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Abstract. We study the complexity of approximation on satis�able instances
for graph homomorphism problems. For a �xed graph H, the H-colouring prob-
lem is to decide whether a given graph has a homomorphism to H. By a result
of Hell and Nešetřil, this problem is NP-hard for any non-bipartite graph H.
In the context of promise constraint satisfaction problems, Brakensiek and Gu-
ruswami conjectured that this hardness result extends to promise graph homo-
morphism as follows: �x any non-bipartite graph H and another graph G with
a homomorphism from H to G, it is NP-hard to �nd a homomorphism to G from
a given H-colourable graph. Arguably, the two most important special cases of
this conjecture are when H is �xed to be K3 (and G is any graph with a trian-
gle) and when G = K3 (and H is any 3-colourable graph). The former case is
equivalent to the notoriously di�cult approximate graph colouring problem. In
this paper, we con�rm the Brakensiek-Guruswami conjecture for the latter case.
Our proofs rely on a novel combination of the universal-algebraic approach to
promise constraint satisfaction, that was recently developed by Bulín and the
authors, with some ideas from algebraic topology.

1. INTRODUCTION

In this paper we investigate the complexity of �nding an approximate solu-
tion to satis�able instances. For example, for the problem of 3-colouring a graph,
one natural approximation version is the approximate graph colouring problem:
The goal is to �nd a c-colouring of a given 3-colourable graph. There is a huge gap
in our understanding of the complexity of this problem. The best known e�cient
algorithm uses roughly c = O(n0.199) colours where n is the number of vertices of
the graph [KT17]. It has been long conjectured the problem is NP-hard for any
�xed constant c ≥ 3, but the state-of-the-art here has only recently been improved
from c = 4 [KLS00, GK04] to c = 5 [BKO19a, BKO19b].

Graph colouring problems naturally generalise to graph homomorphism prob-
lems and further to constraint satisfaction problems (CSPs). In a graph homo-
morphism problem, one is given two graphs and needs to decide whether there
is a homomorphism (edge-preserving map) from the �rst graph to the second
[HN04]. The CSP is generalisation of this that uses arbitrary relational structures
in place of graphs. One particularly important case that attracted much attention
is when the second graph/structure is �xed, this is the so-called non-uniform CSP
[BKW17, FV98]. For graph homomorphisms, this gives the so-called H-colouring
problem: decide whether a given graph has a homomorphism to a �xed graph
H [HN04]. The P vs. NP-complete dichotomy of H-colouring given in [HN90]
was one of the base cases that supported the Feder-Vardi dichotomy conjecture
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for CSPs [FV98]. The study of the complexity of the (standard) CSP and the �-
nal resolution of the dichotomy conjecture [Bul17, Zhu17] was greatly in�uenced
by the algebraic approach (see survey [BKW17]). This approach has also made
important contributions to the study of approximability of CSPs (e.g. [BK16]).

Brakensiek and Guruswami [BG16, BG18] suggested that perhaps progress on
approximate graph colouring and similar open problems can be made by looking
at a broader picture, by extending it to promise graph homomorphism and further
to the promise constraint satisfaction problem (PCSP). The promise graph homo-
morphism is an approximation version of the graph homomorphism problem in
the following sense: we �x (not one but) two graphs H and G such that there is
a homomorphism from H to G; the goal is then to �nd a G-colouring for a given
H-colourable graph. The promise is that the input graph is always H-colourable.
The general promise CSP (PCSP, for short) is a natural generalisation of this to
arbitrary relational structures.

Given the huge success of the algebraic approach to the CSP, it is natural to
investigate what it can do for PCSPs. This investigation was started by Austrin,
Håstad, and Guruswami [AGH17], with an application to a promise version of
SAT. It was further developed by Brakensiek and Guruswami [BG16, BG18, BG19]
and applied to a range of problems, including versions of approximate graph and
hypergraph colouring. A recent paper [BKO19a, BKO19b] describes a general
abstract algebraic theory for PCSPs. However, the algebraic theory of PCSP is
still very young and much remains to be done both in further developing it and in
applying it to speci�c problems. We note that the aforementioned NP-hardness
of 5-colouring a given 3-colourable graph was proved in [BKO19a, BKO19b] by
applying this abstract theory.

In the present paper, we apply this general theory to prove NP-hardness for an
important class of promise graph homomorphism problems.

Related work. The notion of the PCSP has been coined in [AGH17], but prob-
lems from the class has been around for a long time, e.g. the approximate graph
colouring [GJ76].

Most notable examples of PCSPs studied before are related to graph and hy-
pergraph colouring. We already mentioned some results concerning colouring 3-
colourable graphs with a constant number of colours. By additionally assuming
non-standard (perfect-completeness) variants of the Unique Games Conjecture,
NP-hardness was shown for all constant c ≥ 3 [DMR09]. Without additional
complexity-theoretic assumptions, the strongest known NP-hardness results for
colouring k-colourable graphs are as follows. For any k ≥ 3, it is NP-hard to
colour a given k-colourable graph with 2k − 1 colours [BKO19a, BKO19b]. For
large enough k , it is NP-hard to colour a given k-colourable graph with 2Ω(k1/3)

colours [Hua13]. The only earlier result about promise graph homomorphisms
(with H , G) that involves more than graph colouring is the NP-hardness of
3-colouring graphs that admit a homomorphism to C5, the �ve-element cycle
[BKO19a], which is the simplest problem within the scope of the main result of
this paper.

A colouring of a hypergraph is an assignment of colours to its vertices that
leaves no edge monochromatic. It is known that, for any constants 2 ≤ k ≤ c ,
it is NP-hard to �nd a c-colouring of a given 3-uniform k-colourable hypergraph
[DRS05]. Further variants of approximate hypergraph colouring, e.g. relating to
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strong or rainbow colourings, were studied in [ABP18, BG16, BG17, GL17], but
most complexity classi�cations related to them are still open in full generality.
There are also hardness results concerning hypergraph colouring with a super-
constant number of colours, e.g. [ABP19, Bha18].

An accessible exposition of the algebraic approach to the CSP can be found in
[BKW17], where many ideas and results leading to (but not including) the reso-
lution [Bul17, Zhu17] of the Feder-Vardi conjecture are presented. The volume
[KŽ17] contains surveys concerning many aspects of the complexity and appro-
ximability of CSPs.

