Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 49 (2019)

A Tight Parallel-Repetition Theorem
for Random-Terminating Interactive Arguments

Itay Berman* Iftach Haitnerf* Eliad Tsfadia

April 14, 2019

Abstract

Soundness amplification is a central problem in the study of interactive protocols. While
“natural” parallel repetition transformation is known to reduce the soundness error of some
special cases of interactive arguments: three-message protocols (Bellare, Impagliazzo, and Naor
[FOCS ’97]) and public-coin protocols (Hastad, Pass, Wikstrom, and Pietrzak [TCC ’10], Chung
and Lu [TCC ’10] and Chung and Pass [TCC ’15]), it fails to do so in the general case (the
above Bellare, Impagliazzo, and Naor; also Pietrzak and Wikstrém [TCC ’07]).

The only known round-preserving approach that applies to the general case of interactive
arguments is Haitner’s "random-terminating” transform [FOCS ’09, SiCOMP ’13]. Roughly
speaking, a protocol 7 is first transformed into a new slightly modified protocol 7, referred as
the random terminating variant of 7w, and then parallel repetition is applied. Haitner’s analysis
shows that the parallel repetition of 7 does reduce the soundness error at a weak exponential
rate. More precisely, if 7 has m rounds and soundness error 1 — ¢, then 7%, the k-parallel
repetition of 7, has soundness error (1 — £)*/ m* " Since the security of many cryptographic
protocols (e.g., binding) depends on the soundness of a related interactive argument, improving
the above analysis is a key challenge in the study of cryptographic protocols.

In this work we introduce a different analysis for the above method, proving that parallel
repetition of random terminating protocols reduces the soundness error at a much stronger
exponential rate: the soundness error of 7% is (1 — £)*/™, only an m factor from the optimal
rate of (1 — ¢)*, achievable in public-coin and three-message protocols. We prove the tightness
of our analysis by presenting a matching protocol.
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1 Introduction

Hardness amplification is one of the most fascinating questions in the theory of computation. Can
we transform a “weak primitive” into a hard one? And if so, can we do that while preserving the
additional properties of the original weak primitive? In this paper we focus on better understanding
the above question with respect to interactive arguments (also known as computationally sound
proofs).

In an interactive proof system, a prover tries to convince a verifier via interaction in the validity
of a statement. The basic properties of such proofs are completeness and soundness: in the former,
the prover, typically using additional computational resources or some extra information, convinces
the verifier to accept valid statements, while in the latter, a cheating prover (of a certain class)
cannot convince the verifier to accept invalid statements. The basic distinction regarding such
proof systems is whether the soundness holds unconditionally (i.e., against unbounded provers) or
only holds against computationally bounded provers. Interactive proof systems with unconditional
soundness are simply called interactive proofs, whereas proof systems in which soundness is only
guaranteed to hold against polynomial time provers are called interactive arguments. The latter
are the focus of this work. Interactive arguments are fundamental since the security of many
cryptographic protocols depends on the soundness of a related interactive argument. In particular,
having better means to amplify the hardness of interactive arguments, as discussed below, will help
us improve the security of numerous cryptographic protocols.

The question is whether, given a proof system with non-negligible soundness error (a cheating
prover can convince the verifier to accept false statements with some non-negligible probability), we
can convert it into a new system, of similar properties, with negligible soundness error (the verifier
almost never accepts false statements). The most common method to obtain such amplification
is via repetition: repeat the protocol many times with independent randomness, and the verifier
accepts only if the verifiers of the original protocol accept in all executions. Such repetition can be
done in two different ways, sequentially (known as sequential repetition), where the (i+ 1) execution
of the protocol starts only after the i*" execution has finished, or in parallel (known as parallel
repetition), where all of the executions are simultaneous. Sequential repetition is known to reduce
the soundness error in most computational models (cf., Damgérd and Pfitzmann [DP98]), but has
the undesired effect of increasing the round complexity of the protocol. Parallel repetition, on the
other hand, does preserve the round complexity, and reduces the soundness error for (single-prover)
interactive proofs (Goldreich [Gol99]) and two-prover interactive proofs (Raz [Raz98]). Parallel
repetition was also shown to reduce the soundness error in three-message arguments ([BIN97]) and
public-coin arguments (Hastad, Pass, Wikstrom, and Pietrzak [Has+10], Chung and Lu [CL02],
and Chung and Pass [CP15]). But, as shown by Bellare, Impagliazzo, and Naor [BIN97], and by
Pietrzak and Wikstrom [PW12], parallel repetition might not reduce the soundness error of any
interactive argument: using common cryptographic assumptions, Pietrzak and Wikstrom [PW12]
presented an 8-message interactive proof with constant soundness error, whose parallel repetition,
for any polynomial number of repetitions, still has a constant soundness error (same constant for
all k).

Faced with the above barrier, Haitner [Hail3] presented a simple method for transforming any
interactive argument 7 into a slightly modified protocol 7, such that the parallel repetition of 7
does reduce the soundness error. Given any m-round interactive protocol m = (P, V), let V be
the following random terminating variant of V: in each round, it flips a coin that takes one with



probability 1/m and zero otherwise. If the coin outcome is one, it accepts and aborts the execution.
Otherwise, it acts as V would, and continues to the next round. At the end of the prescribed
execution, if reached, it accepts if and only if V would. Observe that if the original protocol 7
has soundness error 1 — ¢, then the new protocol 7 = (P, V) has soundness error 1 — ¢/4 (i.e.,
only slightly closer to one). Haitner [Hail3] proved that the parallel repetition of 7 does reduce the
soundness error (for any protocol 7). Specifically, assuming 7’s soundness error is 1 —¢, then 7%, the
k-parallel repetition of 7, has soundness error (1 —5)€k/ m* 1 The intuition here is that, by randomly
terminating, the verifier prevents a cheating prover from coordinating the different executions of
the protocol. Thus, it cannot do much better than acting independently in the different executions,
yielding an exponential decay in its cheating probability.? Turning the above intuition into a formal
proof is not that simple; see further details in Section 2. While Haitner’s work [Hail3] is a strong
feasibility result, the dependency on ¢ and inverse dependency on m? in the soundness error makes
the random termination approach impractical for arguments with a weak soundness guarantee or
with a large number of rounds. It also lags behind the (1 — ) upper bound achieved by parallel
repetition of interactive proofs, and by three-message and public-coin interactive arguments.

We emphasize that parallel repetition of the random-terminating variant of a protocol is the only
unconditional round-preserving hardness amplification technique we have for arbitrary interactive
arguments.® For instance, parallel repetition of the random-terminating variants yields the only
known proof that constant-round weakly binding statistically hiding commitments imply constant-
round fully secure commitments.* For additional concrete examples where the above amplification
paradigm is used, see [BC12; Chu+13].

1.1 Owur Results

Recall that parallel repetition of the random-terminating variant on an interactive argument is the
only known (unconditional) round-preserving amplification method for interactive arguments. We
present a tight characterization of this amplification method.

Upper bound. Our main result is that parallel repetition of the random termination applied on
interactive arguments decreases the soundness error at a much stronger rate than that proven in
[Hail3].

! As in all known amplifications of computational hardness, and proven to be an inherent limitation (at least to
some extent) in [Dod+12], the improvement in the soundness error does not go below negligible. We ignore this
subtly in the introduction. We also ignore constant factors in the exponent.

2For those seeking further intuition for why random-termination is useful, in Section 8 we show that random-
terminating verifiers are immune to the counterexample of [BIN97].

3A conditional result proved by Chung and Liu [CL10] is the that fully homomorphic encryption (FHE) can be
used to compile any interactive argument into one (with the same soundness error) for which parallel repetition
improves the soundness (at the same rate as for public-coin arguments). Since it assumes FHE, which we only
know how to build assuming hardness of learning with errors [BV14], [CL10], it is applicable only in very restricted
settings. In addition, the compiled protocol does not have some of the guarantees the original protocol might have,
e.g., fairness. Finally, since it requires homomorphic evaluation of each of the protocol’s gates, it is highly inefficient
(computation-wise).

4Using sequential repetitions—the only other alternative—would blow up the round complexity by 1/§ for § < 1
being the commitment (weak) binding guaranteed (we are omitting an additional logarithmic factor, where the
logarithm is over the security parameter).



Theorem 1.1 (main theorem, informal). Let m = (P, V) be an m-round interactive argument with
soundness error 1 — ¢, let V be the random terminating variant of V, and let 7% be the k-parallel
repetition of * = (P, V). Then, T° has soundness error (1 —g)k/™.

Suppose that we want to get from soundness error 1 — ¢ to soundness error §. According to
[Hail3], we have to take m? - log(1/8)/e? repetitions of 7, where according to our Theorem 1.1,
m-log(1/0)/e repetitions suffice. Specifically, for constant-round protocols, our result matches, up to
a constant factor, the dream version of parallel repetition for interactive proofs, and public-coin and
three-message arguments, and it improves over [Hail3] by a factor of 1/e. For non-constant-round
protocols, our result is only an m factor away from the dream version, and this linear dependency
in m improves over the quartic dependency in [Hail3].

Theorem 1.1 immediately yields (see [Hail3] for details) the following improvement of the only
known round-preserving amplification of statistically hiding commitments. A commitment scheme
is e-binding if no efficient cheating committer opens the commitment into two different values with
probability larger than €. A commitment is statistically hiding if it does not reveal any significant
information about the committed value.

Corollary 1.2 (Amplification of statistically hiding commitment, informal). Let Com be an m-
round, (1 — €)-binding and statistically hiding commitment scheme, and let Com be its variant in

which the receiver aborts following each round of the commitment phase and publishes an empty
—— m-log(1/6
commitment string, with probability 1/m. Then Com"" oE(1/8)/e 18 a statistically hiding and 6-

binding commitment. Taking § = n=*1°87)  for n being the security parameter, yields a full-fledged
(i.e., neg-binding) statistically hiding and computationally binding commitment scheme.

The above gives a tight result for constant-round statistically hiding commitments, and drasti-
cally improves upon the m* - log(1/6)/e? repetitions of Com required according to [Hail3].

Lower bound. We complete the picture by showing that the 1/m factor in the exponent in
Theorem 1.1 is unavoidable.

Theorem 1.3 (lower bound, informal). Under suitable cryptographic assumptions, for any m € N
and ¢ € [0, 1], there exists an m-round interactive argument (P, V) with soundness error 1 — e such

that (Pk,\N/k) has soundness error at least (1 — )k/™.

Namely, m-log(1/9)/e repetitions are required for moving from soundness error 1—¢ to soundness
error 9.

Theorem 1.1 easily yields the following lower bound for amplification of statistically hiding
commitments.

Corollary 1.4 (Lower bound on amplification of statistically hiding commitment, informal). Under

suitable cryptographic assumptions, for any m € N and € € [0,1] there ezists an m-round, (1 —¢)-

o . . . —— m-log(1/6)/e
binding and statistically hiding commitment scheme Com, such that Com

binding.

is not o(d)

Our technique, a short overview. Below we give the highlights of our proof for Theorem 1.1.
See Section 2 for a detailed overview.



As in all such amplification results, the proof of Theorem 1.1 is via a reduction: given an efficient
prover P** that violates the (1 — &)*/™ soundness error of 7%, we construct an efficient prover P*
that violates the (1 — ¢) soundness error of 7 = (P, V). As in Haitner [Hail3], we considered the
following cheating prover P* for making V accept a false statement: P* uniformly samples i ~ [k],

~k
and starts emulating an interaction of (P¥", V") with V embedded as the i*" verifier. Upon getting
the j*® message from V, it acts as follows:

~k
1. Samples the messages of the emulated verifiers in the 5 round of (P¥*, V ), conditioned that
all verifiers accept and the i*" verifier halts in the next round.

2. Answers V according to the message sent to the i*" verifier in the j* round of the emulated
execution of (Pk*,{/k).
Namely, the rejection sampling assumes the i*" (real) verifier aborts in the beginning of the next
round, and thus the sampling can be done efficiently (see Section 2 for further details).
To analyze the success probability P*, we use the standard (in this line of works) paradigm of
1deal vs. real executions: let Ideal denote the distribution induced by an accepting random execution

of (P*, \N/k), and show that the distribution of the emulated execution of (P**, \~/k) induced by the
above attack (denoted by the Real experiment) is close enough to Ideal. It will then follow that
the above attack succeeds with high probability. Haitner [Hail3] bounds the statistical distance
between Ideal and Real. Statistical distance, however, seems not to be the right measure to consider
in this setting. Specifically, it lacks a chain rule and does not tensor under product distributions,
two properties that seem relevant for lower bounding the prover’s success probability. So rather,
we bound a relaxed variant of their KL-divergence.® We first give a high-level overview of the steps
in our proof.

First round. For the first round interaction, we show that while the KL-divergence between Ideal
and Real might be huge, the resulting divergence is small when we ignore carefully defined
events in Ideal. We then show that this “smooth” variant of KL-divergence suffices for the
proof.

Next rounds. Our first round analysis critically relies on the fact that the position ¢ of the real
verifier among the k& emulated ones is uniformly chosen by the cheating prover P*. When
analyzing the next rounds, however, the relevant distribution to consider is the position of
the real verifier conditioned that the interaction so far led to the previous rounds’ transcript.
It turns out that this conditional distribution might be very far from uniform.

We show that when sampling the transcript according to Ideal, as done when computing the
(smooth) KL-divergence between Ideal and Real, the conditional distribution of the index
i induces a martingale sequence (this fact holds for any prover strategy that hides the real
verifier among the emulated ones). We then show that in our setting, this martingale sequence
converges well. It follows that with high probability over Ideal, the distribution of the location
1 conditioned on the transcripts is “uniform enough” to allow the same approach we take for
the first round to go through.

We believe that the above observations will turn out to be useful in analyzing the parallel repetition
on other interactive proof systems.

®For these reasons, Chung and Pass [CP15] use the standard notion of KL-divergence for bounding the soundness
error of parallel repetition of public-coin interactive arguments.



1.2 Related Work

1.2.1 Interactive Arguments

Positive results. Bellare, Impagliazzo, and Naor [BIN97] proved that the parallel repetition of
three-message interactive arguments reduces the soundness error at an exponential but not optimal
rate. Canetti, Halevi, and Steiner [CHS05] later showed that parallel repetition does achieve an op-
timal exponential decay in the soundness error for such arguments. Pass and Venkitasubramaniam
[PV12] have proved the same for constant-round public-coin arguments. For public-coin arguments
of any (polynomial) round complexity, Hastad et al. [Has+10] were the first to show that parallel
repetition reduces the soundness error exponentially, but not at an optimal rate. The first optimal
analysis of parallel repetition in public-coin arguments was that of Chung and Liu [CL10], who
showed that the soundness error of the k repetitions improves to (1 — ). Chung and Pass [CP15]
gave an arguably simpler proof for public-coin arguments, via KL-divergence arguments, a result
that is the starting point of our analysis (see Section 2). For non-public coin and with any round
complexity argument, Haitner [Hail3] introduced the random-terminating variant of a protocol,
and proved that the parallel repetition of these variants improves the soundness error at a weak ex-
ponential rate. An alternative proof, with essentially the same parameters, was given by [Has+10].
Their proof holds for 1/m-simulatable verifiers [Has+10] that contain random-terminating verifiers
as a special case.% All the above results extend to “threshold verifiers”: the parallel repetition is
considered accepting if the number of accepting verifiers is above a certain threshold. Our result
rather easily extends to such verifiers, but we defer the tedious details to the next version.

Chung and Pass [CP11] proved that full independence of the parallel executions is not necessary
to improve the soundness of public-coin arguments, and the verifier can save randomness by carefully
correlating the different executions. It is unknown whether similar savings in randomness can be
achieved for random-terminating arguments.

Negative results. Bellare, Impagliazzo, and Naor [BIN97] presented for any k € N, a four-
message interactive argument of soundness error 1/2, whose k-parallel repetition soundness remains
1/2. Pietrzak and Wikstrom [PW12] ruled out the possibility that enough repetitions will eventually
improve the soundness of an interactive argument. They presented a single 8-message argument for
which the above phenomenon holds for all polynomial k simultaneously. Both results hold under
common cryptographic assumptions.

1.2.2 Two-Prover Interactive Proofs

The techniques used in analyzing parallel-repetition of interactive arguments are closely related to
those for analyzing parallel repetition of two-prover one-round games, which we now very briefly
describe. In such a game, two unbounded isolated provers try to convince a verifier in the validity
of a statement. Given a game of soundness error (1 —¢), one might expect the soundness error of its
k parallel repetition to be (1 — a)k, but as in the case of interactive arguments, this turned out to be
false [Fei91; FV02; FRS90]. Nonetheless, and although not true for arguments, Raz [Raz98] showed
that parallel repetition does achieve an exponential decay for any two-prover one-round game, and

5Roughly, a verifier is d-simulatable if given any partial transcript, the verifier’s future messages can be sampled
efficiently with probability § (over its coins), without knowing the internal state of the verifier. Our proof seems
to easily extend to 1/m-simulatable verifiers, but since the only examples for such verifiers are random terminating
verifiers, we chose to give our proof in the simpler language of the latter.



in particular reduces the soundness error to (1 — 5)€O(1)k/ logs letting s being the provers’ answer
length. These parameters were later improved by Holenstein [Hol09], and improved further for
certain types of games by Rao [Raoll], Dinur and Steurer [DS14], and Moshkovitz [Mos14].

The core challenge in the analysis of parallel repetition of interactive arguments and of two-
prover one-round games is very similar: how to simulate a random accepting execution of the
proof/game given the verifier message. In interactive arguments, this is difficult since the prover
lacks computational power. In two-prover one-round games, the issue is that the two provers
cannot communicate. We hope that our new tight understanding of parallel repetition of interactive
arguments will turn out to be useful for achieving tighter analysis of parallel repetition of (certain
types of ) two-prover one-round games.

Paper Organization

We overview the proof of our main theorem (Theorem 1.1) in Section 2. Basic notations, definitions
and tools used throughout the paper are given in Section 3. The formal statement of our main
theorem and its proof using Lemma 4.9, our main technical lemma, are given in Section 4. The
road map towards proving Lemma 4.9 is given in Section 5, and the proof details are given in
Sections 6 and 7. Our matching lower bound on the effect of parallel repetition on random-
terminating arguments is stated and proved in Section 8. Finally, the missing proofs can be found
in Appendix A.

2 Our Technique

In this section we give a high-level overview of the proof of our main result (Theorem 1.1). We
start by describing the simpler case of parallel repetition of public-coin arguments, while focusing on
bounding a distance measure known as KL-divergence (following Chung and Pass [CP15]). Moving
to random-terminating arguments, we explain the reduction of Haitner [Hail3] and present our
analysis that bounds a relaxed (“smooth”) variant of the KL-divergence.

2.1 Public-Coin Arguments

Let m = (P, V) be an m-round public-coin interactive argument (the verifier simply sends its random
coins) with soundness error 1 —¢, and let k& € N be such that (1 —¢)* is noticeable (as we mentioned
in Footnote 1, we cannot expect the soundness to get below noticeable). The goal is to show an
optimal exponential decay of the soundness error when repeating the protocol in parallel, that is,
to prove that the soundness error of 7% = (P*, V¥), the k-fold repetition of =, is at most (1 — ¢)*.
As in all such hardness amplification results, the proof is via a reduction: given an efficient prover
P** violating the (1 —¢)* soundness error of 7, we use P¥" to construct an efficient prover P* that
violates the (1 —¢) soundness error of . More specifically, to interact with V on a false statement,
the cheating prover P* uses P** to emulate a winning (all verifiers accept) execution of (P¥*, V¥)
on the false statement, while embedding the messages of the real interaction as those of one of the
k verifiers. Since an all-accepting emulation yields that the embedded real verifier accepts in the
real execution, the challenge reduces to showing that such an emulation can be done successfully.

To present and analyze the above reduction, we need to be a bit more formal. Assume for
simplicity that P*" is deterministic. Let X™** = (X¥, ..., Xk) be the messages (in this case,
random coins) of V¥ in a random execution of (P¥*, V¥) where X; consists of the ;™ message



sent by the i verifier. Let W be the event that V¥ accepts in (P¥", V) (namely, in this case W
is simply a subset of Supp(X™*¥)).

The cheating prover P* emulates a winning execution of (Pk*, Vk) as follows: before interacting
with V it uniformly samples i ~ [k]; the messages from V would be embedded as the messages of
the i*" verifier in (Pk*7 V). Upon getting the j* message xj; from V, it acts as follows:

k vk
1. Samples z ~ X; ‘Xﬁj:x’inj,i:mj,i,W'

(Letting Xﬁj =(XF,... ,Xj]-“_l) and similarly for m’zj,

where the latter denotes the verifiers’ messages thus far.)

2. Sends b;; back to V, for bé? = (bj1,--.,bjx) being the message tuple P¥* sends back to VF in
the j* round of (P**, V¥), induced by :1:§C (recall that P** is assumed to be deterministic).

The sampling in Step 1 is done via rejection sampling: keep sampling values for X%

,j|X§j:x}2j»Xj,i:xj,i
. k _ k . . . . k _ k L .
until W happens and set 27 = X7. Since V is public-coin, as long as Pr[W]X<j =al;, Xji= ;]

does not get too low, such rejection sampling can be done efficiently. For a tuple of messages x™**,

let Succ(z™**) be the indicator for the event that Pr[W|X£j = ]iijj,i = z;;] does not get too
low for every j € [m]. Let Real denote the random tuple of messages X™** induced by the above
execution of (P*, V), whose soundness error can now be lower-bounded by Pr[Succ(Real)]. Thus,
showing that Pr[Succ(Real)] > 1 — & would complete the analysis.

The standard technique to show the above lower-bound is by change of measure: describe a
different distribution under which Succ occurs with high probability, and bound the difference
between that distribution and Real. A natural choice for such a distribution is that of X™*¥|y,
which we refer to as Ideal. This is the distribution that would arise if the messages of the real verifier
would also have been chosen, as are the messages of the other emulated verifiers, by conditioning
on W (and not uniformly at random). Since, by assumption, Pr[IW] > (1 — &) is noticeable, a
Markov argument yields that Pr[Succ(Ideal)] ~ 1, and we will assume it is equal to 1 for the rest
of this analysis.

It is left to show that the difference between Real and Ideal is small. Note that up until now
we have not specified which measure of difference to use. Indeed, different choices of measure yield
different results. Early results in this line of works (e.g., [Has+10; Hail3]) bounded the statistical
distance between Ideal and Real.” It seems, however, that statistical distance is not the right
measure to consider in this setting. Specifically, it lacks a chain rule and does not tensor under
product distributions, two properties that seem relevant for lower bounding the prover’s success
probability. The chain rule can be used to split the transcripts of Ideal and Real per round and
analyze their difference on a round basis. Tensorizing under product distributions is useful since
the messages of the public-coin verifiers are chosen from a product distribution. The analysis in
the above works does suffer from these disadvantages, and as a result they do not achieve optimal
exponential decay.

A more suitable choice of measure would seem to be the Kullback-Leibler divergence (KL-
divergence) between Ideal and Real, denoted by D(Ideal || Real).® The KL-divergence does have
a chain rule and is (appropriately) tensorized under product distributions. Indeed, using the KL-

"The statistical distance between two distributions P and @ over the same domain X is defined as SD(P,Q) :=
maxsgx P[S] — Q[S]
8The KL-divergence (also known as divergence and relative entropy) between two distributions P and @Q is defined

as D(P||Q) = Eqplog 53




divergence, Chung and Pass [CP15] gave an elegantly simple proof for the optimal exponential
decay of the soundness error for public-coin protocols that we review next.”

Recall that our goal is to show that Pr[Succ(Real)] > 1 —e. The first step is to apply the
data-processing inequality for KL-divergence:'?

1
D(Ideal || Real) > D(Bern(Pr[Succ(Ideal)])|| Bern(Pr[Succ(Real)])) = log Pr[Succ(Real)] (1)
for Bern(p) denoting the Bernoulli distribution with parameter p, and where the equality follows
since we assumed that Pr[Succ(Ideal)] = 1. The second step is to upper-bound D(Ideal || Real).
Chung and Pass [CP15], generalizing over [Raz98] and using the chain-rule for KL-divergence,
showed that

1 1 1
D(Ideal 1) < — - D(X™F|p || X™F) < — .1 2
The above equations now yield that
Pr[Succ(Real)] > exp(—D(Ideal || Real)) > Pr[W]l/k >1—¢ (3)

where we used that, by assumption, Pr[WW] > (1 — ¢)*.

Our proof (see below) adopts the above paradigm to the more complicated setting that arises
when analyzing parallel repetition of random-termination arguments. In particular, we bound a
relaxed variant of the KL-divergence between the Ideal and Real distributions, and show that such
a bound suffices for the reduction.

2.2 Random-Terminating Arguments

For arbitrary (non-public coin) arguments, the above analysis fails to hold because of the possible
infeasibility of the rejection sampling used by the above attacker for choosing its response in each
round. Indeed, such sampling requires finding random coins for the real and emulated verifiers that
are consistent with the current transcript. This requires inverting at random the transcript function
of the real verifier (i.e., the function mapping the parties’ coins to the protocol’s transcripts), and for
the emulated verifiers (for which the attacker holds one set of consistent coins), it requires finding
a second random preimage of the transcript function. Each of these tasks is infeasible assuming
one-way functions exist [IL89; Rom90], and indeed the sampling should be infeasible since parallel
repetition of arbitrary arguments might not improve the hardness at all [BIN97; PW12]. Random-
terminating arguments enable us to bypass the two obstacles above (inverting the real verifier
transcript function, and finding a second pre-image for the emulated verifiers).

Let m = (P,V) be an (arbitrary) m-round argument and let V be the random-terminating
variant of V, i.e., at the beginning of each round, V halts and accepts with probability 1/m, and
let k € N be such that (1 — €)¥/™ is noticeable. Let P** be an efficient adversary violating the
(1 — €)*¥/™ soundness error of 7 (note that we are no longer aiming for the optimal exponential
decay). As in the public-coin case, we use P for constructing an efficient prover P* violating the
(1 — ¢) soundness error of 7.

9An optimal exponential decay for public-coin protocols was already shown by [CL10]. That proof does not use
the Ideal vs. Real paradigm, and is harder to follow.

0The data-processing inequality for KL-divergence states that for any (possibly random) function F, it holds that
D(P||Q) = D(F(P)||F(Q))-



To present and analyze the reduction, we again need to be a bit more formal. We keep the
simplifying assumption that P* " is deterministic, and further assume without loss of generality that
V flips all its coins before the interaction begins. It follows that the random-terminating variant
\% flips a string of coins before the interaction starts, to be used by V, and then flips a single
(1/m,1 — 1/m) coin before each round, to determine whether it aborts (and accepts) or acts as

~k
V would in the current round. Let (Z% X™** = (XF ... XE)) be the coins flipped by V' in a

~k
random execution of (Pk*, V'): Z; are the coins the i*® verifier flips for the use of its internal copy
of V, and X ; is the coin it flips before the 4™ round to decide whether to halt (set to 0 in case of

an abort in a previous round). Let W be the event that V¥ accepts (P*”, \N/'k) (i.e., W is simply a
subset of Supp(Z¥, X™*F)).

Haitner [Hail3] considered the following cheating prover P* for making V accept a false state-
ment: before interacting with V, it samples uniformly i ~ [k], embeds V as the i*" verifier in the
emulated interaction (Pk*,Vk), and samples z¥ ~ ZF| Zi=21,X1..=1,W, for z; being the random coins
of V. (As explained below, this sampling does not require knowing z;, which is not known to P*.)
Upon getting the j*" message from V, it acts as follows:

k vk
1. Samples 27 ~ X; ‘Zkzzk,ng:xlzj7Xj+1’i:17W.

2. Sends b;; back to V, for b;‘? = (bj1,-..,b;k) being the message tuple P** sends back to V* in

the j*™ round of (P¥*, V¥) induced by 2z*, akoo ,:E?.

Namely, the rejection sampling assumes the real verifier aborts in the beginning of the next
round. This yields that the rejection sampling can be carried out efficiently, as long as the con-
ditional winning (all verifiers accept) probability is not too low. Indeed, since the conditioning
is on the verifier coins (and not its messages), finding coins for the emulated verifiers boils down
to choosing their next round coins uniformly at random. In addition, since the condition is that
the real verifier aborts in the beginning of the next round, its random coins have no effect on the
conditional distribution we aim to sample from, and thus we can sample from this distribution
without knowing their value.

As in the public-coin setting, we would like to bound the KL-divergence between the Ideal
distribution—that in this case is defined as Z*X ka|W, and the Real distribution—the random
tuple Z*X™** induced by a random execution of (P*, V). As mentioned above, we were only able
to bound a relaxed variant of the KL-divergence between Ideal and Real, and had to consider a
relaxed variant of this measure; see details in the next subsection.

2.2.1 Bounding the KL-Divergence between Ideal and Real

Bounding the KL-divergence between Ideal and Real turned to be a much more challenging task
than in the public-coin case considered above. First, the conditional distribution used in the rejec-
tion sampling is very different than its ideal variant. Therefore, even bounding the KL-divergence
of a single interacting round is complicated. Second, in the public-coin case it can be assumed
without loss of generality that X™**|;;; is a product distribution—the attacker consists of k in-
dependent attackers,'! an assumption that drastically simplifies the analysis. Unfortunately, this

"This is not easy to see at first glance but it implicitly arises by the proof of Chung and Pass [CP15].



simplifying assumption cannot be made for non-public-coin random-terminating arguments.'? In-
stead, the attacker may induce complicated non-product distributions Ideal and Real such that the
KL-divergence between them is too large to be useful. Fortunately, it turns out that when ignoring
the distribution of small probability events over Ideal, the resulting “smooth” KL-divergence is low,
and this bound suffices to make the reduction go through.

To illustrate our technique, we focus only on Z*¥ = (Zy,...,Z;)—the coins for the internal
copies of V, and on X¥ = X*¥ = (X1,..., X3)—the random termination coins for the first round
(in particular, X; ~ Bern(1/m)). The distribution Ideal in this case is (Z*X*|y), and in this
explanation we focus only on the “Z-part” of Ideal—Z*|y (but as we will see shortly, the “X-
part” will be very relevant). The “Z-part” of Real is more complicated. First an index i ~ [k]
is drawn and then z; ~ Z; is sampled uniformly at random. The rest of Z* is now drawn from
A k| Zi=z,X;=1,w- Our goal is to bound the divergence between these two “Z-parts”. Actually, for
this discussion, we also want to assume for simplicity that Z; is sampled the same as the rest of
ZF: that is, we consider Zk\ X,=1,w, which we call Real’. While Real’ is different from Real, the
insights as to how to bound the KL-divergence for this distribution carry over to the actual Real
distribution. To summarize, our goal is to bound D(Z* |y ||Z*|x,=1.w ), for I being drawn uniformly
from [k].

Our first observation is as follows: conditioned on X* being some fixed z*, Z* is distributed
the same under Ideal and Real'—both sample from Z¥| xk=gk - The difference between these
distributions is thus traced to how X* is sampled. By the data-processing inequality for KIL-
divergence, it holds that

D(Z*w || Z*|x,=1w) < D(XF|w || X* | x,=1,w) (4)

So, instead of bounding the KL-divergence of the “Z-parts”, we bound it for the “X-parts”, without
first drawing the “Z-parts”.

In the following, fix #¥ € Supp(X*|w) and let 1, = {i € [k]: z; = 1} denote the set of 1-indexes
in z*. It holds that

Prl Xk — | X = LW} :Eiw[k] [Pr[Xk = 2" | W, X; = 1” (5)
= 3 Pt =k WX = 1]
i€l g
1 Pr[XF =gk | W]
Tk PriX; =1 W]
ZElIk

Combining the above we get

k
D(ZF\w || Z" | x,=1.w) < Bk oxryy [10% T ] (6)
dliel , PX=TW]

Our first round analysis focuses on characterizing » for a random x* ~ X*|y,. We

1
i€l PrX,=1[W]
take the following approach: for ¢ € [k], let p; = Pr[X; = 1 | W], let Y; be a random variable taking

12WWe actually know that for certain arguments, the attacker can improve its winning probability by correlating
between the different verifiers (e.g., see our counterexample in Section 8).
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the value 1/p; if 2; = 1, and 0 otherwise, for a randomly drawn z*¥ ~ X*|y-, and let Y = Zle Y;.
Note that the Y;’s are dependent, since their distributions are determined by the same z* ~ X*|yy.
It is easy to verify that Exklw[Y] = k.13 That is, the expected value of the denominator in
Equation (6) is equal to the nominator. Let A be a random variable measuring how far Y is from
its mean; that is, Y = (1 + A) - k. It follows that Eyx|,, [A] = 0 and that

1
k k
D(Z* w12 -100) < Bx 108 1 5 ™

Naturally, we would like to approximate the logarithm in the above equation with a low-degree
polynomial. We can only do that, however, if A is far away from —1. In particular, if A = —1
(which happens if W allows for none of the verifiers to abort in this round), the above expectation
is unbounded. Luckily, it turns out that A is far from its expected value 0 under X* |y with only
small probability. We somehow want to ignore the chance that A is far from 0 when bounding the
KL-divergence. We would like a smooth variant of the KL-divergence.

2.2.2 Smooth KL-Divergence

The KL-divergence between P and @ is a very sensitive distance measure. An event z with
P(z) > Q(x) might make D(P||Q) huge even if P(z) is tiny (e.g., P(x) > 0 = Q(x) implies
D(P||Q) = o0). While in some settings one might care about low probability events, this is not
the case in our setting. Recall that our ultimate goal is to use the KL-divergence for a change-of-
measure: if Prp[E] is large for some event E, then we would like to argue that Prg[E] is also large.
Since an element = with small P(x) does not contribute much to the probability of E, omitting it
still keeps Prg[E] high and thus we can exclude it from our analysis.

