , 0) (same for 1n). Given a binary
vector vn ∈ {0, 1}n, we sometimes treat vn as a set and write 1 ∈ vn (meaning that vn 6= 0n), and
define 1vn := {i ∈ [n] : vi = 1}.

3.2 Distributions and Random Variables

A discrete random variable X over X is sometimes defined by its probability mass function (pmf)
PX (P is an arbitrary symbol). A conditional probability distribution is a function PY |X(·|·) such
that for any x ∈ X , PY |X(·|x) is a pmf over Y. The joint pmf PXY can be written the product
PXPY |X , where (PXPY |X)(x, y) = PX(x)PY |X(y|x) = PXY (xy). The marginal pmf PY can be
written as the composition PY |X ◦ PX , where (PY |X ◦ PX)(y) =

∑
x∈X PY |X(y|x)PX(x) = PY (y).

We denote by PX [W ] the probability that an event W over PX occurs, and given a set S ⊆ X we
define PX(S) = PX [X ∈ S]. The support of a distribution P over a finite set X , denoted Supp(P ),
is defined as {x ∈ X : P (x) > 0}. The statistical distance of two distributions P and Q over a finite
set X , denoted as SD(P,Q), is defined as maxS⊆X |P (S)−Q(S)| = 1

2

∑
x∈S |P (x)−Q(x)|.

Given a set S, let US denote the uniform distribution over the elements of S, and for n ∈ N
let Un := U{0,1}n . We sometimes write x ∼ S or x ← S, meaning that x is uniformly drawn from
S. For p ∈ [0, 1], let Bern(p) be the Bernoulli distribution over {0, 1}, taking the value 1 with
probability p. For n ∈ N and p ∈ [0, 1], let Bin(n, p) be the binomial distribution induces by the
sum of n independent random variables, each is distributed according to Bern(p). Given a boolean
statement S (e.g., X ≥ 5), let 1{S} be the indicator function that outputs 1 if S is a true statement
and 0 otherwise.

We use the following fact.
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Claim 3.1. Let PXY Z be a probability distribution over X × Y × {0, 1} such that PZ|X =
Bern(PY |X [f(Y ) = 1]), for some boolean function f : Y → {0, 1}. Then PX|Z=1 ≡ PX|f(Y )=1.

Namely, Z = 1 implies that X is distributed as X|f(Y ) = 1.20

Proof. Fix x ∈ X and compute

PX|Z(x|1) = PZ|X(1|x) · PX(x)

PZ(1)

= PY |X=x[f(Y ) = 1] · PX(x)

PY [f(Y ) = 1]

=
∑

y∈Y : f(y)=1

PY |X(y|x) · PX(x)

PY [f(Y ) = 1]

=
∑

y∈Y : f(y)=1

PY (y)

PY [f(Y ) = 1]
· PX|Y (x|y)

=
∑

y∈Y : f(y)=1

PY |f(Y )=1(y) · PX|Y (x|y)

= EPY |f(Y )=1

[
PX|Y (x)

]
= PX|f(Y )(x|1)

�

3.2.1 KL-Divergence

Definition 3.2. The divergence (a.k.a. Kullback-Leibler divergence or relative entropy) between
two distributions P,Q on a discrete alphabet X is

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
= Ex∼P log

P (x)

Q(x)
,

where 0 · log 0
0 = 0 and if there exists x ∈ X such that P (x) > 0 = Q(x) then D(P ||Q) =∞.

Definition 3.3. For any p, q ∈ [0, 1] we define D(p||q) := D(Bern(p)||Bern(q)).

Definition 3.4. Let PXY and QXY be two probability distributions over X × Y. The conditional
divergence between PY |X and QY |X is

D(PY |X ||QY |X |PX) = Ex∼PX [D(PY |X=x||QY |X=x)] =
∑
x∈X

PX(x)D(PY |X=x||QY |X=x).

Fact 3.5 (Properties of divergence). PXY and QXY be two probability distributions over X × Y.
It holds that:

1. (Information inequality) D(PX ||QX) ≥ 0, with equality holds iff PX = QX .

20Note that Z is distributed as f(Y ) but is not necessarily equal to f(Y ) (i.e., it might be possible to draw X,Y, Z
such that Z 6= f(Y )). Yet, the distributions X|Z = 1 and X|f(Y ) = 1 are equal.
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2. (Monotonicity) D(PXY ||QXY ) ≥ D(PY ||QY ).

3. (Chain rule)

D(PX1···Xn ||QX1···Xn) =
n∑
i=1

D(PXi|X<i ||QXi|X<i |PX<i).

If QX1···Xn =
∏n
i=1QXi then

D(PX1···Xn ||QX1···Xn) = D(PX1···Xn ||PX1PX2 · · ·PXn) +
n∑
i=1

D(PXi ||QXi).

4. (Conditioning increases divergence) If QY = QY |X ◦ PX (and PY = PY |X ◦ PX), then

D(PY ||QY ) ≤ D(PY |X ||QY |X |PX).

5. (Data-processing) If QY = PY |X ◦QX (and PY = PY |X ◦ PX), it holds that

D(PY ||QY ) ≤ D(PX ||QX).

Fact 3.6. Let X be random variable drawn from P and let W be an event defined over P . It holds
that

D
(
PX|W ||PX

)
≤ log

1

P [W ]

Fact 3.7. Let X,Y be random variables drawn from either P or Q and let W be an event defined
over P . It holds that

Ex∼PX|WD(PY |X=x||QY |X=x) ≤ 1

P [W ]
·D(PY |X ||QY |X ||PX).

Proof.

Ex∼PX|WD(PY |X=x||QY |X=x) =
∑
x

PX|W (x)D(PY |X=x||QY |X=x)

=
∑
x

P [X = x,W ]

P [W ]
D(PY |X=x||QY |X=x)

≤
∑
x

PX(x)

P [W ]
D(PY |X=x||QY |X=x)

=
1

P [W ]
·D(PY |X ||QY |X ||PX),

where the inequality follows since P [X = x,W ] ≤ PX(x) and D(·||·) ≥ 0. �

Fact 3.8. Let X be a random variable over X drawn form either PX or QX and let S ⊆ X . It
holds that

D(PX|X∈S ||QX) ≤ 1

PX(S)
·
(
D(PX ||QX) +

1

e
+ 1

)
.
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Proof. If D(PX ||QX) =∞, then the statement holds trivially. Assume that D(PX ||QX) <∞ and
compute

D(PX|X∈S ||QX) =
∑
x∈S

PX|X∈S(x) log
PX|X∈S(x)

QX(x)

=
∑
x∈S

PX(x)

PX(S)
log

PX(x)/PX(S)

QX(x)

=
∑
x∈S

PX(x)

PX(S)
log

1

PX(S)
+
∑
x∈S

PX(x)

PX(S)
log

PX(x)

QX(x)
.

To bound the left sum, compute∑
x∈S

PX(x)

PX(S)
log

1

PX(S)
≤
∑
x∈S

PX(x)

PX(S)
· 1

PX(S)

≤ 1

PX(S)
,

where the first inequality follows since log(x) ≤ x for all x.
To bound the right sum, compute

∑
x∈S

PX(x)

PX(S)
log

PX(x)

QX(x)
=

1

PX(S)

(∑
x∈S

PX(x) log
PX(x)

QX(x)
+
∑
x/∈S

PX(x) log
PX(x)

QX(x)
−
∑
x/∈S

PX(x) log
PX(x)

QX(x)

)

=
1

PX(S)

(
D(PX ||QX)−

∑
x/∈S

PX(x) log
PX(x)

QX(x)

)
.

The following calculation completes the proof:∑
x/∈S

PX(x) log
PX(x)

QX(x)
=
∑
x/∈S

QX(x)
PX(x)

QX(x)
log

PX(x)

QX(x)

≥
∑
x/∈S

QX(x)(−e−1)

≥ −e−1,

where the first inequlity holds since x log(x) ≥ −e−1 for all x > 0. �

Fact 3.9 ([Mul, Implicit in Corollary 3.2 to 3.4]). For any p ∈ [0, 1] it holds that

1. D((1− δ)p||p) ≥ 1
2δ

2p for any δ ∈ [0, 1].

2. D((1 + δ)p||p) ≥ 1
4 min{δ, δ2}p for any δ ∈ [0, 1

p − 1].

The proof of the following proposition is given in Appendix A.1.
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Proposition 3.10. Let X be a random variable drawn form either P or Q. Assume that PrP [|X| ≤
1] = 1 (i.e., if X is drawn from P then |X| ≤ 1 almost surely) and that there exist ε, σ2,K1,K2 > 0
such that PrQ[|X| ≤ 1] ≥ 1− ε and

PrQ[|X| ≥ t] ≤ K2 · exp

(
− t2

K1σ2

)
for all 0 ≤ t ≤ 1.

Then, there exists K3 = K3(K1,K2, ε) > 0 such that

EP [X2] ≤ K3 · σ2 · (D(P ||Q) + 1).

Smooth KL-divergence. We put forth the following definition of smooth KL-divergence.

Definition 3.11 (α-smooth divergence). Let P and Q be two distributions over a universe U
and let α ∈ [0, 1]. The α-smooth divergence of P and Q, denoted Dα(P ||Q), is defined as
inf(FP ,FQ)∈F{D(FP (P )||FQ(Q))}, for F being the set of randomized functions pairs such that for
every (FP , FQ) ∈ F :

1. Prx∼P [FP (x) 6= x] ≤ α, where the probability is also over the coins of FP .

2. ∀x ∈ U : Supp(FP (x)) ∩ U ⊆ {x} and Supp(FQ(x)) ∩ U ⊆ {x}.

As any useful measure, smooth KL-divergence has data-processing properties.

Proposition 3.12 (Data processing of smooth KL-divergence). Let P and Q be two distributions
over a finite universe U , let α ∈ [0, 1] and let H be a randomized function over U with finite range.
Then Dα(H(P )||H(Q)) ≤ Dα(P ||Q).

Proof. Let (FP , FQ) be a pair of functions such that

1. Prx∼P [FP (x) 6= x] ≤ α, and

2. ∀x ∈ U : Supp(FP (x)) ∩ U ⊆ {x} and Supp(FQ(x)) ∩ U ⊆ {x}.

We assume without loss of generality that for both T ∈ {P,Q}:

∀x ∈ U : Supp(FT (x)) ∩ Supp(H(x)) ⊆ {x}. (18)

Indeed, since FT (x) 6= x implies FT (x) /∈ U , one can add a fixed prefix to the value of FT (x)
when FT (x) 6= x (same prefix for both T ∈ {P,Q}) such that Equation (18) holds (recall that
Supp(H(U)) is finite). Such a change neither effect the properties of FP and FQ stated above, nor
the value of D(FP (P )||FQ(Q)).

For T ∈ {P,Q}, let GT (y) be the randomized function defined by the following processes:

a. Sample x ∼ TX|H(X)=y.

b. Sample z ∼ FT (x).

c. If z = x, output y.

Else, output z.
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By construction and Equation (18), for both T ∈ {P,Q}:

∀y ∈ H(U) : Supp(GT (y)) ∩H(U) ⊆ {y}. (19)

Let YT = H(T ) and let XT be the value of x in a random execution of GT (YT ). It is clear that
XT ∼ T . We note that

Pr[GP (YP ) 6= YP ] = Pr[FP (XP ) 6= XP ] (20)

= Prx∼P [FP (x) 6= x]

≤ α.

The inequality is by the assumption about FP .
Consider the randomized function K(z) that outputs H(z) if z ∈ U , and otherwise outputs z.

It holds that

Pr[K(FT (T )) = z] = Pr[FT (T ) ∈ U ] · Pr[H(FT (T )) = z|FT (T ) ∈ U ]

+ Pr[FT (T ) /∈ U ] · Pr[FT (T ) = z|FT (T ) /∈ U ]

= Pr[FT (T ) = T ] · Pr[H(T ) = z|FT (T ) = T ]

+ Pr[FT (T ) 6= T ] · Pr[FT (T ) = z|FT (T ) 6= T ],

where the second inequality follows from the second property of (FP , FQ); namely, FT (T ) ∈ U ⇐⇒
FT (T ) = T . Similarly,

Pr[GT (H(T )) = z] = Pr[FT (XT ) = XT ] · Pr[H(XT ) = z|FT (XT ) = XT ]

+ Pr[FT (XT ) = XT ] · Pr[FT (XT ) = z|FT (XT ) 6= XT ].

= Pr[FT (T ) = T ] · Pr[H(T ) = z|FT (T ) = T ]

+ Pr[FT (T ) 6= T ] · Pr[FT (T ) = z|FT (T ) 6= T ],

where the second inequality holds since XT ∼ T . Hence, we have GT (H(T )) ≡ K(FT (T )). Thus,
the data-processing inequality for (standard) KL-divergence implies that

D(FP (P )||FQ(Q)) ≥ D(K(FP (P ))||K(FQ(Q))) (21)

= D(GP (H(P ))||GQ(H(Q))).

The proof then follows by Properties (19), (20), (21) of GP and GQ. �

The following fact states that small smooth KL-divergence guarantees that large events with
respect to the left-hand distribution happen with high probability also with respect to the right-
hand distribution.

Proposition 3.13. Let P and Q be two distributions over a universe U . Assume that

1. Prx∼P [x /∈ S] ≤ β and

2. Dα(P ||Q) < α+β
4 .

for some S ⊆ U and α, β ∈ [0, 1]. Then Prx∼Q[x /∈ S] < 2(α+ β).
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Proof. Assume that α+β ≤ 1
2 , since otherwise the proof trivially holds. By the second assumption,

there exist randomized function FP , FQ satisfying

a. D(FP (P )||FQ(Q)) < α+β
4 and

b. Prx∼P [FP (x) 6= x] ≤ α and

c. ∀x ∈ U : Supp(FP (x)) ∩ U , Supp(FQ(x)) ∩ U ⊆ {x}.
By Property a of FP , FQ along with Fact 3.5(5) (data-processing), it holds that

D(1{FP (P ) /∈ S}||1{FQ(Q) /∈ S}) < α+ β

4
(22)

Observe that by Property b and Property c of FP , and by the assumption that Prx∼P [x /∈ S] ≤ β,
it holds that

Prx∼P [FP (x) /∈ S] ≤ Prx∼P [FP (x) 6= x] + Prx∼P [x /∈ S] ≤ α+ β (23)

Assume towards a contradiction that Prx∼Q[FQ(x) /∈ S] ≥ 2(α + β). Then by Equations (22)
and (23) it holds that

D(α+ β||2(α+ β)) ≤ D(1{FP (P ) /∈ S}||1{FQ(Q) /∈ S}) < α+ β

4
,

in contradiction to the fact that D(α+ β||2(α+ β)) ≥ α+β
4 (follows by Fact 3.9). Hence, we

conclude that

Prx∼Q[x /∈ S] ≤ Prx∼Q[FQ(x) /∈ S] < 2(α+ β),

as required, where the first inequality follows by Property c of FQ. �

3.3 Some Concentration Bounds

3.3.1 Sum of Independent Random Variables

Fact 3.14 (Hoeffding’s inequality). Let X = X1 + · · · + Xn be the sum of independent random
variables such that Xi ∈ [ai, bi]. Then for all t ≥ 0:

1. Pr[X − E[X] ≥ t] ≤ exp
(
− 2t2∑n

i=1(bi−ai)2

)
.

2. Pr[|X − E[X]| ≥ t] ≤ 2 exp
(
− 2t2∑n

i=1(bi−ai)2

)
.

Fact 3.15 ([CO13, Theorem 5.3]). Let X ∼ Bin(n, p), then for all t ≥ 0:

1. Pr[X ≥ E[X] + t] ≤ exp

(
− t2

2(np+ t
3)

)
.

2. Pr[X ≤ E[X]− t] ≤ exp
(
− t2

2np

)
.

Fact 3.16 ([CL02, Lemma 2.1]). Let X1, . . . , Xn be independent random variables such that Xi ∼
Bern(pi). For X =

∑n
i=1 biXi with bi > 0 we have E[X] =

∑n
i=1 bipi and we define v =

∑n
i=1 b

2
i pi.

Then for all t ≥ 0:

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− t2

2(v + bt/3)

)
,

for b = max{b1, b2, . . . , bn}.
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3.3.2 Martingales

Fact 3.17 ([Das11, Theorem 14.9]). Let X1, . . . , Xn be a martingale sequence with X0 = 0 and
E
[
X2
i

]
<∞ for all i ≥ 1. Then, for every λ > 0, it holds that

Pr

[
max
i∈[n]
|Xi| ≥ λ

]
≤

E
[
D2
n

]
λ2

,

for D2
n :=

∑n
j=1(Xi −Xi−1)2.

3.4 Smooth Sampling

Let Xm = (X1, . . . , Xm) be a random variable over Um, and let S ⊆ Um be with Pr[Xm ∈ S] = ε.
For j ∈ [m] and xj ∈ U j , let v(xj) = Pr

[
Xm ∈ S|Xj = xj

]
, where Xj = (X1, . . . , Xj). Consider

the following strategy for the task of choosing (x1, . . . , xm) ∈ S in rounds, where the value of xj
should be chosen in the j’th round:

Algorithm 3.18 (Sam). For j = 1 to m do:

1. Do until a break occur:

(a) Sample (x′1, . . . , x
′
m)← (Xm|Xj−1 = (x1, . . . , xj−1)).

(b) Break the loop if (x′1, . . . , x
′
m) ∈ S

2. Set xj = x′j

Output (x1, . . . , xm).
It is clear that Sam outputs (x1, . . . , xm) ∈ S with probability one. We use the following

observation from [Hai13] (implicit in [H̊as+10]):

Fact 3.19 ([Hai13, Proposition 2.5]). E(x1,...,xm)←Sam

[
1

v(x1,...,xj)

]
= 1/ε.

3.5 Interactive Arguments

Definition 3.20 (Interactive arguments). A ppt protocol (P,V) is an interactive argument for
language L ∈ NP with completeness α and soundness error β, if the following holds:

• Pr[(P(w),V)(x) = 1] ≥ α(|x|) for any (x,w) ∈ RL.

• Pr[(P∗,V)(x) = 1] ≤ β(|x|) for any ppt P∗ and large enough x /∈ L.

We refer to party P as the prover, and to V as the verifier.

Soundness against non-uniform provers is analogously defined, and all the results in this paper
readily extend to this model.

Since in our analysis we only care about soundness amplification, in the following we fix L to be
the empty language, and assume the input to the protocol is just a string of ones, which we refer
to as the security parameter.
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Random-terminating variant.

Definition 3.21 (Random-terminating variant, Haitner [Hai13]). Let V be a randomized interactive
algorithm, and let δ ∈ [0, 1]. The δ-random-terminating variant of V, denoted Ṽ, is defined as
follows: algorithm V acts exactly as V does, but adds the following step at the beginning of each
communication round and right after the final interaction round: it tosses an (1− δ, δ) biased coin
(i.e., 1 is tossed with probability δ), if the outcome is one then it outputs 1 (i.e., accept) and halts.
Otherwise, it continues as V would.21

Parallel repetition.

Definition 3.22 (Parallel repetition). Let (P,V) be an interactive protocol, and let k ∈ N. We
define the k-parallel-repetition of (P,V) to be the protocol (Pk,Vk) in which Pk and Vk execute k
copies of (P,V) in parallel, and at the end of the execution, Vk accepts if all copies accept.

4 The Parallel Repetition Theorem

In this section, we restate Theorem 1.1 and prove it using Lemma 4.9, our main technical lemma.
The proof of Lemma 4.9 appears in Section 5, using facts proven in Sections 6 and 7.

Theorem 4.1 (Restatement of Theorem 1.1). Let π = (P,V) be an m-round interactive argument
with soundness error 1 − ε, for m = m(n) ∈ [2, poly(n)] and ε = ε(n) ∈ [1/poly(n), 1/2]. Let Ṽ
be the 1/m-random-terminating variant of V (according to Definition 3.21), and for k = k(n) ≤
poly(n), let π̃k = (Pk, Ṽ

k
) be the k-parallel repetition of π̃ = (P, Ṽ) (according to Definition 3.22).

Then, π̃k has soundness error max{(1− ε)k/c·m,neg(n)} for some universal constant c > 0.

The rest of this section is dedicated to proving Theorem 4.1. We begin with setting the stage
for stating Lemma 4.9 by describing our reduction and providing relevant definitions.

Let π = (P,V),m, ε and k be as in the statement of Theorem 4.1, and assume that there exists
a ppt cheating prover Pk

∗
and p ∈ poly such that for infinity many n’s,

Pr
[
(Pk
∗
, Ṽ

k
)(1n) = 1

]
> max{(1− ε)

k
c·m , 1/p(n)}, (24)

where c > 0 is a constant to be determined by the analysis. We assume for simplicity that Pk
∗

is
deterministic, the reduction for randomized Pk

∗
is done via standard means.

The following discussion is with respect to a fixed n ∈ N. Assume without loss of generality
that Ṽ chooses the whole randomness of V before the interaction begins. Thus, in the beginning
of each round j ∈ [m], Ṽ only chooses the random-terminating bit of that round, and at the end
of the interaction it chooses the (m+ 1)’th coin. Let ` = `(n) ∈ N be a (polynomial) bound on the

number of random bits used by V in π(1n). Hence, a partial view of Ṽ
k

in (Pk
∗
, Ṽ

k
) is of the form

view = (zk, xk1, . . . , x
k
j ), where zk = (z1, . . . , zk) ∈ {0, 1}k·` are the coins of the original V’s, and

xkj′ = (xj′,1, . . . , xj′,k) ∈ {0, 1}k, for j′ ∈ [j], are the random-terminating coins of all Ṽ’s in round

j′. If the ith Ṽ aborts before round j′, we set xj′,i = 0.

21This definition is slightly different than the one appearing in [Hai13] where Ṽ flips a coin at the end of each
communication round (rather than at the beginning of it). Since the coin flipped at the end of round j can be seen
as it were flipped at the beginning of round j + 1, then up to the first coin used in our variant, both definitions are
equivalent. This additional coin is merely used for notation simplification.
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zkx(m+1)×k =



zk

xk1
xk2
.
.
.

xkm+1


=



z1 z2 . . . zk
x1,1 x1,2 . . . x1,k

x2,1 x2,2 . . . x2,k

. . .

. . .

. . .
xm+1,1 xm+1,2 . . . xm+1,k


Figure 1: A matrix representation of a view. Given a full view (zk, xk1, . . . , x

k
m+1) ∈ {0, 1}kl+k(m+1),

we sometimes write the vectors (xk1, . . . , x
k
m+1) as an (m+1)×k−size binary matrix x(m+1)×k whose

jth row is xkj , and look at zk = (z1, . . . , zk) as the “zero-row” (or “zero-round”) coins of the verifiers.
We use j ∈ [m + 1] as a row index which represents the round number, and we use i ∈ [k] as a
column index which represents the verifier’s index in the k-fold execution. By the above, xj,i ∈ {0, 1}
represents the value of the random terminating coin taken by the ith verifier at the beginning of
the jth round, and zi ∈ {0, 1}` represents the zero-round coins of the ith verifier.

Notation 4.2 (The set W of all accepting views). Let W be the set of all accepting (full) views
zkx(m+1)×k ∈ {0, 1}kl+k(m+1).

That is, W is the joint random coins of all Ṽ’s that makes all of them to accept in an execution

of (Pk
∗
, Ṽ

k
). We assume without loss of generality that W is termination consistent :

Definition 4.3. A set S ⊆ {0, 1}k`+k(m+1) is called termination consistent, if {zkx(m+1)×k ∈
{0, 1}k`+k(m+1) : ∀i ∈ [k] ∃j ∈ [m+ 1] s.t. xj,i = 1} ⊆ S.

Namely, any view in which all verifiers accept and abort prematurely is (in particular) an
accepting view.

We use the multiple-instance prover Pk
∗

to construct a single-instance one P∗ that convinces
V to accept with probability greater than 1 − ε. Algorithm P∗ selects at the beginning a session

i ∈ [k] uniformly at random, and emulates a random accepting execution of (Pk
∗
, Ṽ

k
), where V

plays the role of the ith verifier in Ṽ
k
. Before the interaction with V begins, P∗ selects z−i using

rejection sampling: it repeatedly samples a random continuation of (Pk
∗
, Ṽ

k
), conditioned on the

event that x1,i = 1 (i.e., the ith verifier accepts and aborts at the first round) until it finds an

accepting continuation (i.e., Ṽ
k

accepts at the end of interaction). Then, P∗ sets the random coins
z−i according to the corresponding random coins in the accepting continuation. Upon receiving
V’s jth message aj,i, algorithm P∗ selects the jth round random-terminating coins xj,−i of the other
verifiers, using a similar rejection sampling process: it repeatedly samples a random continuation

of (Pk
∗
, Ṽ

k
) conditioned on the history (i.e., the previous ith verifier’s messages a<j,i and the fixed

randomness of the other verifiers z−i, x<j,−i) and conditioned on the event that xj+1,i = 1 (i.e., the
ith verifier accepts and aborts at round j + 1) until it finds an accepting continuation. Then, P∗

sets the jth round random coins xj,−i according to the corresponding jth round randomness of the
accepting continuation, computes the jth round messages bkj = (bj,1, . . . , bj,k) of Pk

∗
and sends to

V the message bj,i.
At the formal description of P∗ given below, it is assumed that at the beginning V sends to P∗

all its random coins, rather than sending a message aj,i in each round j. Hence, P∗ does not need
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to wait for V’s messages to arrive, and is only required to send m messages to V. This is merely
done for presentation clarity, and the validity of this assumption is explained below.22

Algorithm 4.4 (P∗).

Input: 1n. (In the the following, k, `,m, ε, p are all functions of n)

Operation:

1. Sample i← [k].

2. Receive the random coins z ∈ {0, 1}` from V.

3. Let zk = (z1, . . . , zk) = GetZeroRoundCoins(i, z).

4. Set view = zk.

5. For j = 1 to m do:

(a) Let xkj = (xj,1, . . . , xj,k) = GetNextRoundCoins(view, i).

(b) Set view = (view, xkj ).

(c) Send bj,i back to V, where bkj = (bj,1, . . . , bj,k) are the messages that Pk
∗

sends to Ṽ
k

in

the jth round of view.

Algorithm 4.5 (GetZeroRoundCoins).

Input: an index i ∈ [k] and a string z ∈ {0, 1}`.
Operation:

1. Do the following t0 = d8 · p/εe times:

(a) Sample view′ = (zk, xk1, . . . , x
k
m+1) as Ṽ

k
’s view in a random execution of (Pk

∗
, Ṽ

k
),

conditioned on zi = z and x1,i = 1.

(b) If view′ ∈ W, return zk = (z1, . . . , zk).

2. Abort the execution.

Algorithm 4.6 (GetNextRoundCoins).

Input: a (partial) view of Ṽ
k

— view and an index i ∈ [k].

Operation:

1. Set j = round(view) + 1.

2. Do the following t =
⌈
200 ·m2p/ε2

⌉
times:

(a) Sample view′ = (zk, xk1, . . . , x
k
m+1) as Ṽ

k
’s view in a random execution of (Pk

∗
, Ṽ

k
),

conditioned on (zk, xk1, . . . , x
k
j−1) = view and xj+1,i = 1.

22As mentioned in Section 2.2, similar description is also used in [Hai13], and the validity follows by similar
arguments.
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(b) If view′ ∈ W, return xkj = (xj,1, . . . , xj,k).

3. Abort the execution.

It is clear that P∗’s running time is polynomial in n. We should also make sure that P∗ can
indeed be executed without receiving V’s random coins at Step 2. Note that at the jth round, both
GetZeroRoundCoins and GetNextRoundCoins choose view′ conditioned on the event that V, the

ith verifier of Ṽ
k
, aborts at round j + 1 (where j = 0 in case GetZeroRoundCoins is called). Under

this conditioning, Pk
∗

only sees the verifier’s messages till the jth round. It follows that the test
view′ ∈ W done in both procedures, can be replaced with following one: let t be the full transcript
defined by the messages the emulated verifiers (i.e., indexed different from i) on randomness view′,
and those of the ith (real) verifier sent in the first j rounds. In such a transcript, the ith verifier
has only j messages and it aborts and accepts in round j+ 1. The test is verifying that all verifiers
accept in t. Indeed, this test only uses the messages the ith verifier sent till the jth round, and the
randomness of the emulated verifiers.

So it is left to analyze the success (cheating) probability of P∗. As describe in Section 2, the anal-
ysis of P∗’s success probability is done by relating the distribution induced by a random execution
of (P∗,V), which we refer to as the Real distribution, to idealized variants of this distribution.

In the following let ˜GetZeroRoundCoins and ˜GetNextRoundCoins be the unbounded variants
of these algorithms, respectively — the loop in both procedures runs until a good value of view′ is
found (i.e., view′ ∈ W). Observe that both procedures are guaranteed to halt since by assumption
W is termination consistent (Definition 4.3).

The Real and Ideal distributions. Distribution Real over {0, 1}k`+k(m+1) is defined by the
value of (Zk, Xk

1 , . . . , X
k
m+1) induced by the following process: let View be the value of view at

the end of a random execution of (P∗,V), and let (Zk, Xk
1 , . . . , X

k
m+1) be Ṽ

k
’s view in a random

execution of (Pk
∗
, Ṽ

k
) conditioned on (1) (Zk, Xk

1 , . . . , X
k
m) = View, (2) Xm+1,i = 0 and (3)

(Zk, Xk
1 , . . . , X

k
m+1) ∈ W. If under first two conditions Pr

[
(Zk, Xk

1 , . . . , X
k
m+1) ∈ W

]
= 0, set

(Zk, Xk
1 , . . . , X

k
m+1) = (View, 0k).

That is, Real is the view of the emulated execution of (Pk
∗
, Ṽ

k
) induced by a random execution

of (P∗,V), while adding an imaginary step at the end of the interaction for choosing the coins Ṽ
k

use in its final m+ 1 round. Note that by construction, the m+ 1 random-terminating bits of the
ith verifier in Real are all set to zero since in each round j ∈ [m] we choose Xk

j conditioned on
Xj+1,i = 1 (which implies that Xj,i = 0) and also Xm+1,i is always set to 0. Therefore, the coins of

the ith verifier in Real reflects those of a random-terminating verifier Ṽ that uses the random bits
of V in a random execution of (P∗,V), and never aborts. It follows that

Pr[(P∗,V) = 1] ≥ Pr[Real ∈ W] (25)

We also use the distribution R̃eal, defined analogously to Real but with ˜GetZeroRoundCoins

and ˜GetNextRoundCoins taking the role of GetZeroRoundCoins and GetNextRoundCoins in the
definition P∗, respectively. The distribution Ideal is defined as Pk

∗
’s view in a random accepting

execution of (Pk
∗
, Ṽ

k
).

As mentioned in Section 2, for the attack of P∗ to go through, we not only need to get an
accepting view with high probability over R̃eal, but also need that the index in which P∗ embeds
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the real verifier (i.e., i) takes a “good value”. We do that by bounding the smooth KL-divergence

(Definition 3.11) between extensions of Ideal and R̃eal that incorporate this information.
To present our main lemma, we introduce a different formulation of the distributions Ideal and

R̃eal discussed above.

Definition 4.7 (The distributions R and P , and the event W ). For k,m, ` ∈ N and W ⊆
{0, 1}kl × {0, 1}(m+1)×k, define R = RZkX(m+1)×k = RZkRX(m+1)×k by RZk =

∏k
i=1RZi, RZi = U`,

RX(m+1)×k =
∏k
i=1RX1,iX2,i···Xm+1,i, and RXj,i|X<j,i =

{
Bern(0) 1 ∈ X<j,i

Bern(1/m) o.w.
. Let W be the event

over R that ZkX(m+1)×k ∈ W, and let P = PZkX(m+1)×k = RZkX(m+1)×k|W .

It is easy to verify that P and Ideal are the same distribution with respect to the values k,m, `
and the set W described in this section. Indeed, RZkX(m+1)×k denotes the distribution of the

random coins of all k verifiers in Ṽ
k
. Note that for each i ∈ [k], the random coins Zi of the internal

verifier V in Ṽi are chosen uniformly over {0, 1}`, and for each round j ∈ [m + 1], the random
terminating coin Xj,i is chosen according to the Bernoulli distribution with parameter 1/m if all
previous coins X1,i, . . . , Xj−1,i are equal to zero (otherwise, Xj,i is set to zero). Given a full view
ZkX(m+1)×k, the event W denotes whether it is an accepting view (i.e., ZkX(m+1)×k ∈ W). By

definition, R[W ] = Pr
[
(Pk
∗
, Ṽ

k
) = 1

]
> max{(1− ε)k/cm, 1/p}.

Similarly, we reformulate the (unbounded) real distribution R̃eal as follows:

Definition 4.8 (The distribution Q). For k,m, ` ∈ N and for a termination consistent set W ⊆
{0, 1}kl+k(m+1) (according to Definition 4.3), define Q = QI,ZkX(m+1)×k = QIQZkX(m+1)×k|I by
QI = U[k], QZk|I = RZIPZ−I |ZI ,X1,I=1, QXk

j |IZkXk
<j

= PXk
j |ZkXk

<j ,Xj+1,I=1, and QXk
m+1|IZkXk

≤m
={

PXk
m+1|ZkXk

≤m,Xm+1,I=0 R[W |ZkXk
≤m, Xm+1,I = 0] > 0

0k o.w.
.

It is easy to verify that indeed QZkX(m+1)×k and R̃eal are the same distribution (with respect to

the values of k,m, `,W described in this section). In particular, Pr
[
R̃eal ∈ W

]
= QZkX(m+1)×k(W).

Indeed, Q describes the following random process: First choose a uniform I ∈ [k] (as done in
Step 1 of P∗), then choose the uniform random coins ZI ∈ {0, 1}` (as done in Step 2 of P∗), and
then choose Z−I and all {Xj,−I}j∈[m+1] as done in P∗. By definition, for all j ∈ [m] it holds that
Xj+1,I = 1 =⇒ Xj,I = 0. In addition, it always holds that Xm+1,I = 0. Therefore, we always get
that QX1,I ,X2,I ,...,Xm+1,I |I = 0m+1, which perfectly simulates V as the i’th verifier since it behaves

as Ṽ conditioned on all random terminating coins to be zero.
The following lemma, proved in Section 5, is the center of our analysis of P∗’s success probability.