The �rst link between the algebraic approach and PCSPs was found by Aus-
trin, Håstad, and Guruswami [AGH17], where they studied a promise version
of (2k + 1)-SAT called (2 + ε)-SAT. It was further developed by Brakensiek and
Guruswami [BG16, BG18, BG19]. They use a notion of polymorphism (which is
the central concept in the algebraic theory of CSP) suitable for PCSPs, and show
that the complexity of a PCSP is fully determined by its polymorphisms — in
the sense that that two PCSPs with the same set of polymorphisms have the
same complexity. They also use polymorphisms to prove several hardness and
tractability results. The algebraic theory of PCSP was lifted to an abstract level
in [BKO19a, BKO19b], where it was shown that abstract properties of polymor-
phisms determine the complexity of PCSP. The main result of this paper heavily
relies on [BKO19a, BKO19b].

Our contribution. The approximate graph colouring problem is about �nding
a c-colouring of a given 3-colourable graph. In other words, it relaxes the goal in 3-
colouring. We can instead insist that we want to �nd a 3-colouring, but strengthen
the promise, i.e., �x a 3-colourable graph H, and ask how hard it is to �nd a 3-
colouring of a given H-colourable graph. We prove that this problem is NP-hard
for any non-bipartite graph H that is 3-colourable. Note that if H is bipartite, then
this problem is solvable in polynomial time, and therefore our result completes
a dichotomy of this special case of the promise graph homomorphism problem.

The scope of our result can be seen as a certain dual of approximate graph
colouring in the landscape of promise graph homomorphism, in the following
sense. It is not hard to see that, in order to prove that promise graph homomor-
phism is NP-hard for any pair of non-bipartite graphs (H,G), it enough to prove
this for all pairs (Ck ,Kn), k ≥ 3 odd and n ≥ 3, where the �rst graph is an odd
cycle and the second is a complete graph. This is because we have a chain of
homomorphisms

(1.1) . . .→ Ck → . . .→ C5 → C3 = K3 → K4 → . . .→ Kn → . . .

and, for each (H,G) with a homomorphism H → G, the problem PCSP(H,G)
admits a (trivial) reduction from PCSP(Ck ,Kn) where k is the size of an odd cycle
in H and n is the chromatic number of G (so we have Ck → H→ G→ Kn). The
chain of homomorphisms (1.1) has a natural middle point K3. From this middle
point, the right half of the chain corresponds to approximate graph colouring and
the left half is the scope of this paper.

Our proofs rely on the universal-algebraic approach to promise constraint sat-
isfaction, that was recently developed by Bulín and the authors, as well as on some
ideas from algebraic topology. To the best of our knowledge, this is �rst time when
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ideas from universal algebra and algebraic topology are applied together to anal-
yse the complexity of approximation. We remark that three earlier results on the
complexity of approximate hypergraph colouring [ABP18, Bha18, DRS05] were
based on results from topological combinatorics using the Borsuk-Ulam theorem
or similar [Lov78, Mat03]. Their use of topology seems di�erent from ours, and it
remains to be seen whether they are all occurrences of a common pattern.

Overview of key technical ideas. We prove the hardness via a reduction from
Gap Label Cover. The general structure of the proof is similar to [AGH17], where
they �rst give a general su�cient condition for the existence of such a reduction
for general PCSPs, and then apply it to speci�c PCSPs which they call (2+ε)-SAT.
However, the structure of our problems is rather more complicated — in particular,
our problems do not satisfy the su�cient condition from [AGH17], so we need to
do substantially more. It was shown in [BKO19a] that a reduction in the style of
[AGH17] works under a weaker structural assumption (than [AGH17]), and the
technical part of this paper shows that this weaker assumption is satis�ed for our
problems. Let us explain this in more detail.

The general reduction in [AGH17] encodes an instance of Gap Label Cover
as an instance of a PCSP instance by using a polymorphism gadget. (Roughly,
polymorphisms are multivariate functions compatible with the constraint rela-
tions of the PCSP.) That is, solutions of this gadget are polymorphisms, one for
each variable of the original label cover instance. In this encoding, the arity of
polymorphisms corresponds to the size of label sets in the label cover instance,
so an assignment of a label to a variable corresponds to choosing a coordinate
in the corresponding polymorphism. The completeness of the reduction follows
automatically from the structure of the gadget. The proof of soundness uses the
assumption such that any polymorphism of the PCSP at hand essentially depends
only on a bounded number of variables (i.e., is a junta) — this is the su�cient con-
dition. It is not hard to prove that this is enough to provide a good-enough ap-
proximation for a satis�able label cover instance. One can assign to each variable
of the label cover instance a label chosen uniformly at random from the bounded-
size set of labels corresponding to these essential variables of the corresponding
polymorphism.

This approach does not work directly for our problems, since we do not have
the property that all polymorphisms are juntas. However, we can use a stronger
version of the above mentioned result from [AGH17] given in [BKO19a]. This
stronger version weakens the assumption the all polymorphisms are juntas — in-
stead, we assume that we can map our polymorphisms to another set of multivari-
ate functions that does have this property, and we can do it in a way that works
well with the label cover constraints, so we can use it to identify the (bounded-
size set of) important coordinates in our polymorphisms. Formally, such a map is
called a minion homomorphism (see De�nition 2.10). This notion plays a very
important role in the algebraic theory of PCSP (see [BKO19a, BKO19b]). The
construction of this map and the proof that it is a minion homomorphism is the
technical content of the paper. Once this is done, our main result follows from
[BKO19a].

In order to identify which coordinates in polymorphisms are important and
which are ‘noise’, we need to analyse the structure of our polymorphisms. In
our case, the polymorphisms are simply 3-colourings of direct powers of a �xed
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odd cycle. Since K3 is also an odd cycle, we have that both graphs de�ning our
PCSPs are discretisations of a circle. Our analysis is inspired by ideas from al-
gebraic topology. We assign to each coordinate an integer, called a degree. For
a unary polymorphism, i.e., a homomorphism from the odd cycle to the 3-cycle,
this degree has a precise intuitive meaning: it is the number of times the domain
cycle wraps around the range cycle under the homomorphism. This corresponds
to the topological degree of a continuous map between two copies of a circle. We
further generalise this degree to higher arity polymorphisms — roughly, the de-
gree at a certain coordinate is supposed to count how many times that coordinate
wraps around the circle when ignoring all other coordinates. To de�ne this num-
ber formally and consistently, we borrow a few notions from algebraic topology:
To graphs and graph homomorphisms, we associate Abelian groups and group
homomorphisms. These correspond to so-called groups of chains in topology,
that are further used to de�ne homology. However, we do not follow this theory
that far, and de�ne the degrees directly from these group homomorphisms. Fi-
nally, we show that only a bounded number of variables in a polymorphism can
have a non-zero degree and use this fact to de�ne our minion homomorphism.