So we need a less sensitive measure that still maps events of high probability in P to events of
high probability in @. A natural attempt would be to define it as infpr oo {D(P’||Q’)}, where the
infimum is over all pairs of distributions such that both SD(P, P’) and SD(Q, Q') are small. This
relaxation, however, requires an upper bound on the probability of events with respect to ), which
in our case is the Real distribution. But bounding the probability of events with respect to the
Real distribution is exactly what we are trying to do to begin with.

So rather, we take advantage of the asymmetric nature of the KL-divergence to propose a
relaxation that only requires upper-bounding events with respect to P, which in our case is the
much simpler Ideal distribution.!*

Assume P and @ are over domain Y. The a-smooth KL-divergence of P and @ is defined by

DU(PIIQ) =, inf _ {D(Fp(P)|IFa(Q))) ®

for F being the set of randomized function pairs, such that for every (Fp, F) € F:

13Note that p; > 0 for all i since all the verifiers might abort and accept in the first round. In the body of this
work we refer to this property as termination consistent.

1At least syntactically, the notion of smooth KL-divergence we consider here is similar to the distance measure
used by the (coefficients) H-Technique tool, introduced by Patarin [Pat90], for upper-bounding statistical distance.
Consider the following alternative definition of statistical distance: SD(P,Q) = Ey~p max{0,1 — ggg} The H-
Technique approach considers a smooth variant of the above formulation: small events with respect to P are ignored.
However, while smooth KL-divergence is useful in settings when the actual KL-divergence might be unbounded, as in
our settings, the above smooth variant of statistical distance is always very close to the actual statistical distance,
and as such, it is more of a tool for bounding statistical distance than a measure of interest for its own sake.

11



1. Pryop[Fp(x) # z] < .
2. Vo eU: Supp(Fp(xz))NU C {x} and Supp(Fo(z)) NU C {z}.

Note that for any pair (Fp, Fg) € F and an event E over U, it holds that Prg[E] > Prp,q)[£],
and Prp,p)[E] > Prp[E] — a. Thus, if Prp[E] is high, a bound on D(Fp(P)||Fg(Q)) implies that
Prg[E] is high as well. Namely, large events in P happen with high probability also in Q.

Of course, it might be difficult to bound the KL-divergence for any such pair (Fp, F), since we
now must consider also the elements outside U. We leave further details on how to achieve such a
bound to the body of this work and steer our attention back to bounding the divergence between
Ideal and Real’. In the remainder of this discussion we allow ourselves to assume that some bad
events, as long as they occur with small probability under P, are irrelevant.

2.2.3 Bounding the Smooth KL-divergence Between Ideal and Real

We pick up from Equation (7)—where we derived a bound on the KL-divergence between the “Z-
part” of Ideal and that of Real’—with the difference that now we consider the smooth variant of
the KL-divergence:

1
k k
DA(2H1wl| 2 x,-a0) < Bxoge flog 1 5 0

The fact that we are bounding only the smooth KL-divergence essentially allows us to assume that
|A| < 1/2. Using that —log(1 + x) < —z + 22 for all —1/2 <z < 1/2,%% it holds that
D (ZM|w 2% x,=1,w) < Exnpy,, [—A + A7 (10)
= Exp,, [A7,

where we used that Eyx|, [A] = 0.

So, our goal is to bound Ex«/,, [A?] with some function of D(X*|y||X"). Specifically, we sketch
how to derive the following bound:

Exeyy [A4%] < T DX w1 XF) (11)

Before deriving the above inequality, let’s use it to show a contradiction. We do so by using the
chain rule for KL-divergence and moving back to Real (instead of Real’). Then, Equation (11)
implies that

m m 1
D(Ideal ) < — - D(ZFX™F || ZF xRy < — -] 12
(el | Real) < - D(ZAX™ | Z4X754) < 7 -log 5o (12)
Similar calculations to the ones in the public-coin setting (Equation (3)) show that
Pr[Succ(Real)] > Pr[W]™* > 1 —¢ (13)

where we used the assumption that Pr[WW] > (1—&)¥/™, and which yields a contradiction. The factor
of m difference in the exponent between this bound and the one in Equation (3) (i.e., Pr[W]"/*) is

15 A1l logarithms in this paper are natural logarithms.
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exactly the reason we must assume that Pr[W] > (1 —&)¥/™ (rather than (1 —&)* in the public-coin
case). This is the cause for the non-optimal exponent in our result (i.e., exponent of k/m rather
than k), which we also show is necessary (see Theorem 1.3).
We now proceed to derive Equation (11). In fact, we derive the following weaker bound:
2 m k k

Exe,, [47] < 7 (D(X*Iw][x*5) +1) (14)
Namely, we derive an additional additive loss of m/k, which is actually necessary.'® To bound
the effect of this loss, we assume for now that k > ¢ - m?/e for some large enough constant c; in
Section 2.2.5 we explain how to eliminate this assumption. When this loss is accumulated for every

1

round (when using the chain rule), the right-hand side of Equation (12) becomes 7' log pw] T € /c.

Such a bound still allows us to achieve exponential decay of (1 — s)Q(m/ k) albeit with a slightly
worse constant in the exponent.
To derive Equation (14), we use the following inequality, due to Donsker and Varadhan [DV83]:17

Ep[f(X)] < log Eqlexp(f(X))] + D(P[|Q) (15)

for any distributions P and @ with D(P||Q) < oo and any f with Eglexp(f(X))] < oco. An
immediate choice for deriving Equation (14) using the above inequality would be P = X*|y, and
Q = X*. For this choice to work, however, we must show that A has super-exponential moment
(i.e., E[exp(A?)] < co) under X*. Since this moment exists for well-concentrated random variables
(i.e., sub-Gaussian random variables), it suffices to argue that A is well-concentrated. We prove
this concentration under the (simpler) distribution Hle Xi|w, the product distribution of the
marginals of X*|y,. This suffices to derive Equation (14) since X* is a product distribution and
the chain rule for KL-divergence implies that

k
DX |w|X*) = D(X*w|| T] Xilw) (16)
i=1

So, we wish to show that A is concentrated under Hle Xi|w; equivalently, we argue that Y
under H?Zl Xi|w is concentrated. Since under Hle Xi|w the random variable Y = Zle Y is a
sum of independent random variables, we can use standard concentration bounds (e.g., Hoeffding’s
inequality) to show that A is concentrated. However, such bounds require the Y;’s to be bounded,
and if p; = Pr[X; = 1|W] is very small, then Y;, which is equal to 1/p; with probability p;, might
be huge. Here again we use the fact that we bound the smooth KL-divergence—we can show (see
Section 7 for details) that for most i’s, p; & 1/m. Thus, we can assume that the index i sampled
by the prover is not one of these “bad” indexes—for which p; % 1/m, and Y would be summed
only over non-bad indexes.

Actually, even after the concentration bounds are applied, large values of A are not sufficiently
concentrated. Specifically, those bounds show that A is a sub-exponential random variable, for
which the super-exponential moment might not exist (if A were sub-Gaussian, such a bound would
exist). It turns out that we can avoid the loss in concentration for large A using our assumption

5Tf Pr[W] = 1, it holds that D((X*|w)||X*) = 0, but the divergence D(X"|w||X*|x,=1,w) roughly equals m/k.
17"The original theorem by Donsker and Varadhan [DV83] (see Theorem A.2) is stronger; it states the following
variational characterization for KL-divergence: D(P||Q) = sup; Ep[f(X)] — log Eq[exp(f(X))].
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that |A| < 1/2 under X*|yr, and we indeed show that the super-exponential moment of A is
bounded; that is, EH",lXi\w lexp(A?/(m/k))||A] < 1/2] < e. This bound would also suffice to

establish Equation (14). We leave further details to the body of this paper.

2.2.4 Bounding the Smooth KL-Divergence Induced by Next Rounds

So far we have only focused on bounding the smooth KL-divergence between the Ideal and Real’
distributions induced by the first round of the protocol. In this part we explain how to extend the
first round analysis for the next (non-first) rounds. We bound the smooth KL-divergence between
the Ideal and Real’ distributions induced by next rounds by reducing it to the first round case, a
reduction that we believe to be of interest for amplification of arbitrary interactive arguments and
proofs.

The main challenge for analyzing the non-first rounds is that the distribution of I conditioned on
the previous rounds is not necessarily uniform.'® (Recall that I is the index of the real interaction
embedded as one of the k interactions). The uniformity of I was critical for our first round analysis
(for instance, in Equations (5) and (6)). When bounding the divergence induced by non-first
rounds, however, we do that conditioned on the previous rounds’ coins. This conditioning might
leak information about the value of I, making it non-uniform under the conditioning, and the
analysis becomes much more complicated.

One way to tackle the above is to assume that the distribution of I conditioned on previous
rounds is uniform, and pay the statistical distance per round between the uniform distribution and
the actual (conditioned) distribution of I. This approach was taken by Hastad et al. [Has+10]
and Haitner [Hail3], but the cost of moving to the uniform distribution in each round yields a
non-optimal bound.

Here we take a more holistic approach to perform the per-round analysis without assuming that
I is uniform. In particular, we prove the following fact on the distribution of I conditioned on the
previous rounds: with high probability over zFz™**F = (¥, x’f, . ,xfn) ~ Ideal, the following holds
for most i € [k]:

Vjelmli  Prye |[I=i| 28Xk, = k| e o(1/k) (17)

That is, in all rounds the distribution of I in Real’ under the conditioning is close (up to a constant
multiplicative factor) to being uniformly distributed over a very large set of indices. Note that
2Fx™*F is sampled according to Ideal, since we are bounding D(Ideal || Real’), in which the previous
rounds are sampled according to Ideal, where the conditioning of I is on Real'(ZkX ﬁj) = zk:c’zj,
since we care about the distribution of I in Real’ under the conditioning (note that I is not even
defined in Ideal).

The characterization given in Equation (17) is strong enough so that we can employ the strat-
egy we described for the first round in all other rounds. Hence, proving that it holds with high

probability over zFz™*F ~ Ideal, as we argue below, yields that the smooth KL-divergence between

BEor instance, let m = 2 and assume that if X3 1 = 1 then the adversary P*" fails unless Xi1,:=1V X2, =1 for
all i € [k] (i.e., P*" does not fail in this case only if all the k verifiers abort). Since the probability that all verifiers
abort in a uniform execution is much smaller than the assumed winning probability of P*", we expect the number
of ones in z¥ ~ Ideal; to be & k/2. On the other hand, a simple calculation yields that the expected number of
ones in z¥ ~ Real] |7=1 is ~ 2k/3. This means that for a typical ~ k/2 ones z} ~ Ideal;, the probability that I =1
conditioned on Real] = z¥ is tiny, much smaller than the 1 /k probability this event has with respect to a uniform I.
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Ideal and Real’ is small. The proof of Equation (17) is the main technical part of our paper. To a
large extent it is rather general, not limited to the proof system under consideration, and we hope
it will find applications in other parallel repetition theorems.

Proving Equation (17). We present a rather general approach for proving Equation (17) that
might be of use for other parallel repetition proofs. In particular, we prove the following fact.

Proposition 2.1 (informal). Let P be a distribution over an m-size tuple (Y1,...,Yy,) and let
{Eji}jeim)icik) be a set of (arbitrary) events over P. Let Q be the distribution defined by the
following process:

1. Sample uniformly I ~ [k].
2. For j =1 tom: sample yj ~ Yjly_,=y_; E, ;-

3. Output (Y1, .., Ym)-

. ] Pr [E-/ |Y =Y -/]
. N — T/ Pl it <y <j
Finally, let a],l(ygj) = Hjlzl BrplEr Ve =y yr] Then

e For alli € [k]: the sequence o = 1,a1(Y<1),...,ami(Y<m) is a martingale sequence with
respect to P (i.e., Epyjly<j li(Y<j))] = oj_1,i(Y<j) for all j € [m]).

o For alli € [k], j € [m] and y<; € Supp(Y<;): Prg[l =i | Y<; = y<j] = kaj’§y§g<_).
i/ =1 Y, \Y<j

By letting P = Ideal (and thus (Y1,...,Ym41) = (ZF, XF, ..., XF)|w), and letting E;; be the
event that X;; = 1, we get QQ = Real’. Proposition 2.1 characterizes the conditional distribution
of I in terms of {c;}. For this choice of P and {E;;}, we are able to prove that for most i’s the
martingale sequence g ;, @1, - . . , Qi is well concentrated around its mean (i.e., 1). It follows that
for most 4’s it holds that Prg[I =i | Y<; = y<;] =~ 1/k holds simultaneously for all j € [m], and
Equation (17) follows.'?

2.2.5 Small Number of Repetitions

Recall that the analysis above requires the number of repetitions, k, to be at least m?/e. In the
following we explain how to handle arbitrary numbers of repetitions by reducing the analysis to
a variant of the large number of repetitions case. The reduction is applicable to any “natural”
hardness amplification proof, and not only the one considered above.

Let k < m?/e, and let P*" be an adversary violating the noticeable (1 — &)¥/™ soundness error
of 7. Let £ = m?/(ck), and assume for simplicity that £ € N . Consider the “product” cheating
prover P** that attacks protocol 7*¢ by invoking ¢ independent copies of P**, one for each k
copies of 7 in 7. Tt is clear that P” breaks the soundness of 7% with probability greater than
(1 — ¢)® /™ This, however, does not immediately result in a contradiction to the large number of
repetitions case, since it might be that (1 —£)%*/™ is not noticeable (even if (1 —£)*/™ is), and our
result requires the success probability to be noticeable. In particular, what fails in the proof for

19 Actually, for proving Equation (17) we also need to show that for all j € [m)], > e @i is not too large (namely,
not more than ©(k)), where B is the (small) set of i’s that do have large jumps in their sequence ao;, a14, - . ., Cm,i-
We leave further details to the actual proof.
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not noticeable (1 —¢)%/™

time. Fortunately, we prove that for the specific product prover P** defined above, the rejection
sampling can be done efficiently: since P** invokes ¢ independent copies of P*", the rejection
sampling can be done independently for each copy. By assumption, the probability of breaking the
soundness of each copy, i.e., (1 — E)k/ ™ is noticeable. Thus, each of the ¢ sampling tasks can be
carried out in polynomial time, and thus the whole sampling process runs in polynomial time.

is that the rejection sampling in each round might not run in polynomial

3 Preliminaries

3.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. All logarithms considered here are natural logarithms (i.e., in base e). For a € R
and b > 0, let a = b stand for the interval [a — b, a + b]. Given sets Si,...,S and k-input function
filet f(S1,...,8k) = {f(z1,....,25): & € S;}, eg., f(1£0.1) ={f(z): z € [9,1.1]}. For n € N,
let [n] :={1,...,n} and (n) :={0,...,n}.

Let poly denote the set all polynomials, PPT denote for probabilistic polynomial time, and
PPTM denote a PPT algorithm (Turing machine). A function v: N — [0, 1] is negligible, denoted
v(n) = neg(n), if v(n) < 1/p(n) for every p € poly and large enough n. Function v is noticeable,
denoted v(n) > 1/poly(n), if exists p € poly such that v(n) > 1/p(n) for all n.

We denote by v™ = (v1,...,v,) a vector of length n and by v"™*" = (v,...,v) a matrix of
size m x n. We sometimes write 0" as the n-bit vector (0,...,0) (same for 1”). Given a binary
vector v" € {0,1}", we sometimes treat v" as a set and write 1 € v™ (meaning that v™ # 0™), and
define 1,n :={i € [n]: v; = 1}.

3.2 Distributions and Random Variables

A discrete random variable X over X is sometimes defined by its probability mass function (pmf)
Px (P is an arbitrary symbol). A conditional probability distribution is a function Py x(:|-) such
that for any € X, Py|x(-|z) is a pmf over J. The joint pmf Pxy can be written the product
Px Py|x, where (PxPy|x)(7,y) = Px(x)Pyx(y|lz) = Pxy(zy). The marginal pmf Py can be
written as the composition Py|y o Px, where (Py|x o Px)(y) = >_,cx Pyix(ylz)Px(z) = Py (y).
We denote by Px|[W] the probability that an event W over Px occurs, and given a set S C X we
define Px(S) = Px[X € S]. The support of a distribution P over a finite set X, denoted Supp(P),
is defined as {x € X' : P(x) > 0}. The statistical distance of two distributions P and @ over a finite
set X, denoted as SD(P,Q), is defined as maxscx|P(S) — Q(S)| = § X, cs|P(2) — Q(z)|.

Given a set S, let Us denote the uniform distribution over the elements of S, and for n € N
let Uy, := Uyp1y». We sometimes write z ~ S or x < §, meaning that z is uniformly drawn from
S. For p € [0,1], let Bern(p) be the Bernoulli distribution over {0, 1}, taking the value 1 with
probability p. For n € N and p € [0, 1], let Bin(n,p) be the binomial distribution induces by the
sum of n independent random variables, each is distributed according to Bern(p). Given a boolean
statement S (e.g., X > 5), let 1{S} be the indicator function that outputs 1 if S is a true statement
and 0 otherwise.

We use the following fact.
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Claim 3.1. Let Pxyz be a probability distribution over X x Y x {0,1} such that Pzx =
Bern(Py x[f(Y) = 1]), for some boolean function f:Y — {0,1}. Then Px|z—1 = Px|fy)=1-

Namely, Z = 1 implies that X is distributed as X|f(Y) = 1.20

Proof. Fix z € X and compute

Px(z

— _ Px(x)
= Py|x=[f(Y)=1]- m
- x o Px(@)
- yey%%y)zl Brix(lo) Pyf(Y)=1]
_ AW, .
" ey Pl =1 P
- Z Py rovy=1(y) - Pxy (zly)

yeY: f(y)=1

=Epy ;021 [Pxy ()]

= Px|pv)(z]1)

3.2.1 KL-Divergence

Definition 3.2. The divergence (a.k.a. Kullback-Leibler divergence or relative entropy) between
two distributions P,Q on a discrete alphabet X is

P(x) P(x)
Q(x)

Qx)’

D(P||Q) = ) P(x)log

reX

=E;wp lOg

where 0 -log 3 =0 and if there exists x € X such that P(z) > 0 = Q(z) then D(P||Q) = oo.
Definition 3.3. For any p,q € [0, 1] we define D(pl||q) := D(Bern(p)|| Bern(q)).

Definition 3.4. Let Pxy and Qxy be two probability distributions over X x ). The conditional
divergence between Py x and Qy|x is

D(Pyx||Qy|x|Px) = Banpy [D(Py|x—ol|Qy x=2)] = Y Px(2)D(Py|x—sl|Qy|x=z)-
rzeX

Fact 3.5 (Properties of divergence). Pxy and Qxy be two probability distributions over X x ).
It holds that:

1. (Information inequality) D(Px||Qx) > 0, with equality holds iff Px = Qx.

2ONote that Z is distributed as f(Y") but is not necessarily equal to f(Y) (i.e., it might be possible to draw X,Y, Z
such that Z # f(Y)). Yet, the distributions X|Z =1 and X|f(Y) = 1 are equal.
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2. (Monotonicity) D(Pxy||Qxy) > D(Py||Qy).
3. (Chain rule)

n
D(Px,.x,|1Qx,.-x,) = > D(Px,x_,||Qx, x| Px_,).
=1

I Qx,x, = [T, Qx, then

n
D(Px,..x,||@x,--x,) = D(Px,..x,||Px, Px, - -+ Px,) + Y _ D(Px,||Qx,).
=1

4. (Conditioning increases divergence) If Qy = Qy|x o Px (and Py = Py|x o Px), then
D(Py||Qy) < D(Py|x||Qy|x|Px)-
5. (Data-processing) If Qy = Py|x o Qx (and Py = Py|x o Px), it holds that
D(Py[|Qy) < D(Px||@x).

Fact 3.6. Let X be random variable drawn from P and let W be an event defined over P. It holds
that

1
D(P Px) <1
( X|WH X) = log PIW]

Fact 3.7. Let X,Y be random wvariables drawn from either P or Q) and let W be an event defined
over P. It holds that

1

Eon Py D(Py|x=2||Qy|x=2) < P - D(Pyx||Qy x| Px)-
Proof.
Ezn Py D(Py|x=2||Qy|x=2) = Z Pxjw (2)D(Py | x=2||Qy|x=z)
=z, W
= Z }D(PY|X:1HQY|X:$)
PX( )
> . P[W] D(PY|X:JJ||QY|X:CC)
1
=P D(Pyx||Qy|x||Px),
where the inequality follows since P[X = z, W] < Px(x) and D(-||-) > 0. O

Fact 3.8. Let X be a random wvariable over X drawn form either Px or Qx and let S C X. It
holds that

D(Pxixesl@x) < 5y (DPxll@x) + 1 +1).
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Proof. If D(Px||Qx) = oo, then the statement holds trivially. Assume that D(Px||Qx) < oo and
compute

P
P(Prixesl@x) = 32 Prixes(e) s e
Px(z) Px(z)/Px(S)
= 1
278 ™ ax)
B Px(x) x () Px(x
2 () ) 2 Pe(s) Q)
To bound the left sum, compute
x () Px () 1
2 () B P 2 Pe(s) Px(®
1
< Pr(S)’
where the first inequality follows since log(z) < z for all z.
To bound the right sum, compute
Px(z), Px(z) _ X(l’) Px(z) Px(z)

1 x ()
= (P Px(x)lo .
PX(8)< (Px[|@x) Z x ( gQX(x)>
The following calculation completes the proof:

> Px(@)! L =3 Qul@) X 1o PX(m))

ryd Qx(z) 2= Qx(z) 7 Qx(z
>3 Qx(a)(—e!
x¢S
Z _6_15
where the first inequlity holds since x log(x) > —e~! for all x > 0. O

Fact 3.9 ([Mul, Implicit in Corollary 3.2 to 3.4]). For any p € [0,1] it holds that
1. D((1 = 68)p|lp) > £6%p for any § € [0,1].
2. D((1+6&)pllp) > 1 min{s,6%}p for any § € [0, % —1J.

The proof of the following proposition is given in Appendix A.1.
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Proposition 3.10. Let X be a random variable drawn form either P or Q). Assume that Prp[|X| <
1] =1 (i.e., if X is drawn from P then |X| < 1 almost surely) and that there exist £, 0%, K1, K3 > 0
such that Prg[|X| <1] >1—¢ and

2
Pro[|X| >t < Ks - exp<—K102> for all 0 <t < 1.

Then, there exists K3 = K3(K1, Ka,¢) > 0 such that

Ep[X?] < K3-0*- (D(P||Q) + 1).

Smooth KL-divergence. We put forth the following definition of smooth KL-divergence.

Definition 3.11 (a-smooth divergence). Let P and Q be two distributions over a universe U
and let o« € [0,1]. The a-smooth divergence of P and Q, denoted D*(P||Q), is defined as
inf (py ko) e FAD(Fp(P)||[Fo(Q))}, for F being the set of randomized functions pairs such that for
every (Fp, Fg) € F:

1. Pryp[Fp(x) # x] < a, where the probability is also over the coins of Fp.
2. Vx € U: Supp(Fp(z)) NU C {z} and Supp(Fg(z)) NU C {x}.
As any useful measure, smooth KL-divergence has data-processing properties.

Proposition 3.12 (Data processing of smooth KL-divergence). Let P and Q be two distributions
over a finite universe U, let a € [0,1] and let H be a randomized function over U with finite range.

Then D(H(P)||H(Q)) < D*(P||Q).
Proof. Let (Fp, Fg) be a pair of functions such that
L. Prgop[Fp(z) # 2] < a, and
2. Vz € U: Supp(Fp(z)) NU C {z} and Supp(Fg(x)) NU C {x}.
We assume without loss of generality that for both T € {P, Q}:
Vo €U : Supp(Fr(x)) N Supp(H (z)) < {z}. (18)

Indeed, since Fr(z) # = implies Fr(x) ¢ U, one can add a fixed prefix to the value of Fr(z)
when Fp(z) # x (same prefix for both T' € {P,Q}) such that Equation (18) holds (recall that
Supp(H (U)) is finite). Such a change neither effect the properties of Fp and Fy stated above, nor
the value of D(Fp(P)||Fo(Q)).

For T € {P,Q}, let Gr(y) be the randomized function defined by the following processes:

a. Sample z ~ T'x|f(x)=y-
b. Sample z ~ Fr(x).

c. If z =z, output y.
Else, output z.
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By construction and Equation (18), for both T' € {P, Q}:

Vy € H(U) : Supp(Gr(y)) N HU) < {y}- (19)

Let Yr = H(T) and let X7 be the value of z in a random execution of Gr(Yr). It is clear that
X7 ~T. We note that

Pr[Gp(Yp) # Yp| = Pr[Fp(Xp) # Xp] (20)
= Pro~p[Fp(z) # 2|
< a.

The inequality is by the assumption about Fp.
Consider the randomized function K(z) that outputs H(z) if z € U, and otherwise outputs z.
It holds that

Pr(K (Fr(T)) = 2] = Pr[Fp(T) € U] - P{H(Fp(T)) = 2| Fr(T) € U]
+ Pr[Fr(T) ¢ U] - Pr[Fr(T) = z|Fp(T) ¢ U]
— Pr[Pp(T) = T) - Pr[H(T) = 2| Fy(T) = T

+ Pr[Fr(T) # T) - P{FR(T) = 2| Fp(T) £ T),

where the second inequality follows from the second property of (Fp, Fg); namely, Frr(T) € U <=
Fr(T)=T. Similarly,

Pr(Gr(H(T)) = 2] = Pr[Fr(Xr) = Xr] - Pr[H(X7) = 2| Fr(X7) = X1
+ Pr[Fr(Xr) = Xr] - Pr[Fr(Xr) = 2|Fr(Xr) # Xr].
= Pr[Fp(T) =T] - Pr[H(T) = 2|Fr(T) =T
+Pr[FPr(T) #T) - Pr[Pr(T) = 2|Fr(T) # TJ,

where the second inequality holds since X7 ~ T. Hence, we have Gr(H(T)) = K(Fr(T)). Thus,
the data-processing inequality for (standard) KIL-divergence implies that

D(Fp(P)[|Fo(Q)) = D(K(Fp(P))||[K(Fo(Q))) (21)
= D(Gp(H(P))||Go(H(Q)))-
The proof then follows by Properties (19), (20), (21) of Gp and Gg. O

The following fact states that small smooth KL-divergence guarantees that large events with
respect to the left-hand distribution happen with high probability also with respect to the right-
hand distribution.

Proposition 3.13. Let P and Q be two distributions over a universe U. Assume that
1. Pryoplz ¢ 8] < B and
+8
2. DY(P||Q) < °£2.

for some S CU and o, 5 € [0,1]. Then Pryglz ¢ S] < 2(a+ B).
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Proof. Assume that a4+ < %, since otherwise the proof trivially holds. By the second assumption,
there exist randomized function Fp, Fy satisfying

a. D(Fp(P)||Fo(Q)) < “42 and

b. Pryp[Fp(z) # x] < a and

c. Yo € U: Supp(Fp(z)) NU,Supp(Fo(z)) NU C {z}.

By Property a of Fp, Fp along with Fact 3.5(5) (data-processing), it holds that

D({FH(P) ¢ S)[1{Fa(Q) ¢ }) < 17

Observe that by Property b and Property ¢ of Fp, and by the assumption that Pr,.p[z ¢ S] < S,
it holds that

(22)

Pryp[Fp(z) ¢ S] < Pryp[Fp(x) # z] + Prpplzr ¢ S| < a+ (23)

Assume towards a contradiction that Pr,.q[Fg(z) ¢ S] > 2(a + ). Then by Equations (22)
and (23) it holds that
a+p

D(a+ Bl2(e+ §)) = D(L{Fp(P) ¢ SHIL{FQ(Q) ¢ S}) < ——,

in contradiction to the fact that D(a + B[|2(a+ 8)) > 22 (follows by Fact 3.9). Hence, we
conclude that

Pryglr ¢ S] < Prypg[Fo(z) ¢ S] < 2(a+ B),
as required, where the first inequality follows by Property c of F{. O

3.3 Some Concentration Bounds

3.3.1 Sum of Independent Random Variables

Fact 3.14 (Hoeffding’s inequality). Let X = Xi + --- + X,, be the sum of independent random
variables such that X; € [a;,b;]. Then for allt > 0:

1. PriX —E[X] > 1] < exp(—%).
2. Prl|X — E[X]| > 1] < 2exp(— s 2y ).

Fact 3.15 ([CO13, Theorem 5.3]). Let X ~ Bin(n,p), then for all t > 0:

1. Pr[X > E[X]|+1] < exp(—z(n;ié))

2. Pr[X <E[X] -] < exp(—%).

Fact 3.16 ([CL02, Lemma 2.1]). Let Xi,...,X,, be independent random variables such that X; ~
Bern(p;). For X = Y"1 | b;X; with b; > 0 we have E[X] = Y7, bip; and we define v="> 1, b?p;.
Then for allt > 0:
2
Pr|| X —E|X]| >t <2 —_—
{1~ B 2 ] < 2000~ 5L )
for b =max{by,ba,...,by}.
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3.3.2 Martingales

Fact 3.17 ([Dasll, Theorem 14.9]). Let X1,...,X,, be a martingale sequence with Xo = 0 and
E[XZQ] < oo for alli > 1. Then, for every A > 0, it holds that

p[ |X|>A]<E[D%J
r|max|X;| > < ,
i€[n] A2

fO?" D?L = Z?:l(XZ — X¢,1)2.

3.4 Smooth Sampling

Let X™ = (X1,...,X,,) be a random variable over Y™, and let S C U™ be with Pr[X™ € §] =¢.
For j € [m] and 27 € U7, let v(z7) = Pr[X™ € §|X7 = 27], where X’ = (Xy,...,X;). Consider
the following strategy for the task of choosing (z1,...,2m,) € S in rounds, where the value of z;
should be chosen in the j’th round:

Algorithm 3.18 (Sam). For j =1 to m do:
1. Do until a break occur:

(a) Sample (z},...,2},)  (X™XI7 = (21,...,3j-1)).

rYm

(b) Break the loop if (x},...,x],) €S

2. Setx; = 1:;

Output (z1,...,Tm).
It is clear that Sam outputs (z1,...,x,) € S with probability one. We use the following
observation from [Hail3] (implicit in [Has+10]):

Fact 3.19 ([Hail3, Proposition 2.5]). By, s} sam| 5

Ty | = Ve

3.5 Interactive Arguments

Definition 3.20 (Interactive arguments). A PPT protocol (P,V) is an interactive argument for
language L. € NP with completeness a and soundness error 3, if the following holds:

e Pr[(P(w),V)(z) =1] > a(|z]) for any (z,w) € Ry,.

o Pr[(P*,V)(x) = 1] < B(|z|) for any PPT P* and large enough = ¢ L.
We refer to party P as the prover, and to V as the verifier.

Soundness against non-uniform provers is analogously defined, and all the results in this paper
readily extend to this model.

Since in our analysis we only care about soundness amplification, in the following we fix L to be
the empty language, and assume the input to the protocol is just a string of ones, which we refer
to as the security parameter.
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Random-terminating variant.

Definition 3.21 (Random-terminating variant, Haitner [Hail3]). Let V be a randomized interactive
algorithm, and let § € [0,1]. The d-random-terminating variant of V, denoted \7, is defined as
follows: algorithm V acts exactly as V does, but adds the following step at the beginning of each
communication round and right after the final interaction round: it tosses an (1 —0,0) biased coin
(i.e., 1 is tossed with probability ¢ ), if the outcome is one then it outputs 1 (i.e., accept) and halts.
Otheruwise, it continues as V would.?!

Parallel repetition.

Definition 3.22 (Parallel repetition). Let (P,V) be an interactive protocol, and let k € N. We
define the k-parallel-repetition of (P, V) to be the protocol (P*, V¥ in which P* and V¥ execute k
copies of (P, V) in parallel, and at the end of the execution, VE accepts if all copies accept.

4 The Parallel Repetition Theorem

In this section, we restate Theorem 1.1 and prove it using Lemma 4.9, our main technical lemma.
The proof of Lemma 4.9 appears in Section 5, using facts proven in Sections 6 and 7.

Theorem 4.1 (Restatement of Theorem 1.1). Let m = (P, V) be an m-round interactive argument
with soundness error 1 — ¢, for m = m(n) € [2,poly(n)] and ¢ = e(n) € [1/poly(n),1/2]. Let V
be the 1/m-random-terminating variant of V (according to Definition 3.21), and for k = k(n) <

poly(n), let 7 = (Pk,\N/k) be the k-parallel repetition of T = (P,\N/) (according to Definition 3.22).

k/cm

Then, 7% has soundness error max{(1 — ¢) ,neg(n)} for some universal constant ¢ > 0.

The rest of this section is dedicated to proving Theorem 4.1. We begin with setting the stage
for stating Lemma 4.9 by describing our reduction and providing relevant definitions.

Let m = (P, V), m,e and k be as in the statement of Theorem 4.1, and assume that there exists
a PPT cheating prover P¥" and p € poly such that for infinity many n’s,

Pr[(PF,V)(1") = 1] > max{(1 — )77, 1/p(n)}, (24)

where ¢ > 0 is a constant to be determined by the analysis. We assume for simplicity that P** is
deterministic, the reduction for randomized P** is done via standard means.

