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Abstract

Hardness amplification is a central problem in the study of interactive protocols. While
“natural” parallel repetition transformation is known to reduce the soundness error of some
special cases of interactive arguments: three-message protocols (Bellare, Impagliazzo, and Naor
[FOCS ’97]) and public-coin protocols (H̊astad, Pass, Wikström, and Pietrzak [TCC ’10], Chung
and Liu [TCC ’10] and Chung and Pass [TCC ’15]), it fails to do so in the general case (the
above Bellare, Impagliazzo, and Naor; also Pietrzak and Wikström [TCC ’07]).

The only known round-preserving approach that applies to all interactive arguments is Hait-
ner’s random-terminating transformation [SICOMP ’13], who showed that the parallel repeti-
tion of the transformed protocol reduces the soundness error at a weak exponential rate: if the
original m-round protocol has soundness error 1−ε, then the n-parallel repetition of its random-
terminating variant has soundness error (1− ε)εn/m4

(omitting constant factors). H̊astad et al.
have generalized this result to partially simulatable interactive arguments, showing that the n-
fold repetition of an m-round δ-simulatable argument of soundness error 1 − ε has soundness
error (1− ε)εδ2n/m2

. When applied to random-terminating arguments, the H̊astad et al. bound
matches that of Haitner.

In this work we prove that parallel repetition of random-terminating arguments reduces the
soundness error at a much stronger exponential rate: the soundness error of the n parallel
repetition is (1− ε)n/m, only an m factor from the optimal rate of (1− ε)n achievable in public-
coin and three-message arguments. The result generalizes to δ-simulatable arguments, for which
we prove a bound of (1 − ε)δn/m. This is achieved by presenting a tight bound on a relaxed
variant of the KL-divergence between the distribution induced by our reduction and its ideal
variant, a result whose scope extends beyond parallel repetition proofs. We prove the tightness
of the above bound for random-terminating arguments, by presenting a matching protocol.
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1 Introduction

Hardness amplification is a central question in the study of computation: can a somewhat secure
primitive be made fully secure, and, if so, can this be accomplished without loss (i.e., while preserv-
ing certain desirable properties the original primitive may have). In this paper we focus on better
understanding the above question with respect to interactive arguments (also known as, compu-
tationally sound proofs). In an interactive argument, a prover tries to convince a verifier in the
validity of a statement. The basic properties of such proofs are completeness and soundness. Com-
pleteness means that the prover, typically using some extra information, convinces the verifier to
accept valid statements with high probability. Soundness means that a cheating polynomial-time
prover cannot convince the verifier to accept invalid statements, except with small probability.
Interactive arguments should be compared with the related notion of interactive proofs, whose
soundness should hold against unbounded provers. Interactive argument are important for being
“sufficiently secure” proof system that sometimes achieve properties (e.g., compactness) that are
beyond the reach of interactive proofs. Furthermore, the security of many cryptographic protocols
(e.g., binding of a computationally binding commitment) can be cast as the soundness of a re-
lated interactive argument, but (being computational) cannot be cast as the soundness of a related
interactive proof.

The question of hardness amplification with respect to interactive arguments is whether an
argument with non-negligible soundness error, i.e., a cheating prover can convince the verifier
to accept false statements with some non-negligible probability, can be transformed into a new
argument, with similar properties, of negligible soundness error (i.e., the verifier almost never
accepts false statements). The most common paradigm to obtain such an amplification is via
repetition: repeat the protocol multiple times with independent randomness, and the verifier accepts
only if the verifiers of the original protocol accept in all executions. Such repetitions can be done
in two different ways, sequentially (known as sequential repetition), where the (i + 1) execution
of the protocol starts only after the ith execution has finished, or in parallel (known as parallel
repetition), where the executions are all simultaneous. Sequential repetition is known to reduce
the soundness error in most computational models (cf., Damgärd and Pfitzmann [DP98]), but has
the undesired effect of increasing the round complexity of the protocol. Parallel repetition, on the
other hand, does preserve the round complexity, and reduces the soundness error for (single-prover)
interactive proofs (Goldreich [Gol99]) and two-prover interactive proofs (Raz [Raz98], Holenstein
[Hol09], and Rao [Rao11]). Parallel repetition was also shown to reduce the soundness error in three-
message arguments ([BIN97]) and public-coin arguments (H̊astad, Pass, Wikström, and Pietrzak
[HPWP10], Chung and Lu [CL02], and Chung and Pass [CP15]). Unfortunately, as shown by
Bellare, Impagliazzo, and Naor [BIN97], and by Pietrzak and Wikström [PW12], parallel repetition
might not reduce the soundness error of any interactive argument: assuming common cryptographic
assumptions, [PW12] presented an 8-message interactive proof with constant soundness error, whose
parallel repetition, for any polynomial number of repetitions, still has a constant soundness error.

Faced with the above barrier, Haitner [Hai13] presented a simple method for transforming any
interactive argument π into a slightly modified protocol π̃, such that the parallel repetition of
π̃ does reduce the soundness error. Given any m-round interactive protocol π = (P,V), let Ṽ
be the following random-terminating variant of V: in each round, Ṽ flips a coin that takes one
with probability 1/m and zero otherwise. If the coin outcome is one, Ṽ accepts and aborts the
execution. Otherwise, Ṽ acts as V would, and continues to the next round. At the end of the
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prescribed execution, if reached, Ṽ accepts if and only if V would. Observe that if the original
protocol π has soundness error 1 − ε, then the new protocol π̃ = (P, Ṽ) has soundness error
1 − ε/4 (i.e., only slightly closer to one). Haitner [Hai13] proved that the parallel repetition of
π̃ does reduce the soundness error (for any protocol π). H̊astad, Pass, Wikström, and Pietrzak
[HPWP10] have generalized the above to partially-simulatable interactive arguments, a family of
interactive arguments that contains the random-terminating variant protocols as a special case. An
interactive argument π = (P,V) is δ-simulatable if given any partial view v of an efficient prover
P∗ interacting with V, the verifier’s future messages in (P∗,V) can be simulated with probability δ.
This means that one can efficiently sample a random continuation of the execution conditioned on
an event of density δ over V’s coins consistent with v. It is easy to see that the random-terminating
variant of any protocol is 1/m simulatable. Unfortunately, the soundness bound proved by Haitner
[Hai13] and H̊astad et al. [HPWP10] lags way behind what one might have hoped for, making
parallel repetition impractical in many typical settings. Assuming a δ-simulatable argument π has
soundness error is 1 − ε, then πn, the n-parallel repetition of π, was shown to have soundness
error (1 − ε)εδ2n/m2

(equals (1 − ε)εn/m4
if π is a random-terminating variant), to be compared

with the (1− ε)n bound achieved by parallel repetition of interactive proofs, and by three-message
and public-coin interactive arguments.1 Apart from the intellectual challenge, improving the above
bound is important since repeating the random-termination variant in parallel is the only known
unconditional round-preserving amplification method for arbitrary interactive arguments.

1.1 Proving Parallel Repetition

Let π = (P,V) be an interactive argument with assumed soundness error 1− ε, i.e., a polynomial
time prover cannot make the verifier accept a false statement with probability larger than 1 −
ε. Proving amplification theorems for such proof systems is done via reduction: assuming the
existence of a cheating prover Pn∗ making all the n verifiers in n-fold protocol πn = (Pn,Vn)
accept a false statement “too well” (e.g., more than (1 − ε)n), this prover is used to construct
a cheating prover P∗ making V accept this false statement with probability larger than 1 − ε,
yielding a contradiction. Typically, the cheating prover P∗ emulates an execution of (Pn∗,Vn)
while embedding the (real) verifier V as one of the n verifiers (i.e., by embedding its messages).
Analyzing the success probability of this P∗ is directly reduced to bounding the “distance” (typically
statistical distance or KL-divergence) between the following Winning and Attacking distributions:
the Winning distribution is the n verifiers’ messages distribution in a winning (all verifiers accept)
execution of (Pn∗,Vn). The Attacking distribution is the n verifiers’ messages distribution in the
emulated execution done by P∗ (when interacting with V).

If the verifier is public-coin, or if the prover is unrestricted (as in single-prover interactive
proofs), an optimal strategy for P∗ is sampling the emulated verifiers messages uniformly at random
conditioned on all verifiers accept, and the messages so far. H̊astad et al. [HPWP10] have bounded
the statistical distance between the induced Winning and Attacking distributions in such a case,
while Chung and Pass [CP15] gave a tight bound for the KL-divergence between these distributions,
yielding an optimal result for public-coin arguments.

For non public-coin protocols, however, a computationally bounded prover cannot always per-
form the above sampling task (indeed, this inability underneath the counter examples for parallel

1As in all known amplifications of computational hardness, and proven to be an inherent limitation (at least to
some extent) in Dodis et al. [DJMW12], the improvement in the soundness error does not go below negligible. We
ignore this subtly in the introduction. We also ignore constant factors in the exponent.
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repetition of such arguments). However, if the argument is random terminating, the cheating prover
can sample the following “skewed” variant of the desired distribution: it samples as described above,
but conditioned that the real verifier aborts at the end of the current round, making the simulation
of its future messages trivial. More generally, for partially-simulatable arguments, the cheating
prover samples the future messages of the real verifier using the built-in mechanism for sampling
a skewed sample of its coins. Analyzing the prover success probability for such an attack, and
thus upper-bounding the soundness error of the parallel repetition of such arguments, reduces to
understanding the (many-round) skewed distributions induced by the above attack. This will be
discussed in the next section.

1.2 Skewed Distributions

The Attacking distribution induced by the security proof of parallel repetition of partially-
simulatable arguments discussed in Section 1.1, gives rise to the following notion of (many-round)
skewed distributions. Let P = PX be a distribution over an m × n size matrices, letting PXi and
PXj denoting the induced distribution over the ith row and jth column of X, respectively. For an
event W , let P̃ = P |W . The following distribution QX,J is a skewed variant of P̃ induced by an
event family E = {Ei,j}i∈[m],j∈[n] over P : let QJ = U[n], and let

QX|J =
m∏
i=1

PXi,J |X<i,J P̃Xi,−J |X<i,Xi,J ,Ei,J (1)

for X<i = (X1, . . . , Xi−1), X<i,j = (X<i)
j = (X1,j , . . . , Xi−1,j) and Xi,−j = Xi,[n]\{j}. That is, Q

induced by first sampling J ∈ [n] uniformly at random, and then sampling the following skewed
variant of P̃ : At round i

1. Sample Xi,J according to PXi,J |X<i,J (rather than PXi,J |X<i,W as in P̃ ),

2. Sample Xi,−J according P̃Xi,−J |X<i,Xi,J ,Ei,J (rather than P̃Xi,J |X<i,Xi,J ).

At a first glance, the distributionQ looks somewhat arbitrary. Nevertheless, as we explain below,
it naturally arises in the analysis of parallel repetition theorem of partially-simulatable interactive
arguments, and thus of random-terminating variants. Somewhat similar skewed distributions also
come up when proving parallel repetition of two-prover proofs, though there we only care for single
round distributions, i.e., m = 1.

The distributions P̃ and Q relate to the Winning and Attacking distributions described in
Section 1.1 in the following way: let π = (P,V) be an m-round δ-simulatable argument, and let
Pn∗ be an efficient (for simplicity) deterministic cheating prover for πn. Let P to be the distribution
of the n verifiers messages in a random execution of πn, and let W be the event that Pn∗ wins in
(Pn∗,Vn). By definition, P̃ = P |W is just the Winning distribution. Assume for sake of simplicity
that V is a random-termination variant (halts at the end of each round with probability 1/m), let
Ei,j be the set of coins in which the jth verifier halts at the end of the ith round of (Pn,Vn), and let
Q = Q(P,W, {Ei,j}) be according to Equation (1). Then, ignoring some efficiency concerns, Q is
just the Attacking distribution. Consequently, a bound on the soundness error of πn can be proved
via the following result:
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Lemma 1.1 (informal). Let π be a partially simulatable argument of soundness error (1 − ε).
Assume that for every efficient cheating prover for πn and every event T , it holds that

PrQX [T ] ≤ Pr
P̃X

[T ] + γ

where W , P̃ and Q are as defined above with respect to this adversary, and that Q is efficiently
samplable. Then πn has soundness error (1− ε)log(1/P [W ])/γ.

It follows that proving a parallel repetition theorem for partially simulatable arguments, reduces
to proving that low probability events in P̃X have low probability in QX (for the sake of the
introduction, we ignore the less fundamental samplability condition assumed for Q). One can try
to prove the latter, as implicitly done in [Hai13; HPWP10], by bounding the statistical distance
between P̃ and Q (recall that SD(P,Q) = maxE(PrP [E]−PrQ[E])). This approach, however, seems
doomed to give non-tight bounds for several reasons: first, statistical distance is not geared to bound
non-product distributions (i.e., iterative processes) as the one defined by Q, and one is forced to
use a wasteful hybrid argument in order to bound the statistical distance of such distributions.
A second reason is that statistical distance bounds the difference in probability between the two
distributions for any event, where we only care that this difference is small for low (alternatively,
high) probability events. In many settings, achieving this (unneeded) stronger guarantee inherently
yields a weaker bound.

What seems to be a more promising approach is bounding the KL-divergence between P̃ and Q
(recall that D(P ||Q) = Ex∼P log P (x)

Q(x)). Having a chain rule, KL-divergence is typically an excellent
choice for non-product distributions. In particular, bounding it only requires understanding the
non-product nature (i.e., the dependency between the different entries) of the left-hand-side dis-
tribution. This makes KL-divergence a very useful measure in settings where the iterative nature
of the right-hand-side distribution is much more complicated. Furthermore, a small KL-divergence
guarantees that low probability events in P̃ happen with almost the same probability in Q, but
it only guarantees a weaker guarantee for other events (so it has the potential to yield a tighter
result). Chung and Pass [CP15] took advantage of this observation for proving their tight bound on
parallel repetition of public-coin argument by bounding the KL-divergence between their variants
of P̃ and Q. Unfortunately, for partially simulatable (and for random terminating) arguments, the
KL-divergence between these distributions might be infinite.

Faced with the above difficulty, we propose a relaxed variant of KL-divergence that we name
smooth KL-divergence. On the one hand, this measure has the properties of KL-divergence that
make it suitable for our settings. However, on the other hand, it is less fragile (i.e., oblivious
to events of small probability), allowing us to tightly bound its value for the distributions under
consideration.

1.3 Smooth KL-divergence

The KL-divergence between distributions P and Q is a very sensitive distance measure: an event
x with P (x) � Q(x) might make D(P ||Q) huge even if P (x) is tiny (e.g., P (x) > 0 = Q(x)
implies D(P ||Q) =∞). While events of tiny probability are important in some settings, they have
no impact in ours. So we seek a less sensitive measure that enjoys the major properties of KL-
divergence, most notably having chain-rule and mapping low probability events to low probability
events. A natural attempt would be to define it as infP ′,Q′{D(P ′||Q′)}, where the infimum is
over all pairs of distributions such that both SD(P, P ′) and SD(Q,Q′) are small. This relaxation,
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however, requires an upper bound on the probability of events with respect to Q, which in our case
is the complicated skewed distribution Q. Unfortunately, bounding the probability of events with
respect to the distribution Q is exactly the issue in hand.

Instead, we take advantage of the asymmetric nature of the KL-divergence to propose a relax-
ation that only requires upper-bounding events with respect to P , which in our case is the much
simpler P̃ distribution. Assume P and Q are over a domain U . Then the α-smooth KL-divergence
of P and Q is defined by

Dα(P ||Q) = inf
(FP ,FQ)∈F

{D(FP (P )||FQ(Q))}

for F being the set of randomized function pairs, such that for every (FP , FQ) ∈ F :

1. Prx∼P [FP (x) 6= x] ≤ α.

2. ∀x ∈ U and C ∈ {P,Q}: FC(x) ∈ {x} ∪ U .

Note that for any pair (FP , FQ) ∈ F and any event B over U , it holds that PrQ[B] ≥ PrFQ(Q)[B],
and PrFP (P )[B] ≥ PrP [B]− α. Thus, if PrP [B] is low, a bound on D(FP (P )||FQ(Q)) implies that
PrQ[B] is also low. Namely, low probability events in P happen with low probability also in Q.

Bounding smooth KL-divergence. Like the (standard) notion of KL-divergence, the power of
smooth KL-divergence is best manifested when applied to non-product distributions. Let P and Q
be two distributions for which we would like to prove that small events in PX=(X1,...,Xm) are small

in QX=(X1,...,Xm) (as a running example, let P and Q be the distributions P̃X and QX,J from the
previous section, respectively). By chain rule of KL-divergence, it suffices to show that for some
events B1, . . . , Bm over Q (e.g., Bi is the event that J |X<i has high min entropy) it holds that

m∑
i=1

D(PXi ||QXi|B≤i | PX<i)

(
i.e.,

m∑
i=1

Ex←PX<i

[
D
(
PXi|X<i=x||QXi|X<i=x,B≤i

)])
(2)

is small, and Q[B≤m] is large. Bounding Equation (2) only requires understanding P and simplified
variants of Q (in which all but the ith entry is sampled according to P ). Unfortunately, bounding
Q[B≤m] might be hard since it requires a good understanding of the distribution Q itself. We would
have liked to relate the desired bound to P [B≤m], but the events {Bi} might not even be defined
over P (in the above example, P has no J part). However, smooth KL-divergence gives us the
means to do almost that.

Lemma 1.2 (Bounding smooth KL-divergence, informal). Let P , Q and {Bi} be as above. As-
sociate the events {B̃i} with P , each B̃i (independently) occur with probability Q[Bi | B<i, X<i].
Then

D1−P [B̃≤m](PX ||QX) ≤
m∑
i=1

D
(
PXi ||QXi|B≤i | PX<i|B̃≤i

)
.

Namely, {B̃i} mimics the events {Bi}, defined over Q, in (an extension of) P . It follows that
bounding the smooth KL-divergence of PX and QX (and thus guarantee that small events in PX
are small in QX), is reduced to understanding P and simplified variants of Q.
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1.4 Main Results

We prove the following results (in addition to Lemmas 1.1 and 1.2). The first result, which is the
main technical contribution of this paper, is the following bound on the smooth KL-divergence
between a distribution and its many-round skewed variant.

Theorem 1.3 (Smooth KL-divergence for skewed distributions, informal). Let P = PX be a
distribution over an m×n matrices with independent columns, and let W and E = {Ei,j} be events

over P . Let P̃ = P |W and let Q = Q(P,W, E) be the skewed variant of P̃ defined in Equation (1).
Assume ∀(i, j) ∈ [m] × [n]: (1) Ei,j is determined by Xj and (2) There exists δi,j ∈ (0, 1] such
that P [Ei,j |X≤i,j ] = δi,j for any fixing of X≤i,j. Then (ignoring constant factors, and under some
restrictions on n and P [W ])

Dεm+1/δn(P̃X ||QX) ≤ εm+m/δn

for δ = mini,j{δi,j} and ε = log( 1
P [W ])/δn. In a special case where Ei,j is determined by X≤i+1,j,

it holds that

Dε+1/δn(P̃X ||QX) ≤ ε+m/δn.

Combining Lemma 1.1 and Theorem 1.3 yields the following bound on parallel repetition of
partially simulatable arguments. We give separate bounds for partially simulatable argument and
for partially prefix-simulatable arguments: a δ-simulatable argument is δ-prefix-simulatable if for
any i-round view, the event E guaranteed by the simulatable property for this view is determined
by the coins used in the first i + 1 rounds. It is clear that the random-termination variant of an
m-round argument is 1/m-prefix-simulatable.

Theorem 1.4 (Parallel repetition for partially simulatable arguments, informal). Let π be an m-
round δ-simulatable interactive argument with soundness error 1− ε, and let n ∈ N. Then πn has
soundness error (1−ε)δn/m. Furthermore, if π is δ-prefix-simulatable, then πn has soundness error
(1− ε)δn.2

A subtlety that arises when proving Theorem 1.4 is that a direct composition of Lemma 1.1
and Theorem 1.3 only yields the desired result when the number of repetitions n is “sufficiently”
large compared to the number of rounds m (roughly, this is because we need the additive term
m/δn in Theorem 1.3 to be smaller than ε). We bridge this gap by presenting a sort of upward-self
reduction from a few repetitions to many repetitions. The idea underlying this reduction is rather
general and applies to other proofs of this type, and in particular to those of [HPWP10; Hai13;
CL10].3

We complete the picture by showing that an δ factor in the exponent in Theorem 1.4 is un-
avoidable.

2Throughout, we assume that the protocol transcript contains the verifier’s Accept/Reject decision (which is
without loss of generality for random-terminating variants). We deffer the more general case for the next version.

3Upward-self reductions trivially exist for interactive proof: assume the existence of a cheating prover Pn∗ breaking
the α soundness error of πn, then (Pn∗)`, i.e., the prover using Pn∗in parallel for ` times, violates the assumed α`

soundness error of πn`. However, when considering interactive arguments, for which we cannot guarantee a soundness
error below negligible (see Footnote 1), this approach breaks down when α` is negligible.
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Theorem 1.5 (lower bound, informal). Under suitable cryptographic assumptions, for any n,m ∈
N and ε ∈ [0, 1], there exists an m-round δ-prefix-simulatable interactive argument π with soundness
error 1−ε, such that πn has soundness error at least (1−ε)δn. Furthermore, protocol π is a random-
terminating variant of an interactive argument.

It follows that our bound for partially prefix-simulatable arguments and random-termination
variants, given in Theorem 1.4, is tight.