Organisation of the paper. We give a short overview of the present paper. In
Section 2, we introduce technical notions that we will need in our proof. Section 3
states our main result and the result from [BKO19a] that our proof relies on. In
Section 4, we give an overview of the topological intuition of the proof. This sec-
tion is useful for those who want to get a deeper understanding of the topological
intuition — however, it is not required for checking the formal proof of the main
result, which is presented in Section 5.

2. PRELIMINARIES

2.1. Promise graph homomorphism problems

The approximate graph colouring problem and promise graph homomorphism
problem are special cases of the PCSP, and we use the theory of PCSPs. However,
we will not need the general de�nitions, so we de�ne everything only for graphs.
For general de�nitions, see, e.g. [BKO19a]. All graphs in this paper are loopless
(i.e. irre�exive).

De�nition 2.1. A homomorphism from a graph H = (V (H ), E(H )) to another
graph G = (V (G), E(G)) is a map h : V (H ) → V (G) such that (h(u),h(v)) ∈ E(G)
for every (u,v) ∈ E(H ). In this case we write h : H → G, and simply H → G to
indicate that a homomorphism exists.

We now de�ne formally the promise graph homomorphism problem.

De�nition 2.2. Fix two graphs H and G such that H→ G.
• The search variant of PCSP(H,G) is, given an input graph I that maps

homomorphically to H, �nd a homomorphism h : I→ G.
• The decision variant of PCSP(G,H) is, given an input graph I, output yes

if I→ H, and no if I 6→ G.

Note that there is an obvious reduction from the decision variant of each PCSP
to the search variant, but it is not known whether the two variants are equivalent
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for each PCSP. The hardness results in this paper hold for the decision (and hence
also for the search) version of PCSP(H,G).

It is obvious that if at least one of H,G is bipartite then the problem can be
solved in polynomial time by using an algorithm for 2-colouring.

Conjecture 2.3 ([BG18]). Let H and G be any non-bipartite graphs with H→ G.
Then PCSP(H,G) is NP-hard.

The graphs that we will be working with in this paper are cycles and their direct
powers. As usual, we denote by Kk the complete graph on k vertices, and by Ck
the k-cycle. We will assume throughout that the set of vertices of both graphs is
{0, 1, . . . ,k − 1} and that the of the edges of the k-cycle are (0, 1), . . . , (k − 2,k − 1),
(k − 1, 0).

De�nition 2.4. The n-th (direct) power of a graph G is the graph Gn whose ver-
tices are all n-tuples of vertices of G (i.e., V (Gn) = V (G)n), and whose edges are
de�ned as follows: ((u1, . . . ,un), (v1, . . . ,vn)) is an edge of Gn if and only if (ui ,vi )
is an edge of G for all i ∈ {1, . . . ,n}.

2.2. Polymorphisms

Although this paper does not use the general PCSPs, we will use the tools de-
veloped for analysis of these kind of problems. Namely, we use the notions of
polymorphisms [AGH17, BG18], minions and minion homomorphisms [BKO19a,
BKO19b]. We introduce these notions in the special case of graphs below. The
general de�nitions and more insights can be found in [BKO19a, BKW17].

De�nition 2.5. An n-ary polymorphism from a graph G to a graph H is a homo-
morphism from Gn to H. To spell this out, it is a mapping f : V (G)n → V (H ) such
that, for all tuples (u1,v1), . . . , (un,vn) of edges of G, we have

(f (u1, . . . ,un), f (v1, . . . ,vn)) ∈ E(H ).

We denote the set of all polymorphisms from G to H by Pol(G,H).

Example 2.6. The polymorphisms from a graph G to the k-clique Kk are the k-
colourings of Gn .

An important notion in our analysis of polymorphisms is that of an essential
coordinate.

De�nition 2.7. A coordinate i of a function f : An → B is called essential if there
exist a1, . . . ,an and bi in A such that

f (a1, . . . ,ai−1,ai ,ai+1, . . . ,an) , f (a1, . . . ,ai−1,bi ,ai+1, . . . ,an).

A coordinate of f that is not essential is called inessential or dummy.

The set of polymorphisms between any two graphs is closed under the opera-
tion of taking a minor, that is, it is a minion. Let us formally de�ne these notions.

De�nition 2.8. An n-ary function f : An → B is called a minor of an m-ary
function д : Am → B given by a map π : {1, . . . ,m} → {1, . . . ,n} if

f (x1, . . . , xn) = д(xπ (1), . . . , xπ (m))

for all x1, . . . , xn ∈ A.
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Alternatively, one can say that f is a minor of д if it is obtained from д by
identifying variables, permuting variables, and introducing inessential variables.

De�nition 2.9. Let O(A,B) = { f : An → B | n ≥ 1}. A (function) minion M on
a pair of sets (A,B) is a non-empty subset of O(A,B) that is closed under taking
minors. For �xed n ≥ 1, let M (n) denote the set of n-ary functions from M .

De�nition 2.10. Let M and N be two minions (not necessarily on the same
pairs of sets). A mapping ξ : M → N is called a minion homomorphism if

(1) it preserves arities, i.e., maps n-ary functions to n-ary functions for all n,
and

(2) it preserves taking minors, i.e., for each π : {1, . . . ,m} → {1, . . . ,n} and
each д ∈M (m) we have

ξ (д)(xπ (1), . . . , xπ (m)) = ξ (д(xπ (1), . . . , xπ (m))).

We refer to [BKO19a, Example 2.22] for an example of a minion homomor-
phism.

De�nition 2.11. A minion M is said to have essential arity at most k , if each
function f ∈ M has at most k essential variables. It is said to have bounded
essential arity if it has essential arity at most k for some k .