The following discussion is with respect to a fixed n € N. Assume without loss of generality
that V chooses the whole randomness of V before the interaction begins. Thus, in the beginning
of each round j € [m], v only chooses the random-terminating bit of that round, and at the end
of the interaction it chooses the (m + 1)’th coin. Let £ = ¢(n) € N be a (polynomial) bound on the
number of random bits used by V in 7(1"). Hence, a partial view of V' in (P*”, \N/k) is of the form
view = (2, 2k, ... ,x?), where zF = (z1,...,2;) € {0,1}** are the coins of the original V’s, and
x;‘f’, = (zj1,..., x5 1) € {0, 1}*, for j/ € [j], are the random-terminating coins of all V’s in round
§'. If the i V aborts before round j', we set xj; = 0.

2!This definition is slightly different than the one appearing in [[ail3] where A flips a coin at the end of each
communication round (rather than at the beginning of it). Since the coin flipped at the end of round j can be seen
as it were flipped at the beginning of round j + 1, then up to the first coin used in our variant, both definitions are
equivalent. This additional coin is merely used for notation simplification.
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Figure 1: A matri tation of a view. Gi full view (2%, 2% k) € {0, 1}klHkmED)
g : atrix representation of a view. Given a full view (2%, 27, ..., 2, , ,
we sometimes write the vectors (zf,...,2% ) as an (m+1) x k—size binary matrix zMFTDXE whose
7™ row is x?, and look at z¥ = (z1,...,2;) as the “zero-row” (or “zero-round”) coins of the verifiers.

We use j € [m + 1] as a row index which represents the round number, and we use ¢ € [k] as a
column index which represents the verifier’s index in the k-fold execution. By the above, z;; € {0,1}
represents the value of the random terminating coin taken by the i*" verifier at the beginning of
the j* round, and z; € {0, 1}2 represents the zero-round coins of the i*" verifier.

Notation 4.2 (The set W of all accepting views). Let W be the set of all accepting (full) views
ok p(m+1)xk c {07 1}kl+k(m+1).

That is, W is the joint random coins of all V’s that makes all of them to accept in an execution

~k
of (P¥",V"). We assume without loss of generality that W is termination consistent:

Definition 4.3. A set S C {0, 1}*++m+D s called termination consistent, if {zFz(m+1)xk ¢
{0, 1}F6HRHD g (K] 3j € [m+ 1] s.t. x5, =1} C S.

Namely, any view in which all verifiers accept and abort prematurely is (in particular) an
accepting view.

We use the multiple-instance prover P** to construct a single-instance one P* that convinces
V to accept with probability greater than 1 — e. Algorithm P* selects at the beginning a session

~k
i € [k] uniformly at random, and emulates a random accepting execution of (P¥*, V"), where V
~k
plays the role of the i*! verifier in V. Before the interaction with V begins, P* selects z_; using

~k
rejection sampling: it repeatedly samples a random continuation of (Pk*,V ), conditioned on the
event that z1,;, = 1 (i.e., the it verifier accepts and aborts at the first round) until it finds an

accepting continuation (i.e., \N/k accepts at the end of interaction). Then, P* sets the random coins
z_; according to the corresponding random coins in the accepting continuation. Upon receiving
V’s ™ message aj;, algorithm P* selects the 4™ round random-terminating coins x;,—; of the other
verifiers, using a similar rejection sampling process: it repeatedly samples a random continuation

~k
of (Pk*, V") conditioned on the history (i.e., the previous i*® verifier's messages a<;; and the fixed

randomness of the other verifiers z_;, ; ;) and conditioned on the event that 11, =1 (i.e., the
ith verifier accepts and aborts at round j + 1) until it finds an accepting continuation. Then, P*
sets the j*™ round random coins xj—; according to the corresponding 4* round randomness of the
accepting continuation, computes the ;'™ round messages bé? = (bj1,...,bj) of P and sends to
V the message b; ;.

At the formal description of P* given below, it is assumed that at the beginning V sends to P*
all its random coins, rather than sending a message a;; in each round j. Hence, P* does not need
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to wait for V’s messages to arrive, and is only required to send m messages to V. This is merely
done for presentation clarity, and the validity of this assumption is explained below.??

Algorithm 4.4 (P*).
Input: 1™. (In the the following, k,¢, m,e,p are all functions of n)

Operation:

~

. Sample i + [k].

2. Receive the random coins z € {0,1}¢ from V.

3. Let 2% = (z1,...,2r) = GetZeroRoundCoins(i, 2).
4. Set view = zF.

5. For 3 =1 tom do:

(a) Let x? = (zj1,...,2j%) = GetNextRoundCoins(view, 7).

(b) Set view = (View,m?).

* ’Vk
(c) Send bj; back to V, where b? = (bj1,...,b;jk) are the messages that PF" sends to V' in
the 7™ round of view.

Algorithm 4.5 (GetZeroRoundCoins).
Input: an index i € [k] and a string z € {0,1}¢.

Operation:

1. Do the following to = [8 - p/e]| times:

~k ~k
a) Sample view' = (2F, 2%, ... zF as V' ’s view in a random execution of (PF*, V'),
1 m—+1
conditioned on z; = z and x1; = 1.
(b) If view € W, return 2% = (z1,...,2).
2. Abort the execution.
Algorithm 4.6 (GetNextRoundCoins).
~k
Input: a (partial) view of V. — view and an index i € [k].
Operation:
1. Set j = round(view) + 1.
2. Do the following t = {200 . m2p/621 times:
~k ~k
a) Sample view' = (2%, 2%, ..., x as s view in a random ezecution o , ,
Sample view’ koah k1) as V' s view i d ti PV
conditioned on (2F,x%, ... ,x;tl) = view and zj41,; = 1.

22As mentioned in Section 2.2, similar description is also used in [Hail3], and the validity follows by similar
arguments.
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(b) If view € W, return a:;‘“' = (zj1,-,Tjk)
3. Abort the execution.

It is clear that P*’s running time is polynomial in n. We should also make sure that P* can
indeed be executed without receiving V’s random coins at Step 2. Note that at the j* round, both

GetZeroRoundCoins and GetNextRoundCoins choose view’ conditioned on the event that V, the

~k
ith verifier of V', aborts at round j + 1 (where j = 0 in case GetZeroRoundCoins is called). Under

this conditioning, P** only sees the verifier's messages till the j* round. It follows that the test
view’ € W done in both procedures, can be replaced with following one: let ¢ be the full transcript
defined by the messages the emulated verifiers (i.e., indexed different from 7) on randomness view’,
and those of the i'" (real) verifier sent in the first j rounds. In such a transcript, the " verifier
has only j7 messages and it aborts and accepts in round j+ 1. The test is verifying that all verifiers
accept in t. Indeed, this test only uses the messages the i*? verifier sent till the j** round, and the
randomness of the emulated verifiers.

So it is left to analyze the success (cheating) probability of P*. As describe in Section 2, the anal-
ysis of P*’s success probability is done by relating the distribution induced by a random execution
of (P*, V), which we refer to as the Real distribution, to idealized variants of this distribution.

In the following let GetZerdeoins and GetNext/figljndCoins be the unbounded variants
of these algorithms, respectively — the loop in both procedures runs until a good value of view’ is
found (i.e., view’ € W). Observe that both procedures are guaranteed to halt since by assumption
W is termination consistent (Definition 4.3).

The Real and Ideal distributions. Distribution Real over {0, 1}5+k(m+1) is defined by the
value of (Z%, XF, ... ,an +1) induced by the following process: let View be the value of view at

~k
the end of a random execution of (P*, V), and let (Z¥, XF,.... Xk ) be Vs view in a random
~k
execution of (P¥*, V") conditioned on (1) (2% XF ..., XE) = View, (2) X,ni1; = 0 and (3)
(zF, xF,...,XE. ) € W. If under first two conditions Pr[(Z*, XF,...,XE ) e W] = 0, set
(ZF, XF, ..., Xk ) = (View, 0%).
~k
That is, Real is the view of the emulated execution of (Pk*, V') induced by a random execution
~k
of (P*,V), while adding an imaginary step at the end of the interaction for choosing the coins V
use in its final m + 1 round. Note that by construction, the m + 1 random-terminating bits of the
ith verifier in Real are all set to zero since in each round j € [m] we choose X ]k conditioned on
Xj+1,, = 1 (which implies that X;; = 0) and also X;,+1,; is always set to 0. Therefore, the coins of

the i*" verifier in Real reflects those of a random-terminating verifier V that uses the random bits
of V in a random execution of (P*,V), and never aborts. It follows that

Pr[(P*, V) = 1] > Pr[Real € W] (25)

We also use the distribution ﬁégl, defined analogously to Real but with GetZeroRoundCoins

and GetNextRoundCoins taking the role of GetZeroRoundCoins and GetNextRoundCoins in the

definition P*, respectively. The distribution Ideal is defined as P¥™’s view in a random accepting
~k
execution of (P**,V").

As mentioned in Section 2, for the attack of P* to go through, we not only need to get an
accepting view with high probability over Real, but also need that the index in which P* embeds
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the real verifier (i.e., i) takes a “good value”. We do that by bounding the smooth KL-divergence

(Definition 3.11) between extensions of Ideal and Real that incorporate this information.

__To present our main lemma, we introduce a different formulation of the distributions Ideal and

Real discussed above.

Definition 4.7 (The distributions R and P, and the event W). For k,m,¢ € N and W C

{0, 1}* 5 {0, 1}m 0k define R = Ry ymsnyxr = RzeRxmsnxe by Rpr = [1i=y Rz,, Rz, = Up,

Bern(0 1e Xej;
ern(0) < <P Let W be the event

Bern(1/m) o.w.

over R that ZFX(M+DXE c W and let P = Pyi x(msvyxr = Ry xtmany <k -

k
Rx(m+l)><k - lel RXl,iXQ,'L"'Xm+1,if (Ind RX] Z|)<‘<] i =

It is easy to verify that P and Ideal are the same distribution with respect to the values k, m, ¢
and the set W described in this section. Indeed, R,k (m+1)xr denotes the distribution of the

~k
random coins of all k verifiers in V. Note that for each i € [£], the random coins Z; of the internal
verifier V in V; are chosen uniformly over {0,1}¢, and for each round j € [m + 1], the random
terminating coin Xj; is chosen according to the Bernoulli distribution with parameter 1/m if all
previous coins Xi,...,X;j_1; are equal to zero (otherwise, X;; is set to zero). Given a full view
ZF X (mA1)xk the event W denotes whether it is an accepting view (i.e., Zk X (m+1)xk o W). By
* "’k)
definition, R[W] = Pr|(PF*, V") = 1} > max{(1 — )%™ 1/p}.
Similarly, we reformulate the (unbounded) real distribution Real as follows:

Definition 4.8 (The distribution Q). For k,m,¢ € N and for a termination consistent set VW C
{071}k’l+k(m+1 (according to Definition 4.5), define Q@ = Qp zkxminxk = QIQzrxm+1yxkp by

©r = U, Qamr = Rz Pypiz0x,=1, QXk‘IZka - PXk\ZkX<g:X'+1,I:1’ and QXJ%H\IZ’fXEm -
k
PXm+1‘ZkXSm1Xm+1,1:U [W‘Z XgmaXm—&-l,I = 0] >0
Ok 0.W.

It is easy to verify that indeed @ 4k y(m+1)xx and Real are the same distribution (with respect to
the values of k, m, £,V described in this section). In particular, Pr [Real € W} = Qk xmr1)xk(W).

Indeed, @ describes the following random process: First choose a uniform I € [k] (as done in
Step 1 of P*), then choose the uniform random coins Z; € {0,1}* (as done in Step 2 of P*), and
then choose Z_; and all {Xj _r}jcim+1) as done in P*. By definition, for all j € [m] it holds that
Xjt1,1 =1 = Xj; = 0. In addition, it always holds that X,,;1,; = 0. Therefore, we always get
that Qx, ;. xy .. X1 | = 0™+1, which perfectly simulates V as the i’th verifier since it behaves
as V conditioned on all random terminating coins to be zero.

The following lemma, proved in Section 5, is the center of our analysis of P*’s success probability.

Lemma 4.9 (Main lemma). Let k,m,f € N, let ¢ € (0,1/2], let W C {0, 1}F+Fm+1D) pe g
termination-consistent set (according to Definition 4.3) and let W, R, P and Q, be the event
and distributions from Definitions 4.7 and /.8 with respect to W,m,k,{. Assume k > X -m?/e

and RW] > (1 —¢) xm for _some universal constant A > 0. Then there exist distributions

P szx(m+1)><k B and Q QI Zk X (m+1)k B, with PZ’CX("L‘H)X’“ = P and QI Zk X (m+1)xk = Q such
that the followmg holds:
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2. Pg(1) > 1—¢/24.
3. V(’L.,ka(m—‘rl)Xk) S Supp(@17zkx(m+1)xk‘B:1)f

(a) RIW|Z; = zi, X1, = 1] > R[W]/2.
(b) Vj € [m+1]: RIW|ZFXE = 2zt

b Xjyi =11 > RIW|ZFXE, = 2Fak /2.

<

That is, Lemma 4.9 states the following with respect to the exztensions P and Q of P and Q:
First, the smooth KL-divergence between the distribution P and (a projection of) Q (without the
I) is small. Second, the extension bit B is one with high probability over P and that conditioned

on this bit to be “on” in Q, the (unbounded) attack done in Real (as reflected in @) actually runs
in polynomial time.
The following is an immediate corollary of Lemma 4.9.

Corollary 4.10. Let a,k,m,VV,P,Q,ﬁ,@,)\ be as in Lemma /.9, and assume that k > c-m?/e
and RIW] > (1 —¢)em for ¢ =128 - X. Then D3 (P||Q i xomenyxs 5) < £/32.

Proof. Since R[W] > (1 —¢) s > (1-— 5)%, we can apply Lemma 4.9 (1) to obtain that

e o~ o~ Am 1
Dﬂ(PHsz,X(erl)xk’B) < —- lOgik +m (26)
k (1—¢)em
m < )
< — 26— 4+ m
k cm
A Am?
= 2 —_ _—
+ i
<&
32°

The first inequality holds since R[W] > (1 — 5)£, the second one holds since 1 — & > e~2¢ for
e €]0,1/2] and the last one holds since k > 128\ - m? /e and since ¢ = 128)\. O

In the next section we use Lemma 4.9 for proving the main theorem, while assuming—Ilike
Lemma 4.9 does—that the number of repetitions is sufficiently large (i.e., k& > ¢ - m?/e for the
universal constant ¢ of Corollary 4.10). In Section 4.2 we prove the main theorem for the case that
k < c-m?/e, via a reduction to the large k case.

4.1 Proving Theorem 4.1 for Large Number of Repetitions

Assume k > c¢-m?/e (for the constant ¢ of Corollary 4.10). We start by proving the following
simple claim, which states that in P, all the values { R[W|Z¥X ﬁj]}je[m] are large enough with high
probability.

Claim 4.11. Let 8§ = {zFa(mTDxk ¢ {0, 1}k i € [m]. RIW|(ZFXE)) = 2Fah ] > ¢

Proof. By Fact 3.19, it holds that Ep , , { for every j € [m]. Thus, the proof
<j

1 _ 1
R[W|ZkX§j]] ~ R[W]
follows by Markov inequality and union bound. ([l
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At this point, we proved that P and @ are close enough by smooth divergence (Lemma 4.9(1)),
and we proved that in P all the values {R[W|Z*X% ;1172 are large enough with high probability
(Claim 4.11). In addition, note that by definition P always produces Z*X (m+1xk c W Therefore,
we can deduce by Proposition 3.13 that in @ we also have ZFX(m+1)xk ¢ )W and large enough
values of {R[W|ZFX ﬁ ;1}7L, with high probability. Using Items 2 and 3 of Lemma 4.9, we actually
can deduce that the above is true even for the values {R[W|ZkXﬁj, Xjt1,r = 1]}72;. The formal
result of the above informal plan is state in the following corollary.

Corollary 4.12. Assume that R[W] > (1 — s)c-km, where ¢ is the constant from Corollary /.10,
and let

T = {(i’zk$(m+1)><k) € [kj] « {0, 1}k€+k(m+1): <ka(m+1)><k c W),
(R[W’ZZ = Zile,i = 1] > R[W]/Q),
<Vj € [m]. RIW|(Z¥X%,) = 2Fak Xy, =1] > - R[W]/48m)}
Th@n QszX(erl)xk(T) > 1-— 5/4

Proof. In the following, let S be the set from Claim 4.11 and let

~

S=WnS) x {1} (27)
Note that by Claim 4.11 and Lemma 4.9(2,3) and by the fact that P(W) = 1, it holds that
P(8) > 1—¢/12. (28)
In addition, by Corollary 4.10 it holds that
D31(P||Q g xtmenyk p) < £/32 (29)

Therefore, we can apply Proposition 3.13 on P and @ with a = 5, 8 = 15 and the set S to
obtain that

@ZkX(mJ,-l)xk’B(g) > 1—6/4, (30)

and we conclude that

QT) = @I,ka(mﬂ)xk (7)

> QZkX('n’H—l)Xk’B(S)
>1—¢/4,
as required, where the first inequality holds since Lemma 4.9(3) yields that for any zFz(m+Dxk ¢

WNS and any ¢ € Supp(QlekX(mJ,-l)xk)zzkx(m+1)><k7B:1) we have (i, 2Fz(m*TDxk) ¢ T,
]

The proof of Theorem 4.1 in the case k > ¢-m?/e, given below, follows Corollary 4.12.
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Proof of Theorem /.1 for k> c-m?/e. Let (P,V),m = m(n),e = ¢(n),k = k(n) be as in the
statement of Theorem 4.1 and assume towards a contradiction the existence of a polynomial-time
adversarial prover P*" and a polynomial p such that Equation (24) holds for infinity many n’s,
where ¢ (the constant from the theorem statement) is set to the constant ¢ of Corollary 4.12. In the
following, fix such value of n and assume that k > c-m?/e. Let W be the set of all accepting (full)
views (see Notation 4.2), let P* be the adversarial prover described in Algorithm 4.4, let Real, Real
and Ideal be the distributions induced by Algorithm 4.4, and let P and @ be distributions from
Definitions 4.7 and 4.8, respectively.

In the following, let 7" be the set from Corollary 4.12 and let 7" be the event over Q; k y(m+1)xk

that (I, ZFX(m+Dxk) ¢ T By Corollary 4.12,
QT >1—¢/4 (31)

Since R[W] > 1/p, Equation (31) yields that with probability 1 — /4 over (i, zFz(m+D>F) ~ Q
(i.e., according to Real with I), the event T" happens, yielding that 1/R[W|Z; = z;, X1, = 1] < 2p

and {1/R[W\ZkX§j = zkxij,XjH,i = 1]}j¢[m) are all at most 48mp/e. In particular, conditioned

on T, the expected number of sampling attempts in GetNextRoundCoins for each round j €
[m] (which equals to 1/R[W|(ZkXﬁj) = zkx’ij,XjHJ- = 1]) is at most 48mp/e. Therefore, by
Markov inequality and a union bound, conditioned on 7', with probability less than £/4 over a

random execution of Algorithm 4.4 (with GetZeroRoundCoins and GetNextRoundCoins), there
exists j € [m] such that the j** call to GetNextRoundCoins fails to find accepting continuation
after ¢t (= {200 -m?p/ EQD sampling attempts. In addition, conditioned on 7', the expected number

of sampling attempts in GetZeroRoundCoins is 1/RW|Z; = 2z, X1, = 1] < 2p. Therefore, by

P

Markov inequality we have that conditioned on T, the probability that GetZeroRoundCoins fails
after tg (= [8-p/e]) rounds is at most /4.
In the following, given a random execution of Algorithm 4.4 (with GetZeroRoundCoins and

GetNextRoundCoins), we denote by Ay the event that GetZeroRoundCoins finds an accepting
continuation within ty sampling attempts and let A be the event that each of the m calls to

GetNextRoundCoins finds an accepting continuation within ¢ sampling attempts. By combining
all parts of above analysis, we obtain that

Pr[=Ag vV —A] < Pr[-T] + Pr[-Ay | T] + Pr[-A | T]
<eld+e/d+e/4
= 3e/4.

In words, this means that with probability at least 1—3¢/4 over a random execution of Algorithm 4.4
(with GetZeroRoundCoins and GetNexE{\ofndCoins), GetZeroRoundCoins finds an accepting con-
tinuation within ¢¢ sampling attempts and each of the m calls to GetNextRoundCoins finds an
accepting continuation within ¢ sampling attempts. Observe that the above also holds over a ran-
dom execution of Algorithm 4.4 with GetZeroRoundCoins and GetNextRoundCoins (i.e., Ag A A
happens with the same probability over Real, which means that it does not abort prematurely).

Since Real |4on4 = P/{g;l]Ao/\A, we obtain that

SD(Real, Real) < Pr[~Ag V —4] < 3¢/4 (32)
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Finally, observe that Corollary 4.12 yields (in particular) that Qg kxminxe(W) =
Pr {ﬁggl € W] > 1—¢/4 and we conclude that

Pr[(P*,V) = 1] > Pr[Real € W] > Pr [ﬁéél e W} — SD(Real,Real) > 1 — ¢,
in contradiction to the soundness property of (P, V). ]

4.2 Handling Small Number of Repetitions

In this section we complete the proof of Theorem 4.1 by proving it for small number of repetition
using a reduction to the many repetitions case. The rather long and technical reduction follows the
intuition given in Section 2.2.5, and a first time reader may prefer to skip it and move to the proof
of the main lemma given in Section 5.

In the following let (P, V), m = m(n),e = e(n), k' = k’(n) be as in the statement of Theorem 4.1
(replacing k with k') and assume that there exists a polynomial-time adversarial prover P*" and a
polynomial p such that

ok ~kK K 1
Pr|(P¥* V") (1m —1}>max<1—g ) 33
RS (1= (3)
for infinity many n’s, where ¢ is the universal constant from Corollary 4.12. In the following, fix a
value of n such that Equation (33) holds and k' < ¢-m?/e, and let k = k' -r for r = [c- m?/e]. We

/ . ~kK . .
first use the adversarial prover P*" (against V' ) to construct an adversarial prover P** (against

"'k ES ’
V') as follows: P** divides the set of k verifiers into r sets, each of size k’, and executes P* " on
each set (independently). By Equation (33) it holds that

pr[(P*, VHY(1") = 1} > <(1 - 5)£§1)T —(1—¢)em (34)

We now use P** to construct P* that convinces V with probability greater than 1 —e. The
construction is very similar to the one described in Algorithm 4.4, but there is an important dif-
ference. In Algorithm 4.4, in order to find an accepting continuation (both in GetZeroRoundCoins
and GetNextRoundCoins), it was suffice to use g, t < poly(n) sampling attempts that make Equa-

* ~k‘
tion (32) to hold, since we assumed that Pr [(Pk V(1™ = 1} > 1/p(n) for some polynomial p.

~k
Here, Pr|(P*",V')(1") = 1} might be negligible, so the same construction does not work. Yet, since
! ! ~k,
P*" consists of r independent copies of P¥* and since Pr [(Pk Y, VU)(1™) = 1| > 1/p, algorithm P*
can find an accepting continuation by searching in each copy separately and using only poly(n)
sampling attempts in each copy.

Formally, P* has the same structure of Algorithm 4.4, but uses modified variants of
GetZeroRoundCoins and GetNextRoundCoins that searches for accepting continuation in
each copy. The formal definitions of the modified procedures GetZeroRoundCoins and
GetNextRoundCoins appear at Algorithms 4.13 and 4.14, respectively. In the following, we write

~k ’ ’ ’ ’
a partial view of (P**, V") in the form view = (2F = (2',...,2¥), zh = (:n’il, . ,x’fyr), e ,:132‘? =

»r
(37?,/17 ce x%)) and for s € [r] we denote by view[s] = (¥, x’fjs, ce xf,;ﬂ’s) the partial view of the
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~k ~ ~

s’th part of verifiers V' [s] = (Vir(s—1)41,---, Vis). In addition, we denote by W' the set of all
! ! ! / / / Nk/

accepting views (2% ¥ ,...,:cfnﬂ) € {0, 1}FHK(m+1) of (Pk vV ), and by W = W'" the set of

* "’k)
all accepting views (%, 2%,... % ) € {0, 1}FHRmHD of (PF* V7).

Algorithm 4.13 (GetZeroRoundCoins, redefined).
Input: an index i € [k] and a string z € {0,1}¢.

Operation:
1. Let s; = [i/k'| € [r] and i’ =i —k'(s; — 1) € [K'].
2. Fors=1tor:
(a) Do the following to = [8pr/e| times:

’ / ~k' ) . . rx ~kK
i. Choose 2 z(m+VXE" 46 V" %s wiew in a random ezecution of (P* *,V ). If s = s,
do the above choosing conditioned on zy = z and x1 4 = 1.
i, If 2K (A DxE e W get zf,/ = 2*" and go to the next iteration of the outer loop.
(b) Abort the execution.

k’)_

!
3. Return zF = (2§ ... 2F

Algorithm 4.14 (GetNextRoundCoins, redefined).

Input: a (partial) view of V" and an indez i € [k].

Operation:
1. Let s; = [i/K'] € [r] and ¢/ =i —K'(s; — 1) € [K].
2. Set j = round(view) + 1.
3. Fors=1tor:
(a) Do the following t = [4-10°m?r?p/e*| times:

. / ’ ~K . . . v =k L
i. Choose zF x(m+DXKE" 45 V" s view in a random execution of (P¥ ", V") conditioned

’ ’ . . ..
on z* xij = view[s]. If s = s;, do the above choosing conditioned on xji1y = 1.

. If 2 g (mA)XE W et xé?:s =z and go to the next iteration of the outer loop.

J
(b) Abort the execution.

K’ K’
4. Return (%‘,17 A xj’r).

We start by redefining the real and ideal distributions. Let GetZerdeoins,
GetNextRoundCoins be the “unbounded variants” of the new definitions of GetZeroRoundCoins
and GetNextRoundCoins, respectively, and let Real and Real be the distributions induced by Al-
gorithm 4.4 with the new GetZeroRoundCoins and GetNextRoundCoins. The key observation is

that the Real which is induced by Algorithm 4.4 with the old variants of GetZeroRoundCoins and
GetNextRoundCoins (Algorithms 4.5 and 4.6) has the same distribution as Real with the new
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variants (Algorithms 4.13 and 4.14). This equality simply holds by the fact that P** executes r
independent copies of P,

In the following, let W,R,P and @ be the event and distributions defined in Definitions 4.7
and 4.8, respectively, and we denote by R’ and P’ the distribution R and P (respectively) from
Definition 4.7 with respect to k" and W'. First, since W = W' | it holds that R[W] = R'[W]" and
for any zFz(mthxk ¢ (0 1 RFmHDE where 28 = (z’f,,...,zf/) and m = (z ;‘31,..., jlr) it holds
that

Pi(z H ) (35)

and for j € [m + 1]
/ k/
]DX’“|Z’€X’C x<j H k’|Zk’Xk’ ,s‘z x<j 5) (36)

Second, by the above observation about I/{g;l, it holds that Real = Q i xx(mi1)xk. Since k > c-m? /e,
we now can apply Lemma 4.9 on P and @) to deduce that Real € W with high probability. However,
this is not enough since we still need to figure out what is the probability that Real € W. In
other words, we need to bound the probability that GetZeroRoundCoins or GetNextRoundCoins
(Algorithms 4.13 and 4.14) abort prematurely. We do so by showing that with high probability, the
expected number of sampling attempts in each part of GetZeroRoundCoins or GetNextRoundCoins
is bounded.

As first step, the following claim state that with high probability over zFa!
Pk x(minyxk, all values {R[W|(ZkXﬁj) =z x<3]}] are “close enough” to their expected value

R[W], and all the internal values {R’[W|(Zk/X§J) = zk/:vf/s]}j,s which captures most of the ex-

pected number of sampling attempts of GetNextRoundCoins, are bounded.

k,.(m+1)xk

~

Claim 4.15. Let d = 72m/e, let d' = r - d and let

S={(F = G\ o) ak = @by, ),k = @ et ) € 0, YRR,
(vi € lm]. RIW|(Z" X)) = 2*a%] € [RIW)/d,d- RIW]] ) A
(Vi € Im] Vs € [r]. RIW|(2 XE)) = 2] > Rw]/d') ).

Then Pykxminxe(S) > 1 —¢/24.

Proof. We write S = & N S3 N S3 where &7 is defined by only considering the lower bound of the
first condition in S (i.e., > R[W]/d), Sz is defined by only considering the upper bound of the first
condition (i.e., < d - R[W]) and S3 is defined by only considering the second condition. We now
handle each set separately.

By Fact 3.19 it holds that Ep , , [
<j

R[W\Zlkxgj] = R[%,V] for every j € [m]. Therefore, by

Markov inequality and union bound we obtain that

szx(m+1)xk(81) >1-— 6/72 (37)
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Next, note that Ep , , [R[W]ZkXﬁj]} = R[W] for every j € [m]. Again, by Markov inequality
<j

and union bound we obtain that

Py xmin«x(S2) 21 —¢/72 (38)

Finally, observe that for any j € [m] and s € [r], it holds that
1 _ 1 _ 1

Ezk;p’;jw X, [R,[W(kaxk/) m 5}] = EP/Zk’xg’ﬂw {R’[WIZ’“’X%]} = @ where the last

equality holds by Fact 3.19. Hence, by Markov inequality and union bound we obtain that
Prixminx(S3) > 1 —¢/T2 (39)
and we conclude that P, ymi1)xx(S) > 1 —e/24 by Equations (37) to (39). O

As a corollary of Lemma 4.9, Corollary 4.10, and Claim 4.15, we now prove that with high
probability over (i, zkx(m“)Xk) ~ @, we have bounded expected number of sampling attempts in
each of the m - r iterations of GetNextRoundCoins.

Corollary 4.16. Assume that R[W]| > (1 —¢)=
and let

T:{(iazk (21167'“72:7’? )73;]1C (x’flv-' m’fr) "7w]7§1+1 ( ]T€n+1 IERRRREY 1l?n+lr)> € [k] X {0,1}kl+k(m+1):
Zrgmthxk ¢ W)/\
R/[W|ZZ'/ =z, X145 = 1] > R/[W]/Q)/\

(Vje[m] Vs € [r] \ si. RIW|(Z¥ XY ) = 2Fak ] > RIW ]/72m7')/\

, where ¢ is the constant from Corollary /.10,

(¥ € m]. RIWI(ZY XE) = 2Eak Xy = 1] > €8 R(W)/10%mr ),
where s; = [i/k'] € [r] and i =i — K (s — 1) € [K']. Then Q; gxxm+vxx(T) > 1 —¢/4.
Proof. Let S be the set from Claim 4.15, let

S=Wns) x {1},

and recall that k > n-m? /e and that R[W] > (1 —s)ﬁ where c is the constant from Corollary 4.10.
By Claim 4.15 and Lemma 4.9(2) and by the fact that Pyi ym+1)xx(W) = 1, it holds that

ﬁZkX(erl)Xk,B(g) >1-¢/12.
In addition, by Corollary 4.10 it holds that
Di (ﬁsz(m+1)><k7B| |@ZkX(m+1)Xk,B) < 5/32

Therefore, we can apply Proposition 3.13 on P and Q with a = 53, 8 = {5 and the set S to obtain
that

@ZkX(m+1)><k’B(§) >1—¢/4. (40)
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In the following, fix zFz(m+D*k c W NS and i € Supp(@1|(zkx(m+1)xk)zzkx(m+1)xk7B:1). First,
observe that

R/[W]Tfl . R/[W’ZZ'/ =2, X149 = 1] = R[W‘Zz =2, X1, = 1]

R[W)/2
— RW]"/2

= R'W|Zy =z, X1 =1] > R'[W]/2, (41)

where the inequality holds by Lemma 4.9(3). Second, for any j € [m] it holds that

RW
W < BWI(25XEy) = ok X = 1]
= R/[W‘(Zk/Xkl) k x]g]s 7Xj+1,2" - 1] ’ H R/[W’ Zk/Xk ) k .I'Ii] s]
s€[r]\{si}
’ ’ ’ / R[W|(Zka ) = Zk.Ik ]
= RW|(ZF XE)) = 2bal,  Xja0 = 1] = =
(W <j) = 25,0 X, ] RW|(ZF XE,) = 282k, ]
!/ / / / d R[W]
Kk Kk
< R/[W‘(Z X< ) = 25 T <j,sy 7Xj+1,i’ = 1] R’[W]/d”

where d and d’' are the values from Claim 4.15. The first inequality holds since zFg(mtxk ¢ §
and since RIW|(ZFXE;) = 2Fak;, Xj 015 = 1] > RW|(Z"XE;) = 252 ]/2 (Lemma 4.9(3)) and
the last one simply holds by the fact that zFz(m+1D*k ¢ S Therefore, we deduce that

R[W] & R[W]

. K k' N _ kK —
Vj € ). RIWI(ZY XE) = 2ok Xy =12 5o > S0 (42)
In addition, since zF2(mtDxk ¢ S it holds that
. k' k! kK (3 R/[W]
Vj € [m] Vs € [r]. R'[W|(Z" X% j) =2 wig] > RW]/d = rm— (43)
and we deduce from Equations (40) to (43) that
Vzk$(m+1)><k cWNSVie SuPp(@I|(ZkX(m+1)Xk):zkx(m"’l)Xk,B:l)'
(i, 2P m+Dxky e T (44)

Hence, we conclude that

QLZkX(m-‘rl)Xk (T) = QI’ka(m—o—l)xk (T)

-~

> szx(m+1)xk,B( )
>1—¢e/4,

as required, where the first inequality holds by Equation (44) and the second one by Equation (40).
]
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The proof of Theorem 4.1 for small number of repetitions, given below, follows Corollary 4.16.