Lemma 4.9 (Main lemma). Let k,m, ` ∈ N, let ε ∈ (0, 1/2], let W ⊆ {0, 1}k`+k(m+1) be a
termination-consistent set (according to Definition 4.3) and let W , R, P and Q, be the event
and distributions from Definitions 4.7 and 4.8 with respect to W,m, k, `. Assume k ≥ λ · m2/ε

and R[W ] > (1 − ε)
k
λ·m for some universal constant λ > 0. Then there exist distributions

P̂ = P̂ZkX(m+1)×k,B and Q̂ = Q̂I,ZkX(m+1)k,B, with P̂ZkX(m+1)×k = P and Q̂I,ZkX(m+1)×k = Q such
that the following holds:

1. D
ε
24 (P̂ ||Q̂ZkX(m+1)×k,B) ≤ λ · mk ·

(
log 1

R[W ] +m
)

.
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2. P̂B(1) ≥ 1− ε/24.

3. ∀(i, zkx(m+1)×k) ∈ Supp(Q̂I,ZkX(m+1)×k|B=1):

(a) R[W |Zi = zi, X1,i = 1] ≥ R[W ]/2.

(b) ∀j ∈ [m+ 1] : R[W |ZkXk
<j = zkxk<j , Xj+1,i = 1] ≥ R[W |ZkXk

<j = zkxk<j ]/2.

That is, Lemma 4.9 states the following with respect to the extensions P̂ and Q̂ of P and Q:
First, the smooth KL-divergence between the distribution P̂ and (a projection of) Q̂ (without the
I) is small. Second, the extension bit B is one with high probability over P̂ , and that conditioned

on this bit to be “on” in Q̂, the (unbounded) attack done in R̃eal (as reflected in Q) actually runs
in polynomial time.

The following is an immediate corollary of Lemma 4.9.

Corollary 4.10. Let ε, k,m,W,P,Q, P̂ , Q̂, λ be as in Lemma 4.9, and assume that k ≥ c ·m2/ε

and R[W ] > (1− ε)
k
c·m for c = 128 · λ. Then D

ε
24 (P̂ ||Q̂ZkX(m+1)×k,B) < ε/32.

Proof. Since R[W ] > (1− ε)
k
c·m > (1− ε)

k
λ·m , we can apply Lemma 4.9 (1) to obtain that

D
ε
24 (P̂ ||Q̂Zk,X(m+1)×k,B) <

λm

k
·

(
log

1

(1− ε)
k
cm

+m

)
(26)

≤ λm

k
·
(

2ε · k
cm

+m

)
= 2ε

λ

c
+
λm2

k
,

<
ε

32
.

The first inequality holds since R[W ] > (1 − ε)
k
c·m , the second one holds since 1 − ε ≥ e−2ε for

ε ∈ [0, 1/2] and the last one holds since k ≥ 128λ ·m2/ε and since c = 128λ. �

In the next section we use Lemma 4.9 for proving the main theorem, while assuming—like
Lemma 4.9 does—that the number of repetitions is sufficiently large (i.e., k ≥ c · m2/ε for the
universal constant c of Corollary 4.10). In Section 4.2 we prove the main theorem for the case that
k < c ·m2/ε, via a reduction to the large k case.

4.1 Proving Theorem 4.1 for Large Number of Repetitions

Assume k ≥ c · m2/ε (for the constant c of Corollary 4.10). We start by proving the following
simple claim, which states that in P , all the values {R[W |ZkXk

<j ]}j∈[m] are large enough with high
probability.

Claim 4.11. Let S = {zkx(m+1)×k ∈ {0, 1}k`+k(m+1) : ∀j ∈ [m]. R[W |(ZkXk
<j) = zkxk<j ] ≥ ε ·

R[W ]/24m}. Then PZkX(m+1)×k(S) ≥ 1− ε/24.

Proof. By Fact 3.19, it holds that EP
ZkXk

<j

[
1

R[W |ZkXk
<j ]

]
= 1

R[W ] for every j ∈ [m]. Thus, the proof

follows by Markov inequality and union bound. �
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At this point, we proved that P and Q are close enough by smooth divergence (Lemma 4.9(1)),
and we proved that in P all the values {R[W |ZkXk

<j ]}mj=1 are large enough with high probability

(Claim 4.11). In addition, note that by definition P always produces ZkX(m+1)×k ∈ W. Therefore,
we can deduce by Proposition 3.13 that in Q we also have ZkX(m+1)×k ∈ W and large enough
values of {R[W |ZkXk

<j ]}mj=1 with high probability. Using Items 2 and 3 of Lemma 4.9, we actually

can deduce that the above is true even for the values {R[W |ZkXk
<j , Xj+1,I = 1]}mj=1. The formal

result of the above informal plan is state in the following corollary.

Corollary 4.12. Assume that R[W ] > (1 − ε)
k
c·m , where c is the constant from Corollary 4.10,

and let

T = {(i, zkx(m+1)×k) ∈ [k]× {0, 1}k`+k(m+1) :
(
zkx(m+1)×k ∈ W

)
,

(R[W |Zi = zi, X1,i = 1] ≥ R[W ]/2),(
∀j ∈ [m]. R[W |(ZkXk

<j) = zkxk<j , Xj+1,i = 1] ≥ ε ·R[W ]/48m
)
}

Then QI,ZkX(m+1)×k(T ) > 1− ε/4.

Proof. In the following, let S be the set from Claim 4.11 and let

Ŝ = (W ∩ S)× {1}. (27)

Note that by Claim 4.11 and Lemma 4.9(2,3) and by the fact that P (W) = 1, it holds that

P̂ (Ŝ) > 1− ε/12. (28)

In addition, by Corollary 4.10 it holds that

D
ε
24 (P̂ ||Q̂ZkX(m+1)×k,B) < ε/32 (29)

Therefore, we can apply Proposition 3.13 on P̂ and Q̂ with α = ε
24 , β = ε

12 and the set Ŝ to
obtain that

Q̂ZkX(m+1)×k,B(Ŝ) > 1− ε/4, (30)

and we conclude that

Q(T ) = Q̂I,ZkX(m+1)×k(T )

≥ Q̂ZkX(m+1)×k,B(Ŝ)

> 1− ε/4,

as required, where the first inequality holds since Lemma 4.9(3) yields that for any zkx(m+1)×k ∈
W ∩ S and any i ∈ Supp(Q̂I|(ZkX(m+1)×k)=zkx(m+1)×k,B=1) we have (i, zkx(m+1)×k) ∈ T .

�

The proof of Theorem 4.1 in the case k ≥ c ·m2/ε, given below, follows Corollary 4.12.
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Proof of Theorem 4.1 for k ≥ c ·m2/ε. Let (P,V),m = m(n), ε = ε(n), k = k(n) be as in the
statement of Theorem 4.1 and assume towards a contradiction the existence of a polynomial-time
adversarial prover Pk

∗
and a polynomial p such that Equation (24) holds for infinity many n’s,

where c (the constant from the theorem statement) is set to the constant c of Corollary 4.12. In the
following, fix such value of n and assume that k ≥ c ·m2/ε. Let W be the set of all accepting (full)

views (see Notation 4.2), let P∗ be the adversarial prover described in Algorithm 4.4, let Real, R̃eal
and Ideal be the distributions induced by Algorithm 4.4, and let P and Q be distributions from
Definitions 4.7 and 4.8, respectively.

In the following, let T be the set from Corollary 4.12 and let T be the event over QI,ZkX(m+1)×k

that (I, ZkX(m+1)×k) ∈ T . By Corollary 4.12,

Q[T ] > 1− ε/4 (31)

Since R[W ] > 1/p, Equation (31) yields that with probability 1− ε/4 over (i, zkx(m+1)×k) ∼ Q
(i.e., according to R̃eal with I), the event T happens, yielding that 1/R[W |Zi = zi, X1,i = 1] ≤ 2p
and {1/R[W |ZkXk

<j = zkxk<j , Xj+1,i = 1]}j∈[m] are all at most 48mp/ε. In particular, conditioned

on T , the expected number of sampling attempts in ˜GetNextRoundCoins for each round j ∈
[m] (which equals to 1/R[W |(ZkXk

<j) = zkxk<j , Xj+1,i = 1]) is at most 48mp/ε. Therefore, by
Markov inequality and a union bound, conditioned on T , with probability less than ε/4 over a

random execution of Algorithm 4.4 (with ˜GetZeroRoundCoins and ˜GetNextRoundCoins), there

exists j ∈ [m] such that the jth call to ˜GetNextRoundCoins fails to find accepting continuation
after t (=

⌈
200 ·m2p/ε2

⌉
) sampling attempts. In addition, conditioned on T , the expected number

of sampling attempts in ˜GetZeroRoundCoins is 1/R[W |Zi = zi, X1,i = 1] ≤ 2p. Therefore, by

Markov inequality we have that conditioned on T , the probability that ˜GetZeroRoundCoins fails
after t0 (= d8 · p/εe) rounds is at most ε/4.

In the following, given a random execution of Algorithm 4.4 (with ˜GetZeroRoundCoins and
˜GetNextRoundCoins), we denote by A0 the event that ˜GetZeroRoundCoins finds an accepting

continuation within t0 sampling attempts and let A be the event that each of the m calls to
˜GetNextRoundCoins finds an accepting continuation within t sampling attempts. By combining

all parts of above analysis, we obtain that

Pr[¬A0 ∨ ¬A] ≤ Pr[¬T ] + Pr[¬A0 | T ] + Pr[¬A | T ]

< ε/4 + ε/4 + ε/4

= 3ε/4.

In words, this means that with probability at least 1−3ε/4 over a random execution of Algorithm 4.4

(with ˜GetZeroRoundCoins and ˜GetNextRoundCoins), ˜GetZeroRoundCoins finds an accepting con-

tinuation within t0 sampling attempts and each of the m calls to ˜GetNextRoundCoins finds an
accepting continuation within t sampling attempts. Observe that the above also holds over a ran-
dom execution of Algorithm 4.4 with GetZeroRoundCoins and GetNextRoundCoins (i.e., A0 ∧ A
happens with the same probability over Real, which means that it does not abort prematurely).

Since Real |A0∧A ≡ R̃eal|A0∧A, we obtain that

SD(Real, R̃eal) ≤ Pr[¬A0 ∨ ¬A] < 3ε/4 (32)
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Finally, observe that Corollary 4.12 yields (in particular) that QZkX(m+1)×k(W) =

Pr
[
R̃eal ∈ W

]
> 1− ε/4 and we conclude that

Pr[(P∗,V) = 1] ≥ Pr[Real ∈ W] ≥ Pr
[
R̃eal ∈ W

]
− SD(Real, R̃eal) > 1− ε,

in contradiction to the soundness property of (P,V). �

4.2 Handling Small Number of Repetitions

In this section we complete the proof of Theorem 4.1 by proving it for small number of repetition
using a reduction to the many repetitions case. The rather long and technical reduction follows the
intuition given in Section 2.2.5, and a first time reader may prefer to skip it and move to the proof
of the main lemma given in Section 5.

In the following let (P,V),m = m(n), ε = ε(n), k′ = k′(n) be as in the statement of Theorem 4.1
(replacing k with k′) and assume that there exists a polynomial-time adversarial prover Pk

′∗
and a

polynomial p such that

Pr
[
(Pk

′∗
, Ṽ

k′

)(1n) = 1
]
> max

(
(1− ε)

k′
c·m ,

1

p(n)

)
, (33)

for infinity many n’s, where c is the universal constant from Corollary 4.12. In the following, fix a
value of n such that Equation (33) holds and k′ < c ·m2/ε, and let k = k′ · r for r =

⌈
c ·m2/ε

⌉
. We

first use the adversarial prover Pk
′∗

(against Ṽ
k′

) to construct an adversarial prover Pk
∗

(against

Ṽ
k
) as follows: Pk

∗
divides the set of k verifiers into r sets, each of size k′, and executes Pk

′∗
on

each set (independently). By Equation (33) it holds that

Pr
[
(Pk
∗
, Ṽ

k
)(1n) = 1

]
>

(
(1− ε)

k′
c·m

)r
= (1− ε)

k
c·m (34)

We now use Pk
∗

to construct P∗ that convinces V with probability greater than 1 − ε. The
construction is very similar to the one described in Algorithm 4.4, but there is an important dif-
ference. In Algorithm 4.4, in order to find an accepting continuation (both in GetZeroRoundCoins
and GetNextRoundCoins), it was suffice to use t0, t ≤ poly(n) sampling attempts that make Equa-

tion (32) to hold, since we assumed that Pr
[
(Pk
∗
, Ṽ

k
)(1n) = 1

]
≥ 1/p(n) for some polynomial p.

Here, Pr
[
(Pk
∗
, Ṽ

k
)(1n) = 1

]
might be negligible, so the same construction does not work. Yet, since

Pk
∗

consists of r independent copies of Pk
′∗

and since Pr
[
(Pk

′∗
, Ṽ

k′

)(1n) = 1
]
≥ 1/p, algorithm P∗

can find an accepting continuation by searching in each copy separately and using only poly(n)
sampling attempts in each copy.

Formally, P∗ has the same structure of Algorithm 4.4, but uses modified variants of
GetZeroRoundCoins and GetNextRoundCoins that searches for accepting continuation in
each copy. The formal definitions of the modified procedures GetZeroRoundCoins and
GetNextRoundCoins appear at Algorithms 4.13 and 4.14, respectively. In the following, we write

a partial view of (Pk
∗
, Ṽ

k
) in the form view = (zk = (zk

′
1 , . . . , z

k′
r ), xk1 = (xk

′
1,1, . . . , x

k′
1,r), . . . , x

k
j =

(xk
′
j,1, . . . , x

k′
j,r)) and for s ∈ [r] we denote by view[s] = (zk

′
s , x

k′
1,s, . . . , x

k′
m+1,s) the partial view of the
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s’th part of verifiers Ṽ
k
[s] = (Ṽk′(s−1)+1, . . . , Ṽk′s). In addition, we denote by W ′ the set of all

accepting views (zk
′
, xk

′
1 , . . . , x

k′
m+1) ∈ {0, 1}k′l+k′(m+1) of (Pk

′∗
, Ṽ

k′

), and by W = W ′r the set of

all accepting views (zk, xk1, . . . , x
k
m+1) ∈ {0, 1}kl+k(m+1) of (Pk

∗
, Ṽ

k
).

Algorithm 4.13 (GetZeroRoundCoins, redefined).

Input: an index i ∈ [k] and a string z ∈ {0, 1}`.
Operation:

1. Let si = di/k′e ∈ [r] and i′ = i− k′(si − 1) ∈ [k′].

2. For s = 1 to r:

(a) Do the following t0 = d8pr/εe times:

i. Choose zk
′
x(m+1)×k′ as Ṽ

k′

’s view in a random execution of (Pk
′∗
, Ṽ

k′

). If s = si,
do the above choosing conditioned on zi′ = z and x1,i′ = 1.

ii. If zk
′
x(m+1)×k′ ∈ W ′, set zk

′
s′ = zk

′
and go to the next iteration of the outer loop.

(b) Abort the execution.

3. Return zk = (zk
′

1 , . . . , z
k′
r ).

Algorithm 4.14 (GetNextRoundCoins, redefined).

Input: a (partial) view of Ṽ
k

and an index i ∈ [k].

Operation:

1. Let si = di/k′e ∈ [r] and i′ = i− k′(si − 1) ∈ [k′].

2. Set j = round(view) + 1.

3. For s = 1 to r:

(a) Do the following t =
⌈
4 · 106m2r2p/ε4

⌉
times:

i. Choose zk
′
x(m+1)×k′ as Ṽ

k′

’s view in a random execution of (Pk
′∗
, Ṽ

k′

) conditioned
on zk

′
xk
′
<j = view[s]. If s = si, do the above choosing conditioned on xj+1,i′ = 1.

ii. If zk
′
x(m+1)×k′ ∈ W ′, set xk

′
j,s = xk

′
j and go to the next iteration of the outer loop.

(b) Abort the execution.

4. Return (xk
′
j,1, . . . , x

k′
j,r).

We start by redefining the real and ideal distributions. Let ˜GetZeroRoundCoins,
˜GetNextRoundCoins be the “unbounded variants” of the new definitions of GetZeroRoundCoins

and GetNextRoundCoins, respectively, and let Real and R̃eal be the distributions induced by Al-
gorithm 4.4 with the new GetZeroRoundCoins and GetNextRoundCoins. The key observation is
that the R̃eal which is induced by Algorithm 4.4 with the old variants of GetZeroRoundCoins and
GetNextRoundCoins (Algorithms 4.5 and 4.6) has the same distribution as R̃eal with the new
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variants (Algorithms 4.13 and 4.14). This equality simply holds by the fact that Pk
∗

executes r
independent copies of Pk

′∗
.

In the following, let W ,R,P and Q be the event and distributions defined in Definitions 4.7
and 4.8, respectively, and we denote by R′ and P ′ the distribution R and P (respectively) from
Definition 4.7 with respect to k′ and W ′. First, since W =W ′r, it holds that R[W ] = R′[W ]r and
for any zkx(m+1)×k ∈ {0, 1}kl+(m+1)k where zk = (zk

′
1 , . . . , z

k′
r ) and xkj = (xk

′
j,1, . . . , x

k′
j,r) it holds

that

PZk(zk) =
r∏
s=1

P ′
Zk′

(zk
′
s ) (35)

and for j ∈ [m+ 1]:

PXk
j |ZkXk

<j
(xkj |zkxk<j) =

r∏
s=1

P ′
Xk′
j |Zk

′
j X

k′
<j

(xk
′
j,s|zk

′
s x

k′
<j,s) (36)

Second, by the above observation about R̃eal, it holds that R̃eal ≡ QZkX(m+1)×k . Since k ≥ c ·m2/ε,

we now can apply Lemma 4.9 on P and Q to deduce that R̃eal ∈ W with high probability. However,
this is not enough since we still need to figure out what is the probability that Real ∈ W. In
other words, we need to bound the probability that GetZeroRoundCoins or GetNextRoundCoins
(Algorithms 4.13 and 4.14) abort prematurely. We do so by showing that with high probability, the
expected number of sampling attempts in each part of GetZeroRoundCoins or GetNextRoundCoins
is bounded.

As first step, the following claim state that with high probability over zkx(m+1)×k ∼
PZkX(m+1)×k , all values {R[W |(ZkXk

<j) = zkxk<j ]}j are “close enough” to their expected value

R[W ], and all the internal values {R′[W |(Zk′Xk′
<j) = zk

′
s x

k′
j,s]}j,s which captures most of the ex-

pected number of sampling attempts of GetNextRoundCoins, are bounded.

Claim 4.15. Let d = 72m/ε, let d′ = r · d and let

S = {(zk = (zk
′

1 , . . . , z
k′
r ), xk1 = (xk

′
1,1, . . . , x

k′
1,r), . . . , x

k
m+1 = (xk

′
m+1,1, . . . , x

k′
m+1,r)) ∈ {0, 1}kl+k(m+1) :(

∀j ∈ [m]. R[W |(ZkXk
<j) = zkxk<j ] ∈ [R[W ]/d, d ·R[W ]]

)
∧(

∀j ∈ [m] ∀s ∈ [r]. R′[W |(Zk′Xk′
<j) = zk

′
s x

k′
j,s] ≥ R′[W ]/d′

)
}.

Then PZkX(m+1)×k(S) ≥ 1− ε/24.

Proof. We write S = S1 ∩ S2 ∩ S3 where S1 is defined by only considering the lower bound of the
first condition in S (i.e., ≥ R[W ]/d), S2 is defined by only considering the upper bound of the first
condition (i.e., ≤ d · R[W ]) and S3 is defined by only considering the second condition. We now
handle each set separately.

By Fact 3.19 it holds that EP
ZkXk

<j

[
1

R[W |ZkXk
<j ]

]
= 1

R[W ] for every j ∈ [m]. Therefore, by

Markov inequality and union bound we obtain that

PZkX(m+1)×k(S1) ≥ 1− ε/72 (37)
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Next, note that EP
ZkXk

<j

[
R[W |ZkXk

<j ]
]

= R[W ] for every j ∈ [m]. Again, by Markov inequality

and union bound we obtain that

PZkX(m+1)×k(S2) ≥ 1− ε/72 (38)

Finally, observe that for any j ∈ [m] and s ∈ [r], it holds that

Ezkxk<j∼PZkXk
<j

[
1

R′[W |(Zk′Xk′
<j)=z

k′
s x

k′
<j,s]

]
= EP ′

Zk
′
Xk
′
<j
|W

[
1

R′[W |Zk′Xk′
<j ]

]
= 1

R′[W ] , where the last

equality holds by Fact 3.19. Hence, by Markov inequality and union bound we obtain that

PZkX(m+1)×k(S3) ≥ 1− ε/72 (39)

and we conclude that PZkX(m+1)×k(S) ≥ 1− ε/24 by Equations (37) to (39). �

As a corollary of Lemma 4.9, Corollary 4.10, and Claim 4.15, we now prove that with high
probability over (i, zkx(m+1)×k) ∼ Q, we have bounded expected number of sampling attempts in
each of the m · r iterations of GetNextRoundCoins.

Corollary 4.16. Assume that R[W ] > (1 − ε)
k
c·m , where c is the constant from Corollary 4.10,

and let

T = {(i, zk = (zk
′

1 , . . . , z
k′
r ), xk1 = (xk

′
1,1, . . . , x

k′
1,r), . . . , x

k
m+1 = (xk

′
m+1,1, . . . , x

k′
m+1,r)) ∈ [k]× {0, 1}kl+k(m+1) :(

zkx(m+1)×k ∈ W
)
∧(

R′[W |Zi′ = zi, X1,i′ = 1] ≥ R′[W ]/2
)
∧(

∀j ∈ [m] ∀s ∈ [r] \ si. R′[W |(Zk
′
Xk′
<j) = zk

′
s x

k′
<j,s] ≥ ε ·R′[W ]/72mr

)
∧(

∀j ∈ [m]. R′[W |(Zk′Xk′
<j) = zk

′
six

k′
<j,si , Xj+1,i′ = 1] ≥ ε3 ·R′[W ]/106mr

)
},

where si = di/k′e ∈ [r] and i′ = i− k′(s− 1) ∈ [k′]. Then Qi,ZkX(m+1)×k(T ) ≥ 1− ε/4.

Proof. Let S be the set from Claim 4.15, let

Ŝ = (W ∩ S)× {1},

and recall that k ≥ n ·m2/ε and that R[W ] > (1−ε)
k
c·m where c is the constant from Corollary 4.10.

By Claim 4.15 and Lemma 4.9(2) and by the fact that PZkX(m+1)×k(W) = 1, it holds that

P̂ZkX(m+1)×k,B(Ŝ) > 1− ε/12.

In addition, by Corollary 4.10 it holds that

D
ε
24 (P̂ZkX(m+1)×k,B||Q̂ZkX(m+1)×k,B) < ε/32

Therefore, we can apply Proposition 3.13 on P̂ and Q̂ with α = ε
24 , β = ε

12 and the set Ŝ to obtain
that

Q̂ZkX(m+1)×k,B(Ŝ) > 1− ε/4. (40)

35



In the following, fix zkx(m+1)×k ∈ W ∩ S and i ∈ Supp(Q̂I|(ZkX(m+1)×k)=zkx(m+1)×k,B=1). First,
observe that

R′[W ]r−1 ·R′[W |Zi′ = zi, X1,i′ = 1] = R[W |Zi = zi, X1,i = 1]

≥ R[W ]/2

= R′[W ]r/2

=⇒ R′[W |Zi′ = zi, X1,i′ = 1] ≥ R′[W ]/2, (41)

where the inequality holds by Lemma 4.9(3). Second, for any j ∈ [m] it holds that

R[W ]

2d
≤ R[W |(ZkXk

<j) = zkxk<j , Xj+1,i = 1]

= R′[W |(Zk′Xk′
<j) = zk

′
six

k′
<j,si , Xj+1,i′ = 1] ·

∏
s∈[r]\{si}

R′[W |(Zk′Xk′
<j) = zk

′
s x

k′
<j,s]

= R′[W |(Zk′Xk′
<j) = zk

′
six

k′
<j,si , Xj+1,i′ = 1] ·

R[W |(ZkXk
<j) = zkxk<j ]

R′[W |(Zk′Xk′
<j) = zk′six

k′
<j,si

]

≤ R′[W |(Zk′Xk′
<j) = zk

′
six

k′
<j,si , Xj+1,i′ = 1] · d ·R[W ]

R′[W ]/d′
,

where d and d′ are the values from Claim 4.15. The first inequality holds since zkx(m+1)×k ∈ S
and since R[W |(ZkXk

<j) = zkxk<j , Xj+1,i = 1] ≥ R[W |(ZkXk
<j) = zkxk<j ]/2 (Lemma 4.9(3)) and

the last one simply holds by the fact that zkx(m+1)×k ∈ S. Therefore, we deduce that

∀j ∈ [m]. R′[W |(Zk′Xk′
<j) = zk

′
six

k′
<j,si , Xj+1,i′ = 1] ≥ R′[W ]

2d2d′
>
ε3 ·R′[W ]

106 ·mr
. (42)

In addition, since zkx(m+1)×k ∈ S. it holds that

∀j ∈ [m] ∀s ∈ [r]. R′[W |(Zk′Xk′
<j) = zk

′
s x

k′
j,s] ≥ R′[W ]/d′ =

ε ·R′[W ]

72mr
, (43)

and we deduce from Equations (40) to (43) that

∀zkx(m+1)×k ∈ W ∩ S ∀i ∈ Supp(Q̂I|(ZkX(m+1)×k)=zkx(m+1)×k,B=1).

(i, zkx(m+1)×k) ∈ T . (44)

Hence, we conclude that

QI,ZkX(m+1)×k(T ) = Q̂I,ZkX(m+1)×k(T )

≥ Q̂ZkX(m+1)×k,B(Ŝ)

> 1− ε/4,

as required, where the first inequality holds by Equation (44) and the second one by Equation (40).
�
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The proof of Theorem 4.1 for small number of repetitions, given below, follows Corollary 4.16.

Proof of Theorem 4.1 for Small Number of Repetitions. Let (P,V),m, ε, k′ be as in the
statement of Theorem 4.1 (replacing k with k′) and assume towards a contradiction the existence
of a polynomial-time adversarial prover Pk

′∗
and a polynomial p such that Equation (33) holds

infinity many n, where c (the constant from the theorem statement) is set to the constant c of
Corollary 4.10. In the following we fix a value of n such that Corollary 4.10 holds and assume that
k′ < c ·m2/ε.

In the following, let ` = `(n) be a (polynomial) bound on the number of random coins used by

V, let k = k′ · r for r =
⌈
c ·m2/ε

⌉
and let Pk

∗
be the adversarial prover (against Ṽ

k′

) that divides

the set of k verifiers into r sets, each of size k′, and executes Pk
′∗

on each set (independently).
Let P∗ be the adversarial prover (against V) described in Algorithm 4.4 with the new variants of

GetZeroRoundCoins and GetNextRoundCoins (Algorithm 4.13 and Algorithm 4.13, respectively),

let Real, R̃eal and Ideal be distributions induced by P∗, let W be the set of all accepting (full)

views of (Pk
∗
, Ṽ

k
), let W ′ be the set of all accepting (full) views of (Pk

′∗
, Ṽ

k′

), let R,P and Q be
the distributions from Definitions 4.7 and 4.8 with respect to m,`,k and W and let R′,P ′ and Q′

be distributions from Definitions 4.7 and 4.8 with respect to m,`,k′ and W ′.
In the following, let T be the set from Corollary 4.16 and let T be the event over QI,ZkX(m+1)×k

that (I, ZkX(m+1)×k) ∈ T . By Corollary 4.12 it holds that

Q[T ] > 1− ε/4 (45)

Since R[W ] > 1/p, Equation (45) yields that with probability at least 1 − ε/4 over

(i, zkx(m+1)×k) ∼ QI,ZkX(m+1)×k (i.e., over R̃eal), T happens which yields that 1/R′[W |Zi′ =
zi, X1,i′ = 1] ≤ 2p (i.e., the expected number of sampling attempts in the si’th iteration of
GetZeroRoundCoins is bounded) and {1/R′[W |(Zk′Xk′

<j) = zk
′
s x

k′
<j,s]}j∈[m],s∈[r]\{si} ≤ 72mrp/ε

(i.e., all expected number of sampling attempts in each round j ∈ [m] and each iteration s 6= si of
Algorithm 4.14 are bounded) and {1/R′[W |(Zk′Xk′

<j) = zk
′
six

k′
<j,si

, Xj+1,i′ = 1]}mj=1 ≤ 106m2rp/ε3

(i.e., all expected number of sampling attempts in the si’th iteration of each round j ∈ [m] are
bounded). By Markov inequality and union bound, conditioned on T , the probability that there

exists a round j ∈ [m] and an iteration s ∈ [r] such that ˜GetNextRoundCoins (the unbounded
variant of Algorithm 4.14) exceeds t =

⌈
4 · 106m2r2p/ε4

⌉
number of sampling attempts is at most

ε/4. Moreover, note the expected number of sampling attempts in each iteration s 6= si of Al-
gorithm 4.13 is 1/R′[W ] ≤ p and recall that T implies that 1/R′[W |Zi′ = zi, X1,i′ = 1] ≤ 2p.
Therefore, conditioned on T , we obtain by Markov inequality and union bound that the proba-

bility there exists an iteration s ∈ [r] such that ˜GetZeroRoundCoins (the unbounded variant of
Algorithm 4.13) exceeds t0 = d8pr/εe number of sampling attempts is at most ε/4.

In the following, given a random execution of Algorithm 4.4 (with ˜GetZeroRoundCoins and
˜GetZeroRoundCoins, the unbounded variants of Algorithms 4.13 and 4.14), we denote by A0 the

event that ˜GetZeroRoundCoins finds an accepting continuation within t0 sampling attempts in

each iteration s ∈ [r] and let A be the event that each of the m calls to ˜GetNextRoundCoins finds
an accepting continuation within t sampling attempts in each iteration s ∈ [r]. By combining all
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parts of above analysis, we obtain that

Pr[¬A0 ∨ ¬A] ≤ Pr[T ] + Pr[¬A0 | T ] + Pr[¬A | T ]

< ε/4 + ε/4 + ε/4

= 3ε/4

Since Real |A0∧A ≡ R̃eal|A0∧A, we obtain that

SD(Real, R̃eal) ≤ Pr[¬A0 ∨ ¬A] < 3ε/4 (46)

Finally, observe that Corollary 4.16 yields (in particular) that Pr
[
R̃eal ∈ W

]
> 1− ε/4 and we

conclude that

Pr[(P∗,V) = 1] ≥ Pr[Real ∈ W] ≥ Pr
[
R̃eal ∈ W

]
− SD(Real, R̃eal) > 1− ε,

in contradiction to the soundness property of (P,V). �

5 The Extensions of P and Q

In this section, we give the structure and a sketch of the proof of Lemma 4.9, while most of the
technical details appear in Sections 6 and 7.

Rather than presenting the extensions P̂ and Q̂ of the type stated in Lemma 4.9 and prove that
their smooth KL-divergence is small, we define many-bit variants of these extensions and bound
their smooth KL-divergence. Lemma 4.9 then follows by a data-processing argument. Moving to
many-bit extensions is useful, since the additional bits, essentially one bit per round, enable us to
apply the chain rule of KL-divergence more easily for bounding their smooth KL-divergence.

The structure of this section is as follows. In Section 5.1 we give a many-bit form of Lemma 4.9,
Lemma 5.3, and use it for proving Lemma 4.9. In Section 5.2, we define various functions and sets
that will be crucial to the proof of Lemma 5.3. We explain these definitions by sketching the proof
for the divergence-bound part of Lemma 5.3. In Section 5.3, we define—using the aforementioned
functions and sets—the many-bit extensions required by Lemma 5.3. In Section 5.4, we state two
major properties of these extensions (proven in Sections 6 and 7) and use those properties to derive
Lemma 5.3.

5.1 A Many-bit Variant of Lemma 4.9

In this section we state a many-bit variant form of Lemma 4.9 that we find easier to work with,
and show that it implies Lemma 4.9. In addition, to make the analysis of the last round similar to
previous rounds, we add an additional “row” to the distribution R defined in previous section. In
this section, we use the following definitions which are equivalent to Definitions 4.7 and 4.8.

Definition 5.1 (The distributions R and P , and the event W , revisited). For k,m, ` ∈ N and
W ⊆ {0, 1}kl+k(m+1), define R = RZkX(m+2)×k = RZkRX(m+2)×k by RZk =

∏k
i=1RZi, RZi = U`,

RX(m+2)×k =
∏k
i=1RX1,iX2,i···Xm+2,i, and RXj,i|X<j,i =

{
Bern(0) 1 ∈ X<j,i

Bern(1/m) o.w.
. Let W be an event

over R that ZkX(m+1)×k ∈ W. Finally, define P = PZkX(m+1)×k = RZkX(m+1)×k|W .
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Namely, the only difference from Definition 4.7 is that now R has also an (m+ 2)’th row Xk
m+2.

Yet, it is easy to verify that the distribution of RZkX(m+1)×k (i.e., without the (m+ 2)’th row) and
PZkX(m+1)×k are equal to the ones in Definition 4.7.

Definition 5.2 (The distribution Q, revisited). For k,m, ` ∈ N and for a termination consistent set
W ⊆ {0, 1}kl+k(m+1) (according to Definition 4.3), define Q = QI,ZkX(m+1)×k = QIQZkX(m+1)×k|I
by QI = U[k], QZk|I = RZIPZ−I |ZI ,X1,I=1, QXk

j |IZkXk
<j

= PXk
j |ZkXk

<j ,Xj+1,I=1, and QXk
m+1|IZkXk

≤m
={

PXk
m+1|ZkXk

≤m,Xm+2,I=1 R[W |ZkXk
≤m, Xm+2,I = 1] > 0

0k o.w.
.