Remark 2.12. It is well known (see, e.g. [GL74]), and not hard to check, that the
minion Pol(K3,K3) has essential arity at most 1. However, it is easy to show that,
for any odd k > 3, the minion Pol(Ck ,K3) does not have bounded essential arity.
Fix a homomorphism h : Ck → K3 such that h(0) = h(2) = 0 and h(1) = 1 and
de�ne the following function from Cn

k to K3:

f (x1, . . . , xn) =

{
2 if x1 = . . . = xn = 1,
h(x1) otherwise.

It is easy to check that f ∈ Pol(Ck ,K3). By using De�nition 2.7 with a1 = . . . =
an = 1 and bi = 0, one can verify that every coordinate i of f is essential.

Our proof will rely on the following theorem which is a special case of a result
in [BKO19a] that generalised [AGH17, Theorem 4.7]. We remark that the proof of
this theorem is by a reduction from Gap Label Cover, which is a common source
of inapproximability results.

Theorem 2.13 ([BKO19a, Proposition 5.10]). LetH,G be graphs such thatH→ G.
Assume that there exists a minion homomorphism ξ : Pol(H,G) → M for some
minion M on a pair of (possibly in�nite) sets such that M has bounded essential
arity and does not contain a constant function (i.e., a function without essential vari-
ables). Then PCSP(H,G) is NP-hard.

2.3. Graph homology

In this section we introduce a simple way to associate Abelian groups and
group homomorphisms to graphs and graph homomorphisms. We will use this
connection to �nd a minion homomorphism needed to apply Theorem 2.13 to
H = Ck , k ≥ 3 odd, and G = K3. What we describe here is a special case of stan-
dard notions in algebraic topology [Hat01], but we do not assume any topology
background.
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For an edge (u,v) in a graph G, let [u,v] denote an orientation of the edge from
u to v .

De�nition 2.14. Fix a graphG = (V (G), E(G)). Let ∆V(G) denote the free Abelian
group with generators [v],v ∈ V (G). That is, the elements of this group are formal
sums

∑
v ∈V (G) cv [v], where cv ∈ Z for allv ∈ V (G), and the addition in this group

is naturally de�ned as∑
v ∈V (G)

cv [v] +
∑

v ∈V (G)

c ′v [v] =
∑

v ∈V (G)

(cv + c
′
v )[v].

Similarly, let ∆E(G) denote the free Abelian group with generators [u,v], (u,v) ∈
E(G), where we additionally postulate that [u,v] = −[v,u] for every edge. The
elements of ∆V(G) are called vertex chains and the elements of ∆E(G) edge chains
in G.

Note that any multiset W of oriented edges in G gives rise to the edge chain∑
[u ,v]∈W [u,v], where each oriented edge appears in the sum with the correspond-

ing multiplicity. With a slight abuse of notation, we will denote this edge chain
also byW . For example, ifW is a walk that uses some edge (u,v) the same number
of times in each direction, then the corresponding coe�cient in the edge chain of
W will be 0.

Note also that one can consider both ∆V(G) and ∆E(G) not only as Abelian
groups, but also as Z-modules. That is, for any integer c and any vertex chain
or edge chain W , one can consider the chain c ·W de�ned by multiplying all
coe�cients inW by c .

For any two graphs H and G, any homomorphism f : H → G naturally gives
rise to group homomorphisms fV : ∆V(H) → ∆V(G) and fE : ∆E(H) → ∆E(G)
de�ned by

fV(
∑

i ci [vi ]) =
∑

i ci [f (vi )],

and
fE(

∑
i ci [ui ,vi ]) =

∑
i ci [f (ui ), f (vi )].

Since f is a graph homomorphism, [f (ui ), f (vi )] is always an (orientation of an)
edge in G.

De�nition 2.15. For a graph G, we de�ne a map ∂ : ∆E(G) → ∆V(G) as the
group homomorphism such that [u,v] 7→ [v] − [u]. for every [u,v] ∈ ∆E(G)

Note that the above condition uniquely de�nes ∂.
The map ∂ computes the ‘boundary’ of an edge chain. For example, the bound-

ary of an edge chain corresponding to a walk from u to v in G is [v] − [u], and
more generally, the boundary δW of an edge chain W counts for each vertex v
the di�erence between how many times edges in W arrive to v and how many
times they leave.

We will also use the following observation which is a generalization of the fact
that mapping a walk from u to v by a homomorphism f results in a walk from
f (u) to f (v).

Lemma 2.16. For each graph homomorphism f : H→ G and each P ∈ ∆E(H), we
have fV(∂P) = ∂ fE(P).
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Proof. Since all the involved maps are group homomorphisms, it is enough to
check the required equality on the generators of ∆E(H). Pick [u,v] an oriented
edge of H, then

fV(∂[u,v]) = fV([v] − [u]) = [f (v)] − [f (u)] = ∂[f (u), f (v)] = ∂ fE([u,v])

as required. �

3. THE MAIN RESULT

Our main result is as follows.

Theorem 3.1. Let H be a 3-colourable non-bipartite graph. Then PCSP(H,K3) is
NP-hard.

As we explained in the introduction, it is enough to prove this theorem for the
case H = Ck , k ≥ 3 odd. We do this by using Theorem 2.13 for Pol(Ck ,K3) and
the minion M de�ned as follows.

De�nition 3.2. Let N be an odd number, we de�ne a minion Z≤N to be the set
of all functions f : Zn → Z such that f (x1, . . . , xn) = c1x1 + · · · + cnxn for some
c1, . . . , cn ∈ Z with

∑n
i=1 |ci | ≤ N and

∑n
i=1 ci odd.

Alternatively, the set Z≤N can be described as the set of all minors of the func-
tion of the form (x1, . . . , xN ) 7→ ±x1 ± · · · ± xN . It is clear that, for any �xed odd
N , Z≤N is a minion that has bounded essential arity and contains no constant
function.

Theorem 3.3. Let k ≥ 3 be odd and let N be the largest odd number such that
N ≤ k/3. Then there is a minion homomorphism from Pol(Ck ,K3) to Z≤N .