1.4.1 Proving Theorem 1.3

We highlight some details about the proof of Theorem 1.3. Using Lemma 1.2, we prove the theorem
by showing that the following holds for a carefully chosen events {Bi} over QX,J :

•
∑m

i=1D
(
P̃Xi ||QXi|B≤i | P̃X<i|B̃≤i

)
is small, and

• P̃ [B̃≤m] is large,

where {B̃i} are events over (extension of) P̃ , with B̃i taking the value 1 with probability Q[Bi |
B<i, X<i]. We chose the events {Bi} so that we have the following guarantees on QXi,J |B≤i,X<i :

1. J |X<i has high entropy (like it has without any conditioning), and

2. P [W | X<i, Xi,J , Ei,J ] ≥ P [W |X<i]/2.

Very roughly, these guarantees make the task of bounding the required KL-divergence much simpler
since they guarantee that the skewing induced by Q does not divert it too much (compared to P̃ ).
The remaining challenge is therefore lower-bounding P̃ [B̃≤m]. We bound the latter distribution by
associating a martingale sequence with the distribution Winning. In order to bound this sequence,
we prove a new concentration bound for “slowly evolving” martingale sequences, Lemma 2.18, that
we believe to be of independent interest.

1.5 Related Work

1.5.1 Interactive Arguments

Positive results. Bellare, Impagliazzo, and Naor [BIN97] proved that the parallel repetition of
three-message interactive arguments reduces the soundness error at an exponential, but not opti-
mal, rate. Canetti, Halevi, and Steiner [CHS05] later showed that parallel repetition does achieve
an optimal exponential decay in the soundness error for such arguments. Pass and Venkitasubra-
maniam [PV12] have proved the same for constant-round public-coin arguments. For public-coin
arguments of any (polynomial) round complexity, H̊astad et al. [HPWP10] were the first to show
that parallel repetition reduces the soundness error exponentially, but not at an optimal rate. The
first optimal analysis of parallel repetition in public-coin arguments was that of Chung and Liu
[CL10], who showed that the soundness error of the k repetitions improves to (1 − ε)k. Chung
and Pass [CP15] proved the same bound using KL-divergence. For non-public coin argument (of
any round complexity), Haitner [Hai13] introduced the random-terminating variant of a protocol,
and proved that the parallel repetition of these variants improves the soundness error at a weak
exponential rate. H̊astad et al. [HPWP10] proved the same, with essentially the same parame-
ters, for partially-simulatable arguments, that contain random-terminating protocols as a special
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case. All the above results extend to “threshold verifiers” where the parallel repetition is consid-
ered accepting if the number of accepting verifiers is above a certain threshold. Our result rather
easily extends to such verifiers, but we defer the tedious details to the next version. Chung and
Pass [CP11] proved that full independence of the parallel executions is not necessary to improve
the soundness of public-coin arguments, and that the verifier can save randomness by carefully
correlating the different executions. It is unknown whether similar savings in randomness can be
achieved for random-terminating arguments. Finally, the only known round-preserving alternative
to the random-terminating transformation is the elegant approach of Chung and Liu [CL10], who
showed that a fully-homomorphic encryption (FHE) can be used to compile any interactive argu-
ment to a one (with the same soundness error) for which parallel repetition improves the soundness
error at ideal rate, i.e., (1− ε)n. However, in addition to being conditional (and currently it is only
known how to construct FHE assuming hardness of learning with errors [BV14]), the compiled
protocol might lack some of the guarantees of the original protocol (e.g., fairness). Furthermore,
the reduction is non black box (the parties homomorphically evaluate each of the protocol’s gates),
making the resulting protocol highly impractical, and preventing the use of this approach when
only black-box access is available (e.g., the weak protocol is given as a DLL or implemented in
hardware).

Negative results. Bellare, Impagliazzo, and Naor [BIN97] presented for any n ∈ N, a four-
message interactive argument of soundness error 1/2, whose n-parallel repetition soundness remains
1/2. Pietrzak and Wikström [PW12] ruled out the possibility that enough repetitions will eventually
improve the soundness of an interactive argument. They presented a single 8-message argument for
which the above phenomenon holds for all polynomial n simultaneously. Both results hold under
common cryptographic assumptions.

1.5.2 Two-Prover Interactive Proofs

The techniques used in analyzing parallel-repetition of interactive arguments are closely related
to those for analyzing parallel repetition of two-prover one-round games. Briefly, in such a game,
two unbounded isolated provers try to convince a verifier in the validity of a statement. Given a
game of soundness error (1 − ε), one might expect the soundness error of its n parallel repetition
to be (1 − ε)n, but as in the case of interactive arguments, this turned out to be false [Fei91;
FV02; FRS90]. Nonetheless, Raz [Raz98] showed that parallel repetition does achieve an expo-
nential decay for any two-prover one-round game, and in particular reduces the soundness error to
(1 − ε)εO(1)n/s, where s is the provers’ answer length. These parameters were later improved by
Holenstein [Hol09], and improved further for certain types of games by Rao [Rao11], Dinur and
Steurer [DS14], and Moshkovitz [Mos14]. The core challenge in the analysis of parallel repetition of
interactive arguments and of multi-prover one-round games is very similar: how to simulate a ran-
dom accepting execution of the proof/game given the verifier messages. In interactive arguments,
this is difficult since the prover lacks computational power. In multi-prover one-round games, the
issue is that the different provers cannot communicate.

Open Questions

While our bound for the parallel repetition of partially prefix-simulatable arguments is tight, this
question for (non prefix) partially simulatable arguments is still open (there is a 1/m gap in the
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exponent). A more important challenge is to develop a better (unconditional) round-preserving am-
plification technique for arbitrary interactive arguments (which cannot be via random termination),
or alternatively to prove that such an amplification does not exist.

Paper Organization

Basic notations, definitions and tools used throughout the paper are stated and proved in Section 2.
The definition of smooth KL-divergence and some properties of this measure are given in Section 3.
The definition of many-round skewed distributions and our main bound for such distributions are
given in Section 4. The aforementioned bound is proven in Section 6, and is used in Section 5 for
proving our bound on the parallel repetition of partially simulatable arguments. The matching lower
bound on such parallel repetition, along with an intuitive explanation of why random-termination
helps to beat [BIN97]’s counterexample, is given in Section 7. Missing proofs can be found in
Section 8.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. All logarithms considered here are natural logarithms (i.e., in base e). For n ∈ N,
let [n] := {1, . . . , n} and (n) := {0, . . . , n}. Given a vector v ∈ Σm, we let vi denote its ith entry,
and for ordered S = (s1, . . . , sk) ⊆ [n] let cS = (vs1 , . . . , vsk). In particular, v<i = v1,...,i−1 and
v≤i = v1,...,i. For v ∈ {0, 1}n, let 1v = {i ∈ [n] : vi = 1}. For m× n matrix x, let xi and xj denote
their ith row and jth column respectively, and defined x<i, x≤i, x

<j and x≤j respectively. Given a
Boolean statement S (e.g., X ≥ 5), let 1S be the indicator function that outputs 1 if S is a true
statement and 0 otherwise. For a ∈ R and b ≥ 0, let a± b stand for the interval [a− b, a+ b].

Let poly denote the set of all polynomials, ppt denote for probabilistic polynomial time, and
pptm denote a ppt algorithm (Turing machine). A function ν : N → [0, 1] is negligible, denoted
ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and large enough n. Function ν is noticeable,
denoted ν(n) ≥ 1/poly(n), if exists p ∈ poly such that ν(n) ≥ 1/p(n) for all n.

2.2 Distributions and Random Variables

A discrete random variable X over X is sometimes defined by its probability mass function (pmf)
PX (P is an arbitrary symbol). A conditional probability distribution is a function PY |X(·|·) such
that for any x ∈ X , PY |X(·|x) is a pmf over Y. The joint pmf PXY can be written the product
PXPY |X , where (PXPY |X)(x, y) = PX(x)PY |X(y|x) = PXY (xy). The marginal pmf PY can be
written as the composition PY |X ◦ PX , where (PY |X ◦ PX)(y) =

∑
x∈X PY |X(y|x)PX(x) = PY (y).

We sometimes write P·,Y to denote a pmf PX,Y for which we do not care about the random variable
X. We denote by PX [W ] the probability that an event W over PX occurs, and given a set S ⊆ X
we define PX(S) = PX [X ∈ S]. Distribution P ′XY is an extension of PX if P ′X ≡ PX . Random
variables and events defined over PX are defined over the extension P ′XY by ignoring the value of
Y . We sometimes abuse notation and say that PXY is an extension of PX .

The support of a distribution P over a finite set X , denoted Supp(P ), is defined as {x ∈ X :
P (x) > 0}. The statistical distance of two distributions P and Q over a finite set X , denoted
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as SD(P,Q), is defined as maxS⊆X |P (S)−Q(S)| = 1
2

∑
x∈S |P (x)−Q(x)|. Given a set S, let US

denote the uniform distribution over the elements of S. We sometimes write x ∼ S or x ← S,
meaning that x is uniformly drawn from S. For p ∈ [0, 1], let Bern(p) be the Bernoulli distribution
over {0, 1}, taking the value 1 with probability p.

2.3 KL-Divergence

Definition 2.1. The KL-divergence (also known as, Kullback-Leibler divergence and relative en-
tropy) between two distributions P,Q on a discrete alphabet X is

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
= Ex∼P log

P (x)

Q(x)
,

where 0 · log 0
0 = 0 and if ∃x ∈ X such that P (x) > 0 = Q(x) then D(P ||Q) =∞.

Definition 2.2. Let PXY and QXY be two probability distributions over X × Y. The conditional
divergence between PY |X and QY |X is

D(PY |X ||QY |X |PX) = Ex∼PX [D(PY |X=x||QY |X=x)] =
∑
x∈X

PX(x)D(PY |X=x||QY |X=x).

Fact 2.3 (Properties of divergence). PXY and QXY be two probability distributions over X × Y.
It holds that:

1. (Information inequality) D(PX ||QX) ≥ 0, with equality holds iff PX = QX .

2. (Monotonicity) D(PXY ||QXY ) ≥ D(PY ||QY ).

3. (Chain rule) D(PX1···Xn ||QX1···Xn) =
∑n

i=1D(PXi|X<i ||QXi|X<i |PX<i).
If QX1···Xn =

∏n
i=1QXi then

D(PX1···Xn ||QX1···Xn) = D(PX1···Xn ||PX1PX2 · · ·PXn) +
n∑
i=1

D(PXi ||QXi).

4. (Conditioning increases divergence) If QY = QY |X ◦ PX (and PY = PY |X ◦ PX), then
D(PY ||QY ) ≤ D(PY |X ||QY |X |PX).

5. (Data-processing) If QY = PY |X ◦ QX (and PY = PY |X ◦ PX), it holds that D(PY ||QY ) ≤
D(PX ||QX).

Fact 2.4. Let X be random variable drawn from P and let W be an event defined over P . Then

D
(
PX|W ||PX

)
≤ log

1

P [W ]
.

Fact 2.5. Let X,Y be random variables drawn from either P or Q and let W be an event defined
over P . It holds that

Ex∼PX|WD(PY |X=x||QY |X=x) ≤ 1

P [W ]
·D(PY |X ||QY |X ||PX).
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Proof.

Ex∼PX|WD(PY |X=x||QY |X=x) =
∑
x

PX|W (x)D(PY |X=x||QY |X=x)

=
∑
x

P [X = x,W ]

P [W ]
D(PY |X=x||QY |X=x)

≤
∑
x

PX(x)

P [W ]
D(PY |X=x||QY |X=x)

=
1

P [W ]
·D(PY |X ||QY |X ||PX),

where the inequality follows since P [X = x,W ] ≤ PX(x) and D(·||·) ≥ 0. �

Fact 2.6. Let X be a random variable over X drawn form either PX or QX and let S ⊆ X . It
holds that

D(PX|X∈S ||QX) ≤ 1

PX(S)
·
(
D(PX ||QX) +

1

e
+ 1

)
.

Proof. If D(PX ||QX) =∞, then the statement holds trivially. Assume that D(PX ||QX) <∞ and
compute

D(PX|X∈S ||QX) =
∑
x∈S

PX|X∈S(x) log
PX|X∈S(x)

QX(x)

=
∑
x∈S

PX(x)

PX(S)
log

PX(x)/PX(S)

QX(x)

=
∑
x∈S

PX(x)

PX(S)
log

1

PX(S)
+
∑
x∈S

PX(x)

PX(S)
log

PX(x)

QX(x)
.

To bound the left sum, compute∑
x∈S

PX(x)

PX(S)
log

1

PX(S)
≤
∑
x∈S

PX(x)

PX(S)
· 1

PX(S)

≤ 1

PX(S)
,

where the first inequality follows since log(x) ≤ x for all x.
To bound the right sum, compute

∑
x∈S

PX(x)

PX(S)
log

PX(x)

QX(x)
=

1

PX(S)

(∑
x∈S

PX(x) log
PX(x)

QX(x)
+
∑
x/∈S

PX(x) log
PX(x)

QX(x)
−
∑
x/∈S

PX(x) log
PX(x)

QX(x)

)

=
1

PX(S)

(
D(PX ||QX)−

∑
x/∈S

PX(x) log
PX(x)

QX(x)

)
.
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The following calculation completes the proof:∑
x/∈S

PX(x) log
PX(x)

QX(x)
=
∑
x/∈S

QX(x)
PX(x)

QX(x)
log

PX(x)

QX(x)

≥
∑
x/∈S

QX(x)(−e−1)

≥ −e−1,

where the first inequlity holds since x log(x) ≥ −e−1 for all x > 0. �

Definition 2.7. For p, q ∈ [0, 1] let D(p||q) := D(Bern(p)||Bern(q)).

Fact 2.8 ([Mul, Implicit in Corollary 3.2 to 3.4]). For any p ∈ [0, 1] it holds that

1. D((1− δ)p||p) ≥ δ2p/2 for any δ ∈ [0, 1].

2. D((1 + δ)p||p) ≥ min{δ, δ2}p/4 for any δ ∈ [0, 1
p − 1].

The proof of the following proposition, which relies on Donsker and Varadhan [DV83]’s inequal-
ity, is given in Section 8.3.

Proposition 2.9. Let X be a random variable drawn form either P or Q. Assume that PrP [|X| ≤
1] = 1 (i.e., if X is drawn from P then |X| ≤ 1 almost surely) and that there exist ε, σ2,K1,K2 > 0
such that PrQ[|X| ≤ 1] ≥ 1− ε and

PrQ[|X| ≥ t] ≤ K2 · exp

(
− t2

K1σ2

)
for all 0 ≤ t ≤ 1.

Then, there exists K3 = K3(K1,K2, ε) > 0 such that

EP [X2] ≤ K3 · σ2 · (D(P ||Q) + 1).

2.4 Interactive Arguments

Definition 2.10 (Interactive arguments). A ppt protocol (P,V) is an interactive argument for a
language L ∈ NP with completeness α and soundness error β, if the following holds:

• Pr[(P(w),V)(x) = 1] ≥ α(|x|) for any (x,w) ∈ RL.

• Pr[(P∗,V)(x) = 1] ≤ max{β(|x|),neg(|x|)} for any ppt P∗ and large enough x /∈ L.

We refer to party P as the prover, and to V as the verifier.

Soundness against non-uniform provers is analogously defined, and all the results in this paper
readily extend to this model.

Since in our analysis we only care about soundness amplification, in the following we fix L to be
the empty language, and assume the input to the protocol is just a string of ones, which we refer
to as the security parameter, a parameter we omit when cleared from the context.
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2.4.1 Random-Terminating Variant

Definition 2.11 (Random-terminating variant, [Hai13]). Let V be a m-round randomized inter-
active algorithm. The random-terminating variant of V, denoted Ṽ, is defined as follows: algorithm
V acts exactly as V does, but adds the following step at the end of each communication round: it
tosses an (1− 1/m, 1/m) biased coin (i.e., 1 is tossed with probability 1/m), if the outcome is one
then it outputs 1 (i.e., accept) and halts. Otherwise, it continues as V would.

For a protocol π = (P,V), the protocol π̃ = (P, Ṽ) is referred to as the random-terminating
variant of π.

2.4.2 Partially Simulatable Interactive Arguments

Definition 2.12 (Partially simulatable protocols, [HPWP10]). A randomized interactive algorithm
V is δ-simulatable, if there exists an oracle-aided S (simulator) such that the following holds: for
every strategy P∗ and a partial view v of P∗ in an interaction of (P∗,V)(1κ), the output of SP∗(1κ, v)
is P∗’s view in a random continuation of (P∗,V)(1κ) conditioned on v and ∆, for ∆ being a δ-dense
subset of the coins of V that are consistent with v. The running time of SP∗(1κ, v) is polynomial in
κ and the running time of P∗(1κ).

Algorithm V is δ-prefix-simulatable if membership in the guaranteed event ∆ is determined by
the coins V uses in the first round(v) + 1 rounds.4

An interactive argument (P,V) is δ-simulatable/ δ-prefix-simulatable, if V is.

It is clear that random termination variant of an m-round interactive argument is 1/m-prefix-
simulatable.

Remark 2.13. One can relax the above definition and allow a different (non-black) simulator per
P∗, and then only require it to exists for poly-time P∗. While our proof readily extends to this
relaxation, we prefer to use the above definition for presentation clarity.

2.4.3 Parallel Repetition

Definition 2.14 (Parallel repetition). Let (P,V) be an interactive protocol, and let n ∈ N. We
define the n-parallel-repetition of (P,V) to be the protocol (Pn,Vn) in which Pn and Vn execute n
copies of (P,V) in parallel, and at the end of the execution, Vn accepts if all copies accept.

Black-box soundness reduction. As in most such proofs, our proof for the parallel repetition
of partially-simulatable arguments has the following black-box form.

Definition 2.15 (Black-box reduction for parallel repetition). Let π = (P,V) be an interactive
argument. An oracle-aided algorithm R is a black-box reduction for the g-soundness of the parallel
repetition of π, if the following holds for any poly-bounded n: let κ ∈ N and Pn∗ be deterministic
cheating prover breaking the soundness of πn=n(κ)(1κ) with probability ε′ ≥ g(n, ε = ε(κ)). Then

Sucesss probability. R = RPn∗(1κ, 1n) breaks the soundness of π with probability at least 1− ε/3.

Running time. Except with probability ε/3, the running time of R is polynomial in κ, the running
time of Pn∗(1κ) and 1/ε′.

4∆ = ∆1×∆2, for ∆1 being a (δ-dense) subset of the possible values for first round(v) + 1 round coins, and ∆2 is
the set of all possible values for the coins used in rounds round(v) + 2, . . . ,m, for m being the round complexity of V.
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We use the following fact.

Proposition 2.16. Assume there exists a black-box reduction for the g-soundness of the parallel
repetition of any δ-simulatable [resp., δ-prefix-simulatable] interactive argument, then for any poly-
bounded n, the soundness error of the n-fold repetition of any such argument is bounded by g(n, ε).

Proof. The only non-trivial part is how to handle randomized cheating provers (the above definition
of black-box reduction only considers deterministic provers). Let π = (P,V) be a δ-simulatable
interactive argument (the proof for δ-prefix-simulatable arguments follows the same lines). Let Pn∗

be an efficient randomized cheating prover violating the g(n, ε) soundness error of π, and let r(κ) be
a bound in the number of coins it uses. Let V̂ be the variant of V that appends r(κ) uniform coins
to its first message. It is clear that if V̂ is also δ-simulatable. Consider the deterministic cheating
prover Pn∗′ that attack V̂

n
by acting as Pn∗ whose random coins set to the randomness appended

to the first message of the first verifier. It is clear that Pn∗′ success probability (when attacking

V̂
n
) equals that of Pn∗ (when attacking Vn). Hence, the existence of a black-box reduction for the

g-soundness of (P, V̂)n, yields an efficient attacker P∗′ breaking the (1 − ε) soundness of (P, V̂).
This attacker can be easily modified to create an efficient attacker breaking the (1− ε) soundness
of π. �

2.5 Martingales

Definition 2.17. A sequence of random variables Y0, Y1, . . . , Yn is called a martingale sequence
with respect to a sequence X0, X1, . . . , Xn, if for all i ∈ [n]: (1) Yi is a deterministic function of
X0, . . . , Xi, and (2) E[Yi | X0, . . . , Xi−1] = Yi−1.

The following lemma (proven in Section 8.4) is a new concentration bound on “slowly evolving”
martingales.

Lemma 2.18 (A bound on slowly evolving martingales). Let Y0 = 1, Y1, . . . , Yn be a martingale
w.r.t X0, X1, . . . , Xn and assume that Yi ≥ 0 for all i ∈ [n]. Then for every λ ∈ (0, 1

4 ] it holds that

Pr[∃i ∈ [n] s.t. |Yi − 1| ≥ λ] ≤
23 · E

[∑n
i=1 min{|Ri|, R2

i }
]

λ2

for Ri = Yi
Yi−1
− 1, letting Ri = 0 in case Yi−1 = Yi = 0.

That is, if Yi is unlikely to be far from Yi−1 in a multiplicative manner, then the sequence is
unlikely to get far from 1. We use the following corollary of Lemma 2.18 (proven in Section 8.5).

Proposition 2.19. Let Y0 = 1, Y1, . . . , Yn be a martingale w.r.t X0, X1, . . . , Xn where Yi ≥ 0 for
all i ∈ [n]. Let Z1, . . . , Zn and T1, . . . , Tn be sequences of random variables satisfying for all i ∈ [n]:
(1) Yi = Yi−1 · (1 + Zi)/(1 + Ti), and (2) Ti is a deterministic function of X0, X1, . . . , Xi−1. Then

Pr[∃i ∈ [n] s.t. |Yi − 1| ≥ λ] ≤
150 · E

[∑n
i=1

(
min{|Zi|, Z2

i }+ min{|Ti|, T 2
i }
)]

λ2

2.6 Additional Fact and Concentration Bounds

We use the following fact.