Namely, the only difference from Definition 4.8 is how we define QXk
m+1|IZkXk

≤m
: In Defini-

tion 4.8 we defined it using PXk
m+1|ZkXk

≤m,Xm+1,I=0 while in Definition 5.2 we defined it using

PXk
m+1|ZkXk

≤m,Xm+2,I=1. Yet, observe that by definition of R and P in Definition 5.1, both defi-

nitions are equivalent since

PXk
m+1|ZkXk

≤m,Xm+2,I=1 ≡ PXk
m+1|ZkXk

≤m,Xm+1,I=0,Xm+2,I=1 ≡ PXk
m+1|ZkXk

≤m,Xm+1,I=0

where the first equivalence holds since Xm+2,I = 1 =⇒ Xm+1,I = 0, and the second one holds
since given ZkXk

≤mXm+1,I , the event W in R is independent of Xm+2,I .

Lemma 5.3. Let k,m, ` ∈ N, let ε ∈ (0, 1/2], let W ⊆ {0, 1}k`+k(m+1) be a termination-consistent
set (according to Definition 4.3) and let W , R, P and Q, be the event and distributions from Defini-

tions 5.1 and 5.2 with respect toW,m, k, `, respectively. Assume k ≥ λ·m2/ε and R[W ] > (1−ε)
k
λ·m

for some universal constant λ > 0. Then there exist distributions P̂ = P̂B0,Zk,B1,Xk
1 ,...,Bm+1,Xk

m+1

and Q̂ = Q̂I,B0,Zk,B1,Xk
1 ,...,Bm+1,Xk

m+1
with P̂ZkX(m+1)×k = P and Q̂I,ZkX(m+1)×k = Q and with

Supp(P̂Bj ), Supp(Q̂Bj ) ⊆ {0, 1} for j ∈ (m+ 1), such that the following holds:

1. D
ε
24 (P̂ ||Q̂B0,Zk,B1,Xk

1 ,...,Bm+1,Xk
m+1

) ≤ λm
k ·

(
log 1

R[W ] +m
)

.

2. P̂Bm+2(1m+2) ≥ 1− ε/24, for Bm+2 = B0, . . . , Bm+1.

3. ∀(i, zkx(m+1)×k) ∈ Supp(Q̂I,ZkX(m+1)×k|Bm+2=1m+2):

(a) R[W |Zi = zi, X1,i = 1] ≥ R[W ]/2.

(b) ∀j ∈ [m+ 1] : R[W |ZkXk
<j = zkxk<j , Xj+1,i = 1] ≥ R[W |ZkXk

<j = zkxk<j ]/2.

That is, the extensions above have m+ 2 additional bits, essentially one per round, rather than
a single additional bit in Lemma 4.9. The logical conjunction (i.e., And) of these bits takes the role
of the single bit in the extensions considered in Lemma 4.9.

Lemma 5.3 yields Lemma 4.9 via the data-processing property of the smooth KL-divergence.

Proof of Lemma 4.9. Let P̂ and Q̂ be the distributions guaranteed by Lemma 5.3. Let
P̂ ′
Zk,X(m+1)×k,B

= (P̂Zk,X(m+1)×k|Bm+2TB|Bm+2) ◦ P̂Bm+2 for TB|Bm+2=B0,...,Bm+1
=
∏m+1
j=0 Bj , and

Q̂′
I,ZkX(m+1)k,B

= (Q̂I,ZkX(m+1)k|Bm+2TB|Bm+2) ◦ Q̂Bm+2 . We show that P̂ ′ and Q̂′ have the proper-

ties required in Lemma 4.9.
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The data-processing property of smooth KL-divergence (Proposition 3.12) and Lemma 5.3(1),
yield that

D
ε
24 (P̂ ′||Q̂′

Zk,X(m+1)k,B
) ≤ λm

k
·
(

log
1

R[W ]
+m

)
. (47)

Lemma 5.3(2) yields that

P̂ ′B(1) ≥ 1− ε/24. (48)

Finally, Lemma 5.3(3) yields that for every ∀(i, zkx(m+1)×k) ∈ Supp(Q̂′
I,ZkX(m+1)×k|B=1

):

1. R[W |Zi = zi, X1,i = 1] ≥ R[W ]/2.

2. ∀j ∈ [m+ 1] : R[W |ZkXk
<j = zkxk<j , Xj+1,i = 1] ≥ R[W |ZkXk

<j = zkxk<j ]/2.
�

5.2 Definitions and Motivating Discussion

Let R,P and Q as defined in Definitions 5.1 and 5.2. For j ∈ [m + 1], i ∈ [k] and zkx(m+1)×k ∈
Supp(PZkX(m+1)×k), consider the definitions appear in Tables 1 and 2.

Table 1: Measurements.

Definition Value

ρ0,i m · PX1,i(1)− 1

ρj,i(z
kxk<j) PXj+1,i|ZkXk

<j
(1|zkxk<j)/

(
1
m(1− 1

m)
)
− 1

βj,i(z
kxk<j) (for j ≥ 2)

P
Xj,i|ZkXk<j

(1|zkxk<j)

P
Xj,i|ZkXk<j−1

(1|zkxk<j−1)
− 1

α0,i(z)
RZi (z)

PZi|X1,i=1(z) · 1{(i, z) ∈ D}

αj,i(z
kxk<j)

RZi (zi)

PZi (zi)
·
P
X1,i|Zk

(1|zk)

PX1,i|Zi (1|zi)
·
∏j
j′=2(1 + βj′,i(z

kxk<j′))

δ0(zkxk1)

(∑
i∈1

xk1

1{(i,z)∈D}
PZiX1,i

(zi1)

)
/|D| − 1 =

(∑
i∈1

xk1

α0,i(zi)
PX1,i

(1)

)
/
(
|D|/2`

)
− 1

δj(x
k
j+1; zkxk<j)

(∑
i∈G

zkxk
<j

⋂
1
xk
j+1

αj,i(z
kxk<j)

P
Xj+1,i|ZkXk<j

(1|zkxk<j)

)
/

(∑
i∈G

zkxk
<j

αj,i(z
kxk<j)

)
− 1

In order to explain the rather complex definitions in Tables 1 and 2 and why we actually need
to use smooth extensions, we give a rather detailed proof sketch (more accurately, an attempt proof
sketch) for the divergence-bound part of Lemma 5.3. Specifically, we try to bound the divergence
between PZkX(m+1)×k and QZkX(m+1)×k ; that is, to show that

D(PZkX(m+1)×k ||QZkX(m+1)×k) ≤ O
(m
k
· (D(PZkX(m+1)×k ||RZkX(m+1)×k) +m)

)
. (49)

Since D(PZkX(m+1)×k ||RZkX(m+1)×k) ≤ log(1/R[W ]) (Fact 3.6), establishing the bound in Equa-
tion (49) would indeed show the divergence-bound part of Lemma 5.3. Furthermore, recall that
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Table 2: Sets.

Definition Value

Ixk<j {i ∈ [k] : x1,i = x2,i = · · · = xj−1,i = 0}
G {i ∈ [k] : |ρ0,i| ≤ 0.1}

Gzkxk<j {i ∈ Gzkxk<j−1
:
(∣∣∣ρj,i(zkxk<j)∣∣∣ ≤ 0.1

)
∧
(
αj,i(z

kxk<j) ∈ [0.01, 10]
)
}

where we denote Gzkxk<0
= G

Zi {z ∈ {0, 1}` : PZi|X1,i=1(z) ∈ (1± 0.1) · 2−`}
D {(i, z) ∈ [k]× {0, 1}` : (i, z) ∈ G ×Zi}

in the public-coin case, Chung and Pass [CP15] bound the divergence between P (the Ideal distri-

bution) and Q (the R̃eal distributions) with 1
k · D(PZkXm×k ||RZkXm×k) (we abuse notation to fit

their result to the current discussion). Our bound on the exponential decay of the soundness error
(Theorem 4.1) is Ω(k/m)—as oppose to the optimal decay of Ω(k) in the public-coin case—comes
exactly from the difference between the coefficients of the divergence in Equation (49) and in the
the public-coin bound (i.e., m/k vs. 1/k).

The first step to prove Equation (49) would naturally be to apply the chain rule for divergence:

D(PZkX(m+1)×k ||QZkX(m+1)×k) = D(PZk ||QZk) +
m+1∑
j=1

D(PXk
j |ZkXk

<j
||QXk

j |ZkXk
<j
|PZkXk

<j
).

In this sketch we focus on bounding the divergence for a fixed round 1 ≤ j ≤ m + 1. The sketch
for the zero round (i.e., Zk) is similar, and at the end we shortly explain the differences.

Let’s take a closer look at the j’th round of the R̃eal distribution. In that round, the prover
P∗ samples the coins of the internal verifiers conditioned on the external verifier, which is located
at index i chosen at the start of the execution, aborting in the j + 1 round. Importantly, however,
we are interested in the distribution of the coins of the verifiers, not in that of the index i. More
formally, we are concerned with QXk

j |ZkXk
<j

, and not with QXk
j |IZkXk

<j
, where we also condition on

I. It holds that

QXk
j |ZkXk

<j
= PXk

j |ZkXk
<j ,Xj+1,I=1 ◦QI|ZkXk

<j

= PXk
j |ZkXk

<jX
k
j+1
◦ PXk

j+1|ZkXk
<j ,Xj+1,I=1 ◦QI|ZkXk

<j
.

Namely, the distribution of round j of the R̃eal distribution can be described as follows: first
draw an index I conditioned on the transcript so far, then draw the j + 1 round conditioned on
the transcript and that its Ith location is equal 1 (i.e., aborts), and finally draw the j’th round
conditioned on the transcript and the j+ 1 round. Recall that by conditioning that the Ith verifier
aborts in round j+1, we are guaranteed that this verifier does not abort in round j. The distribution
P can also be naturally described in the terms of the j + 1 round:

PXk
j |ZkXk

<j
= PXk

j |ZkXk
<jX

k
j+1
◦ PXk

j+1|ZkXk
<j
.

Now, the data-processing inequality for divergence yields that

D(PXk
j |ZkXk

<j
||QXk

j |ZkXk
<j
|PZkXk

<j
) ≤ D(PXk

j+1|ZkXk
<j
||Q′

Xk
j+1|ZkXk

<j
|PZkXk

<j
),
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for Q′
Xk
j+1|ZkXk

<j
= PXk

j+1|ZkXk
<j ,Xj+1,I=1 ◦QI|ZkXk

<j
.

So, we have transforms our question for round j to a different question for round j + 1—what
is the divergence between choosing the j + 1 round according to P given a partial transcript up to
round j − 1, to choosing the same round also condition on the I index being 1, where I is chosen
according to QI|ZkXk

<j
? This is the reason that many of the definitions in Tables 1 and 2 take xkj+1

into account.
To answer this question we need to better understand QI|ZkXk

<j
. With no prior transcript, QI

is simply uniform on the set of indexes [k]. However, conditioned on a transcript zkxk<j , QI|ZkXk
<j

puts more weight on indexes that are likely to be 1 in round j+1 of P . How this likelihood changes
from conditioning on the previous j − 2 rounds to conditioning on the previous j − 1 rounds is
measured by βi,j(z

kxk<j). The total likelihood changes that accumulated from all previous rounds

is measured by αj,i(z
kxk<j). So, QI|ZkXk

<j
puts more weight on indexes with high αj,i(z

kxk<j). This

high-level intuition is formalized in the next claim (this claim, as well as all others in this sketch,
is proven in Appendix A.3).

Claim 5.4. Let j ∈ [m+ 1] and τ = (zkxk<j) ∈ Supp(PZkXk
<j

). Then, for every i ∈ Gτ it holds that

QI|ZkXk
<j ,I∈Gτ

(i|zkxk<j) =
αj,i(z

kxk<j)∑
i′∈Gτ αj,i′(z

kxk<j)

For now, think of the set Gτ in the above claim as Ixk<j—the set of active indexes in round j;

namely, the verifiers that have not aborted yet. Since in Q (the R̃eal distribution) the external
verifier never aborts (it is the original verifier V, and not the random terminating verifier Ṽ), a
verifier that aborted cannot be the external verifier; that is, it holds that QI|ZkXk

<j
(i|zkxk<j) = 0

for every i /∈ Ixk<j , and thus QI|ZkXk
<j

= QI|ZkXk
<j ,I∈IXk

<j

. We will circle back to the set Gτ later in

this sketch.
Using Claim 5.4 we can now give an exact measurement for the ratio between the pmfs of P

and Q, which turns out to also depend on the probability of a given index being 1 in the j + 1
round.

Claim 5.5. Let j ∈ [m + 1], let τ = (zkxk<j) ∈ Supp(PZkXk
<j

), and let Q′
Xk
j+1|ZkXk

<j
=

PXk
j+1|ZkXk

<jXj+1,I=1 ◦ QI|ZkXk
<j ,I∈Gτ

. Then, for every xkj+1 ∈ Supp(PXk
j+1|(ZkXk

<j)=τ
) with 1xkj+1

∩
Gτ 6= ∅, it holds that

PXk
j+1|ZkXk

<j
(xkj+1|τ)

Q′
Xk
j+1|ZkXk

<j

(xkj+1|τ)
=

∑
i∈Gτ αj,i(τ)∑

i∈1
xk
j+1
∩Gτ

αj,i(τ)
pi(τ)

,

for pi(τ) = PXj+1,i|ZkXk
<j

(1|τ).

Fix some previous transcript τ = (zkxk<j). Rearranging the above equation, we have that

Q′
Xk
j+1|ZkXk

<j
(xkj+1|τ)

PXk
j+1|ZkXk

<j
(xkj+1|τ)

=
∑

i∈1
xk
j+1
∩Gτ

QI|ZkXk
<j ,I∈Gτ

(i|τ)

pi(τ)
.
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As a sanity check, let’s see what happens to this ratio when W does not change the random coins’
distribution (i.e., RZkX(m+1)×k = P ). We expect there to be roughly k/m ones in xkj+1 (that
many verifiers are expected to abort in round j + 1). For each such index i, it would hold that
QI|ZkXk

<j ,I∈Gτ
(i|τ) ≈ 1/k and pi(τ) ≈ 1/m. Hence, the above ratio is roughly 1, which is what we

would expect. Another interpretation for the above ratio is given in the following expectation.

Q′
Xk
j+1|ZkXk

<j
(xkj+1|τ)

PXk
j+1|ZkXk

<j
(xkj+1|τ)

∝ E
i∼Q

I|ZkXk
<j
,I∈Gτ∩1

xk
j+1

[
1

pi(τ)

]
.

Namely, choose a random 1-index in xkj+1 according to Q, and measure how likely it is for the
verifier in that index to abort in Q (which happens with probability 1 since Q sets that verifier to
abort in round j + 1) vs. how likely it aborts in P (which is pi(τ)).

Using Claim 5.5, our goal has now become to bound

D(PXk
j+1|(ZkXk

<j)=τ
||Q′

Xk
j+1|(ZkXk

<j)=τ
) = E

xkj+1∼PXk
j+1
|(ZkXk

<j
)=τ

log

∑
i∈Gτ αj,i(τ)∑

i∈1
xk
j+1
∩Gτ

αj,i(τ)
pi(τ)

.
The next claim shows how to interpret the denominator in the above expectation as a sum of
random variables, whose expected value is exactly the nominator.

Claim 5.6. Let j ∈ [m + 1], let τ = (zkxk<j) ∈ Supp(PZkXk
<j

), and let Xk
j+1 be drawn from

PXk
j+1|(ZkXk

<j)=τ
or from

∏k
i=1 PXj+1,i|(ZkXk

<j)=τ
.23 Let Y =

∑
i∈Gτ Yi, for Yi =

αj,i(τ)
P
Xk
j+1,i

|ZkXk
<j

(1|τ) if

Xj+1,i = 1 and Yi = 0 otherwise.
It holds that

EP
Xk
j+1
|(ZkXk

<j
)=τ

[Y ] = E∏k
i=1 PXj+1,i|(ZkXk<j)=τ

[Y ] =
∑
i∈Gτ

αj,i(τ).

Let ∆ = δj(X
k
j+1; τ), where Xk

j+1 is drawn from either PXk
j+1|(ZkXk

<j)=τ
or∏k

i=1 PXj+1,i|(ZkXk
<j)=τ

. The definition of δj implies that ∆ is a random variable that mea-

sures how far Y is from its expected value; that is, Y = (1 + ∆) ·
∑

i∈Gτ αj,i(τ). It follows
that

D(PXk
j+1|(ZkXk

<j)=τ
||Q′

Xk
j+1|(ZkXk

<j)=τ
) = EP

Xk
j+1
|(ZkXk

<j
)=τ

[
log

1

1 + ∆

]
.

Naturally, we would like to approximate log
(

1
1+∆

)
with a low-degree polynomial. To do so, however,

we need a bound on the value of ∆. This bound (among other things that we will see ahead) is
exactly what the (m + 2)-extensions will give us—they’ll guarantee that |∆| ≤ 1/2 with high

23∏k
i=1 PXj+1,i|(ZkXk

<j)=τ is the product distribution of the marginals of PXk
j+1|(Z

kXk
<j)=τ .
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probability under P . Roughly, we would get that

D(PXk
j+1|(ZkXk

<j)=τ
||Q′

Xk
j+1|(ZkXk

<j)=τ
) . D(PXk

j+1|(ZkXk
<j)=τ,|∆|≤1/2||Q

′
Xk
j+1|(ZkXk

<j)=τ
) +O

(m
k

)
≈ E

[
log

1

1 + ∆

∣∣∣∣|∆| ≤ 1/2

]
+O

(m
k

)
≤ E

[
−∆ + ∆2

∣∣|∆| ≤ 1/2
]

+O
(m
k

)
,

where the above expectation is over PXk
j+1|(ZkXk

<j)=τ
. Since ∆ measures how far Y is from its

expected value, it follows that E[∆] = 0. This, however, does not hold when we also condition on
|∆| ≤ 1/2. But, since we are guaranteed (from the extension) that |∆| ≤ 1/2 with high probability,
we would be able to show that E[−∆||∆| ≤ 1/2] ≤ O(m/k).

We are left with the expected value of ∆2. We ignore the condition on |∆| ≤ 1/2 in this
proof sketch (handling this condition follows again from the guarantee that |∆| ≤ 1/2 with high
probability and is fairly technical, so we defer this case to the formal proof). Instead, we would
like to show that

E
[
∆2
]
≤ O

(m
k
·
(
D(PXk

j+1|(ZkXk
<j)=τ

||RXk
j+1|(ZkXk

<j)=τ
) + 1

))
. (50)

Combining Equation (50) with the previous bounds we established and applying the chain rule
once more would yield Equation (49) (ignoring the zero round).

To show that Equation (50) holds, we would use Proposition 3.10, which requires that ∆ is well
concentrated under RXk

j+1|(ZkXk
<j)=τ

. It would in fact be easier to show that ∆ is well-concentrated

under a different distribution: PΠ
Xk
j+1|(ZkXk

<j)=τ
=
∏k
i=1 PXj+1,i|(ZkXk

<j)=τ
. Showing this would

suffice, since RXk
j+1|(ZkXk

<j)=τ
is a product distribution, so the chain rule for divergence yields that

D(PXk
j+1|(ZkXk

<j)=τ
||RXk

j+1|(ZkXk
<j)=τ

) ≥ D(PXk
j+1|(ZkXk

<j)=τ
||PΠ

Xk
j+1|(ZkXk

<j)=τ
).

Why is ∆ well-concentrated under PΠ
Xk
j+1|(ZkXk

<j)=τ
? First, note that by Claim 5.6, the expected

value of ∆ under PΠ
Xk
j+1|(ZkXk

<j)=τ
is 0 as well. So instead of arguing that ∆ is well-concentrated

around 0, we argue that Y =
∑

i∈Gτ Yi is well concentrated around its mean. Importantly, the

random variables Yi’s are now, under PΠ
Xk
j+1|(ZkXk

<j)=τ
, independent. Hence, to bound how far Y is

from its mean we can use standard concentration bounds, such as Hoeffding’s inequality (Fact 3.14)
or Fact 3.16. Such bounds, however, require that the Yi’s are bounded. We again use the extension
to ensure that the Yi’s are indeed bounded.

Finally, we consider the definition of the set Gτ from Table 2. That definition guarantees that
Yi ≤ O(m) for every i ∈ Gτ . Indeed, for every such i, we have that αj,i(τ) ∈ Θ(1) and that
pi(τ) ≥ Ω(1/m). Our extension will now guarantee that the index I chosen by Q belongs to the set
Gτ and that |Gτ | ≥ Ω(k). Using these properties, Fact 3.16 indeed yields the required concentration
bound.

This concludes the proof sketch for the j’th round. The proof for the zero round is similar, but
differ in the following major manner—when we condition on Xj+1,i = 1, the definition of P implies
that Xj,i = 0. In the first round, this does not hold, and conditioned on X1,i = 1, the coins Zi
are still uniform. Instead of applying the data-processing inequality to consider the divergence of
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the j + 1 round, in the zero round we apply the monotonicity property of divergence to consider
the divergence of both the zero and the first round. In particular, the ratio between P and Q
distributions include both the zero and the first round (in round j, as shown by Claim 5.5, this
ratio depends only on the j + 1 round). This is evident in the definitions of α0,i and δ0 in Table 1.
This also implies a change in the random variable Y , as given in the next claim (analogous to
Claim 5.6).

Claim 5.7. Let ZkXk
1 be drawn from PZkXk

1
or from

∏k
i=1 PZiX1,i.

24 Let Y =
∑

i∈[k] Yi, for

Yi =
α0,i(zi)
PX1,i

(1) if X1,i = 1 and Yi = 0 otherwise.

It holds that

EP
ZkXk1

[Y ] = E∏k
i=1 PZiX1,i

[Y ] =
|D|
2`
.

Finally, since Y takes into account the zero and the first round, arguing that it is concentrated
around its mean is more complicated, and we leave the details to the formal proof.

This concludes the proof sketch. The formal proofs of the claims in this sketch appear in
Appendix A.3. We now proceed to define the m+ 2 extensions P̂ and Q̂.

5.3 The Extensions

In this section we define the two extensions P̂ and Q̂ of the P and Q (respectively), as required for
proving Lemma 5.3.

Recall from the proof sketch in Section 5.2 that the extensions should guarantee the following
properties: (1) the probability that |∆| ≤ 1/2 in round j + 1 is high given any transcript τ up to
round j − 1; (2) the size of Gτ is Ω(k); and (3) the index chosen by Q is in Gτ .

With these goals in mind, we now formally define the following two extensions. After the
definitions we state and prove their important properties.

Definition 5.8 (P̂ ). Let P̂B0,Zk,B1,Xk
1 ,...,Bm+1,Xk

m+1
= PZkX(m+1)×k P̂B0|ZkXk

1

∏m+1
j=1 P̂Bj |ZkXk

≤j
be de-

fined as follows:

1. P̂B0|ZkXk
1

= P̂B0|Bcur
0 Bhist

0 Bindx
0
◦ P̂Bcur

0 |ZkXk
1
P̂Bhist

0
P̂Bindx

0
, where

(a) P̂Bcur
0 |ZkXk

1
= 1{

∣∣δ0(ZkXk
1 )
∣∣ ≤ 1

2}

(b) P̂Bhist
0

= 1{|D| ≥ k · 2`−1} · 1{EP
ZkXk1

[
P̂Bcur

0 |ZkXk
1
(0)
]
≤ m

k2 }

(c) P̂Bindx
0

= 1{(I, ZI) ∈ D} ◦QI,ZI
(d) P̂B0|Bcur

0 Bhist
0 Bindx

0
= Bcur

0 ·Bhist
0 ·Bindx

0 .

2. P̂Bj |ZkXk
≤j

= P̂Bj |Bcur
j Bhist

j Bindx
j
◦ P̂Bcur

j |ZkXk
≤j
P̂Bhist

j |ZkXk
<j
P̂Bindx

j |ZkXk
<j

for j ∈ [m+ 1], where

(a) P̂Bcur
j |ZkXk

≤j
= Bern

(
PXk

j+1|ZkXk
≤j

[∣∣∣δj(Xk
j+1;ZkXk

<j)
∣∣∣ ≤ 1

2

])
(b) P̂Bhist

j |ZkXk
<j

= 1{
∣∣∣GZkXk

<j

∣∣∣ ≥ k
10} · 1{EPXk

j
|ZkXk

<j

[
P̂Bcur

j |ZkXk
≤j

(0)
]
≤ m

k2 }

24∏k
i=1 PZiX1,i is the product distribution of the marginals of PZkXk

1
.
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(c) P̂Bindx
j |ZkXk

<j
= 1{I ∈ GZkXk

<j
} ◦QI|ZkXk

<j ,I∈GZkXk
<j−1

(d) P̂Bj |Bcur
j Bhist

j Bindx
j

= Bcur
j ·Bhist

j ·Bindx
j .

Definition 5.9 (Q̂). Let Q̂I,B0,Zk,B1,Xk
1 ,...,Bm+1,Xk

m+1
= QIQZkX(m+1)×k|IQ̂B0|I,ZkXk

1

∏m+1
j=1 Q̂Bj |I,ZkXk

<j

be defined as follows:

1. Q̂B0|I,ZkXk
1

= P̂B0|Bcur
0 Bhist

0 Bindx
0
◦ Q̂Bcur

0
Q̂Bhist

0
Q̂Bindx

0 |I,ZI , where

(a) Q̂Bcur
0

= P̂Bcur
0 |ZkXk

1
◦ P̂ZkXk

1

(b) Q̂Bhist
0

= P̂Bhist
0

(c) Q̂Bindx
0 |I,ZI = 1{(I, ZI) ∈ D}.

2. Q̂Bj |I,ZkXk
<j

= P̂Bj |Bcur
j Bhist

j Bindx
j
◦Q̂Bcur

j |ZkXk
<j
Q̂Bindx

j |I,ZkXk
<j
Q̂Bhist

j |ZkXk
<j

for j ∈ [m+1], where

(a) Q̂Bcur
j |ZkXk

<j
= P̂Bcur

j |ZkXk
≤j
◦ P̂Xk

j |ZkXk
<j

(b) Q̂Bhist
j |ZkXk

<j
= P̂Bhist

j |ZkXk
<j

(c) Q̂Bindx
j |I,ZkXk

<j
= 1{I ∈ GZkXk

<j
}.

A few words about these definitions are in order. Note that the bits Bcur
j and Bhist

j are related

to the distribution P , while the bit Bindx
j is related to the distribution Q. We define all bits in both

experiments so that the distribution of Bj will be identical under both extensions. The bit Bhist
j

meant to guarantee that Gτ is of size Ω(k) and that the probability that |∆| ≤ 1/2 is high. This
bit depends only on the transcript so far (i.e., the “history”), and in particular is independent of
round j. On the other hand, the bit Bcur

j does depend on round j (i.e., the “current” round) and
we will see ahead that conditioning on Bcur

j = 1 means that indeed |∆| ≤ 1/2 (not just with high

probability). Finally, the bit Bindx
j meant to guarantee that the index I chosen by Q belongs to Gτ .

We summarize the properties of the two extensions in the next claim.

Claim 5.10. It holds that

1. Round zero:

(a) P̂ZkXk
1 |B0=1 = PZkXk

1 ||δ0(ZkXk
1 )|≤1/2.

(b) Q̂ZkXk
1 |B0=1 = PZkXk

1 |I,ZI ,X1,I=1 ◦QIZI |IZI∈D.

(c) P̂B0 = Q̂B0.

2. Round 1 ≤ j ≤ m+ 1:

(a) P̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 = PXk
j |ZkXk

<jX
k
j+1
◦ PXk

j+1|ZkXk
<j ,|δj(Xk

j+1;ZkXk
<j)|≤1/2.

(b) Q̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 = PXk
j |ZkXk

<jX
k
j+1
◦Q′

Xk
j+1|ZkXk

<j
for

Q′
Xk
j+1|ZkXk

<j
= PXj+1|ZkXk

<j ,Xj+1,I=1 ◦QI|ZkXk
<j ,I∈GZkXk

<j

,
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(c) For every zkxk<j ∈ Supp(P̂ZkXk
<j |(B0B<j)=1j ) it holds that

P̂Bj |(ZkXk
<j)=(zkxk<j),(B0B<j)=1j = Q̂Bj |(ZkXk

<j)=(zkxk<j),(B0B<j)=1j .

Proof. We prove the statement for a fixed 1 ≤ j ≤ m + 1. The proof for round zero follows from
similar arguments.

The proofs of Items 2a to 2c follow merely from the definitions. However, the abundant of
random variables might make it difficult to verify the correctness of the statements, so we explicitly
prove them.

Proving (2a): First, observe that conditioned on ZkXk
<j , it holds that Xk

j is independent of

B0, B1, . . . , Bj−1, B
hist
j , Bindx

j under P̂ . Namely,

P̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 = P̂Xk
j |ZkXk

<j ,B
cur
j =1.

Now, applying Claim 3.1 with the random variables X = Xk
j |ZkXk

<j , Y = Xk
j+1|ZkXk

<j and

f(Xk
j+1;ZkXk

<j) = 1{|δj(Xk
j+1;ZkXk

<j) ≤ 1/2}, all under P̂ , yields that

P̂Xk
j |ZkXk

<j ,B
cur
j =1 = P̂Xk

j |ZkXk
<jX

k
j+1
◦ P̂Xk

j+1|ZkXk
<j ,|δ(Xk

j+1;ZkXk
<j)|≤1/2

= PXk
j |ZkXk

<jX
k
j+1
◦ PXk

j+1|ZkXk
<j ,|δj(Xk

j+1;ZkXk
<j)|≤1/2,

where the second equality follows from the definition of P̂ .

Proving (2b): First, observe that conditioned on ZkXk
<j , it holds that Xk

j is independent of

Bhist
0 , Bcur

0 , . . . , Bhist
j , Bcur

j under Q̂. If we condition on I as well, then Xk
j is also independent

of Bindx
0 , . . . , Bindx

j . Thus,

Q̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 = Q̂Xk
j |ZkXk

<j ,(B
indx
0 Bindx

≤j )=1j+1

= Q̂Xk
j |IZkXk

<j ,(B
indx
0 Bindx

≤j )=1j+1 ◦ Q̂I|ZkXk
<j ,(B

indx
0 Bindx

≤j )=1j+1

= Q̂Xk
j |IZkXk

<j
◦ Q̂I|ZkXk

<j ,(B
indx
0 Bindx

≤j )=1j+1 .

By definition, it holds that GZkXk
<j
⊆ GZkXk

<j′
for every j′ < j. Hence, it holds that

Q̂I|ZkXk
<j ,(B

indx
0 Bindx

≤j )=1j+1 = Q̂I|ZkXk
<j ,B

indx
j =1

= QI|ZkXk
<j ,I∈GZkXk

<j

.

Furthermore, the definition of Q yields that for i ∈ GZkXk
<j

, it holds that

Q̂Xk
j |(IZkXk

<j)=(izkxk<j)
= QXk

j |IZkXk
<j=(izkxk<j)

= PXk
j |(ZkXk

<j)=(zkxk<j),Xj+1,i=1

= PXk
j |(ZkXk

<j)=(zkxk<j),X
k
j
◦ PXk

j+1|(ZkXk
<j)=(zkxk<j),Xj+1,i=1.

In particular, note the above equality holds also for j = m + 1. Indeed, if I ∈ GZkXk
≤m

,

then PXm+2,i|ZkXk
≤m

(1|zkxk≤m) > 0, and thus also R[W |(ZkXk
≤m) = (zkxk≤m), Xm+2,i = 1].

Combining the above three equations completes the proof of the second statement.
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Proving (2c): That P̂Bhist
j |ZkXk

<jB0B<j
= Q̂Bhist

j |ZkXk
<jB0B<j

and P̂Bcur
j |ZkXk

<jB0B<j
=

Q̂Bcur
j |ZkXk

<jB0B<j
follows immediately from definition. For Bindx

j , the same arguments we

used in the proof of the previous item yield that

Q̂Bindx
j |ZkXk

<j ,(B0B<j)=1j = Q̂Bindx
j |ZkXk

<j ,(B
indx
0 Bindx

<j )=1j

= 1{I ∈ GZkXk
<j
} ◦ Q̂I|ZkXk

<j ,(B
indx
0 Bindx

<j )=1j

= 1{I ∈ GZkXk
<j
} ◦QI|ZkXk

<j ,I∈GZkXk
<j

= P̂Bindx
j |ZkXk

<j

= P̂Bindx
j |ZkXk

<j ,(B0B<j)=1j .

�

5.4 Proving Lemma 5.3

The proof of Lemma 5.3 is divided into two parts. In the first part we prove that conditioned on
all the extensions bits being equal to 1, the divergence between P̂ and Q̂ is sufficiently small. In
the second part we show that the probability that the extensions bits are all 1 in P̂ is high.

To enforce the conditioning on all bits equal 1, we use the following function.

Definition 5.11 (fcut). Let fcut : {0, 1}`k+(m+1)k+(m+2) → {0, 1,⊥}`k+(m+1)k+(m+2) to be the func-
tion that cuts its input (b0z

k, b1x
k
1, . . . , bm+1x

k
m+1) ∈ {0, 1}`k+(m+1)k+(m+2) after the first bit bj that

equals to 0. Formally

1. If (b0, b1, . . . , bm, bm+1) = 1m+2, then fcut(b0z
k, b1x

k
1, . . . , bm+1x

k
m+1) =

(b0z
k, b1x

k
1, . . . , bm+1x

k
m+1).

2. Else, let j ∈ {0, . . . ,m+ 1} be the first index with bj = 0. Then

(a) If j = 0, fcut(b0z
k, b1x

k
1, . . . , bm+1x

k
m+1) = (b0,⊥`k+(m+1)k+m+1).

(b) Else, fcut(b0z
k, b1x

k
1, . . . , bm+1x

k
m+1) = (b0z

k, b1x
k
1, . . . , bj−1x

k
j−1, bj ,⊥(m−j+2)k+(m−j+1)

).

The following two lemmata prove the two aforementioned parts and are the main technical part
of our work. Lemma 5.12 is proven in Section 6 and Lemma 5.13 is proven in Section 7.