Remark 3.4. If k is the size of an odd cycle in H, there also exists a minion ho-
momorphism ξ : Pol(H,K3) → Pol(Ck ,K3), which can be composed with the
minion homomorphism from Theorem 3.3 to give a minion homomorphism from
Pol(H,K3) to Z≤N . Given a graph homomorphism h : Ck → H, we can de�ne
a map ξ : Pol(H,K3) → Pol(Ck ,K3) by

ξ (f )(x1, . . . , xn) = f (h(x1), . . . ,h(xn)).

It is easy to show that this map preserves minors and is therefore a minion ho-
momorphism.

The bound on N given in the above theorem is tight. More precisely, one can
show that there is also a minion homomorphism in the opposite direction, i.e.,
from Z≤N to Pol(Ck ,K3) (see Appendix A). It is not hard to check that this in
particular implies that [BKO19a, Corollary 5.19] cannot be used to provide NP-
hardness of PCSP(Ck ,K3) for any k ≥ 9.

As mentioned above, Theorem 3.1 follows immediately from Theorem 2.13 and
Theorem 3.3.

4. TOPOLOGICAL DETOUR

The proof presented in Section 5 is heavily in�uenced by several topological
observations, and even though they are not formally needed, we present them
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Figure 1. A torus with two representatives of coordinate loops.

here to provide some intuition. The only intention of this section is to give an
intuition about the combinatorial statements in the Section 5, therefore we will
omit any formal proofs or statements. We believe that an interested reader with
an access to a book about algebraic topology (e.g. [Hat01]) will be able to check
correctness of our statements. Throughout this section, we add a few remarks
intended for readers skilled with algebraic topology.

The analogy between our discrete setting and topology is based on the obser-
vation that both Ck for k ≥ 3 and C3 look from the topological perspective like
the circle S1 = {(x,y) ∈ R2 | x2 + y2 = 1}. Any continuous mapping f : S1 → S1

is assigned a topological invariant called degree of f , and denoted by deg f . Intu-
itively, this number counts ‘how many times f loops around the circle’. A positive
degree means it loops around counter-clockwise, a negative one means it loops
around clockwise. A similar invariant can be used for graph homomorphisms
between two cycles (see De�nition 5.2). The essence of our argument is to gen-
eralize this degree to polymorphisms, i.e., mappings that have multiple values on
the input.

Remark 4.1. In algebraic topology, the degree is formally de�ned through the fun-
damental group. The fundamental group Π1(S

1) is isomorphic to the free cyclic
group Z, the generator of this group is the class of a loop that loops around
once counter-clockwise. Any continuous mapping f : S1 → S1 induces a group
homomorphism between the fundamental groups, i.e., a group homomorphism
Π1(f ) : Z → Z, and any such mapping is of the form f (x) = cx . This c is then
de�ned as the degree of f .

Let us borrow the term ‘polymorphism’ to use for continuous mappings from
a power of a topological space to another, i.e., a polymorphism of our circle S1 is
a continuous map from n-th power1 of a circle to S1. The n-th power of S1 is an
n-torus, usually denoted by T n . The second power is the usual torus T 2 (surface
of a doughnut) depicted on Figure 1. That is for n-ary polymorphisms, we are
interested in continuous maps f : T n → S1.

Such a mapping f : T n → S1 is assigned n di�erent degrees deg1 f , . . . , degn f
each corresponding to one of the coordinates of f . A degree of f at a coordinate

1Here we use the standard power of a topological space with the product topology, which is also
the categorical power in the category of topological spaces.
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Figure 2. The diagonal
loop, i.e., points with co-
ordinates (x, x).

Figure 3. A homotopy.

i is obtained by �xing all other coordinates to a point, and following the i-th co-
ordinate around S1 and counting how many times one loops around the circle in
the image. For example, for n = 2, each of the two degrees are obtained by fol-
lowing one of the two loops depicted in Figure 1. A necessary observation is that
degree assigned this way does not depend on the choice of values to which other
coordinates are �xed. This is due to a simple fact that any two such choices of
loops can be connected by a continuous transformation, continuously changing
one loop into the other (such a continuous transformation is usually called a ho-
motopy) this implies that the degree has to change continuously as well. But the
degree can only attain discrete values, and therefore it has to remain constant.

This assigns a quantity degi f , which is always an integer, to each of the co-
ordinates of f . Intuitively, we can say that the higher the absolute value of this
degree is, the more important the corresponding variable is. In particular, inessen-
tial variables have degree 0. This is in essence how we identify which variables
are important, and which should be mapped to inessential variables.

Remark 4.2. Using the fundamental groups in the n-ary case can also bring a little
more insight. In particular, as it is well-known that Π1(T

n) is isomorphic to the
n-generated free Abelian group. The loops that we described in the above para-
graphs correspond to the n di�erent generators. And similarly, as in the unary
case, any continuous mapping f : T n → S1 induces a group homomorphism be-
tween the fundamental groups, i.e., a group homomorphism Π1(f ) : Zn → Z. Any
such map is of the form

(x1, . . . , xn) 7→ c1x1 + · · · + cnxn,

and each of these coe�cients ci correspond to the degree degi f .

To bound the number of ‘interesting’ coordinates, we need use the discrete
structure of the graph. One easy observation is that a degree of a graph homo-
morphism from Ck to C3 cannot be arbitrarily large: we can walk around the
cycle C3 at most k/3 times in k steps. We need to bring this bound on a single
degree of a unary map to bound the number of coordinates with non-zero degree.
This is done by proving that if f is n-ary, and д is de�ned from f by identifying
all variables, i.e., д(x) = f (x, . . . , x), then degд = deg1 f + · · · + degn f . This is
not so easy to see, let us sketch the proof for n = 2. Let f : T 2 → S1, then д is
de�ned as the restriction of f to the diagonal, i.e., points with coordinates (x, x),
see Figure 2.
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Figure 4. The graph C2
9 on a torus.

We want to connect the degree of this restriction with the degrees of the two
restrictions of f to the loops that de�ne deg1 f and deg2 f . This is again done
by observing that walking the two loops one after another can be continuously
transformed to walking the diagonal. This can be done by continuously shifting
the walk along the lines shown in Figure 3. A similar argumentation works for
higher dimensions as well. The last small technical obstacle is what to do with
negative degrees as they could cancel out with positive ones. This is only a mi-
nor problem since we can simply reverse the corresponding coordinates to obtain
a mapping that has only positive degrees that are up to a sign identical to the
original ones.