Fact 2.20 ([Hai13], Proposition 2.5). Let PX1,...,Xm be a distribution and let W be an event over
P . Then for every i ∈ [m] it holds that Ex<i∼PX<i|W [1/P [W | X<i = x<i]] = 1/P [W ].
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2.6.1 Sum of Independent Random Variables

Fact 2.21 (Hoeffding’s inequality). Let X = X1 + · · · + Xn be the sum of independent random
variables such that Xi ∈ [ai, bi]. Then for all t ≥ 0:

1. Pr[X − E[X] ≥ t] ≤ exp
(
− 2t2∑n

i=1(bi−ai)2

)
.

2. Pr[|X − E[X]| ≥ t] ≤ 2 exp
(
− 2t2∑n

i=1(bi−ai)2

)
.

Fact 2.22 ([CL02, Lemma 2.1]). Let X1, . . . , Xn be independent random variables such that Xi ∼
Bern(pi). Let X =

∑n
i=1 biXi with bi > 0, and let v =

∑n
i=1 b

2
i pi. Then for all t ≥ 0:

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− t2

2(v + bt/3)

)
for b = max{b1, b2, . . . , bn}.

We use the following fact.

Fact 2.23. Let L1, . . . , Ln be independent random variables over R with |Li| ≤ ` for all i ∈ [n]
and let Zi = (Li/pi) · Bern(pi) with pi > 0 for all i ∈ [n]. Let L =

∑n
i=1 Li, let Z =

∑n
i=1 Zi, let

µ = E[L] and let p = mini∈[n]{pi}. Finally, let Γ = Z/µ− 1. Then for any γ ∈ [0, 1] it holds that

Pr[|Γ| ≥ γ] ≤ 4 exp

(
−pµ

2γ2

5`2n

)
Proof. Note that

Pr[|Γ| ≥ γ] = Pr[|Z − µ| ≥ µγ]

≤ Pr[|Z − L| ≥ µγ/2] + Pr[|L− µ| ≥ µγ/2] (3)

We bound each term in Equation (3) separately. For the right-hand side term, we use Hoeffding’s
inequality (Fact 2.21) to get

Pr[|L− µ| ≥ µγ/2] ≤ 2 exp

(
−2(µγ/2)2

`2 · n

)
≤ 2 exp

(
−µ

2γ2

`2n

)
, (4)

We now focus on bounding the left-hand side term. The following holds for any fixing of
L1, . . . , Ln. Since pi > 0 for all i ∈ [n], it holds that E[Zi] = Li =⇒ E[Z] = L. Moreover,
the Zi’s are independent random variables such that Zi = bi · Bern(pi) for bi = Li/pi, where
b = max{b1, . . . , bn} ≤ `/p and v =

∑n
i=1 b

2
i pi ≤ `2n/p. Fact 2.22 yields that

Pr[|Z − L| ≥ µγ/2] ≤ 2 exp

(
− (µγ/2)2

2(v + bµγ/6)

)
≤ 2 exp

(
− µ2γ2

4(`2n/p+ `µγ/6p)

)
≤ 2 exp

(
−pµ

2γ2

5`2n

)
, (5)

where the last inequality holds since µ ≤ `n and γ ≤ 1. The proof follows by Equations (3) to (5).
�

15



3 Smooth KL-Divergence

In this section we formally define the notion of smooth KL-divergence, state some basic properties
of this measure in Section 3.1, and develop a tool to help bounding it in Section 3.2.

Definition 3.1 (α-smooth divergence). Let P and Q be two distributions over a universe U
and let α ∈ [0, 1]. The α-smooth divergence of P and Q, denoted Dα(P ||Q), is defined as
inf(FP ,FQ)∈F{D(FP (P )||FQ(Q))}, for F being the set of randomized functions pairs such that for
every (FP , FQ) ∈ F :

1. Prx∼P [FP (x) 6= x] ≤ α, where the probability is also over the coins of FP .

2. ∀x ∈ U : Supp(FP (x)) ∩ U ⊆ {x} and Supp(FQ(x)) ∩ U ⊆ {x}.

Remark 3.2 (comparison to H-Technique). At least syntactically, the above notion of smooth KL-
divergence is similar to the distance measure used by the (coefficients) H-Technique tool, introduced
by Patarin [Pat90], for upper-bounding statistical distance. Consider the following alternative

definition of statistical distance: SD(A,B) = Ex∼A max{0, 1 − B(x)
A(x)}. The H-Technique approach

considers a smooth variant of the above formulation: small events with respect to A are ignored.
However, while smooth KL-divergence is useful in settings when the actual KL-divergence might be
unbounded, as in our settings, the above smooth variant of statistical distance is always very close
to the actual statistical distance, and as such, it is more of a tool for bounding statistical distance
than a measure of interest for its own sake.

3.1 Basic Properties

The following proposition (proven in Section 8.1) states that small smooth KL-divergence guaran-
tees that small events with respect to the left-hand-side distribution are also small with respect to
the right-hand-side distribution.

Proposition 3.3. Let P and Q be two distributions over U with Dα(P ||Q) < β. Then for every
event E over U , it holds that Q[E] < 2 ·max{α+ P [E], 4β}.

Like any useful distribution measure, smooth KL-divergence posses a data-processing property.
The following proposition is proven in Section 8.2.

Proposition 3.4 (Data processing of smooth KL-divergence). Let P and Q be two distribu-
tions over a universe U , let α ∈ [0, 1] and let H be a randomized function over U . Then
Dα(H(P )||H(Q)) ≤ Dα(P ||Q).

3.2 Bounding Smooth KL-Divergence

The following lemma allow us to bound the smooth KL-divergence between P and Q, while only
analyzing simpler variants of Q.

Lemma 3.5 (Bounding smooth KL-Divergence, restatement of Lemma 1.2). Let P and Q be
distributions with PX and QX being over universe Um, and let A1, . . . , Am and B1, . . . , Bm be
two sets of events over P and Q respectively. Let P·,XY be an extension of P = P·,X defined
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by PY |·,X =
∏
i PYi|X for PYi|X = Bern(P [Ai | X,A<i] ·Q[Bi | X<i, B<i]), letting PYi|X = 0 if

P [A<i | X] = 0 or Q[B<i | X<i] = 0, and let Ci = {Yi = 1}. Then5

D1−P [C≤m](PX ||QX) ≤
m∑
i=1

D(PXi|A≤i ||QXi|B≤i | PX<i|C≤i).

Proof. Let Q·,XY be an extension of Q = Q·,X defined by QY |·,X =
∏
iQYi|X for QYi|X =

Bern(P [Ai | X<i, A<i] ·Q[Bi | X,B<i]), letting QYi|X = 0 if P [A<i | X<i] = 0 or Q[B<i | X] = 0.
Our goal is to show that

D1−P [C≤m](PY1,X1,...,Ym,Xm ||QY1,X1,...,Ym,Xm) ≤
m∑
i=1

D(PXi|A≤i ||QXi|B≤i | PX<i|C≤i) (6)

The proof then follows by data processing of smooth KL-divergence (Proposition 3.4). By defini-
tion, for any i ∈ [m]:

PX<i|Y≤i=1i ≡ PX<i|C≤i (7)

and for any fixing of x<i ∈ Supp(PX<i|Y≤i=1i):

PXi|Y≤i=1i,X<i=x<i ≡ PXi|X<i,A≤i (8)

QXi|Y≤i=1i,X<i=x<i ≡ QXi|X<i,B≤i (9)

and for any fixing of x<i ∈ Supp(PX<i|Y<i=1i−1):

PYi|Y<i=1i−1,X<i=x<i(1) (10)

≡ Ex←PX|Y<i=1i−1,X<i=x<i
[P [Ai | X = x,A<i] ·Q[Bi | X<i = x<i, B<i]]

≡ P [Ai | X<i = x<i, A<i] ·Q[Bi | X<i = x<i, B<i]

≡ Ex←QX|Y<i=1i−1,X<i=x<i
[P [Ai | X<i = x<i, A<i] ·Q[Bi | X = x,B<i]]

≡ QYi|Y<i=1i−1,X<i=x<i(1).

By Equations (7) to (9):

EPX<i|Y≤i=1i

[
D
(
PXi|X<i,Y≤i=1i ||QXi|X<i,Y≤i=1i

)]
= EPX<i|C≤i

[
D
(
PXi|X<i,A≤i ||QXi|X<i,B≤i

)]
(11)

and by Equation (10), for any fixing of x ∈ Supp(PX<i|Y<i=1i−1):

D
(
PYi|X<i=x,Y<i=1i−1 ||QYi|X<i=x,Y<i=1i−1

)
= 0 (12)

We use Equations (11) and (12) for proving Equation (6), by applying on both dis-
tributions a function that “cuts” all values after the first appearance of Yi = 0. Let
fcut(y1, x1, . . . ym, xm) = (y1, x1, . . . ym, xm) if y = (y1, . . . , ym) = 1m, and fcut(y1, x1, . . . ym, xm) =
(y1, x1, . . . yi−1, xi−1, yi,⊥2n−2i+1) otherwise, where i is the minimal index with yi = 0, and ⊥ is an
arbitrary symbol /∈ U . By definition,

Prs∼PY1,X1,...,Ym,Xm
[fcut(s) 6= s] = P [Y 6= 1m] = 1− P [C≤m],

5Note that Lemma 1.2 is a special case of Lemma 3.5 that holds when choosing A1, . . . , Am with P [A≤m] = 1.
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and by Equations (11) and (12) along with data-processing of standard KL-divergence (Fact 2.3(3)),

D(fcut(PY1,X1,...,Ym,Xm)||fcut(QY1,X1,...,Ym,Xm)) ≤
m∑
i=1

D(PXi|A≤i ||QXi|B≤i | PX<i|C≤i).

That is, fcut is the function realizing the stated bound on the smooth KL-divergence of PX and
QX .

�

4 Skewed Distributions

In this section we formally define the notion of many-round skewed distributions and state our
main result for such distributions.

Definition 4.1 (The skewed distribution Q). Let P be a distribution with PX being a distribution
over m × n matrices, and let W and E = {Ei,j}i∈[m],j∈[n] be events over P . We define the skewed

distribution QX,J = Q(P,W, E) of P̃X = P |W , by QJ = U[n] and

QX|J =
m∏
i=1

PXi,J |X<i,J P̃Xi,−J |X<i,Xi,J ,Ei,J

Definition 4.2 (dense and prefix events). Let PX be a distribution over m × n matrices, and
let E = {Ei,j}i∈[m],j∈[n] be an event family over PX such that Ei,j, for each i, j, is determined by
Xj. The family E has density δ if ∀(i, j) ∈ [m] × [n] and for any fixing of X≤i,j, it holds that
P [Ei,j |X≤i,j ] = δi,j ≥ δ. The family E is a prefix family if ∀(i, j) ∈ [m] × [n] the event Ei,j is
determined by X≤i+1,j.

Bounding smooth KL-divergence of smooth distributions. The following theorem states
our main result for skewed distributions. In Section 6.1 we give a proof sketch of Theorem 4.3, and
in Section 6.2 we give the full details.

Theorem 4.3. Let P be a distribution with PX being a distribution over m × n matrices with
independent columns, let W be an event over P and let E = {Ei,j} be a δ-dense event family over

PX . Let P̃ = P |W and let QX,J = Q(P,W, E) be the skewed variant of P̃ defined in Definition 4.1.

Let Yi = (Yi,1, . . . , Yi,n) for Yi,j being the indicator for Ei,j, and let d =
∑m

i=1D(P̃XiYi ||PXiYi |P̃X<i).
Assuming n ≥ c ·m/δ and d ≤ δn/c, for a universal constant c > 0, then

D
c
δn

(d+1)(P̃ ||Q) ≤ c

δn
(d+m).

We now prove that Theorem 1.3 is an immediate corollary of Theorem 4.3.

Corollary 4.4 (Restatement of Theorem 1.3). Let P, P̃ ,Q,W, E , δ and c be as in Theorem 4.3,
and let ε = log( 1

P [W ])/δn. Then the following hold assuming n ≥ c ·m/δ:

• if P [W ] ≥ exp(−δn/cm), then Dc·(εm+1/δn)(P̃ ||Q) ≤ c · (εm+m/δn), and

• if P [W ] ≥ exp(−δn/2c) and E is a prefix family, then D2c·(ε+1/δn)(P̃ ||Q) ≤ 2c · (ε+m/δn).
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Proof. Let {Yi,j} be as in Theorem 4.3. Note that for each i ∈ [m]:

D(P̃XiYi ||PXiYi | P̃X<i) ≤ D(P̃X≥i ||PX≥i | P̃X<j ) ≤ D(P̃X ||PX) ≤ log
1

P [W ]
.

The first inequality holds by data-processing of KL-divergence (Fact 2.3(5)). The second inequality
holds by chain-rule of KL-divergence (Fact 2.3(3)). The last inequality holds by Fact 2.4. Assuming
P [W ] ≥ exp(−δn/cm), it holds that

d ≤ m · log
1

P [W ]
≤ δn/c,

concluding the proof of the first part.
Assuming P [W ] ≥ exp(−δn/c) and E is a prefix family (i.e., Ei,j is a function of X≤i+1), then

d ≤
m−1∑
i=1

D(P̃XiXi+1 ||PXiXi+1 | P̃X<i) +D(P̃Xm ||PXm | P̃X<m)

=
∑

i∈[m−1]∩Neven

D(P̃XiXi+1 ||PXiXi+1 | P̃X<i) +
∑

i∈[m−1]∩Nodd

D(P̃XiXi+1 ||PXiXi+1 | P̃X<i)

+D(P̃Xm ||PXm | P̃X<m) ≤ 2 ·D(P̃X ||PX)

≤ 2 · log
1

P [W ]
≤ δn/c,

concluding the proof of the second part. The first inequality holds by data-processing of KL-
divergence, and the second one holds by chain-rule and data-processing of KL-divergence. �

In order to show that the attacking distribution Q can be carried out efficiently, it suffice to
show that with high probability over (x, j) ∼ QX,J , we have for all i ∈ [m] that P [W | (X<i, Xi,j) =
(x<i, xi,j), Ei,j ] is not much smaller than P [W ]. The following lemma (proven in Section 6.2) states

that the above holds under P̃X . Namely, when sampling x ∼ P̃X (instead of x ∼ QX) and then
j ∼ QJ |X=x, then P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] is indeed not too low.

Lemma 4.5. Let P, P̃ ,Q,W, E , δ, d be as in Theorem 4.3, let t > 0 and let

pt := Pr
x∼P̃X ; j∼QJ|X=x

[∃i ∈ [m] : P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] < P [W ]/t]

Assuming n ≥ c ·m/δ and d ≤ δn/c, for a universal constant c > 0, then

pt ≤ 2m/t+ c(d+ 1)/(δn).

As an immediate corollary, we get the following result.

Corollary 4.6. Let P, P̃ ,Q,W, E , δ be as in Theorem 4.3, let ε = log( 1
P [W ])/δn, let t > 0 and let

c and pt as in Lemma 4.5. Assuming n ≥ c ·m/δ, it holds that

• if P [W ] ≥ exp(−δn/cm), then pt ≤ 2m/t+ c · (εm+ 1/δn).

• if P [W ] ≥ exp(−δn/2c) and E is a prefix family, then pt ≤ 2m/t+ 2c · (ε+ 1/δn).

19



5 The Parallel Repetition Theorem

In this section, we use Theorem 4.3 for prove Theorem 1.4, restated below.

Theorem 5.1 (Parallel repetition for partially simulatable arguments, restatement of Theo-
rem 1.4). Let π be an m-round δ-simulatable [resp., prefix δ-simulatable] interactive argument of
soundness error 1− ε. Then πn has soundness error (1− ε)cnδ/m [resp., (1− ε)cnδ], for a universal
constant c > 0.

Since the random terminating variant of an m-round interactive argument is 1/m-prefix-
simulatable, the (tight) result for such protocols immediately follows. The proof of Theorem 5.1
follows from our bound on the smooth KL-divergence of skewed distributions, Theorem 4.3, and
Lemma 5.3, stated and proven below.

Definition 5.2 (bounding function for many-round skewing). A function f is a bounding function
for many-round skewing if there exists a polynomial p(·, ·) such that the following holds for every
δ ∈ (0, 1] and every m,n ∈ N with n > p(m, 1/δ): let P be a distribution with PX being a column
independent distribution over m × n matrices. Let W be an event and let E be a δ-dense [resp.,
prefix δ-dense] event family over P (see Definition 4.2). Let P̃ = P |W and let Q = Q(P,W, E) be
according to Definition 4.1. Then the following holds for γ = log(1/P [W ])/f(n,m, δ):

1. QX [T ] ≤ 2 · P̃X [T ] + γ for every event T ,6 and

2. Pr
x∼P̃X ; j∼QJ|X=x

[(x, j) ∈ Badt] ≤ p(m, 1/δ)/t+ γ for every t > 0, letting

Badt := {(x, j) : ∃i ∈ [m] : P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] < P [W ]/t}.

Lemma 5.3 (Restatement of Lemma 1.1). Let π be an m-round δ-simulatable [resp., prefix δ-
simulatable] interactive argument of soundness error 1− ε, let f be a bounding function for many-
round skewing (according to Definition 5.2). Then πn has soundness error (1− ε)f(n,m,δ)/160.

That is, Lemma 5.3 tells us that the task of maximizing the decreasing rate of πn is directly
reduces to the task of maximizing a bounding function for many-round skewing. A larger bounding
function yields a smaller γ in Definition 5.2. This γ both defines an additive bound on the difference
between a small event in P̃ to a small event in Q, and bounds a specific event in P̃ that captures
the cases in which an attack can be performed efficiently.

We first prove Theorem 5.1 using Lemma 5.3.

Proof of Theorem 5.1.

Proof. We prove for δ-simulatable arguments, the proof for δ-prefix-simulatable arguments follows
accordingly. Let m,n, P , δ, E , W , P̃ and Q be as in Lemma 5.3, where E is δ-dense, and let
c = max{c′, c′′} where c′ is the constant from Corollary 4.4 and c′′ is the constant from Corollary 4.6.
By Corollary 4.4, if n ≥ c ·m/δ and P [W ] ≥ exp(−δn/cm), then

D3cmµ(P̃ ||Q) ≤ 3cmµ (13)

6The constant 2 can be replaced with any other constant without changing (up to a constant factor) the decreasing
rate which is promised by Lemma 5.3.

20



for µ = log(1/P [W ])/δn, where we assumed without loss of generality that P [W ] ≤ 1/2. Hence,
assuming that n ≥ c ·m/δ and P [W ] ≥ exp(−δn/cm), Proposition 3.3 and Equation (13) yields
that for every event T :

Q[T ] ≤ 2 · P̃ [T ] + γ, (14)

where γ = log(1/P [W ])/f(n,m, δ) for f(n,m, δ) = δn/(24cm). For event W of smaller probability,
it holds that γ ≥ 24, and therefore Equation (14) trivially holds for such events. In addition, by
Corollary 4.6, if n ≥ c ·m/δ and P [W ] ≥ exp(−δn/cm), then

Pr
x∼P̃X ; j∼QJ|X=x

[∃i ∈ [m] : P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] < P [W ]/t] ≤ 2m/t+ γ, (15)

where for event W of smaller probability, Equation (15) trivially holds. By Equations (14) and (15),
f is a bounding function for many-round skewing with the polynomial p(m, 1/δ) = c · m/δ.
Therefore, Lemma 5.3 yields that the soundness error of πn is bounded by (1 − ε)f(n,m,δ)/80 =
(1− ε)δn/(c′m), for c′ = 1920c. �

5.1 Proving Lemma 5.3

Let f be a bounding function for many-round skewing with the polynomial p(·, ·) ∈ poly. We first
prove the case when the number of repetition n is at least p(m, 1/δ), and then show how to extend
the proof for the general case.

Many repetitions case.

Proof of Lemma 5.3, many repeitions. Fix an m-round δ-simulatable interactive argument π =
(P,V) of soundness error 1 − ε (the proof of the δ-prefix-simulatable case follows the same lines),
and let n = n(κ) > p(m(κ), 1/δ(κ)). Note that without loss of generality ε(κ) ≥ 1/poly(κ).

Our proof is a black-box reduction according to Definition 2.15: we present an oracle-aided
algorithm that given access to a deterministic cheating prover for πn violating the claimed soundness
of πn, uses it to break the assumed soundness of π while not running for too long. The lemma then
follows by Proposition 2.16.

Let S be the oracle-aided simulator guaranteed by the δ-simulatablily of V. For a cheating
prover Pn∗ for πn, let P∗ be the cheating prover that for interacting with V, emulates a random
execution of (Pn∗,Vn), letting V plays one of the n verifiers, at a random location. (Clearly, P∗

only requires oracle access to Pn∗.) Assume without loss of generality that in each round V flips
t = t(κ) coins. The oracle-aided algorithm P∗ is defined as follows.

Algorithm 5.4 (P∗).

Input: 1κ, m = m(κ) and n = n(κ).

Oracles: cheating prover Pn∗ for πn.

Operation:

1. Let j ← [n].

2. For i = 1 to m do:

(a) Let ai be the ith message sent by V.
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(b) Do the following (“rejection continuation”):

i. Let xi,−j ← ({0, 1}t)n−1

ii. Let v = SPn∗(1κ, (j, x≤i,−j , a≤i)).

iii. If all n verifiers accept in v, break the inner loop.