Lemma 5.12. There exists two universal constants λ, λ′ > 0 such that the following holds: Let
k,m, ` ∈ N, let W ⊆ {0, 1}kl+k(m+1) be a termination-consistent set (according to Definition 4.3)
and let W , R, P̂ and Q̂ be the event and distributions from Definitions 5.1, 5.8 and 5.9, respectively,
and let fcut be the function from Definition 5.11. Assume that P̂Bm+2(1m+2) ≥ 1/2 and that
k ≥ λ ·m, then

D
(
fcut(P̂B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1

)||fcut(Q̂B0Zk,B1Xk
1 ,...,Bm+1Xk

m+1
)
)
≤ λ′m

k
·
(

log
1

R[W ]
+m

)
.

48



Lemma 5.13. For any constant λ > 0 there exist constants λ′, λ′′ > 0 such that the following
holds: Let k,m, ` ∈ N, let ε ∈ (0, 1/2], let W ⊆ {0, 1}kl+k(m+1) be a termination-consistent set
(according to Definition 4.3) and let W,R and P̂ be the event and distributions from Definitions 5.1

and 5.8 respectively, for the above k,m, `,W. Assume k ≥ λ′ ·m2/ε and R[W ] ≥ (1− ε)
k

λ′′·m , then
P̂Bm+2(1m+2) ≥ 1− ε/λ.

Using the above lemmata, we are ready to prove Lemma 5.3.

Proof of Lemma 5.3. Let P̂B0Zk,B1Xk
1 ,...,Bm+1Xk

m+1
and Q̂B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1

be the distributions

from Definitions 5.8 and 5.9, respectively, let fcut be the function from Definition 5.11 and let λ =
max{c1, c

′
1, c2, c

′
2}, where c1, c

′
1 are the constants λ, λ′ from Lemma 5.12 and c2, c

′
2 are the constants

λ′(24), λ′′(24) from Lemma 5.13 (with respect to λ = 24). First, observe that by Lemma 5.13 it
holds that

P̂Bm+2(1m+2) = Pr
y∼P̂

B0Z
k,B1X

k
1 ,...,Bm+1X

k
m+1

[fcut(y) = y] ≥ 1− ε/24 (51)

and along with Lemma 5.12 we obtain that

D
ε
24 (P̂B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1
||Q̂B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1

) ≤ λm

k
·
(

log
1

R[W ]
+m

)
(52)

Second, observe that by the definition of Q̂, it holds that ∀zkx(m+1)×k ∈ {0, 1}k`+k(m+1) and
∀i ∈ Supp(Q̂I|ZkX(m+1)×k,Bm+2=1m+2),

PZi|X1,i=1(zi) ≥ (1− 0.1) · 2−` and PX1,i(1) ≥ 1− 0.1

m

=⇒ R[W |Zi = zi, X1,i = 1] = R[W ] ·
PX1,i(1) · PZi|X1,i=1(zi)

RX1,i(1) ·RZi|X1,i=1(zi)
(53)

≥ R[W ] · (1− 0.1)2

≥ R[W ]/2

and

∀j ∈ [m+ 1] : PXj+1,i|(ZkXk
<j)=z

kxk<j
(1) ≥ 1− 0.1

m

(
1− 1

m

)
.

=⇒ ∀j ∈ [m+ 1] : R[W |(ZkXk
<j) = zkxk<j , Xj+1,i = 1] (54)

= R[W |(ZkXk
<j) = zkxk<j ] ·

PXj+1,i|(ZkXk
<j)=z

kxk<j
(1)

RXj+1,i|(ZkXk
<j)=z

kxk<j
(1)

≥ R[W |(ZkXk
<j) = zkxk<j ] · (1− 0.1)

≥ R[W |(ZkXk
<j) = zkxk<j ]/2

The proof then follows by Equations (51) to (54). �
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6 Bounding the Smooth KL-Divergence of P̂ and Q̂

In this section, we prove Lemma 5.12. That is, we prove that there exist two universal constants
λ, λ′ > 0 such that if k ≥ λ ·m then

D(fcut(P̂B0Zk,B1Xk
1 ,...,Bm+1Xk

m+1
)||fcut(Q̂B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1

)) ≤ λ′ · m
k
·
(

log
1

R[W ]
+m

)
.

(55)

Let k,m, ` ∈ N with m ≥ 2 and k ≥ λ ·m for λ ≥ 1 to be determined by the analysis. Let

P cut
B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1

= fcut(P̂B0Zk,B1Xk
1 ,...,Bm+1Xk

m+1
),

and let Qcut be analogously defined with Q̂. Our first step is to apply the chain rule for divergence
(Fact 3.5(3)):

D(fcut(P̂B0Zk,B1Xk
1 ,...,Bm+1Xk

m+1
)||fcut(Q̂B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1

)) (56)

= D(P cut
B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1
||Qcut

B0Zk,B1Xk
1 ,...,Bm+1Xk

m+1
)

= D(P cutB0Zk
||QcutB0Zk

) +
m+1∑
j=1

D(P cut
BjXk

j |B0ZkB<jXk
<j
||Qcut

BjXk
j |B0ZkB<jXk

<j
|P cut
B0ZkB<jXk

<j
).

The proof now follows from the next two claims.

Claim 6.1 (Round zero). There exists a universal constant C0 > 0 such that

D(P cutB0Zk
||QcutB0Zk

) ≤ C0 ·
m

k
·
(
D(PZkXk

1
||RZkXk

1
) + 1

)
.

Claim 6.2 (Rounds 1 to m+ 1). There exists a universal constant C0 > 0 such that

D(P cut
BjXk

j |B0ZkB<jXk
<j
||Qcut

BjXk
j |B0ZkB<jXk

<j
|P cut
B0ZkB<jXk

<j
)

≤ C · m
k
·
(
D(PXk

j+1|ZkXk
<j
||RXk

j+1|ZkXk
<j
|PZkXk

<j
) + 1

)
.

We prove Claims 6.1 and 6.2 below, but first we use them to derive Equation (55). Since
conditioning increases divergence (Fact 3.5(4)), it holds that

D(PXk
j+1|ZkXk

<j
||RXk

j+1|ZkXk
<j
|PZkXk

<j
) ≤ D(PXk

j+1|ZkXk
≤j
||RXk

j+1|ZkXk
≤j
|PZkXk

≤j
).

(We added a conditioning on Xk
j as well.) Plugging Claims 6.1 and 6.2 into Equation (56) and
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setting λ′ = C0 + 2C yields that

D(fcut(P̂B0Zk,B1Xk
1 ,...,Bm+1Xk

m+1
)||fcut(Q̂B0Zk,B1Xk

1 ,...,Bm+1Xk
m+1

))

≤ C0 ·
m

k
·
(
D(PZkXk

1
||RZkXk

1
) + 1

)
+

m+1∑
j=1

C · m
k
·
(
D(PXk

j+1|ZkXk
≤j
||RXk

j+1|ZkXk
≤j
|PZkXk

≤j
) + 1

)

≤ λ′ · m
k
·

D(PZkXk
1
||RZkXk

1
) +

m+1∑
j=1

D(PXk
j+1|ZkXk

≤j
||RXk

j+1|ZkXk
≤j
|PZkXk

≤j
) +m


= λ′ · m

k
· (D(PZkX(m+2)×k ||RZkX(m+2)×k) +m)

≤ λ′ · m
k
·
(

log
1

R[W ]
+m

)
,

where the equality follows from another application of the chain rule for divergence (Fact 3.5(3)),
and the last inequality follows from Fact 3.6. This completes the proof of Lemma 5.12.

The rest of this section is dedicated to proving Claims 6.1 and 6.2. The proofs of both claims
share similar structure and insights. Since it is conceptually (slightly) easier, we begin with proving
Claim 6.2, which we do in Section 6.1. In Section 6.2 we prove Claim 6.1.

6.1 Round 1 to m+ 1, Proving Claim 6.2

Fix a round j ∈ [m + 1]. Our goal in this section is to prove Claim 6.2. Thats is, to show that
there exists C > 0 such that

D(P cut
BjXk

j |B0ZkB<jXk
<j
||Qcut

BjXk
j |B0ZkB<jXk

<j
|P cut
B0ZkB<jXk

<j
) (57)

≤ C · m
k
·
(
D(PXk

j+1|ZkXk
<j
||RXk

j+1|ZkXk
<j
|PZkXk

<j
) + 1

)
.

As a first step we apply the chain rule for divergence (Fact 3.5(3)) to get that

D(P cut
BjXk

j |B0ZkB<jXk
<j
||Qcut

BjXk
j |B0ZkB<jXk

<j
|P cut
B0ZkB<jXk

<j
)

= D(P cut
Bj |B0ZkB<jXk

<j
||Qcut

Bj |B0ZkB<jXk
<j
|P cut
B0ZkB<jXk

<j
)

+D(P cut
Xk
j |ZkXk

<jB0B≤j
||Qcut

Xk
j |ZkXk

<jB0B≤j
|P cut
ZkXk

<jB0B≤j
)

= D(P cut
Xk
j |ZkXk

<jB0B≤j
||Qcut

Xk
j |ZkXk

<jB0B≤j
|P cut
ZkXk

<jB0B≤j
),

where the second equality follows since P cut
Bj |B0ZkB<jXk

<j
= Qcut

Bj |B0ZkB<jXk
<j

(follows from

Claim 5.10(2c) that shows that P̂Bj |(ZkXk
<j)=(zkxk<j),(B0B<j)=1j = Q̂Bj |(ZkXk

<j)=(zkxk<j),(B0B<j)=1j and

since, by definition, Bj =⊥ under both P cut and Qcut if Bj′ = 0 for some j′ < j). Moreover, again
by definition, if Bj′ = 0 for some j ≤ j, then Xk

j =⊥ under both P cut and Qcut. The definition of
conditional divergence now yields that

D(P cut
Xk
j |ZkXk

<jB0B≤j
||Qcut

Xk
j |ZkXk

<jB0B≤j
|P cut
ZkXk

<jB0B≤j
) (58)

≤ D(P cut
Xk
j |ZkXk

<j ,B0B≤j=1j+1 ||QcutXk
j |ZkXk

<j ,B0B≤j=1j+1 |P cutZkXk
<j |B0B≤j=1j+1)

= D(P̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 ||Q̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 |P̂ZkXk
<j |B0B≤j=1j+1),
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where the last equality follows the definition of fcut.
In the rest of this section we bound the right-hand side term in Equation (58). Using Claim 5.10

and the data-processing inequality for divergence (Fact 3.5(5)), it holds that

D(P̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 ||Q̂Xk
j |ZkXk

<j ,B0B≤j=1j+1 |P̂ZkXk
<j |B0B≤j=1j+1)

≤ D(PXk
j+1|ZkXk

<j ,|δj(Xk
j+1;ZkXk

<j)|≤1/2||Q
′
Xk
j+1|ZkXk

<j
|P̂ZkXk

<j |B0B≤j=1j+1),

for Q′
Xk
j+1|ZkXk

<j
= PXj+1|ZkXk

<j ,Xj+1,I=1 ◦QI|ZkXk
<j ,I∈GZkXk

<j

.

The proof of Claim 6.2 immediately follows from the next claim.

Claim 6.3. There exists a universal constant C > 0 such that

D(PXk
j+1|ZkXk

<j ,|δj(Xk
j+1;ZkXk

<j)|≤1/2||Q
′
Xk
j+1|ZkXk

<j
|P̂ZkXk

<j |B0B≤j=1j+1)

≤ C · m
k
·
(
D(PXk

j+1|ZkXk
<j
||RXk

j+1|ZkXk
<j
|PZkXk

<j
) + 1

)
.

Proof. Fix τ = (zk, xk<j) ∈ Supp(P̂ZkXk
<j |B0B≤j=1j+1). Our first step is to observe that since τ is

fixed such that B0B≤j = 1j+1, the additional conditioning on |δj(Xk
j+1;ZkXk

<j)| ≤ 1/2 does not

change the distribution of Xk
j+1 under P by much. In particular, the definition of P̂ (Definition 5.8)

yields that

PXk
j+1|(ZkXk

<j)=τ
[|δj(Xk

j+1; τ)| ≤ 1/2] = EP
Xk
j
|(ZkXk

<j
)=τ

[
PXk

j+1|(ZkXk
<j)=τ,X

k
j
[|δj(Xk

j+1; τ)| ≤ 1/2]
]

(59)

= EP
Xk
j
|(ZkXk

<j
)=τ

[P̂Bcur
j |ZkXk

≤j
(1)]

≥ 1− m

k2
,

where the last inequality holds since Bhist
j = 1. To ease the notation, let PXk

j+1|τ,|δ|≤1/2 =

PXk
j+1|(ZkXk

<j)=τ,|δj(Xk
j+1;ZkXk

<j)|≤1/2. It follows that

D(PXk
j+1|τ,|δ|≤1/2||Q

′
Xk
j+1|(ZkXk

<j)=τ
) (60)

= E
xkj+1∼PXk

j+1
|τ,|δ|≤1/2

log
PXk

j+1|τ,|δ|≤1/2(xkj+1)

Q′
Xk
j+1|ZkXk

<j

(xkj+1|τ)

= E
xkj+1∼PXk

j+1
|τ,|δ|≤1/2

log
PXk

j+1|ZkXk
<j

(xkj+1|τ)/PXk
j+1|ZkXk

<j
[|δj(Xk

j+1; τ)| ≤ 1/2|ZkXk
<j = τ ]

Q′
Xk
j+1|ZkXk

<j

(xkj+1|τ)

= log
1

PXk
j+1|ZkXk

<j
[|δj(Xk

j+1; τ)| ≤ 1/2|ZkXk
<j = τ ]

+ E
xkj+1∼PXk

j+1
|τ,|δ|≤1/2

log
PXk

j+1|ZkXk
<j

(xkj+1|τ)

Q′
Xk
j+1|ZkXk

<j

(xkj+1|τ)

≤ 2m

k2
+ E
xkj+1∼PXk

j+1
|τ,|δ|≤1/2

log
PXk

j+1|ZkXk
<j

(xkj+1|τ)

Q′
Xk
j+1|ZkXk

<j

(xkj+1|τ)

≤ m

k
+ E
xkj+1∼PXk

j+1
|τ,|δ|≤1/2

log

∑
i∈Gτ αj,i(τ)∑

i∈1
xk
j+1
∩Gτ

αj,i(τ)
pi(τ)

,
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where the first inequality follows from Equation (59) and since 1
1−x ≤ e2x for all 0 < x ≤ 0.5, and

the last equality follows since k ≥ m ≥ 2 and from applying Claim 5.5 with J = Gτ (recall that we
defined in Claim 5.5 that pi(τ) = PXj+1,i|ZkXk

<j
(1|τ)).

Our next step is to use the following claim — proved below — which is where the crux of the
argument lies.

Claim 6.4. There exists a constant C ′ > 0 such that

Exkj+1∼PXk
j+1
|τ,|δ|≤1/2

log

∑
i∈Gτ αj,i(τ)∑

i∈1
xk
j+1
∩Gτ

αj,i(τ)
pi(τ)

≤ C ′ · m
k
·
(
D(PXk

j+1|(ZkXk
<j)=τ

||RXk
j+1|(ZkXk

<j)=τ
) + 1

)
.

(61)

We now proceed to complete the proof of Claim 6.3. Note that Claim 6.4 does
not immediately suffice in order to establish Claim 6.3. The reason is that in order to
get D(PXk

j+1|ZkXk
<j ,δj(X

k
j+1;ZkXk

<j)≤1/2||Q′Xk
j+1|ZkXk

<j
|P̂ZkXk

<j |B0B≤j=1j+1) from the left-hand side

of Equation (60) we need to take expectation over P̂ZkXk
<j |B0B≤j=1j+1 . However, to get

D(PXk
j+1|ZkXk

<j
||RXk

j+1|ZkXk
<j
|PZkXk

<j
) from the right-hand side of Equation (61), we need to take

expectation over PZkXk
<j

. We use Fact 3.7 to handle this issue.

Set C = 2C ′ + 1. Equation (60) and Claim 6.4 yield that

D(PXk
j+1|ZkXk

<j ,δj(X
k
j+1;ZkXk

<j)≤1/2||Q
′
Xk
j+1|ZkXk

<j
|P̂ZkXk

<j |B0B≤j=1j+1)

= E
τ∼P̂

ZkXk
<j
|B0B≤j=1j+1

D(PXk
j+1|(ZkXk

<j)=τ,δj(X
k
j+1;ZkXk

<j)≤1/2||Q
′
Xk
j+1|(ZkXk

<j)=τ
)

≤ E
τ∼P̂

ZkXk
<j
|B0B≤j=1j+1

[m
k

+ C ′ · m
k
·
(
D(PXk

j+1|(ZkXk
<j)=τ

||RXk
j+1|(ZkXk

<j)=τ
) + 1

)]
≤ m

k
+ C ′ · m

k
·

(
1

P̂B0B≤j (1
j+1)

·D(PXk
j+1|ZkXk

<j
||RXk

j+1|ZkXk
<j
|PZkXk

<j
) + 1

)
≤ C · m

k
·
(
D(PXk

j+1|ZkXk
<j
||RXk

j+1|ZkXk
<j
|PZkXk

<j
) + 1

)
,

where the second inequality follows from Fact 3.7 and since P̂ZkXm×k = PZkXm×k , and the last
inequality follows since by assumption P̂B0B≤j (1

j+1) ≥ 1/2 and by the setting of C. This completes
the proof of Claim 6.3. �

Proof of Claim 6.4. First, we lower-bound the right-hand side of Equation (61). Note that
by Definition 5.1, Xj+1,i and Xj+1,i′ are independent for i 6= i′; that is, RXk

j+1|(ZkXk
<j)=τ

can be

written as a product distribution RXk
j+1|(ZkXk

<j)=τ
=
∏k
i=1RXj+1,i|(ZkXk

<j)=τ
. Thus, by chain rule

of divergence (Fact 3.5(3)) it holds that

D(PXk
j+1|(ZkXk

<j)=τ
||RXk

j+1|(ZkXk
<j)=τ

) ≥ D(PXk
j+1|(ZkXk

<j)=τ
||PΠ

Xk
j+1|(ZkXk

<j)=τ
), (62)

where PΠ
Xk
j+1|(ZkXk

<j)=τ
is the product distribution of the marginals of PXk

j+1|(ZkXk
<j)=τ

; that is

PΠ
Xk
j+1|(ZkXk

<j)=τ
=
∏k
i=1 PXk

j+1,i|(ZkXk
<j)=τ

.
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Next, we upper-bound the left-hand side of Equation (61). At this point we recall the setting
of Claim 5.6. For i ∈ Gτ and xkj+1 ∈ X k let fi(x

k
j+1) = αj,i(τ)/pi(τ) if xkj+1,i = 1 and 0 otherwise.

Let Y =
∑

i∈Gτ Yi, where the Yi’s are random variables defined as Yi = fi(X
k
j+1) and Xk

j+1 is drawn

either from PXk
j+1|(ZkXk

<j)=τ
or PΠ

Xk
j+1|(ZkXk

<j)=τ
. Note that in the former case, the Yi’s are dependent,

whereas in the latter case they are independent. This observation will play a crucial role ahead.
Let ∆ = δj(X

k
j+1; τ), where again Xk

j+1 is drawn either from PXk
j+1|(ZkXk

<j)=τ
or PΠ

Xk
j+1|(ZkXk

<j)=τ
.

The definition of δ0 (see Table 1) yields that Y = (1 + ∆) ·
∑

i∈Gτ αj,i(τ). We can now upper-bound
the left-hand side of Equation (61) as

Exkj+1∼PXk
j+1
|τ,|δ|≤1/2

log

∑
i∈Gτ αj,i(τ)∑

i∈1
xk
j+1
∩Gτ

αj,i(τ)
pi(τ)

= EP
Xk
j+1
|(ZkXk

<j
)=τ

[
log

∑
i∈Gτ αj,i(τ)

Y

∣∣∣∣|∆| ≤ 1/2

]

= EP
Xk
j+1
|(ZkXk

<j
)=τ

[
log

1

1 + ∆

∣∣∣∣|∆| ≤ 1/2

]
≤ EP

Xk
j+1
|(ZkXk

<j
)=τ

[
−∆ + ∆2

∣∣|∆| ≤ 1/2
]
,

where the inequality follows since − log(1 + x) ≤ −x+ x2 for all −1/2 ≤ x ≤ 1/2.
The proof of Claim 6.4 immediately follows form the next two claims that bound the expected

values of −∆ and ∆2.

Claim 6.5. The exists C1 > 0 such that

EP
Xk
j+1
|(ZkXk

<j
)=τ

[−∆||∆| ≤ 1/2] ≤ C1 ·
m

k
.

Claim 6.6. The exists C2 > 0 such that

EP
Xk
j+1
|(ZkXk

<j
)=τ

[
∆2
∣∣|∆| ≤ 1/2

]
≤ C2 ·

m

k
·
(
D(PXk

j+1|(ZkXk
<j)=τ

||PΠ
Xk
j+1|(ZkXk

<j)=τ
) + 1

)
.

Claims 6.5 and 6.6 are proven in Sections 6.1.1 and 6.1.2, respectively. �

6.1.1 Proving Claim 6.5

A key fact toward proving Claim 6.5 is that the expected value of Y under PXk
j+1|(ZkXk

<j)=τ
is

exactly
∑

i∈Gτ αj,i(τ). Indeed, this is exactly the statement of Claim 5.6. Since Y = (1 + ∆) ·∑
i∈Gτ αj,i(τ), the random variable ∆ in fact measures how far Y is from its expectation. It follows

that EP
Xk
j+1
|(ZkXk

<j
)=τ

[∆] = 0.

Assume that EP
Xk
j+1
|(ZkXk

<j
)=τ

[∆||∆| ≤ 1/2] < 0, since otherwise the claim holds trivially. We

use the following claim

Claim 6.7. It holds that δj(x
k
j+1; zkxk<j) ≤ 3000 ·m, for every j ∈ [m] and all (zk, xk<j , x

k
j+1) ∈

Supp(PZkXk
<jX

k
j+1

).
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Proof. By the definition of Gzkxk<j , it follows that for every i ∈ Gzkxk<j , it holds that αj,i(z
kxk<j) ∈

[0.01, 10], and that

PXj+1,i|ZkXk
<j

(1|zkxk<j) ≥ 0.9 · 1

m
·
(

1− 1

m

)
(63)

≥ 1

3m
,

where the second inequality holds by the assumption that m ≥ 2. Thus,

δj(x
k
j+1; zkxk<j) =

(∑
i∈G

zkxk
<j

⋂
1
xk
j+1

αj,i(z
kxk<j)

P
Xj+1,i|ZkXk<j

(1|zkxk<j)

)
(∑

i∈G
zkxk

<j

αj,i(zkxk<j)

) − 1

≤

∣∣∣Gzkxk<j ∣∣∣ · 30 ·m∣∣∣Gzkxk<j ∣∣∣/100

= 3000 ·m.

�

Using that ∆ ≤ 3000 ·m and that PXk
j+1|(ZkXk

<j)=τ

[
|∆| ≤ 1

2

]
≥ 1− m

k2 (Equation (59)), it follows

that

0 = EP
Xk
j+1
|(ZkXk

<j
)=τ

[∆] (64)

= PXk
j+1|(ZkXk

<j)=τ
[|∆| ≤ 1/2] · EP

Xk
j+1
|(ZkXk

<j
)=τ

[∆||∆| ≤ 1/2]

+ PXk
j+1|(ZkXk

<j)=τ
[|∆| > 1/2] · EP

Xk
j+1
|(ZkXk

<j
)=τ

[∆||∆| > 1/2]

≤
(

1− m

k2

)
· EP

Xk
j+1
|(ZkXk

<j
)=τ

[∆||∆| ≤ 1/2] + 3000 ·m · m
k2

≤ 1

2
· EP

Xk
j+1
|(ZkXk

<j
)=τ

[∆||∆| ≤ 1/2] + 3000 · m
k
,

where the last inequality holds since, by assumption, k ≥ m ≥ 2, so m/k2 ≤ 1/2 and m2/k2 ≤ m/k.
Setting C1 = 6000 and rearranging the above equation complete the proof of the claim.

6.1.2 Proving Claim 6.6

To prove Claim 6.6 we would like to use Proposition 3.10. To do so, we need to show that ∆ is
well concentrated under PΠ

Xk
j+1|(ZkXk

<j)=τ
. This is where we use that the Yi’s are independent under

PΠ
Xk
j+1|(ZkXk

<j)=τ
. Indeed, for 0 ≤ t ≤ 1, Fact 3.16 yields that

PΠ
Xj+1|(ZkX<j)=τ [|∆| ≥ t] = PΠ

Xj+1|(ZkX<j)=τ [|Y − E[Y ]| ≥ E[Y ] · t]

≤ 2 exp

(
− (E[Y ] · t)2

2(v + b · E[Y ] · t/3)

)
,
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for bi = αj,i(τ)/pi(τ), v =
∑

i∈Gτ b
2
i pi(τ) and b = max{bi : i ∈ Gτ}, where the above expectation

is taken over PΠ
Xj+1|(ZkX<j)=τ

. Here again we use that τ was chosen condition that Bhist
j = 1. By

Definition 5.8, it holds that |Gτ | ≥ k/10, and for every i ∈ Gτ it also holds that αj,i(τ) ∈ [0.01, 10]
and pi(τ) ≥ 1/3m (Equation (63)). Claim 5.6 shows that EPΠ

Xk
j+1
|(ZkXk

<j
)=τ

[Y ] =
∑

i∈Gτ αj,i(τ). It

follows that k/1000 ≤ E[Y ] ≤ 10k, v ≤ 3 · 102 ·mk and b ≤ 30m. Plugging into the above equation,
we have that

PΠ
Xj+1|(ZkX<j)=τ [|∆| ≥ t] ≤ 2 exp

(
− (k/1000 · t)2

2(3 · 102 ·mk + 30m · 10k · t/3)

)
≤ 2 exp

(
− t2

K1 · (m/k)

)
,

where the second inequality follows since t ≤ 1 and by setting K1 to be large enough constant.
In the following, we set the constant λ of Lemma 5.12 to be 4K1. Since, by assumption, k ≥

λm ≥ 4K1m the above inequality implies that PΠ
Xj+1|(ZkX<j)=τ

[|∆| ≥ 1] ≤ 1/2. Proposition 3.10

now yields that there exists a constant K2 > 0 such that

EP
Xk
j+1
|(ZkXk

<j
)=τ

[
∆2
∣∣|∆| ≤ 1/2

]
≤ K2 ·

m

k
·
(
D(PXk

j+1|(ZkXk
<j)=τ,|δj(Xk

j+1;τ)|≤1/2||P
Π
Xk
j+1|(ZkXk

<j)=τ
) + 1

)
.

To proof is completed by removing the condition on |δ(Xk
j+1; τ)| ≤ 1/2 from

PXk
j+1|(ZkXk

<j)=τ,|δ(Xk
j+1;τ)|≤1/2 via Fact 3.8. Formally, Fact 3.8 yields that

D(PXk
j+1|(ZkXk

<j)=τ,|δj(Xk
j+1;τ)|≤1/2||P

Π
Xk
j+1|(ZkXk

<j)=τ
)

≤ 1

PXk
j+1|(ZkXk

<j)=τ

[
|∆| ≤ 1

2

](D(PXk
j+1|(ZkXk

<j)=τ
||PΠ

Xk
j+1|(ZkXk

<j)=τ
) +

1

e
+ 1

)
.

Recall that (Equation (59)) PXk
j+1|(ZkXk

<j)=τ

[
|∆| ≤ 1

2

]
≥ 1− m

k2 ≥ 1/2, where the latter follows since

k ≥ m ≥ 2. Setting C2 = 2(1 + 1/e)K2 completes the proof.

6.2 Round Zero, Proving Claim 6.1

Our goal in this section is to prove that there exists C0 > 0 such that

D(P cutB0Zk
||QcutB0Zk

) ≤ C0 ·
m

k
·
(
D(PZkXk

1
||RZkXk

1
) + 1

)
. (65)

First, observe that if |D| < k · 2`−1 or P̂Bcur
0

(1) = PZkXk
1
[|δ0(ZkXk

1 )| ≤ 1/2] < 1 − m
k2 , then

Bhist
0 = 0 (and B0 = 0) under both P̂ and Q̂, and thus D(P cut

B0Zk
||Qcut

B0Zk
) = 0. Henceforth, we

assume that

|D| ≥ k · 2`−1 and PZkXk
1
[|δ0(ZkXk

1 )| ≤ 1/2] ≥ 1− m

k2
. (66)
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Next, similar arguments to those used to derive to Equation (58) yield that

D(P cutB0Zk
||QcutB0Zk

) ≤ D(P̂Zk|B0=1||Q̂Zk|B0=1)

≤ D(P̂ZkXk
1 |B0=1||Q̂ZkXk

1 |B0=1)

≤ D(PZkXk
1 ||δ0(ZkXk

1 )|≤1/2||Q
′
ZkXk

1
),

where the second inequality follows from the monotonicity of divergence (Fact 3.5(2)), and the last
inequality follows from Claim 5.10, letting Q′

ZkXk
1

= PZkXk
1 |I,ZI ,X1,I=1◦QIZI |IZI∈D. Hence, to prove

Claim 6.1 it suffices to prove the following claim, which we do below.

Claim 6.8. There exists a universal constant C0 > 0 such that

D(PZkXk
1 ||δ0(ZkXk

1 )|≤1/2||Q
′
ZkXk

1
) ≤ C0 ·

m

k
·
(
D(PZkXk

1
||RZkXk

1
) + 1

)
.

Proof of Claim 6.8. The structure of this proof is similar to that of the proofs of Claims 6.3 and 6.4
and throughout this proof we point to arguments used before in those proofs.

First, using that PZkXk
1
[|δ0(ZkXk

1 )| ≤ 1/2] ≥ 1− m
k2 (Equation (66)) and by similar arguments

we used to derive Equation (60) it holds that

D(PZkXk
1 ||δ0(ZkXk

1 )|≤1/2||Q
′
ZkXk

1
) ≤ m

k
+ E
zkxk1∼PZkXk1 ||δ0(ZkXk1 )|≤1/2

log
PZkXk

1
(zkxk1)

Q′
zkXk

1
(zkxk1)

. (67)

In the rest of the proof we show that there exists C ′0 > 0 such that

E
zkxk1∼PZkXk1 ||δ0(ZkXk1 )|≤1/2

log
PZkXk

1
(zkxk1)

Q′
zkXk

1
(zkxk1)

≤ C ′0 ·
m

k
·
(
D(PZkXk

1
||RZkXk

1
) + 1

)
. (68)

The proof of Claim 6.8 would then follow by taking C0 = 2 · C ′0.25

As in the proof of Claim 6.4, the first step is to lower-bound the right-hand side of Equa-
tion (68) using the product distribution of the marginals. Specifically, the chain rule for divergence
(Fact 3.5(3)) yields that

D(PZkXk
1
||RZkXk

1
) ≥ D(PZkXk

1
||PΠ

ZkXk
1
),

for PΠ
ZkXk

1
=
∏k
i=1 PZiX1,i .

Our second step, again as in the proof of Claim 6.4, it to upper-bound the left-hand side of

25Note the difference from round j: Claim 6.4 — the analogous claim in round j to Equation (68) — did not
immediately implies the proof of Claim 6.3 — the analogous claim in round j to Claim 6.8. The reason is that in
round j we had to take into consideration the distribution of the previous transcript τ , which does not exists for
round zero.
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Equation (68). By the definition of δ0 (see Table 1), it holds that

Q′
zkXk

1
(zkxk1) =

k∑
i=1

QIZI |IZI∈D(i, zi) · PZkXk
1 |ZiX1,i

(zkxk1|zi, 1)

=
1

|D|
·
k∑
i=1

1{(i, zi) ∈ D} · PZkXk
1 |ZiX1,i

(zkxk1|zi, 1)

=
1

|D|
·
∑
i∈1

xk1

1{(i, zi) ∈ D} · PZkXk
1 |ZiX1,i

(zkxk1|zi, 1)

=
1

|D|
·
∑
i∈1

xk1

1{(i, zi) ∈ D} ·
PZkXk

1
(zkxk1)

PZiX1,i(zi1)

= PZkXk
1
(zkxk1) · (1 + δ0(zkxk1)),

where the third equality holds since PZkXk
1 |ZiX1,i

(zkxk1|zi, 1) = 0 for every i /∈ 1xk1
. Let ∆ =

δ0(ZkXk
1 ), where ZkXk

1 are drawn either from PZkXk
1

or PΠ
ZkXk

1
. It follows that

E
zkxk1∼PZkXk1 ||δ0(ZkXk1 )|≤1/2

log
PZkXk

1
(zkxk1)

Q′
zkXk

1
(zkxk1)


= E

zkxk1∼PZkXk1 ||δ0(ZkXk1 )|≤1/2

[
log

1

1 + δ0(zkxk1)

]

= E
P
ZkXk1

[
log

1

1 + ∆

∣∣∣∣|∆| ≤ 1/2

]
≤ E

P
ZkXk1

[
−∆ + ∆2

∣∣|∆| ≤ 1/2
]
,

where the inequality follows since − log(1 + x) ≤ −x+ x2 for all −1/2 ≤ x ≤ 1/2.
We conclude the proof of Claim 6.8, and thus also of Claim 6.1, by proving the next two claims,

analogous to Claims 6.5 and 6.6.

Claim 6.9. The exists C1 > 0 such that

EP
ZkXk1

[−∆||∆| ≤ 1/2] ≤ C1 ·
m

k
.

Claim 6.10. The exists C2 > 0 such that

EP
ZkXk1

[
∆2
∣∣|∆| ≤ 1/2

]
≤ C2 ·

m

k
·
(
D(PZkXk

1
||PΠ

ZkXk
1
) + 1

)
.

Claims 6.9 and 6.10 are proven in Sections 6.2.1 and 6.2.2 respectively. Both proofs use the
setting of Claim 5.7, which we now recall. For i ∈ [k] let pi = PX1,i(1), and for zkxk1 ∈ {0, 1}`k ×
{0, 1}k let fi(z

kxk1) = α0,i(zi)/pi if xk1,i = 1 and 0 otherwise. Let Y =
∑

i∈[k] Yi, where the Yi’s

are random variables defined as Yi = fi(Z
kXk

1 ) and ZkXk
1 are drawn either from PZkXk

1
or PΠ

ZkXk
1
.
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As it was the case in the proof Claim 6.4, that the Yi’s are independent under PΠ
ZkXk

1
will play a

crucial role ahead. Finally, note that Y = (1 + ∆) · |D|
2`

.
The proof of Claim 6.8 follows immediately from Claims 6.9 and 6.10. �

6.2.1 Proving Claim 6.9

A key fact toward proving Claim 6.9 is that the expected value of Y under PZkXk
1

is exactly |D|
2`

.