Proof of Theorem 4.1 for Small Number of Repetitions. Let (P, V), m,e, k' be as in the
statement of Theorem 4.1 (replacing k with k') and assume towards a contradiction the existence
of a polynomial-time adversarial prover P*" and a polynomial p such that Equation (33) holds
infinity many n, where ¢ (the constant from the theorem statement) is set to the constant ¢ of
Corollary 4.10. In the following we fix a value of n such that Corollary 4.10 holds and assume that
K <c-m?/e.

In the following, let £ = ¢(n) be a (polynomial) bound on the number of random coins used by

V,let k=K -r forr = [c -m?/ 5] and let P¥" be the adversarial prover (against \N/k ) that divides
the set of k verifiers into r sets, each of size &/, and executes P*" on each set (independently).

Let P* be the adversarial prover (against V) described in Algorithm 4.4 with the new variants of
GetZeroRoundCoins and GetNextRoundCoins (Algorithm 4.13 and Algorithm 4.13, respectively),
let Real, Real and Ideal be distributions induced by P*, let W be the set of all accepting (full)
views of (Pk*,\N/k), let W be the set of all accepting (full) views of (Pk/*,{/k/), let R,P and Q be
the distributions from Definitions 4.7 and 4.8 with respect to m,f,k and W and let R',P’ and Q'
be distributions from Definitions 4.7 and 4.8 with respect to m,¢,k’ and W'.

In the following, let 7" be the set from Corollary 4.16 and let 7" be the event over Q 7k y (m+1)xk

that (I, ZFX(m+1xk) ¢ T By Corollary 4.12 it holds that
QT >1—¢/4 (45)

Since R[W] > 1/p, Equation (45) yields that with probability at least 1 — /4 over
(i, 2P (mH xRy Qp zrxm+nxr (i.e., over Real), T' happens which yields that 1/R[W|Z; =
zi, X1 = 1] < 2p (i.e., the expected number of sampling attempts in the s;’th iteration of
GetZeroRoundCoins is bounded) and {1/R'[W[(Z¥ XE)) = 282%; 1}icimscppis) < T2mrp/e
(i.e., all expected number of sampling attempts in each round j € [m] and each iteration s # s; of
Algorithm 4.14 are bounded) and {1/R’[W](Zk/X§/j) = nglij,sianH,i’ =1}, < 10%m?rp/e?
(i.e., all expected number of sampling attempts in the s;’th iteration of each round j € [m] are
bounded). By Markov inequality and union bound, conditioned on 7', the probability that there

exists a round j € [m] and an iteration s € [r] such that GetNextRoundCoins (the unbounded
variant of Algorithm 4.14) exceeds t = [4 -109m?2r2p/ sﬂ number of sampling attempts is at most
e/4. Moreover, note the expected number of sampling attempts in each iteration s # s; of Al-
gorithm 4.13 is 1/R'[W] < p and recall that 7" implies that 1/R'[W|Zy = z;, X1 = 1] < 2p.
Therefore, conditioned on 7', we obtain by Markov inequ/alit/y and union bound that the proba-
bility there exists an iteration s € [r]| such that GetZeroRoundCoins (the unbounded variant of
Algorithm 4.13) exceeds tg = [8pr/c| number of sampling attempts is at most €/4.

In the following, given a random execution of Algorithm 4.4 (with GetZeroT%?);ndCOins and
GetZerdeOins, the unbounded variants of Algorithms 4.13 and 4.14), we denote by Aj the
event that GetZeroTR\o;ndCoins finds an accepting continuation within ¢, sampling attempts in

each iteration s € [r] and let A be the event that each of the m calls to GetNextRoundCoins finds
an accepting continuation within ¢ sampling attempts in each iteration s € [r]. By combining all

37



parts of above analysis, we obtain that

Pr[=Ag VvV —A] < Pr[T]| + Pr[-Ag | T| + Pr[-A | T
<ef/d+e/d+e/d
= 3e/4

Since Real |4na = ﬁgz;l]Ao/\A, we obtain that
SD(Real, Real) < Pr[-Ay V —A] < 3¢/4 (46)

Finally, observe that Corollary 4.16 yields (in particular) that Pr [ﬁégl € W] >1—¢/4 and we
conclude that

Pr[(P*,V) = 1] > Pr[Real € W] > Pr [ﬁeval € W} — SD(Real, Real) > 1 — ¢,

in contradiction to the soundness property of (P, V). (|

5 The Extensions of P and ()

In this section, we give the structure and a sketch of the proof of Lemma 4.9, while most of the
technical details appear in Sections 6 and 7.

Rather than presenting the extensions P and @ of the type stated in Lemma 4.9 and prove that
their smooth KL-divergence is small, we define many-bit variants of these extensions and bound
their smooth KL-divergence. Lemma 4.9 then follows by a data-processing argument. Moving to
many-bit extensions is useful, since the additional bits, essentially one bit per round, enable us to
apply the chain rule of KL-divergence more easily for bounding their smooth KL-divergence.

The structure of this section is as follows. In Section 5.1 we give a many-bit form of Lemma 4.9,
Lemma 5.3, and use it for proving Lemma 4.9. In Section 5.2, we define various functions and sets
that will be crucial to the proof of Lemma 5.3. We explain these definitions by sketching the proof
for the divergence-bound part of Lemma 5.3. In Section 5.3, we define—using the aforementioned
functions and sets—the many-bit extensions required by Lemma 5.3. In Section 5.4, we state two
major properties of these extensions (proven in Sections 6 and 7) and use those properties to derive
Lemma 5.3.

5.1 A Many-bit Variant of Lemma 4.9

In this section we state a many-bit variant form of Lemma 4.9 that we find easier to work with,
and show that it implies Lemma 4.9. In addition, to make the analysis of the last round similar to
previous rounds, we add an additional “row” to the distribution R defined in previous section. In
this section, we use the following definitions which are equivalent to Definitions 4.7 and 4.8.

Definition 5.1 (The distributions R and P, and the event W, revisited). For k,m,¢ € N and
w C {0,1}kl+k(m+1), define R = Rk x(mi2yxk = Rz Ry mi2yxe by Rye = Hle Rz, Rz, = Uy,
Bern(0) le X,
- k o <j,z
Rk = [[i21 By X0 i Xpinir aNd Rx, 1x ., = {Bern(l/m) o . Let W be an event
over R that ZF X (m+D)xE c W Finally, define P = Pk x(m+1yxk = Rz xomtyskpy -
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Namely, the only difference from Definition 4.7 is that now R has also an (m +2)’th row XF _,.
Yet, it is easy to verify that the distribution of R,k y(m+1)xx (i.e., without the (m + 2)’th row) and
Pk x(m+1)xk are equal to the ones in Definition 4.7.

Definition 5.2 (The distribution @, revisited). For k,m,¢ € N and for a termination consistent set
W C {0, 1}F+km+) (according to Definition 4.3), define Q = Qr,zr x(mi1yxk = QIQzr x(min)xk

by Qr = Uy, Qzrir = Bz, P72, x, =1 QX]"“VZ’“XZJ- = Pxkizoxt X0 =10 and QXZZH\IZ’“XE,” =
kyk B
Pan+l‘ZkX§vam+2,I:1 RW|Z X<vam+2,I =1]>0
0" 0.w.

Namely, the only difference from Definition 4.8 is how we define @ XE |17k XE In Defini-

tion 4.8 we defined it using PXk IZEXE Xpi1,1=0 while in Definition 5.2 we defined it using

<m’

Py E|ZEXE | X =1 Yet, observe that by definition of R and P in Definition 5.1, both defi-

n1t10ns are equivalent since

Xp1lZFXE, KXo 1= hat| ZFXE X1, 170, X g2, 1= mtt| ZFXE L X1, 1=0

where the first equivalence holds since X127 =1 = X417 = 0, and the second one holds
since given ZngmeH’], the event W in R is independent of X, 2 ;.

Lemma 5.3. Let k,m, 0 € N, let ¢ € (0,1/2], let W C {0, 1}F¢4Em+1) be o termination-consistent
set (according to Definition 4.3) and let W, R, P and Q, be the event and distributions from Defini-
tions 5.1 and 5.2 with respect to W, m, k, €, respectively. Assumek > \- m2/€ and R[W] > (1—8)ﬁ

for some universal constant X\ > 0. Then there exist distributions P = PBO,Z & By, X By, XE

and Q = QI,B(,,Zk,Bl,Xf,...,BmH,Xﬁm with szx(mH)Xk = P and Qf,zkx(mﬂw = Q and with
Supp(ﬁBj), Supp(@Bj) C {0,1} for j € (m+ 1), such that the following holds:

(PHQBO,Z’C B1,XF,...Bmy1,XE

) < am. (log 7}%&/{/] + m).
2. Pgmi2(1M+2) > 1 —¢/24, for B™"*2 = By, ..., Bpi1.
3. V(i, Zkl‘(m+1)><k) S Supp(Q\I’ZkX(m-&-l)Xk‘Bm+2:1m+2):

(a) R[W|ZZ = Zinl,i = 1] Z R[W]/2
(b) Vj € [m+1]: RW|ZFXE; = 2hak  Xjp15 = 1] > RW|ZFXE,; = 2Fak ]/2.

That is, the extensions above have m + 2 additional bits, essentially one per round, rather than
a single additional bit in Lemma 4.9. The logical conjunction (i.e., And) of these bits takes the role
of the single bit in the extensions considered in Lemma 4.9.

Lemma 5.3 yields Lemma 4.9 via the data-processing property of the smooth KL-divergence.

Proof of Lemma 4.9. Let P and Q be the distributions guaranteed by Lemma 5.3.  Let

_ _ m+1
PZk,X(m"'l)Xk,B = (‘PZ’“ X(m+1 Xk\Bm+2TB|Bm+2) o} PBm+2 fOI' TB\Bm""Q Bo,...,Bm+1 — H] -0 BJ, and

Sk x ik g = (QI’ka(nH-l)k|B'm+2TB‘Bm+2) Q gm+2. We show that P’ and Q' have the proper-
ties required in Lemma 4.9.
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The data-processing property of smooth KL-divergence (Proposition 3.12) and Lemma 5.3(1),
yield that

Am

Dﬁ(ﬁ/”@/zk,xwmk,g) S5 (108; R[1W] + m) (47)
Lemma 5.3(2) yields that
Ph(1) > 1—¢/24. (48)
Finally, Lemma 5.3(3) yields that for every V(i, zFz(mt1)xk) ¢ SuPp(@;,ZkX(mH)XHB:J:
1. RIW|Z; = z, X1, = 1] > R[W]/2.
2. Vjem+1]: R[W|ZkX§j = zkm’ij,XﬁM =1]> R[W|ZkX§j = zk:c’zj]/Q.
U

5.2 Definitions and Motivating Discussion

Let R,P and Q as defined in Definitions 5.1 and 5.2. For j € [m + 1], i € [k] and zFz(m+Dxk ¢
Supp(Pyk x(m+1)xk ), consider the definitions appear in Tables 1 and 2.

Table 1: Measurements.

Pz x, ;=1(2)

Definition Value
PO,i m'PXli(]‘)_]‘
pji(ZFak ;) ijm\zkxgj(HZ’“fH%)/(%(l — ) — 1
Py kxk (12FaR )
Bia(ak) (for 2 2) Pt O
ao.(2) F2E) 1{(i,2) € D}

O‘j,i(zkxlij)

Rz,

(z0) . Py b (1)

Pz,(zi)  Px, ,1z,(1zi)

[Fo(1+ Bya(Fak )

50(zkxlf)

1{(i,2)eD _ o0,i(2i)
(Zigzlf M)/|D| —-1= <Zielzlf pglyi(1)>/(|D’/2K) -1

(kL ko k <)
(5]($j+1,2 ‘T<j) 6ok (1]zFzE
j+1 Xj+l,i|Z X<j <J

ozj’i(zkzk ok
2li€G i Ny P 5 )/ Zieg . iilzheg) | -1
<j <Jj

In order to explain the rather complex definitions in Tables 1 and 2 and why we actually need
to use smooth extensions, we give a rather detailed proof sketch (more accurately, an attempt proof
sketch) for the divergence-bound part of Lemma 5.3. Specifically, we try to bound the divergence
between Pk x(m+1)xx and Q & y(m+1)xk; that is, to show that

m

D(Psxonstl[Qzuxmn) < O

Since D(Pyk x(m+1yxk||Ryk xminxr) < log(1/R[W]) (Fact 3.6), establishing the bound in Equa-
tion (49) would indeed show the divergence-bound part of Lemma 5.3. Furthermore, recall that

(D(Pgxomntl | Rgxoninse) +m)). (49)
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Table 2: Sets.

Definition Value
Iw'i- {Z S [k] Tl =T2;="""=Tj-15= 0}
J
g {Z S [k] ’poﬂ < 0.1}
gzkmlzj {i e gzkx%_lz (’pﬂ(zkxij)‘ < O.l) A <aj,i(zkxlij) € [0.01, 10])}
where we denote gzkxko =g
Z; {z € {0,1}": Py x,,-1(2) €(1£0.1)-277}
D {(i,2) € [k] x {0,1}%: (i,2) € G xZ;}

in the public-coin case, Chung and Pass [CP15] bound the divergence between P (the Ideal distri-
bution) and @ (the Real distributions) with 3 - D(Pgk xmxk|| Rz xmxr) (we abuse notation to fit
their result to the current discussion). Our bound on the exponential decay of the soundness error
(Theorem 4.1) is Q(k/m)—as oppose to the optimal decay of Q(k) in the public-coin case—comes
exactly from the difference between the coefficients of the divergence in Equation (49) and in the
the public-coin bound (i.e., m/k vs. 1/k).

The first step to prove Equation (49) would naturally be to apply the chain rule for divergence:

m—+1
D(Pgi x(m1)xk||Q 2k xme1)xx) = D(Py||Qzx) + ]Z; D(PxﬂszngQXJ’?\kagj |PZkX§j)-

In this sketch we focus on bounding the divergence for a fixed round 1 < j < m + 1. The sketch
for the zero round (i.e., Z¥) is similar, and at the end we shortly explain the differences.

Let’s take a closer look at the j’th round of the Real distribution. In that round, the prover
P* samples the coins of the internal verifiers conditioned on the external verifier, which is located
at index i chosen at the start of the execution, aborting in the j 4+ 1 round. Importantly, however,
we are interested in the distribution of the coins of the verifiers, not in that of the index ¢. More
formally, we are concerned with @ Xk|ZFXE and not with @ XF|TZFXE where we also condition on
I. Tt holds that

= P (@]
Qxf\zkxgj XF|ZRXE X1 1=1 Ql\zkxgj

= Py k k0 Py k _10 k .
Xj\Z’“X<ijJrl Xj+1|ZkX<j,X]-+1,1_l QI\ZkX<j

Namely, the distribution of round j of the Real distribution can be described as follows: first
draw an index I conditioned on the transcript so far, then draw the j 4+ 1 round conditioned on
the transcript and that its I*" location is equal 1 (i.e., aborts), and finally draw the j’th round
conditioned on the transcript and the j + 1 round. Recall that by conditioning that the I*® verifier
aborts in round j+1, we are guaranteed that this verifier does not abort in round j. The distribution
P can also be naturally described in the terms of the j + 1 round:

Pskizi vk = Pyk k xk O Py  xk -
XF|Zk Xk XF|zkxk xk O Xk |zEXE
Now, the data-processing inequality for divergence yields that

D(PXJ’F|ZkX§jHQXJk\ZkX§j ‘szxgj) < D(PXJ.+1|Z’“X2].HQ{){JI?Jrﬂzkxgj ’szxgj%
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for Q,)(le+llzkxﬁ = Pxb 128Xk, X, 40,=1 © Qrizixk -

So, we have transforms our question for round j to a different question for round j + 1—what
is the divergence between choosing the 5 4+ 1 round according to P given a partial transcript up to
round j — 1, to choosing the same round also condition on the I index being 1, where I is chosen
according to Q| ;« Xﬁj? This is the reason that many of the definitions in Tables 1 and 2 take :Uf 1
into account.

To answer this question we need to better understand @ 11Z5Xk - With no prior transcript, Q;
J

is simply uniform on the set of indexes [k]. However, conditioned on a transcript zkxiw Qr)zx Xk,

puts more weight on indexes that are likely to be 1 in round j+1 of P. How this likelihood changes
from conditioning on the previous j — 2 rounds to conditioning on the previous j — 1 rounds is
measured by Bm(z % J) The total likelihood changes that accumulated from all previous rounds

is measured by o Z(zk:13<J) So, QI‘Z;CX;C puts more weight on indexes with high a; ;(2* x<]) This
high-level intuition is formalized in the next claim (this claim, as well as all others in this sketch,
is proven in Appendix A.3).

Claim 5.4. Let j € [m+1] and 7 = (zF2* 25) € Supp(PZka ). Then, for every i € G, it holds that

aj,z’(zkxlij)
>ieg, aj,i’(zkxlij)

For now, think of the set G, in the above claim as Z » —the set of active indexes in round j;
<j

gk k
Q1|kagj,legT(l|Z 37<j) =

namely, the verifiers that have not aborted yet. Since in @ (the Real distribution) the external

verifier never aborts (it is the original verifier V, and not the random terminating verifier V), a

verifier that aborted cannot be the external verifier; that is, it holds that Q; zx Xk (4 kalij) =0
J

for every i ¢ Iw;é_, and thus QIleXQ Q”Zka = . We will circle back to the set G, later in
J
.7

this sketch.

Using Claim 5.4 we can now give an exact measurement for the ratio between the pmfs of P
and @, which turns out to also depend on the probability of a given index being 1 in the j + 1
round.

Claim 5.5. Let j € [m + 1], let 7 = (z"2%;) € Supp(P xt ), and let Ql)@;ﬁmzj =

k; .
PX]’“+1|Z’“X§ij+1,I:1 o QIIZ’“XQJ-,IGQT' Then, for every x7 ., € Supp(PXﬁl‘(ZkXQj):T) with 1m§+1 N
G- # 0, it holds that

k
Pyt 126Xk, (@514]7) _ 2hieg, %44(T)
/ k - aji(7)’
XJI;+1|ZkX§j(xJ+1|T) Ziélmk+lmgf ZZzzT)
J

for pi(7) = PXj+1,i|ZkX§j(1|T>-

Fix some previous transcript 7 = (zkx’i j). Rearranging the above equation, we have that
oz (@5l Qrizkxk . 1eg, (i)
J‘+1| <j — Z | < 1€G
P % T (T
Xﬁl\Z’“Xij( J+1’ ) i€l NG~ pi(7)
J
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As a sanity check, let’s see what happens to this ratio when W does not change the random coins’

distribution (i.e., Rk ym+1)xx = P). We expect there to be roughly k/m ones in xfﬂ (that

many verifiers are expected to abort in round j + 1). For each such index 4, it would hold that

Q1|ZkX§. reg. (i|7) = 1/k and p;(7) ~ 1/m. Hence, the above ratio is roughly 1, which is what we
]) T

would expect. Another interpretation for the above ratio is given in the following expectation.

k
Q;(]I'C+1‘ZkX2j (xj+l ‘T)

® oy )
~Qpzkxk 1egrm pi(T)

Jj+1

XX
k
Pxf+1|zkxgj ($j+1|7)

Namely, choose a random 1-index in .CC? 41 according to @, and measure how likely it is for the
verifier in that index to abort in @ (which happens with probability 1 since @ sets that verifier to
abort in round j + 1) vs. how likely it aborts in P (which is p;(7)).

Using Claim 5.5, our goal has now become to bound

/ _ 2ieg, %i(T)
D(Pxt, (zxxt )= |@xr jzrxr )=r) = 2 lo S o)
J J j+1 <j x‘+1NPX’€ gk xk y— . Js
J FolzhxE =T ZElz§+1ﬁg‘r pi(7)

The next claim shows how to interpret the denominator in the above expectation as a sum of
random variables, whose expected value is exactly the nominator.

Claim 5.6. Let j € [m+ 1], let 7 = (zkxlzj) € Supp(PZkX%), and let Xjk_H be drawn from

k 23 _ , - @;,i(T) ;
PX;"C+1|(ZkX§j):T or from [ [i_y PXj+1,i|(ZkX§j):T' LetY =3 ieg, Yi, for Yi = Pxk | ilzkxij(lm J

Xjt1: =1 and Y; = 0 otherwise.
It holds that

Ep Y] =E Y] = a;i (7).
Xf+1‘<ZkX§j):T[ } i:1PXj+1,i\<ZkX§j):T[ | z; 3447)
— . k. k : ;
Let A = 0;(Xj;7), where X7, is drawn from either PX;;H‘(Z;CXQJ_):T or

Hle Py, il(z* XE Y= The definition of J; implies that A is a random variable that mea-
I3 J

sures how far Y is from its expected value; that is, ¥ = (1 + A) - > o a;i(7). It follows
that

1
! — -
D(PXJI?+1‘(ZkX§j):T|‘QXJ,'C-‘rl‘(ZkXEj):T) N EPXfﬂ\(Z’“XZ):T [lo 1+ A] '

Naturally, we would like to approximate log ( ﬁ) with a low-degree polynomial. To do so, however,

we need a bound on the value of A. This bound (among other things that we will see ahead) is
exactly what the (m + 2)-extensions will give us—they’ll guarantee that |A| < 1/2 with high

231—[?:1 PXj+1,i|(Z’“X§j)=T is the product distribution of the marginals of PXJ;;“‘(Z;CXQ):T.
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probability under P. Roughly, we would get that
’ / m
D(Pxrjzext )=rll@xr, (zexs y=r) S DPxe_ 2o xk y=rjaj<ryoll@xr, jzoxs y=r) T O(?)

1 m
%E[log 1+A”A| < 1/2] +O(E)
<E[-A+2%Al<1/2)+0( ).

where the above expectation is over Py (ZhXE Y=r Since A measures how far Y is from its
J+ <j’/

expected value, it follows that E[A] = 0. This, however, does not hold when we also condition on
|A| < 1/2. But, since we are guaranteed (from the extension) that |A| < 1/2 with high probability,
we would be able to show that E[-A[|A] < 1/2] < O(m/k).

We are left with the expected value of A%, We ignore the condition on |A| < 1/2 in this
proof sketch (handling this condition follows again from the guarantee that |A| < 1/2 with high
probability and is fairly technical, so we defer this case to the formal proof). Instead, we would
like to show that

m

B[8%) < O( 7 (D(Pys, i =R, i =) + 1)) (50)

Combining Equation (50) with the previous bounds we established and applying the chain rule
once more would yield Equation (49) (ignoring the zero round).
To show that Equation (50) holds, we would use Proposition 3.10, which requires that A is well

concentrated under RX;_CH‘( ZEXE =1+ It would in fact be easier to show that A is well-concentrated
J J

under a different distribution: P,

Xk |(ZRXE )=

suffice, since RX"“+1|( ZEXE Y=r is a product distribution, so the chain rule for divergence yields that
J J

= Hle PXJ_H’”(Z;CX%):T. Showing this would

11
D(PX;'C+1|(Z]€X§3‘):T‘ |RXJI'C+1‘(ZI€X2]'):T) Z D(PXj+1|(ZkX2j):T‘ |PX;'€+1|(Z]€X§]~)=T)'

Why is A well-concentrated under P,

XFal(Zhxt )=
value of A under P)r([,C is 0 as well. So instead of arguing that A is well-concentrated

Fal(ZEXE H=r
around 0, we argue that ¥ = ZiegT Y; is well concentrated around its mean. Importantly, the

T? First, note that by Claim 5.6, the expected

random variables Y;’s are now, under P)r([k

1|(Z kxk '):T
from its mean we can use standard conceri‘:ration Tojounds, such as Hoeffding’s inequality (Fact 3.14)
or Fact 3.16. Such bounds, however, require that the Y;’s are bounded. We again use the extension
to ensure that the Y;’s are indeed bounded.

Finally, we consider the definition of the set G, from Table 2. That definition guarantees that
Y; < O(m) for every i € G,. Indeed, for every such i, we have that a;;(7) € ©(1) and that
pi(T) > Q(1/m). Our extension will now guarantee that the index I chosen by @ belongs to the set
G- and that |G;| > Q(k). Using these properties, Fact 3.16 indeed yields the required concentration
bound.

This concludes the proof sketch for the j'th round. The proof for the zero round is similar, but
differ in the following major manner—when we condition on X1, = 1, the definition of P implies
that X;; = 0. In the first round, this does not hold, and conditioned on X;; = 1, the coins Z;
are still uniform. Instead of applying the data-processing inequality to consider the divergence of

, independent. Hence, to bound how far Y is
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the j + 1 round, in the zero round we apply the monotonicity property of divergence to consider
the divergence of both the zero and the first round. In particular, the ratio between P and @
distributions include both the zero and the first round (in round j, as shown by Claim 5.5, this
ratio depends only on the j + 1 round). This is evident in the definitions of o ; and dp in Table 1.
This also implies a change in the random variable Y, as given in the next claim (analogous to
Claim 5.6).

Claim 5.7. Let Z*X¥ be drawn from Pyixi or from Hle Pz.x,,2* LetY = > iep Yo for
Y; = ;}21’(1?1)) if X1, =1 and Y; = 0 otherwise.

It holds that

_ 7]

Y] - EH§:1 PZiXLi ] o y

P zkxk [
Finally, since Y takes into account the zero and the first round, arguing that it is concentrated
around its mean is more complicated, and we leave the details to the formal proof.
This concludes the proof sketch. The formal proofs of the claims in this sketch appear in
Appendix A.3. We now proceed to define the m + 2 extensions P and Q.

5.3 The Extensions

In this section we define the two extensions P and @ of the P and @ (respectively), as required for
proving Lemma 5.3.

Recall from the proof sketch in Section 5.2 that the extensions should guarantee the following
properties: (1) the probability that |A| < 1/2 in round j + 1 is high given any transcript 7 up to
round j — 1; (2) the size of G, is Q(k); and (3) the index chosen by @ is in G,.

With these goals in mind, we now formally define the following two extensions. After the
definitions we state and prove their important properties.

Deﬁnition 5.8 (ﬁ). Let ﬁBo,Zk,Bl,Xk Bmi1,X

_ ~ il 5
L = PZkX(m+1)XkPBO|Zka Hj:l PBj|ZkX§j be de-
fined as follows:

k
m—+1

1. ﬁBo\Z"X{“ - ﬁBoIBS“rBBiStBé"d" ° ﬁBS“\Z’“X{“ ]33'0“5t ﬁBB“d"’ where
(a) Ppewzext = 1{|00(2FX})| < 3}
(b) ﬁBgist =1{|D| > k-21} - H{EPZ;CX{G [ﬁBguqzkx{v(O) < 2}
(¢) Pgmax = 1{(I,Z1) € D} o Q1.7

D __ pcur hist indx
(d) PBO‘BgungiStB%)ndx == BO . BO . BO .

~ ~

2. PBJ‘ZkX§j = PleB;;urB;listB}ndx o PB;:urlzkxg]PBJhlstlzkxéjPBjndxlszij fO?"] E [m + 1], /there

. 1
5J(Xf+1a Zngj)’ < §D

. A
> 45} LBy s [Pz, (0] < )

(a) PB;ur\szQj = Bern (PXJ’?+1|Z’€X§J. [

ﬁ is — ﬂ ‘
(b) Bhist|zkXE { gzkxgj

241—[?:1 Pz, x, ; is the product distribution of the marginals of PZkX{CA
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(C) PB;ndx‘kaéj = ]l{.[ S ngXij} OQI|ZkX2j7[€ngX§. |
G

D . . __ pcur hist indx
(d) PBj‘B;IurB;HStB}HdX - B] Bj . B‘7 .

i3 2) 2) 2) +1 A
Definition 5.9 (Q). Let QI,Bo,Zk,Bl,X{C,-..,Bm+1,X = QIQZkX(erl)XkHQBo\I,Zka H;n:1 QB].‘szng

be defined as follows:

k
m-+1

1. QBO‘I’Z]@X{C = PBO‘BSungistB(i)ndx o QB(C)“rQBgist QB(i)nqu,ZI y where

(a) @pgr = Ppeur z1xk © Pgixi
(b) @B(};}ist == ﬁB(}}ist
(C) QB(i)ndleZI :]1{(1,21) GD}

2. Qleszng = PBj|B;_:urB;)istB;ndx OQB;;ur‘ZngjQB;_ndlezkxﬁjQB;}istlszgj fOT’] S [m+ 1], where

b 0 is c — ﬁ is c
(b) QB;.‘ | ZkXE BYist|zkXE

A few words about these definitions are in order. Note that the bits B and B;?i“ are related
to the distribution P, while the bit B}ndx is related to the distribution ). We define all bits in both
experiments so that the distribution of B; will be identical under both extensions. The bit B;-liSt
meant to guarantee that G, is of size (k) and that the probability that |A| < 1/2 is high. This
bit depends only on the transcript so far (i.e., the “history”), and in particular is independent of

round j. On the other hand, the bit B does depend on round j (i.e., the “current” round) and
we will see ahead that conditioning on Bj"" = 1 means that indeed |A[ < 1/2 (not just with high

probability). Finally, the bit B}ndx meant to guarantee that the index I chosen by @ belongs to G,.
We summarize the properties of the two extensions in the next claim.

Claim 5.10. It holds that
1. Round zero:
(a) ]32ka|30:1 = Pyrxh|iso(z X1y <1/2-
(b) @kaf\Bozl = PZkau,Z[,XM:l ° Q17/|17,€D-
(c) P, = Qp,.

2. Round 1 <j<m+1:

(¢) PXJI?‘ZkXQj’BoBSJ‘:UH - PX]I?IZkXéjX]k-‘-I O Xk 2R XE

8;(XF 28 XE )|<1/2°

b/\kkk ,'1:Pkkkk0/ or
(b) QXJ.|Z X%, BoB<;=13% xkizkxk Xk QXJI;H‘Z;@X% [
/
— (e)
QXJ]'C+1|ZkX§j PXj+1|Zka Xjt1,1=1 QI|Zka Ieg

Y
<j’ <j’ kxk
J J ZX<]
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(c) For every zkx]zj € SuPp(PZkX§j|(BOB<j)=1J') it holds that

PBj\(kaﬁj):(z’“ﬂf'éj),(BoB<j):1j - QB]’|(ZkXﬁj):(zkﬂiﬁj)&Bqu):lj'

Proof. We prove the statement for a fixed 1 < j < m + 1. The proof for round zero follows from
similar arguments.

The proofs of Items 2a to 2c¢ follow merely from the definitions. However, the abundant of
random variables might make it difficult to verify the correctness of the statements, so we explicitly
prove them.

Proving (2a): First, observe that conditioned on Z*¥X*

<jo 1t holds that X ]k is independent of
Bo, By, ..., Bj_1, B, B under P. Namely,

PXJ’?\Z’@X’C BoB<;=1i+1 = PX‘?|ZkX§j,B;.ur:1'

<j’ J
Now, applying Claim 3.1 with the random variables X = i(ﬂZkXij, Y = X]’-“+1|ZkXij and
f(X]’?H; Z’fxij) = ]l{](ij(XJkH; ZkXﬁj) < 1/2}, all under P, yields that

~

Py 7k vk ,:ﬁkkkkoﬁk k vk k .okxk
Xk|ZhxE | Bow=1 Xkizkxk xk O Lk ZkXE 85Xk, ZRXE )|<1/2

= Uxkizexk xk ° Py

k k. k
<X Tl 28X 25105 (X 1520 X2 5)I<1/20

j+13
where the second equality follows from the definition of P.

Proving (2b): First, observe that conditioned on Z¥X g j» it holds that X Jk is independent of
Bgi“, B§™, ..., B?iSt, B;ur under @. If we condition on I as well, then X Jk is also independent
of B(i)ndx7 ceey B}ndx. Thus,

QX]’?\ZkXQj,BOBSj:UH - Qxf\zkxgj,(ngndXBgiX):UH
= QX]’?\IszQj,(BgndXBg.iX):UH © QI\ZkXQj,(Bg)ﬂdXBing):le
= QX]I?‘IZIQXEJ' 9] QIleXEj,(BéndXBiSn]‘.ix):ljJrl .

By definition, it holds that ngXg C G ryr  for every j' < j. Hence, it holds that
J <4’

Q1|kagj,(Bg)ndXBiél;iX)zle = Ql\zkxgj,B;ndle
= QI\Z’CXQJ.,IEQZ;@X%'

Furthermore, the definition of () yields that for i € G XK it holds that
J

Qx;?|(lzkx§j):(izkz';j) = QX]’.vquXg].:(z‘zkx’;j)
- PXJI-“|(ZkXﬁj):(Zk$lij)7Xj+1,i:1
- PXJkl(ZkXEJ):(kalzj)vX]k © PXJI'C+1|(Z]€X§J' :(zkajlij),Xj+1’i:1'
In particular, note the above equality holds also for j = m + 1. Indeed, if I € G & Xk

then Py . zsxk (1|zkx’%m) > 0, and thus also R[W](ZkXém) = (zkx’%m),XmHJ = 1].

Combining the above three equations completes the proof of the second statement.
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PI’OVing (2C)' That PBhist ‘kak BOB<] = QBhist|kak BoB and PBcurlzkxk BoB<]
Q B |z Xk BoBe ~ follows immediately from definition. For Blndx the same arguments we
used in the proof of the previous item yield that

~ ~

QB;.“dX|ZkX (BOB<3) QBmdx|kak (B(i)lldeiél;_ix):lj
— o indx pindx
]l{_[ S gzkxéj} QI‘ZkXEj:(and B?Jd )=1J
=1{l e k O k
{1 €Gzuxn } Q[\zkxq,legzkxéj
- PB;ndx‘ZkXEJ

= PB;,"dX\Zngj,(BOBq):u-

5.4 Proving Lemma 5.3

The proof of Lemma 5.3 is divided into two parts. In the first part we prove that conditioned on
all the extensions bits being equal to 1, the divergence between P and Q is sufﬁmently small. In
the second part we show that the probability that the extensions bits are all 1 in Pis high.