Remark 4.3. The above argumentation is an instance of a more general statement
that says that the mapping Π1 : S 1 → Z (here S 1 denotes the minion of all
continuous maps from T n to S1 and Z the minion of all group homomorphisms
from Zn to Z) is a minion homomorphism. In other words, if д is de�ned from f
using π : {1, . . . ,n} → {1, . . . ,m} by д(x1, . . . , xm) = f (xπ (1), . . . , xπ (n)), then the
same identity holds for Π1(д) and Π1(f ), i.e.,

deg1 д · x1 · · · + degm д · xm = deg1 f · xπ (1) · · · + degn f · xπ (n).

The above is equivalent to the statement that for all i ∈ {1, . . . ,m} we have

degi д =
∑

j ∈π−1(i)

degj f .

In Section 5, we prove that the degrees we de�ne for graph polymorphisms also
have this property.

In our attempt to bring these topological considerations to proper statements
about polymorphisms from Ck to C3, there are a few points where the analogy
does not work nicely. We already mentioned one, that a degree of a graph homo-
morphism is bounded, but a degree of a continuous map S1 → S1 is not. This is
due to the fact that unlike topological spaces which are sometimes described as
‘being made of rubber’, i.e., they can be in�nitely stretched and folded, graphs are
‘made of sticks’, i.e., they can be folded but not stretched. This property works
to our advantage. The second issue is that the second power of Ck is not ex-
actly topologically equivalent to a torus, rather it forms a certain mesh that can
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be drawn on a torus in some way (see Figure 4). This forces us to de�ne a de-
gree in a di�erent manner, but we choose it so that has a close resemblance of the
topological degree.

5. PROOF OF THEOREM 3.3

We prove the theorem by analysing the polymorphisms from Ck to C3(= K3)
where k is odd.

5.1. Degree of a homomorphism

Recall that, for m ≥ 3, we de�ne a graph Cm to be the m-cycle with vertices
0, 1, . . . ,m − 1. Here vertices are connected by an edge if they di�er by exactly
one modulom.

We �x an orientation of any Cm in the increasing order modulom, and denote
by Om the edge chain [0, 1] + [1, 2] + · · · + [m − 1, 0] in ∆E(Cm).

The degree of a homomorphism f : Cm → Cl is intuitively de�ned as the (pos-
sibly non-positive) number of times the image of Cm under f walks around Cl in
a �xed direction (say, counter-clockwise). The formal de�nition is based on the
following observation.

Lemma 5.1. Letm, l ≥ 3, and let f : Cm → Cl be a homomorphism. Then there is
an integer d such that fE(Om) = d ·Ol .

Proof. Clearly, we have ∂Om = 0. Lemma 2.16 then implies that ∂(fE(Om)) = 0.
We claim that the only edge chainsW in ∆E(Cl ) such that ∂W = 0 are chains of
the form d · Ol , so fE(Om) is of this form. Indeed, observe that if W = d0[0, 1] +
· · · + dl−1[l − 1, 0], then

∂W = d0([1] − [0]) + d1([2] − [1]) + · · · + dl−1([0] − [l − 1])
= (dl−1 − d0)[0] + (d0 − d1)[1] + · · · + (dl−2 − dl−1)[l − 1].

If ∂W = 0, all coe�cients in the above sum are 0, and therefore d0 = d1 = · · · =
dl−1 concluding thatW = d ·Ol for d = d0. �

De�nition 5.2. Let m, l ≥ 3. The degree of a homomorphism f : Cm → Cl , de-
noted by deg f , is de�ned as the integer d from the above lemma, i.e., the number
deg f such that

fE(Om) = deg f ·Ol .

We remark for the interested reader that our de�nition of degree is a discrete
version of the standard topological notion of the degree of a map.

Lemma 5.3. Letm, l ≥ 3, assume that l is odd, and let f : Cm → Cl be a homo-
morphism. Then

(1) |deg f | ≤ m/l ,
(2) the parity of deg f is the same as parity ofm, and
(3) ifm = 4 then deg f = 0.

Proof. (1) We have that

deg f ·Ol = fE(Om) = [f (0), f (1)] + [f (1), f (2)] + · · · + [f (m − 1), f (0)].
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It is clear that, for each [i, i + 1] in Ol , the last expression above contains at least
|deg f | terms that are either [i, i + 1] or [i + 1, i]. It follows that |deg f | ≤ m/l .

(2) This follows by similar considerations as above. For each [i, i + 1] in Ol ,
the parity of the number of terms in the above sum that are either [i, i + 1] or
[i + 1, i] is the same as the parity of deg f . Since l is odd, the result follows.

(3) From (1) and (2), we know that the degree of any homomorphism f : C4 →
Cl is an even integer with absolute value at most 4/l . For l > 2, there is only one
such number, namely 0. �

Note that as a direct consequence of item (2) in the above lemma, we get that
form, l odd, any homomorphism from Cm to Cl has a non-zero degree.

5.2. Degrees of a polymorphism

We generalise the notion of a degree of a homomorphism to polymorphisms
between odd cycles. More precisely, for a polymorphism f : Cn

k → C3 and co-
ordinate i ∈ {1, . . . ,n}, we de�ne a quantity that we will call ‘a degree of f at
coordinate i’. Since this quantity will be used to de�ne a minion homomorphism,
the main requirement here will be that the degree behaves nicely with respect to
minors. Formally, we will need that if д is a minor of f de�ned by

д(x1, . . . , xm) = f (xπ (1), . . . , xπ (n)),

then
degi д =

∑
j ∈π−1(i) degj f .

This property is equivalent to saying that the mapping that maps f to the function
on Z de�ned by (x1, . . . , xn) 7→ deg1 f · x1 + · · ·+ degn f · xn is minor-preserving.

Intuitively, a degree of a unary function counts how many times one loops
around the cycle C3 if one follows the values of the function. We would like to
bring this intuition to the n-ary case, so that the degree of f at some coordinate
would mean ‘number of times one loops around the circle if he follows edges
going in the given direction at this coordinate’.

We will formalise this intuition and prove that the degree at a coordinate can
be de�ned in two equivalent ways, one global and the other local. In what follows
we �x l = 3, but all proofs work for any odd 3 ≤ lEk .