Indeed, this is exactly the statement of Claim 5.7. Since Y = (1 + ∆) · |D|
2`

, the random variable ∆
in fact measures how far Y is from its expectation. It follows that EP

ZkXk1

[∆] = 0.

Recall that by the assumptions we made in Equation (66), it holds that |D| ≥ k · 2`−1 and
PZkXk

1
[|∆| ≤ 1/2] ≥ 1− m

k2 . We use the following claim.

Claim 6.11. If |D| ≥ k · 2`−1, then δ0(zkxk1) ≤ 6 ·m, for every zkxk1 ∈ Supp(PZkXk
1
).

Proof. Let zkxk1 ∈ Supp(PZkXk
1
). Assume that (i, zi) ∈ D. If follows that i ∈ G and zi ∈ Zi. Since

i ∈ G, it follows that |ρ0,1| ≤ 0.1, which implies that PX1,i(1) ≥ 0.9/m. And since zi ∈ Zi, it follows

that PZi|X1,i
(zi|1) ≥ 0.9 · 2−` ≥ 2−(`+1). Putting this together, we have that

δ0(zkxk1) =

∑
i∈1

xk1

1{(i,zi)∈D}
PZiX1,i

(zi1)

|D|
− 1

≤

∑
i∈1

xk1

1{(i,zi)∈D}
(0.9/m)·2−(`+1)

|D|

≤ 3 · k · 2` ·m
|D|

.

The proof now follows from the assumption that |D| ≥ k · 2`−1. �

Using Claim 6.11 and calculations similar using to those in Equation (64) complete the proof
of the claim.

6.2.2 Proving Claim 6.10

As in the proof of Claim 6.6, we would like to show that ∆ is well-concentrated under the product
distribution PΠ

ZkXk
1
. Showing this, however, requires more delicate analysis than in the aforemen-

tioned proof.
We rely on the following observation regarding the random variables Yi’s under PΠ

ZkXk
1
. By

definition, Yi is chosen according to the underlying distribution PZiXi,1 , where Zi and Xi,1 are
dependent. However, Yi is not zero only if Xi,1 = 1, and if Xi,1 = 1, the value of Yi depends only
on Zi. Thus, we can decouple the underlying distribution to a product distribution in which Zi
and X1,i are independent: we first choose whether Yi is zero according to PX1,i and then, assuming
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it is not zero, choose the value Yi gets, according to PZi|X1,i=1. Formally, for y > 0 it holds that

PZiXi,1 [Yi = y] = PZiXi,1 [X1,i = 1 ∧ α0,i(Zi) = y · pi]
= PX1,i(1) · PZi|X1,i=1[α0,i(Zi) = y · pi]
= P ′ZiX1,i

[Yi = y],

where we define P ′ZiX1,i
= PX1,i ·PZi|X1,i=1. It is also easy to see that PZiXi,1 [Yi = 0] = P ′ZiX1,i

[Yi =

0]. We conclude that Y , and thus also ∆, has the same distribution under PΠ
ZkXk

1
and under

P ′
ZkXk

1
:=

∏k
i=1 P

′
ZiXi,1

. It will be easier to see that ∆ is well concentrated under the latter

distribution.
Let A =

∑k
i=1Ai, where A1, . . . , Ak are random variables defined as Ai = α0,i(Zi) and Zi is

drawn from P ′Zi = PZi|X1,i=1
. Let µ = |D|/2`. For 0 < t ≤ 1, it holds that

PΠ
ZkXk

1
[|∆| ≥ t] = PΠ

ZkXk
1
[|Y − µ| ≥ tµ]

= P ′
ZkXk

1
[|Y − µ| ≥ tµ]

= P ′
ZkXk

1
[|Y − µ−A+A| ≥ tµ]

≤ P ′
ZkXk

1
[|Y −A|+ |A− µ| ≥ tµ]

≤ P ′
ZkXk

1
[|A− µ| ≥ tµ/2] + P ′ZkX1

[|Y −A| ≥ tµ/2]

= P ′Zk [|A− µ| ≥ tµ/2] + P ′ZkX1
[|Y −A| ≥ tµ/2]. (69)

We bound each term in Equation (69) separately. For the left-hand side term, we use Hoeffding’s
inequality. Indeed, similar calculations to those in the proof of Claim 5.7 show that EP ′

Zk
[A] = µ.

Furthermore, the definitions of α0,i(Zi) and D (see Tables 1 and 2) yield that Ai ∈ [0, 2] almost
surely . Hoeffding’s inequality (Fact 3.14) now gives the following bound:

P ′
ZkXk

1
[|A− µ| ≥ tµ/2] ≤ 2 exp

(
−(tµ/2)2

22 · k

)
(70)

≤ 2 exp

(
− t

2k

64

)
,

where the second inequality follows since |D| ≥ k ·2`−1 (Equation (66)), which implies that µ ≥ k/2.
To bound the right-hand side term in Equation (69), we use Fact 3.16. By the definition of

P ′
ZkXk

1
, it holds that

P ′
ZkXk

1
[|Y −A| ≥ tµ/2] = Ezk∼P ′

Zk
P ′
Xk

1
[|Y −A| ≥ tµ/2 | A1 = α0,1(z1), . . . , Ak = α0,k(zk)].

Fix any zk ∈ Supp(P ′
Zk

) and let αi = α0,i(zi). Note that condition on Ai = αi, the random variable

Yi is equal to αi/pi with probability pi = PX1,i(1) and 0 otherwise. Equivalently, Y =
∑k

i=1 biY
′
i

for bi = αi/pi and Y ′i ∼ Bern(pi). Thus, E[Y ] =
∑k

i=1 bipi =
∑k

i=1 αi. Let v =
∑k

i=1 b
2
i pi =∑k

i=1 α
2
i /pi. As we argued above, it holds that αi ≤ 2. Also, for i with αi > 0, it holds that

pi ≥ 0.9/m (if αi > 0, it must be the case that (i, zi) ∈ D, which implies that i ∈ G, which
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means that |ρ0,i| ≤ 0.1). Hence, v ≤ 5km and b = max{b1, . . . , bk} ≤ 3m. Letting a =
∑k

i=1 αi,
Proposition 3.10 yields that:

P ′
Xk

1
[|Y −A| ≥ tµ/2 | A1 = α1, . . . , Ak = αk] = P ′

Xk
1
[|Y − a| ≥ tµ/2]

≤ 2 exp

(
− (tµ/2)2

2(v + btµ/6)

)
≤ 2 exp

(
− (tk/4)2

2(5km+ 3tkm/6)

)
≤ 2 exp

(
− (tk/4)2

2(5km+ km)

)
= 2 exp

(
− t2

192 · (m/k)

)
,

where the second inequality follows since k/2 ≤ µ ≤ k, and the last inequality follows since t ≤ 1.
Since the above bound holds for any fixing of zk ∈ Supp(P ′

Zk
), by taking expectation over P ′

Zk
, we

get the following bound:

P ′
ZkXk

1
[|Y −A| ≥ tk/2] = 2 exp

(
− t2

192 · (m/k)

)
. (71)

Finally, plugging Equations (70) and (71) into Equation (69) yields that

PΠ
ZkXk

1
[|∆| ≥ t] ≤ 2 exp

(
− t

2k

64

)
+ 2 exp

(
− t2

192 · (m/k)

)
≤ K2 · exp

(
− t2

K1 · (m/k)

)
,

where the last inequality holds for K2 = 4 and large enough K1.
Since, by assumption, k ≥ λm = 4K1m (we previously set λ = 4K1), the above inequality

implies that PΠ
ZkXk

1
[|∆| ≥ 1] ≤ 1/2. Proposition 3.10 now yields that there exists a constant

K3 > 0 such that

EP
ZkXk1

[
∆2
∣∣|∆| ≤ 1/2

]
≤ K3 ·

m

k
·
(
D(PZkXk

1 ||∆|≤1/2||P
Π
ZkXk

1
) + 1

)
.

To proof is completed by removing the conditioning on |∆| ≤ 1/2 from PZkXk
1 ||∆|≤1/2 via Fact 3.8.

Formally, Fact 3.8 yields that

D(PZkXk
1 ||∆|≤1/2||P

Π
ZkXk

1
)

≤ 1

PZkXk
1

[
|∆| ≤ 1

2

](D(PZkXk
1
||PΠ

ZkXk
1
) +

1

e
+ 1

)
.

Recall that PZkXk
1
[|∆| ≤ 1/2] ≥ 1 − m

k2 ≥ 1/2 (Equation (66)), where the latter follows since

k ≥ m ≥ 2. Setting C2 = 2(1 + 1/e)K3 completes the proof.
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7 Bounding the Probability of Failure in P̂

In this section, we prove Lemma 5.13, restated for convenience below.

Lemma 7.1 (Restatement of Lemma 5.13). For any constant λ > 0 there exist constants λ′, λ′′ >
0 such that the following holds: Let k,m, ` ∈ N, let ε ∈ (0, 1/2], let W ⊆ {0, 1}kl+k(m+1) be
a termination-consistent set (according to Definition 4.3) and let W,R and P̂ be the event and
distributions from Definitions 5.1 and 5.8 respectively, for the above k,m, `,W. Assume k ≥ λ′ ·
m2/ε and R[W ] ≥ (1− ε)

k
λ′′·m , then P̂Bm+2(1m+2) ≥ 1− ε/λ.

In the following, let ε, k,m, `,W,W,R, P̂ be as in Lemma 5.13 and let P and Q be the distri-
butions from Definitions 4.7 and 4.8 (respectively) with respect to k,m, `,W.

In Section 7.1 we state Lemma 7.2 which captures the heart of the proof of Lemma 5.13. In
Section 7.2 we prove Lemma 5.13 using Lemma 7.2 and in Section 7.3 we prove Lemma 7.2.

7.1 Bounding the Number of Bad Columns in P

In order to give a formal statement for our main lemma, we broadly use the definitions of {ρj,i}m+1
j=0 ,

{βj,i}m+1
j=2 , {αj,i}m+1

j=0 , {δj}m+1
j=0 given in Table 1 (Section 5) and the definitions of {Ixk<j}

m+1
j=1 , G,

{Gzkxk<j}
m+1
j=1 , Zi, D given in Table 2 (Section 5), and in addition we define new sets and variables

(Tables 3 to 5) which are also broadly used, and an intuition for their purpose is given below.
The following definitions are with respect to some fixing of j ∈ [m + 1] and τj = zkxk<j ∈

Supp(PZkXk
<j

).

ZkX(m+1)×k|(ZkXk
<j = τj) =



zk

xk1
xk2
.
.

xkj−1

Xk
j

.

.
Xk
m+1


=



z1 z2 . . . zk
x1,1 x1,2 . . . x1,k

x2,1 x2,2 . . . x2,k

. . .

. . .
xj−1,1 xj−1,2 . . . xj−1,k

Xj,1 Xj,2 . . . Xj,k

. . .

. . .
Xm+1,1 Xm+1,2 . . . Xm+1,k


Figure 2: A matrix representation of the random coins ZkX(m+1)×k at the beginning of round j
conditioned on ZkXk

<j = τj for some j ∈ [m+ 1] and τj = zkxk<j ∈ Supp(PZkXk
<j

) (lowercase letter

represents a fixed value and an uppercase for a radnom variable which hasn’t been determined yet).

First, in Table 3 we define γj,i(τj) which measures how much PXj,i|ZkXk
<j

(1|τj) is far from 1/m

(note that this is different from ρj,i(τj) which measures the probability according to the next round
bit Xj+1,i and not according to the current round’s bit Xj,i). Next, we split the set of “good”
columns Gτj (defined in Table 2) into the sets Gρτj and Gατj that satisfy Gτj = Gρτj ∩G

α
τj ∩G (G is

also defined in Table 2) and define a similar set Gγτj with respect to the {γj,i} measurements (see

Table 4 for formal definitions). In addition, we define uγi (τj), u
ρ
i (τj), u

α
i (τj) that outputs the first
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round j′ ∈ [j] (with respect to a column i ∈ [k]) which has unexpected large jump in the value
of the measurement. Note that if 1 ∈ x<j′,i (i.e., the ith verifier is not active at the beginning of
round j′) then by definition, γj′,i = ρj′,i = −1 since Xj,i = Xj+1,i = 0 (with probability 1) in this
case. Therefore, we define it as follows: uγi (τj) outputs the first round j′ ∈ [j] such that 1 /∈ x<j′,i
(equivalently, i ∈ Ixk

<j′
meaning that i is “active” at round j) but still has an unexpected large

jump in the value of
∣∣γj′,i∣∣, where in case no such j′ exists it outputs∞. Similarly, we define uρi and

uαi for the ρj′,i and αj′,i measurements (respectively), and define ui to be the first round j′ ∈ [j]
which has large jump in the value of (at least) one of the measurements: γj′,i, ρj′,i or αj′,i. Finally,
for ν ∈ {γ, ρ, α} we define jumpsν(τj) to be the number of columns i ∈ [k] which have large jumps
in the {νj,i}’s measurements (i.e., with uνi (τj) < ∞) and define jumps(τj) to be the number of
columns i ∈ [k] with a jump in any of the measurement (i.e., with ui(τj) <∞). See Table 5 for the
formal definitions.

Table 3: The γj,i measurement

Definition Value

γj,i(τj) m · PXj,i|ZkXk
<j

(1|τj)− 1

Table 4: the typical columns for each measurement

Definition Value

Gγτj {i ∈ [k] : ∀j′ ∈ [j].
∣∣γj′,i∣∣ ≤ 0.1}

Gρτj {i ∈ [k] : ∀j′ ∈ [j].
∣∣ρj′,i∣∣ ≤ 0.1}

Gατj {i ∈ [k] : ∀j′ ∈ [j].αj′,i ∈ [0.01, 10]}

An important observation of the above is that the following holds:

(a) Gτj = Gρτj ∩G
α
τj ∩G.

(b) ∀ν ∈ {γ, ρ, α}. i ∈ Gντj ⇐⇒
(
i ∈ Ixk<j

)
∧ (uνi (τj) =∞).

(c)
(
i ∈ Ixk<j ∩G

)
∧ (ui(τj) =∞) ⇐⇒ i ∈ Gγτj ∩G

ρ
τj ∩G

α
τj ∩G =⇒ i ∈ Gτj .

(d)
∣∣Gτj ∣∣ ≥ ∣∣∣Ixk<j ∣∣∣− (k − |G|)− jumps(τj).

Note that we can interpret (c) as follows: if we have a column i ∈ [k] which is “active” (i.e. i ∈ Ixk<j ,
or equivalently, 1 /∈ x<j,i), and it belongs to G — the set of “good” columns at the beginning, and
it has no unexpected jump (i.e., ui(τj) =∞), then it holds that i ∈ Gτj (i.e., i is a “good” column

in round j). In addition, note that (d) simply follows by (c) since
∣∣∣Ixk<j ∩G∣∣∣ ≥ ∣∣∣Ixk<j ∣∣∣− (k − |G|).

Using the above definitions, we can finally state our main lemma of this section.

Lemma 7.2. [Bounding the number of bad columns in P ] For any constant λ > 0, there exists a
constant λ′ > 0 such that the following holds: let k,m, `,W, ε be as in Lemma 5.13, let P be the
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distribution from Definition 4.7, let G,D be the sets from Table 2 and let jumps be the function
from Table 5. Assume that at least one of the following holds:

1. |D| ≤ (1− ε/λ)k · 2`, or

2. EP
[
jumps(ZkX(m+1)×k)

]
≥ εk/λ,

then R[W ] ≤ (1− ε)
k

λ′·m .

Namely, Lemma 7.2 implies the following: if R[W ] is high enough, then most of the pairs
(i, zi) ∈ [k] × {0, 1}` must be “good” (i.e., in D), and in expectation over P , most of the columns
i ∈ [k] should not have large jumps during the execution, (i.e., EP

[
jumps(ZkX(m+1)×k)

]
should be

small).
Lemma 7.2 is used in Section 7.2 to prove Lemma 5.13, and in Section 7.3 we prove Lemma 7.2.

Table 5: first rounds with untypical measurement.

Definition Value

u
|γ|>c
i (τj)

{
∞ ∀j′ ∈ [j] :

(∣∣γj′,i∣∣ ≤ c) ∨ (1 ∈ x<j′,i)
min{j′ ∈ [j] :

(∣∣γj′,i∣∣ > c
)
∧
(
1 /∈ x<j′,i

)
} Otherwise

uγi (τj) u
|γ|>0.1
i (τj)

u
|ρ|>c
i (τj)

{
∞ ∀j′ ∈ [j] :

(∣∣ρj′,i∣∣ ≤ c) ∨ (1 ∈ x<j′,i)
min{j′ ∈ [j] :

(∣∣ρj′,i∣∣ > c
)
∧
(
1 /∈ x<j′,i

)
} Otherwise

uρi (τj) u
|ρ|>0.1
i (τj)

uαi (τj)

{
∞ ∀j′ ∈ [j] :

(
αj′,i ∈ [0.01, 10]

)
∨
(
1 ∈ x<j′,i

)
min{j′ ∈ [j] :

(
αj′,i /∈ [0.01, 10]

)
∧
(
1 /∈ x<j′,i

)
} Otherwise

ui(τj) min{uγi (τj), u
ρ
i (τj), u

α
i (τj)}

jumpsγ(τj)
∑k

i=1 1{u
γ
i (τj) <∞}

jumpsρ(τj)
∑k

i=1 1{u
ρ
i (τj) <∞}

jumpsα(τj)
∑k

i=1 1{uαi (τj) <∞}
jumps(τj)

∑k
i=1 1{ui(τj) <∞}

7.2 Proving Lemma 5.13 Using Lemma 7.2

In this section we prove Lemma 5.13 by showing that if k and R[W ] are large enough, then
P̂Bm+2(1m+2) must be close to 1. Recall that by the definition of P̂ (defined in Definition 5.8),
each bit Bj equals to the product Bhist

j · Bindx
j · Bcur

j . In the following, we extend the dis-

tribution of P̂ by separating the bits Bhist
j into two new bits Blarge set

j and Bexp cur
j such that

64



P̂
Bhist
j |Blarge set

j ,Bexp cur
j

= Blarge set
j · Bexp cur

j . We do so by defining P̂
Blarge set

0
= 1{|D| ≥ k · 2`−1}

and P̂Bexp cur
0

= 1{EP
ZkXk1

[
P̂Bcur

0 |ZkXk
1
(0)
]
≤ m

k2 }, and for j ∈ [m + 1] we define P̂
Blarge set
j |ZkXk

<j
=

1{
∣∣∣GZkXk

<j

∣∣∣ ≥ k
10} and P̂Bexp cur

j |ZkXk
<j

= 1{EP
Xk
j
|ZkXk

<j

[
P̂Bcur

j |ZkXk
≤j

(0)
]
≤ m

k2 }.
In order to prove Lemma 5.13, we handle each type of bit separately. In Section 7.2.1 we handle

the Blarge set
j bits, in Section 7.2.2 we hande the Bindx

j bits, and in Section 7.2.3 we handle the Bcur
j

and Bexp cur
j bits. Finally, in Section 7.2.4 we collect all parts and deduce the proof of Lemma 5.13.

7.2.1 The Large-Set Bits

Before handling the “large-set” bits, we first prove the following simple claim which state that the
set of active verifiers IX(m+1)×k is large.

Claim 7.3. There exists a universal constant λ > 0 such that for any q ∈ (0, 1) the following holds:
If P

[
|IX(m+1)×k | ≤ k

9

]
≥ q, then R[W ] ≤ 1

q · e
−k/λ.

Proof. Assume P
[
|IX(m+1)×k | ≤ k

9

]
≥ q for some q ∈ (0, 1). Observe that the distribution of

|IX(m+1)×k | when X(m+1)×k is drawn from RX(m+1)×k is exactly Bin(k, (1 − 1
m)m+1). Since (1 −

1
m)m+1 ≥ 1

8 for m ≥ 2, Hoeffding’s inequality (Fact 3.14) yields that

R

[
|IX(m+1)×k | ≤

k

9

]
≤ Pr[Bin(k, 1/8) ≤ k/9]

≤ e−k/λ,

for some universal constant λ > 0, and we conclude that

R[W ] ≤
R
[
|IX(m+1)×k | ≤ k

9

]
P
[
|IX(m+1)×k | ≤ k

9

] ≤ 1

q
· e−k/λ

as required. �

In addition, we prove that if R[W ] is high enough and if k is large enough, then the probability
(over P ) that |GZkX(m+1)×k | ≥ k

10 is high.

Claim 7.4. For any constant λ > 0, there exists constants λ′, λ′′ > 0 such that the following holds:

If P [|GZkX(m+1)×k | ≥ k
10 ] ≤ 1− ε/λ and k ≥ λ′/ε, then R[W ] ≤ (1− ε)

k
λ′′·m .

Proof. Assume that P [|GZkX(m+1)×k | ≥ k
10 ] ≤ 1 − ε/λ for some constant λ > 0. Note that by

definition, for any fixed ZkX(m+1)×k it holds that

|GZkX(m+1)×k | ≥ |IX(m+1)×k | − (k − |G|)− jumps(ZkX(m+1)×k) (72)

By assumption, one of the following items must hold:

1. |G| ≤ 0.999k, or

2. P
[
|IZkX(m+1)×k | ≤ k

9

]
≥ ε/2λ, or

3. P
[
jumps(ZkX(m+1)×k) ≥ 0.001k

]
≥ ε/2λ.
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If Item 1 holds, then we deduce from Lemma 7.2(1) that R[W ] ≤ (1−ε)
k
c·m , where c is the constant

λ′ = λ′(1000) of Lemma 7.2 (note that |D| ≤ |G| · 2`). If Item 2 holds, then we deduce from

Claim 7.3 that R[W ] ≤ 2λ
ε · e

−k/c′ ≤ (1− ε)
k

2c′ , where c′ is the universal constant λ′ of Claim 7.3,
and the second inequality holds by choosing the claim’s constant λ′ to be large enough such that
k > λ′/ε implies it. If Item 3 holds, then in particular it holds that

EP

[
jumps(ZkX(m+1)×k)

]
≥ εk

2000λ

Hence, we deduce from Lemma 7.2(2) that R[W ] ≤ (1 − ε)
k

c′′·m where c′′ is the constant λ′ =
λ′(2000λ) of Lemma 7.2. By setting the claim’s constant λ′′ = max{c, 2c′, c′′}, the proof follows.

�

As a corollary of Lemma 7.2 and Claim 7.4, it holds that if k and R[W ] are large enough, then
the probability of failure (over P̂ ) in the “large set” bits is low.

Corollary 7.5. For any constant λ > 0, there exists constants λ′, λ′′ > 0 such that the following

holds: If P̂
Blarge set

0 ,...,Blarge set
m+1

(1m+2) ≤ 1− ε/λ and k ≥ λ′/ε, then R[W ] ≤ (1− ε)
k

λ′′·m .

Proof. Assume that P̂
Blarge set

0 ,...,Blarge set
m+1

(1m+2) ≤ 1−ε/λ for some constant λ > 0. If P̂
Blarge set

0
(1) =

0, then |D| ≤ k · 2`−1 and the proof follows by Lemma 7.2(1). Otherwise, P̂
Blarge set

0
(1) =

1 and therefore, P̂
Blarge set

1 ,...,Blarge set
m+1

(1m+2) ≤ 1 − ε/λ. Since P̂ZkX(m+1)×k ≡ P and since

P̂
Blarge set

0 ,...,Blarge set
m+1 |ZkX(m+1)×k(1m+2) = 1{|GZkXm×k | ≥ k

10} ≥ 1{|GZkX(m+1)×k | ≥ k
10} (for any

fixed ZkX(m+1)×k), we deduce that P [|GZkX(m+1)×k | ≥ k
10 ] ≤ 1 − ε/λ and the proof follows by

Claim 7.4. �

7.2.2 The Index Bits

In order to bound the probability of failure (over P̂ ) in the “index” bits, we make use of the
following two claims. The proof of the first claim appears in Corollary 7.24.

Claim 7.6. For any constant λ > 0 there exists a constant λ′ > 0 such that if

EP

[∑k
i=1

∑m+1
j=1 γj,i · 1{γj,i > 1}

]
≥ εk/λ for γj,i = γj,i(Z

kX(m+1)×k), then R[W ] ≤ (1− ε)
k

λ′·m .

Claim 7.7. For any constant λ > 0 there exists a constant λ′ > 0 such that if

EP

[∑k
i=1

∑m+1
j=1 (1 + γj,i) · 1{ui = j}

]
≥ εk/λ for γj,i = γj,i(Z

kXk
<j) and ui = ui(Z

kX(m+1)×k),

then R[W ] ≤ (1− ε)
k

λ′·m .
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Proof. Observe that

EP

 k∑
i=1

m+1∑
j=1

(1 + γj,i) · 1{ui = j}


= EP

 k∑
i=1

m+1∑
j=1

(1 + γj,i) · 1{ui = j} · (1{γj,i ≤ 1}+ 1{γj,i > 1})


≤ 2 · EP

 k∑
i=1

m+1∑
j=1

1{ui = j}

+ 2 · EP

 k∑
i=1

m+1∑
j=1

γj,i · 1{γj,i > 1}


= 2 · EP

[
jumps(ZkX(m+1)×k)

]
+ 2 · EP

 k∑
i=1

m+1∑
j=1

γj,i · 1{γj,i > 1}

,
By assumption, at least one of the following items must holds:

1. EP
[
jumps(ZkX(m+1)×k)

]
≥ ε

4λ , or

2. EP

[∑k
i=1

∑m+1
j=1 γj,i · 1{γj,i > 1}

]
≥ ε

4λ .

If Item 1 holds, then Lemma 7.2(2) implies that R[W ] ≤ (1 − ε)
k
c·m , where c > 0 is the constant

λ′ = λ′(4λ) > 0 of Lemma 7.2. If Item 2 holds then Claim 7.6 implies that R[W ] ≤ (1 − ε)
k

c′·m ,
where c′ > 0 is the constant λ′ = λ′(4λ) > 0 of Claim 7.6. Hence, the proof follows by setting
λ′ = max{c, c′}. �

As a corollary of Claim 7.7, if k and R[W ] are large enough, then the probability of failure (over
P̂ ) in the “index” bits is low.

Corollary 7.8. For any constant λ > 0, there exists constants λ′, λ′′ > 0 such that the following
holds: If P̂Bindx

0 ,...,Bindx
m+1

(1m+2) ≤ 1− ε/λ and k ≥ λ′/ε, then R[W ] ≤ (1− ε)λ′′·k/m.

Proof. Assume that P̂Bindx
0 ,...,Bindx

m+1
(1m+2) ≤ 1 − ε/λ for some constant λ > 0. If P̂Bindx

0
(0) ≥ ε

2λ ,

then |D| ≤ (1− ε
2λ) · k · 2` and by Lemma 7.2(1) we deduce that R[W ] ≤ (1− ε)

k
c·m , where c > 0 is

the constant λ′ = λ′(2λ) > 0 of Lemma 7.2. Otherwise, it holds that P̂Bindx
1 ,...,Bindx

m+1
(1m+2) < 1− ε

2λ .

Observe that for any fixing of ZkX(m+1)×k with |GZkX(m+1)×k | ≥ k
10 and for any j ∈ [m + 1], it
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holds that

P̂Bindxj |ZkXk
<j

(0) = Pri∼Q
I|ZkXk

<j
,I∈Gj−1

[i /∈ Gj ]

=

∑
i∈Gj−1 \ Gj αj,i∑
i′∈Gj−1

αj,i′

=

∑
i∈Gj−1 \ Gj αj−1,i ·

P
Xj,i|ZkXk<j′

(1)

P
Xj,i|ZkXk<j−1

(1)∑
i′∈Gj−1

αj,i′

≤

∑
i∈Gj−1 \ Gj 10 ·

P
Xj,i|ZkXk<j′

(1)

1−0.1
m

(1− 1
m

)

0.01 · |Gj |

≤ 25000 · m
k
·

∑
i∈Gj−1 \ Gj

PXj,i|ZkXk
<j′

(1)

= 25000 · 1

k
·
k∑
i=1

(1 + γj,i) · 1{ui = j}, (73)

where we let Gj−1 = GZkXk
<j−1

and Gj = GZkXk
<j

. The second equality in (73) holds by Claim 5.4,

the first inequality holds since i ∈ Gj−1 =⇒ aj−1,i ∈ [0.01, 10], |ρj−1,i| ≤ 0.1 and since∑
i′∈Gj−1

αj,i′ ≥
∑

i′∈Gj αj,i′ ≥ 0.01 · |Gj |, and the last inequality holds since |Gj | ≥ |GZkX(m+1)×k | ≥
k
10 and since m ≥ 2. Therefore, by assumption we deduce that

ε

2λ
≤ P̂Bindx

1 ,...,Bindx
m+1

[∃j ∈ [m+ 1] s.t. Bindx
j = 0]

≤
m+1∑
j=1

P̂Bindx
j

(0)

= EP

m+1∑
j=1

P̂Bindx
j |ZkXk

<j
(0)


≤ EP

m+1∑
j=1

P̂Bindx
j |ZkXk

<j
(0) | |GZkX(m+1)×k | ≥

k

10

+ P

[
|GZkX(m+1)×k ] ≥ k

10

∣∣∣∣
≤ 25000 · 1

k
· EP

 k∑
i=1

m+1∑
j=1

(1 + γj,i) · 1{ui = j}

+ P

[
|GZkX(m+1)×k ] ≥ k

10

∣∣∣∣,
where the last inequality holds by Equation (73). Hence, one of the above two item must hold:

1. EP

[∑k
i=1

∑m+1
j=1 (1 + γj,i) · 1{ui = j}

]
≥ εk

105·λ , or

2. P
[
|GZkX(m+1)×k ] ≥ k

10

∣∣ ≥ ε
4λ .

If Item 1 holds, then Claim 7.7 implies thatR[W ] ≤ (1−ε)
εk
c′·m where c′ is the constant λ′ = λ′(105·λ)

of Claim 7.7. If Item 2 holds, then by setting the constant λ′ of the claim to the constant λ′ = λ′(4λ)
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of Claim 7.4, we obtain that Claim 7.4 implies that R[W ] ≤ (1 − ε)
εk
c′′·m where c′′ is the constant

λ′′ = λ′′(4λ) of Claim 7.4. The proof then follows by setting the constant λ′′ of the corollary to
λ′′ = max{c, c′, c′′}. �

7.2.3 The Current-Round Bits

In this section we handle the Bcur
j and Bexp cur

j bits. Assuming that R[W ] is large enough, the

following claim states that if Blarge set
j = 1 (i.e., the set of“good” columns GZkXk

<j
is large) then

Bexp cur
j = 1 (i.e., the probability that |δj | > 0.5 is small).

Claim 7.9. There exists two constants λ, λ′ > 0 such that the following holds: If k ≥ λ ·m2 and

∃j ∈ (m+ 1) such that P̂
Blarge set
j ,Bexp cur

j
(1, 0) > 0, then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. We separately handle two cases: j = 0 and j ∈ [m+ 1].
The case j = 0: In this case, it holds that |D| ≥ k · 2`−1 (in particular, |G| ≥ k

2 ), and that

PZkXk
1

[∣∣∣δ0(ZkXk
1 )
∣∣∣ > 0.5

]
>
m

k2
. (74)

and recall that

δ0(zkxk1) =

∑
i∈1

xk1

α0,i(zi)

PX1,i(1)

/(|D|/2`)− 1

In the following, we define

1. δX0 (xk1; zk) =

(∑
i∈1

xk1

α0,i(zi)
PX1,i

(1)

)
/
(∑k

i=1 α0,i(zi)
)
− 1,

2. δZ0 (zk) =
(∑k

i=1 α0,i(zi)
)
/
(
|D|/2`

)
− 1 =

(∑k
i=1

1{(i,z)∈D}
PZi|X1,i=1(zi)

)
/|D| − 1.

and observe that

δ0 =

((
1 + δX0

)
·
k∑
i=1

α0,i

)
/
(
|D|/2`

)
− 1

=
((

1 + δX0
)
·
(
1 + δZ0

)
· |D|/2`

)
/
(
|D|/2`

)
− 1

= δX0 + δZ0 + δX0 · δZ0 (75)

Therefore, by Equations (74) and (75), one of the following must holds

1. PZkXk
1

[∣∣δX0 (Xk
1 ;Zk)

∣∣ > 0.2
]
> m

2k2 , or

2. PZk
[∣∣δZ0 (Zk)

∣∣ > 0.2
]
> m

2k2
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Note that the sum
∑k

i=1
1{(i,z)∈D}

PZi|X1,i=1(zi)
when zk is drawn from RZk is a sum of k independent

random variable, where

Ezk∼R
Zk

[
k∑
i=1

1{(i, z) ∈ D}
PZi|X1,i=1(zi)

]
=

∑
z∈{0,1}`

k∑
i=1

2−` · 1{(i, z) ∈ D}
PZi|X1,i=1(zi)

∈ 1

1± 0.1
·
∑

z∈{0,1}`

k∑
i=1

1{(i, z) ∈ D}

⊆ (0.9, 1.15) · |D| (76)

and the ith variable is bounded in the interval [0, 1
1−0.1 · 2

`] ⊆ [0, 1.15 · 2`]. Therefore,

Przk∼R
Zk

[∣∣∣δZ0 (zk)
∣∣∣ > 0.2

]
= Przk∼R

Zk

[∣∣∣∣∣
k∑
i=1

1{(i, z) ∈ D}
PZi|X1,i=1(zi)

− |D|

∣∣∣∣∣ > 0.2 · |D|

]

≤ Przk∼R
Zk

[∣∣∣∣∣
k∑
i=1

1{(i, z) ∈ D}
PZi|X1,i=1(zi)

− Ezk∼R
Zk

[
k∑
i=1

1{(i, z) ∈ D}
PZi|X1,i=1(zi)

]∣∣∣∣∣ > 0.05 · |D|

]

≤ 2 · exp

(
−2 · (0.05 · |D|)2

k · (1.15 · 2`)2

)
≤ 2 · exp

(
− k

2 · 103m

)
(77)

where the first inequality holds by Equation (76), the second one by Fact 3.14 (Hoeffding’s inequal-
ity) and the last one holds since |D| ≥ k · 2`−1.