To enforce the conditioning on all bits equal 1, we use the following function.

Definition 5.11 (fey). Let fey: {0, 1}EH0m+DE+m+2) 1o 1 | Vektm+Dk+(m+2) 44 be the func-
tion that cuts its input (boz®, bz}, ... b1zl ) € {0, 1Rt mADk+(m+2) o fper the first bit b; that
equals to 0. Formally

1 df - (bo,ba, - o b, ) = 12, then fcut(bozka b1x]f, . bm+1$fn+1) =
(bozk, blxlf, ey bm+1xfn+1).

2. Else, let j € {0,...,m+ 1} be the first index with b; = 0. Then

(a) If] = 07 fCut(bﬂzky blxlfa “e ,bm+1$1:n+1) — (b07 J—ék+(m+1)k+m+1)'

(b) Else, fou(boz® brak,. .. bmy1ak ) = (bo2® bk, .. b g2k | by, LIm=It2R+m=i+D)

).

The following two lemmata prove the two aforementioned parts and are the main technical part
of our work. Lemma 5.12 is proven in Section 6 and Lemma 5.13 is proven in Section 7.

Lemma 5.12. There exists two universal constants A\, N > 0 such that the following holds: Let
k,m,0 € N, let W C {0, 1}kl+k(m+1) be a termination-consistent set (according to Definition 4.3)
and let W, R, P and @ be the event and distributions from Definitions 5.1, 5.8 and 5.9, respectively,
and let feur be the function from Definition 5.11. Assume that ﬁBm+2(1m+2) > 1/2 and that
k> X-m, then

Nm

1
(fCUt(PBOZk B1X{,.. vBm+1Xm+1)ch“t(QBOZk Bi1 Xk ,Bm+1Xm+1)) = ko <log W " m)
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Lemma 5.13. For any constant X\ > 0 there exist constants ', \" > 0 such that the following
holds: Let k,m,0 € N, let ¢ € (0,1/2], let W C {0, 1}¥+k(m+D) be o termination-consistent set
(according to Definition 4.3) and let W, R and P be the event and distributions from Definitions 5.1
and 5.8 respectively, for the above k,m, ¢, W. Assume k > X -m?/e and R[W] > (1 — e)ﬁ, then
Ppmi2(1™2) > 1 — ¢/

Using the above lemmata, we are ready to prove Lemma 5.3.

P’FOOf Of Lemma 5,3. Let PBOZ]C’BlX{c:-'meﬁ»le;LJ’,l and QBOZkaBlX:{c7~~~7Bm+1X7k;L+1 be the diStI‘ibutiOnS
from Definitions 5.8 and 5.9, respectively, let f.,; be the function from Definition 5.11 and let A =
max{cy, ¢}, c2, ch}, where ¢1, ¢} are the constants A, A’ from Lemma 5.12 and ¢, ¢, are the constants
N(24),)"(24) from Lemma 5.13 (with respect to A = 24). First, observe that by Lemma 5.13 it

holds that

Ponea(1™2) =Pr_; Fouty) = 9] > 1 — /24 (51)

~P
Y~pozk By xk,

and along with Lemma 5.12 we obtain that

1oy

£, ~ Am 1
D2 (P, ze gy xt . B xt | QByze By xE,  BpiaxE ) < T <log ROV + m> (52)

Second, observe that by the definition of Q, it holds that Vzkz(m+Dxk ¢ {0, 1}kt4R(M+1) and
Vi € Supp(Q1|ka(m+1)xk’Bm+2:1m+2),

1-0.1

Pyix,,=1(2) = (1—0.1)- 27" and Py, ,(1) >
, ’ m

PXl,z‘(l) : PZZ'|X17Z‘=1 (Z’L)

:>RWZZ':zZ‘,X7i:1:RW- 53
[ ‘ ' ] [ ] RXl,i(l) ) RZ¢\X1,i=1(Zi) ( )
> RW]-(1-0.1)2
> R[W]/2
and
. 1-0.1 1
Vjem+1]: PXj+1,i|(ZkX§j):zkx’;j(1) > m (1- E)'
= Vje[m+1]: RW|(ZFXE) =2Fab, X0, =1] (54)
PX- i|(ZEXE Y=zkgk (1)
= RW|(Z* X)) = 2Fak )] === e (1)
X]'+1,i|(ZkX§j):kalij
> RIW[(ZFXE;) = 2"k ] - (1-0.1)
> R[W’(ZkXij) = Zk?ﬁlij]/Q
The proof then follows by Equations (51) to (54). O
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6 Bounding the Smooth KL-Divergence of P and @

In this section, we prove Lemma 5.12. That is, we prove that there exist two universal constants
A, N > 0 such that if & > X -m then

(fcut(PBOZk Ble, 7Bm+1Xm+1

’ 1
)||fCUt(QBOZk BiX},. ,Bm+1Xm+1)) <A ? ’ <10gR[W] + m)
(55)

Let k,m,f € N with m > 2 and k£ > X-m for A > 1 to be determined by the analysis. Let
cut
PB()Z’“ Ble M ,Bm+1X fCUt (PB()Zk Ble 5 ,Bm+1Xm+1)

and let Q“* be analogously defined with @ Our first step is to apply the chain rule for divergence
(Fact 3.5(3)):

D(fCut(PBozk,lef,,Bm+1X,’]§l+1)HfCUt(QB()Zk,BlX{C,,Bm+1X7§L+1 )) (56)
t t
- D(Pg:zk Bi1 Xk, 7Bm+1an+1H %ﬁ;zk,Ble,...,BmﬂXﬁLH)

m-+1

t t t t t
(PcuzkHQCB%zk + ZD EuX’“|BoZ’€B<] ’fjHQ?X’qBOZkBqX’f | gészQX’v )-

The proof now follows from the next two claims.

Claim 6.1 (Round zero). There ezists a universal constant Cy > 0 such that
m
D(PgllQ5) < Co- 22 - (D(PaixillRgixy) +1)-
Claim 6.2 (Rounds 1 to m + 1). There exists a universal constant Cy > 0 such that

¢ ; .
D(Pguxk‘BoszQ k]H ?X’“\BoZkB< pey \ g;szqu )
<C- Z : (D(PXMMQHRXJ,_@HWX% Py ) + 1>.

We prove Claims 6.1 and 6.2 below, but first we use them to derive Equation (55). Since
conditioning increases divergence (Fact 3.5(4)), it holds that

D(Pyr jzoxt 1B, zoxe [Prexe ) < D(Pxrzoxs By zoxs [Pzexe )

(We added a conditioning on X Jk as well.) Plugging Claims 6.1 and 6.2 into Equation (56) and
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setting A = Cy + 2C yields that

D(fcut(PBozk,lef,...,BmHXj;H)‘|fcut(QBozk,lef,...,Bmﬂxjglﬂ))

m+1
m m
]:
<N. 2 D R mHD P R P
SAC (Pzrxrl|[Rgrxn) + z:l ( Xﬁl\zkxng Xf+1\zkxgj| kagj) +m
J:
m
- )\, . ? : (D(PZICX(77L+2)><I€|’RZkX(m+2)><k) + m)
m

, 1
<A T <IOgR[W] +m),
where the equality follows from another application of the chain rule for divergence (Fact 3.5(3)),
and the last inequality follows from Fact 3.6. This completes the proof of Lemma 5.12.
The rest of this section is dedicated to proving Claims 6.1 and 6.2. The proofs of both claims
share similar structure and insights. Since it is conceptually (slightly) easier, we begin with proving
Claim 6.2, which we do in Section 6.1. In Section 6.2 we prove Claim 6.1.

6.1 Round 1 to m+ 1, Proving Claim 6.2

Fix a round j € [m + 1]. Our goal in this section is to prove Claim 6.2. Thats is, to show that
there exists C' > 0 such that

D(PE;X]HBoZ’CB<jX§jHQCBUJ-XJ’?\BQZkB<jX§j‘szZkB<jX§j) (57)
m
= ko (D(PX]-HIZ‘“XEJ-HRX]’?+1|ZI€X§J.’PZ'€X§J.) + 1>-
As a first step we apply the chain rule for divergence (Fact 3.5(3)) to get that

cut cut cut
D(PBjXﬂBOZkBQngHQBjXﬂBOZkBQng ‘PBOZkBng].)

_ cut cut cut
= D<PBj|BQZkB<jX2jHQleBOZkB<jX§]' |PBOZ’“B<]-X§j)

D Pcut cut Pcut
+D( Xf|ZkX§jBOB§j|| X;?|ZkX§jBOB§j| ZkXQJ.BOBSj)

- D Pcut cut Pcut
( X]’?\kangoBSjHQXJHZI@XQJ.BOBSJ-‘ ZkXQjBoB§j>v

where the second equality follows since P& = QX follows from
quality B,|BoZ*Be; Xk, By|BoZ* B Xk, (

Claim 5.10(2c) that shows that PBj\(Z’“Xﬁj)=(zkx’§j),(BoB<j):11' = QBj|(ZkXﬁj)=(zk:r’2j),(BoB<j)=1f and
since, by definition, B; =L under both P°“* and Q* if Bj = 0 for some j' < j). Moreover, again
by definition, if Bj = 0 for some j < j, then XJ’? =1 under both P’ and Q°“*. The definition of
conditional divergence now yields that

Pcut ) (58)

D(P)C(%t\zkxk BoB il %\kak BoB | Zk X% BoB<;
j < P0P< J <jP0P< <jP0P<

J J
<D Pcut ) ) cut ] Pcut )
< D( Xf|zkxgj,BoB§j=1J+lHQX]’?|ZkX§j,BOB§j=1J+1| ZkX§j|BoB§j=1J+1)

= D(PXﬂkagj,BOBSj:lHlHQX]’?|ZkX§j,BOB§j:1J‘+1 |PZ’“X§j|BoB§jzlj+1)?
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where the last equality follows the definition of f.,;.
In the rest of this section we bound the right-hand side term in Equation (58). Using Claim 5.10
and the data-processing inequality for divergence (Fact 3.5(5)), it holds that

D(Pxﬂzkxk .,Bong:1j+1||Qle|Zka . ,BoB<;=1i+1 |szX§j|BoB§j:1a‘+1)

ki iz XE |<1/2HQXk ‘kagj\szX§j|BOBSj:1j+1)v

X

fOI“ Q |Zka PX +1|ZkX<J,XJ+1 =1 QI|ZkX<J,I€ngXk :

The proof of Claim 6.2 immediately follows from the next claim.

Claim 6.3. There exists a universal constant C > 0 such that

D(PX]’? |ZkXE |65 (XE, ;2 XE )|<1/2HQXk | ZEXE |szxk |BOB<J_1J+1)

<j’ J+1’

m
=C - (D(PX]’?+1|Z’CX§].||RX]’?+1|Z’CX§].|PZ’€X§j) + 1)-

Proof. Fix 7 = (2, x’i]) € Supp(ﬁzkxk J|BoB<; _1i+1). Our first step is to observe that since 7 is
fixed such that BoB<; = 17!, the addltlonal conditioning on |0;(X J+17 Zkxk )| < 1/2 does not

change the distribution of X* i+1 under P by much. In particular, the definition of P (Definition 5.8)
yields that

PX]’?+1‘(kak —TH(S ( j+15 T )| < 1/2} = EPXJ’?\(Z’“XEJ-):T PX‘;'C+1|(Z]€X )= TXk[‘é ( T )‘ < 1/2]
(59)
- EPXJ’?\(Z’CXQJ.):T [PBJC-‘”IZ’“X%(U]
m
>1- 72
where the last inequality holds since Bhist = 1. To ease the notation, let PX’?+1|7-| s<12 =
7 ’ —

PX]I_chlKZkXEj):T,‘éj( +1’kak )|<1/2 It fOHOWS that

D(PXJI-C+1‘T,‘5|§1/2||QX]’_€+1‘(ZICX£J_):7—) (60)

k
B 1 PXJ’?+1|T,|6|§1/2(%‘+1)
= (0]
PP * Qe yor @al7)
i+ X jImls1<1/2 Xj+1|Z X<j J

Pxk|zvxt, (5U§+1|T)/Pxf+1|zkxgj”5 (XJo7)| <1/2|12FXE; = 7]

= E log

k /
zi  ~Py X T
JHLTEXE I 18l<1/2 XJ’?+1|Z’€X§j( ]+1‘ )

k
_ 1 PXJ’?+1|Z’€X§j (%H’T)
= log T + . E log — =
Py 1zext 1105(X G S1/2028XE = 7] ok oy, ko Imlsl<1/2 Xf+1|ZkX2j(xj+1|T)

k
2m Pxr1zexk (2714]7)
ST o Qe o @)
v ~ j T
Tit1 Px;?Jrl\T,\éISl/? Xf+1‘ZkX§j ]+1

m . log > icg, ,i(T)

kP 2;i(7)
LR AL ATIESVE Ziazkﬂmgf pi(7)
J

IN
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where the first inequality follows from Equation (59) and since =
the last equality follows since & > m > 2 and from applying Cla
defined in Claim 5.5 that p;(7) = PXjH,i\Z’fXﬁj(lh))'

Our next step is to use the following claim — proved below — which is where the crux of the
argument lies.

— < e?* for all 0 < x < 0.5, and
5.5 with J = G, (recall that we

Claim 6.4. There ezists a constant C' > 0 such that
m

> icg, %4(7T) /

T2 < R, .

Pk inisisye S a;.i(7) =0¢ k (D(Pxﬁl‘(zkxk _THka (Z+XE )_T) 1)
J i€l k+lﬁg-r pi(T)

1) P log

x

(61)

We now proceed to complete the proof of Claim 6.3. Note that Claim 6.4 does
not immediately suffice in order to establish Claim 6.3. The reason is that in order to

get D<P 112 XE 5k

<% X1

ZEXE <1/2HQ |Z’€X§j’ﬁZkXij\Bong:U“) from the left-hand side
of Equatlon (60) we need to take expectation over PZ’CXQJ.\BOBSJ-:UH' However, to get
D(PXk 7+ XE, HRX \Z’fXﬁj‘PZkXQj) from the right-hand side of Equation (61), we need to take
expectatlon over PZk Xk - We use Fact 3.7 to handle this issue.

Set C' =2C" + 1. Equatlon (60) and Claim 6.4 yield that

D(Pxr_|zxx* 8;

X7l E05( ]+1,ka’€ )<1/2HQXk |ZkX§j‘PZkX’€.|BOB<J-:1J‘+1)

D(Pyx K k
r~P ZhxE | BoB =1t ( XE (2 Xk )=r6;(XE, ;20 XE <1/2HQXk |(zkx§j)zr)

, m
= TNPZ’“X%IBOBSFUH [? e ko (D(PXﬁl‘(ZkXEj):T’|RXJ"€+1|(Z’9X§J'):T) + 1”
m , m 1
< % +C"- % (133()B<-(1j+1) ) D(PXJ’?+1|Z’€X§J.||RXJ’?+1\ZkX§j|PZkX§].) + 1)
<C- % (D(P || ZRXE HRX;“H|Z’“X§J.‘PZ’€X§J.> + 1>7

where the second inequality follows from Fact 3.7 and since IBZk xmxk = Pgiymxk, and the last
inequality follows since by assumption Pg,p_; (1+1) > 1/2 and by the setting of C. This completes
the proof of Claim 6.3. ]

Proof of Claim 6./. First, we lower-bound the right-hand side of Equation (61). Note that
by Definition 5.1, Xj+1; and X414 are independent for ¢ # ¢'; that is, RX’?H\(Z’@XQ): can be
J J

written as a product distribution RX]’?HI(Z’“XEJ-):T = Hle RX]_HJ_‘(Z;CX%):T. Thus, by chain rule
of divergence (Fact 3.5(3)) it holds that

IT
D(Pyr (zexk )=rllBxk (26 xk )=r) 2 D(Pxf+1|(zkxgj):7\|PXJz_c+1|(ZkX§j):T)7 (62)
where P JHI(Z’“X’“ y=r is the product distribution of the marginals of PX];_CHKZ;CX%):T; that is
PH 1|(sz Hz IPXk \(Zngj):T‘
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Next, we upper-bound the left-hand side of Equation (61). At this point we recall the setting
of Claim 5.6. For ¢ € G, and l‘§+1 € XF let fi(x fﬂ) = oy i(7)/pi(T) if :L‘ﬁ“ =1 and 0 otherwise.
Let Y =Yg Yi, where the Y;’s are random variables defined as Y; = fi(X},,) and X}, is drawn

either from PXk+1|(Zka ) OF P . Note that in the former case, the Y;’s are dependent,
J

Xk [(ZRXE )=
whereas in the latter case they are mdependent This observation will play a crucial role ahead.

Let A = 0;(X ]+1’ 7), where again X7 741 is drawn either from PX;c |(ZExE y=r OF P XE L |(ZhXE )=r

J)=T
The definition of dg (see Table 1) yields that Y = (1+A)-> ;o ozN(T). We can now upper-bound
the left-hand side of Equation (61) as

2ieg, 9,i(7)

|7.181<1/2 @;,i(7)
Jralm dliel , NG, pi(T)
1-+1

Zzegq—

E ~P,

k — E
S P

<
Xf+l‘(sz§])=T |:10g ‘|A| 1/2:|

1
= _— <
EPX’.C 1\(zkxgj)=f [log 1+ A‘|A‘ = 1/2]

<Ep,, [—A+ A%]|A < 1/2],

1 1(ZRXE H=r
where the inequality follows since —log(1 + z) < —x + 2% for all —1/2 <z < 1/2.

The proof of Claim 6.4 immediately follows form the next two claims that bound the expected
values of —A and AZ.

Claim 6.5. The exists Cy > 0 such that

m
_ < < R
Brey s, [FAIAI<1/2 <01 B

Claim 6.6. The exists Cy > 0 such that

2 m I
EPX]’?+1|(ZkX§j):T [A “A| S 1/2i| é 02 ) E ’ (D(PXJI?+1|(ZI€X2]'):T||PX]]-€+1|(Z’€X2].):T) + 1)
Claims 6.5 and 6.6 are proven in Sections 6.1.1 and 6.1.2, respectively. ([l

6.1.1 Proving Claim 6.5

A key fact toward proving Claim 6.5 is that the expected value of Y under PXI_CHK ZoXE )=r is
J J

exactly D icq ;i(7). Indeed, this is exactly the statement of Claim 5.6. Since Y = (1 + A) -
> icg. @ji(T), the random variable A in fact measures how far Y is from its expectation. It follows
that E P, A] =0.

Assume that Ep b,

FialzkxE )= A
[AlJA] < 1/2] <0, since otherwise the claim holds trivially. We

(l(zkxE =
use the following clalm

Claim 6.7. It holds that 0;(x ]+17z ac<]) < 3000 - m, for every j € [m] and all (zk,x’zj,xfﬂ) €
SUDp(Pyex v, )
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Proof. By the definition of szxg, it follows that for every i € gzkmi‘, it holds that aj7i(zkxlzj) €
J J
[0.01,10], and that

1 1
PXﬂlJ‘Z,@X%(lyzkx’;j) >09-—- (1 — m) (63)
1
> o
—3m

where the second inequality holds by the assumption that m > 2. Thus,

> g N1 o) %
1€ k kgk
zkxij T PXj+1,i‘ZkX£j(1‘z x<]) )

k
(Ziegzkzzg O‘M(zkwq))
J

k k .k
5j(ffj+1§2 5U<j) =

Gorpr |30 m
gzkxlzj /100
= 3000 - m.

]
Using that A < 3000-m and that PX;_CH‘(Z;C)(E Ner Al<3]>1- 7z (Equation (59)), it follows

J J

that

0= EPX;?H\(Z’CXQJ-):T[ ] (64)

= Pt zoxs = (A1 S 12 By, Ly AN <1/2
J J

+ Py zixt = |1A] > 1/2] - Ep [AA] > 1/2]

k kExk y—
Xk, 1(zkxk H=r

m m

-3 ) Al|A| < om. R

(1 k;2> EPXfﬂquXE]-):T[ 1A} < 1/2] 43000 - m 2
1

-.E
2 PX;?Hl(szQj):f[

IN

IN

AJ|A] < 1/2] + 3000 - %
where the last inequality holds since, by assumption, & > m > 2, so m/k?* < 1/2 and m?/k*> < m/k.
Setting C71 = 6000 and rearranging the above equation complete the proof of the claim.

6.1.2 Proving Claim 6.6

To prove Claim 6.6 we would like to use Proposition 3.10. To do so, we need to show that A is

well concentrated under P, » v__. This is where we use that the Y;’s are independent under
Xj+1|(ZkX<j)*T

1 : <t< 3.16 yi
PX]’?+1|(Z’9X§].):T Indeed, for 0 <t < 1, Fact 3.16 yields that

P ixen Al 28 = P IV —EIY]| 2 EY]-1]

(E[Y] - t)?
< 2exp<—2(v +b-E[Y] -t/3)>’
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for by = (1) /pi(T), v = 3 ;cq. bipi(T) and b = max{b;: i € G}, where the above expectation
is taken over P)r([j+1\(Z’fX<i):r Here again we use that 7 was chosen condition that thiSt = 1. By
Definition 5.8, it holds that |G| > k/10, and for every i € G it also holds that «;;(7) € [0.01, 10]
and p;(7) > 1/3m (Equation (63)). Claim 5.6 shows that Epn Y] = > icg. aju(T). Tt

Xk 1\(zkxk =7
follows that k£/1000 < E[Y] < 10k, v < 3-10%-mk and b < 30m Plugging into the above equation,
we have that

/1000 - t)?
; e (
Py lzex <=8 2 1] 26Xp< (3-102-mk—|—30m-10k-t/3))

= 2“"(‘1@)7

where the second inequality follows since ¢ < 1 and by setting K7 to be large enough constant.

In the following, we set the constant A of Lemma 5.12 to be 4K;. Since, by assumption, k >
Am > 4Kym the above inequality implies that PH (7R X< )= JA[ > 1] < 1/2. Proposition 3.10
now yields that there exists a constant Ko > 0 Such that
[A%[|A] < 1/2]

Ep
xk |(zkxk )=
Gl <=

m I
< Ko+ (D(Px, 7wt om0 imi1 2l PR it r) 1)

To proof is completed by removing the condition on |6(X% SuTl o <0 1/2 from
PX’~“+1|(Z’“X’“ V=, 8(XE, ) <1/2 via Fact 3.8. Formally, Fact 3.8 yields that
J J ’

IT
D(Pxr 124 x )=royxt, mi2l Py zex =)

1

1
< D(P _||PY + -+ 1).
T Py izt )= (1Al < 3] ( (Pt izext=rlI1Pxryznxk =) + 3

Recall that (Equation (59)) PX;_CH‘(Z;CXQ Ner Al < %] > 1—7% > 1/2, where the latter follows since
J J
k> m > 2. Setting Co = 2(1 + 1/e) Ky completes the proof.

6.2 Round Zero, Proving Claim 6.1

Our goal in this section is to prove that there exists Cy > 0 such that
m
D(PgllQ5z) < Co- 22 - (D(PixtlIRzixy) +1)- (65)

First, observe that if |[D| < k- 271 or 1338'"(1) = PZkaH(SO(Zka)] < 1/2] < 1— 73, then

Bist — (0 (and By = 0) under both P and @, and thus D(Pg1|Q% ) = 0. Henceforth, we
assume that

Dl > k20 and  Puellfo(ZEXE) < 1/2] > 1 - % (66)
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Next, similar arguments to those used to derive to Equation (58) yield that

D(PE Q5 1) < D(Pgkipy—11|Q 20| 5y=1)
< D(Pgk x5 y=11|Qzk x5 By=1)
< D(szxfuso(zkxmgl/z‘|Q/kaf)a
where the second inequality follows from the monotonicity of divergence (Fact 3.5(2)), and the last
inequality follows from Claim 5.10, letting Q’Zka = szXic|I 7,1 1=1°®Qr12;12,ep- Hence, to prove
1 ) ) N
Claim 6.1 it suffices to prove the following claim, which we do below.
Claim 6.8. There exists a universal constant Cy > 0 such that

m
D(szxfnao(zkxmg/ﬂ|Q/ZkX{c) <Co- T (D(szXfHRszf) + 1)-

Proof of Claim 6.8. The structure of this proof is similar to that of the proofs of Claims 6.3 and 6.4
and throughout this proof we point to arguments used before in those proofs.

First, using that szxic[‘(so(Zka)‘ <1/2] > 1~ 5 (Equation (66)) and by similar arguments
we used to derive Equation (60) it holds that

( Its) ) m 1 PZka (Fay) (67)
D PZ’CX’“HJ (ZFXk)<1/2 QZka < —+ E og———F7—. 67
< ko k
11160 1 1 ko akahe 2 XK 16025 xBy | <1/2 Q’kaf(z x7)
In the rest of the proof we show that there exists C{; > 0 such that
Py xr(2*f) m
z lePZka\|50(Zka)|§1/2 sz{“(Z ‘Tl)

The proof of Claim 6.8 would then follow by taking Cy = 2 - C§.%

As in the proof of Claim 6.4, the first step is to lower-bound the right-hand side of Equa-
tion (68) using the product distribution of the marginals. Specifically, the chain rule for divergence
(Fact 3.5(3)) yields that

D(Ppyi x| |Rgrxr) = D(szfongX{c)a

11 _ 17k
for PZ’“X{“ = Hi:l PZin,i‘

Our second step, again as in the proof of Claim 6.4, it to upper-bound the left-hand side of

2*Note the difference from round j: Claim 6.4 — the analogous claim in round j to Equation (68) — did not
immediately implies the proof of Claim 6.3 — the analogous claim in round j to Claim 6.8. The reason is that in
round j we had to take into consideration the distribution of the previous transcript 7, which does not exists for
round zero.
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Equation (68). By the definition of g (see Table 1), it holds that

k
Q kxk(zkml ZQIZIUZIGD(Z ZZ) PZ’“X’“|Z X1 (z x1|zl, )
=1
1 k
= Z]l{('i;Zi) eD}- PZ’CX{“|ZiX17i(Zk$If|Z¢, 3
=1
1 .
- W ) Z 1{(i,z;) € D} - PZkX{“lZiXM<2k$If|Zi, 1)
i€l
1
1 PZka(Zk.’L'lf)
=1 1 Iivz' € DL b S
Pl & T =) J Pz, x, ;(zi1)
Ty

where the third equality holds since PZka\ZiXM(kalﬂziv 1) = 0 for every i ¢ L. Let A =

60(ZFXT), where ZF X} are drawn either from Py or PZka It follows that

PZka( kfﬂlf)

E
/
zkxlfNszX{w|50(zkxf)‘gl/2 Q ka( L )
1
- B [log}
k .k
2k xl PZka||§0(Zka)‘<1/2 ]‘+(50(z xl)
= E |log Al <1 2]
[ e farsy
< E [—A—FAQHA‘Sl/ﬂ,
szxk
1

where the inequality follows since —log(1 + z) < —z + 2 for all —1/2 <z < 1/2.
We conclude the proof of Claim 6.8, and thus also of Claim 6.1, by proving the next two claims,
analogous to Claims 6.5 and 6.6.

Claim 6.9. The exists C7 > 0 such that

m
Ep,, ¢ [FAIIA[<1/2 < Cr -

Claim 6.10. The exists Co > 0 such that
m
Br (6711 < 1/2) < G- ™ (D(Pyuct | Plhy) +1).

Claims 6.9 and 6.10 are proven in Sections 6.2.1 and 6.2.2 respectively. Both proofs use the
setting of Claim 5.7, which we now recall. For i € [k] let p; = Px, (1), and for "2} € {0,1}% x
{0, 1} let f;(z%2%) = ag4(zi)/pi if x’fz = 1 and 0 otherwise. Let Y = 37,1 Yi, where the Yi’s
are random variables defined as Y; = fi(Z*XF) and Z¥ X} are drawn either from P, Xk or sz k-
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As it was the case in the proof Claim 6.4, that the Y;’s are independent under ng v will play a
1

crucial role ahead. Finally, note that Y = (1 + A) - ‘%.

The proof of Claim 6.8 follows immediately from Claims 6.9 and 6.10. g

6.2.1 Proving Claim 6.9
2]
P
Indeed, this is exactly the statement of Claim 5.7. Since Y = (1+ A) - %, the random variable A
in fact measures how far Y is from its expectation. It follows that E Pk [A] = 0.

1

A key fact toward proving Claim 6.9 is that the expected value of Y under P, Xk is exactly

Recall that by the assumptions we made in Equation (66), it holds that |D| > k- 2! and
Py xr [JA] <1/2] > 1 — 5. We use the following claim.

Claim 6.11. If [D| > k- 271, then 6o(2*2%) < 6 -m, for every zFah € Supp(PZkX{c).

Proof. Let zFa} € Supp(PZka). Assume that (i, z;) € D. If follows that ¢ € G and z; € Z;. Since
i € G, it follows that |po,1| < 0.1, which implies that Px, ,(1) > 0.9/m. And since z; € Z;, it follows
that Pz, x, ,(zi[1) > 0.9- 2=¢ > 9=(t+1)  Putting this together, we have that
1{(i,z:)€D}
et g Pryny Gal)
1 s
D
1{(i,2;)€D}
Zielw;f (O_Q/m).Q*(5+1)
D]
3-k-2-m
< ——=-
D]

do(2Fah) =

<

The proof now follows from the assumption that [D| > k- 2671, O

Using Claim 6.11 and calculations similar using to those in Equation (64) complete the proof
of the claim.

6.2.2 Proving Claim 6.10

As in the proof of Claim 6.6, we would like to show that A is well-concentrated under the product
distribution ng Xk Showing this, however, requires more delicate analysis than in the aforemen-
tioned proof.

We rely on the following observation regarding the random variables Y;’s under ng Xk By
definition, Y; is chosen according to the underlying distribution Pz, X;., where Z; and X, are
dependent. However, Y; is not zero only if X;1 = 1, and if X; = 1, the value of Y; depends only
on Z;. Thus, we can decouple the underlying distribution to a product distribution in which Z;

and X ; are independent: we first choose whether Y; is zero according to Px, , and then, assuming
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it is not zero, choose the value Y; gets, according to Pz, x, ,—1. Formally, for y > 0 it holds that
Pz.x, . [Yi=yl = Pz.x,,[ X1 =1 AN i(Zi) =y - i

= PXl,i(l) : PZi|X1,i:1[a0:i(Zi) =Y 'pi]
= PZXLZ[YZ = y]7

where we define P, X1 = Px1 - Pz,x, ;=1 1t s also easy to see that Pz, x, [Yi=0] =Py X1 Y; =
0]. We conclude that Y, and thus also A, has the same distribution under Pl 7k XK and under
Pék xp = Hi:l Py Xia- It will be easier to see that A is well concentrated under the latter
distribution.

Let A = Zle A;, where Ay,..., A are random variables defined as A; = g ;(Z;) and Z; is
drawn from Py = Py x,, . Let p= |D|/2. For 0 < t < 1, it holds that

Zka[|A| >t = Z’“X HIY — | >ty
ZextllY =l =t
PpoxpllY == A+ Al =ty
< P’kkaY—fu 1A= pl > tu]
< Pl A = pl > /2] + Ppoy [IY = Al > ty/2]
= Phul|A — ul > tu/2] + Py [IY — Al > tu/2]. (69)

We bound each term in Equation (69) separately. For the left-hand side term, we use Hoeffding’s
inequality. Indeed, similar calculations to those in the proof of Claim 5.7 show that E P, [A] = p.
Furthermore, the definitions of o ;(Z;) and D (see Tables 1 and 2) yield that A; € [0,2] almost
surely . Hoeffding’s inequality (Fact 3.14) now gives the following bound:

(tu/ 2)2>

Pl A= sl > /2] < 2exp( 2

t2k
< 2exp 61 )

where the second inequality follows since |D| > k-2¢~1 (Equation (66)), which implies that p > k/2.
To bound the right-hand side term in Equation (69), we use Fact 3.16. By the definition of
it holds that

(70)

/
szXka

/ZkaHY - A’ Z tu/Q] = EZkNP/Zk P)I({CHY - A‘ Z t,u/2 ‘ A1 = 04071(2’1), SN ,Ak = 0407]{(21?)].

Fix any zF € Supp(P’Zk) and let ; = a,i(2;). Note that condition on A; = ¢, the random variable
Y; is equal to «;/p; with probability p; = Py, ,(1) and 0 otherwise. Equivalently, Y = Zf L Y/
for b; = «;/p; and Y] ~ Bern(p;). Thus, E[Y] = Zle bipi = Zle a;. Let v = ZZ L b2pi

Zle o?/p;. As we argued above, it holds that o; < 2. Also, for i with «; > 0, it holds that
pi > 0.9/m (if o; > 0, it must be the case that (i,2;) € D, which implies that ¢ € G, which
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means that |pp;| < 0.1). Hence, v < 5km and b = max{by,...,by} < 3m. Letting a = Zle o,
Proposition 3.10 yields that:

Y — Al >tp/2[ A1 =on,..., Ak = o] = ;quY—Cd > /2]
(tu/2)?
<2e0 (-5 0
(tk/4)
< 2exp <_ 2(5km + 3tkm/6))
(tk/4)? >

< 2exp| - tt
- exp< 2(5km + km)

= 2eXP<_192-t(2m/k:)>,

where the second inequality follows since k/2 < p < k, and the last inequality follows since ¢t < 1.
Since the above bound holds for any fixing of z* € Supp(P’Zk), by taking expectation over P/Zk’ we
get the following bound:

Q(f[

2
PlutllY — A] > th/2) = 2exp<—wz-t<m/k>>' "

Finally, plugging Equations (70) and (71) into Equation (69) yields that

PL LAl > 1] < 2ex —tQ—k +2ex —L
zex IS == 2P Ty P\7102 - (m/k)

= Kz'exp(‘m-fm/m)’

where the last inequality holds for Ko = 4 and large enough Kj.