We denote by On
k ,i the set of all oriented edges of Cn

k whose i-th coordinate is
oriented as in Ok , i.e.,

On
k ,i = {[(a1, . . . ,an), (b1, . . . ,bn)] |

(aj ,bj ) ∈ E(Ck ) for all j ∈ {1, . . . ,n} and [ai ,bi ] ∈ Ok }.

We will also view On
k ,i as an edge chain in ∆E(Cn

k ).

De�nition 5.4. Let f : Cn
k → C3 be a polymorphism. We de�ne the degree of f

at coordinate i as the integer degi f such that

fE(O
n
k ,i ) = (2k)

n−1 degi f ·O3.

Note that |On
k ,i | = 2n−1kn , and therefore the above de�nition agrees with the

intuitive meaning. Also if n = 1, then deg1 f coincides with deg f since (2k)1−1 =
1 and O1

k ,1 = Ok . For a general n, it is not even clear that such a number degi f
always exists. It is easy to show that there is an integer d ′ such that fE(O

n
k ,i ) =
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d ′ · O3 since ∂(On
k ,i ) = 0. However, there is no obvious reason that this number

is a multiple of (2k)n−1. Let us show that this is the case. We need a technical
de�nition �rst.

De�nition 5.5. For an unoriented edge e = (ū, v̄) of Cn−1
k , we de�ne

e ×i Ok = {[(u
′
1, . . . ,u

′
n), (v

′
1, . . . ,v

′
n)] |

{(u ′1, . . . ,u
′
i−1,u

′
i+1, . . . ,u

′
n), (v

′
1, . . . ,v

′
i−1,v

′
i+1, . . . ,v

′
n)} = {ū, v̄}, [u

′
i ,v
′
i ] ∈ Ok }.

Note thatOn
k ,i =

⋃
e e×iOk where the union runs through all unoriented edges

of Cn−1
k . Note that, again, we can view e ×i Ok as an edge chain in ∆E(Cn

k ).

Lemma 5.6. Let n ≥ 2, f : Cn
k → C3 be a polymorphism, and let i ∈ {1, . . . ,n}.

Then
(1) for each edge e of Cn−1

k , there is an integer d such that fE(e ×i Ok ) = 2d ·O3;
(2) the above d does not depend on the choice of e ;
(3) d = degi f .

Proof. Without loss of generality, assume that i = 1, and to simplify the notation,
we will write × instead of ×1.

(1) Observe that e×Ok is an oriented 2k-cycle in Cn
k , and consider дe : C2k →

C3 to be the restriction of f to this 2k-cycle. Then degдe is even from Lemma 5.3(2),
and therefore it is equal to 2d for some d .

(2) We �rst prove the claim for two incident edges e and e ′. Let

e = ((u2, . . . ,un), (v2, . . . ,vn)) and e ′ = ((u2, . . . ,un), (w2, . . . ,wn)).

We want to prove that fE(e × Ok ) = fE(e
′ × Ok ) which is equivalent to fE(e ×

Ok − e ′ × Ok ) = 0 since fE is a group homomorphism. Note that −e ′ × Ok is
obtained from e ′ ×Ok by reversing edges. Our goal is then decompose these two
oriented cycles into several 4-cycles and then apply Lemma 5.3(3). The four cycles
are de�ned on vertices

(j,u2, . . . ,un), (j + 1,v2, . . . ,vn), (j + 2,u2, . . . ,un), (j + 1,w2, . . . ,wn)

where the addition in the �rst coordinate is considered modulo k . We denote by
S j the sum of oriented edges of the above 4-cycle, with the orientation following
the order above. Observe that indeed (see Figure 5)∑

j<k

S j = e ×i Ok − e
′ ×i Ok ,

and therefore

fE(e ×i Ok − e
′ ×i Ok ) = fE(

∑
j<k S j ) =

∑
j<k fE(S j ) = 0

where the last equality follows from Lemma 5.3(3). This implies that fE(e×iOk ) =

fE(e
′ ×i Ok ), as required. The general case is then obtained by transitivity, since

one can move from any edge of Cn−1
k to any other edge by following a sequence

of incident edges.
(3) We have

fE(O
n
k ,i ) =

∑
e ∈E(Cn−1

k )

fE(e ×i Ok ) =
∑

e ∈E(Cn−1
k )

2d ·O3 = (2k)n−1d ·O3

since |E(Cn−1
k )| = (2k)

n−1/2. �
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S j+2S j

e ×Ok

e ′ ×Ok

(j,u2, . . . ,un) (j + 4,u2, . . . ,un)

(j + 1,v2, . . . ,vn) (j + 3,v2, . . . ,vn)

(j + 1,w2, . . . ,wn) (j + 3,w2, . . . ,wn)

Figure 5. Proof of Lemma 5.6(2).

5.3. Minor preservation

Let Z denote the minion of all linear maps over Z, i.e., of the functions of the
form

∑
cixi where all ci ∈ Z. We de�ne a mapping δ : Pol(Ck ,C3) → Z by

δ (f ) : (x1, . . . , xn) 7→ deg1 f · x1 + · · · + degn f · xn .

In this subsection we prove that δ is minor-preserving, and therefore a minion
homomorphism. In the following one we show that the image of δ contains func-
tions of bounded essential arity (but no constant function).

Lemma 5.7. The map δ is a minion homomorphism.

It is clear that δ preserves the arity, so we need to show it also preserves the op-
eration of taking minors. We decompose this operation into a few steps: permut-
ing variables, introducing new dummy variables, and identifying two variables. It
is not hard to observe that δ preserves the operation of permuting variables (this
corresponds to the case when π in De�nition 2.10 is a bijection). We deal with
the case identifying two variables in Lemma 5.8, and then consider the addition
of dummy variables in Lemma 5.11.

Lemma 5.8. Letn ≥ 2 andk ≥ 3 odd, and f ,д ∈ Pol(Ck ,C3) such thatд is obtained
from f by identifying the �rst two variables, i.e.,

д(y, x3, . . . , xn) = f (y,y, x3, . . . , xn)

then deg1 д = deg1 f + deg2 f .

Before, we get to the proof, we need some technical de�nitions and a simple
technical lemma. Similarly to On

k ,i , we denote by On
k , {1,2} the set of all oriented

edges of Cn
k whose �rst and second coordinate is oriented as in Ok , i.e.,

On
k , {1,2} = O

n
k ,1 ∩O

n
k ,2.