In the following, fix zk with
∣∣δZ0 (zk)

∣∣ ≤ 0.2 =⇒
(∑k

i=1 α0,i(zi)
)
/
(
k · 2`−1/2`

)
− 1 ≥ −0.2 =⇒∑k

i=1 α0,i(zi) ≥ 0.4k. Note that the sum
∑

i∈1
xk1

α0,i(zi)
PX1,i

(1) when xk1 is drawn from RXk
1

is a sum of

k independent random variables, where the ith variable (which corresponds to 1{xk1 = 1} · α0,i(zi)
PX1,i

(1))

is distributed according to bi · Bern(1/m) for bi =
α0,i(zi)
PX1,i

(1) ∈
α0,i(zi)

(1±0.1)·1/m ⊆ (0.9, 1.15) ·m · α0,i(zi).

Therefore,

Exk1∼RXk1

∑
i∈1

xk1

α0,i(zi)

PX1,i(1)

 ∈ 1

1± 0.1
·
k∑
i=1

α0,i(zi) ⊆ (0.9, 1.15) ·
k∑
i=1

α0,i(zi) (78)
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and we obtain that

Prxk1∼RXk1

[∣∣∣δX0 (xk1; zk)
∣∣∣ > 0.2

]

= Prxk1∼RXk1


∣∣∣∣∣∣∣
∑
i∈1

xk1

α0,i(zi)

PX1,i(1)
−

k∑
i=1

α0,i(zi)

∣∣∣∣∣∣∣ > 0.2 ·
k∑
i=1

α0,i(zi)


≤ Prxk1∼RXk1


∣∣∣∣∣∣∣
∑
i∈1

xk1

α0,i(zi)

PX1,i(1)
− Exk1∼RXk1

∑
i∈1

xk1

α0,i(zi)

PX1,i(1)


∣∣∣∣∣∣∣ > 0.05 ·

k∑
i=1

α0,i(zi)


≤ 2 exp

(
−

(0.05 ·
∑k

i=1 α0,i(zi))
2

2(
∑k

i=1 b
2
i /m+ max{bi} · 0.05 ·

∑k
i=1 α0,i(zi)/3)

)

≤ 2 exp

(
− k

104m

)
(79)

where the first inequality holds by Equation (78), the second one holds by Fact 3.16 and the third
one holds since max{bi} ≤ 2m and

∑k
i=1 α0,i(zi) ≥ 0.4k.

Using Equations (77) and (79), we conclude that

RZkXk
1

[∣∣∣δ0(ZkXk
1 )
∣∣∣ > 0.5

]
≤ RZk

[∣∣∣δZ0 (Zk)
∣∣∣ > 0.2

]
+RZkXk

1 ||δZ0 (Zk)|≤0.2

[∣∣∣δX0 (Xk
1 ;Zk)

∣∣∣ > 0.2
]

≤ 4 · exp

(
− k

104m

)
,

=⇒ R[W ] ≤
RZkXk

1

[∣∣δ0(ZkXk
1 )
∣∣ > 0.5

]
PZkXk

1

[∣∣δ0(ZkXk
1 )
∣∣ > 0.5

] ≤ 4 · exp
(
− k

104m

)
m/k2

≤ (1− ε)
k

2·104m ,

where the last inequality holds by choosing the constant λ′ of the claim to be large enough such
that k ≥ λ′ ·m2 implies it.

The case j ∈ [m+ 1]: In this case, it holds that

PZkXk
<j

[∣∣∣GZkXk
<j

∣∣∣ ≥ k/10 ∧ PXk
j+1|ZkXk

<j

[∣∣∣δj(Xk
j+1;ZkXk

<j)
∣∣∣ > 0.5

]
>
m

k2

]
> 0 (80)

In particular, there exists zkxk<j ∈ Supp(PZkXk
<j

) that satisfy both conditions. In the following, fix

such zkxk<j . Recall that(
1 + δj(x

k
j+1; zkxk<j)

)
·
∑

i∈G
zkxk

<j

αj,i =
∑

i∈G
zkxk

<j

⋂
1
xk
j+1

αj,i

PXj+1,i|ZkXk
<j

(1|zkxk<j)
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where αj,i = αj,i(z
kxk<j) is according to Table 1. Therefore, it holds that

Prxkj+1∼PXk
j+1
|ZkXk

<j
(·|zkxk<j)

[∣∣∣δj(xkj+1; zkxk<j)
∣∣∣ > 1

2

]
(81)

= Prxkj+1∼PXk
j+1
|ZkXk

<j
(·|zkxk<j)

 ∑
i∈S

⋂
1
xk
j+1

αi
pi

/∈ (1± 0.5)
∑
i∈S

αi


>
m

k2

where we denote S = Gzkxk<j (recall that |S| ≥ k/10), αi = αj,i(z
kxk<j) ∈ [0.01, 10] and

pi = PXj+1,i|ZkXk
<j

(1|zkxk<j) ∈ (1 ± 0.1) · 1
m(1 − 1

m). Observe that when taking xkj+1 ∼
RXk

j+1|ZkXk
<j

(·|zkxk<j) (i.e., without the conditioning on W ), the term
∑

i∈S
⋂

1
xk
j+1

αi
pi

is a sum

of |S| ≥ k/10 independent random variables, where the element that corresponds to i ∈ S is
distributed according to bi · Bern( 1

m(1− 1
m)) for bi = αi

pi
∈ 1

1±0.1 ·
αi

1
m

(1− 1
m

)
. Therefore,

Exkj+1∼RXk
j+1
|ZkXk

<j
(·|zkxk<j)

 ∑
i∈S

⋂
1
xk
j+1

αi
pi

 ∈ 1

1± 0.1
·
∑
i∈S

αi ⊆ (0.9, 1.15) ·
∑
i∈S

αi (82)

and it holds that

Prxkj+1∼RXk
j+1
|ZkXk

<j
(·|zkxk<j)

[∣∣∣δj(xkj+1; zkxk<j)
∣∣∣ > 0.5

]
(83)

= Prxkj+1∼RXk
j+1
|ZkXk

<j
(·|zkxk<j)


∣∣∣∣∣∣∣

∑
i∈S

⋂
1
xk
j+1

αi
pi

∣∣∣∣∣∣∣ /∈ (1± 0.5) ·
∑
i∈S

αi



≤ Prxkj+1∼RXk
j+1
|ZkXk

<j
(·|zkxk<j)


∣∣∣∣∣∣∣

∑
i∈S

⋂
1
xk
j+1

αi
pi
− Exkj+1∼RXk

j+1
|ZkXk

<j
(·|zkxk<j)

 ∑
i∈S

⋂
1
xk
j+1

αi
pi


∣∣∣∣∣∣∣ > 0.35 ·

∑
i∈S

αi


≤ 2 exp

− 0.352 · (
∑

i∈S αi)
2

2
(∑

i∈S
α2
i

p2
i
· 1
m(1− 1

m) + 0.1 ·maxi∈S{αipi } ·
∑

i∈S αi

)


≤ 2 exp

(
−

0.352 · (
∑

i∈S αi)
2

2
(
300m ·

∑
i∈S αi + 30m ·

∑
i∈S αi

))

≤ 2 exp

(
− k

6 · 106m

)
,

where the first inequality holds by Equation (82), the second one holds by Fact 3.16 and the last
one holds since

∑
i∈S αi ≥ 0.01 · |S| ≥ k/103.
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Finally, by Equations (81) and (83), we conclude that

R[W ] ≤
Prxkj+1∼RXk

j+1
|ZkXk

<j
(·|zkxk<j)

[∣∣∣δj(xkj+1; zkxk<j)
∣∣∣ > 0.5

]
Prxkj+1∼PXk

j+1
|ZkXk

<j
(·|zkxk<j)

[∣∣∣δj(xkj+1; zkxk<j)
∣∣∣ > 0.5

] ≤ 2 exp
(
− k

6·106m

)
m/k2

≤ (1− ε)
k

107m ,

where the last inequality holds by choosing the constant λ′ of the claim to be large enough such
that k ≥ λ′ ·m2 implies it (recall that ε ∈ [0, 1

2 ]). �

As a simple corollary of Claim 7.9, if k and R[W ] are large enough, then the probability of
failure (over P̂ ) in the “expected current” bits is low.

Corollary 7.10. For any constant λ > 0 there exists constants λ′, λ′′ > 0 such that if

P̂Bexp cur
0 ,...,Bexp cur

m+1
(1m+2) ≤ 1− ε/λ and k ≥ λ′ ·m2/ε, then R[W ] ≤ (1− ε)

k
λ′′·m .

Proof. Assume that P̂Bexp cur
0 ,...,Bexp cur

m+1
(1m+2) ≤ 1− ε/λ for some constant λ > 0. By Claim 7.9, we

can focus on the case that P̂
Bexp cur

0 ,...,Bexp cur
m+1 |Blarge set

0 ,...,Blarge set
m+1

(1m+2|1m+2) = 1. Note that

P̂
Blarge set

0 ,...,Blarge set
m+1

(1m+2) ≤
P̂Bexp cur

0 ,...,Bexp cur
m+1

(1m+2)

P̂
Bexp cur

0 ,...,Bexp cur
m+1 |Blarge set

0 ,...,Blarge set
m+1

(1m+2|1m+2)
≤ 1− ε/λ

Therefore, the proof follows by Corollary 7.5. �

The above yields that the probability of failure in the “current” bits is also low.

Corollary 7.11. For any constant λ > 0 there exists constants λ′, λ′′ > 0 such that if

P̂Bcur
0 ,...,Bcur

m+1
(1m+2) ≤ 1− ε/λ and k ≥ λ′ ·m2/ε, then R[W ] ≤ (1− ε)

k
λ′′·m .

Proof. Assume that P̂Bcur
0 ,...,Bcur

m+1
(1m+2) ≤ 1− ε/λ for some constant λ > 0. Note that

P̂Bexp cur
0 ,...,Bexp cur

m+1
(1m+2) ≤

P̂Bcur
0 ,...,Bcur

m+1
(1m+2)

P̂Bcur
0 ,...,Bcur

m+1|B
exp cur
0 ,...,Bexp cur

m+1
(1m+2|1m+2)

≤ 1− ε/λ
1− (m+ 2) · m

k2

≤ 1− ε

2λ
,

where the last inequality holds by choosing the constant λ′ of the corollary to be large enough such
that k ≥ λ′ ·m2/ε implies it. The proof then follows by Corollary 7.10. �

As a corollary of Corollaries 7.5 and 7.10, if k and R[W ] are large enough, then the probability
of failure (over P̂ ) in the “history” bits is low.

Corollary 7.12. For any constant λ > 0 there exists constants λ′, λ′′ > 0 such that if

P̂Bhist
0 ,...,Bhist

m+1
(1m+2) ≤ 1− ε/λ and k ≥ λ′ ·m2/ε, then R[W ] ≤ (1− ε)

k
λ′′·m .

Proof. Immediately follows by Corollaries 7.5 and 7.10 since Bhist
j = Blarge set

j ·Bexp cur
j . �
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7.2.4 Putting It Together

The proof of Lemma 5.13 is now trivially holds by the previous sections.

Lemma 7.13 (Restatement of Lemma 5.13). For any constant λ > 0 there exist constants λ′, λ′′ >
0 such that the following holds: Let k,m, ` ∈ N, let ε ∈ (0, 1/2], let W ⊆ {0, 1}kl+k(m+1) be
a termination-consistent set (according to Definition 4.3) and let W,R and P̂ be the event and
distributions from Definitions 5.1 and 5.8 respectively, for the above k,m, `,W. Assume k ≥ λ′ ·
m2/ε and R[W ] ≥ (1− ε)

k
λ′′·m , then P̂Bm+2(1m+2) ≥ 1− ε/λ.

Proof. Let k,m, `, ε,W,W,R, P̂ as in Lemma 5.13 and assume that P̂Bm+2(1m+2) < 1 − ε/λ for
some constant λ > 0. Since Bj = Bcur

j ·Bhist
j ·Bindx

j , at least one of the following must hold:

1. P̂Bcur
0 ,...,Bcur

m+1
(1m+2) < 1− ε

3λ , or

2. P̂Bhist
0 ,...,Bhist

m+1
(1m+2) < 1− ε

3λ , or

3. P̂Bindx
0 ,...,Bindx

m+1
(1m+2) < 1− ε

3λ .

The proof then immediately follows by Corollaries 7.8, 7.11 and 7.12. �

7.3 Proving Lemma 7.2

In this section, we prove Lemma 7.2, restated for convenience below.

Lemma 7.2. [Bounding the number of bad columns in P ] For any constant λ > 0, there exists a
constant λ′ > 0 such that the following holds: let k,m, `,W, ε be as in Lemma 5.13, let P be the
distribution from Definition 4.7, let G,D be the sets from Table 2 and let jumps be the function
from Table 5. Assume that at least one of the following holds:

1. |D| ≤ (1− ε/λ)k · 2`, or

2. EP
[
jumps(ZkX(m+1)×k)

]
≥ εk/λ,

then R[W ] ≤ (1− ε)
k

λ′·m .

In the following, fix k,m, `, ε,W,W,R, P,G,D as in Lemma 7.2, and let jumpsγ , jumpsρ, jumpsα

the function from Table 5. The main components of Lemma 7.2’s proof are divided into Claims 7.14
to 7.16, proven separately in Sections 7.3.1 to 7.3.3, respectively.

Claim 7.14. For any constant λ > 0 there exists a constant λ′ > 0 such that if |D| ≤ (1−ε/λ)k ·2`,
then R[W ] ≤ (1− ε)

k
λ′·m .

Claim 7.15. For any constant λ > 0 there exists a constants λ′ > 0 such that if

EP
[
jumpsν(ZkX(m+1)×k)

]
≥ εk/λ for some ν ∈ {γ, ρ}, then R[W ] ≤ (1− ε)

k
λ′·m .

Claim 7.16. For any constant λ > 0, there exists a constant λ′ > 0 such that if

EP
[
jumpsα(ZkX(m+1)×k)

]
≥ εk/λ, then R[W ] ≤ (1− ε)

k
λ′·m .

The proof of Lemma 7.2 now trivially follows by Claims 7.14 to 7.16.
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Proof of Lemma 7.2. Let k,m, `, ε,W,W,R, P as in Lemma 7.2 and assume that at least one of
the following holds for some constant λ > 0:

1. |D| ≤ (1− ε/λ)k · 2`, or

2. EP
[
jumps(ZkX(m+1)×k)

]
≥ εk/λ,

If Item 1 holds then the proof follows by Claim 7.14. Note that by definition of jumps, it holds that
jumps(τj) ≤

∑
ν∈{γ,ρ,α} jumpsν(τj) for any input τj . Therefore, if Item 2 holds then there exists

ν ∈ {γ, ρ, α} such that EP
[
jumpsν(ZkX(m+1)×k)

]
≥ εk

3λ . If the above holds for ν ∈ {γ, ρ}, then the
proof follows by Claim 7.15, and if it holds for ν = α, then the proof follows by Claim 7.16. �

7.3.1 Proving Claim 7.14

Before proving Claim 7.14, we start with a simple claim that connects the {ρ0,i}’s measurements
with R[W ].

Claim 7.17. It holds that

log
1

R[W ]
≥ 1

4m
·
k∑
i=1

min{|ρ0,i|, ρ2
0,i}

Proof. Compute

log
1

R[W ]
≥ D

(
PXk

1
||RXk

1

)
= D

(
PXk

1
||

k∏
i=1

RX1,i

)

≥
k∑
i=1

D
(
PX1,i ||RX1,i

)
=

k∑
i=1

D

(
1 + ρ0,i

m
|| 1
m

)

≥ 1

4m
·
k∑
i=1

min{|ρ0,i|, ρ2
0,i},

where the first inequality holds by Fact 3.6, the second one holds by Fact 3.5 (the product case of
chain rule) and the last one by Fact 3.9. �

As a corollary of Claim 7.17, we obtain a lower bound on |G| in case R[W ] is high enough.

Corollary 7.18. For any constant λ > 0 there exists a constant λ′ > 0 such that if |G| ≤ (1−ε/λ)k,

then R[W ] ≤ (1− ε)
k

λ′·m .

Proof. Assume that |G| ≤ (1− ε/λ)k for some constant λ > 0. Then it holds that

log
1

R[W ]
≥ 1

4m
·
k∑
i=1

min{|ρ0,i|, ρ2
0,i}

≥ 1

4m
·
∑

i∈[k]\G

min{|ρ0,i|, ρ2
0,i}

≥ 0.01 · (k − |G|)
4m

≥ εk

400 ·m
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=⇒ R[W ] ≤ e−
εk

400·m ≤ (1− ε)
εk

800·m ,

where the first inequality holds by Claim 7.17 and the third one holds since i /∈ G =⇒ |ρ0,i| > 0.1.
�

The last claim we need in order to prove Claim 7.14 gives a lower bound on the average size of
the sets {Zi}i∈[k] (defined in Table 2) in case R[W ] is high enough.

Claim 7.19. For any constants λ > 0 there exists a constant λ′ > 0 such that if Ei←G
[
|Zi|/2`

]
≤

1− ε/λ then R[W ] ≤ (1− ε)
k

λ′·m .

Proof. Assume that Ei←G
[
|Zi|/2`

]
≤ 1 − ε/λ for some constant λ > 0. If |G| < k/2 then the

proof immediately follows by Corollary 7.18. Therefore, in the following we assume that |G| ≥ k/2.
Observe that

log
1

R[W ]
≥ D

(
PZkXk

1
||RZkXk

1

)
= D

(
PZkXk

1
||

k∏
i=1

RZiX1,i

)

≥
k∑
i=1

D
(
PZiX1,i ||RZiX1,i

)
≥
∑
i∈G

D
(
PZiX1,i ||RZiX1,i

)
≥
∑
i∈G

1 + ρ0,i

m
·D
(
PZi|X1,i=1||RZi

)
≥ 0.9

m
·
∑
i∈G

D
(
PZi|X1,i=1||RZi

)
(84)

where the first inequality holds by Fact 3.6 and the second one by Fact 3.5 (the product case
of chain rule). In the following, let Z̄+

i = {z ∈ {0, 1}` : PZi|X1,i=1(z) > (1 + 0.1) · 2−`} and

Z̄−i = {z ∈ {0, 1}` : PZi|X1,i=1(z) < (1 − 0.1) · 2−`}, and observe that Z̄+
i

⋃
Z̄−i = {0, 1}` \ Zi.

Therefore, by assumption it holds that Ei←G
[∣∣Z̄+

i

∣∣/2`] ≥ ε
2λ or Ei←G

[∣∣Z̄−i ∣∣/2`] ≥ ε
2λ . If the first

bound holds, then by Equation (84) we obtain that

log
1

R[W ]
≥
∑
i∈G

0.9

m
·D
(
PZi|X1,i=1(Z̄+

i )||RZi(Z̄
+
i )
)

>
∑
i∈G

0.9

m
·D
(

(1 + 0.1) ·
∣∣Z̄+

i

∣∣/2`||∣∣Z̄+
i

∣∣/2`)
≥ 0.9 · 0.12

4m
·
∑
i∈G

∣∣Z̄+
i

∣∣/2`
=

0.009

4m
· |G| · Ei←G

[∣∣Z̄+
i

∣∣/2`]
≥ εk

1800 ·m

=⇒ R[W ] ≤ e−
εk

1800·m ≤ (1− ε)
εk

1800·m ,
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where the first inequality holds from Equation (84) by Fact 3.5 (data-processing), the third one
holds by Fact 3.9, the fourth one holds since |G| ≥ k/2 and Ei←G

[∣∣Z̄+
i

∣∣/2`] ≥ ε
2λ and the last one

holds since ε ∈ [0, 1
2 ]. Otherwise, the second bound holds and we obtain that

log
1

R[W ]
≥
∑
i∈G

0.9

m
·D
(
PZi|X1,i=1(Z̄−i )||RZi(Z̄

−
i )
)

>
∑
i∈G

0.9

m
·D
(

(1− 0.1) ·
∣∣Z̄−i ∣∣/2`||∣∣Z̄−i ∣∣/2`)

≥ 0.9 · 0.12

4m
·
∑
i∈G

∣∣Z̄−i ∣∣/2`
=

0.009

4m
· |G| · Ei←G

[∣∣Z̄−i ∣∣/2`]
≥ εk

1800 ·m

=⇒ R[W ] ≤ e−
εk

1800·m ≤ (1− ε)
εk

3600·m

�

The proof of Claim 7.14 now trivially follows by Corollary 7.18 and Claim 7.19.

Claim 7.20 (Restatement of Claim 7.14). For any constant λ > 0 there exists a constant λ′ > 0

such that if |D| ≤ (1− ε/λ)k · 2`, then R[W ] ≤ (1− ε)
k

λ′·m .

Proof. Assume that |D| ≤ (1 − ε/λ)k · 2` for some constant λ > 0 and recall that D = {(i, z) ∈
[k]× {0, 1}` : (i, z) ∈ G ×Zi}. Compute

1− ε/λ ≥ |D|
k · 2`

= Pr(i,z)←[k]×{0,1}` [(i, z) ∈ G ×Zi]

=
|G|
k
· Ei←G

[
|Zi|
2`

]
.

Therefore, it must holds that |G|k ≤ 1− ε
2λ or Ei←G

[
|Zi|
2`

]
≤ 1− ε

2λ and we conclude from Corollary 7.18

and Claim 7.19 that R[W ] ≤ (1− ε)
k
λ′m by choosing λ′ = max{c, c′} where c is the constant λ′(2λ)

of Corollary 7.18 and c′ is the constant λ′(2λ) of Claim 7.19. �

7.3.2 Proving Claim 7.15

Before proving Claim 7.15, we first state and prove some useful facts about the {γj,i} and {ρj,i}
measurements when drawing ZkX(m+1)×k from P (done in Sections 7.3.2 and 7.3.2, respectively),
and the proof of Claim 7.15 which follows from these facts is given in Section 7.3.2.
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Facts About the {γj,i} measurements The following claim connects the jumps in the mea-
surements {γj,i}j∈[m+1],i∈[k] (over P ) with R[W ].

Claim 7.21. It holds that

log
1

R[W ]
≥ 1

4m
· EP

 k∑
i=1

m+1∑
j=1

min{|γj,i|, γ2
j,i} · 1{1 /∈ X<j,i}

,
where γj,i = γj,i(Z

kXk
<j).

Proof. Compute

log
1

R[W ]
≥ D(PZkX(m+1)×k ||RZkX(m+1)×k)

≥
m+1∑
j=1

EP
ZkXk

<j

[
D
(
PXk

j |ZkXk
<j
||RXk

j |ZkXk
<j

)]

=
m+1∑
j=1

EP
ZkXk

<j

[
D

(
PXk

j |ZkXk
<j
||

k∏
i=1

RXj,i|ZkXk
<j

)]

≥
k∑
i=1

m+1∑
j=1

EP
ZkXk

<j

[
D
(
PXj,i|ZkXk

<j
||RXj,i|ZkXk

<j

)]

=
k∑
i=1

m+1∑
j=1

EP
ZkXk

<j

[
D

(
1 + γj,i
m

|| 1
m

)
· 1{1 /∈ X<j,i}

]

≥ 1

4m
·
k∑
i=1

m+1∑
j=1

EP
ZkXk

<j

[
min{|γj,i|, γ2

j,i} · 1{1 /∈ X<j,i}
]

=
1

4m
· EP

 k∑
i=1

m+1∑
j=1

min{|γj,i|, γ2
j,i} · 1{1 /∈ X<j,i}

,
where the first inequality holds by Fact 3.6, the second one holds by the chain-rule property of
KL-Divergence (Fact 3.5(3)), the third one holds by the product case of chain-rule (Fact 3.5(3))
and the last one holds by Fact 3.9. �

As a first corollary of Claim 7.21, we obtain an upper bound on the sum of squares of “small”
jumps in the values of {γj,i}j∈[m+1],i∈[k] (over P ) in case R[W ] is high enough.

Corollary 7.22. For any constant λ > 0 there exists a constant λ′ > 0 such that if

EP

[∑k
i=1

∑m+1
j=1 γ2

j,i · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1}
]
≥ εk/λ for γj,i = γj,i(Z

kXk
<j), then R[W ] ≤

(1− ε)
k

λ′·m .

Proof. Immediately follows by Claim 7.21. �

As a second corollary of Claim 7.21, we obtain an upper bound on the sum of “large” jumps in
the values of {γj,i}j∈[m+1],i∈[k] (over P ) in case R[W ] is high enough.
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Corollary 7.23. For any constants λ > 0 and c ∈ (0, 1) there exists a constant λ′ > 0 such that if
one of the following holds:

1. EP

[∑k
i=1

∑m+1
j=1 |γj,i| · 1{1 /∈ X<j,i} · 1{|γj,i| > c}

]
≥ εk/λ, or

2. EP

[∑k
i=1 1{u

|γ|>c
i <∞}

]
≥ εk/λ,

for γj,i = γj,i(Z
kXk

<j) and u
|γ|>c
i = u

|γ|>c
i (ZkX(m+1)×k), then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. If Item 1 holds, the proof follows by Claim 7.21 and by the assumption that ε ∈ [0, 1
2 ], since

for any i ∈ [k], j ∈ [m+ 1] and τj = zkxk<j ∈ Supp(PZkXk
<j

) it holds that

min{|γj,i(τj)|, γj,i(τj)2} · 1{1 /∈ X<j,i} ≥ c · |γj,i(τj)| · 1{1 /∈ X<j,i} · 1{|γj,i(τj)| > c}

If Item 2 holds, the proof follows by Item 1 since for any zkx(m+1)×k ∈ Supp(P ) it holds that

1{u|γ|>ci (zkx(m+1)×k) <∞} =
m+1∑
j=1

1{u|γ|>ci (zkxk<j) = j}

≤ 1

c
·
m+1∑
j=1

∣∣∣γj,i(zkxk<j)∣∣∣ · 1{u|γ|>ci (zkxk<j) = j}

≤ 1

c
·
m+1∑
j=1

∣∣∣γj,i(zkxk<j)∣∣∣ · 1{1 /∈ X<j,i} · 1{
∣∣∣γj,i(zkxk<j)∣∣∣ > c}

�

As a trivial corollary of Corollary 7.23, we now prove Claim 7.6.

Corollary 7.24 (restatement of Claim 7.6). For any constant λ > 0 there exists a constant λ′ > 0

such that if EP

[∑k
i=1

∑m+1
j=1 γj,i · 1{γj,i > 1}

]
≥ εk/λ for γj,i = γj,i(Z

kX(m+1)×k), then R[W ] ≤

(1− ε)
k

λ′·m .

Proof. Immediately follows by Corollary 7.23(1) with respect to c = 1. �

Facts About the {ρj,i} measurements The following claim connects the jumps in the mea-
surements {ρj,i}j∈[m+1],i∈[k] (over P ) with R[W ].

Claim 7.25. It holds that

log
1

R[W ]
≥ 1

4m
(1− 1

m
) ·max{Seven, Sodd},

where Sν := EP

[∑k
i=1

∑
j∈[m+1]

⋂
Nν

min{|ρj,i|, ρ2
j,i} · 1{1 /∈ X<j,i}

]
for ν ∈ {even, odd} and ρj,i =

ρj,i(Z
kXk

<j).
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Proof. Fix ν ∈ {even, odd} and compute

log
1

R[W ]
≥ D(PZkX(m+1)×k ||RZkX(m+1)×k)

≥
∑

j∈[m+1]∩Nν

EP
ZkXk

<j

[
D
(
PXk

j X
k
j+1|ZkXk

<j
||RXk

j X
k
j+1|ZkXk

<j

)]
≥

∑
j∈[m+1]∩Nν

EP
ZkXk

<j

[
D
(
PXk

j+1|ZkXk
<j
||RXk

j+1|ZkXk
<j

)]

=
∑

j∈[m+1]∩Nν

EP
ZkXk

<j

[
D

(
PXk

j+1|ZkXk
<j
||

k∏
i=1

RXj+1,i|ZkXk
<j

)]

≥
k∑
i=1

∑
j∈[m+1]∩Nν

EP
ZkXk

<j

[
D
(
PXj+1,i|ZkXk

<j
||RXj+1,i|ZkXk

<j

)]

=

k∑
i=1

∑
j∈[m+1]∩Nν

EP
ZkXk

<j

[
D

(
1 + ρj,i
m

(1− 1

m
)|| 1
m

(1− 1

m
)

)
· 1{1 /∈ X<j,i}

]

≥
k∑
i=1

∑
j∈[m+1]

⋂
Nν

EP
ZkXk

<j

[
1

4m
(1− 1

m
) ·min{|ρj,i|, ρ2

j,i} · 1{1 /∈ X<j,i}
]

=
1

4m
(1− 1

m
) · Sν ,

where the first inequality holds by Fact 3.6, the second one holds by the chain-rule property of
KL-Divergence (Fact 3.5(3)), the fourth holds by the product case of chain-rule (Fact 3.5(3)) and
the last one holds by Fact 3.9. �

As a first corollary of Claim 7.25, we obtain an upper bound on the sum of squares of “small”
jumps in the values of {ρj,i}j∈[m+1],i∈[k] (over P ) in case R[W ] is high enough.

Corollary 7.26. For any constant λ > 0 there exists a constant λ′ > 0 such that if

EP

[∑k
i=1

∑m+1
j=1 ρ2

j,i · 1{1 /∈ X<j,i} · 1{ρj,i ≤ 1}
]
≥ εk/λ for ρj,i = ρj,i(Z

kXk
<j), then R[W ] ≤

(1− ε)
k

λ′·m .

Proof. Assume that EP

[∑k
i=1

∑m+1
j=1 ρ2

j,i · 1{1 /∈ X<j,i} · 1{ρj,i ≤ 1}
]
≥ εk/λ for some constant λ >

0. Since for any i ∈ [k], j ∈ [m+ 1] and τj = zkxk<j ∈ Supp(PZkXk
<j

) it holds that

min{|ρj,i(τj)|, ρ2
j,i(τj)} · 1{1 /∈ X<j,i} ≥ ρ2

j,i(τj) · 1{1 /∈ X<j,i} · 1{ρj,i(τj) ≤ 1},

our assumption yields that there exists ν ∈ {even, odd} such that Sν :=

EP

[∑k
i=1

∑
j∈[m+1]

⋂
Nν

min{|ρj,i|, ρ2
j,i} · 1{1 /∈ X<j,i}

]
≥ εk

2λ . The proof then immediately

follows by Claim 7.25 and by the assumption that ε ∈ [0, 1
2 ]. �

As a second corollary of Claim 7.25, we obtain an upper bound on the sum of “large” jumps in
the values of {ρj,i}j∈[m+1],i∈[k] (over P ) in case R[W ] is high enough.
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Corollary 7.27. For any constants λ > 0 and c ∈ (0, 1) there exists a constant λ′ > 0 such that if
one of the following holds:

1.
∑k

i=1

∑m+1
j=1 EP

ZkXk
<j

[|ρj,i| · 1{1 /∈ X<j,i} · 1{|ρj,i| > c}] ≥ εk/λ, or

2. EP
ZkX(m+1)×k

[∑k
i=1 1{u

|ρ|>c
i <∞}

]
≥ εk/λ,

for ρj,i = ρj,i(Z
kXk

<j) and u
|ρ|>c
i = u

|ρ|>c
i (ZkXm×k), then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. If Item 1 holds, then there exists ν ∈ {even, odd} with

k∑
i=1

∑
j∈[m+1]

⋂
Nν

EP
ZkXk

<j

[|ρj,i| · 1{1 /∈ X<j,i} · 1{|ρj,i| > c}] ≥ εk

2λ
,

and the proof follows by Claim 7.25 and by the assumption that ε ∈ [0, 1
2 ], since for any i ∈ [k],

j ∈ [m+ 1] and τj ∈ Supp(PZkXk
<j

) it holds that

min{|ρj,i(τj)|, ρ2
j,i(τj)} · 1{1 /∈ X<j,i} ≥ c · |ρj,i(τj)| · 1{1 /∈ X<j,i} · 1{|ρj,i(τj)| > c}.

If Item 2 holds, then the proof follows by Item 1 since for any zkx(m+1)×k ∈ Supp(P ) it holds that

1{u|ρ|>ci (zkx(m+1)×k) <∞} =
m+1∑
j=1

1{u|ρ|>ci (zkxk<j) = j}

≤ 1

c
·
m+1∑
j=1

∣∣∣ρj,i(zkxk<j)∣∣∣ · 1{u|ρ|>ci (zkxk<j) = j}

≤ 1

c
·
m+1∑
j=1

∣∣∣ρj,i(zkxk<j)∣∣∣ · 1{1 /∈ X<j,i} · 1{
∣∣∣ρj,i(zkxk<j)∣∣∣ > c}

�

Putting it Together We are finally ready to prove Claim 7.15

Claim 7.28 (Restatement of Claim 7.15). For any constant λ > 0 there exists a constants λ′ > 0

such that if EP
[
jumpsν(ZkX(m+1)×k)

]
≥ εk/λ for some ν ∈ {γ, ρ}, then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. Recall that jumpsν(τ) =
∑k

i=1 1{u
|ν|>0.1
i (τ) < ∞}, for any ν ∈ {γ, ρ} and τ ∈ Supp(P ).

Therefore the proof immediately follows by Corollary 7.23(2) and Corollary 7.27(2). �

7.3.3 Proving Claim 7.16

In this section we prove Claim 7.16, restated for convenience below.