Since, by assumption, k& > Am = 4K;m (we previously set A = 4K), the above inequality
implies that ng X{CHA\ > 1] < 1/2. Proposition 3.10 now yields that there exists a constant
K3 > 0 such that

m
EP, . xi [A%]|A] < 1/2] < K- 7 <D(szxqu\g1/z\|ngX{e) + 1)-

To proof is completed by removing the conditioning on [A| < 1/2 from P, xH|aj<1/2 Via Fact 3.8.
Formally, Fact 3.8 yields that

1
D(Pyixpa<i/2llPzixr)

1 1
D(P pl ++1>.
e R G AR

k2
k >m > 2. Setting Co = 2(1 + 1/e) K3 completes the proof.

Recall that PkafHA| < 1/2] > 1— 7 > 1/2 (Equation (66)), where the latter follows since
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7 Bounding the Probability of Failure in P

In this section, we prove Lemma 5.13, restated for convenience below.

Lemma 7.1 (Restatement of Lemma 5.13). For any constant A > 0 there exist constants X', N >
0 such that the following holds: Let k,m,0 € N, let ¢ € (0,1/2], let W C {0, 1}F+k(m+1) pe
a termination-consistent set (according to Definition 4.3) and let W, R and P be the event and
distributions from Definitions 5.1 and 5.8 respectively, for the above k,m,{,WW. Assume k > X\ -

m? /e and RIW] > (1 — €)%, then Pgmi2(1™+2) > 1 — /.

In the following, let ¢, k,m, ¢, W, W, R, P be as in Lemma 5.13 and let P and @ be the distri-
butions from Definitions 4.7 and 4.8 (respectively) with respect to k,m, ¢, W.

In Section 7.1 we state Lemma 7.2 which captures the heart of the proof of Lemma 5.13. In
Section 7.2 we prove Lemma 5.13 using Lemma 7.2 and in Section 7.3 we prove Lemma 7.2.

7.1 Bounding the Number of Bad Columns in P

In order to give a formal statement for our main lemma, we broadly use the definitions of {p;, ,};”'51,

{Bj,i}?:gl, {aj,i}g’:gl, {6 }m+1 given in Table 1 (Section 5) and the definitions of {7, b ;”Jil,

{2 ; };":Jil, Z;, D given in Table 2 (Section 5), and in addition we define new sets and variables

(Tables 3 to 5) which are also broadly used, and an intuition for their purpose is given below.

The following definitions are with respect to some fixing of j € [m + 1] and 7; = zkm’z] €

SUPP(PZng].)-

2k A 29 el Zr ]
k
Xy Jfl,l :BLQ e xl,k
k
Ty x2,1 €22 e T2k
x]—kl :L‘Jil’l $]71’2 te a’:]_]wk
Xj Xj71 Xj72 . XL’?
_X7]7€~L+1_ L X110 Xmr12 - Xog1 il

Figure 2: A matrix representation of the random coins ZkX (m+1)xk gt the beginning of round j
conditioned on Zngj = 7; for some j € [m+1] and 7; = 2* ac<j € Supp( ZkaJ) (lowercase letter

represents a fixed value and an uppercase for a radnom variable which hasn’t been determined yet).

First, in Table 3 we define 7;;(7;) which measures how much Py il 7R XE (1|75) is far from 1/m

(note that this is different from p; ;(7;) which measures the probablhty accordmg to the next round
bit X;41, and not according to the current round’s bit X;;). Next, we split the set of “good”
columns G, (defined in Table 2) into the sets gﬁj and Q’f‘.j that satisfy G, = ggj ﬁgf_‘j NG (G is
also defined in Table 2) and define a similar set G7 with respect to the {v;;} measurements (see
Table 4 for formal definitions). In addition, we define ] (7;),u! (1), u$(7;) that outputs the first
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round ;' € [j] (with respect to a column i € [k]) which has unexpected large jump in the value

of the measurement. Note that if 1 € z_;; (i.e., the ith verifier is not active at the beginning of

round j') then by definition, v ; = pj; = —1 since X;; = X;11; = 0 (with probability 1) in this

case. Therefore, we define it as follows: ] (7;) outputs the first round ;" € [j] such that 1 ¢ z;;

(equivalently, ¢ € Igczi , meaning that i is “active” at round j) but still has an unexpected large
J

jump in the value of "yj/,i , where in case no such j’ exists it outputs co. Similarly, we define uf and
u$ for the pj; and oy ; measurements (respectively), and define u; to be the first round j' € [4]
which has large jump in the value of (at least) one of the measurements: v;: ;, p;s; or a;s ;. Finally,
for v € {7, p, a} we define jumps”(7;) to be the number of columns i € [k] which have large jumps
in the {v;;}’s measurements (i.e., with u/(7;) < oco0) and define jumps(7;) to be the number of
columns 7 € [k] with a jump in any of the measurement (i.e., with u;(7;) < 00). See Table 5 for the
formal definitions.

Table 3: The v;; measurement

Definition Value
73.4(75) m: PXj,i|ZkX§j(1|Tj) -1

Table 4: the typical columns for each measurement

Definition Value
gl {i € [K]: Vj" € [j].|ry.] <0.1}
gﬁj {’L S [k] Vj/ S [j] pii| < 01}
gffj {’L S [k] V]/ S [ﬂ.ajlyi S [001, 10]}

An important observation of the above is that the following holds:

(a) G-, = G2 NG2 NG.
(b) Vo € {7, pa}. i € GY, = (iGIﬂi)/\(ul’/(Tj):oo).
(c) (z’engﬂg)/\(ui(Tj):oo) — i€GLNGENGING = i€y,

() |G- = — (k= 1G|) — jumps(;).

T

Note that we can interpret (c) as follows: if we have a column ¢ € [k] which is “active” (i.e. i € T ok s
J

or equivalently, 1 ¢ z;;), and it belongs to G — the set of “good” columns at the beginning, and
it has no unexpected jump (i.e., u;(7j) = 00), then it holds that i € G, (i.e., i is a “good” column

Ty 6| > [T | - (k~[6)).
Using the above definitions, we can finally state our main lemma of this section.

in round 7). In addition, note that (d) simply follows by (c) since

T &
l'<j

Lemma 7.2. [Bounding the number of bad columns in P] For any constant A > 0, there exists a
constant X' > 0 such that the following holds: let k,m,{,W,e be as in Lemma 5.13, let P be the
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distribution from Definition 4.7, let G, D be the sets from Table 2 and let jumps be the function
from Table 5. Assume that at least one of the following holds:

1. D] < (1 —¢g/Nk-2¢ or
2. Ep [jumps(ZkX(mH)Xk)] >ek/A,
then R[W] < (1 — e)ﬁ

Namely, Lemma 7.2 implies the following: if R[W] is high enough, then most of the pairs
(i,2) € [k] x {0,1}¢ must be “good” (i.e., in D), and in expectation over P, most of the columns
i € [k] should not have large jumps during the execution, (i.e., Ep [jumps(Z kX (m“)Xk)] should be

small).
Lemma 7.2 is used in Section 7.2 to prove Lemma 5.13, and in Section 7.3 we prove Lemma, 7.2.

Table 5: first rounds with untypical measurement.

Definition Value

W) > Vit el (gl <o) v (L ewey)
’ ! min{j’ € [j]: (|vji] > ) A (1 ¢ 2jri)} Otherw1se
u] (7;) u M (r)

u|'P\>C(7_.) S vy’ E (‘P] { ) (1 € x<j',i)
! ’ min{j" € [j]: (|pj YA (L ¢ aejs)} Otherw1se
uf (1) uf"" ()
u(r) 00 Vi' €[] : (o € 10.01,10]) V (1 € 2cjr ;)

E min{j’ € []: (e & [0.01,10]) A (1 ¢ zjr;)} Otherwise

ui(7;) mm{zz(Tj)an(Tj) g (75) }

jumps’(7;) 2}51 1{w/ (1) < OO}

jumps”(7;) E]igzl 1{uf(1j) < oo}

jumps®(7;) Zz‘kzl {uf(75) < oo}

jumps(;) > izt U{ui(r;) < oo}

7.2 Proving Lemma 5.13 Using Lemma 7.2
In this section we prove Lemma 5.13 by showing that if & and RA[W] are large enough, then

=

ﬁBm+2(1m+2) must be close to 1. Recall that by the definition of P (defined in Definition 5.8),
each bit B; equals to the product B;-liSt . B}ndx - B, In the following, we extend the dis-

tribution of P by separating the bits B;‘iSt into two new bits B;argeja and By such that
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~

1 _set - . D _
PBhistlBl_argejet pexp-cur = Bjarge et B;Xp Cur. We do so by deﬁnlng PBéargeset = ]].{|D| 2 k - 2Z 1}
J J g

and ﬁngp,cur = ]l{EkaX{c ISBgqukX{c (0)] < 4z}, and for j € [m + 1] we define ﬁB;arge,set

ﬂ{‘ngXij > g} and Prgx-eur gixt, = ]l{EPX;“IZkXEj [PB}:“WZ’“X% 0)] <}

In order to prove Lemma 5.13, we handle each type of bit separately. In Section 7.2.1 we handle
the Blaree-set bits, in Section 7.2.2 we hande the B}ndx bits, and in Section 7.2.3 we handle the B
and B bits. Finally, in Section 7.2.4 we collect all parts and deduce the proof of Lemma 5.13.

kxk —
‘ZX<j

7.2.1 The Large-Set Bits

Before handling the “large-set” bits, we first prove the following simple claim which state that the
set of active verifiers Z y(m+1)xx is large.

Claim 7.3. There exists a universal constant X > 0 such that for any q € (0,1) the following holds:
If P[|Zyominxi| < &] > g, then RIW] < L.e7k/2,

Proof. Assume P[|Z y(minxk| < g] > ¢ for some ¢ € (0,1). Observe that the distribution of

|Z  (m+1)xx| when X (m+1D)xk jg drawn from Ry (minyxr is exactly Bin(k, (1 — %)m“). Since (1 —

Lym+l > é for m > 2, Hoeffding’s inequality (Fact 3.14) yields that
k .
R||Z x(mr1yxn| < 3 < Pr[Bin(k,1/8) < k/9]
<e A,
for some universal constant A > 0, and we conclude that

] < = e kA

I m X <
P[|Ix(m+1)><k‘ S

©o|x|o|F
el
<=

as required. O

In addition, we prove that if R[W] is high enough and if k is large enough, then the probability
(over P) that |G,k y(m+1)xk| > % is high.

Claim 7.4. For any constant A > 0, there exists constants X', X" > 0 such that the following holds:
k
If Pl|G yxxominyxr| > 5] < 1—¢/X and k > XN /e, then RIW] < (1 —&)¥m.

Proof. Assume that P[|G i yxmi1xr| > 5] < 1 —¢/X for some constant A > 0. Note that by

definition, for any fixed Z*X(Mm+D*k it holds that
1G 2 xctmanyxr| = | xtmnyer| = (k = |G]) — jumps(Z* X Tk (72)
By assumption, one of the following items must hold:
1. |G| <0.999k, or
2. P[|Znxminxr| < g] >¢e/2\, or

3. P[jumps(ZF X (m+1xk) > 0.001%] > /2.
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If Item 1 holds, then we deduce from Lemma 7.2(1) that R[W] < (1— e)ﬁ, where c is the constant
N = X(1000) of Lemma 7.2 (note that [D| < |G| - 2%). If Ttem 2 holds, then we deduce from
Claim 7.3 that R[W] < 2. ekl < (1- 5)%, where ¢ is the universal constant A of Claim 7.3,
and the second inequality holds by choosing the claim’s constant X’ to be large enough such that
k > X/e implies it. If Item 3 holds, then in particular it holds that

. m ek
Ep [J“mpS(ZkX ( HM)} = 2000

Hence, we deduce from Lemma 7.2(2) that R[W] < (1 — E)ﬁ where ¢’ is the constant X' =
A (2000)\) of Lemma 7.2. By setting the claim’s constant X = max{c, 2¢, ¢}, the proof follows.
O

As a corollary of Lemma 7.2 and Claim 7.4, it holds that if k and R[W] are large enough, then
the probability of failure (over P) in the “large_set” bits is low.

Corollary 7.5. For any constant X\ > 0, there exists constants X', \" > 0 such that the following
= k
hOldS.' If PB]arge,set Blargejet(1m+2) S 1 - 6/)\ and k Z A//E, then R[W] S (1 — 6) Mom
0 R ik

Proof. Assume that ﬁBlarge,set Blargeset(1m+2) < 1—¢/\ for some constant A > 0. If ﬁBlargwet(l) =
0 1 m41 0

0, then |D| < k -21 and the proof follows by Lemma 7.2(1). Otherwise, ﬁBlarge,set(l) =
0

1 and thel‘efOI‘e, PBlargejet Blarge,set(1m+2) S 1 —_ €/A Since szx(m+1)><k: = P and Since
1 yeue

"“m—+41
~

PBéargeﬁet,...,B:’ffﬁet|Z’“X(m+1)><k(1m+2) = ]l{’gszmxk| > 1’%} > ]].{|gzkx(m+l)><k| > 1%} (fOI' any

fixed ZFXmHDxE) we deduce that P[|G iy (mrnyxk| > %] < 1 —¢/X and the proof follows by

Claim 7.4. U

7.2.2 The Index Bits

In order to bound the probability of failure (over ﬁ) in the “index” bits, we make use of the
following two claims. The proof of the first claim appears in Corollary 7.24.

Claim 7.6. For any constant X > 0 there exists a constant N > 0 such that if
Ep [Ele Z;ﬂil vii - T{vj > 1}} > ek /N for v = ;. (ZFXMHDXE) Cthen RIW] < (1 — 5)ﬁ
Claim 7.7. For any constant A\ > 0 there exists a constant N > 0 such that if
Ep [y S (U 50) - Mus = ] = eh/ for 70 = 2a(Z5XE)) and w; = uy(ZEX (D7),
then R[W] < (1 — &) ¥m.
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Proof. Observe that

k m+1
Ep Zz(lJr’Yj,i)']l{uz‘:j}
i=1 j=1
E m+1 -
=Er Z Z(l +75,) - Hus = 5} - (M5, <1} + Ly, > 13})
i=1 j=1
k m+1 k m+1
<2-Ep ) > Mui=j5} +2-Ep > ) - Uy >1}
i=1 j=1 =1 j=1

k m+1
=2 Ep [jumps(2°X "R 12 By Z Z v g > 1},

By assumption, at least one of the following items must holds:

1. Ep[jumps(ZEX (m+t1xk)] > & o
k m+1 €
2. Ep [Zi:l >t Vi Mg > 1}} Z Ix

If Ttem 1 holds, then Lemma 7.2(2) implies that R[W] < (1 — a)ﬁ, where ¢ > 0 is the constant

N = XN(4X) > 0 of Lemma 7.2. If Ttem 2 holds then Claim 7.6 implies that R[W] < (1 — E)ﬁ
where ¢/ > 0 is the constant A’ = X (4\) > 0 of Claim 7.6. Hence, the proof follows by setting
N = max{ec, ¢'}. O

__ Asacorollary of Claim 7.7, if k and R[W] are large enough, then the probability of failure (over
P) in the “index” bits is low.

Corollary 7.8. For any constant A > 0, there exists constants X', \" > 0 such that the following
holds: If PB(i)ndx’“.’Binixl(lmJ’_Q) <1—¢e/Xand k> N/e, then RIW] < (1 —e)N"k/m,

2X°
then |D| < (1— &) - k- 2% and by Lemma 7.2(1) we deduce that R[W] < (1 — 5)ﬁ, where ¢ > 0 is
the constant A’ = X'(2A) > 0 of Lemma 7.2. Otherwise, it holds that PBilndx7...,Bin<dF)cl(1m+2) <1l-g5.

Observe that for any fixing of ZF XM +DXE with |G iy msnyxr| > % and for any j € [m + 1], it

Proof. Assume that ﬁBindx Bindx (1m*2) < 1 — ¢/\ for some constant A > 0. If ﬁB(i)ndx(O) > =

67



holds that
PB;”dﬂZkXéj (0) = PriNQl\ZkXQj,IEQj_l [Z ¢ g]]

. Zlegj_l \g] a]ﬂ'
Zi’egj71 Qj

) o 1._—<
i€Gj1\G; “I—1e PJ”Z xk 1(1)
J—

Ei’egj71 aj,i’

P 1

) Ylieg,-1\g; 10" ~EwrgoIy -
- 0.01 - |QJ|
m
< 25000 - T Z PXM\Z’CXEJ,,O)
1€G;_1\G;
1 k
= 25000 ;- > 1+ 50) - L{ui = 5}, (73)
=1

where we let G;_; = QZng X and G; = QZng. The second equality in (73) holds by Claim 5.4
J— J

the first inequality holds since i € G;-1 = aj—1,; € [0.01,10],|pj—1,] < 0.1 and since

Zi/egj,l Qi > Ei'egj ajy > 0.01-|G;|, and the last inequality holds since |G| > |G 7k x(m+1)xk| >

Tko and since m > 2. Therefore, by assumption we deduce that

€ ~ ) o
m+1 N
< indx
<D Pgnax(0)
j=1
m+1
=
[m+1 k 1
S EP Zl PB}“dx|ZkXéj(0) | ’gzlcx(m+1)xk| Z E —|—P|:|gsz(m+1)Xk] Z 10‘
_]:
k m+1 1
<2500 B |3 3014750t =3} + PGl = B

where the last inequality holds by Equation (73). Hence, one of the above two item must hold:
L Ep[ S S ) s = g} = ks, or
2. P[\gzkx(mﬂ)xk] > %‘ > o

If Item 1 holds, then Claim 7.7 implies that R[W] < (1— 6) «m where ¢ is the constant A’ = X (10°-))
of Claim 7.7. If Item 2 holds, then by setting the constant A\’ of the claim to the constant A’ = X' (4\)

68



of Claim 7.4, we obtain that Claim 7.4 implies that R[W] < (1 — 5)ﬁ where ¢’ is the constant
A= X'(4)\) of Claim 7.4. The proof then follows by setting the constant A" of the corollary to
N =max{e,d,"}. O

7.2.3 The Current-Round Bits

In this section we handle the BS™ and By"" bits. Assuming that R[W] is large enough, the

largejet = 1 (i.e., the set of“good” columns G,y is large) then
<J

BjXp “ =1 (i.e., the probablhty that |d;] > 0.5 is small).

following claim states that if B;

Claim 7.9. There exists two constants A\, \' > 0 such that the following holds: If k > X -m? and
~ k
Elj S (m + 1) Such that PBl'arge,set Bexp,cur(l,O) > 07 then R[W] S (1 - E) Al-m
J R

Proof. We separately handle two cases: 7 =0 and j € [m + 1].
The case j = 0: In this case, it holds that |D| > k- 27! (in particular, |G| > £), and that

m
PZka[c?O(ZkX{“)‘ >05} - (74)
and recall that
k, .k i (%) 0
o) = | 30 B /(1P1/2)
1 xlf
In the following, we define
Lo (o) = (S, 7258 ) /(s a0se) - 1
7 ,T
2. 35 (%) = (Zhoy a0al=)) /(IDI/25) =1 = (25 1,5{25)6?;)/\@\ ~ 1.
and observe that
_ AT
5o = ( 1+ 6%) Zaol) (yDy/Q) 1
—(1 §5) - (1+67) - 1p1/24) /(1D1/2¢) -
= ((1+6) - (1+67) - 1DI/2°)/(IDI/
=68 4+ 07 + 68 - o8 (75)

Therefore, by Equations (74) and (75), one of the following must holds

or

L Pruxr [0 (XT3 Z%)| > 0.2] > 5,

2. Py [|6Z(Z7)] > 0.2] > 5%
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Note that the sum _M@2)EDY  when 2k is drawn from R is a sum of k independent
i=1 Pz, ix, ;=1(2i) Z

random variable, where

szRzk

1{(i, z) € D} . Y(i,2) eD}
Z >] 2 2.2 =)

Pzx, i=1(2 2€{0,1}¢ i=1 Pzx1=1

1101 ZZ]I{ZZGD}

2€{0,1}¢ i=1
C (0.9,1.15) - |D| (76)

and the 7" variable is bounded in the interval [0, 1%0.1 -2 C [0,1.15 - 2]. Therefore,

PerNRZk |:

55(&)‘ > 0.2]

k .
ZM_“N >0.2-|D|

i—1 PZi\Xl,izl(Zz‘)

k . k .
Z 1{(i,z) e D} Baor, [Z 1{(i,2) € D}]

< Pl"sz
ot [ i=1 PZi‘leizl(zi) =1 PZi|X1,i:1(Zi)
2-(0.05 - |DJ)?
<9 exp( —2 WD)
= eXp( k- (115 20)2
k
= 2o <‘2103m> (77)

where the first inequality holds by Equation (76), the second one by Fact 3.14 (Hoeffding’s inequal-
ity) and the last one holds since |D| > k - 271,

In the following, fix z* with |67 (z%)] <02 = (zle ao,i(zi))/(k 207128 -1 > -02 =

Zle a,i(2;) > 0.4k. Note that the sum >, | ;;’i(?"l)) when z¥ is drawn from Ry is a sum of
z7 1,7

= PrszRZk [

> 0.05 - |D|]

ao,i(zi) )
PXl,i(l)

is distributed according to b; - Bern(1/m) for b; = g}g’i(?l)) € (1i811()zi)/m C (0.9,1.15) - m - api(2)-
1, :

k independent random variables, where the i*® variable (which corresponds to 1{z% = 1} -

Therefore,

k k
a0.i(2;) 1
E E : : E i(zi) €(0.9,1.15) - E i(zi
m’fNRXk PXM(l) € 1+0.1 gt Qo, (Z) (0 9 15) Q, (Z) (78)

ielz;f =1
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and we obtain that

5 (¥ zk)) > 0.2}

aOz z
:Prz’f~RX§ Z PX1 2040@27@ >0.2- Zaolzl
y ;

k
0,i(2i) ,i(2:) (o
< Prapeng || 20 By, (1)~ Pt | 2 B, | |7 009 200l

€1 €l i=1
e (_ (005 350, aoi(24))? >
2(2:Z 1 b2 /m + max{b;} - 0.05 - Zl 1 0,i(2)/3)
< 2exp (‘1012m> (79)

where the first inequality holds by Equation (78), the second one holds by Fact 3.16 and the third
one holds since max{b;} < 2m and Zle api(zi) > 0.4k.
Using Equations (77) and (79), we conclude that

00(Z°XE)| > 0.5] < Ry |6(2%)] > 0.2] + Rt sz m 02| |76 (XF: 29)] > 0.2]

k
= 4'eXp<_ 104m>’

kyk
I Ry xr [|60(Z X}i)y > 0.5] . 4.exp(_210%m)
Pyixr [|0(ZFXT)| > 0.5] m/k

RZ’“X{C [

< (1 - 5) 2~1§4m

where the last inequality holds by choosing the constant A’ of the claim to be large enough such
that £ > X\ - m? implies it.
The case j € [m + 1]: In this case, it holds that

> k/10 A Pys_|zexe, Ha Xk 28Xk, )‘ > 0.5] > ﬁ} >0 (80)

In particular, there exists zFz* < € Supp (P« Xk, ) that satisfy both conditions. In the following, fix

such zkxli e Recall that

( +0j(x ]+17z l’<]) Z Qj; = Z Qi

P (1] 2kzk
i€G Kk €0 kN1 XHM\Z’CX%( |#52'%;5)
< i+l
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where a;; = aj,;(zFzk ;) is according to Table 1. Therefore, it holds that

1
k_k
Prxfﬂ Py k lzkxk (-|zkzk [’5 ]+1,z x<j)‘ ~ 2] Y
87}
=P Di D '
r$§+1NPXk+1|ZkX2]-(.|Zkzlzj) Zesﬂz]_ pz ( 0 5)’LEZSQZ
=} 41
m
72

where we denote § = gzkx,zj (recall that |S| > k/10), oy = aj7i(zk:clij) € [0.01,10] and
pi = Px,., _‘kag_(llzkm’ij) € (1£01) 11— 1) Observe that when taking xfﬂ ~
I3 J

m

RXJ;;+1|ZkX§j(-|kalij) (i.e., without the conditioning on W), the term Ziesﬂlzk 5t is a sum
»

of |S| > k/10 independent random variables, where the element that corresponds to i € S is

distributed according to b; - Bern( (1-— —)) for b; = O" € 7 io 1T (1ai Ty Therefore,

o
E:B?+1NRX1€ |zkxk (‘zkxzj) Z J Zaz - 0 9 1. 15 Zal (82)
+1 <J ’ Di 0.
zeSﬂl k ZGS zeS
Jj+1
and it holds that
k, .k
Pl‘x?ﬂNRXk 1|Z;€X;€ (|zkzh H5 ]+1,2 x<])‘ > 0.5] (83)
Jj+

Q;
N PrxfﬂNka zhxk (2Rl ;) Z i ¢ (1+05)- Z i
AR i€SN1 =
Jj+1

o (67
< Pro g, izt CI2Fa) > o eknRy izt (FaE) > ol 035> o
€SN 19:;? €SN lx’?
L J+1 J+1
2 2
<2exp| — 0357 (2.ies 1)

2(Lies 5+ A (1= 5) + 0.1 maxies {5} Lies i)

2 (N )2
e 0352 - (X0 )
2(300m - > cq i +30m - Y g )

k
§2eXp<_6.106m>’

where the first inequality holds by Equation (82), the second one holds by Fact 3.16 and the last
one holds since Y, g a; > 0.01 - |S| > k/103,
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Finally, by Equations (81) and (83), we conclude that

ok ko ko
Prx§+1NRXk kag('zkw’ij)[‘dﬂ(xj-irl’z x<])‘ > 0.5}
J

R[W] < j+1 < 2exp(_/]fi-2l()6m) <(1- 6)5%,
Ak .k k m
Py o o [P0

where the last inequality holds by choosing the constant A of the claim to be large enough such
that & > A" - m? implies it (recall that € € [0, 3]). O

As a simple corollary of Claim 7.9, if & and R[W] are large enough, then the probability of
failure (over P) in the “expected current” bits is low.

Corollary 7.10. For any constant X > 0 there exists constants N, \' > 0 such that if
~ k
Ppexp-cur pow-en (1MF2) <1 —g/X and k > N -m? /e, then RIW] < (1 — &)¥m .

oDy

Proof. Assume that ﬁngp,cur7.“7 Bex&cur(lm“) < 1—¢/\ for some constant A > 0. By Claim 7.9, we

can focus on the case that PBexp,cur pexp-cur Blargeset Blargeset(1m+2|1m+2) = 1. Note that
0 1 m41 | 0 1 m41

1m+2)

~

N
P exp-cur exp-cur (
BS B

P large_set large_set 1m+2 < =< mtl < 1 — & )\
BO 7""B’m+1 ( ) o PBexp,cur gexp-cur Blarge,set Blarge,set (1m+2‘1m+2) - /
0 o Em4l ‘ 0 T mA41
ererore € Proo1 101l1OwWs orollar, 0.
Therefore, the proof follows by Corollary 7.5 O

The above yields that the probability of failure in the “current” bits is also low.

Corollary 7.11. For any constant X\ > 0 there ewists constants N, N’ > 0 such that if
~ k
PB(C)ur“”’B;tLl_l;_l(lm—’—% <1l- E/)\ and k> N - m2/£, then R[W] < (1 — 8) Nem

Proof. Assume that ﬁBgur,...,Bfrgl(lmH) < 1—¢/\ for some constant A\ > 0. Note that

ﬁB(c]ur7...7Bcur (1m+2)

PBeprcur gexp-cur (1m+2) S — m+1
0 e m1 PBgurv“'vB::il IBSprcur ..... B:iicur (1m+2 | 1m+2)
1—¢/A
T1-(m+2)- %
e
<1- =,
27

where the last inequality holds by choosing the constant A’ of the corollary to be large enough such
that k& > X - m?/e implies it. The proof then follows by Corollary 7.10. (|

Asa corollary of Corollaries 7.5 and 7.10, if £ and R[W] are large enough, then the probability
of failure (over P) in the “history” bits is low.

Corollary 7.12. For any constant X > 0 there exists constants N, \' > 0 such that if
~ k
PB(})list7'._7Bhisj:1(1m+2) <l—¢/Xand k>N -m?/e, then RIW] < (1 —&)¥m.

Proof. Tmmediately follows by Corollaries 7.5 and 7.10 since B?iSt = B;-arge’set - By O
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7.2.4 Putting It Together

The proof of Lemma 5.13 is now trivially holds by the previous sections.

Lemma 7.13 (Restatement of Lemma 5.13). For any constant A > 0 there exist constants X', X" >
0 such that the following holds: Let k,m,0 € N, let ¢ € (0,1/2], let W C {0, 1}K+k(m+1) pe
a termination-consistent set (according to Definition 4.3) and let W, R and P be the event and
distributions from Definitions 5.1 and 5.8 respectively, for the above k,m,l,W. Assume k > X\ -

m?/e and RIW] > (1 — E)ﬁ, then Pgmi2(1™12) > 1 —¢/A.

Proof. Let k,m,E,E,W,VV,R,ﬁ as in Lemma 5.13 and assume that ]33m+2(1m+2) < 1—¢/) for
some constant A > 0. Since Bj = BJ"" - B;liSt . Bjindx, at least one of the following must hold:

p cur cur m+2 —_— i
1. PBO 7”.7Bm+1(1 ) <1 3% O

[ ) m—+2 €
2. PBngt7"~7B2;it1(1 ) < 1 - ﬁ’ or

~

. . m+2 _ £
3. PB(l)ndx’7B$:l_xl(1 ) < 1 3N-

The proof then immediately follows by Corollaries 7.8, 7.11 and 7.12. g

7.3 Proving Lemma 7.2

In this section, we prove Lemma 7.2, restated for convenience below.

Lemma 7.2. [Bounding the number of bad columns in P] For any constant A > 0, there exists a
constant X' > 0 such that the following holds: let k,m,{,W,e be as in Lemma 5.13, let P be the
distribution from Definition 4.7, let G, D be the sets from Table 2 and let jumps be the function
from Table 5. Assume that at least one of the following holds:

1. |D| < (1 —¢g/Nk-2¢ or

2. Ep [jumps(ZFXmHD>E)] > e/,

k

then RIW] < (1 —¢g)¥m.

In the following, fix k, m, £, e, W, W, R, P,G,D as in Lemma 7.2, and let jumps”, jumps?, jumps®
the function from Table 5. The main components of Lemma 7.2’s proof are divided into Claims 7.14
to 7.16, proven separately in Sections 7.3.1 to 7.3.3, respectively.

Claim 7.14. For any constant A\ > 0 there exists a constant \' > 0 such that if |D| < (1—¢/\)k-2°,
then R[W] < (1 — &) ¥m.

Claim 7.15. For any constant X\ > 0 there exists a constants N > 0 such that if
k
Ep [jumps”(ZEX (M+ADXKY] > ek /X for some v € {7, p}, then R[W] < (1 —&)¥m.

Claim 7.16. For any constant A > 0, there ewists a constant X' > 0 such that if
k
Ep [jumpso‘(ZkX(mH)Xk)] >cek/A, then RIW] < (1 —g)¥-m.

The proof of Lemma 7.2 now trivially follows by Claims 7.14 to 7.16.
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Proof of Lemma 7.2. Let k,m,f,e, W, W, R, P as in Lemma 7.2 and assume that at least one of
the following holds for some constant A > 0:

1. |D| < (1—¢/N)k-2¢ or
2. Ep[jumps(ZF X (m+DXB)] > ¢k /A,

If Item 1 holds then the proof follows by Claim 7.14. Note that by definition of jumps, it holds that
jumps(7;) < Zye{’y,p a}jumps”(Tj) for any input 7;. Therefore, if Item 2 holds then there exists

v € {v,p,a} such that Ep [jumps”(Zk’X(mH)Xk)] > g—’f\ If the above holds for v € {, p}, then the
proof follows by Claim 7.15, and if it holds for v = «, then the proof follows by Claim 7.16. g
7.3.1 Proving Claim 7.14

Before proving Claim 7.14, we start with a simple claim that connects the {pg;}’s measurements
with R[W].

Claim 7.17. It holds that

k
1 1

log —— > . i i 02
8 R = Im ;:1 min{|po |, o5}

Proof. Compute

k
1
k k

14 pgi, 1
> ZD(PXL'LHRXI,'L) = ZD(yan||m>
=1

i=1
1 k
> R : z;min{|p0,i|’ p%,i}v
i=
where the first inequality holds by Fact 3.6, the second one holds by Fact 3.5 (the product case of

chain rule) and the last one by Fact 3.9. g

As a corollary of Claim 7.17, we obtain a lower bound on |G| in case R[W] is high enough.

Corollary 7.18. For any constant X\ > 0 there exists a constant A’ > 0 such that if |G| < (1—¢/\)k,
then R[W] < (1 — &) ¥m.