(c) Send to V the ith message Pn∗ sends in v.

Fix a cheating prover Pn∗. We also fix κ ∈ N, and omit it from the notation. Let P = PX
denotes the coins Vn use in a uniform execution of (Pn∗,Vn). (Hence PX is uniformly distributed
over m × n matrices.) Let W be the event over P that Pn∗ wins in (Pn∗,Vn) (i.e., all verifiers
accept), and let P̃X = PX |W . For an i rounds view v = (j, ·) of Pn∗ in (Pn∗,V), let ∆v be the
δ-dense subset of V’s coins describing the output distribution of SPn∗(v). Let Ti,j be all possible
i round views of Pn∗ in (Pn∗,V) that are starting with j. Finally, let E = {Ei,j}i∈[m],j∈[n] be the
event family over P defined by Ei,j =

⋃
v∈Ti,j ∆v, and let QX,J be the e (skewed) distribution

described in Definition 4.1 with respect to P,W, E . By inspection, Q describes the distribution of
(j, x≤m) in a random execution of (P∗,Vn), where x≤m,j denotes the coins of V, and x≤m,−j denote
the final value of this term in the execution. Assume

Pr[(Pn∗,Vn) = 1] = P [W ] > (1− ε)f(n,m,δ)/80, (16)

and let γ = log(1/P [W ])/f(n,m, δ). By Equation (16) it holds that

γ < − log(1− ε)/80 ≤ ε/80 (17)

Since P̃ [W ] = 1, we deduce by Property 5.2(1) of f on the event ¬W that

Pr[(P∗,V) = 1] ≥ QX [W ] > 1− γ > 1− ε/80 (18)

So it is left to argue about the running time of P∗. By Property 5.2(2) of f on t = 80 · p(m, 1/δ)/ε
it holds that

Pr
x∼P̃X ; j∼QJ|X=x

[(x, j) ∈ Badt] ≤ p(m, 1/δ)/t+ γ < ε/40

Therefore, we now can apply Property 5.2(1) of f on the following event “Given x, choose
j ∼ QJ |X=x and check whether (x, j) ∈ Badt” (note that this event defined over an extension of P̃
that additionally samples j according to QJ |X). This yields that

Prx∼QX ; j∼QJ|X=x
[(x, j) ∈ Badt] ≤ 2ε/40 + γ < ε/10 (19)

By Equations (18) and (19) we obtain that

Pr(x,j)∼QX,J [W ∧ ((x, j) /∈ Badt)] > 1− ε/5 (20)

Namely, with probability larger than 1− ε/5, the attacker P∗ wins and its expected running time
in each round is bounded by O(t/P [W ]) ≤ poly(κ). This contradicts the soundness guaranty of π.

�
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Any number of repetitions. The assertions of the function f in Equations (18) and (19) only
guarantee to hold if n > p(m, 1/δ) (for some p(·, ·) ∈ poly). We now prove the lemma for smaller
values of repetitions. As mentioned in the introduction, for interactive arguments (and unlike
interactive proofs), there is no generic reduction from large to small number of repetitions. Assume

α := Pr[(Pn∗,Vn) = 1] > (1− ε)f(m,n,δ)/80 (21)

and let ` ∈ poly be such that `n ≥ p(m, 1/δ). It is immediate that

α` := Pr
[
((Pn∗)`, (Vn)`) = 1

]
= α` > (1− ε)`·f(m,n,δ)/80 (22)

for (Pn∗)` and (Vn)` being the ` repetition of Pn∗ and Vn respectively. Therefore, the same lines as

the proof above yields that the cheating prover P∗(P
n∗)` breaks the soundness of π with probability

1− ε/80. The problem is that the running time of P∗(P
n∗)` is proportional to 1/α` and not to 1/α,

and in particular is not polynomial even if α > 1/poly. We overcome this difficulty by giving a

different (efficient) implementation of P∗(P
n∗)` that takes advantage of the parallel nature of (Pn∗)`.

Proof of Lemma 5.3, small number of repetitions. Let π, Pn∗, P∗ and S be as in the proof for the
many repetitions case. Let ` ∈ poly be such that `n ≥ p(m, 1/δ), and for q ∈ [`] let Zq =
{(q − 1)n+ 1, . . . , qn}. The oracle-aided algorithm P̂ is defined as follows.

Algorithm 5.5 (P̂).

Input: 1κ, m = m(κ), n = n(κ) and ` = `(κ).

Oracles: cheating prover Pn∗ for πn.

Operation:

1. Let j ← [n`].

2. For i = 1 to m do:

(a) Let ai be the ith message sent by V.

(b) For q = 1 to ` do the following (“rejection continuation”):

If j ∈ Zq:
i. Let xi,Zq\{j} ← ({0, 1}t)n−1.

ii. Let v = SPn∗(1κ, (j mod n, xi,Zq\{j}, a≤i)).

iii. If all n verifiers accept in v, break the inner loop.

Else,

i. Let x>i,Zq ← ({0, 1}t)n

ii. If all n verifiers accept in xZq , break the inner loop.

(c) Send V the ith message Pn∗ sends in v.

Namely, P̂Pn∗ emulates P∗(P
n∗)` , for (Pn∗)` being the ` parallel repetition of Pn∗, while exploiting

the product nature of (Pn∗)` for separately sampling the coins of each the ` groups of verifiers.
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Fix a cheating prover Pn∗ and κ ∈ N, and define P = PX , W , QX,J with respect to a random
execution of ((Pn∗)`, (Vn)`) as done in the proof for large number of repetition. Assume

Pr[(Pn∗,Vn) = 1] > (1− ε)f(m,n,δ)/80 (23)

then

P [W ] = Pr
[
((Pn∗)`, (Vn)`) = 1

]
> (1− ε)`·f(m,n,δ)/80 (24)

Equation (18) yield that

Pr
[
(P̂,V) = 1

]
> 1− ε/80 (25)

So it is left to argue about the running time P̂. For q ∈ [`], let Wq be the event that all verifiers in
Zq accept in PX . Note that P [Wq] = Pr[(Pn∗,Vn) = 1] = α and that P [W ] = α`. Moreover, For
j ∈ [n`], let qj be the (unique) value q ∈ [`] such that j ∈ Zq. By Equation (19) it holds that

Pr(j,x)∼QJ,X [(x, j) ∈ Badt] < ε/10 (26)

for t = 80 · p(m, 1/δ)/ε, where recall that

Badt = {(x, j) : ∃i ∈ [m] : P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] < P [W ]/t}.

Note that by construction, it holds that

P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] (27)

= P [Wqj | X<i,Zqj = x<i,Zqj , Xi,j = xi,j , Ei,j ] ·
∏

q∈[`]\{qj}

P [Wq | X<i,Zq = x<i,Zq ].

Moreover, by Markov inequality we have

Pr(j,x)∼QJ,X

 ∏
q∈[`]\{qj}

P [Wq | X<i,Zq = x<i,Zq ] > 10 · α`−1/ε

 < ε/10. (28)

Recall that P [W ] = α`. Therefore, by Equations (26) to (28) we deduce that

Pr(j,x)∼QJ,X
[
∃i ∈ [m] : P [Wqj | X<i,Zqj = x<i,Zqj , Xi,j = xi,j , Ei,j ] < εα/(10t)

]
< ε/5 (29)

Moreover, by Fact 2.20 along with Markov inequality and a union bound, we have

Pr(j,x)∼QJ,X [∃(i, q) ∈ [m]× ([`] \ {qj}) : P [Wq | X<i,Zq = x<i,Zq ] < εα/(5m)] < ε/5 (30)

Hence, Equations (29) and (30) yields that with probability > 1−ε/2 it holds that at the beginning
of each inner round of P̂, the expected running time of it is bounded by max{10t/(εα), 5m/(εα)} ≤
poly(κ). This (along with Equation (25)) contradicts the soundness guarantee of π.

�
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6 Bounding Smooth KL-Divergence of Skewed Distributions

In this section we prove Theorem 4.3. As a warmup, we give in Section 6.1 a proof sketch and
explain the difficulties that arise. In Section 6.2 we define conditional variants of P̃ and Q, and use
Lemma 3.5 to prove the theorem assuming that (1) the standard KL-divergence of these variants
is small and (2) these variants are not too far, in the sense that allows us to use Lemma 3.5, from
their origin. We prove (1) in Section 6.3, and prove (2), which is the most challenging part, in
Section 6.4.

In the following we fix distribution P with PX being a distribution over Um×n matrices with
independent columns, event W over P and δ-dense event family E = {Ei,j} over PX . We let

P̃ = P |W and let QX,J = Q(P,W, E) be the skewed variant of P̃ defined in Definition 4.1. Let

Yi = (Yi,1, . . . , Yi,n) for Yi,j be the indicator for Ei,j , and let d =
∑m

i=1D(P̃XiYi ||PXiYi |P̃X<i).

6.1 Warmup

In this section we give a rather detailed proof sketch (more accurately, an attempt proof sketch)
for Theorem 4.3. Specifically, we try to bound the divergence between P̃ and Q; That is, to show
that

D(P̃ ||Q) ≤ O
(

1

δn

)
· (d+m) (31)

We try to do so by showing that for every i ∈ [m] it holds that

D(P̃Xi ||QXi |P̃X<i) ≤ O
(

1

δn

)
· (di + 1) (32)

for di = D(P̃XiYi ||PXiYi |P̃X<i), and applying chain-rule of KL-divergence for deducing Equa-
tion (31). By data-processing of KL-divergence (Fact 2.3(5)), it holds that

D(P̃Xi ||QXi |P̃X<i) ≤ D(P̃XiYi ||Q′XiYi |P̃X<i), (33)

where

Q′XiYi|X<i = P̃XiYi|X<i,Xi,J ,Yi,J=1 ◦QJ,Xi,J |X<i ≡ PXi,J |X<iP̃XiYi|X<i,Xi,J ,Yi,J=1 ◦QJ |X<i
(note that Q′Xi ≡ QXi and that PXi,J |X<i ≡ PXi,J |X<i,J because the columns under P are indepen-

dent). By definition of Q′, for any fixing of x≤iyi ∈ Supp(P̃X≤iYi) it holds that

Q′XiYi|X<i=x<i(xiyi) = Ej∼QJ|X<i=x<i

[
PXi,j |X<i=x<i(xi,j) · P̃XiYi|X<i=x<i,Xi,j=xi,j ,Yi,j=1(xiyi)

]
(34)

=
n∑
j=1

QJ |X<i=x<i(j) · PXi,j |X<i=x<i(xi,j) ·
P̃XiYiXi,jYi,j |X<i=x<i(xiyixi,j1)

P̃Xi,j ,Yi,j |X<i=x<i(xi,j , 1)

=
∑
j∈1yi

QJ |X<i=x<i(j) · PXi,j |X<i=x<i(xi,j) ·
P̃XiYi|X<i=x<i(xiyi)

P̃Xi,j ,Yi,j |X<i=x<i(xi,j , 1)

=
∑
j∈1yi

QJ |X<i=x<i(j) ·
βi,j(xi,j) · P̃XiYi|X<i=x<i(xiyi)

δ̃i,j
,
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for βi,j(xi,j) = βi,j(xi,j ;x<i) =
PXi,j |X<i=x<i (xi,j)

P̃Xi,j |X<i=x<i,Yi,j=1(xi,j)
and δ̃i,j = δ̃i,j(x<i) = P̃Yi,j |X<i=x<i(1) (=

P̃ [Ei,j | X<i = x<i]), where recall that we denote 1yi = {j ∈ [n] : yi,j = 1}. In addition, note that

QJ |X<i=x<i(j) =
Q[X<i = x<i | J = j] ·Q[J = j]

Q[X<i = x<i]
=

Q[X<i = x<i | J = j] ·Q[J = j]∑n
t=1Q[J = t]Q[X<i = x<i | J = t]

(35)

= 1/

(
n∑
t=1

Q[X<i = x<i | J = t]

Q[X<i = x<i | J = j]

)
.

Since for all t ∈ [n] it holds that

Q[X<i = x<i | J = t] =
i−1∏
s=1

P [Xs,t = xs,t | X<s = x<s] · P̃ [Xs = xs | X<s = x<s, Xs,t = xs,t, Es,t]

=

i−1∏
s=1

P [Xs,t = xs,t | X<s = x<s] ·
P̃ [Xs,t = xs,t, Es,t | X≤s = x≤s] · P̃ [Xs = xs | X<s = x<s]

P̃ [Es,t | X<s = x<s] · P̃ [Xs,t = xs,t | X<s = x<s, Es,t]

=

i−1∏
s=1

P [Xs,t = xs,t | X<s = x<s]

P̃ [Xs,t = xs,t | X<s = x<s, Es,t]
· P̃ [Es,t | X≤s = x≤s]

P̃ [Es,t | X<s = x<s]
· P̃ [Xs = xs | X<s = x<s] (36)

we deduce from Equations (35) and (36) that

QJ |X<i=x<i(j) =
ωi,j∑n
t=1 ωi,t

, (37)

where

ωi,j = ωi,j(x<i)

=
n∑n

t=1 ω
′
i,t

·
i−1∏
s=1

P [Xs,j = xs,j | X<s = x<s]

P̃ [Xs,j = xs,j | X<s = x<s, Es,j ]
· P̃ [Es,j | X≤s = x≤s]

P̃ [Es,j | X<s = x<s]

=
n∑n

t=1 ω
′
i,t

·
i−1∏
s=1

P [Xs,j = xs,j | X<s = x<s]

P̃ [Xs,j = xs,j | X<s = x<s]
· P̃ [Es,j | X<s = x<s]

P̃ [Es,j | X<s = x<s, Xs,j = xs,j ]
· P̃ [Es,j | X≤s = x≤s]

P̃ [Es,j | X<s = x<s]

=
n · ω′i,j∑n
t=1 ω

′
i,t

·
i−1∏
s=1

P̃ [Es,j | X<s = x<s]

P̃ [Es,j | X<s = x<s, Xs,j = xs,j ]
· P̃ [Es,j | X≤s = x≤s]

P̃ [Es,j | X<s = x<s]

for ω′i,j = ω′i,j(x<i) =
∏i−1
s=1

P [Xs,j=xs,j |X<s=x<s]
P̃ [Xs,j=xs,j |X<s=x<s]

. Note that ωi,j is basically a relative “weight” for

the column j, where a large ωi,j with respect to the other ωi,t’s means that QJ |X<i=x<i(j) is higher.
In an extreme case it is possible that ωi,j = ∞, meaning that QJ |X<i=x<i(j) = 1. However, we
assume for now that all ωi,j < ∞. Later in this proof attempt we even assume that all the terms
are close to 1, meaning that QJ |X<i=x<i has high min entropy (assumptions that are eliminated in
Section 6.2). As a side note, observe that ω1,j = 1 for all j ∈ [n] (meaning that QJ is the uniform
distribution over [n]). At this point, we just mention that we added (the same) multiplicative factor
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of n∑n
t=1 ω

′
i,t

to all {ωi,j}nj=1. On the one hand this does not change the relative weight, but on the

other hand it will help us to claim in the coming sections that these ωi,j ’s are indeed close to 1. By
Equations (33), (34) and (37), it holds that

D(P̃Xi ||QXi |P̃X<i) ≤ D(P̃XiYi ||Q′XiYi |P̃X<i) (38)

= Ex<i∼X<iExiyi∼P̃XiYi|X<i=x<i

[
log

P̃XiYi|X<i=X<i(xiyi)

QXiYi|X<i=X<i(xiyi)

]

= Ex<i∼X<iExiyi∼P̃XiYi|X<i=x<i

log

∑n
j=1 ωi,j∑

j∈1yi

ωi,j ·βi,j(xi,j)
δ̃i,j


= Ex<i∼X<iExiyi∼P̃XiYi|X<i=x<i

[− log(1 + γi(xiyi))],

for

γi(xiyi) = γi(xiyi;x<i) =

∑
j∈1yi

ωi,j · βi,j(xi,j)
δ̃i,j

/
 n∑
j=1

ωi,j

− 1 (39)

Naturally, we would like to approximate the logarithm in the above equation with a low-degree
polynomial. However, we can only do if γi is far away from −1. In particular, if P̃ [γi(XiYi;X<i) =
−1] > 0 (which happens if the event W allows for none of the events {Ei,j}ni=1 to occur), the
above expectation is unbounded. At that point, we only show how to bound Equation (38) under
simplifying assumptions, while in Section 6.2 we present how to eliminate the assumptions via
smooth KL-divergence. We now assume that for any x<i ∈ Supp(P̃X<i) and any j ∈ [n], the
following holds:

Assumption 6.1.

1. |γi(xiyi)| ≤ 1/2 for any xiyi ∈ Supp(P̃XiYi|X<i=x<i).

2. δ̃i,j ≥ 0.9δi,j (recall that δi,j = P [Ei,j ] = P [Ei,j | X≤i] for any fixing of X≤i).

3. ωi,j ∈ 1± 0.1.

4. Supp(PXi,j |X<i=x<i) ⊆ Supp(P̃Xi,j |X<i=x<i,Yi,j=1).

5. βi,j(xi,j) ≤ 1.1 for any xi,j ∈ Supp(P̃Xi,j |X<i=x<i).

Note that Assumption 3 implies that QJ |X<i has high min-entropy, and Assumptions 2 along with
5 imply that for all j:

P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ]

=
P̃Xi,j |X<i=x<i,Ei,j (xi,j)

PXi,j |X<i=x<i,Ei,j (xi,j)
· P̃ [Ei,j | X<i = x<i]

P [Ei,j | X<i = x<i]
· P [W | X<i = x<i]

= βi,j(xi,j) ·
(
δ̃i,j/δi,j

)
· P [W | X<i = x<i] ≥ P [W | X<i = x<i]/2,
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which fits the explanation in Section 1.4.1 (note that in the second equality we used the fact that
PXi,j |X<i=x<i,Ei,j (xi,j) = PXi,j |X<i=x<i(xi,j) by assumption).
By Equation (38), note that in order to prove Equation (32), it is enough to show that for any
x<i ∈ Supp(P̃x<i) it holds that

(40)

E
xiyi∼P̃XiYi|X<i=x<i

[− log(1 + γi(xiyi))] ≤ O
(

1

δn

)
·
(
D(P̃XiYi|X<i=x<i ||PXiYi|X<i=x<i) + 1

)
In the following, fix x<i ∈ Supp(P̃x<i). We now focus on proving Equation (40). Using the
inequality − log(1 + x) ≤ −x+ x2 for |x| ≤ 1

2 , we deduce from Assumption 1 that

E
xiyi∼P̃XiYi|X<i=x<i

[− log(1 + γi(xiyi))] ≤ E
xiyi∼P̃XiYi|X<i=x<i

[
−γi(xiyi) + γi(xiyi)

2
]

(41)

Note that

E
xiyi∼P̃XiYi|X<i=x<i

∑
j∈1yi

ωi,j · βi,j(xi,j)
δ̃i,j

 =

n∑
j=1

E
xi,jyi,j∼P̃Xi,jYi,j |X<i=x<i

[
yi,j ·

ωi,j · βi,j(xi,j)
δ̃i,j

]
(42)

=

n∑
j=1

ωi,j · Exi,j∼P̃Xi,j |X<i=x<i,Yi,j=1
[βi,j(xi,j)] =

n∑
j=1

ωi,j · Exi,j∼P̃Xi,j |X<i=x<i,Yi,j=1

[
PXi,j |X<i=x<i(xi,j)

P̃Xi,j |X<i=x<i,Yi,j=1(xi,j)

]

=
n∑
j=1

ωi,j · PXi,j |X<i=x<i(Supp(P̃Xi,j |X<i=x<i,Yi,j=1)) =
n∑
j=1

ωi,j .

The second equality holds since yi,j ∈ {0, 1} and since Assumption 2 implies that P̃Yi,j |X<i=x<i(1) =

δ̃i,j > 0 for all j ∈ [n], and the last equality holds by Assumption 4. Therefore, we deduce from
Equation (42) that

(43)

E
xiyi∼P̃XiYi|X<i=x<i

[γi(xiyi)] =

E
xiyi∼P̃XiYi|X<i=x<i

∑
j∈1yi

ωi,j · βi,j(xi,j)
δ̃i,j

/
 n∑
j=1

ωi,j

− 1 = 0.

Hence, in order to prove Equation (40), we deduce from Equations (41) and (43) that it is left
to prove that

E
xiyi∼P̃XiYi|X<i=x<i

[
γi(xiyi)

2
]
≤ O

(
1

δn

)
·
(
D(P̃XiYi|X<i=x<i ||PXiYi|X<i=x<i) + 1

)
(44)

In the following, rather than directly bounding the expected value of γi(xiyi)
2 under P̃XiYi|X<i=x<i ,

we show that under the product of the marginals of P̃XiYi|X<i=x<i (namely, under the distribution∏n
j=1 P̃Xi,jYi,j |X<i=x<i), the value of γi(xiyi) is well concentrated around its mean (i.e., zero), and

the proof will follow by Proposition 2.9. More formally, let Γ be the value of γi(xiyi) when xiyi is
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drawn from either P̃ = P̃XiYi|X<i=x<i or P̃Π =
∏n
j=1 P̃Xi,jYi,j |X<i=x<i . We prove that there exist

two constants K1,K2 > 0 such that for any γ ∈ [0, 1] :

P̃Π[|Γ| ≥ γ] ≤ K2 · exp

(
− γ2

K1 · σ2

)
(45)

for σ2 = 1/δn. Using Equation (45) and the fact that |Γ| ≤ 1 (Assumption 1), Proposition 2.9
yields that

E
xiyi∼P̃XiYi|X<i=x<i

[
γi(xiyi)

2
]

= E
P̃

[
Γ2
]
≤ K3

δn
·
(
D(P̃ ||P̃Π) + 1

)
(46)

=
K3

δn
·

D(P̃XiYi|X<i=x<i ||
n∏
j=1

P̃Xi,jYi,j |X<i=x<i) + 1


≤ K3

δn
·
(
D(P̃XiYi|X<i=x<i ||PXiYi|X<i=x<i) + 1

)
.