Claim 7.29 (Restatement of Claim 7.16). For any constant λ > 0, there exists a constant λ′ > 0

such that if EP
[
jumpsα(ZkX(m+1)×k)

]
≥ εk/λ, then R[W ] ≤ (1− ε)

k
λ′·m .
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Proving Claim 7.16 is the most challenging part in the proof of Lemma 7.2. Unlike the {γj,i} and
{ρj,i} measurements which are directly connected to R[W ] (as we proved in Claims 7.21 and 7.25),
the connection between the {αj,i} measurements and R[W ] is less clear. Recall that the values
{αj,i} comes from the change in the distribution of I in Q given a history ZkXk

<j , as stated in
Claim 5.4:

QI|ZkXk
<j ,I∈Gτ

(i|zkxk<j) =
αj,i(z

kxk<j)∑
i′∈Gτ αj,i′(z

kxk<j)
.

Proving Claim 7.16 requires a very deep understanding of these measurements, and therefore, we
start by presenting the high level plan of this complicated part.

High-Level Plan The goal of this section is to understand the distribution of QI|ZkXk
<j

for every

j ∈ [m + 1] when ZkXk
<j is drawn from PZkXk

<j
. The main idea for proving Claim 7.16 is to

show that in expectation (over P ), the distributions {QI|ZkXk
<j
}m+1
j=1 might behave badly over a

small set of columns (i.e., columns i ∈ [k] which has large “jumps” in their αj,i value for some
j ∈ [m+1]), but conditioned on the event that I is not in the “bad” set, it remains close to uniform
over the “good” columns. Informally, Claim 7.16 states that in expectation over P , (1− o(ε))k of
the columns i ∈ [k] are “good” which means that they have αj,i ∈ [0.01, 10] for all j ∈ [m + 1].
Intuitively, this means that by taking uniformly I ← [k] at the beginning (as done in Q), we hit
a potential ”bad” column only with probability o(ε), and conditioned on hitting the ”good” set,
the distribution of QI|ZkXk

<j
remains ”close enough” to uniform over the ”good” set of columns

(Claim 5.4). Now, recall that

αj,i =
RZi(zi)

PZi(zi)
·
PX1,i|Zk(1|zk)
PX1,i|Zi(1|zi)

·
j∏

j′=2

(
1 + βj′,i(z

kxk<j′)
)
. (85)

In Section 7.3.3 we handle the first two terms of (85) which captures the effect of choosing
zk ∼ PZk on the distribution QI|Zk=zk . This is done by showing (using standard arguments)

that if R[W ] is high enough, then in expectation (over zk ∼ PZk), most columns i ∈ [k] (all but

o(εk)) have
RZi (zi)

PZi (zi)
≈ 1 and

P
X1,i|Zk

(1|zk)

PX1,i|Zi (1|zi)
≈ 1. In Section 7.3.3 we handle the complex part of the

proof by showing that if R[W ] is high enough, then in expectation (over zkx(m+1)×k ∼ P ), most
active columns i ∈ [k] (all but o(εk)) have values {

∏j
j′=2(1 + βj′,i)}j∈[m+1] bounded between two

constants (inside the interval [0.01, 10]), where the above product captures the effect of choosing
xk<j ∼ PXk

<j |Zk=zk on QI|(ZkXk
<j)=z

kxk<j
for any fixing of zk. We now focus on giving the high level

parts of the ideas in Section 7.3.3. Given τj = τj−1x
k
j−1 = zkxk<j , recall that

βj,i(τj) =
PXj,i|ZkXk

<j
(1|τj)

PXj,i|ZkXk
<j−1

(1|τj−1)
− 1

and observe that

EP
Xk
j−1
|ZkXk

<j−1
(·|τj−1)

[
βj,i(τj−1X

k
j−1)

]
=

EP
Xk
j−1
|ZkXk

<j−1
(·|τj−1)

[
PXj,i|ZkXk

<j
(1|τj−1X

k
j−1)

]
PXj,i|ZkXk

<j−1
(1|τj−1)

− 1 = 0.
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Namely, for every i ∈ [k], the sequence {βj,i}m+1
j=2 is a martingale difference sequence with

respect to {PXk
j−1|ZkXk

<j−1
}m+1
j=2 for any fixing of Zk. Therefore, if we could prove that for most

active columns i ∈ [k] (all but o(εk)) it holds that EP

[∑m+1
j=2 β2

j,i

]
≤ o(ε), then we could apply

Fact 3.17 for obtaining that in expectation over P , there are at least (1− o(ε))k columns i ∈ [k] in
which all their partial sums {

∑j
j′=2 βj′,i}

m+1
j=2 are bounded in an interval of the form [−O(1), O(1)].

For such columns, we could bound the values {
∏j
j′=2(1 + βj′,i)}j∈[m+1] since

∏j
j′=2(1 + βj′,i) ≈

exp
(∑j

j′=2 βj′,i

)
(assuming that all values {βj,i}m+1

j=2 are small). The problem is that the above

claim is incorrect. Namely, even if R[W ] = 1 (i.e., P = RZkX(m+1)×k), still we expect to have at

least Ω(k) columns with EP

[∑m+1
j=2 β2

j,i

]
≥ Ω(1). In order to see it, fix j ∈ [m+ 1] and τj = zkxk<j

with 1 /∈ xk<j−1 (i.e., active) and observe that in this degenerate case where R[W ] = 1 (denote as

the “Uniform” case and denote its βj,i by βUj,i), we have

βUj,i(τj) =
RXj,i|ZkXk

<j
(1|τj)

RXj,i|ZkXk
<j−1

(1|τj−1)
− 1

=

{
1
m xj−1,i = 0

0 xj−1,i = 1
1
m(1− 1

m)
− 1

=

{
1

m−1 xj−1,i = 0

−1 xj−1,i = 1,

Namely, as long there is no value 1 in the past (i.e., 1 /∈ x<j−1,i for the jth element), the next
element is −1 w.p. 1

m and 1
m−1 otherwise. Since we expected that at least Ω(k) of the columns

i ∈ [k] have x≤m+1,i = 0m+1, these sequences have
∑m+1

j=2 (βUj,i)
2 ≥ Ω(1), and therefore, not bounded

by o(ε). Yet, this sequences still behave nicely in a sense that the values {
∏j
j′=2(1 + βUj′,i)}

m+1
j=2 =

{(1 + 1
m−1)j−1}m+1

j=2 are always bounded in the interval [1, 4] in case x≤m+1,i = 0m+1. Back to the

general case where R[W ] ≤ 1, the above observation leads us to explore the sequences {β̂j,i} for

β̂j,i = βj,i−βUj,i and prove that if R[W ] is high enough, then for most active columns i ∈ [k] we have

EP

[∑m+1
j=2 β̂2

j,i

]
≤ o(ε). The first problem is that now this is not necessarily a martingale difference

sequence anymore. Therefore, we transform it into a martingale by defining β̂j,i = βj,i−βUj,i+µUj−1,i

where µUj−1,i(τj−1) = EP
Xk
j−1
|ZkXk

<j−1
(·|τj−1)

[
βUj,i(τj−1X

k
j−1)

]
. The second problem is that in the

general case, there might be large jumps in the value of βj,i (i.e., βj,i might be larger than 1 and
even ≈ m). In order to see why this is a problem, consider the case where it always holds that the

values {ρj,i} are zeros, and therefore, if βj,i = m
m−1 ·

1+γj,i
1+ρj−1,i

−1 = m
m−1(γj,i− 1

m) >> 1 then βj,i ≈ γj,i.

Hence, if we could prove that high enough R[W ] implies E
[∑k

i=1

∑m+1
j=1 γ2

j,i · 1{γj,i > 1}
]
< o(εk),

then we could handle the β2
j,i’s in case of large jumps. However, the above bound is incorrect

and by Claim 7.6 we only know that high enough R[W ] implies E
[∑k

i=1

∑m+1
j=1 γj,i · 1{γj,i > 1}

]
<

o(εk) (i.e., we loose the squares in the large jumps case). We solve this issue by cutting the
large jumps and defining β̂j,i = βj,i · 1{γj,i ≤ 1} + ξj−1,i − βUj,i + µUj−1,i where ξj−1,i(τj−1) =
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Exkj−1∼PXk
j−1
|ZkXk

<j−1
(·|τj−1)

[
βj,i(τj−1x

k
j−1) · 1{γj,i(τj−1x

k
j−1) > 1}

]
is added in order to preserve the

martingale property of these sequences. Finally, by Claim 7.15 and Corollary 7.35, we actually
expect that if R[W ] is high enough, then for most active columns i ∈ [k] (all but o(εk)) there are no
jumps in the values of {γj,i}, {ρj,i} and {ξj,i} and in our analysis we use it by zeroing the sequence

{β̂j,i}m+1
j=2 in some round j if there was some large jump in one of measurements of the first j − 1

rounds (denote this “bad” event by goodj−1,i = 0). Moreover, since we do not expect such jumps
for most active columns, then it can be shown that for such good column i ∈ [k], the sequence
{β̂j,i}m+1

j=2 which we finally can bound using a fact about martingales, is close enough to the desired

sequence {βj,i}m+1
j=2 and the proof follows.

Round Zero The following claim states that if R[W ] is high enough, then in expectation (over

zk ∼ PZk), most columns i ∈ [k] (all but o(εk)) have
RZi (zi)

PZi (zi)
≈ 1.

Claim 7.30. For every two constants λ > 0 and c ∈ (0, 1) there exists a constant λ′ > 0 such that

if Ezk∼P
Zk

[∑k
i=1 1{PZi(zi) /∈ (1± c) ·RZi(zi)}

]
> εk/λ, then R[W ] ≤ (1− ε)k/λ′.

Proof. We first handle the case Ezk∼P
Zk

[∑k
i=1 1{PZi(zi) > (1 + c) ·RZi(zi)}

]
> εk

2λ . Let pi :=

Prz∼PZi [PZi(z) > (1 + c) ·RZi(z)] and qi := Prz∼RZi [PZi(z) > (1 + c) ·RZi(z)]. Recall that by as-

sumption,
∑k

i=1 pi ≥
εk
2λ and observe that for any i ∈ [k] it holds that qi ≤ pi

1+c . The proof then
follows since

log
1

R[W ]
≥ D(PZk ||RZk) = D

(
PZk ||

k∏
i=1

RZi

)

≥
k∑
i=1

D(PZi ||RZi) ≥
k∑
i=1

D(pi||qi)

≥
k∑
i=1

D

(
(1 + c)

pi
1 + c

|| pi
1 + c

)

≥ c2

4
·
k∑
i=1

pi ≥ c2 · εk
8λ

=⇒ R[W ] ≤ e−c2·
εk
8λ ≤ (1− ε)εk/(16λ/c2),

where the first inequality holds by Fact 3.6, the second and third one holds by Fact 3.5 (the product
case of chain-rule and data-processing, respectively), and the one before last holds by Fact 3.9.

Otherwise, it holds that Ezk∼P
Zk

[∑k
i=1 1{PZi(zi) < (1− c) ·RZi(zi)}

]
> εk

2λ . In this case we

define pi := Prz∼PZi [PZi(z) < (1− c) ·RZi(z)] and qi := Prz∼RZi [PZi(z) < (1− c) ·RZi(z)] and
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note that pi ≤ (1− c)qi and
∑k

i=1 qi ≥
∑k

i=1 pi ≥
εk
2λ . The proof then follows since

log
1

R[W ]
≥

k∑
i=1

D(PZi ||RZi) ≥
k∑
i=1

D(pi||qi)

≥
k∑
i=1

D((1− c)qi||qi) ≥
c2

2
·
k∑
i=1

qi

≥ c2 · εk
4λ

=⇒ R[W ] ≤ e−c2·
εk
4λ ≤ (1− ε)k/(8λ/c2)

�

The following claim states that if R[W ] is high enough, then in expectation (over zk ∼ PZk),

most columns i ∈ [k] (all but o(εk)) have
P
X1,i|Zk

(1|zk)

PX1,i|Zi (1|zi)
≈ 1

Claim 7.31. For every two constants λ > 0 and c ∈ (0, 1) there exists a constant λ′ > 0 such that

if EP
Zk

[∑k
i=1 1{PX1,i|Zi(1) /∈ 1±c

m }
]
≥ εk/λ, then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. Compute

log
1

R[W ]
≥ D

(
PZkXk

1
||RZkXk

1

)
= D

(
PZkXk

1
||

k∏
i=1

RZiX1,i

)

≥
k∑
i=1

D
(
PZiX1,i ||RZiX1,i

)
≥

k∑
i=1

EPZi

[
D
(
PX1,i|Zi ||RX1,i|Zi

)]
≥

k∑
i=1

EPZi

[
D
(
PX1,i|Zi ||RX1,i|Zi

)
· 1{PX1,i|Zi(1) /∈ 1± c

m
}
]

≥ c2

4m
· EPZi

[
k∑
i=1

1{PX1,i|Zi(1) /∈ 1± c
m
}

]

≥ c2 · εk

4λ ·m

=⇒ R[W ] ≤ e−c2·
εk

4λ·m ≤ (1− ε)
k

(8λ/c2)·m ,

where the first inequality holds by Fact 3.6, the second and third ones hold by Fact 3.5 (chain-rule)
and the one before last holds by Fact 3.9 since RX1,i|Zi(1) = 1

m . �
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Table 6: Additional Measurements.

Definition Value

ξj,i(τj) Exkj−1∼PXk
j−1
|ZkXk

<j−1
(·|τj−1)

[
βj,i(τj−1x

k
j−1) · 1{γj,i(τj−1x

k
j−1) > 1}

]
βUj,i(τj)

{
1

m−1 xj−1,i = 0

−1 xj−1,i = 1

µUj,i(τj) Exkj−1∼PXk
j−1
|ZkXk

<j−1
(·|τj−1)

[
βUj,i(τj−1x

k
j−1)

]
goodj,i(τj) 1{i ∈ Gγτj ∩G

ρ
τj} · 1{ξj,i ≤ 0.1}

β̂j,i(τj)

{
0 goodj−1,i = 0

βj,i · 1{γj,i ≤ 1}+ ξj−1,i − βUj,i + µUj−1,i Otherwise

Rounds 1 to m + 1 As mentioned in Section 7.3.3, the goal of this section is to prove that if
R[W ] is high enough, then for most active columns i ∈ [k] (all but o(εk)) it holds that the values
{
∏j
j′=2(1 + βj′,i)}m+1

j=2 are bounded between two constants, and then using Section 7.3.3 we deduce
Claim 7.16. In Table 6 we present the formal definitions of the new variables that are mentioned
in Section 7.3.3.

The following claim states basic facts about the new variables.

Claim 7.32 (Measurements’ Properties). For any τj = τj−1x
k
j−1 = zkxk<j ∈ Supp(PZkXk

<j
) it holds

that

1. 1 /∈ x<j−1,i =⇒ µj−1,i(τj−1) = −γj−1,i(τj−1)
m−1 .

2. EP
Xk
j−1
|ZkXk

<j−1
(·|τj−1)

[
β̂j,i(τj−1X

k
j−1)

]
= 0.

3.
∣∣∣β̂j,i(τj)∣∣∣ ≤ 7.

4. γj,i(τj) > 1, |ρj−1,i(τj−1)| ≤ 0.1 =⇒ βj,i(τj) ∈ (0.8γj,i, 4γj,i).

5. 1 /∈ x<j,i, γj,i ≤ 1 =⇒ γj,i(τj) = m−1
m (1 + ρj−1,i)

(
β̂j,i +

γj−1,i

m−1 − ξj−1,i

)
+ ρj−1,i.

6. 1 /∈ x<j,i, γj,i ≤ 1, |ρj−1,i|, ξj,i ≤ 0.1 =⇒ γ2
j,i ≤ 1

10 β̂
2
j,i − γ2

j−1,i − ξj−1,i − 3ρ2
j−1,i

Proof. For property 1, compute

µUj−1,i(τj−1) = −1 · PXk
j−1|ZkXk

<j−1
(1|τj−1) +

1

m− 1
· PXk

j−1|ZkXk
<j−1

(0|τj−1) (86)

= −1 + γj−1,i(τj−1)

m
+

1

m− 1
·
(

1− 1 + γj−1,i(τj−1)

m

)
= −γj−1,i(τj−1)

m− 1
.
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For property 2, observe that if goodj−1,i = 0 then β̂j,i = 0 by definition, and otherwise it holds that

Exkj−1∼PXk
j−1
|ZkXk

<j−1
(·|τ)

[
β̂j,i(τj−1x

k
j−1)

]
= Exkj−1

[
βj,i · 1{γj,i ≤ 1}+ ξj−1,i − βUj,i + µUj−1,i

]
= Exkj−1

[βj,i] · Prxkj−1
[γj,i ≤ 1] + Exkj−1

[βj,i] · Prxkj−1
[γj,i > 1]− Exkj−1

[
βUj,i
]

+ Exkj−1

[
βUj,i
]

= Exkj−1∼PXk
j−1
|ZkXk

<j
(·|τj−1)

[
βj,i(τj−1x

k
j−1)

]

=

Exkj−1∼PXk
j−1
|ZkXk

<j−1
(·|τj−1)

[
PXj,i|ZkXk

<j
(1|τj−1x

k
j−1)

]
PXj,i|ZkXk

<j−1
(1|τj−1)

− 1

= 0

For property 3, recall that if goodj−1,i(τj−1) = 0 then β̂j,i(τj) = 0 and otherwise∣∣∣β̂j,i(τj)∣∣∣ ≤ |βj,i| · 1{γj,i ≤ 1}+ |ξj−1,i|+
∣∣βUj,i∣∣+

∣∣µUj−1,i

∣∣
≤ m

m− 1
· 1 + γj,i

1 + ρj−1,i
· 1{γj,i ≤ 1}+ ξj−1,i + 2

≤ 2 · 2

1− 0.1
+ 0.1 + 2

≤ 7

For property 4, recall that γj,i > 1 and ρj−1,i ≤ 0.1. The upper bound holds since

βj,i =
m

m− 1
· 1 + γj,i

1 + ρj−1,i
− 1

≤ 2 · 1 + γj,i
1− 0.1

− 1 < 2.5γj,i + 1.5 < 4γj,i

and the lower bound holds since

βj,i =
m

m− 1
· 1 + γj,i

1 + ρj−1,i
− 1

≥ 1 + γj,i
1 + 0.1

− 1 > 0.9γj,i − 0.1 > 0.8γj,i

For property 5, compute

γj,i(τj) =
m− 1

m
(1 + ρj−1,i)(1 + βj,i)− 1

=
m− 1

m
(1 + ρj−1,i)(1 + β̂j,i − ξj−1,i +

1

m− 1
+
γj−1,i

m− 1
)− 1

=
m− 1

m
(β̂j,i − ξj−1,i +

γj−1,i

m
) +

m− 1

m
ρj−1,i(1 + β̂j,i − ξj−1,i +

1

m− 1
+
γj−1,i

m− 1
)

=
m− 1

m
(1 + ρj−1,i)

(
β̂j,i +

γj−1,i

m− 1
− ξj−1,i

)
+ ρj−1,i
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For property 6, compute

γj,i(τj)
2 =

(
m− 1

m
(1 + ρj−1,i)β̂j,i +

(
(1 + ρj−1,i) ·

γj−1,i

m
− m− 1

m
(1 + ρj−1,i)ξj−1,i + ρj−1,i

))2

≥ 1

2

(
m− 1

m
(1 + ρj−1,i)β̂j,i

)2

−
(

(1 + ρj−1,i) ·
γj−1,i

m
− m− 1

m
(1 + ρj−1,i)ξj−1,i + ρj−1,i

)2

≥ 1

10
β̂2
j,i − 3 ·

(
(1 + 0.1)2

m2
γ2
j−1,i + (1 + 0.1)2ξ2

j−1,i + ρ2
j−1,i

)
≥ 1

10
β̂2
j,i − γ2

j−1,i − ξj−1,i − 3ρ2
j−1,i,

where the first inequality holds by the fact that (a+ b)2 ≥ 1
2a

2− b2, the second inequality holds by
the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and by the bound m ≥ 2 and |ρj−1,i| ≤ 0.1, and the last
one holds since m ≥ 2 and 0 ≤ ξj,i ≤ 0.1. �

The following claim connects between the measurements {ξj,i}j,i to R[W ].

Claim 7.33. It holds that

log
1

R[W ]
≥ 1

16m

k∑
i=1

m∑
j=1

EP
ZkXk

<j

[ξj,i · 1{|ρj,i| ≤ 0.1}],

for ξj,i = ξj,i(Z
kXk

<j) and ρj,i = ρj,i(Z
kXk

<j).

Proof. Compute

log
1

R[W ]
≥ 1

4m
·
k∑
i=1

m+1∑
j=2

EP
ZkXk

<j

[γj,i · 1{γj,i > 1}]

≥ 1

4m
·
k∑
i=1

m+1∑
j=2

EP
ZkXk

<j−1

[
1{|ρj−1,i| ≤ 0.1} · EP

Xk
j−1
|ZkXk

<j−1

[γj,i · 1{γj,i > 1}]
]

≥ 1

16m

k∑
i=1

m+1∑
j=2

EP
ZkXk

<j−1

[
1{|ρj−1,i| ≤ 0.1} · EP

Xk
j−1
|ZkXk

<j−1

[βj,i · 1{γj,i > 1}]
]

=
1

16m

k∑
i=1

m+1∑
j=2

EP
ZkXk

<j−1

[ξj−1,i · 1{|ρj−1,i| ≤ 0.1}]

=
1

16m

k∑
i=1

m∑
j=1

EP
ZkXk

<j

[ξj,i · 1{|ρj,i| ≤ 0.1}],

where the first inequality follows by Claim 7.21 and the fact that γj,i > 1 =⇒ 1 /∈ X<j,i, and the
third one by Claim 7.32(4). �

As a first corollary of Claim 7.33, we obtain the following.
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Corollary 7.34. For any constant λ > 0 there exists a constant λ′ > 0 such that if

EP

[∑k
i=1

∑m
j=1 ξj,i · 1{|ρj,i| ≤ 0.1}

]
≥ εk/λ for ξj,i = ξj,i(Z

kXk
<j) and ρj,i = ρj,i(Z

kXk
<j), then

R[W ] ≤ (1− ε)
k

λ′·m .

Proof. Immediately follows by Claim 7.33. �

As a second corollary of Claim 7.33, we obtain that if R[W ] is high enough, then most columns
i ∈ [k] have bounded sum

∑m
j=1 ξj,i in expectation over P .

Corollary 7.35. For any constants λ > 0 and c ∈ (0, 1) there exists a constant λ′ > 0 such that if

EP

[∑k
i=1 1{

∑m
j=1 ξj,i > c}

]
≥ εk/λ for ξj,i = ξj,i(Z

kXk
<j) , then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. Assume that EP

[∑k
i=1 1{

∑m
j=1 ξj,i > c}

]
≥ εk/λ for some constant λ > 0. Observe that

EP

 k∑
i=1

1{
m∑
j=1

ξj,i > c}


= EP

 k∑
i=1

1{
m∑
j=1

ξj,i > c} · 1{uρi =∞}

+ EP

 k∑
i=1

1{
m∑
j=1

ξj,i > c} · 1{uρi <∞}

,
where uρi = uρi (Z

kX(m+1)×k). If EP

[∑k
i=1 1{

∑m
j=1 ξj,i > c} · 1{uρi <∞}

]
> εk

2λ then in particular,

EP
[
jumpsρ(ZkX(m+1)×k)

]
= EP

[∑k
i=1 1{u

ρ
i <∞}

]
> εk

2λ and the proof follows by Claim 7.15.

Otherwise, EP

[∑k
i=1 1{

∑m
j=1 ξj,i > c} · 1{uρi =∞}

]
≥ εk

2λ . Compute

log
1

R[W ]
≥ 1

16m
· EP

 k∑
i=1

m∑
j=1

ξj,i · 1{|ρj,i| ≤ 0.1}


≥ 1

16m
· EP

 k∑
i=1

1{
m∑
j=1

ξj,i > c} · 1{uρi =∞} ·
m∑
j=1

ξj,i · 1{|ρj,i| ≤ 0.1}


=

1

16m
· EP

 k∑
i=1

1{
m∑
j=1

ξj,i > c} · 1{uρi =∞} ·
m∑
j=1

ξj,i


≥ c

16m
· EP

 k∑
i=1

1{
m∑
j=1

ξj,i > c} · 1{uρi =∞}


≥ c · εk

32λ ·m
=⇒ R[W ] ≤ e−c·

εk
32mλ ≤ (1− ε)

εk
(32λ/c)·m

where the first inequality holds by Claim 7.33 and the last one hold since ε ∈ [0, 1
2 ]. �

The following claim is the heart of this section. It states that if R[W ] is high enough, then in
expectation (over P ), the sum of squares of all sequences’ elements (Namely,

∑k
i=1

∑m+1
j=2 β̂2

j,i) is

at most o(εk). This later yields that for a typical column i ∈ [k] we expect that
∑m+1

j=2 β̂2
j,i ≤ o(ε)

and then the ideas of Section 7.3.3 follows.
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Claim 7.36. For any constant λ > 0 there exists a constant λ′ > 0 such that if

EP

[∑k
i=1

∑m+1
j=2 β̂2

j,i

]
≥ εk/λ for β̂j,i = β̂j,i(Z

kXk
<j), then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. Assume that EP

[∑k
i=1

∑m+1
j=2 β̂2

j,i

]
≥ εk/λ for some constant λ > 0. If

EP

[∑k
i=1

∑m+1
j=2 β̂2

j,i · 1{γj,i > 1}
]
≥ εk

2λ then the proof follows since

log
1

R[W ]
≥ EP

 k∑
i=1

m+1∑
j=1

min{|γj,i|, γ2
j,i}

4m
· 1{1 /∈ x<j,i}


≥ EP

 k∑
i=1

m+1∑
j=1

γj,i
4m
· 1{γj,i > 1}


≥ 1

196m
· EP

 k∑
i=1

m+1∑
j=1

β̂2
j,i · 1{γj,i > 1}


≥ εk

392λ ·m
=⇒ R[W ] ≤ e−

εk
392λ·m ≤ (1− ε)

εk
392λ·m ,

where the first inequality holds by Claim 7.21, the third one holds since
∣∣∣β̂j,i∣∣∣ ≤ 7 (property 3 of

Claim 7.32) and the last one holds since ε ∈ [0, 1
2 ]. Otherwise, it holds that

EP

 k∑
i=1

m+1∑
j=2

β̂2
j,i · 1{γj,i ≤ 1}


= EP

 k∑
i=1

m+1∑
j=2

β̂2
j,i · 1{Xj−1,i = 1}

+ EP

 k∑
i=1

m+1∑
j=2

β̂2
j,i · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1}


≥ εk

2λ
(87)
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Now, observe that

EP

 k∑
i=1

m+1∑
j=2

β̂2
j,i · 1{Xj−1,i = 1}


= EP

 k∑
i=1

m+1∑
j=2

β̂2
j,i · 1{Xj−1,i = 1} · 1{goodj−1,i = 1}


= EP

 k∑
i=1

m+1∑
j=2

(ξj−1,i −
γj−1,i

m− 1
)2 · 1{goodj−1,i = 1}


≤ EP

 k∑
i=1

m+1∑
j=2

2(ξ2
j−1,i +

γ2
j−1,i

(m− 1)2
) · 1{goodj−1,i = 1}


≤ EP

 k∑
i=1

m−1∑
j=1

ξj,i · 1{|ρj,i| ≤ 0.1}

+ 2 · EP

 k∑
i=1

m−1∑
j=1

γ2
j,i · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1}

, (88)

where the first inequality holds by the fact that (a+ b)2 ≤ 2(a2 + b2), and the last one holds since
goodj−1,i = 1 =⇒ |γj−1,i|, |ρj−1,i|, ξj−1,i ≤ 0.1 and since m ≥ 2 and ξj−1,i ≥ 0. Therefore, if

EP

[∑k
i=1

∑m+1
j=2 β̂2

j,i · 1{Xj−1,i = 1}
]
≥ εk

4λ , then at least one of the terms in (88) must be ≥ εk
8λ

and the proof follows by Corollaries 7.22 and 7.34. Otherwise, it holds by Equation (87) that
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EP

[∑k
i=1

∑m+1
j=2 β̂2

j,i · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1}
]
≥ εk

4λ . Compute

log
1

R[W ]

≥ EP

 k∑
i=1

m+1∑
j=1

min{|γj,i|, γ2
j,i}

4m
· 1{1 /∈ X<j,i}


≥ 1

4m
· EP

 k∑
i=1

m+1∑
j=1

γ2
j,i · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1} · 1{goodj−1,i = 1}


≥ 1

4m
· EP

 k∑
i=1

m+1∑
j=2

(
1

10
β̂2
j,i − γ2

j−1,i − ξj−1,i − 3ρ2
j−1,i) · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1} · 1{goodj−1,i = 1}


≥ 1

160m
EP

 k∑
i=1

m+1∑
j=2

β̂2
j,i · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1}

 (89)

− 1

4m
· EP

 k∑
i=1

m∑
j=1

γ2
j,i · 1{1 /∈ X<j,i} · 1{γj,i ≤ 1}


− 3

4m
· EP

 k∑
i=1

m∑
j=1

ρ2
j,i · 1{1 /∈ X<j,i} · 1{ρj,i ≤ 1}


− 1

4m
· EP

 k∑
i=1

m∑
j=1

ξj,i · 1{|ρj,i| ≤ 0.1}

,
where the first inequality holds by Claim 7.21, the second one holds since goodj−1,i = 1 =⇒
|γj−1,i| ≤ 0.1 and the third one holds by Claim 7.32 (property 6) since goodj−1,i = 1 =⇒
|ρj−1,i|, ξj−1,i ≤ 0.1. By assumption, the first term in Equation (89) is at least εk

4λ . Therefore,

there are two options: The first option is that the sum of terms in (89)≥ εk
8λ =⇒ R[W ] ≤ e−

εk
8λ ≤

(1− ε)
εk
16λ . The second option is that at least one of the negative terms in (89) has absolute value

≥ εk
24λ , and then the proof follows by Corollaries 7.22, 7.26 and 7.34. �

The following claim focuses on “good” columns, i.e., columns i ∈ [k] with bounded sums
{
∑j

j′=2 β̂j′,i}
m+1
j=2 and with small values of {γj,i}m+1

j=1 , {ρj,i}m+1
j=1 and {

∑j
j′=1 ξj′,i}

m
j=1. For these

columns, the claim connects the sums {
∑j

j′=2 β̂j′,i}
m+1
j=2 into the required products {

∏j
j′=2(1 +

βj′,i)}m+1
j=2 by showing that they are indeed bounded in an interval of constants. Along with assum-

ing that the first two terms of αj,i are ≈ 1, the claim concludes that for such columns it holds that
the values of {αj,i}m+1

j=1 are indeed bounded.

Claim 7.37. There exists a constant c ∈ (0, 0.1) such that for any zkx(m+1)×k ∈ Supp(PZkX(m+1)×k)
and i ∈ [k], it holds that i ∈ Gα

zkx(m+1)×k if all the following conditions hold:

1.
RZi (zi)

PZi (zi)
∈ 1± c, and
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2.
P
X1,i|Zk

(1|zk)

PX1,i|Zi (1|zi)
∈ 1± c, and

3. i ∈ Gγ
zkx(m+1)×k

⋂
Gρ
zkx(m+1)×k , and

4.
∑m

j=1 ξj,i(z
kxk<j) ≤ c, and

5.
∑m+1

j=2 β̂2
j,i(z

kxk<j) ≤ c, and

6. max{
∣∣∣∑j

j′=2 β̂j′,i(z
kxk<j)

∣∣∣}m+1
j=2 ≤ c.

Proof. Fix j ∈ [m+ 1] and recall that

αj,i =
RZi(zi)

PZi(zi)
·
PX1,i|Zk(1|zk)
PX1,i|Zi(1|zi)

·
j∏

j′=2

(1 + βj′,i)

By assumption, it holds that
∣∣γj′−1,i

∣∣, ∣∣ρj′−1,i

∣∣,∑j
j′=2 ξj′−1,i ≤ 0.1 for any j′ ∈ [j] \ {1}. In

particular, this yields that for any such j′ it holds that

a. β̂j′,i = βj′,i + ξj′−1,i − βUj′,i + µj′−1,i.

b. βUj′,i = 1
m−1 .

c. βj′,i =
1+γj′,i

1+ρj′−1,i
· m
m−1 − 1 ≥ 0.9

1.1 ·
m
m−1 − 1 ≥ −0.2.

Using the above observations, we prove that αj,i ∈ [0.01, 10]. Note that the upper bound holds
since

αj,i ≤ (1 + c)2 · e
∑j

j′=2
βj′,i

= (1 + c)2 · e
∑j

j′=2
(β̂j′,i−ξj′−1,i+β

U
j′,i−µ

U
j′−1,i

)

≤ (1 + c)2 · ec−0+ j−1
m−1

+
0.1·(j−1)
m−1

≤ (1 + c)2 · ec+2.2

and the lower bound holds since

αj,i ≥ (1− c)2 · e
∑j

j′=1
βj′,i · e−

∑j

j′=1
β2
j′,i

= (1− c)2 · e
∑j

j′=2
(β̂j′,i−ξj′−1,i+β

U
j′,i−µ

U
j′−1,i

) · e−0.6·
∑j

j′=1
(β̂j′,i−ξj′−1,i+β

U
j′,i−µ

U
j′−1,i

)2

≥ (1− c)2 · e−c−c+
j−1
m−1

− 0.1·(j−1)
m−1 · e0.6·

(
−6
∑j

j′=1

(
β̂2
j′,i+ξ

2
j′−1,i

+(
γj′−1,i
m−1

)2
)
−2
∑j

j′=1
(βU
j′,i)

2
)

≥ (1− c)2 · e−2c · e−4(c+c2+( 0.1
m−1

)2·(j−1))−4

= (1− c)2 · e−6c−4c2−4.08,

where the first inequality holds by the fact that 1 + x ≥ ex−0.6x2
for x ≥ −0.2, the second one

holds by the fact that (a+ b+ c+ d)2 ≤ 2
(
(a+ b+ c)2 + d2

)
≤ 6(a2 + b2 + c2) + 2d2 and the last

one holds since
∑j

j′=2 β̂
2
j′,i ≤ c and

∑j
j′=1 ξ

2
j′,i ≤

∑m
j=1 ξj,i ≤ c and

∑j
j′=1(βUj′,i)

2 ≤ m
(m−1)2 ≤ 2 and

( 0.1
m−1)2 ·(j−1) ≤ 0.01m

(m−1)2 ≤ 0.02. By taking c = 0.01 we obtain that αj,i ∈ [0.01, 10], as required. �

As a corollary of all the claims of this section, we are finally ready to prove Claim 7.16.
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Putting it Together

Corollary 7.38 (Restatement of Claim 7.16). For any constant λ > 0, there exists a constant

λ′ > 0 such that if EP
[
jumpsα(ZkX(m+1)×k)

]
≥ εk/λ, then R[W ] ≤ (1− ε)

k
λ′·m .