Proof. Assume that |G| < (1 —¢/\)k for some constant A > 0. Then it holds that

k
1 1
1 > . E i Ny
Og R[W] — 4m P mln{|p0, |’p0,l}

1 . 2
> __ . . )
> D min{lpol, o6}

i€[k\G
001 (k—|G) ek
- 4m —400-m
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— R[W] < e Tom < (1 —¢)5om,

where the first inequality holds by Claim 7.17 and the third one holds since i ¢ G = |po;| > 0.1.
O

The last claim we need in order to prove Claim 7.14 gives a lower bound on the average size of
the sets {Z;}icx) (defined in Table 2) in case R[W] is high enough.

Claim 7.19. For any constants X\ > 0 there exists a constant N > 0 such that if E;g [|Zi|/2£] <
1—e/X then RIW] < (1 — &),

Proof. Assume that E;g[|Z;|/2] < 1 —¢/A for some constant A > 0. If |G| < k/2 then the
proof immediately follows by Corollary 7.18. Therefore, in the following we assume that |G| > k/2.
Observe that

k
1
log R[W] =z D<szxf'”Rzkxf> =D (szfo 11_11 RZin,z)

k
>> " D(Pzx.lIRzx.,) 2> D(Pzx,,lIRzx.,)

i=1 Y
L+ po,i
2 Z TZ ’ D(PZi\Xl,z:lHRZi)
i€g
0.9
z ZD<PZ¢|X1,Z~=1HRZZ~> (84)
i€g

where the first inequality holds by Fact 3.6 and the second one by Fact 3.5 (the product case
of chain rule). In the following, let ZF = {z € {0,1}": Pzx,,=1(2) > (1 +0.1) 27} and
Z- = {z € {0,1}% Pzx,,=1(2) < (1 -0.1) - 2%}, and observe that Z(JZ = {0,1}*\ Z,.
Therefore, by assumption it holds that E;g[|Z;" ‘ /2] > & or Eig HZ;’/ 2] > 5. If the first
bound holds, then by Equation (84) we obtain that

1 0.9 . -
R D(Pyx, =1(ZD| 1Rz (2))

> 2%9 : D((l +0.1) - |Z’j]/2€y|\z’j\/2f)

1€G

0.9-0.12 _
2 gAY

log

= 09 161 mig|21/2']

4m
ek

> v
— 1800 - m

= R[W] < e~ Toom < (1-— g)ﬁ7

76



where the first inequality holds from Equation (84) by Fact 3.5 (data-processing), the third one

holds by Fact 3.9, the fourth one holds since |G| > k/2 and E;._g [‘Zﬂ/ﬂ] > 5y and the last one

holds since ¢ € [0, %] Otherwise, the second bound holds and we obtain that

1 0.9 — z—
o8 77y 2 22 5y D(Pai (2R (20)
0.9 > >
> 2 p (-0 2|22 )
1€G
0.9-0.12 __
> “am Z‘Zz ‘/26
i€g
0.009 -
ek
= 1800 - m

— R[W] < e—% < (1 _5)%

The proof of Claim 7.14 now trivially follows by Corollary 7.18 and Claim 7.19.

Claim 7.20 (Restatement of Claim 7.14). For any constant A\ > 0 there exists a constant X' > 0
such that if D] < (1 —e/\)k - 2¢, then R[W] < (1 — &) %-m.

Proof. Assume that |D| < (1 — e/A\)k - 2¢ for some constant A > 0 and recall that D = {(4,2) €
[k] x {0,1}¢: (i,2) € G xZ;}. Compute

D|
L-e/Az
= Pr(; o) xfo,13¢[(4, 2) € G xZi]
4 |1Zi]
= Eicg |
Therefore, it must holds that % < 1—% or B g ['f—g'} < 1—% and we conclude from Corollary 7.18
and Claim 7.19 that R[W] < (1 — 5)# by choosing \' = max{¢, ¢} where ¢ is the constant \'(2))
of Corollary 7.18 and ¢ is the constant X' (2)) of Claim 7.19. O

7.3.2 Proving Claim 7.15

Before proving Claim 7.15, we first state and prove some useful facts about the {v;;} and {p;;}
measurements when drawing Z5X (m+Dxk from P (done in Sections 7.3.2 and 7.3.2, respectively),
and the proof of Claim 7.15 which follows from these facts is given in Section 7.3.2.
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Facts About the {v;;} measurements The following claim connects the jumps in the mea-
surements {7;}jefm+1),ic[k] (over P) with R[IW].
Claim 7.21. It holds that

k m-+1

1 1 .
log 77 2 g - P | 22 2 min{hys

i=1 j=1

a%z,i} : 11{1 ¢ X<j,i} )

where 7;,; = v;:(Z* Xk )

Proof. Compute

log ] > D(szx(mﬂ)xkHRsz(mﬂ)”)

1
RW
m+1
> ZE e, | P(Prtizexe |1 Rxsizics, )|

m+l k
- Parxt, D(PXJE'ZICXEJH HRXj’i|ZkX§i>]
Jj=1 i=1
k m+1
=z Zl Z EPZ’CX@J. [D (PXj,ilszﬁj||RXj,i\Z’fX§j)]
=1 j=1
k. m+1
1+
:ZZEPZRXIC|:D< ]ZH )ﬂ{l¢X<j,z}:|
i=1 j=1 <J
1 k m+1
R Z Z E kxk mln{h/] Z| 7] z} ]1{1 ¢ X<] z}]
=17
1 k m+1
= am P > > minflyaladid 1{1 € Xeja} |
i=1 j=1

where the first inequality holds by Fact 3.6, the second one holds by the chain-rule property of
KL-Divergence (Fact 3.5(3)), the third one holds by the product case of chain-rule (Fact 3.5(3))
and the last one holds by Fact 3.9. (Il

As a first corollary of Claim 7.21, we obtain an upper bound on the sum of squares of “small”
jumps in the values of {7;};cm+1),icjx) (over P) in case R[W] is high enough.

Corollary 7.22. For any constant N\ > 0 there ewxists a constant N > 0 such that if
P[Zf:l Z?Hll ’7]21 {1 ¢ Xeji} - 1{v; < 1}} > ek/X for vji = ’Yj,i(ZkXﬁj), then R[W] <

(1—¢) o
Proof. Immediately follows by Claim 7.21. O
As a second corollary of Claim 7.21, we obtain an upper bound on the sum of “large” jumps in

the values of {;}jem+1,icik) (over P) in case R[W] is high enough.
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Corollary 7.23. For any constants A > 0 and c € (0,1) there exists a constant \' > 0 such that if
one of the following holds:

1. Bp S, S gl - {1 ¢ Xeji} - Ml > c}] > 2k/, or

2. Ep| Y5 1{u)”" < oo} | 2 ek,

k

for v = vj,i(ZkXij) and ul7|>c = upr(ZkX(mH)Xk), then RIW] < (1 —¢)¥Vm

Proof. If Ttem 1 holds, the proof follows by Claim 7.21 and by the assumption that € € [0, ] since
for any i € [k], j € [m +1] and 7; = 2* :B<] € Supp(P 7hXE, ) it holds that

min{|y;,i (7)), 754(15)°} - {1 & Xji} > ¢ [yza(m)| - {1 ¢ X} - B{|y5(75)| > ¢}

If Ttem 2 holds, the proof follows by Item 1 since for any zFz(m+D*k ¢ Supp(P) it holds that

m+1
]l{upbc(zkx(m-i-l)xk) < OO} _ Z ]l{uL7|>c(kalij) _]}
j=1
1 m+1
> k, .k .
<< Z!vﬂ k)| auf k) = )
1 m+1
k .k k. .k
<23 k)] 10 ¢ X 1altat )| > o)
j=1

As a trivial corollary of Corollary 7.23, we now prove Claim 7.6.

Corollary 7.24 (restatement of Claim 7.6). For any constant \ > 0 there exists a constant A’ > 0
such that if Ep|SF_ Z;Hll Yii - 1{v;i > 1}] > ck/\ for i = v;i(ZFEXMADXE) then RW] <
(1- e)ﬁ

Proof. Immediately follows by Corollary 7.23(1) with respect to ¢ = 1. O

Facts About the {p;;} measurements The following claim connects the jumps in the mea-
surements {p;}jefm+1),ic[k] (over P) with R[IW].

Claim 7.25. It holds that

1 1
RIW] = 4m

1
1 1—— Se'uena So 9
0g —( m) max{ dd}

where S, == Ep|>F_| 2 jeim+1] Ay, mn{|pjl, p?z} 1{1 ¢ X.j;}| for v e {even,odd} and p;; =
Pj,i(ZkXij)-
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Proof. Fix v € {even, odd} and compute

log > D(Pygi xt(m+vyxr || R gi xm+1)xx)

1
R[W]
> Z Eszxg _D <Pxfxf+l|zkxgj HRX]’?XJ’FH\Z’CXQJ.H
. J
JEM+1NN,

2 Z EPZkXQJ D<PXk |ZkXE HRX +1|Z’“X§j)}

JE[M+F1NN,

k
- Z EPZ’“XQJ D<P XF|ZEXE; HH Xj+1,ilZkXE; )]

JE[M+1]NN,

k
ZZ Z EPZkX |:D( Xjt1, 1|Zka H J‘H’i‘ZkXZ?')}

i=1 j€[m+1]ﬁNu

Y Y e oM Dita - L) ane ]

i=1 je[m+1]NN,

k
1 1 .
>3 X Brg |l ) minfla
i=1 je[m+1] N, !
1 1
= (1 - 7) - Sy,

 4m m

o} 1{1 ¢ X<]-,@-}]

where the first inequality holds by Fact 3.6, the second one holds by the chain-rule property of
KL-Divergence (Fact 3.5(3)), the fourth holds by the product case of chain-rule (Fact 3.5(3)) and
the last one holds by Fact 3.9. O

As a first corollary of Claim 7.25, we obtain an upper bound on the sum of squares of “small”
jumps in the values of {pj;}jcim1),icr) (over P) in case R[W] is high enough.

Corollary 7.26. For any constant A\ > 0 there exists a constant X' > 0 such that if
P[Zle St p? {1 ¢ Xeja} - 1{pj < 1}} > ck/X for pji = pji(ZFXE;), then RW] <

(1—¢) Vo

Proof. Assume that Ep ZZ 1 thl p?z 1{1 §é X<jz-} -1{p;; < 1}| > ek/\ for some constant A >

0. Since for any i € [k], j € [m + 1] and 7; = 2*a* ;€ Supp(PZka ) it holds that

min{|p;i(7)], p5,(m5)} - {1 & Xeji} > p5(r5) - {1 & Xji} - L{pja(7y) < 1},
our assumption yields that there exists v €  {even,odd} such that S, =

Ep [Zle 2 jeim+1] A, mn{|pjil, pJQ,L} 1{1 ¢ Xt > % The proof then immediately
follows by Claim 7.25 and by the assumption that e € [0, %] O

As a second corollary of Claim 7.25, we obtain an upper bound on the sum of “large” jumps in
the values of {pji}jcm+1,icik) (over P) in case R[W] is high enough.
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Corollary 7.27. For any constants A > 0 and c € (0,1) there exists a constant \' > 0 such that if
one of the following holds:

1Y Y Ep Porxt, [lpjal - {1 ¢ Xeji} - W{pjil > c}] > ek/A, or

2. Ep

k
7k x (m+1)xk Zi:l ﬂ{ulp|>c < OO}] > 5k/)\,
fOT Pji = p],Z(ZkXﬁj) and u|P|>C LP|>C(Zka><k), then R[W] < (1 . €)ﬁ
Proof. 1f Ttem 1 holds, then there exists v € {even, odd} with
: ek

=1 j€[m+1] N, 2)\

and the proof follows by Claim 7.25 and by the assumption that € [0, 3], since for any i € [k],
je[m+1] and 7; € Supp(PZkXQ) it holds that
J

min{|p;i(75)], p5:(m5)} - {1 & Xcji} > e [psi(my)| - {1 & X<ji} - L{|psa(r)| > ¢}

If Ttem 2 holds, then the proof follows by Item 1 since for any zFz(m+D*k ¢ Supp(P) it holds that

m~+1
L{ulP>e(Fatm D3Ry < oo} — > ﬂ{uiplx(zkxij) =7}

=
1 m+1

=7 Z’Pu (zF2k)) ’ ]I{ULPPC(Z%Z) =7}
1 m+1

sz Z’Pj,z‘(zkar’ij)’ {1 ¢ Xoji} - ]l{lpj’i(zkxlij)‘ > ¢}

=1

Putting it Together We are finally ready to prove Claim 7.15

Claim 7.28 (Restatement of Claim 7.15). For any constant X\ > 0 there exists a constants ' > 0
such that if Ep [jumps” (ZF X MHIXEY] > ek /X for some v € {, p}, then R[W] < (1 — E)ﬁ

Proof. Recall that jumps”(7) = Zle ]l{uiybo'l(T) < oo}, for any v € {v,p} and 7 € Supp(P).
Therefore the proof immediately follows by Corollary 7.23(2) and Corollary 7.27(2). O

7.3.3 Proving Claim 7.16

In this section we prove Claim 7.16, restated for convenience below.

Claim 7.29 (Restatement of Claim 7.16). For any constant X\ > 0, there exists a constant X' > 0
k
such that if Ep [jumpsa(ZkX(m“)Xk)] > ¢ek/\, then RIW] < (1 —¢)¥m
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Proving Claim 7.16 is the most challenging part in the proof of Lemma 7.2. Unlike the {v;;} and
{pj,i} measurements which are directly connected to R[W] (as we proved in Claims 7.21 and 7.25),
the connection between the {c;;} measurements and R[W] is less clear. Recall that the values
{aj;} comes from the change in the distribution of I in @ given a history ZkX ﬁj, as stated in
Claim 5.4:

O‘jﬂ(zkxij)

> ieg, Qi (Zk@“’i])

Proving Claim 7.16 requires a very deep understanding of these measurements, and therefore, we
start by presenting the high level plan of this complicated part.

L\ koK
QI|Z’“X§].,I€QT(Z|Z rly) =

High-Level Plan The goal of this section is to understand the distribution of Q| ;« Xk for every
J
j € [m + 1] when ZkXﬁj is drawn from PZ’CXQ.' The main idea for proving Claim 7.16 is to
J
show that in expectation (over P), the distributions {Q Xk, };”:Jil might behave badly over a

small set of columns (i.e., columns ¢ € [k] which has large “jumps” in their «;; value for some
J € [m+1]), but conditioned on the event that I is not in the “bad” set, it remains close to uniform
over the “good” columns. Informally, Claim 7.16 states that in expectation over P, (1 — o(¢))k of
the columns ¢ € [k] are “good” which means that they have a;; € [0.01,10] for all j € [m + 1].
Intuitively, this means that by taking uniformly I < [k] at the beginning (as done in @), we hit
a potential "bad” column only with probability o(¢), and conditioned on hitting the ”good” set,
the distribution of 11ZEXE, remains ”close enough” to uniform over the ”good” set of columns

(Claim 5.4). Now, recall that

Rz, (zi) PX1i|Zk(1|zk) J .
= =2 ) : . 1+ 8y (2F2% ). .

In Section 7.3.3 we handle the first two terms of (85) which captures the effect of choosing
2% ~ Py on the distribution Qpzk=-+- This is done by showing (using standard arguments)
that if R[W] is high enough, then in expectation (over z* ~ P,), most columns i € [k] (all but

RZi(Zi) PX1,i|Zk(1‘Zk)
o(ek)) have Py () Py (0
proof by showing that if R[IV] is high enough, then in expectation (over 2o (mH)xk o P) most
active columns i € [k] (all but o(ek)) have values {H;,:Q(l + Bjr,i) }jem+1) bounded between two
constants (inside the interval [0.01,10]), where the above product captures the effect of choosing

w’zj ~ Pxx | Zk=zk ON QI|(Zka V—zkgh for any fixing of z¥. We now focus on giving the high level
<J <J <J

~ 1 and

~ 1. In Section 7.3.3 we handle the complex part of the

parts of the ideas in Section 7.3.3. Given 7; = ijll‘ffl = zkxlij, recall that

PXj7i|ZkX§j(1|Tj)

Bji(tj) =

Py, zexn, (U7j-1)
and observe that

E | [P 17 Xk
PX‘;ﬁillszgjil('lTﬂfl) XJ,lIZkXEJ( ‘ J 1 ]_1)

E fryo | Bii(ria X )| = —1=0.
PX}Cfl‘kazjfl(lT]il) Piilmi ! 2 PXj,i|ZkX§j*1(1‘Tj_1)
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Namely, for every i € [k], the sequence {63»7,};7251 is a martingale difference sequence with

respect to {PXJ’-“,ll 7k Xﬁj,l};ﬂ:gl for any fixing of Z¥. Therefore, if we could prove that for most

active columns i € [k] (all but o(¢k)) it holds that Ep [Zmﬂ <

Fact 3.17 for obtaining that in expectation over P, there are at least (1 — o(e))k columns i € [k] in
which all their partial sums {Z;,:Q 5]-/,1-};-”221 are bounded in an interval of the form [—O(1),0(1)].

For such columns, we could bound the values {H;,:Q(l + Bjri)}jeim+1] since H;,:Q(l + Bjri) &
exp (25':2 5]",2‘) (assuming that all values {Bj,i};.":'zl are small). The problem is that the above
claim is incorrect. Namely, even if R[W] =1 (i.e., P = Rk ymt1)xk), still we expect to have at
least (k) columns with Ep [Z;”El ] > Q(1). In order to see it, fix j € [m + 1] and 7; = 2Fz*

} < o(e), then we could apply

<J
with 1 ¢ fC}ij_1 (i.e., active) and observe that in this degenerate case where R[W] = 1 (denote as
the “Uniform” case and denote its 3;; by le{i), we have

) = RX alZEXE, (Ll75)
. _
’ RX AlZRXE (1’Tj—1)
{% zj-1,; =0
0 zq1;,=1
S S A
=)

1 R
_ Jm Tj—1,4 = 0
-1 zj=1,

Namely, as long there is no value 1 in the past (i.e., 1 ¢ x<j_1; for the 4§ element), the next
1

element is —1 w.p. -~ and =5 otherwise. Since we expected that at least (k) of the columns
i € [k] have T<py1,; = 071 these sequences have ZmH( )2 > Q(1), and therefore, not bounded
by o(e ) Yet, this sequences still behave nicely in a sense that the values {H;,:Q(l + ﬁj‘,’z)}gn:? =
{1+ 2L5)- 1}m+1 are always bounded in the interval [1,4] in case T<pmt1; = 0™ 1. Back to the

general case where R[W] < 1, the above observation leads us to explore the sequences {Bﬂ} for

H

B\M = Bji— 6](-]1- and prove that if R[WW] is high enough, then for most active columns i € [k] we have
Ep [Z;”:gl 5 Z] < o(g). The first problem is that now this is not necessarily a martingale difference
sequence anymore. Therefore, we transform it into a martingale by defining BN = Bji— BJUZ + M?_u

where ugﬂu(rj,l) =Ep, kX (,‘Tj_l)[ﬁjz(q 1X )} The second problem is that in the
-1 <j—1

general case, there might be large jumps in the value of 3;; (i.e., §;; might be larger than 1 and
even =~ m). In order to see why this is a problem, consider the case where it always holds that the
m 14+75,i m

values {p;;} are zeros, and therefore, if 8;; = - Ty ] = Ty (7]-@-—%) >> 1then f;; = v;.
J— 1,7

Hence, if we could prove that high enough R[WW] implies E[Ele Z;”Jil ’yjzl 1{v;: > 1}} < o(ek),
then we could handle the ii’s in case of large jumps. However, the above bound is incorrect
and by Claim 7.6 we only know that high enough R[WW] implies E [Zle E;"”Lll Vi - {0 > 1}] <
o(ek) (i.e., we loose the squares in the large jumps case). We solve this issue by cutting the
large jumps and defining 5;; = B - L{y;: < 1} +&—1,i — ﬂJUZ + M?_M where &_1,(7j-1) =
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Ek P

Tj1~xk \zkxk
Jj—1 <j—1
martingale property of these sequences. Finally, by Claim 7.15 and Corollary 7.35, we actually
expect that if R[W] is high enough, then for most active columns i € [k] (all but o(ek)) there are no
jumps in the values of {v;;}, {p;:} and {{;;} and in our analysis we use it by zeroing the sequence

(Ir-1) Bjﬂ-(Tj_lac?_l) : ]1{")/]‘71‘(7']'_11}?_1) > 1}] is added in order to preserve the

{B\] i m+1 in some round j if there was some large jump in one of measurements of the first j — 1
rounds (denote this “bad” event by good;_; ; = 0). Moreover, since we do not expect such jumps
fO/I: most active columns, then it can be shown that for such good column i € [k], the sequence
{Bj,i};";gl which we finally can bound using a fact about martingales, is close enough to the desired

sequence {@72'};”:'21 and the proof follows.

Round Zero The following claim states that if R[W] is high enough, then in expectation (over
Z;

2% ~ Py1), most columns i € [k] (all but o(ek)) have ]IE (( )) ~ 1.

Claim 7.30. For every two constants A > 0 and c € (0,1) there exists a constant X' > 0 such that
if EZkNPZk Zle 1{Pz,(z) ¢ (1£c)- RZL(z,)}} > ek /A, then RIW] < (1 — e)k/)‘/.

Proof. We first handle the case Ex p [Zlell{PZi(zi) > (14c¢)- RZi(zi)}} > 5 Let p; =
Pr..p, [Pz, (2) > (1+¢) - Rz(2)] and ¢; := Pr.up, [Pz,(2) > (1 +¢) - Rz,(2)]. Recall that by as-

sumption, Zle p; > % and observe that for any ¢ € [k] it holds that ¢; < fﬁc The proof then

follows since

k
1
logm > D(Pygk||[Rzk) = D(szH HRZZ)

k

> " D(Pz]|Rz,) Z (pillgi)

i=1 i=1

E

k
Di Di
> D (1
= . <( T . ||1—|—c>
=1
2 k
c o €k
> 2. s e2 L2
= ;pz_c )

= R[W] < R < (1- E)Ek/(16>\/c2)’

where the first inequality holds by Fact 3.6, the second and third one holds by Fact 3.5 (the product
case of chain-rule and data-processing, respectively), and the one before last holds by Fact 3.9.

Otherwise, it holds that E_x_p , [Zle 1{Pz(zi) < (1—¢)- RZi(zi)}] > £X. In this case we
define p; := Pr..p, [P7,(z) <(1—¢) Rz (2)] and ¢; := Pr..p, [Pz,(2) < (1—c)- Rz(2)] and
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note that p; < (1 — ¢)g; and Zle q; > Zle Di 2 5 Ek . The proof then follows since

Ea

>3 " D((1-o)aillg:) Z* Z%
=1

ek
> 2.0
=S

k
1
log > (Pz||Rz,) (pilla:)
SISO ILLIATSED

Ea

2

— R[W] < e~ € -% < (1 i 8)16/(8)\/(;2)

O

The following claim states that if R[I¥] is high enough, then in expectation (over z¥ ~ Pyu),
PX1 Z‘zk(llz )

most columns 7 € [k] (all but o(ek)) have W
X1,i 4

Claim 7.31. For every two constants A > 0 and ¢ € (0,1) there exists a constant X' > 0 such that
k
if Ep,, [z;;l 1{Px, iz (1) ¢ %@}} > ck/), then RIW] < (1 —¢)%m

Proof. Compute
1 k
log W 2 D<szXfHRZka) =D (szfo il;[lRZin,z)

k k
2 ZD(PZiXLiHRZiXI,i) Z ZEPZ,L |:D<PX1YZ|ZZHRX1,Z|ZFL>:|
=1

i=1

k
1+ec
>y Ep, [D(le,iZiHRxmzi) WPy, 1z,(1) ¢ }}
i=1

m

2 b l+c
2 im Ep,, Z]]'{PXL'L|Z~L(]‘) ¢ m }
i1

S 2. ek
- 4N -m

2

ok
— R[W]<e € Evem <(1-¢) ®/e)m

where the first inequality holds by Fact 3.6, the second and third ones hold by Fact 3.5 (chain-rule)
and the one before last holds by Fact 3.9 since Ry, ,z,(1) = O

m"°
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Table 6: Additional Measurements.

Definition Value
&) | Batapy, () |Bia (i1t 0) - Wa () > 1)]
1

T
1 kxk
J X" 1|Z X<.

1
m—1 Lj-15 = 0
53(,]2‘(73') { ! ’

-1 mj_lji =1

U . U . k
Mj,i(TJ) Ez?_lwpr_l‘zkxij_l(.\T]-_l) {Bj,i(TJflijq)J
good; ;(7;) {ie gl NGy} 1{{,; < 0.1}
~ 0 goodj,“- =0
Bji(75) vou .
Bji - Wi < U+ &1, — By +pj1;  Otherwise

Rounds 1 to m + 1 As mentioned in Section 7.3.3, the goal of this section is to prove that if
R[W] is high enough, then for most active columns i € [k] (all but o(¢k)) it holds that the values
{H;,:2(1 + ﬁj/7i)};71:‘;1 are bounded between two constants, and then using Section 7.3.3 we deduce
Claim 7.16. In Table 6 we present the formal definitions of the new variables that are mentioned
in Section 7.3.3.

The following claim states basic facts about the new variables.
Claim 7.32 (Measurements’ Properties). For any 7; = Tj_lfb?_l = zkﬂs’ij € Supp(Pkaéj) it holds
that

1L 1¢wej 1 = pj—1i(1j-1) = —77‘7_1;,?&7{_1)

2. Ep_ 71(.|7—j71)[Bj,i(Tj—lX]kfl) =0.

§alzExk;
3. ‘5],2-(7]»)’ <.

4. v5,i(m5) > 1, |pj—1,i(1j=1)| < 0.1 = B;i(15) € (0.87;,i,47j4)-

5. 1§ xcji, i <1 = vju(ry) = 22 (1 + Pj—1,i)(/3j,i + - fj—l,i) + pj-1-

6. 1¢xcjivii < Llpj—14l, & <01 = 73 < 3583 =721 — &1 — 3001,
Proof. For property 1, compute
1

ey (1) = —1- Pxffl\zkxgjfl(lh'jfl) E— 'Pxf71|zkxgj71(0’7'jfl) (86)
_ _thyilm) 0 ) T ()
m m—1 m
__-nilTi-)
m—1
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For property 2, observe that if good;_; ; = 0 then sz = 0 by definition, and otherwise it holds that

Ek P

Py ) [5]',1‘(7]'—1@?71)]
=E o [ﬁ” vy <1} + &1 — ﬁ]Uz +H§']—1,i]

=By [8ji) Prox [yja <1 +Bp (B - Proe [via > 1) = Egr [B7] +Epe [571]

|zkxk

k
= Em;glfvp gkt (o) {5j7i(7j—1xj—1)}
k
Em;glfvp gk, Clr) [PXM\Z’CXQJ,(1’Tj—1xj—1)}
_ 1
PXj,i|ZkX§j71(1|Tj—l)
=0

For property 3, recall that if good;_; ;(7j-1) = 0 then BN(TJ) = 0 and otherwise

)/le Tj ‘<|BJZ| 1{7]l§1}+|£J 11|+‘ ‘+‘MJ 1Z|
m_ 1+
m—1 1+pj_1;

Ay <1} +&1i+2

<2
- 1-0.1

<7

+0142

For property 4, recall that v;; > 1 and p;j_1; < 0.1. The upper bound holds since

m 1 + V5,4
Bji = : -
m—1 1+pj_1;
1475,
<2 2T g 9 hy 4+ 15 < Ay,
1-0.1 ’ ’
and the lower bound holds since
m 1+ 74
Bii= e ST
=1 14pj1,
1 + Vi

—1>0.97;; — 0.1 > 0.8v;,

For property 5, compute

—1
Y5,i(T5) = m —— (1 +pj—1) (1 + Bja) —

m—1 - 1 Yi—1,
= (Ut pi) A+ Bji =Gt ——5 + 1) 1

TN Yi—1i.  m—1 ~ 1 Vj—Lyi
= B — G+ ) (L B — Gt —— + )

- om—1
- (1+p] 12) sz 7] L2 _fj i) +Pj—14
m
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For property 6, compute

2
2 m—1 ~ Yi—1; m—1
¥5.i(T5)" = <m(1 + pj—14)Bji + (L + pj—14) - % - T(l +pj-14)&-1i + Pj—u))

1/m-1 =\’ Yic1i m—1 2
25 (m(l + pj—l,i)ﬁjﬂ) - ((1 + 1) = = (14 pj1)§-1i + P

L = (1+0.1)* , 242 2

> 105g,z <m2 Vi1 T (A +0.1)° 1 + pja
)

= 106],2 Vg 1,i 5]'—171' - Sp?fl,i’

where the first inequality holds by the fact that (a + b)? > %aQ — b2, the second inequality holds by
the fact that (a4 b+ c)? < 3(a® 4 b + ¢?) and by the bound m > 2 and |p;_1,| < 0.1, and the last
one holds since m > 2 and 0 < ¢;; <0.1. ]

The following claim connects between the measurements {;;};: to R[W].

Claim 7.33. It holds that

log

= 16mZZ Prixt, (€. - 1{|pjil <0.1}],

for &5 = &.(ZFXE}) and pji = pji(ZFXE)).

Proof. Compute

3
s

log > 1
gR[W]_

M-

EPZ,CX% (Vi - Ty > 1]

N
Il
—
.
[|
L

3

EPZkXij |:]1{|p] 17,| < 0. 1} EP \Zka ) [’7],1 . ]1{’7],1 > 1}]:|

s
Il
—
3 .
I
N

vV
5. £~ %
U
N

> fom 20 2 P M <00 By B 1> 1)
prf
o
= Tom 2 2 BPavr G-1i Hlpj-1al < 0.1)]
=1 j=2
1 k. m
= Tom 2 2 Prans [ Mol < 0.1
1=1 =

where the first inequality follows by Claim 7.21 and the fact that v;; > 1 = 1¢ X_.;;, and the
third one by Claim 7.32(4). O

As a first corollary of Claim 7.33, we obtain the following.
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Corollary 7.34. For any constant N\ > 0 there ewists a constant N > 0 such that if
Ep [2;;1 S & W{|psal < 0.1} > ek/ for €54 = &(Z8XE) and pj = pja(ZFXE)), then
RW] < (1—e)¥m

Proof. Immediately follows by Claim 7.33. 0

As a second corollary of Claim 7.33, we obtain that if R[W] is high enough, then most columns
i € [k] have bounded sum » ", &;; in expectation over P.