The last inequality holds by chain rule of KL-divergence when the right-hand side distribution is
product (Fact 2.3(3), where recall that PXiYi|X<i=x<i =

∏n
j=1 PXi,jYi,j |X<i=x<i). This concludes the

proof of Equation (44). It is left to prove Equation (45). In the following, given xiyi which are
drawn from either P̃Π =

∏n
j=1 P̃Xi,jYi,j |X<i=x<i or P̃Π′ =

∏n
j=1 P̃Yi,j |X<i=x<i ·P̃Xi,j |X<i=x<i,Yi,j=1, we

define the random variables Lj ,Zj ,L and Z (in addition to Γ), where Lj is the value of ωj ·βj(xi,j),

L =
∑n

j=1 Lj , Zj =

{
Lj/δ̃j yi,j = 1

0 yi,j = 0
and Z =

∑n
j=1 Zj , letting ωj = ωi,j , βj(·) = βi,j(·) and

δ̃j = δ̃i,j . Note that by definition, Z = (1 + Γ)µ for µ =
∑n

j=1 ωj . Namely, Γ measures how far
Z is from its expected value µ (follows by Equation (42) that calculates E

P̃
[Z], which also equals

to E
P̃Π [Z] and E

P̃Π′ [Z]). Note that the distribution of Z and Γ when xiyi is drawn from P̃Π is

identical to the distribution of Z and Γ (respectively) when xiyi is drawn from P̃Π′ . Therefore, in
particular it holds that

P̃Π[|Γ| ≥ γ] = P̃Π′ [|Γ| ≥ γ] (47)

Under P̃Π′ , the Lj ’s are independent random variables with E
P̃Π′ [Lj ] = ωj and E

P̃Π′ [L] = µ
where µ =

∑n
j=1 ωj ≥ n/2 and |Lj | ≤ 2 (by Assumptions 3 and 5). Moreover, for all j ∈ [n],

Zj = (Lj/δ̃j) · Bern(δ̃j) where δ̃j ≥ 0.9δi,j ≥ 0.9δ (by Assumption 2). Hence, Fact 2.23 yields that

P̃Π′ [|Γ| ≥ γ] ≤ 4 exp

(
−δnγ

2

100

)
(48)

The proof of Equation (45) now follows by Equations (47) and (48), which ends the proof of
Theorem 4.3 under the assumptions in 6.1.

6.1.1 Eliminating the Assumptions

The assumptions we made in 6.1 may seem unjustified at first glance. For instance, even for j = 1,
there could be “bad” columns j ∈ [n] with δ̃1,j < 0.9δ1,j . We claim, however, that the probability
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that a uniform J (chosen by Q) will hit such a “bad” column j is low. For showing that, let
B1 = {j ∈ [n] : δ̃1,j < 0.9δ1,j} be the set of “bad” columns j ∈ [n] for i = 1. A simple calculation
yields that

d1 = D(P̃X1Y1 ||PX1Y1) ≥ D(P̃Y1 ||PY1) ≥
n∑
j=1

D(P̃Y1,j ||PY1,j )

=
n∑
j=1

D(δ̃1,j ||δ1,j) ≥
∑
j∈B1

D(δ̃1,j ||δ1,j) ≥
∑
j∈B1

δ1,j/200 ≥ |B1| · δ/200.

The second inequality holds by chain-rule of KL-divergence when the right-hand side distribution
is product (Fact 2.3(3))) and the penultimate inequality holds by Fact 2.8(1). This implies that
|B1| ≤ 200d1/δ, and hence, QJ [J ∈ B1] < 200d1/(δn). Extending the above argument for a row
i > 1 is a much harder task. As we saw in Equation (37), the conditional distribution QJ |X<i is
much more complicated, and it also seems not clear how to bound |Bi| (now a function of X<i) as we
did for i = 1, when X<i is drawn from Q. Yet, we show in the next sections that when X<i is drawn
from P̃ (and not from Q), then we are able to understand QJ |X<i and Bi(X<i) better and bound
by O(d/(δn)) the probability of hitting a “bad” column for all i ∈ [m]. This is done by relating
martingale sequences for each sequence {ωi,j}mi=1 under P̃ , and by showing (using Lemma 2.18)
that with high probability, the sequences of most j ∈ [n] remain around 1.

6.2 The Conditional Distributions

Following the above discussion, the high level plan of our proof is to define the “good” events
A1, . . . , An for P̃ and B1, . . . , Bn for Q such that for all i ∈ [m], the conditional distributions
P̃Xi|A≤i and QXi|B≤i satisfies the assumptions in 6.1. Then, by only bounding the probability of

“bad” events under P̃ , the proof of Theorem 4.3 will follow by Lemma 3.5. We start with notations.

Notation 6.2.

• ω′i,j = ω′i,j(x<i) =
∏i−1
s=1

PXs,j |X<s=x<s
(xs,j)

P̃Xs,j |X<s=x<s
(xs,j)

.

• ωi,j = ωi,j(x<i) =
n·ω′i,j∑n
t=1 ω

′
i,t
·
∏i−1
s=1

P̃ [Es,j |X<s=x<s]
P̃ [Es,j |X<s=x<s,Xs,j=xs,j ]

· P̃ [Es,j |X≤s=x≤s]
P̃ [Es,j |X<s=x<s]

• βi,j(xi,j) = βi,j(xi,j ;x<i) = PXi,j |X<i=x<i(xi,j)/P̃Xi,j |X<i=x<i,Ei,j (xi,j)

• δ̃i,j = δ̃i,j(x<i) = P̃ [Ei,j | X<i = x<i]

• Xi,j = Xi,j(x<i) = {xi,j ∈ Supp(PXi,j |X<i=x<i) : βi,j(xi,j) ≤ 1.1}.

• Ji = Ji(x<i) = {j ∈ [n] :
(
δ̃i,j ≥ 0.9δi,j

)
∧ (ωi,j ∈ 1± 0.1) ∧

(
PXi,j |X<i=x<i(Xi,j) ≥ 0.9

)
}.

• Gi(xi) = Gi(xi;x<i) = {j ∈ [n] :
∧i
s=1(j ∈ Js ∧ xs,j ∈ Xs,j)}, letting G0 = [n].

• Si = Si(x<i) = Gi−1
⋂
Ji.

• β′i,j(xi,j) = β′i,j(xi,j ;x<i) = βi,j · 1{xi,j∈Xi,j}.
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• γi(xiyi) = γi(xiyi;x<i) =
(∑

j∈Si∩1yi

ωi,j ·β′i,j(xi,j)
δ̃i,j

)
/
(∑

j∈Si ωi,j · PXi,j |X<i=x<i(Xi,j)
)
− 1.

Definition 6.3 (Events). The event Bi is defined over QX,J by Bi: J ∈ Gi(X≤i).
The following events are defined over P = P·,X :

• Gi: |Si(X<i)| ≥ 0.9n.

• Ti: |γi(XiXi;X<i)| ≤ 1/2.

• T ′i : P̃ [Ti | X<i] ≥ 1− 1/n.

• Ai = Gi ∧ Ti ∧ T ′i .

• B̃i: Bern(Q[Bi | X<i, B<i]) = 1.

(i.e., a coin that takes one with probability Q[Bi | X<i, B<i] is flipped and its outcome is one).

• Ci = Ai ∧ B̃i.

A few words about these definitions are in order. For i ∈ [m], the set Gi(xi) is basically the set
of all columns j ∈ [n] that are “good” for all rows s ∈ [i] (in a sense that all values of δ̃s,j , βs,j ,
ωs,j are bounded as we would like), and the set Si is the set of all (potential) “good” columns with
respect to the history x<i (i.e., δ̃s,j , ωs,j are bounded for all s ∈ [i], but βs,j are only bounded for

s ∈ [i − 1]). Ai is the event (over P̃ ) that we have large number of potential good columns for
the row i (described by the event Gi), and that |γi|, the term that will appear in the analysis, is
promised to be small (described by the event Ti). Bi is the event (over Q) that J is “good” for all
rows in [i].

The proof of Theorem 4.3 follows by the following two lemmatas and Lemma 3.5.

Lemma 6.4 (Bounding KL-divergence of conditional distributions). Let P, P̃ ,Q,W, E , Y, δ, d as
defined in Theorem 4.3, and let {Ai}mi=1, {Bi}mi=1 and {Ti}mi=1 be the events defined in Definition 6.3.

Assuming that P̃ [T1 ∧ . . . ∧ Tn] ≥ 1/2, then for every i ∈ [m] it holds that

D(P̃Xi|A≤i ||QXi|B≤i | P̃X<i|C≤i) ≤
c

δn
(di + 1) · 1

P̃ [C≤i]

for some universal constant c > 0, and di = D(P̃XiYi ||PXiYi |P̃X<i).

Lemma 6.5 (Bounding probability of bad events under P̃ ). Let P, P̃ ,Q,W, E , Y, δ, d as defined in
Theorem 4.3, and let {Ci}mi=1 be the events defined in Definition 6.3. Then there exists a universal
constant c > 0 such that if n ≥ c ·m/δ and d ≤ δn/c, then

P̃ [C1 ∧ . . . ∧ Cm] ≥ 1− c · (d+ 1)/δn.

Proving Theorem 4.3.

Proof of Theorem 4.3. We start by setting the constant of Theorem 4.3 to c = 4 ·max{c1, c2 + 1}
where c1 is the constant from Lemma 6.4 and c2 is the constant from Lemma 6.5. By Lemma 6.5
it holds that

P̃ [C1 ∧ . . . ∧ Cm] ≥ 1− (c2 + 1) · (d+ 1)/δn (49)

≥ 1/2, (50)
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the last inequality holds by the assumption on n and d. In particular, it holds that

P̃ [T1 ∧ . . . ∧ Tm] ≥ 1/2 (51)

Therefore, by (51) and Lemma 6.4 it holds that

D(P̃Xi|A≤i ||QXi|B≤i | P̃X<i|C≤i) ≤
c1

δn
(di + 1) · 1

P̃ [C≤i]

≤ c1

δn
(di + 1) · 1

P̃ [C1 ∧ . . . ∧ Cm]

≤ c

δn
(di + 1), (52)

the last inequality holds by Equation (50). The proof now holds by Equations (49) and (52)
and Lemma 3.5. �

In addition, the proof of Lemma 4.5 now follows by Lemma 6.5.

Proving Lemma 4.5

Corollary 6.6 (Restatement of Lemma 4.5). Let P, P̃ ,Q,W, E , δ, d be as in Theorem 4.3, let c be
the constant from Lemma 6.5, let t > 0 and let

pt := Pr
x∼P̃X ; j∼QJ|X=x

[
∃i ∈ [m] : P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] <

P [W ]

t

]
Assuming n ≥ c ·m/δ and d ≤ δn/c, then

pt ≤
2m

t
+
c(d+ 1)

δn
.

Proof. Let Gm, δ̃i,j , βi,j be according to Notation 6.2. Observe that for any fixing of x ∈ Supp(P̃X)
and any j ∈ Gm(x), the following holds for all i ∈ [m]:

P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ] =
P̃ [Ei,j | X<i = x<i]

P [Ei,j | X<i = x<i]
·
P̃Xi,j |X<i=x<i,Ei,j (xi,j)

PXi,j |X<i=x<i,Ei,j (xi,j)
· P [W | X<i = x<i]

=
δ̃i,j(x<i)

δi,j
· βi,j(xi,j ;x<i) · P [W | X<i = x<i]

≥ P [W | X<i = x<i]/2, (53)

where second equality holds since

PXi,j |X<i=x<i,Ei,j (xi,j) =
P [Ei,j | X≤i = x≤i] · P [Xi,j = xi,j | X<i = x<i]

P [Ei,j ]

= PXi,j |X<i=x<i(xi,j),
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(recall that by assumption, P [Ei,j | X≤i = x≤i] = P [Ei,j ] for any fixing of x≤i), and the inequality

holds since j ∈ Gm(x). Let {B̃i}, {Ci} be the events from Definition 6.3. We deduce that

Pr
x∼P̃X

j∼QJ|X=x

[
∃i ∈ [m] :

P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j ]

P [W | X<i = x<i]
<

1

2

]
≤ Pr

x∼P̃X
j∼QJ|X=x

[j ∈ Gm(x)]

≤ P̃ [B̃1 ∧ . . . ∧ B̃m]

≤ c(d+ 1)

δn
, (54)

where the first inequality holds by Equation (53) and the last one holds by Lemma 6.5. In addition,
by Fact 2.20 along with Markov’s inequality and a union bound it holds that

Pr
x∼P̃X

[
∃i ∈ [m] : P [W | X<i = x<i] <

2P [W ]

t

]
<

2m

t
. (55)

The proof now follows by Equations (54) and (55) �

6.3 Bounding KL-Divergence of the Conditional Distributions

In this section we prove Lemma 6.4.

Proof of Lemma 6.4. We start by noting that for any x<i ∈ Supp(P̃X<i|C≤i) ⊆
Supp(P̃X<i|S≤i,T ′≤i,T≤i), the following assertions hold.

Assertion 6.7.

1.
(
P̃ [T≤i | X<i = x<i] > 1− 1

n

)
(holds by the event T ′i and T≤i−1).

2. (|Si| ≥ 0.9n) (holds by the event Gi).

3. P̃XiYi|X<i=x<i,A≤i ≡ P̃XiYi|X<i=x<i,T≤i (holds since Gi, T
′
i and B̃i are just random functions

of X<i).

4. QXiYi|X<i=x<i,B≤i ≡ QXiYi|X<i=x<i,J∈Gi(Xi).

5. For all xiyi ∈ Supp(P̃XiYi|X<i=x<i,T≤i) it holds that |γi(xiyi)| ≤ 1/2.

6. For all xiyi ∈ Supp(P̃XiYi|X<i=x<i) it holds that γi(xiyi) ≤ 2/δ.

Note that Assertion 6 holds since for any j ∈ Si and any xi it holds that: δ̃i,j ≥ 0.9δ, ωi,j ∈ 1± 0.1,
β′i,j(xi) ≤ 1.1 and PXi,j |X<i=x<i(Xi,j) ≥ 0.9. Therefore,

γi ≤

∑
j∈Si

ωi,j · β′i,j(xi,j)
δ̃i,j

/
∑
j∈Si

ωi,j · PXi,j |X<i=x<i(Xi,j)


≤
(

1.1 · 1.1
0.9δ

· |Si|
)
/(0.9 · 0.9 · |Si|) ≤ 2/δ

Our goal now is to show that for any fixing of x<i ∈ Supp(P̃X<i|C≤i) is holds that
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D(P̃Xi|X<i=x<i,T≤i ||QXi|X<i=x<i,J∈Gi(Xi)) ≤
c

δn
·
(
D(P̃Xi|X<i=x<i ||PXi|X<i=x<i) + 1

)
, (56)

for some constant c > 0. The proof then follow by Equation (56) since

D(P̃Xi|A≤i ||QXi|B≤i | P̃X<i|C≤i) = E
x<i∼P̃X<i|C≤i

[
D(P̃Xi|X<i=x<i,A≤i ||QXi|X<i=x<i,B≤i)

]
= E

x<i∼P̃X<i|C≤i

[
D(P̃Xi|X<i=x<i,T≤i ||QXi|X<i=x<i,J∈Gi(Xi))

]
≤ c

δn
·
(

E
x<i∼P̃X<i|C≤i

[
D(P̃Xi|X<i=x<i ||PXi|X<i=x<i)

]
+ 1

)
≤ c

δn
(di + 1) · 1

P̃ [C≤i]
,

where the second equality holds by Properties 3 and 4 in 6.7, and the last inequality holds by
Fact 2.5. We now focus on proving Equation (56) in a similar spirit to the proof given in Section 6.1.

In the following, fix i ∈ [m] and x<i ∈ Supp(P̃X<i|C≤i). By data-processing of KL-divergence
(Fact 2.3(5)), it holds that

D(P̃Xi|X<i=x<i,T≤i ||QXi|X<i=x<i,J∈Gi(Xi)) ≤ D(P̃XiYi|X<i=x<i,T≤i ||Q
′
XiYi|X<i=x<i), (57)

where

Q′XiYi|X<i=x<i = P̃XiYi|X<i=x<i,Xi,Yi,J=1 ◦QJ,Xi|X<i=x<i,J∈Gi(Xi)
≡ P̃XiYi|X<i=x<i,Xi,J ,Yi,J=1 ◦QJ,Xi,J |X<i=x<i,J∈Si,Xi,J∈Xi,J

Similar calculation to the one in Equation (34) yields that for any fixing of xiyi ∈
Supp(P̃XiYi|X<i=x<i) it holds that

Q′XiYi|X<i=x<i(xiyi) (58)

=
∑

j∈Gi(xi)
⋂

1yi

QJ |X<i=x<i,J∈Gi(xi)(j) ·
βi,j(xi,j) · P̃XiYi|X<i=x<i(xiyi)

δ̃i,j

In addition, for any j ∈ Gi(xi) it holds that

QJ |X<i=x<i,J∈Gi(xi)(j) =
QJ |X<i=x<i,J∈Si(j) · 1{xi,j∈Xi,j}
Q[Xi,j ∈ Xi,j | X<i = x<i, J = j]

=
QJ |X<i=x<i,J∈Si(j) · 1{xi,j∈Xi,j}
P [Xi,j ∈ Xi,j | X<i = x<i]

=
ωi,j · 1{xi,j∈Xi}∑

t∈Si ωi,t · PXi,j |X<i=x<i(Xi,j)
, (59)

where the first equality holds since Gi(xi) = {j ∈ [n] : j ∈ Si ∧ xi,j ∈ Xi,j} and the last equality
holds by Equation (37). Therefore, by combining Equations (58) and (59) we now can write

Q′XiYi|X<i=x<i(xiyi) =

∑
j∈Si

⋂
1yi

ωi,j ·β′i,j(xi,j)
δ̃i,j∑

j∈Si ωi,j · PXi,j |X<i=x<i(Xi,j)
· P̃XiYi|X<i=x<i(xiyi) (60)
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Using Equations (57) and (60), we deduce that

D(P̃Xi|X<i=x<i,T≤i ||QXi|X<i=x<i,J∈Gi(Xi)) (61)

≤ D(P̃XiYi|X<i=x<i,T≤i ||Q
′
XiYi|X<i=x<i)

= E
xiyi∼P̃XiYi|X<i=x<i,T≤i

[
log

P̃XiYi|X<i=x<i,T≤i(xiyi)

Q′XiYi|X<i=x<i(xiyi)

]

≤ E
xiyi∼P̃XiYi|X<i=x<i,T≤i

[
log

P̃XiYi|X<i=x<i(xiyi)/P̃ [T≤i | X<i = x<i]

Q′XiYi|X<i=x<i(xiyi)

]

≤ E
xiyi∼P̃XiYi|X<i=x<i,T≤i

log

∑
j∈Si ωi,j · PXi,j |X<i=x<i(Xi,j)∑

j∈Si
⋂

1yi

ωi,j ·β′i,j(xi,j)
δ̃i,j

+ 2/n,

= E
xiyi∼P̃XiYi|X<i=x<i,T≤i

[− log(1 + γi(xiyi))] + 2/n

≤ E
xiyi∼P̃XiYi|X<i=x<i,T≤i

[
−γi(xiyi) + γi(xiyi)

2
]

+ 2/n

≤ −E
xiyi∼P̃XiYi|X<i=x<i

[γi(xiyi)]/P̃ [T≤i | X<i = x<i] +
2

δn
+ E

xiyi∼P̃XiYi|X<i=x<i,T≤i

[
γi(xiyi)

2
]

+ 2/n

The third inequality holds by Equation (60) and by Assertion 6.7(1) which yields that
log 1

P̃ [T≤i|X<i=x<i]
≤ 2/n. The one before last inequality holds by the inequality − log(1+x) ≤ −x+

x2 for |x| ≤ 1/2 (recall Assertion 6.7(5)). The last inequality holds since for any random variable

X ≤M and any event T it holds that E[−X | T ] =
−E[X]+E[X|T ]·Pr[T ]

Pr[T ] ≤ −E[X]/Pr[T ] +M ·Pr
[
T
]

(recall Assertions 6.7(1,6)). Note that

E
xiyi∼P̃XiYi|X<i=x<i

 ∑
j∈Si

⋂
1yi

ωi,j · β′i,j(xi,j)
δ̃i,j

 (62)

=
∑
j∈Si

E
xi,jyi,j∼P̃Xi,jYi,j |X<i=x<i

[
yi,j ·

ωi,j · β′i,j(xi,j)
δ̃i,j

]
=
∑
j∈Si

ωi,j · Exi,j∼P̃Xi,j |X<i=x<i,Yi,j=1

[
β′i,j(xi,j)

]
=
∑
j∈Si

ωi,j · Exi,j∼P̃Xi,j |X<i=x<i,Yi,j=1

[
PXi,j |X<i=x<i(xi,j)

P̃Xi,j |X<i=x<i,Yi,j=1(xi,j)
· 1{xi,j∈Xi,j}

]

=

n∑
j=1

ωi,j · PXi,j |X<i=x<i
(

Supp(P̃Xi,j |X<i=x<i,Yi,j=1)
⋂
Xi,j

)
=

n∑
j=1

ωi,j · PXi,j |X<i=x<i(Xi,j),

where the second equality holds since yi,j ∈ {0, 1} and since for all j ∈ Si it holds that

P̃Yi,j |X<i=x<i(1) = δ̃i,j > 0, and the last equality holds since Xi,j ⊆ Supp(P̃Xi,j |X<i=x<i,Yi,j=1).
Therefore, we deduce from Equation (62) that
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E
xiyi∼P̃XiYi|X<i=x<i

[γi(xiyi)] = 0 (63)

Therefore, by Equations (61) and (63), in order to prove Equation (56) it is left to show that

E
xiyi∼P̃XiYi|X<i=x<i,T≤i

[
γi(xiyi)

2
]
≤ O

(
1

δn

)
·
(
D(P̃XiYi|X<i=x<i ||PXiYi|X<i=x<i) + 1

)
. (64)

Let Γ be the value of γi(xiyi) when xiyi is drawn from either P̃ ′ = P̃XiYi|X<i=x<i,T≤i or P̃Π =∏n
j=1 P̃Xi,jYi,j |X<i=x<i . We now prove that there exists constants K1,K2 > 0 such that for every

γ ∈ [0, 1] it holds that

P̃Π[|Γ| ≥ γ] ≤ K2 · exp

(
− γ2

K1 · σ2

)
, (65)

The proof of Equation (64) then follows since

E
xiyi∼P̃XiYi|X<i=x<i,T≤i

[
γi(xiyi)

2
]

= E
P̃ ′

[
Γ2
]
≤ K3

δn
·
(
D(P̃ ′||P̃Π)

)
(66)

=
K3

δn
·

D(P̃XiYi|X<i=x<i,T≤i ||
n∏
j=1

P̃Xi,jYi,j |X<i=x<i) + 1


≤ K3

δn
·
(
D(P̃XiYi|X<i=x<i,T≤i ||PXiYi|X<i=x<i) + 1

)
≤ K3

δn
·

(
1

P̃ [T≤j ]

(
D(P̃XiYi|X<i=x<i ||PXiYi|X<i=x<i) + 1/e+ 1

)
+ 1

)

≤ 5K3

δn
·
(
D(P̃XiYi|X<i=x<i ||PXiYi|X<i=x<i) + 1

)
where the first inequality holds by Proposition 2.9 and the fact that |Γ| ≤ 1 under P̃ ′, the

second inequality holds by chain rule of KL-divergence when the right-hand side distribution is
product (Fact 2.3(3)), the one before last inequality holds by Fact 2.6, and the last one holds since
P̃ [T≤j ] ≥ 1/2.