Proof. Let c be the constant from Claim 7.37. Observe that Claim 7.37 implies that

1{uαi <∞} ≤ 1{RZi(zi)
PZi(zi)

/∈ 1± c}+ 1{
PX1,i|Zk(1|zk)
PX1,i|Zi(1|zi)

/∈ 1± c}

+ 1{u|γ|>0.1 <∞}+ 1{u|ρ|>0.1 <∞}+ 1{
m∑
j=1

ξj,i > c}

+ 1{
m+1∑
j=2

β̂2
j,i > c}+ 1{max{

∣∣∣∣∣∣
j∑

j′=2

β̂j′,i

∣∣∣∣∣∣}m+1
j=2 > c}

Therefore, by assumption (recall that jumpsα(ZkX(m+1)×k) =
∑k

i=1 1{uαi < ∞}), when summing
over i ∈ [k] and taking expectation over P , the sum of all the right side terms is at least εk

λ . If one

of the first five terms have expected sum ≥ εk
10λ , then the proof follows by Claims 7.30 and 7.31

and Corollaries 7.23, 7.27 and 7.35. Otherwise, it holds that

EP

 k∑
i=1

1{m+1∑
j=2

β̂2
j,i > c}+ 1{max{

∣∣∣∣∣∣
j∑

j′=2

β̂j,i

∣∣∣∣∣∣}m+1
j=1 > c}

 ≥ εk

2λ
(90)

For i ∈ [k], let qi = EP

[∑m+1
j=2 β̂2

j,i

]
. Note that Claim 7.32 (property 2) yields that the sequence

{β̂j,i(ZkXk
<j)}

m+1
j=2 is a martingale difference sequence with respect to {PXk

j |ZkXk
<j
}mj=1 (for any

fixing of Zk). Therefore, Fact 3.17 yields that P
[
max{

∣∣∣∑j
j′=2 β̂j,i

∣∣∣}kj=1 > c
]
≤ qi/c2 which implies

that

EP

1{max{

∣∣∣∣∣∣
j∑

j′=2

β̂j,i

∣∣∣∣∣∣}m+1
j=2 > c}

 ≤ qi/c2. (91)

Moreover, by Markov inequality, it holds that P
[∑m+1

j=2 β̂2
j,i(Z

kXk
<j) > c

]
≤ qi/c which implies that

EP

1{m+1∑
j=2

β̂2
j,i > c}

 ≤ qi/c (92)

Hence, Equations (90) to (92) yields that

(
1/c+ 1/c2

) k∑
i=1

qi ≥ EP

 k∑
i=1

1{m+1∑
j=2

β̂2
j,i > c}+ 1{max{

∣∣∣∣∣∣
j∑

j′=2

β̂j,i

∣∣∣∣∣∣}m+1
j=1 > c}


≥ εk

2λ

=⇒ EP

m+1∑
j=2

k∑
i=1

β̂2
j,i

 =

k∑
i=1

qi ≥
εk

2λ · (1/c+ 1/c2)

94



and the proof follows by Claim 7.36. �

8 Lower Bound

In this section we present the counterexample that proves Theorem 1.3. In Section 8.1 we start by
showing how random termination helps to beat [BIN97]’s counterexample, and in Section 8.2 we
restate and prove Theorem 1.3 using a variant of [BIN97]’s protocol.

8.1 Random Termination Beats Counterexample of [BIN97]

In this section we exemplify the power of random termination, showing that the counterexample
of [BIN97] does not apply to random-terminating verifiers. We do so by presenting [BIN97]’s
counterexample against k repetitions and see how random termination helps in this case. The
protocol is described below.

Protocol 8.1 ([BIN97]’s Protocol π = (P,V)).

Common input: Public key pk .

Prover’s private input: Secret key sk.

Operation:

1. Round 1:

(a) V uniformly samples b← {0, 1} and r ← {0, 1}n, and sends B = Encpk(b, r) to P.

(b) P computes (b, r) = Decsk(B) and for any i ∈ [k − 1], it uniformly samples b′i ∈ {0, 1}
and r′i ∈ {0, 1}n conditioned on b = ⊕k−1

i=1 b
′
i. Then it computes Ci = Encpk(b

′
i, r
′
i), and

sends (C1, . . . , Ck−1) to V.

2. Round 2:

(a) V sends (b, r) to P.

(b) P sends
(
(b′1, r

′
1), . . . , (b′k−1, r

′
k−1)

)
to V.

3. At the end: V accepts iff b = ⊕k−1
i=1 b

′
i, and for any i ∈ [k− 1]: Ci = Encpk(b

′
i, r
′
i) and B 6= Ci.

Intuitively, assuming the cryptosystem is CCA2-secure, if a single instance of the protocol is
run, then a prover without access to sk can only convince the honest verifier with probability
1/2, since it must commit itself to a guess ⊕k−1

i=1 b
′
i of b before receiving (b, r). On the other

hand, if k instances of the protocol are run in parallel, then a cheating prover can send the tuple
(C1, . . . , Ck−1) = (B1, . . . , Bi−1, Bi+1, . . . , Bk) to Vi and then either all verifier instances accept or
all verifier instances fail, the first event occurring with probability at least 1/2.

Let’s look now on a k instances that run in parallel of the protocol π = (P, Ṽ), where Ṽ is
the random-terminating variant of V (note that this protocol has only two rounds, and therefore,
a random terminating bit takes one with probability 1/2). First, we expect that ≈ k/2 of the
verifiers abort at the first round, and with high probability at least k/4 of the verifiers remain
active (assume that k is large enough). For a cheating prover, aborting at the first round is not
an issue since it can completely simulate the aborted verifiers. However, even if a single verifier Vi
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aborts at the second round, then the attack presented above completely fail since the prover has
no way to reveal (bi, ri), needed for the other verifiers. Note that the attack do succeed in case non
of the verifiers abort at the second round, but the probability of this to happen is at most 2−k/4.

8.2 Proving Theorem 1.3

In this section, we restate and prove Theorem 1.3.

Theorem 8.2 (Restatement of Theorem 1.3). Assume the existence of CCA2-secure public-key
cryptosystem. Then for every m = m(n) ∈ [2,poly(n)] and ε = ε(n) ∈ [1/poly(n), 1/3] and
k = k(n) ∈ [m/ε, poly(n)], there exists an m-round interactive argument (P,V) with soundness

error 1−ε such that (Pk, Ṽ
k
) has soundness error of at least (1−ε)c·k/m for some universal constant

c > 0, where Ṽ is the 1/m-random-terminating variant of V (according to Definition 3.21) and

(Pk, Ṽ
k
) denotes the k-parallel repetition of (P, Ṽ) (according to Definition 3.22).26

In the following, fix large enough n and fix m, ε, k as in the theorem statements, and let
CS = (Gen,Enc,Dec) be a CCA2-secure public-key cryptosystem. Consider the following m-round
variant (P,V) of [BIN97]’s protocol:

Protocol 8.3 (The counterexample protocol π = (P,V)).

Common input: Security parameter 1n and Public key pk .

Prover’s private input: Secret key sk.

Operation:

1. Round 1:

(a) V flips a coin that takes one with probability 1− 3ε and zero otherwise.

If the coin outcome is one, V sends ⊥ to P, accepts and the protocol terminates.

Else, V uniformly samples b← {0, 1} and r ← {0, 1}n, and sends B = Encpk(b, r) to P.

(b) P computes (b, r) = Decsk(B) and for any i ∈ [k − 1], it uniformly samples b′i ∈ {0, 1}
and r′i ∈ {0, 1}n conditioned on b = ⊕k−1

i=1 b
′
i. Then it computes Ci = Encpk(b

′
i, r
′
i), and

sends (C1, . . . , Ck−1) to V.

2. Round 2:

(a) V sends (b, r) to P.

(b) P sends
(
(b′1, r

′
1), . . . , (b′k−1, r

′
k−1)

)
to V.

3. Rounds 3 to m: parties exchange dummy messages.

4. At the end: V accepts iff b = ⊕k−1
i=1 b

′
i, and for every i ∈ [k−1]: Ci = Encpk(b

′
i, r
′
i) and B 6= Ci.

26Assuming the existence of collision-free family of hash functions and CCA2-secure cryptosystem with respect to
superpolynomial adversaries, one can adopt the techniques used in [PW12] for constructing a single protocol (P,V)

such that for any polynomial bounded k, (Pk, Ṽ
k
) has soundness error of at least (1 − ε)c·k/m. This, however, is

beyond the scope of this paper.
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Namely, Protocol 8.3 first transforms [BIN97]’s two-rounds protocol, of soundness error 1/2 +
neg(n), into an m-round protocol with soundness error 1 − ε, by flipping a coin at Step 1a (for
increasing the soundness error) and adding dummy rounds at the end for increasing the number of
rounds (Step 3).27

We first note that soundness error of π is indeed low.

Claim 8.4. The soundness error of π(1n) is at most 1− ε.

Proof. Let P∗ be some efficient cheating prover and let T be the event over a random execution
of (P∗,V) that the outcome of the (1 − 3ε, 3ε) bit (flipped by V at Step 1a) is 0 (i.e., V does not
abort). Conditioned on T , P∗ must commit itself to a guess ⊕k−1

i=1 b
′
i before receiving (b, r). Since

the encryption scheme is CCA2-secure (which implies non-malleability), we obtain that

Pr(pk,sk)←Gen(1n)[(P
∗,V)(1n, pk) = 1 | T ] ≤ 1/2 + neg(n),

and hence

Pr(pk,sk)←Gen(1n)[(P
∗,V)(1n) = 1] ≤ Pr[¬T ] + Pr[T ] · Pr(pk,sk)←Gen(1n)[(P

∗,V)(1n, pk) = 1 | T ]

≤ 1− 3ε+ 3ε · (1/2 + neg(n))

≤ 1− ε.

�

So it is left to show that the soundness error of the k parallel repetition of the random termi-

nating variant of π is high. Let Ṽ and (Pk, Ṽ
k
) be as in the theorem statement with respect to

(P,V) (Protocol 8.3) and assume without loss of generality that Ṽ sends ⊥ to the prover right after
flipping a termination coin with outcome one. Consider the following cheating prover Pk

∗
:

Algorithm 8.5 (Cheating prover Pk
∗
).

Input: Security parameter 1n.

Operation:

1. Upon receiving a k-tuple (a1, . . . , ak) from Ṽ
k

= (Ṽ1, . . . , Ṽk), let S = {i ∈ [k] : ai 6=⊥} (the
set of active verifiers) and for i /∈ S sample uniformly bi ← {0, 1} and ri ← {0, 1}n. Then

for any i ∈ S send (a′1, . . . , a
′
i−1, a

′
i+1, . . . , a

′
k) to Ṽi, where a′j =

{
aj j ∈ S
Encpk(bj , rj) o.w

.

2. If at least one verifier in S sends ⊥ (after aborting at the second round), fail
and abort. Otherwise, upon receiving (bi, ri) for all i ∈ S, send the tuple
((b1, r1), . . . , (bi−1, ri−1), (bi+1, ri+1), . . . , (bk, rk)) to Ṽi.

Namely, Pk
∗

performs [BIN97]’s attack on the verifiers that remain active after the first round.
The attack, however, can only be performed if none of these active verifiers abort in the second
round. Yet, we show that the probability for this to happen is high enough. The following claim
conclude the proof of Theorem 8.2.

27As in [BIN97; PW12], the soundness error holds with respect to a prover without access to sk.
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Claim 8.6. Let ε,m, k as in the theorem statement, let (P,V) be Protocol 8.3 and let Pk
∗

be the
cheating prover described in Algorithm 8.5 (with respect to k). Then

Pr(pk,sk)←Gen(1n)

[
(Pk
∗
, Ṽ

k
)(1n, pk) = 1

]
≥ (1− ε)14·k/m.

Proof. Fix pk and let L be the random variable that denotes the value of |S| (the number of active

verifiers after the first round) in a random execution of (Pk
∗
, Ṽ

k
)(1n, pk). Note that each verifier

aborts with probability greater than 1 − 3ε at the first round (it can abort by the (1 − 3ε, 3ε)
coin or by the (1/m, 1− 1/m) random-terminating coin). Therefore, E[L] ≤ 3εk and we obtain by
Markov’s inequality that Pr[L ≤ 6εk] ≥ 1/2. Let G be the event that none of the verifiers abort at
the second round. Note that

Pr[G] ≥ Pr[L ≤ 6εk] · Pr[G|L ≤ 6εk] (93)

≥ 1/2 · (1− 1/m)6εk

≥ 1/2 · exp(−12εk/m).

The second inequality holds since 1− x ≥ e−2x for x ∈ [0, 1/2]. In addition, observe that

Pr
[
(Pk
∗
, Ṽ

k
)(1n, pk) = 1 | G

]
≥ Pr(b1,...,bk)←{0,1}k

[
⊕ki=1bi = 0

]
− neg(n) (94)

= 1/2− neg(n)

and we conclude by Equations (93) and (94) that

Pr
[
(Pk
∗
, Ṽ

k
)(1n, pk) = 1

]
≥ Pr[G] · Pr

[
(Pk
∗
, Ṽ

k
)(1n, pk) = 1 | G

]
≥ 1/2 · exp(−12εk/m) · (1/2− neg(n))

≥ exp(−14εk/m)

≥ (1− ε)14k/m.

The penultimate inequality holds since we assumed that k ≥ m/ε, and the last one since 1+x ≤ ex
for any x ∈ R. �
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A Missing Proofs

A.1 Proof of Proposition 3.10

Proposition A.1 (Restatement of Proposition 3.10). Let X be a random variable drawn form
either P or Q. Assume that PrP [|X| ≤ 1] = 1 (i.e., if X is drawn from P then |X| ≤ 1 almost
surely) and that there exist ε, σ2,K1,K2 > 0 such that PrQ[|X| ≤ 1] ≥ 1− ε and

PrQ[|X| ≥ t] ≤ K2 · exp

(
− t2

K1σ2

)
for all 0 ≤ t ≤ 1.

Then, there exists K3 = K3(K1,K2, ε) > 0 such that

EP [X2] ≤ K3 · σ2 · (D(P ||Q) + 1).

Note that for σ ≥ 1, the statement is trivial, and thus not interesting. We would use this
proposition when σ � 1.

Proof. Assume that σ2 ≤ 1 and that D(P ||Q) < ∞, since otherwise the statement is trivial. We
use the following two fundamental theorems. The first theorem gives a variational characterization
for divergence that is useful for bounding expected values of random variables.

Theorem A.2 (Donsker-Varadhan; cf. [PW17, Theorem 3.5]). Let P and Q be probability measures
on X and let C denote the set of functions f : X → R such that EQ[exp(f(X))] <∞. If D(P ||Q) <
∞, then

D(P ||Q) = sup
f∈C

EP [f(X)]− log EQ[exp(f(X))].

In particular, for every f ∈ C, it holds that

EP [f(X)] ≤ log EQ[exp(f(X))] +D(P ||Q).

The second theorem is the super-exponential moment characterization condition for sub-
Gaussianity.
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Theorem A.3 (Sub-Gaussian characterization; cf. [Duc16, Theorem 3.10]28). Let X be a random
variable and σ2 > 0 be a constant. Assume that there exist K ′1,K

′
2 > 0 such that

Pr[|X| ≥ t] ≤ K ′2 · exp

(
− t2

K ′1σ
2

)
for all t ≥ 0.

Then, there exists K ′3 = K ′3(K ′1,K
′
2) such that

E

[
exp

(
X2

K ′3σ
2

)]
≤ e.

We would like to apply the above theorems to derive the proof. However, under the Q distri-
bution X is not sub-Gaussian, since its concentration bound apply only for 0 ≤ t ≤ 1. Instead, we
let W = [0, 1], K ′2 = K2/(1− ε) and observe that

PrQ[|X| ≥ t | |X| ∈ W] ≤ K ′2 · exp

(
− t2

K1σ2

)
for all t ≥ 0.

Indeed, for t > 1 this inequality holds trivially. For 0 ≤ t ≤ 1, it holds that

PrQ[|X| ≥ t | |X| ∈ W] ≤
PrQ[|X| ≥ t]

PrQ[|X| ∈ W]

≤
PrQ[|X| ≥ t]

1− ε

≤ K ′2 · exp

(
− t2

K1σ2

)
,

where the second inequality follows from the assumption of the proposition and since σ2 ≤ 1, and
the third inequality again follows from the assumption of the proposition.

Let K3 = K ′3(K1,K
′
2) from the statement of Theorem A.3. Furthermore, note that

D(PX ||QX|(|X|∈W)) < ∞, since D(PX ||QX) < ∞ and |X| ∈ W under P almost surely. Using
Theorems A.2 and A.3, it follows that

1

K2σ2
EP [X2] ≤ log EQ[exp(X2/(K2σ

2))||X| ∈ W] +D(PX ||QX|(|X|∈W))

≤ log e+D(PX ||QX|(|X|∈W)).

Finally, the proposition follows since

D(PX ||QX|(|X|∈W)) = Ex∼PX log
PX(x)

QX(x)/PrQ[|X| ∈ W]

= D(PX ||QX) + log(PrQ[|X| ∈ W])

≤ D(PX ||QX),

where in the first equality we again used that |x| ∈ W for every x ∈ Supp(PX), so PrQ[X =
x ∧ |X| ∈ W] = QX(x) for any such x. �

28While the statement of [Duc16, Theorem 3.10] explicitly take K′2 = 2 and require that X’s mean is zero, it is
easy to see how to modify the proof to work with any constant K′2 and that the proof of this part does not actually
use that X has a zero mean. For example, see [Ver10, Lemma 5.5] that uses K′2 = e and does not assume that X has
zero mean.

102



A.2 Proof of Proposition 2.1

Proposition A.4 (Restatement of Proposition 2.1). Let m, k ∈ N, let P = PY1,...,Ym be a distri-
bution and let {Ej,i}j∈[m],i∈[k] be a set of events over P . Let Q = QI,Y1,...,Ym = QI ·

∏m
j=1QYj |Y<j ,I

be the distribution such that QI is a distribution over [k] and for j ∈ [m]: QYj |Y<j ,I ={
PYj |Y<j ,Ej,I P [Ej,I | Y<j ] > 0

⊥ o.w
. Assume that for any j ∈ [m], i ∈ [k] and y≤j ∈ Supp(QY≤j )

it holds that P [Ej,i | Y<j = y<j ] > 0, and let αj,i(y≤j) = Q[I = i] ·
∏j
j′=1

P [Ej′,i|Y≤j′=y≤j′ ]
P [Ej′,i|Y<j′=y<j′ ]

.29 Then

• For all i ∈ [k]: the sequence {αj,i(Y≤j)}mj=0, where Yj is drawn from PYj |Y<j , is a martingale
sequence.

• For all i ∈ [k], j ∈ [m] and y≤j ∈ Supp(Y≤j): Q[I = i | Y≤j = y≤j ] =
αj,i(y≤j)∑k

i′=1 αj,i′ (y≤j)
.

Proof. For the first item, fix i ∈ [k], j ∈ [m], y<j ∈ Supp(PY<j ) and compute

Eyj∼PYj |Y<j=y<j
[αj,i(y≤j)] = Eyj∼PYj |Y<j=y<j

Q[I = i] ·
j∏

j′=1

P [Ej′,i | Y≤j′ = y≤j′ ]

P [Ej′,i | Y<j′ = y<j′ ]


= Q[I = i] ·

j−1∏
j′=1

P [Ej′,i | Y≤j′ = y≤j′ ]

P [Ej′,i | Y<j′ = y<j′ ]
·

Eyj∼PYj |Y<j=y<j

[
P [Ej′,i | Y≤j′ = y≤j′ ]

]
P [Ej′,i | Y<j′ = y<j′ ]

= Q[I = i] ·
j−1∏
j′=1

P [Ej′,i | Y≤j′ = y≤j′ ]

P [Ej′,i | Y<j′ = y<j′ ]
· 1

= αj−1,i(y<j)

We now focus on the second item. In the following, fix j ∈ [m], i ∈ [k] and y≤j ∈ Supp(QY≤j ).
Note that for any i′ ∈ [k] it holds that

Q[Y≤j = y≤j | I = i′]

Q[Y≤j = y≤j | I = i]
=

j∏
j′=1

Q[Yj′ = yj′ | Y<j′ = y<j′ , I = i′]

Q[Yj′ = yj′ | Y<j′ = y<j′ , I = i]

=

j∏
j′=1

P [Yj′ = yj′ | Y<j′ = y<j′ , Ej′,i′ ]

P [Yj′ = yj′ | Y<j′ = y<j′ , Ej′,i]

=

j∏
j′=1

P [Ej′,i′ |Y<=j′=y<=j′ ]·P [Yj′=yj′ |Y<j′=y<j′ ]
P [Ej′,i′ |Y<j′=y<j′ ]

P [Ej′,i|Y<=j′=y<=j′ ]·P [Yj′=yj′ |Y<j′=y<j′ ]
P [Ej′,i|Y<j′=y<j′ ]

=
Q[I = i]

Q[I = i′]
·
αj,i′(y≤j)

αj,i(y≤j)
, (95)

29In case I is sampled uniformly over [k] in Q, we get the same weights {αj,i} as presented in Proposition 2.1 up
to a multiplicative factor of 1/k which can be ignored.
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Therefore, we conclude that

Q[I = i | Y≤j = y≤j ] = Q[I = i] · Q[Y≤j = y≤j | I = i]

Q[Y≤j = y≤j ]

= Q[I = i] · Q[Y≤j = y≤j | I = i]

Q[I = i′] ·
∑k

i′=1Q[Y≤j = y≤j |I = i′]

=
1∑k

i′=1
Q[I=i′]
Q[I=i] ·

Q[Y≤j=y≤j |I=i′]
Q[Y≤j=y≤j |I=i]

=
1∑k

i′=1

αj,i′ (y≤j)

αj,i(y≤j)

=
αj,i(y≤j)∑k
i′=1 αj,i′(y≤j)

,

where the one before last equality holds by Equation (95). �

A.3 Deferred Proofs from Section 5.2

We give the formal proofs for the claim in the proof sketch in Section 5.2.

Claim 5.4. Let j ∈ [m+ 1] and τ = (zkxk<j) ∈ Supp(PZkXk
<j

). Then, for every i ∈ Gτ it holds that

QI|ZkXk
<j ,I∈Gτ

(i|zkxk<j) =
αj,i(z

kxk<j)∑
i′∈Gτ αj,i′(z

kxk<j)

Proof. In the following, for i ∈ [k], j ∈ [m] and zkxm×k ∈ Supp(P ) we define

• α(Z)
i (zk) =

PZi (zi)

PZi|W (zi)
·
P
X1,i|ZkW

(1|zk)

PX1,i|ZiW (1|zi) , and

• α(X)
j,i (zkxk<j) =

∏j−1
j′=1

P
Xj+1,i|ZkXk≤j

(1|zkxk≤j)

P
Xj+1,i|ZkXk≤j−1

(1|zkxk≤j−1)
,

and observe that αj,i(z
kxk<j) = α

(Z)
i (zk) · α(X)

j,i (zkxk<j).

In the following, fix j, τ = (zkxk<j) and i as in the claim statement.
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Observe that for any i′ ∈ Gτ , it holds that

QZk|I(z
k|i)

QZk|I(z
k|i′)

=
PZi(zi) · PZ−i|ZiX1,iW (z−i|zi1)

PZi′ (zi′) · PZ−i′ |Zi′X1,i′W
(z−i′ |zi′1)

=
PZ−i|ZiX1,iW (z−i|zi1)

PZ−i′ |Zi′X1,i′W
(z−i′ |zi′1)

=
PZi′ |X1,i′W

(zi′ |1)

PZi|X1,iW (zi|1)
·
PZk|X1,iW (zk|1)

PZk|X1,i′W
(zk|1)

=

PX1,i′ |Zi′W
(1|zi′ )·PZi′ |W (zi′ )

PX1,i′ |W
(1)

PX1,i|ZiW (1|zi)·PZi|W (zi)

PX1,i|W (1)

·

P
X1,i|ZkW

(1|zk)

PX1,i|W (1)

P
X1,i′ |Z

kW
(1|zk)

PX1,i′ |W
(1)

=

PZi (zi)

PZi|W (zi)
·
P
X1,i|ZkW

(1|zk)

PX1,i|ZiW (1|zi)

PZi′
(zi′ )

PZi′ |W
(zi′ )
·
P
X1,i′ |Z

kW
(1|zk)

PX1,i′ |Zi′W
(1|zi′ )

=
α

(Z)
i (zk)

α
(Z)
i′ (zk)

(96)

The above implies that

QI|Zk,I∈Gτ (i|zk) = QI|I∈Gτ (i) ·
QZk|I(z

k|i)
QZk|I∈Gτ (zk)

=
1

|Gτ |
·

QZk|I(z
k|i)

1
|Gτ | ·

∑
i′∈Gτ QZk|I(z

k|i′)

=
1∑

i′∈Gτ
Q
Zk|I(zk|i′)
Q
Zk|I(zk|i)

=
α

(Z)
i (zk)∑

i′∈Gτ α
(Z)
i′ (zk)

(97)

We now use Proposition A.4 where let P̃ be the P of Proposition A.4 and let Q̃ be Q of
Proposition A.4 which are defined as follows: P̃Y1,...,Ym = PX1,...,Xm|Zk=zk , Ej,i is the event

Xj+1,i = 1 and Q̃I = QI|Zk=zk,I∈Gτ . Note that by the above definition it holds that Q̃I,Y1,...Ym ≡
QI,X1,...,Xm|Zk=zk,I∈Gτ , and that

α̃j−1,i(x
k
<j) = QI|Zk,I∈Gτ (i|zk) · α(X)

j,i (zkxk<j)

=
α

(Z)
i (zk)∑

i′∈Gτ α
(Z)
i′ (zk)

· α(X)
j,i (zkxk<j)

=
αj,i(z

kxk<j)∑
i′∈Gτ α

(Z)
i′ (zk)

, (98)
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where we let α̃j,i be the αj,i of Proposition A.4. Hence,

QI|ZkXk
<j ,I∈Gτ

(i|zkxk<j) = Q̃I|Y≤j−1
(i|xk<j)

=
α̃j−1,i(x

k
<j)∑

i′∈Gτ α̃j−1,i′(x
k
<j)

=
αj,i(z

kxk<j)∑
i′∈Gτ αj,i′(z

kxk<j)
,

where the one before last equality holds by Proposition A.4 and the last one by Equation (98). �

Claim 5.5. Let j ∈ [m + 1], let τ = (zkxk<j) ∈ Supp(PZkXk
<j

), and let Q′
Xk
j+1|ZkXk

<j
=

PXk
j+1|ZkXk

<jXj+1,I=1 ◦ QI|ZkXk
<j ,I∈Gτ

. Then, for every xkj+1 ∈ Supp(PXk
j+1|(ZkXk

<j)=τ
) with 1xkj+1

∩
Gτ 6= ∅, it holds that

PXk
j+1|ZkXk

<j
(xkj+1|τ)

Q′
Xk
j+1|ZkXk

<j

(xkj+1|τ)
=

∑
i∈Gτ αj,i(τ)∑

i∈1
xk
j+1
∩Gτ

αj,i(τ)
pi(τ)

,

for pi(τ) = PXj+1,i|ZkXk
<j

(1|τ).

Proof. Fix (zk, xk<j , x
k
j+1) ∈ Supp(PZkXk

<jX
k
j+1|W

) with 1xkj+1
∩ Gτ 6= ∅. By definition, it holds that

Q′
Xk
j+1|ZkXk

<j
(xkj+1|zk, xk<j) =

∑
i∈Gτ

QI|ZkXk
<j ,I∈Gτ

(i|zk, xk<j) · PXk
j+1|ZkXk

<jXj+1,i,W
(xkj+1|zk, xk<j , 1)

=
∑

i∈1
xk
j+1
∩Gτ

QI|ZkXk
<j ,I∈Gτ

(i|zk, xk<j) · PXk
j+1|ZkXk

<jXj+1,i,W
(xkj+1|zk, xk<j , 1),

where the second equality holds since if xj+1,i = 0 then PXk
j+1|ZkXk

<j ,Xj+1,i,W
(xkj+1|zk, xk<j , 1) = 0.

Claim 5.4 now yields that

Q′Xj+1|ZkX<j (xj+1|zk, x<j) =
∑

i∈1xj+1∩Gτ

αj,i(z
kxk<j)∑

i′∈Gτ αj,i′(z
kxk<j)

· PXk
j+1|ZkXk

<j ,Xj+1,i,W
(xkj+1|zk, xk<j , 1)

=
∑

i∈1xj+1∩Gτ

αj,i(z
kxk<j)∑

i′∈Gτ αj,i′(z
kxk<j)

·
PXk

j+1|ZkXk
<jW

(xkj+1|zk, xk<j)

PXj+1,i|ZkXk
<jW

(1|zk, xk<j)
.

It follows that

PXk
j+1|ZkXk

<jW
(xkj+1|zk, xk<j)

Q′
Xk
j+1|ZkXk

<j

(xkj+1|zk, xk<j)
=

PXk
j+1|ZkXk

<jW
(xkj+1|zk, xk<j)∑

i∈1xj+1∩Gτ
αj,i(zkxk<j)∑

i′∈Gτ αj,i′ (z
kxk<j)

·
P
Xk
j+1
|ZkXk

<j
W

(xkj+1|zk,xk<j)

P
Xj+1,i|ZkXk<jW

(1|zk,xk<j)

=

∑
i′∈Gτ αj,i′(z

kxk<j)∑
i∈1xj+1∩Gτ

αj,i(zkxk<j)

pi(zk,x<j)

.

�
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Claim 5.6. Let j ∈ [m + 1], let τ = (zkxk<j) ∈ Supp(PZkXk
<j

), and let Xk
j+1 be drawn from

PXk
j+1|(ZkXk

<j)=τ
or from

∏k
i=1 PXj+1,i|(ZkXk

<j)=τ
.30 Let Y =

∑
i∈Gτ Yi, for Yi =

αj,i(τ)
P
Xk
j+1,i

|ZkXk
<j

(1|τ) if

Xj+1,i = 1 and Yi = 0 otherwise.
It holds that

EP
Xk
j+1
|(ZkXk

<j
)=τ

[Y ] = E∏k
i=1 PXj+1,i|(ZkXk<j)=τ

[Y ] =
∑
i∈Gτ

αj,i(τ).

Proof. Fix j ∈ [m+ 1] and τ = (zkxk<j) ∈ Supp(PZkXk
<j |W

). Compute

EP
Xk
j+1
|(ZkXk

<j
)=τ,W

[Y ] =
∑
i∈Gτ

EP
Xk
j+1,i

|(ZkXk
<j

)=τ,W
[Yi]

=
∑
i∈Gτ

Exj+1,i∼PXk
j+1,i

|(ZkXk
<j

)=τ,W

aj,i(τ)

PXk
j+1,i|ZkXk

<jW
(1|τ)

· 1{xj+1,i = 1}

=
∑
i∈Gτ

PXk
j+1,i|ZkXk

<jW
(1|τ) · aj,i(τ)

PXk
j+1,i|ZkXk

<jW
(1|τ)

=
∑
i∈Gτ

aj,i(τ),

where the first equality follows from linearity of expectation and third equality holds since
PXk

j+1,i|ZkXk
<jW

(1|τ) > 0 for every i ∈ Gτ (follows from the condition that |ρj,i(τ)| ≤ 0.1). Fi-

nally, observe that the very same computation also yields that the expected value of Y under∏k
i=1 PXj+1,i|(ZkXk

<j)=τ,W
is also

∑
i∈Gτ aj,i(τ). �

Claim 5.7. Let ZkXk
1 be drawn from PZkXk

1
or from

∏k
i=1 PZiX1,i.

31 Let Y =
∑

i∈[k] Yi, for

Yi =
α0,i(zi)
PX1,i

(1) if X1,i = 1 and Yi = 0 otherwise.

It holds that

EP
ZkXk1

[Y ] = E∏k
i=1 PZiX1,i

[Y ] =
|D|
2`
.

30∏k
i=1 PXj+1,i|(ZkXk

<j)=τ is the product distribution of the marginals of PXk
j+1|(Z

kXk
<j)=τ .

31∏k
i=1 PZiX1,i is the product distribution of the marginals of PZkXk

1
.
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Proof. Compute

EP
ZkXk1 |W

[Y ] =
∑
i∈[k]

EPZiX1,i|W
[Yi]

=
∑
i∈[k]

Ezix1,i∼PZiX1,i|W

a0,i(zi)

PX1,i|W (1)
· 1{x1,i = 1}

=
∑

i∈[k],zi∈{0,1}`
PX1,i|W (1)PZi|X1,iW (zi|1) · a0,i(zi)

PX1,i|W (1)

=
∑

i∈[k],zi∈{0,1}`
PZi|X1,iW (zi|1) · PZi(zi)

PZi|X1,iW (zi|1)
· 1{(i, zi) ∈ D},

=
∑

i∈[k],zi∈{0,1}`
PZi(zi) · 1{(i, zi) ∈ D},

=
|D|
2`
,

where the first equality follows from linearity of expectation, and the third and forth equalities
hold since W is termination consistent, so the transcript in which all the verifiers terminate in
round 1 belongs to W, regardless of the value of the random coins zk; that is, PX1,i|W (1) > 0

and PZi|X1,iW (zi|1) > 0 for every i ∈ [k] and zi ∈ {0, 1}`. Since Y = (1 + ∆) · |D|
2`

, the random
variable ∆ in fact measures how far Y is from its expectation. It follows that EP

ZkXk1 |W
[∆] = 0.

Finally, observe that the very same computation also yields that the expected value of Y under∏k
i=1 PZiX1,i|W is also |D|

2`
. �
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