Corollary 7.35. For any constants A > 0 and c € (0,1) there exists a constant \' > 0 such that if
_k
Ep [Z?:l ]I{Z;nzl fjﬂ' > C}} > 6]43/)\ fOT éj,i = gjﬂ'(Zngj) , then R[W] < (1 — 6) o

Proof. Assume that Ep [Zle L{> ", & > c}| > ek /A for some constant A > 0. Observe that
k m
Ep Z]l{zgi > C}
=1 j=1

—Ep Zn{Zgﬂm} 1{u? = 0o} | +Ep Zn{Zgﬂm} 1{uf < oo} |,

=1 j=1
where uf = uf(ZFXM+1)xk) If Ep [Ele L{700 & > cf - T{uf < oo}} > £& then in particular,
Ep [jumps?(ZF X (m+Dxk)] = Ep [Zle 1{uf? < oo}} > 2% and the proof follows by Claim 7.15.
Otherwise, Ep [Zle {70 & > cf - T{u] = oo}} > £k Compute

kK m
1 1
1 >~ .R 1lpisl <01
0g R[W] = 16m P ;g Jst {‘p] ’ }

AV
=
|

. Z]I{ZSM >c}-M{uf = oo} - Y & 1lpjal < 0.1}
=1 j=1 j=1

[ k m m
1
=16 EP I g ch {uf =00} > &
i=1  j=1 j=1

v

[k m
C
— - Ep Z]l{zgj,i > C} : ]l{uf = OO}
Li=1  j=1
5:1{: ek

ek
= 3 m RW] < emmmx < (1 —¢) /e

where the first inequality holds by Claim 7.33 and the last one hold since ¢ € [0, %] O

The following claim is the heart of this section. It states that if R[WW] is high enough then in
expectation (over P), the sum of squares of all sequences’ elements (Namely, El 1 Z"H'l ]Z)

at most o(ek). This later yields that for a typical column i € [k] we expect that Zmﬂ 2 < o(e)
and then the ideas of Section 7.3.3 follows.
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Claim 7.36. For any constant X\ > 0 there exists a constant N > 0 such that if
m ~ -~ _k
Ep [k, S0 82.] > eh/A for Bis = Biu(Z8XE,), then RIW] < (1 - &)

Proof. Assume that Ep [ZZ 1Em+1 ] > ¢k/)\ for some constant A > 0. If
[EZ 1 ZmH iy > 1}} > £& then the proof follows since

k m+1
1 mln{lwzl 77}
log ——— > Ep —— P {1 ¢z}
GRS 8
[ m+1 Vi
>Ep | o e > 1)
| i=1 j=1 m
k m+1
2
= 196m 196m Ep (> By >1)
=1 j=1
5k ek ek

> 3925 = R[W]<e 32m < (1 —¢)sonm,

where the first inequality holds by Claim 7.21, the third one holds since ‘BN

< 7 (property 3 of

Claim 7.32) and the last one holds since ¢ € [0, 3]. Otherwise, it holds that
k m+1
EP Z Z ]1{7]1 S 1}
i=1 j=2
k m+1 k. m+1
=Ep | D> B HXja =13 +Bp (Y > Bl {1 ¢ Xy} U < 1)
=1 ]:2 i=1 j=2
ek
>
— 2 (87)
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Now, observe that

k m+1
Be |33 B (X0 = 1)
i=1 j=2
[k mt1
=Ep|> > Bl 1{Xj-1; =1} - 1{good;_;; = 1}
=1 j=2
[ & m+1 i
1
=Ep Z (&1 — 37_1) -1{good;_y; =1}
| i=1 7j=2
[ & m+1 2
Y
<Ep Z 2(¢2 1, ﬁ) -1{good;_; ; =1}

-
Il

—
<.
||

N

3
L

k
<Ep i Hlpjal <01} | +2-Ep Z

1 i=1 j=1

-

Vi {1 ¢ Xeji} - U{y;s <1},  (88)

)

<.
Il

=1

where the first inequality holds by the fact that (a + b)? < 2(a? + b?), and the last one holds since
good 1= =1 — ; < 0.1 and since m > 2 and &§j_1; > 0. Therefore, if

Ep [ZZ 1 ZmH ]l{X] 1= 1}] > i’;, then at least one of the terms in (88) must be > %
and the proof follows by Corollaries 7.22 and 7.34. Otherwise, it holds by Equation (87) that
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[Ez 1 ZmH {1 ¢ Xojab - 1{yy <1} > %. Compute

I
Og W
k m+1
m{lv |, 72}
e |3 50 T g
[ k m+1
= m ‘Ep 75 {1 ¢ Xejay - L{nza < 1} - L{good; ;= 1}
=1 j=1
1 [k mt1 1
Z B Z(ﬁﬂ —-1i &1 = 3p5—10) - {1 & X<ji} - 1{n55 < 1} - I{good;_, ; = 1}
=1 j=2
1 k m+1
= 160mEP ; j=2 j’i {1 ¢ Xoji} - 1{v;: < 1} (89)
1 [ k m 1
— Ep ZZVJQZ {1 ¢ Xoji} - {0 < 1}
=1 j=1 i
3 [ k m 1
— 2 Br (202 et M E Xyt - Wpyi <1}
=1 j=1 i
1 [ k m
— % -Ep szﬂki : ﬂ{’pjﬂ < 0'1}
=1 j=1

where the first inequality holds by Claim 7.21, the second one holds since good; 172- =1 =
|7j—1,] < 0.1 and the third one holds by Clalm 7.32 (property 6) since good;_;; = 1 =
lpi—14l,&—1,; < 0.1. By assumption, the first term in Equation (89) is at least Z’;\ Therefore,

there are two options: The first option is that the sum of terms in (89)> % = R[W] < e 5 <

(1- 5)% The second option is that at least one of the negative terms in (89) has absolute value

> 254]“/\, and then the proof follows by Corollaries 7.22, 7.26 and 7.34. (|

The following claim focuses on “good” columns, i.e., columns i € [k] with bounded sums
{E;,ﬂ Bj@i}?’:‘;l and with small values of {Wj,i}?;ila {pj,i}’]?l:ﬁl and {E;,Zl Ejritily- qu these
columns, the claim connects the sums {Zj, 5 Bjr ,»}’-"+1 into the required products {H], 5(1 +

Bjr Z) m+1 by showing that they are indeed bounded in an interval of constants. Along with assum-
ing that the first two terms of o ; are ~ 1, the claim concludes that for such columns it holds that
the values of {ajﬂ-};n:ﬁl are indeed bounded.

Claim 7.37. There exists a constant ¢ € (0,0.1) such that for any Zhg(mt)xk ¢ Supp(Pyk x (m+1)xk)
and i € [k, it holds that i € G%, (mi1)xx if all the following conditions hold:

Rz, (2:)

1. PZZ( ED)

€l+xec, and
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k
PXL”Zk(HZ )
Pxy 412, (1]zi)

€l=xc, and
3. 1€ ngx(m-H)xk ﬂglz)km(m-&-l)xk} and
420 §j,i(2k$’ij) <e¢, and
5. Z;n:gl ”(zkazij) <e¢, and
6. max{ Z L Qﬁj (2R x<J) }m+1 <ec.
Proof. Fix j € [m+ 1] and recall that

Rz, (=) PXI,i|Zk(1‘Zk) . ﬁ
PZz(Zz) PX1,Z|ZZ(1”Z@)

(1+ By )

a-]?Z =
j'=2

By assumption, it holds that |v;_1,|, ;,:2 £-1; < 0.1 for any j° € [j]\ {1}. In
particular, this yields that for any such 5’ it holds that

a. Bjri = Byi+E&r—14— By + my-14-
u _ _1
b. By =

m—1°

Iy m 09 m
c Byi =145, mel 1211 mer 1202

Using the above observations, we prove that a;; € [0.01,10]. Note that the upper bound holds

since

i g,
g < (1+0)% - eZy=2Pi

2 . 62;/:2(B]—/,i 5] -1, z+5 v ii -/_171-)

)
)
)2 . ec—O-&-%-&-io‘lm'(izl)
< (1 —|—C)2 . €c+2.2

and the lower bound holds since

J _
;> (1—¢)?- ei=1Pii e St B

2 Z i Q(lei g] -1 1+5 i TH -/_171-) . 670'6'2]":1(5J'/7i7£j/—17i+’8§]’,i7'u'§5—1,i)2

=(1-0c)7-

> (1= ) ememetatr -t 00 (<65, (Bt HCEE?) 2L, 67,07)
> (1—c)? e2. o~ et + ()% (1)) —4

_ (1 _ 6)2 . 6760740274.08

)

where the first inequality holds by the fact that 1 + x > e?= 06 for 3 > —0.2, the second one
holds by the fact that (a + b+ c+ d)? < 2((a+b+c)? + d?) < 6(a® + b* + ¢?) + 2d* and the last
one holds since >%,_, 7, ; < cand 3%, &, <370, & < c and Z;,:l(ﬁg,{’iy < iy < 2 and

(L2 (j—-1) < (gf_lf;Q < 0.02. By taking ¢ = 0.01 we obtain that «;; € [0.01,10], as required. [J

As a corollary of all the claims of this section, we are finally ready to prove Claim 7.16.
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Putting it Together

Corollary 7.38 (Restatement of Claim 7.16). For any constant A > 0, there exists a constant

N > 0 such that if Ep [jumps® (ZEX0Xk)] > ek /X, then RIW] < (1 — &) Vom

Proof. Let ¢ be the constant from Claim 7.37. Observe that Claim 7.37 implies that

Ry, (z) Py, 176 (1]2")
Pz, (z) Pxy1z,(1]2)

m
+ 1{u>01 < oo} + W{ulPO < oo} + 1{D &0 > ¢}
j=1

1{uf < oo} <1{ ¢1+ch+1{ ¢1+c}

m+1

+1{>_ B2 > c} + 1{max{ Zﬁj M5 > o}
7j=2
Therefore, by assumption (recall that jumps®(Z*X (mH)Xk) = Ele 1{u < oo}), when summing
over i € [k] and taking expectation over P, the sum of all the right side terms is at least Ek . If one
of the first five terms have expected sum > 10/\, then the proof follows by Claims 7.30 and 7.31

and Corollaries 7.23, 7.27 and 7.35. Otherwise, it holds that

k m+1
ek

Ep | Y (10D B2, > ¢} + 1{max{ Zﬁj, YAt > o} > o (90)

i=1 j=2
For i € [k], let ¢; = Ep [Zmﬂ 6]22] Note that Claim 7.32 (property 2) yields that the sequence
{Bj,i(ZkXﬁj)};”:El is a martingale difference sequence with respect to {PXJ;|Z;€X§_}§-”:1 (for any
J J

fixing of Z¥). Therefore, Fact 3.17 yields that P —max{‘zg,:2 BN
that )

};?:1 > c} < gi/c* which implies

J
Ep [1{max{| Y Bji}7h' > c}| < ai/c®. (91)
—~

Moreover, by Markov inequality, it holds that P [Zmﬂ BJQ,L(Z kx ﬁj) > ¢| < ¢;/c which implies that

m+1

Ep |1{)_ B2, >c}| <aqfe (92)
j=2
Hence, Equations (90) to (92) yields that
k k m—+1
(1/c+1/*)> i =Ep|> n{z >, > ¢} + 1{max{ Z Bial Yt > ¢}
=1 i=1 §/=2
ek
= 2)
m+1 k ~ k ck
P j:?z-;ﬁ“ ;q =X (1/c+1/2)
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and the proof follows by Claim 7.36. O

8 Lower Bound

In this section we present the counterexample that proves Theorem 1.3. In Section 8.1 we start by
showing how random termination helps to beat [BIN97]’s counterexample, and in Section 8.2 we
restate and prove Theorem 1.3 using a variant of [BIN97]’s protocol.

8.1 Random Termination Beats Counterexample of [BIN97]

In this section we exemplify the power of random termination, showing that the counterexample
of [BIN97] does not apply to random-terminating verifiers. We do so by presenting [BIN97]’s
counterexample against k repetitions and see how random termination helps in this case. The
protocol is described below.

Protocol 8.1 ([BIN97]’s Protocol 7 = (P,V)).
Common input: Public key pk .
Prover’s private input: Secret key sk.

Operation:
1. Round 1:

(a) V uniformly samples b < {0,1} and r <— {0,1}", and sends B = Encp(b,r) to P.

(b) P computes (b,r) = Decg,(B) and for any i € [k — 1], it uniformly samples b; € {0,1}
and 7, € {0,1}" conditioned on b = @Fb. Then it computes C; = Encyy(b), 7)), and
sends (C1,...,Ck_1) to V.

2. Round 2:

(a) V sends (b,r) to P.
(b) P sends ((b,71),...,(0_1,7_1)) to V.

3. At the end: V accepts iff b = @f;llb;, and for any i € [k —1]: C; = Encyi (b}, 7}) and B # C;.

171

Intuitively, assuming the cryptosystem is CCA2-secure, if a single instance of the protocol is
run, then a prover without access to sk can only convince the honest verifier with probability
1/2, since it must commit itself to a guess @f;llbfi of b before receiving (b,7). On the other
hand, if k instances of the protocol are run in parallel, then a cheating prover can send the tuple
(C1,...,Cx—1) = (B1,...,Bi—1,Bit1,...,By) to V; and then either all verifier instances accept or
all verifier instances fail, the first event occurring with probability at least 1/2. N B

Let’s look now on a k instances that run in parallel of the protocol 7 = (P, V), where V is
the random-terminating variant of V (note that this protocol has only two rounds, and therefore,
a random terminating bit takes one with probability 1/2). First, we expect that ~ k/2 of the
verifiers abort at the first round, and with high probability at least k/4 of the verifiers remain
active (assume that k is large enough). For a cheating prover, aborting at the first round is not
an issue since it can completely simulate the aborted verifiers. However, even if a single verifier V;
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aborts at the second round, then the attack presented above completely fail since the prover has
no way to reveal (b;, r;), needed for the other verifiers. Note that the attack do succeed in case non
of the verifiers abort at the second round, but the probability of this to happen is at most 2 k/4,

8.2 Proving Theorem 1.3

In this section, we restate and prove Theorem 1.3.

Theorem 8.2 (Restatement of Theorem 1.3). Assume the ezistence of CCA2-secure public-key
cryptosystem. Then for every m = m(n) € [2,poly(n)] and ¢ = e(n) € [1/poly(n),1/3] and
k = k(n) € [m/e,poly(n)], there exists an m-round interactive argument (P, V) with soundness

~k
error 1 —¢ such that (P*, V") has soundness error of at least (1—¢)“*/™ for some universal constant
¢ > 0, where V is the 1/m-random-terminating variant of V (according to Definition 3.21) and

(Pk,vk) denotes the k-parallel repetition of (P, V) (according to Definition 3.22).26

In the following, fix large enough n and fix m,e,k as in the theorem statements, and let
CS = (Gen, Enc, Dec) be a CCA2-secure public-key cryptosystem. Consider the following m-round
variant (P, V) of [BIN97]’s protocol:
Protocol 8.3 (The counterexample protocol 7 = (P, V)).
Common input: Security parameter 1™ and Public key pk .
Prover’s private input: Secret key sk.

Operation:
1. Round 1:

(a) V flips a coin that takes one with probability 1 — 3¢ and zero otherwise.
If the coin outcome is one, V sends L to P, accepts and the protocol terminates.
Else, V uniformly samples b < {0,1} and r < {0,1}", and sends B = Enc,(b,7) to P.

(b) P computes (b,r) = Decg,(B) and for any i € [k — 1], it uniformly samples b; € {0,1}
and 7, € {0,1}™ conditioned on b = @& b. Then it computes C; = Encyy(b), 7)), and
sends (C1,...,Ck_1) to V.

2. Round 2:
(a) V sends (b,r) to P.
(b) P sends ((b,71),...,(0_1,7_1)) to V.
3. Rounds 3 to m: parties exchange dummy messages.

4. At the end: V accepts iff b= &¥= 10, and for every i € [k—1]: C; = Ency (b, 7)) and B # C;.

1=1"7 RR

26 Assuming the existence of collision-free family of hash functions and CCA2-secure cryptosystem with respect to
superpolynomial adversaries, one can adopt the techniques used in [PW12] for constructing a single protocol (P, V)

~k
such that for any polynomial bounded k, (P*, V") has soundness error of at least (1 — €)¢*/™. This, however, is
beyond the scope of this paper.
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Namely, Protocol 8.3 first transforms [BIN97]’s two-rounds protocol, of soundness error 1/2 +
neg(n), into an m-round protocol with soundness error 1 — ¢, by flipping a coin at Step la (for
increasing the soundness error) and adding dummy rounds at the end for increasing the number of
rounds (Step 3).%7

We first note that soundness error of 7 is indeed low.

Claim 8.4. The soundness error of m(1™) is at most 1 — ¢.

Proof. Let P* be some efficient cheating prover and let T" be the event over a random execution
of (P*, V) that the outcome of the (1 — 3¢, 3¢) bit (flipped by V at Step la) is 0 (i.e., V does not

abort). Conditioned on 7', P* must commit itself to a guess @f;llb; before receiving (b,r). Since

the encryption scheme is CCA2-secure (which implies non-malleability), we obtain that
Pr(pk,sk)%Gen(l”)[(P*7V)(1n7pk) =1 | T] < 1/2 + neg(n)7
and hence

Pr(pk,sk)(—Gen(l")[(P*vv)(ln) = 1] < Pr[_'T} + PI‘[T] : Pr(pk,sk)(—Gen(l")[(P*vv)(lnvpk) =1 | T]
<1—-3c+3e-(1/2+ neg(n))
<1-—e.

O

So it is left to show that the soundness error of the k parallel repetition of the random termi-

~ ~k

nating variant of 7 is high. Let V and (P*¥, V") be as in the theorem statement with respect to
(P, V) (Protocol 8.3) and assume without loss of generality that V sends L to the prover right after
flipping a termination coin with outcome one. Consider the following cheating prover P+

Algorithm 8.5 (Cheating prover Pk*).
Input: Security parameter 1™.

Operation:

1. Upon receiving a k-tuple (aq,...,a) from \7’“ = ({71, .. ,\N/k), let S ={i € [k]: ai #L} (the
set of active verifiers) and for i ¢ S sample uniformly b; < {0,1} and r; < {0,1}". Then
;) a jeSs

for any i€ S send (ay,...,a;_y,aj,q,...,a;) to Vi, where aj

Ency(bj, ;) ow

2. If at least one werifier in S sends L (after aborting at the second round), fail
and abort. Otherwise, upon receiving (bj,r;) for all i € S, send the tuple

((b1,71)5 s (biz1,mi=1)s (big1, Tit1)s - - - (brsT8)) to V.

Namely, P¥" performs [BIN97]’s attack on the verifiers that remain active after the first round.
The attack, however, can only be performed if none of these active verifiers abort in the second
round. Yet, we show that the probability for this to happen is high enough. The following claim
conclude the proof of Theorem 8.2.

27 As in [BIN97; PW12], the soundness error holds with respect to a prover without access to sk.
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Claim 8.6. Let ¢, m,k as in the theorem statement, let (P, V) be Protocol 8.3 and let P¥* be the
cheating prover described in Algorithm 8.5 (with respect to k). Then

Pr(pk,sk)(—Gen(l") [(Pk , V )(1 apk) =1 > (1 - 8)14 k :

Proof. Fix pk and let L be the random variable that denotes the value of |S| (the number of active

verifiers after the first round) in a random execution of (P¥", Vk)(ln, pk). Note that each verifier
aborts with probability greater than 1 — 3¢ at the first round (it can abort by the (1 — 3¢, 3¢)
coin or by the (1/m,1 —1/m) random-terminating coin). Therefore, E[L] < 3¢k and we obtain by
Markov’s inequality that Pr[L < 6ek] > 1/2. Let G be the event that none of the verifiers abort at
the second round. Note that

Pr[G] > Pr[L < 6¢k] - Pr[G|L < 6¢k] (93)
>1/2-(1—1/m)%*
>1/2-exp(—12¢ek/m).

The second inequality holds since 1 —x > e=2* for z € [0,1/2]. In addition, observe that
* ~k
Pr|(P¥, V) (1", pk) = 1| G| = Priy, __pye (0,15 [59?:151' = 0} — neg(n) (94)
=1/2 — neg(n)

and we conclude by Equations (93) and (94) that

Pr[(Pk*ﬁ’“)u",pk) —1| > Prl@] - Pr[ (¥, VY (m pk) = 1] G
>1/2-exp(—12ek/m) - (1/2 — neg(n))
> exp(—14ek/m)
> (1 - 8)14k/m.

The penultimate inequality holds since we assumed that k > m/e, and the last one since 1 +x < e”
for any = € R. O
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A Missing Proofs

A.1 Proof of Proposition 3.10

Proposition A.1 (Restatement of Proposition 3.10). Let X be a random variable drawn form
either P or Q). Assume that Prp[|X| < 1] = 1 (i.e., if X is drawn from P then |X| < 1 almost
surely) and that there ezist €,02, K1, Ko > 0 such that Prg[|X| < 1] > 1—¢ and

2

K10'2

PrQ[|X|Zt]§K2-exp<— ) forall0 <t <1.

Then, there exists K3 = K3(K1, Ka,¢) > 0 such that
Ep[X?] < K3-0® - (D(P||Q) +1).

Note that for ¢ > 1, the statement is trivial, and thus not interesting. We would use this
proposition when o < 1.

Proof. Assume that o2 < 1 and that D(P||Q) < oo, since otherwise the statement is trivial. We
use the following two fundamental theorems. The first theorem gives a variational characterization
for divergence that is useful for bounding expected values of random variables.

Theorem A.2 (Donsker-Varadhan; cf. [PW17, Theorem 3.5]). Let P and @ be probability measures
on X and let C denote the set of functions f: X — R such that Eglexp(f(X))] < co. If D(P||Q) <
o0, then

D(P||Q) = sup Ep[f(X)] —log Eqlexp(f(X))]-

In particular, for every f € C, it holds that

Ep[f(X)] < logEq[exp(f(X))] + D(P|Q).

The second theorem is the super-exponential moment characterization condition for sub-
Gaussianity.
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Theorem A.3 (Sub-Gaussian characterization; cf. [Duc16, Theorem 3.10]?%). Let X be a random
variable and 0® > 0 be a constant. Assume that there exist K|, K5 > 0 such that

2

Pr]|X] > ] < Kj - eXp<—K,02
1

> for allt > 0.

Then, there exists K = K4(K, Kb) such that

X2
elee (i) <

We would like to apply the above theorems to derive the proof. However, under the @ distri-
bution X is not sub-Gaussian, since its concentration bound apply only for 0 <t < 1. Instead, we
let W=10,1], K} = K2/(1 — ¢) and observe that

2
Pro[|X|>t]|X| e W] < Ké-exp(—Kth_z> for all t > 0.

Indeed, for ¢t > 1 this inequality holds trivially. For 0 < ¢ < 1, it holds that

Pro[| X| > t]
PI“QHX | € W]
_ Prgl[X|> 1
- 1—¢
!/ t2
<K,-e -
>~ 2 Xp ( K10'2 > 9
where the second inequality follows from the assumption of the proposition and since ¢? < 1, and
the third inequality again follows from the assumption of the proposition.
Let K3 = Kj(K;,K)) from the statement of Theorem A.3. Furthermore, note that

D(Px||Qx(x1ew)) < o0, since D(Px[|Qx) < oo and [X| € W under P almost surely. Using
Theorems A.2 and A.3, it follows that

1
Ky02

Pro[| X[ >t [[X] e W] <

Ep[X?] < log Eqlexp(X?/(K207))[|X| € W]+ D(Px||Qx|(x|ew))

<loge + D(Px||Qx|(x|ew))-
Finally, the proposition follows since
Px (x)

z)/Prol| X| € W]

= D(Px||Qx) + log(Prg[|X| € W])

< D(Px||@x),
where in the first equality we again used that |z| € W for every z € Supp(Px), so Prg[X =
z N |X| e W] =Qx(x) for any such z. O

28While the statement of [Duc16, Theorem 3.10] explicitly take K3 = 2 and require that X’s mean is zero, it is
easy to see how to modify the proof to work with any constant K5 and that the proof of this part does not actually
use that X has a zero mean. For example, see [Ver10, Lemma 5.5] that uses K5 = e and does not assume that X has
Z€ero mean.

D(Px||Qx(x1ew)) = Ez~py log ox(
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A.2 Proof of Proposition 2.1

Proposition A.4 (Restatement of Proposition 2.1). Let m,k € N, let P = Py, y,, be a distri-
bution and let {Ej,i}je[m],ie[k] be a set of events over P. Let Q = Qry;,. . v, = Q- H;n:1 Qv |y, I
be the distribution such that Qr is a distribution over [k] and for j € [m]: Qv;|y.;,

Py .g ., PlE|Y<]>0
{:/JYQ’E“ By | Y] . Assume that for any j € [m], i € [k] and y<; € Supp(Qy_;)
0.w <

. P[E/ |Y 1=y /]
it holds that P[E;; | Y<; = y<;] > 0, and let o i(y<;) = QI = 1] - HJ/ 1 W]/y:/] * Then

o For alli € [k]: the sequence {;;(Y<;)}]y, where Y} is drawn from Py,y_., is a martingale
sequence.

o Foralli€[k], j €[m] and y<; € Supp(Y<j): QI =i |Y<; = y<] = %
/=1 ]7,’ J

Proof. For the first item, fix i € [k], j € [m], y<; € Supp(Py_;) and compute

o PlEji | Yey = y<j]

EyjNPYj\Y<j=y<j [Oéj,i(ygj)] - EyjNPYj|Y<,j:y<j Q[I - 2} '

L PIE =y

i1 ., e .
= QI =1]- 7 Pl | Yey = ysy] Burpyig o, (P [ Yay = y<i]

oo Py | Yey = y<y] P[Eji | Yejr = y<y]

j—1

P Y< i = Y<

=Q[l =1i]- P[JI‘Y—J iy
= a;-1,i(y<;)

We now focus on the second item. In the following, fix j € [m], i € [k] and y<; € Supp(Qy.;)-
Note that for any ¢’ € [k] it holds that

Q[Y<J_y<]’]_l ﬁQY’_y] |Y<j/_y<]/7'[_1’]
Q< =y<; | I=1] 32 QY =yy | Yejr =y, I =1

! PY’—?J] ‘Y<]’—y<],E] z]

PY’—yj |Y<]/ = Yy’ 7E] z]

P[E/ /|Y 1 =Y<= ]/] P[Y/ =y, | ’:y<j’]
H P[E/ 1Yo 5 y<J/]

P[E i’ ‘ j/=y<:j/]-P[Yj/=yj/|Y<j/=y<j/]
P[Ej/’i‘Y<j/=y<]-/}

Q[I =i og(y<))

QU =17] aji(y<y)

29In case I is sampled uniformly over [k] in @, we get the same weights {a;,;} as presented in Proposition 2.1 up
to a multiplicative factor of 1/k which can be ignored.

; (95)
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Therefore, we conclude that

QlY<j =y<j [ I =1]
QlY<; = y<;l
_ QlY<j=y< | 1=1]
QI =] 35, QY<;j = y<;|T =]
1

sk QU= Qv =]
=1 Q=]  QN<;=y<;I[=i]
1

Zk Q; ql (y<j)

=1 a;;(y<;)
aji(y<j)

k
Zyzl aj,i’(yﬁj)

QU =1i|Y<j=y<] =QU =1i] -

9

where the one before last equality holds by Equation (95). O

A.3 Deferred Proofs from Section 5.2

We give the formal proofs for the claim in the proof sketch in Section 5.2.

Claim 5.4. Let j € [m+1] and 7 = (zkxlzj) € Supp(PZkX%). Then, for every i € G, it holds that

k. .k
Qurizrxk 1 (”Zkﬂ?li') =
12Xy Te6r 7 Y, aj,i’(zkxij)

Proof. In the following, for i € [k], j € [m] and z*2™** € Supp(P) we define

k
e oDk = Falo  TaamwllE)
i Prw(zi)  Pxy 1z,w(1]z) 2
P 1|2k zk
(X -1 Xj+17i\ZkX%j( 2522 ;)

) (ko k
o o (22t ) =114
7% <J =1p 1zkzE . )’
J Xj+1,i‘ZkX%j_1( |2FaZ ;1)

<j Jii <j

and observe that a;;(2Fz% ) = EZ)(zk) : a(X)(zkxk ).
In the following, fix j, 7 = (zkazli j) and 7 as in the claim statement.
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Observe that for any i’ € G, it holds that
QZHI(ZI(J’Z') . PZi (ZZ) : Pz_i|ZiX1’iW(Z*Z"ZZ'1)
Qe (ZFi") Pz, (zi) Pz_z,x, yw(z-ir|2i1)
Pz z.x,,w(z—ilz1)
Py 12, yw(z—it|zi1)

_ Pyx, w(zll) Pgrx, w(2¥(1)

Prixyw(zll)  Porx w(2¥(1)

Px; izywUzi) Py w(z) Py gky, (125)
B PXl’i/\W(l) Pxy iw (1)
T Pxzw ) Priw () Py gk (112F)
Py 1w (1) W
Pz, (zi) PX1,¢\ZkW(1|Zk)
_ Pryw(z) " Pxy 1z,w(17)
N PZi’(Zil) Plei/\ZkW(llzk)
Pz w(z) ' Plei,\Zi,W(l‘Zi/)
z
_ah) o
D)k (96)
a(2F)
The above implies that
Q47 (2*]0)
Quizv 1eg, (i2%) = Qureg, (i) - 57—
12%1€ e szuegT(Zk)
1 ' szu(zkli)
|G- | g1 'Zi/egT QZ’C\I(ZkW)
[
B 1
sz”(zk'i/)
e, Q1 F10)
z
_ oG o
o (Z) ( .k (97)
2ieg, Qi (2F)
We now use Proposition A.4 where let P be the P of Proposition A.4 and let @ be @ of
Proposition A.4 which are defined as follows: Py, .y, = PX17_._7Xm‘Zk:Zk, E;; is the event

Xjt1,, =1 and @[ = QI‘Zk:szegT. Note that by the above definition it holds that QVI,ylwym =
QI,Xl,...,Xm|Zk:zk,I€gT) and that

~ . X
aj—l,i(l’lij) = Qqz* 1¢6, (Z|Zk) : 045‘,1' )(kalij)
(2)( k

o (") (X)( kK
= cagy (2Rl y)
Sveg, o (k) T
aj,i(zkmij)
>iea, Qi (%)
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where we let «;; be the o;; of Proposition A.4. Hence,

gk k k
Qrizrx* - IeG, (il iU<j) = QI|Y< ,1(Z|9C<])
| <jJ J
aj 11(%23)
Yieg, Q-1 (z;)
O‘J',i(zkx’ij)

>ieg, Qi (kalzj)’

where the one before last equality holds by Proposition A.4 and the last one by Equation (98). O

: ; — ko k /
Claim 5.5. Let j € [m + 1], let 7 = (22;) € Supp(Pkagj), and let QXJ’-“HIZ’“XQJ-
PXk

k .
o iléZkX%;)(Z;lJ;l o QHZ;CXQJJGQT. Then, for every i , € Supp(PXﬁl‘(ZkXij):T) with 136?“ N
- , 1t holds that

k
PX}G—‘rl‘ZkXEj ($j+1|7-) _ 2icg, @i(T)

/ k a; ;i (T)
X T . J,t
Xk+1|ZkX§j( ]+1’ ) Zzélmk+lﬁgr pi(T)
J

for pi(r) = Py Xj1,4|ZFXE (1]7).

Proof. Fix (2* ]2], J+1) € Supp(PZka XK |W) with 11]&1 NG, # 0. By definition, it holds that
J

k ko k gk Lk k k .k
QXk |zr Xk, (z j+1\z 733<j) = Zankxgj,IegT(Z’Z 733<j) 'Pxﬁl\zkxgxﬁl,i,w(xj+1|z >$<j71)

1€Gr
— kK k E k
= Z QI'Z’“XQ],IGQT (Z|Z' 7x<j) . PX]k+1|ZkX2]XJ+1,17W(xJ+1‘Z ,x<j7 1)7
i€1lk nGr
J+1

where the second equality holds since if 41, = 0 then PXk JZXE X W(x§?+1|zk, x’ij, 1) = 0.
]7 (2]
Claim 5.4 now yields that

: i )
/ ey = ) S . ko (ko
Q7o x<i (@j]z", a™) = S W Py g+ X<J,Xj+1,i,w($j+1\z ,zk 1)
i€lg, 4N i'eG, Yisi <j
k. .k k kE ko
_ E CV]’ (Z x<j> ) PXJI'C+1‘ZI€X§J-W(‘TJ+1’Z 7x<3)
o .. k .k E -k
lelzg+l Zi/egT Oé%z/(z IE<]) PXj+1,i|ZkX§jW(1‘Z ’$<j)
It follows that
P zh |2k k. P 2k ok gk
Xj’-“+1|Z’€ngW( j+1| ) <]) _ in_c+1|ZkX§jW( J+1| , <j)
! k k P k k ok
Xk+1|ZkX2 ( J—H’Z <j) Z O‘jvi(zkxij) — - X;‘C+1\ZkX2jw(zJ+1|z ’9:<J)
— 2 k
€1aj11N9r Yieg, aj i (2Fal ) PXj+1,¢\szij(1lz )

Zi’EgT Oé] Z/(Zkflfli])
Z a;,i(zF x<J) ’

i€11j+1mg‘r pl( ,x<])
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Claim 5.6. Let j € [m+ 1], let 7 = (zk:zlij) € Supp(szxéj), and let X '\ be drawn from

k 30 — —
PX]Iy+1|(kaéj):T or from [[;_4 PXj+1,i|(ZkX§j)=T' Let Y =3 . cc Y, forY; =

Xjt1: =1 and Y; = 0 otherwise.
It holds that

EPXk (Zhxt j=r ¥l = EH?:l PXj+1,i‘<ZkX£j):‘r Y] = Z aj’i(T)

+1! :
J ZegT

Proof. Fix j € [m + 1] and 7 = (zF2* 25) € Supp(PZka |W) Compute

EPX;?H\(Z’CXQ].):T,W Z Py +11\(Z’“X< )= TW[Yi]
: 1€G,
- Z EI]+1 i~Pyg k ajl( )
= FraalEXE)=rW Py exk g (17)
a;i(T)
ZPXkJrlszXk wllr)- P . w(llT)
1€Gr XJkJrl Z|Zka
=Y ai(7)
i€Gr

a;i(7)
2kt ) if
{1, =1}

where the first equality follows from linearity of expectation and third equality holds since

PXI_CH _‘ZkXQW(HT) > 0 for every i € G, (follows from the condition that |p;;(7)| < 0.1). Fi-
J I3 J

nally, observe that the very same computation also yields that the expected value of Y under

k .
[Tz ij+1,i|(zkxgj)=r,w is also ) ;g a;i(T).

O

Claim 5.7. Let Z¥XF be drawn from Pgixi or from Hle Pz.x,, ! LetY = Eie[k]Yi, for

Y; = O‘O”'(Z(il)) if X1, =1 and Y; = 0 otherwise.

PXl,i

It holds that

Y]=E

szxk I Pz,xy 4 Y] - 2"

301—[5 1 Px i@k Xk )=r is the product distribution of the marginals of PXk (ZEXE )=r

311_[1 1Pz, x, ; is the product distribution of the marginals of PZka
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Proof. Compute

EPZ’CX{‘\W[Y] = Z EPZiXLi\WD/i]

i€[k]
v _a0il#) g gy
= ziz1i~Pzx, g w P, jw(1) e
=7 J
aO,i(Zi)
= Z PX1,¢|W(1)PZi|X1,iW(zi‘1) ‘ m

i€[k],2;€{0,1}¢
PZi (Zl)
Pz x,.w(zil1)

= > Phx,wizll)-
i€[k],z;€{0,1}¢

= > Pylxu)-1{(i,x) € D},
i€(k],z;€{0,1}*

_ 1Pl

=50

: ]l{(% Zi) € D}>

where the first equality follows from linearity of expectation, and the third and forth equalities
hold since W is termination consistent, so the transcript in which all the verifiers terminate in
round 1 belongs to W, regardless of the value of the random coins z¥; that is, PX1,¢|W(1) >0

and Pz x, ,w(zill) > 0 for every i € [k] and 2; € {0,1}. Since Y = (1 + A) - %, the random
variable A in fact measures how far Y is from its expectation. It follows that EkaXle[A} =0.
1

Finally, observe that the very same computation also yields that the expected value of Y under
k . D
[[izi Pzox, ,w is also % O
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