We now prove Equation (65). In the following, given xiyi which are drawn from either P̃Π or
P̃Π′ =

∏n
j=1 P̃Yi,j |X<i=x<i · P̃Xi,j |X<i=x<i,Yi,j=1, we define the random variables Lj ,Zj ,L and Z (in

addition to Γ), where Lj is the value of ωj · β′j(xi,j), L =
∑n

j=1 Lj , Zj =

{
Lj/δ̃j yi,j = 1

0 yi,j = 0
and

Z =
∑n

j=1 Zj , letting ωj = ωi,j , βj(·) = βi,j(·) and δ̃j = δ̃i,j . Note that by definition, Z = (1 + Γ)µ
for µ =

∑
j∈Si ωj · PXi,j |X<i=x<i(Xi,j) (follows from Equation (62)). Moreover, by the definition of

Si and the fact that |Si| ≥ 0.9n (Assertion 6.7(2)), it holds that |Lj | ≤ 2, δ̃j ≥ 0.9δ and µ ≥ n/2.
Hence,

P̃Π[|Γ| ≥ γ] = P̃Π′ [|Γ| ≥ γ] ≤ 4 exp

(
−δnγ

2

100

)
, (67)
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where the equality holds since Γ has the same distribution under P̃Π and under P̃Π′ , and the
inequality holds by Fact 2.23 since under P̃Π′ the Lj ’s are independent random variables with
E
P̃Π′ [L] = µ and for all j ∈ Si we have Zj = (Lj/δ̃j) · Bern(δ̃j). This proves Equation (65) and

concludes the proof.
�

6.4 Bounding the Probability of Bad Events Under P̃

In this section we prove Lemma 6.5. We start with few more notations (in addition to the ones given
in Notation 6.2), then we prove facts about the distribution P̃ (Section 6.4.1), and in Section 6.4.2
we present the proof of Lemma 6.5.

Notation 6.8 (Additional notations).

• αi,j = αi,j(xi,j ;x<i) =
PXi,j |X<i=x<i (xi,j)

P̃Xi,j |X<i=x<i (xi,j)
− 1.

• ρi,j = ρi,j(x<i) =
P̃ [Ei,j |X<i=x<i]
P [Ei,j |X<i=x<i] − 1 =

δ̃i,j
δi,j
− 1.

• τi,j = τi,j(xi;x<i) =
P̃ [Ei,j |X≤i=x≤i]
P [Ei,j |X≤i=x≤i] − 1 =

P̃ [Ei,j |X≤i=x≤i]
δi,j

− 1.

• ξi,j = ξi,j(xi,j ;x<i) =
P̃ [Ei,j |X<i=x<i,Xi,j=xi,j ]
P [Ei,j |X<i=x<i,Xi,j=xi,j ] − 1 =

P̃ [Ei,j |X<i=x<i,Xi,j=xi,j ]
δi,j

− 1.

• Ui,j = Ui,j(xi,j ;x<i) =
∏i
s=1

P̃ [Es,j |X<s=x<s,Xs,j=xs,j ]
P̃ [Es,j |X<s=x<s]

= Ui−1,j · 1+ξi,j
1+ρi,j

.

• Vi,j = Vi,j(xi;x<i) =
∏i
s=1

P̃ [Es,j |X≤s=x≤s]
P̃ [Es,j |X<s=x<s]

= Vi−1,j · 1+τi,j
1+ρi,j

.

• Ri,j = Ri,j(x<i) =
n·ω′i,j∑n
t=1 ω

′
i,t

= n·
(∏i−1

s=1

PXs,j |X<s=x<s
(xs,j)

P̃Xs,j |X<s=x<s
(xs,j)

)
/

(∑n
t=1

∏i−1
s=1

PXs,t|X<s=x<s
(xs,t)

P̃Xs,t|X<s=x<s
(xs,t)

)
.

where in all definitions, recall that δi,j = P [Ei,j | X≤i] for any fixing of X≤i.

6.4.1 Facts about P̃

Fact 6.9. For all r ∈ {ρ, τ, ξ} it holds that

1. E
P̃

[∑m
i=1

∑n
j=1 min{|ri,j |, r2

i,j}
]
≤ 4d

δ .

2. For all λ > 0 : E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. |ri,j | ≥ λ}|] ≤ 4d
δ·min{λ,λ2} .

Proof. Assuming Item 1 holds, then Item 2 holds since

E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. |ri,j | ≥ λ}|] ≤
1

min{λ, λ2}
· E

P̃

 m∑
i=1

n∑
j=1

min{|ri,j |, r2
i,j} · 1{min{|ri,j |,r2

i,j}≥min{λ,λ2}}


≤ 1

min{λ, λ2}
· E

P̃

 m∑
i=1

n∑
j=1

min{|ri,j |, r2
i,j}


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Item 1 for r = ρ holds since

d =

m∑
i=1

E
P̃X<i

[
D(P̃XiYi|X<i ||PXiYi|X<i)

]
≥

m∑
i=1

E
P̃X<i

[
D(P̃Yi|X<i ||PYi|X<i)

]
≥

m∑
i=1

n∑
j=1

E
P̃X<i

[
D(P̃Yi,j |X<i ||PYi,j |X<i)

]
=

m∑
i=1

n∑
j=1

E
P̃X<i

[D((1 + ρi,j)δi,j ||δi,j)]

≥
m∑
i=1

n∑
j=1

δi,j · EP̃X<i
[
min{|ρi,j |, ρ2

i,j}
]
/4 ≥ δ · E

P̃

 m∑
i=1

n∑
j=1

min{|ρi,j |, ρ2
i,j}

/4,
where the first inequality holds by data processing of KL divergence (Fact 2.3(5)), the second one
holds by chain rule of KL-divergence when the right-hand side distribution is product (Fact 2.3(3)),
and the one before last inequality holds by Fact 2.8.

For r = τ , Item 1 holds since

d =
m∑
i=1

E
P̃X<i

[
D(P̃XiYi|X<i ||PXiYi|X<i)

]
≥

m∑
i=1

E
P̃X≤i

[
D(P̃Yi|X≤i ||PYi|X≤i)

]
≥

m∑
i=1

n∑
j=1

E
P̃X≤i

[
D(P̃Yi,j |X≤i ||PYi,j |X≤i)

]
=

m∑
i=1

n∑
j=1

E
P̃X≤i

[D((1 + τi,j)δi,j ||δi,j)]

≥
m∑
i=1

n∑
j=1

δi,j · EP̃X≤i
[
min{|τi,j |, τ2

i,j}
]
/4 ≥ δ · E

P̃

 m∑
i=1

n∑
j=1

min{|τi,j |, τ2
i,j}

/4,
where the first inequality holds by chain rule (Fact 2.3(3)) and the second one holds by chain rule
when the right-hand side distribution is product (Fact 2.3(3)). For r = ξ, Item 1 holds since

d =

m∑
i=1

E
P̃X<i

[
D(P̃XiYi|X<i ||PXiYi|X<i)

]
≥

m∑
i=1

n∑
j=1

E
P̃X<i

[
D(P̃Xi,jYi,j |X<i ||PXi,jYi,j |X<i)

]
≥

m∑
i=1

n∑
j=1

E
P̃X<i,Xi,j

[
(P̃Yi,j |X<i,Xi,j ||PYi,j |X<i,Xi,j )

]
=

m∑
i=1

n∑
j=1

E
P̃X<i,Xi,j

[D((1 + ξi,j)δi,j ||δi,j)]

≥
m∑
i=1

n∑
j=1

δi,j · EP̃X<i,Xi,j
[
min{|ξi,j |, ξ2

i,j}
]
/4 ≥ δ · E

P̃

 m∑
i=1

n∑
j=1

min{|ξi,j |, ξ2
i,j}

/4,
where the first inequality holds by chain rule when the right-hand side distribution is product
(Fact 2.3(3)) and the second one holds by standard chain-rule ok KL-divergence (Fact 2.3(3)).

�

Fact 6.10. For all L ∈ {U, V } it holds that

1. For any j ∈ [n] : the sequence {Li,j}mi=1 is a martingale with respect to {Xi}mi=1 which are

drawn from P̃ (recall Definition 2.17).

2. For any λ ∈ (0, 1
4) : E

P̃
[|{j ∈ [n] : ∃i ∈ [m] s.t. |Li,j − 1| ≥ λ}|] ≤ c·d

δλ2 , for some universal
constant c > 0.
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Proof. Note that for any fixing of x<i it holds that

E
P̃Xi|X<i=x<i

[Ui,j ] = Ui−1,j ·
E
P̃Xi|X<i=x<i

[
P̃ [Ei,j | X<i = x<i, Xi,j = xi,j ]

]
P̃ [Ei,j | X<i = x<i]

= Ui−1,j

and

E
P̃Xi|X<i=x<i

[Vi,j ] = Vi−1,j ·
E
P̃Xi|X<i=x<i

[
P̃ [Ei,j | X<i = x<i, Xi = xi]

]
P̃ [Ei,j | X<i = x<i]

= Vi−1,j

This proves Item 1. By Proposition 2.19, there exists a constant c′ > 0 such that for any j ∈ [n]
and λ ∈ (0, 1

4) it holds that

P̃ [∃i ∈ [m] s.t. |Ui,j − 1| ≥ λ] ≤
c′ · E

P̃

[∑n
i=1

(
min{|ρi,j |, ρ2

i,j}+ min{|ξi,j |, ξ2
i,j}
)]

λ2

and that

P̃ [∃i ∈ [m] s.t. |Vi,j − 1| ≥ λ] ≤
c′ · E

P̃

[∑n
i=1

(
min{|ρi,j |, ρ2

i,j}+ min{|τi,j |, τ2
i,j}
)]

λ2

The proof of Item 2 now follows from the bounds in Fact 6.9(1).
�

Fact 6.11. For every λ > 0 it holds that

E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. |Ri,j − 1| > λ}|] ≤ 16 · d
min{λ, λ2}

.

Proof. We prove that for every i ∈ [m] it holds that

E
P̃

[|{j ∈ [n] : |Ri,j − 1| > λ}|] ≤ 16 · di
min{λ, λ2}

, (68)

The proof of the fact then follows since

E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. |Ri,j − 1| > λ}|] ≤
m∑
i=1

E
P̃

[|{j ∈ [n] : |Ri,j − 1| > λ}|]

In the following, let

Q′ = Q′X =

m∏
i=1

PXi,J |X<i,J P̃Xi,−J |X<i,Xi,J ◦Q
′
J ,

where Q′J = U[n]. Applying Equation (37) on Q′ (note that Q′ is a special case of a skewed
distribution Q when choosing events {Ei,j} with P [Ei,j ] = 1 for all i, j), we obtain for any i ∈ [m],

x<i ∈ Supp(P̃X<i) and any j ∈ [n]:

Q′J |X<i=x<i(j) =

(
i−1∏
s=1

PXs,j |X<s=x<s(xs,j)

P̃Xs,j |X<s=x<s(xs,j)

)
/

(
n∑
t=1

i−1∏
s=1

PXs,t|X<s=x<s(xs,t)

P̃Xs,t|X<s=x<s(xs,t)

)
=
Ri,j
n

(69)
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Moreover, as proven in [CP15], by letting P̃J = U[n] (i.e., the uniform distribution over [n]), it holds
that

E
P̃J P̃X<i

[
D(P̃Xi|X<i ||Q

′
Xi|J,X<i)

]
=

1

n
· E

P̃X<i

 n∑
j=1

D(P̃Xi|X<i ||Q
′
Xi|J=j,X<i

)


=

1

n
· E

P̃X<i

 n∑
j=1

D(P̃Xi,j |X<i ||PXi,j |X<i)

 ≤ 1

n
· E

P̃X<i

[
D(P̃Xi|X<i ||PXi|X<i)

]
≤ di
n
,

where inequality holds by chain-rule of KL-divergence where the right-hand side is product. The
above yields that

E
P̃X<i

[
D(U[n]||Q′J |X<i)

]
≤ E

P̃X<i

[
D(U[n]P̃Xi|X<i ||Q

′
JQ
′
Xi|J,X<i)

]
(70)

= E
P̃J P̃X<i

[
D(P̃Xi|X<i ||Q

′
Xi|J,X<i)

]
≤ di
n
,

where the first inequality holds by data-processing of KL-divergence, and the equality holds by
chain-rule of KL-divergence along with the fact that P̃J ≡ Q′J ≡ U[n]. In the following, fix i ∈ [m]

and let B+
i = B+

i (x<i) = {j ∈ [n] : Q′J |X<i=x<i(j) > (1 + λ)/n} and let B−i = B−i (x<i) = {j ∈
[n] : Q′J |X<i=x<i(j) < (1 − λ)/n}. By Equation (70) along with data-processing of KL-divergence,
it holds that

E
P̃X<i

[
D(

∣∣B+
i

∣∣
n
||(1 + λ)

∣∣B+
i

∣∣
n

)

]
≤ E

P̃X<i

[
D(U[n](B+

i )||Q′J |X<i(B
+
i ))
]
≤ di/n

and by Fact 2.8 we deduce that E
P̃

[∣∣B+
i

∣∣] ≤ 8·di
min{|λ|,λ2} . Similarly it holds that E

P̃

[∣∣B−i ∣∣] ≤
8·d

min{|λ|,λ2} . The proof of Equation (68) now follows since for any x<i ∈ Supp(P̃X<i) and any

j /∈ B+
i (x<i)

⋃
B−i (x<i) it holds that

Ri,j(x<i)
n = Q′J |X<i=x<i(j) ∈ (1 ± λ)/n (the equality holds by

Equation (69)). �

Fact 6.12. For all λ ∈ (0, 1
4) it holds that

E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. |ωi,j − 1| ≥ λ}|] ≤ c · d
δ ·min{λ, λ2}

,

for some universal constant c > 0.

Proof. Note that

ωi,j =
Ri,j · Vi−1,j

Ui−1,j

Therefore, we deduce that

E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. |ωi,j − 1| ≥ λ}|]
≤ E

P̃
[|{j ∈ [n] : ∃i ∈ [m] s.t. (|Ui−1,j − 1| > λ/10) ∨ (|Vi−1,j − 1| > λ/10) ∨ (|Ri,j − 1| > λ/10)}|]

≤ 100(c1 + c2 + c3) · d/δ,

where c1, c2 and c3 are the constants from Fact 6.9(2), Fact 6.11 and Fact 6.10(2), respectively. �
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Fact 6.13. For every λ ∈ (0, 1
2) it holds that

E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. αi,j > λ}|] ≤ 4 · d
λ2

,

for some constant c > 0.

Proof. We prove that for every i ∈ [m] it holds that

E
P̃

[|{j ∈ [n] : αi,j > λ}|] ≤ 4 · di
min{λ, λ2}

, (71)

The proof of the fact then follows since

E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. αi,j > λ}|] ≤
m∑
i=1

E
P̃

[|{j ∈ [n] : αi,j > λ}|]

In the following, fix i ∈ [m] and compute

di ≥ E
P̃X<i

[
D(P̃Xi|X<i ||PXi|X<i)

]
≥

n∑
j=1

E
P̃X<i

[
D(P̃Xi,j |X<i ||PXi,j |X<i)

]
≥

n∑
j=1

E
P̃X<i

[
D(P̃Xi,j |X<i [αi,j > λ]||PXi,j |X<i [αi,j > λ])

]
≥

n∑
j=1

E
P̃X<i

[
D(P̃Xi,j |X<i [αi,j > λ]||(1 + λ) · P̃Xi,j |X<i [αi,j > λ])

]

≥
n∑
j=1

E
P̃X<i

[
1

2
·
(

λ

1 + λ

)2

· (1 + λ) · P̃Xi,j |X<i [αi,j > λ]

]

≥ λ2

4
·
n∑
j=1

E
P̃X<i

[
P̃Xi,j |X<i [αi,j > λ]

]
=
λ2

4
· E

P̃

 n∑
j=1

1{αi,j>λ}


=
λ2

4
· E

P̃
[|{j ∈ [n] : αi,j > λ}|].

Which concludes the proof of Equation (71). The second inequality holds by data-processing of
KL-divergence when the right-hand side distribution is product. The third inequality holds by
data-processing of KL-divergence. The fourth inequality holds since for any xi,j with αi,j(xi,j) > λ,

it holds that PXi,j |X<i(xi,j) ≥ (1 + λ)P̃Xi,j |X<i(xi,j). The fifth inequality holds by Fact 2.8(1). �

Fact 6.14. There exist constants c, c′ > 0 such that for all λ > 0 it holds that

1. E
P̃

[|{j ∈ [n] : ∃i ∈ [m] s.t. βi,j ≥ 1 + λ}|] ≤ c·d
δ .

2. E
x∼P̃X

[∑m
i=1

∑n
j=1 PXi,j |X<i=x<i(Xi,j) · 1{ρi,j≥−0.5}

]
≤ c·d

δ .

3. E
x∼P̃X

[∣∣∣{j ∈ [n] : ∃i ∈ [m] s.t. PXi,j |X<i=x<i(Xi,j) < 0.9}
∣∣∣] ≤ c′·d

δ .
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Proof. Note that by definition, βi,j =
1+αi,j
1+ξi,j

. Therefore, βi,j ≥ 1 + λ =⇒ (αi,j > 0.01) ∨
(|ξi,j | > 0.01). The proof of Item 1 then follows by Fact 6.9(2) and Fact 6.13. Moreover, note
that the proof of Item 3 follows by Item 2 and Fact 6.9(2) (for r = ρ and λ = 1/2). Therefore, it
is left to prove Item 2. Note that

d ≥ E
x∼P̃X

 m∑
i=1

n∑
j=1

D(P̃Xi,jYi,j |X<i=x<i ||PXi,jYi,j |X<i=x<i)

 (72)

≥ E
x∼P̃X

 m∑
i=1

n∑
j=1

P̃Yi,j |X<i(1) ·D(P̃Xi,j |X<i=x<i,Yi,j=1||PXi,j |X<i=x<i,Yi,j=1)


= E

x∼P̃X

 m∑
i=1

n∑
j=1

(1 + ρi,j) · δi,j ·D(P̃Xi,j |X<i=x<i,Ei,j ||PXi,j |X<i=x<i)


≥ E

x∼P̃X

 m∑
i=1

n∑
j=1

(1 + ρi,j) · δi,j ·D(P̃Xi,j |X<i=x<i,Ei,j (Xi,j)||PXi,j |X<i=x<i(Xi,j))


≥ E

x∼P̃X

 m∑
i=1

n∑
j=1

(1 + ρi,j) · δi,j · PXi,j |X<i=x<i(Xi,j)

/400,

≥ E
x∼P̃X

 m∑
i=1

n∑
j=1

δ · PXi,j |X<i=x<i(Xi,j) · 1{ρi,j≥−0.5}

/800,

which concludes the proof. Note that the one before last inequality holds by Fact 2.8 since (recall
that)

Xi,j = {xi,j ∈ Supp(PXi,j |X<i=x<i) : PXi,j |X<i=x<i(xi,j)/P̃Xi,j |X<i=x<i,Ei,j (xi,j) ≤ 1.1}

and the equality holds since for any xi,j it holds that

P [Xi,j = xi,j | X<i = x<i, Yi,j = 1] =
P [Ei,j | X≤i = x≤i] · P [Xi,j = xi,j | X<i = x<i]

P [Ei,j ]

= P [Xi,j = xi,j | X<i = x<i],

(recall that by assumption, P [Ei,j | X≤i = x≤i] = P [Ei,j ] for any fixing of x≤i). �

6.4.2 Proving Lemma 6.5

We now ready to prove Lemma 6.5, restated for convenience below.

Lemma 6.15 (Restatement of Lemma 6.5). Let P, P̃ ,Q,W, E , Y, δ, d as defined in Theorem 4.3,
and let {Ci}mi=1 be the events defined in Definition 6.3. Then there exists a universal constant c > 0
such that if n ≥ c ·m/δ and d ≤ δn/c, then

P̃ [C1 ∧ . . . ∧ Cm] ≥ 1− c · (d+ 1)/δn.

Proof. The proof is divided into three parts. We prove that
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1. P̃ [Gm] = P̃ [G1 ∧ . . . ∧Gm] ≥ 1− c · d/δn.

2. P̃ [B̃1 ∧ . . . ∧ B̃m | Gm] ≥ 1− c′ · d/δn.

3.
∑m

i=1 P̃ [Ti ∧ T ′i | Gi] ≥ 1− 2/n.

Proving Part 1 Note that

P̃ [Gm] = P̃ [|Sm| ≥ 0.9n] ≥ 1− P̃ [|B| > 0.1n]

where B = B(x) =
⊎n
i=1(Bi \ Bi−1), letting B0 = ∅ and

Bi = Bi(x) = {j ∈ [n] : (|ρi,j | > 0.1) ∨ (|ωi,j − 1| > 0.1) ∨ (βi,j > 1.1) ∨ PXi,j |X<i=x<i(Xi,j) < 0.9}

for i ∈ [m]. By Fact 6.9(2), Fact 6.12 and Fact 6.14(1,3) it holds that

E
P̃

[|B|] ≤ c · d/δ (73)

for some universal constant c > 0. Therefore, by Markov inequality we deduce that

P̃ [|B| > 0.1n] ≤ 10c · d
δn

. (74)

which ends the proof of Part 1.

Proving Part 2 By definition of B̃i it holds that

P̃ [¬B̃i | Gm] = E
x<i∼P̃X<i|Gm

[Q[¬Bi | B<i, X<i = x<i]] (75)

= E
x<i∼P̃X<i|Gm

[Q[J /∈ Gi(Xi) | J ∈ Gi−1, X<i = x<i]]

= E
x<i∼P̃X<i|Gm

[Q[(J /∈ Ji) ∨ (Xi,J /∈ Xi,J) | J ∈ Gi−1, X<i = x<i]]

= E
x<i∼P̃X<i|Gm

[Q[J /∈ Ji | J ∈ Gi−1, X<i = x<i] +Q[Xi,J /∈ Xi,J | J ∈ Si, X<i = x<i]]

where in the last equality recall that Si = Gi−1
⋂
Ji. In the following, fix x<i ∈ Supp(P̃X<i|Gm).

We first bound the left-hand side term with respect to x<i. Note that by definition, for all j ∈ Gi−1

it holds that ωi−1,j , βi−1,j , (1 + ρi−1,j) ∈ 1± 0.1 which yields that

ωi,j = ωi−1,j · βi−1,j ·
1 + τi−1,j

1 + ρi−1,j
≤ 2(1 + τi−1,j)

Moreover, by the event Gm it holds that |Si| ≥ 0.9n and note that by definition of Si it holds that
Si ⊆ Gi−1 and that ωi,j ≥ 0.9 for all j ∈ Si. We deduce that
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Q[J /∈ Ji | J ∈ Gi−1, X<i = x<i]

=

∑
j∈Gi−1\Ji ωi,j∑
j∈Gi−1

ωi,j
≤
∑

j∈Gi−1\Ji ωi,j∑
j∈Si ωi,j

≤
2 ·
∑

j∈Gi−1\Ji(1 + τi,j)

0.9 · |Si|

≤ 3

n
·

∑
j∈Gi−1\Ji

(1 + τi,j) ≤
6

n
·

|Gi−1 \ Ji|+
∑

j∈Gi−1\Ji

τi,j · 1{τi,j>1}


≤ 6

n
·

|Bi|+ n∑
j=1

min{|τi,j |, τ2
i,j}

 (76)

We now bound the right-hand side term in Equation (75) with respect to x<i. Compute

Q[Xi,J /∈ Xi,J | J ∈ Si, X<i = x<i]

≤ 2

|Si|
·
∑
j∈Si

Q[Xi,j /∈ Xi,j | J = j,X<i = x<i]

=
2

|Si|
·
∑
j∈Si

PXi,j |X<i=x<i(¬Xi,j) =
2

|Si|
·
∑
j∈Si

PXi,j |X<i=x<i(¬Xi,j) · 1{ρi,j>−0.5}

≤ 4

n
·
n∑
j=1

PXi,j |X<i=x<i(¬Xi,j) · 1{ρi,j>−0.5} (77)

The first inequality holds since given X<i and given J ∈ Si, then by definition J is distributed
(almost) uniformly over Si (i.e., has high min entropy). The last equality holds since, by definition,
for all j ∈ Si it holds that ρi,j > −0.5. The last inequality holds since the event Gm implies that
|Si| ≥ 0.9n. By combining Equations (75) to (77) we deduce that

m∑
i=1

P̃ [¬B̃i | Gm] ≤ E
x∼P̃X|Gm

[
m∑
i=1

Q[J /∈ Ji | J ∈ Gi−1, X<i = x<i] +Q[Xi,J /∈ Xi,J | J ∈ Gi, X<i = x<i]

]

≤ 6

n
· E

x∼P̃X|Gm

 n∑
i=1

|Bi|+ n∑
j=1

min{|τi,j |, τ2
i,j}+

n∑
j=1

PXi,j |X<i=x<i(¬Xi,j) · 1{ρi,j>−0.5}



and the proof of Part 2 follows by Part 1, Fact 6.9(1), Fact 6.14(2) and Equation (73) (recall that
|B| =

∑n
i=1|Bi|).

Proving Part 3 Assume (towards a contradiction) that ∃i ∈ [m] with P̃ [Ti | Gi] ≥ 1
n3 ≥ 2

δn4

(recall that n ≥ c ·m/δ for a large constant c of our choice) and let P̃ ′X≤iYi = P̃X<i
∏n
j=1 P̃Xi,jYi,j |X<j

(namely, P̃ ′ behaves as P̃ in the first i−1 rows, and in row i it becomes the product of the marginals
of P̃ given X<i). It holds that
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d ≥ D(P̃X≤iYi ||PX≤iYi) ≥ D(P̃X≤iYi ||P̃
′
X≤iYi

) ≥ D(P̃ [Gi ∧ ¬Ti]||P̃ ′[Gi ∧ ¬Ti])

≥ D
(

1

δn4
||P̃ ′[|γi| > 1/2 | Gi]

)
≥ D

(
1

δn4
||4 · exp(−δn/400)

)
≥ δn

500
(78)

where the first inequality holds by chain rule and data processing of KL-divergence (recall that
d =

∑m
i=1D(P̃XiYi ||PXiYi |P̃X<i)), the second one holds by the product case of chain rule, the

third one holds by data-processing (indicator to the event Gi ∧ ¬Ti) and the fourth one holds by
assumption (recall that P̃ [Gi] ≥ 1 − O(d/δn) ≥ 1/2). The one before last inequality holds by
Equation (67) (under product, when Gi occurs, there is a strong concentration), and last inequality
holds since n is large enough. This contradicts the assumption on d (by setting the constant there
to be larger than 500). Therefore, we deduce that for all i ∈ [m] :

P̃ [¬Ti | Gi] ≤ 1/n3 (79)

Moreover, by definition of T ′i (recall that T ′i is the event that P̃ [Ti | X<i] ≥ 1− 1/n), it holds that

P̃ [¬T ′i | Gi] ≤
P̃ [¬Ti | Gi]

P̃ [¬Ti | ¬T ′i ∧Gi]
≤
(
1/n3

)
/(1/n) = 1/n2. (80)

The proof now immediately follows by Equations (79) and (80). �

7 Lower Bound

In this section we formally state and prove Theorem 1.5, showing that Theorem 5.1 is tight for
partially prefix-simulatable interactive arguments. In Section 7.1 we start by showing how ran-
dom termination helps to beat [BIN97]’s counterexample, and in Section 7.2 we restate and prove
Theorem 1.5 using a variant of [BIN97]’s protocol.

7.1 Random Termination Beats Counterexample of [BIN97]

In this section we exemplify the power of random termination, showing that the counterexample
of [BIN97] does not apply to random-terminating verifiers. We do so by presenting [BIN97]’s
counterexample against n repetitions and see how random termination helps in this case. The
protocol is described below.

Protocol 7.1 ([BIN97]’s Protocol π = (P,V)).

Common input: Security parameter 1κ and public key pk .

Prover’s private input: Secret key sk.

Operation:

1. Round 1:

(a) V uniformly samples b← {0, 1} and r ← {0, 1}κ, and sends B = Encpk(b, r) to P.
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(b) P computes (b, r) = Decsk(B) and for any i ∈ [n − 1], it uniformly samples b′i ∈ {0, 1}
and r′i ∈ {0, 1}κ conditioned on b = ⊕n−1

i=1 b
′
i. Then it computes Ci = Encpk(b

′
i, r
′
i), and

sends (C1, . . . , Cn−1) to V.

2. Round 2:

(a) V sends (b, r) to P.

(b) P sends
(
(b′1, r

′
1), . . . , (b′n−1, r

′
n−1)

)
to V.

3. At the end: V accepts iff b = ⊕n−1
i=1 b

′
i, and for any i ∈ [n− 1]: Ci = Encpk(b

′
i, r
′
i) and B 6= Ci.

Intuitively, assuming the cryptosystem is CCA2-secure, if a single instance of the protocol is
run, then a prover without access to sk can only convince the honest verifier with probability
1/2, since it must commit itself to a guess ⊕n−1

i=1 b
′
i of b before receiving (b, r). On the other

hand, if n instances of the protocol are run in parallel, then a cheating prover can send the tuple
(C1, . . . , Cn−1) = (B1, . . . , Bi−1, Bi+1, . . . , Bn) to Vi and then either all verifier instances accept or
all verifier instances fail, the first event occurring with probability at least 1/2.

Let’s look now on a n instances that run in parallel of the protocol π = (P, Ṽ), where Ṽ is
the random-terminating variant of V (note that this protocol has only two rounds, and therefore,
a random terminating bit takes one with probability 1/2). First, we expect that ≈ n/2 of the
verifiers abort at the first round, and with high probability at least n/4 of the verifiers remain
active (assume that n is large enough). For a cheating prover, aborting at the first round is not
an issue since it can completely simulate the aborted verifiers. However, even if a single verifier Vi
aborts at the second round, then the attack presented above completely fail since the prover has
no way to reveal (bi, ri), needed for the other verifiers. Note that the attack do succeed in case non
of the verifiers abort at the second round, but the probability of this to happen is at most 2−n/4.

7.2 Proving Theorem 1.5

We now restate and prove Theorem 1.5.

Theorem 7.2 (lower bound, retstment of Theorem 1.5.). Assume the existence of CCA2-secure
public-key cryptosystem. Then for every m = m(κ) ∈ [2, poly(κ)] and ε = ε(κ) ∈ [1/poly(κ), 1/3]
and n = n(κ) ∈ [m/ε, poly(κ)], there exists an m-round interactive argument (P,V) with soundness

error 1−ε such that (Pn, Ṽ
n
) has soundness error of at least (1−ε)c·n/m for some universal constant

c > 0, where Ṽ is the 1/m-random-terminating variant of V (according to Definition 2.11) and

(Pn, Ṽ
n
) denotes the n-parallel repetition of (P, Ṽ).7

Fix large enough κ and fix m, ε, n as in the theorem statements, and let CS = (Gen,Enc,Dec)
be a CCA2-secure public-key cryptosystem. Consider the following m-round variant (P,V) of
[BIN97]’s protocol:

Protocol 7.3 (The counterexample protocol π = (P,V)).

Common input: Security parameter 1κ and public key pk .

7Assuming the existence of collision-free family of hash functions and CCA2-secure cryptosystem with respect to
superpolynomial adversaries, one can adopt the techniques used in [PW12] for constructing a single protocol (P,V)

such that for any polynomial bounded n, (Pn, Ṽ
n
) has soundness error of at least (1 − ε)c·n/m. This, however, is

beyond the scope of this paper.
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Prover’s private input: Secret key sk.

Operation:

1. Round 1:

(a) V flips a coin that takes one with probability 1− 3ε and zero otherwise.

If the coin outcome is one, V sends ⊥ to P, accepts and the protocol terminates.

Else, V uniformly samples b← {0, 1} and r ← {0, 1}κ, and sends B = Encpk(b, r) to P.

(b) P computes (b, r) = Decsk(B) and for any i ∈ [n − 1], it uniformly samples b′i ∈ {0, 1}
and r′i ∈ {0, 1}κ conditioned on b = ⊕n−1

i=1 b
′
i. Then it computes Ci = Encpk(b

′
i, r
′
i), and

sends (C1, . . . , Cn−1) to V.

2. Round 2:

(a) V sends (b, r) to P.

(b) P sends
(
(b′1, r

′
1), . . . , (b′n−1, r

′
n−1)

)
to V.

3. Rounds 3 to m: parties exchange dummy messages.

4. At the end: V accepts iff b = ⊕n−1
i=1 b

′
i, and for every i ∈ [n−1]: Ci = Encpk(b

′
i, r
′
i) and B 6= Ci.

Namely, Protocol 7.3 first transforms [BIN97]’s two-rounds protocol, of soundness error 1/2 +
neg(κ), into an m-round protocol with soundness error 1 − ε, by flipping a coin at Step 1a (for
increasing the soundness error) and adding dummy rounds at the end for increasing the number of
rounds (Step 3).8

We first note that soundness error of π is indeed low.

Claim 7.4. The soundness error of π(1κ) is at most 1− ε.

Proof. Let P∗ be some efficient cheating prover and let T be the event over a random execution
of (P∗,V) that the outcome of the (1 − 3ε, 3ε) bit (flipped by V at Step 1a) is 0 (i.e., V does not
abort). Conditioned on T , P∗ must commit itself to a guess ⊕n−1

i=1 b
′
i before receiving (b, r). Since

the encryption scheme is CCA2-secure (which implies non-malleability), we obtain that

Pr(pk,sk)←Gen(1κ)[(P
∗,V)(1κ, pk) = 1 | T ] ≤ 1/2 + neg(κ),

and hence

Pr(pk,sk)←Gen(1κ)[(P
∗,V)(1κ) = 1] ≤ Pr[¬T ] + Pr[T ] · Pr(pk,sk)←Gen(1κ)[(P

∗,V)(1κ, pk) = 1 | T ]

≤ 1− 3ε+ 3ε · (1/2 + neg(κ))

≤ 1− ε.

�

So it is left to show that the soundness error of the n parallel repetition of the random termi-
nating variant of π is high. Let Ṽ and (Pn, Ṽ

n
) be as in the theorem statement with respect to

(P,V) (Protocol 7.3) and assume without loss of generality that Ṽ sends ⊥ to the prover right after
flipping a termination coin with outcome one. Consider the following cheating prover P∗:

8As in [BIN97; PW12], the soundness error holds with respect to a prover without access to sk.

47



Algorithm 7.5 (Cheating prover Pn∗).

Input: Security parameter 1κ.

Operation:

1. Upon receiving a n-tuple (a1, . . . , an) from Ṽ
n

= (Ṽ1, . . . , Ṽn), let S = {i ∈ [n] : ai 6=⊥} (the
set of active verifiers) and for i /∈ S sample uniformly bi ← {0, 1} and ri ← {0, 1}κ. Then

for any i ∈ S send (a′1, . . . , a
′
i−1, a

′
i+1, . . . , a

′
n) to Ṽi, where a′j =

{
aj j ∈ S
Encpk(bj , rj) o.w

.

2. If at least one verifier in S sends ⊥ (after aborting at the second round), fail
and abort. Otherwise, upon receiving (bi, ri) for all i ∈ S, send the tuple
((b1, r1), . . . , (bi−1, ri−1), (bi+1, ri+1), . . . , (bn, rn)) to Ṽi.

Namely, Pn∗ performs [BIN97]’s attack on the verifiers that remain active after the first round.
The attack, however, can only be performed if none of these active verifiers abort in the second
round. Yet, we show that the probability for this to happen is high enough. The following claim
conclude the proof of Theorem 7.2.

Claim 7.6. Let ε,m, n as in the theorem statement, let (P,V) be Protocol 7.3 and let Pn∗ be the
cheating prover described in Algorithm 7.5 (with respect to n). Then

Pr(pk,sk)←Gen(1κ)

[
(Pn∗, Ṽ

n
)(1κ, pk) = 1

]
≥ (1− ε)14·n/m.

Proof. Fix pk and let L be the random variable that denotes the value of |S| (the number of active

verifiers after the first round) in a random execution of (Pn∗, Ṽ
n
)(1κ, pk). Note that each verifier

aborts with probability greater than 1 − 3ε at the first round (it can abort by the (1 − 3ε, 3ε)
coin or by the (1/m, 1− 1/m) random-terminating coin). Therefore, E[L] ≤ 3εn and we obtain by
Markov’s inequality that Pr[L ≤ 6εn] ≥ 1/2. Let G be the event that none of the verifiers abort at
the second round. Note that

Pr[G] ≥ Pr[L ≤ 6εn] · Pr[G|L ≤ 6εn] (81)

≥ 1/2 · (1− 1/m)6εn

≥ 1/2 · exp(−12εn/m).

The second inequality holds since 1− x ≥ e−2x for x ∈ [0, 1/2]. In addition, observe that

Pr
[
(Pn∗, Ṽ

n
)(1κ, pk) = 1 | G

]
≥ Pr(b1,...,bn)←{0,1}n [⊕ni=1bi = 0]− neg(κ) (82)

= 1/2− neg(κ)

and we conclude by Equations (81) and (82) that

Pr
[
(Pn∗, Ṽ

n
)(1κ, pk) = 1

]
≥ Pr[G] · Pr

[
(Pn∗, Ṽ

n
)(1κ, pk) = 1 | G

]
≥ 1/2 · exp(−12εn/m) · (1/2− neg(κ))

≥ exp(−14εn/m)

≥ (1− ε)14n/m.

The penultimate inequality holds since we assumed that n ≥ m/ε, and the last one since 1+x ≤ ex
for any x ∈ R. �
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Putting it together.

Proof of Theorem 7.2. Immediate by Claim 7.6. �
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Conference, Universitat Politècnica de Catalunya, Barcelona, Spain, July 8-11, 1990,
1990, pp. 318–319 (cit. on p. 8).

[FV02] U. Feige and O. Verbitsky, “Error reduction by parallel repetition - A negative result,”
Combinatorica, vol. 22, no. 4, pp. 461–478, 2002 (cit. on p. 8).

[Gol99] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer, 1999 (cit. on p. 1).

[Hai13] I. Haitner, “A parallel repetition theorem for any interactive argument,” SIAM J.
Comput., vol. 42, no. 6, pp. 2487–2501, 2013. doi: 10.1137/100810630. [Online].
Available: https://doi.org/10.1137/100810630 (cit. on pp. 1, 2, 4, 6, 7, 13, 14).

[Hol09] T. Holenstein, “Parallel repetition: Simplification and the no-signaling case,” Theory
of Computing, vol. 5, no. 1, pp. 141–172, 2009 (cit. on pp. 1, 8).

[HPWP10] J. H̊astad, R. Pass, D. Wikström, and K. Pietrzak, “An efficient parallel repetition
theorem,” in Theory of Cryptography, Sixth Theory of Cryptography Conference, TCC
2010, 2010, pp. 1–18 (cit. on pp. 1, 2, 4, 6, 7, 13).

[Mos14] D. Moshkovitz, “Parallel repetition from fortification,” in 55th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, 2014, pp. 414–423 (cit. on p. 8).

[Mul] W. Mulzer, Chernoff bounds. [Online]. Available: https://page.mi.fu-berlin.de/
mulzer/notes/misc/chernoff.pdf (cit. on p. 12).

[Pat90] J. Patarin, “Pseudorandom permutations based on the DES scheme,” in EUROCODE
’90, International Symposium on Coding Theory and Applications, Udine, Italy,
November 5-9, 1990, Proceedings, 1990, pp. 193–204. doi: 10.1007/3-540-54303-
1\_131. [Online]. Available: https://doi.org/10.1007/3-540-54303-1\_131
(cit. on p. 16).

50

https://stanford.edu/class/stats311/Lectures/full_notes.pdf
https://doi.org/10.1137/100810630
https://doi.org/10.1137/100810630
https://page.mi.fu-berlin.de/mulzer/notes/misc/chernoff.pdf
https://page.mi.fu-berlin.de/mulzer/notes/misc/chernoff.pdf
https://doi.org/10.1007/3-540-54303-1\_131
https://doi.org/10.1007/3-540-54303-1\_131
https://doi.org/10.1007/3-540-54303-1\_131


[PV12] R. Pass and M. Venkitasubramaniam, “A parallel repetition theorem for constant-
round arthur-merlin proofs,” TOCT, vol. 4, no. 4, 10:1–10:22, 2012 (cit. on p. 7).

[PW12] K. Pietrzak and D. Wikström, “Parallel repetition of computationally sound protocols
revisited,” Journal of Cryptology, vol. 25, no. 1, pp. 116–135, 2012 (cit. on pp. 1, 8,
46, 47).

[PW17] Y. Polyanskiyi and Y. Wu, “Lecture notes on information theroy,” 2017. [Online].
Available: http://people.lids.mit.edu/yp/homepage/data/itlectures_v5.pdf
(cit. on p. 53).

[Rao11] A. Rao, “Parallel repetition in projection games and a concentration bound,” SIAM
J. Comput., vol. 40, no. 6, pp. 1871–1891, 2011 (cit. on pp. 1, 8).

[Raz98] R. Raz, “A parallel repetition theorem,” SIAM J. Comput., vol. 27, no. 3, pp. 763–
803, 1998 (cit. on pp. 1, 8).

[Ver10] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,”
ArXiv e-prints, Nov. 2010. arXiv: 1011.3027 [math.PR]. [Online]. Available: https:
//arxiv.org/abs/1011.3027 (cit. on p. 54).

8 Missing Proofs

8.1 Proof of Proposition 3.3

Proposition 8.1 (Restatement of Proposition 3.3). Let P and Q be two distributions over U with
Dα(P ||Q) < β. Then for every event E over U , it holds that Q[E] < 2 ·max{α+ P [E], 4β}.

Proof. We assume that max{α + P [E], 4β} ≤ 1/2, as otherwise the proof holds trivially. The
definition of smooth KL-divergence yields the existence of randomized function FP , FQ satisfying

a. Prx∼P [FP (x) 6= x] ≤ α,

b. D(FP (P )||FQ(Q)) < β, and

c. ∀x ∈ U : Supp(FP (x)) ∩ U ⊆ {x} and Supp(FQ(x)) ∩ U ⊆ {x}.

Let E′ = E ∪ (Supp(FP (U)) ∪ Supp(FQ(U)) \ U). By Item a and data processing of (standard)
KL-divergence,

D
(
1{FP (P )∈E′}||1{FQ(Q)∈E′}

)
< β (83)

By Items b and c,

FP (P )[E′] ≤ Prx∼P [FP (x) 6= x] + P [E] ≤ α+ P [E] (84)

Assume toward a contradiction that FQ(Q)[E′] ≥ 2·max{α+P [E], 4β}, then by the above equations

D(α+ P [E]||2 ·max{α+ P [E], 4β}) < β (85)

If α + P [E] > 4β, then Equation (85) yields that D(α+ P [E]||2(α+ P [E])) < β. Otherwise,
Equation (85) yields that D(4β||8β) < β. In both cases we get a contradiction to Fact 2.8(1).
Since by Item c it holds that Q[E] ≤ FQ(Q)[E′], we conclude that Q[E] < 2 ·max{α+ P [E], 4β}.

�
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8.2 Proof of Proposition 3.4

Proposition 8.2 (Restatement of Proposition 3.4). Let P and Q be two distributions over a
universe U , let α ∈ [0, 1] and let H be a randomized function over U . Then Dα(H(P )||H(Q)) ≤
Dα(P ||Q).

Proof. Let (FP , FQ) be a pair of functions such that

1. Prx∼P [FP (x) 6= x] ≤ α, and

2. ∀x ∈ U : Supp(FP (x)) ∩ U ⊆ {x} and Supp(FQ(x)) ∩ U ⊆ {x}.

We assume without loss of generality that for both T ∈ {P,Q}:

∀x ∈ U : Supp(FT (x)) ∩ Supp(H(x)) ⊆ {x}. (86)

Indeed, since FT (x) 6= x implies FT (x) /∈ U , one can add a fixed prefix to the value of FT (x) when
FT (x) 6= x (same prefix for both T ∈ {P,Q}) such that Equation (86) holds. Such a change neither
effect the properties of FP and FQ stated above, nor the value of D(FP (P )||FQ(Q)).

For T ∈ {P,Q}, let GT (y) be the randomized function defined by the following process:

a. Sample x ∼ TX|H(X)=y.

b. Sample z ∼ FT (x).

c. If z = x, output y.

Else, output z.

By construction and Equation (86), for both T ∈ {P,Q}:

∀y ∈ H(U) : Supp(GT (y)) ∩H(U) ⊆ {y}. (87)

Let YT = H(T ) and let XT be the value of x in a random execution of GT (YT ). It is clear that
XT ∼ T . We note that

Pr[GP (YP ) 6= YP ] = Pr[FP (XP ) 6= XP ] (88)

= Prx∼P [FP (x) 6= x]

≤ α.

The inequality is by the assumption about FP .
Consider the randomized function K(z) that outputs H(z) if z ∈ U , and otherwise outputs z.

It holds that

Pr[K(FT (T )) = z] = Pr[FT (T ) ∈ U ] · Pr[H(FT (T )) = z|FT (T ) ∈ U ]

+ Pr[FT (T ) /∈ U ] · Pr[FT (T ) = z|FT (T ) /∈ U ]

= Pr[FT (T ) = T ] · Pr[H(T ) = z|FT (T ) = T ]

+ Pr[FT (T ) 6= T ] · Pr[FT (T ) = z|FT (T ) 6= T ],
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where the second inequality follows from the second property of (FP , FQ); namely, FT (T ) ∈ U ⇐⇒
FT (T ) = T . Similarly,

Pr[GT (H(T )) = z] = Pr[FT (XT ) = XT ] · Pr[H(XT ) = z|FT (XT ) = XT ]

+ Pr[FT (XT ) = XT ] · Pr[FT (XT ) = z|FT (XT ) 6= XT ].

= Pr[FT (T ) = T ] · Pr[H(T ) = z|FT (T ) = T ]

+ Pr[FT (T ) 6= T ] · Pr[FT (T ) = z|FT (T ) 6= T ],

where the second inequality holds since XT ∼ T . Hence, we have GT (H(T )) ≡ K(FT (T )). Thus,
the data-processing inequality for (standard) KL-divergence implies that

D(FP (P )||FQ(Q)) ≥ D(K(FP (P ))||K(FQ(Q))) (89)

= D(GP (H(P ))||GQ(H(Q))).

The proof now follows by Properties (87), (88), (89) of GP and GQ. �

8.3 Proof of Proposition 2.9

Proposition 8.3 (Restatement of Proposition 2.9). Let X be a random variable drawn form either
P or Q. Assume that PrP [|X| ≤ 1] = 1 (i.e., if X is drawn from P then |X| ≤ 1 almost surely)
and that there exist ε, σ2,K1,K2 > 0 such that PrQ[|X| ≤ 1] ≥ 1− ε and

PrQ[|X| ≥ t] ≤ K2 · exp

(
− t2

K1σ2

)
for all 0 ≤ t ≤ 1.

Then, there exists K3 = K3(K1,K2, ε) > 0 such that

EP [X2] ≤ K3 · σ2 · (D(P ||Q) + 1).

Note that for σ ≥ 1, the statement is trivial, and thus not interesting. We would use this
proposition when σ � 1.

Proof. Assume that σ2 ≤ 1 and that D(P ||Q) < ∞, since otherwise the statement is trivial. We
use the following two fundamental theorems. The first theorem gives a variational characterization
for divergence that is useful for bounding expected values of random variables.

Theorem 8.4 (Donsker-Varadhan; cf. [PW17, Theorem 3.5]). Let P and Q be probability measures
on X and let C denote the set of functions f : X → R such that EQ[exp(f(X))] <∞. If D(P ||Q) <
∞, then

D(P ||Q) = sup
f∈C

EP [f(X)]− log EQ[exp(f(X))].

In particular, for every f ∈ C, it holds that

EP [f(X)] ≤ log EQ[exp(f(X))] +D(P ||Q).

The second theorem is the super-exponential moment characterization condition for sub-
Gaussianity.
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Theorem 8.5 (Sub-Gaussian characterization; cf. [Duc16, Theorem 3.10]9). Let X be a random
variable and σ2 > 0 be a constant. Assume that there exist K ′1,K

′
2 > 0 such that

Pr[|X| ≥ t] ≤ K ′2 · exp

(
− t2

K ′1σ
2

)
for all t ≥ 0.

Then, there exists K ′3 = K ′3(K ′1,K
′
2) such that

E

[
exp

(
X2

K ′3σ
2

)]
≤ e.

We would like to apply the above theorems to derive the proof. However, under the Q distri-
bution X is not sub-Gaussian, since its concentration bound apply only for 0 ≤ t ≤ 1. Instead, we
let W = [0, 1], K ′2 = K2/(1− ε) and observe that

PrQ[|X| ≥ t | |X| ∈ W] ≤ K ′2 · exp

(
− t2

K1σ2

)
for all t ≥ 0.

Indeed, for t > 1 this inequality holds trivially. For 0 ≤ t ≤ 1, it holds that

PrQ[|X| ≥ t | |X| ∈ W] ≤
PrQ[|X| ≥ t]

PrQ[|X| ∈ W]

≤
PrQ[|X| ≥ t]

1− ε

≤ K ′2 · exp

(
− t2

K1σ2

)
,

where the second inequality follows from the assumption of the proposition and since σ2 ≤ 1, and
the third inequality again follows from the assumption of the proposition.

Let K3 = K ′3(K1,K
′
2) from the statement of Theorem 8.5. Furthermore, note that

D(PX ||QX|(|X|∈W)) < ∞, since D(PX ||QX) < ∞ and |X| ∈ W under P almost surely. Using
Theorems 8.4 and 8.5, it follows that

1

K2σ2
EP [X2] ≤ log EQ[exp(X2/(K2σ

2))||X| ∈ W] +D(PX ||QX|(|X|∈W))

≤ log e+D(PX ||QX|(|X|∈W)).

Finally, the proposition follows since

D(PX ||QX|(|X|∈W)) = Ex∼PX log
PX(x)

QX(x)/PrQ[|X| ∈ W]

= D(PX ||QX) + log(PrQ[|X| ∈ W])

≤ D(PX ||QX),

where in the first equality we again used that |x| ∈ W for every x ∈ Supp(PX), so PrQ[X =
x ∧ |X| ∈ W] = QX(x) for any such x. �

9While the statement of [Duc16, Theorem 3.10] explicitly take K′2 = 2 and require that X’s mean is zero, it is
easy to see how to modify the proof to work with any constant K′2 and that the proof of this part does not actually
use that X has a zero mean. For example, see [Ver10, Lemma 5.5] that uses K′2 = e and does not assume that X has
zero mean.
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8.4 Proof of Lemma 2.18

Proposition 8.6 (Restatement of Lemma 2.18). Let Y0 = 1, Y1, . . . , Yn be a martingale w.r.t
X0, X1, . . . , Xn and assume that Yi ≥ 0 for all i ∈ [n]. Then for every λ ∈ (0, 1

4 ] it holds that

Pr[∃i ∈ [n] s.t. |Yi − 1| ≥ λ] ≤
23 · E

[∑n
i=1 min{|Ri|, R2

i }
]

λ2

for Ri = Yi
Yi−1
− 1, letting Ri = 0 in case Yi−1 = Yi = 0.

We use the following fact.

Fact 8.7 ([Das11, Theorem 14.9]). Let Y0 = 0, Y1, . . . , Yn be a martingale sequence with respect to
X0, X1, . . . , Xn, and assume that E

[
Y 2
i

]
<∞ for all i ∈ [n]. Then for every λ > 0, it holds that

Pr

[
max
i∈[n]
|Yi| ≥ λ

]
≤

E
[∑n

i=1D
2
i

]
λ2

,

for Di = Yi − Yi−1.

Proof of Lemma 2.18. Let µ = E
[∑n

i=1 min{|Ri|, R2
i }
]

and assume without loss of generality that
µ ≤ 0.1 (otherwise the proof holds trivially). For i ∈ [n] let ∆i = E

[
Ri · 1{Ri>1} | X0, . . . , Xi−1

]
,

let

R̂i =

{
Ri · 1{|Ri|≤1} + ∆i ∆i ≤ 1

0 otherwise,

and let Ŝi =
∑i

j=1 R̂j . Note that for any i ∈ [n] and a fixing of X0, . . . , Xi−1 such that ∆i ≤ 1, it
holds that

E
[
Ŝi | X0, . . . , Xi−1

]
− Ŝi−1 = E

[
R̂i | X0, . . . , Xi−1

]
= E

[
Ri · 1{|Ri|≤1} + ∆i | X0, . . . , Xi−1

]
= Pr[|Ri| ≤ 1 | X0, . . . , Xi−1] · E[Ri | X0, . . . , Xi−1, (|Ri| ≤ 1)]

+ Pr[Ri > 1 | X0, . . . , Xi−1] · E[Ri | X0, . . . , Xi−1, (Ri > 1)]

= E[Ri | X0, . . . , Xi−1] = 0.

The penultimate equality holds since Ri ≥ −1. By definition, for any fixing of X0, . . . , Xi−1 such

that ∆i > 1, it holds that R̂i = 0. Hence, E
[
Ŝi | X0, . . . , Xi−1

]
= Ŝi−1 also for any such fixing.

Thus, the sequence Ŝ1, . . . , Ŝn is a martingale with respect to X1, . . . , Xn for any fixing of X0.
By Fact 8.7,

∀β > 0 : Pr

[
max
i∈[n]
|Ŝi| ≥ β

]
≤

E
[∑n

i=1 R̂
2
i

]
β2

(90)
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In addition, note that

E

[
n∑
i=1

∆i

]
=

n∑
i=1

EX0,...,Xi−1

[
E
[
Ri · 1{Ri>1} | X0, . . . , Xi−1

]]
(91)

≤
n∑
i=1

EX0,...,Xi−1

[
E
[
min{|Ri|, R2

i } | X0, . . . , Xi−1

]]
= µ.

Therefore,

E

[
n∑
i=1

R̂2
i

]
≤ E

[
n∑
i=1

(
Ri · 1{|Ri|≤1} + ∆i · 1{∆i≤1}

)2]
(92)

≤ 2 · E

[
n∑
i=1

R2
i · 1{|Ri|≤1}

]
+ 2 · E

[
n∑
i=1

∆2
i · 1{∆i≤1}

]

≤ 2µ+ 2 · E

[
n∑
i=1

∆i · 1{∆i≤1}

]
≤ 2µ+ 2 · E

[
n∑
i=1

∆i

]
≤ 4µ.

The last inequality holds by Equation (91). Combining Equations (90) and (92) yields that

∀β > 0 : Pr

[
max
i∈[n]
|Ŝi| ≥ β

]
≤ 4µ/β2 (93)

Let Si =
∑i

j=1Rj . Note that for any i ∈ [n]:

E

[
max
i∈[n]
{|Si − Ŝi|}

]
≤ E

[
n∑
i=1

Ri · 1{Ri>1}

]
+ E

[
n∑
i=1

∆i

]
≤ 2µ,

the last inequality holds by Equation (91). Hence, by Markov inequality

∀β > 0 : Pr

[
max
i∈[n]
{|Si − Ŝi|} ≥ β

]
≤ 2µ/β (94)

A Markov inequality yields that for any i ∈ [n]:

Pr

[
|Ri| >

1

2

]
= Pr

[
min{|Ri|, R2

i } >
1

4

]
≤ 4 · E

[
min{|Ri|, R2

i }
]

(95)

Let E be the event that |Ri| ≤ 1
2 for all i ∈ [n]. By Equation (95) and a union bound:

Pr[E] ≥ 1− 4µ (96)

Since Yi =
∏i
j=1(1 +Rj), then conditioned on E , we can use the inequality ex−x

2 ≤ 1 +x ≤ ex for

x ∈ (0, 1
2) to deduce that

eŜi−|Si−Ŝi|−
∑n
i=1 R

2
i ≤ eSi−

∑n
i=1 R

2
i ≤ Yi ≤ eSi ≤ eŜi+|Si−Ŝi| (97)
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Note that if E happens, and maxi∈[n]{|Ŝi|} ≤ 1
2 ln 1

1−λ , and maxi∈[n]{
∣∣∣Si − Ŝi∣∣∣} ≤ 1

4 ln 1
1−λ and∑n

i=1R
2
i ≤ 1

4 ln 1
1−λ , then for every i ∈ [n]:

1− λ = e− ln 1
1−λ ≤ Yi ≤ e

3
4
·ln 1

1−λ =
1

(1− λ)3/4
≤ 1 + λ, (98)

the last inequality holds since λ ∈ (0, 1
4 ]. The proof follows since the probability that one of the

conditions above does not happen is at most

Pr[¬E] + Pr

[
n∑
i=1

R2
i >

1

4
ln

1

1− λ
| E

]
+ Pr

[
max
i∈[n]
{|Si|} >

1

2
ln

1

1− λ

]
+ Pr

[
max
i∈[n]
{
∣∣∣Si − Ŝi∣∣∣} > 1

4
ln

1

1− λ

]

≤ 4µ+
Pr
[∑n

i=1 min{|Ri|, R2
i } > 1

4 ln 1
1−λ

]
Pr[E]

+
16µ

ln2 1
1−λ

+
8µ

ln 1
1−λ

≤ 4µ+
4µ

(1− 4µ) · ln 1
1−λ

+
16µ

ln2 1
1−λ

+
8µ

ln 1
1−λ

≤ µ

4λ2
+

2µ

λ2
+

16µ

λ2
+

4µ

λ2
≤ 23µ

λ2
.

The first inequality holds by Equations (93), (94) and (96), the second one by Equation (96) and
by Markov inequality, and the third one holds since µ ≤ 0.1, λ ∈ (0, 1

4 ] and since ln 1
1−λ ≥ λ and

ln2 1
1−λ ≥ λ

2 for λ ∈ (0, 1
4 ]. �

8.5 Proof of Proposition 2.19

Proposition 8.8 (Restatement of Proposition 2.19). Let Y0 = 1, Y1, . . . , Yn be a martingale w.r.t
X0, X1, . . . , Xn where Yi ≥ 0 for all i ∈ [n]. Let Z1, . . . , Zn and T1, . . . , Tn be sequences of random
variables satisfying for all i ∈ [n]: (1) Yi = Yi−1 · (1 + Zi)/(1 + Ti), and (2) Ti is a deterministic
function of X0, X1, . . . , Xi−1. Then

Pr[∃i ∈ [n] s.t. |Yi − 1| ≥ λ] ≤
150 · E

[∑n
i=1

(
min{|Zi|, Z2

i }+ min{|Ti|, T 2
i }
)]

λ2

Proof. Let Ỹ0, Ỹ1, . . . , Ỹn be the random variables such that for all i ∈ [n], Ỹi = Yjmin−1 where jmin ∈
[i] is the value with |T1|, . . . , |Tj−1| ≤ 0.1, |Tjmax | > 0.1, letting jmin = i + 1 (i.e., Ỹi = Yi) in case

|T1|, . . . , |Ti| ≤ 0.1. Since Ti is a deterministic function ofX0, . . . , Xi−1, then E
[
Ỹi | X0, . . . , Xi−1

]
=

Ỹi−1 (namely, Ỹ0, Ỹ1, . . . , Ỹn are martingale w.r.t X0, . . . , Xn). Lemma 2.18 yields that

Pr
[
∃i ∈ [n] s.t.

∣∣∣Ỹi − 1
∣∣∣ ≥ λ] ≤ 23 · E

[∑n
i=1 min{

∣∣∣R̃i∣∣∣, R̃2
i }
]

λ2
, (99)

where R̃i = Ỹi/Ỹi−1 − 1. By definition, for any fixing of X0, . . . , Xn with jmin ∈ [i] it holds that
R̃i = 0, and for any fixing with jmin = i + 1 it holds that R̃i = (Zi − Ti)/(1 + Ti). In the latter
case, it holds that∣∣∣R̃i∣∣∣ ≤ (|Zi|+ |Ti|)/(|1 + Ti|) ≤ (|Zi|+ |Ti|)/0.9 ≤ 2(|Zi|+ |Ti|),
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and that ∣∣∣R̃2
i

∣∣∣ ≤ (2Z2
i + 2T 2

i

)
/(1 + Ti)

2 ≤
(
2Z2

i + 2T 2
i

)
/0.92 ≤ 3

(
Z2
i + T 2

i

)
,

where in the first inequality we used the fact that (a + b)2 ≤ 2a2 + 2b2. Overall, we deduce that
for all i ∈ [n]:

min{
∣∣∣R̃i∣∣∣, R̃2

i } ≤ 3 min{|Zi|+ |Ti|, Z2
i + T 2

i } ≤ 6
(
min{|Zi|, Z2

i }+ min{|Ti|, T 2
i }
)
, (100)

where in the last inequality we use the fact that min{x+ y, x2 + y2} ≤ 2 min{x, x2}+ 2 min{y, y2}
for any x, y ≥ 0. By Equations (99) and (100) we deduce that

Pr
[
∃i ∈ [n] s.t.

∣∣∣Ỹi − 1
∣∣∣ ≥ λ] ≤ 138 · E

[∑n
i=1

(
min{|Zi|, Z2

i }+ min{|Ti|, T 2
i }
)]

λ2
, (101)

By Markov inequality, for any i ∈ [n] it holds that

Pr[|Ti| ≥ 0.1] = Pr
[
min{|Ti|, T 2

i } ≥ 0.01
]
≤ 100 · E

[
min{|Ti|, T 2

i }
]

and therefore

Pr
[
∃i ∈ [n] s.t. Ỹi 6= Yi

]
≤ Pr[∃i ∈ [n] s.t. |Ti| ≥ 0.1]

≤ 100 · E

[
n∑
i=1

min{|Ti|, T 2
i }

]
≤

7 · E
[
min{|Ti|, T 2

i }
]

λ2
(102)

The proof now follows by Equations (101) and (102). �
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