Note that unlikeOn
k ,i ,O

n
k , {1,2} does not contain all edges ofCn

k in some orientation,
e.g. neither the edge [(0, 1), (1, 0)] nor [(1, 0), (0, 1)] is contained in O2

k , {1,2}. Also
observe that when considering this set as an edge chain, we have

On
k , {1,2} = 1/2 · (On

k ,1 +O
n
k ,2)
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which follows since in the sum on the right-hand side the edges that disagrees
in the orientation in the �rst two coordinates cancel out, and those which agree
count twice.

We de�ne the joint degree of f at coordinates 1 and 2 which intuitively ex-
presses ‘the average number of times one loops aroundO3 when followingk edges
that increase in both the coordinate 1 and 2’. For the formal de�nition below, note
that |On

k , {1,2} | = 2n−2kn .

De�nition 5.9. Let n ≥ 2, and let f : Cn
k → C3 be a polymorphism. We de�ne

a joint degree of f at coordinates 1 and 2 as the integer deg1,2 f such that

fE(O
n
k , {1,2}) = 2n−2kn−1 deg1,2 f ·O3.

As in the case of degrees of polymorphisms, it is not obvious that such a number
exists, but we prove this in the following lemma.

Lemma 5.10. For each n ≥ 2 and a polymorphism f : Cn
k → C3, we have

deg1,2 f = deg1 f + deg2 f .

Proof. Since On
k , {1,2} = 1/2 · (On

k ,1 +O
n
k ,2), we have

fE(O
n
k , {1,2}) = 1/2 · fE(On

k ,1 +O
n
k ,2),

and consequently,
2n−2kn−1 deg1,2 f = 1/2 · ((2k)n−1 deg1 f + (2k)

n−1 deg2 f ).

Cancelling 2n−2kn−1 on both sides gives the claim. �

Proof of Lemma 5.8. By the previous lemma, it is enough to prove that deg1,2 f =
degд. This is done in a similar way to proving that the degree of f at a coordinate
is both a local and a global property of f (Lemma 5.6). We prove this statement
separately for two cases: (1) f is binary and д is unary; and (2) f has arity at
least 3 and д has arity at least 2. The two cases are very similar. We present them
separately to ease some technical di�culties of the proof.

Case 1: f is binary. The assumption says that д(x) = f (x, x), and we aim to
prove that degд = deg1,2 f . Note that

дE(Ok ) = fE(O
′
k ,0)

whereO ′k ,0 is the set of oriented edges of the k-cycle (0, 0), (1, 1), . . . , (k − 1,k − 1)
in C2

k (in the increasing orientation). Note that O ′k ,0 ⊆ O2
k , {1,2}. More generally,

for i ∈ {1, . . . ,k − 1}, we denote by O ′k ,i the set of oriented edges of the k-cycle
(0, i), (1, i + 1), . . . , (k − 1, i − 1) where in the second coordinate, 0 succeeds k − 1.
Thus, the set O2

k , {1,2} is a disjoint union of the cycles O ′k ,i , 0 ≤ i ≤ k − 1. Since
each O ′k ,i is a k-cycle, we know that there is di such that

fE(O
′
k ,i ) = di ·O3.

In a similar way as in Lemma 5.6, we prove that di does not depend on i and is
actually equal to deg1,2 f . Also note that d0 = degд.

First, we �x any 0 ≤ i ≤ k − 1 and show that we have di = di+2 where the
addition is modulo k . For each x = 0, . . . ,k − 1, let Sx be the set of edges of the
oriented 4-cycle

(x, x + i), (x + 1, x + i + 1), (x, x + i + 2), (x − 1, x + i + 1)
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Sx

Sx+1

O ′k ,i

O ′k ,i+2

(x, x + i)

(x + 1, x + i + 1)

(x + 2, x + i + 2)
(x − 1, x + i + 1)

(x, x + i + 2)

(x + 1, x + i + 3)

Figure 6. Proof of Case 1 of Lemma 5.8.

where the addition is considered modulo k . Observe that
∑k−1

x=0 Sx = O
′
k ,i −O

′
k ,i+2

(see Figure 6). By Lemma 5.3(3), we have fE(Sx ) = 0 for each x . So we get

0 = fE(
k−1∑
x=0

Sx ) = fE(O
′
k ,i −O

′
k ,i+2) = fE(O

′
k ,i ) − fE(O

′
k ,i+1)

and therefore fE(O
′
k ,i ) = fE(O

′
k ,i+2) which implies that di = di+2. Since k is odd, it

follows that di is the same for for all i . This implies that di = degд, and therefore

fE(O
2
k , {1,2}) =

k−1∑
i=0

fE(O
′
k ,i ) =

k−1∑
i=0

degд ·O3 = k degд ·O3.

Consequently, deg1,2 f = degд which concludes the proof of the �rst case.
Case 2: The polymorphism f is of arity n > 2. The proof is similar to the �rst

case: We decompose the setOk , {1,2} into k disjoint sets each of which is a copy of
On−1
k−1,1 used in the de�nition of deg1 д. One of these copies will exactly correspond

to the edges of Cn
k on vertices that have the �rst two coordinate identical. This is

important since д is essentially the restriction of f to such vertices.
The sets P ′i are de�ned from O ′k ,i de�ned in the �rst case. The P ′i are those

oriented edges of Cn
k whose projection to the �rst two coordinates is in O ′k ,i . In

other words, we put

P ′i = {[(x, x + i,u3, . . . ,un), (x + 1, x + i + 1,v3, . . . ,vn)] |

x = 0, . . . ,k − 1, and (uj ,vj ) ∈ E(Ck ) for all j ≥ 3 }

(again, the addition in the �rst two coordinates is considered modulo k). It is easy
to see that ∂P ′i = 0, Ok , {1,2} =

⋃k−1
i=0 P ′i , and дE(On−1

k ,1 ) = fE(P
′
0).

We prove fE(P
′
i ) = fE(P

′
i+2). For each edge

e = [(x, x + i,u3, . . . ,un), (x + 1, x + i + 1,v3, . . . ,vn)] ∈ P
′
i ,
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let Se denote the set of oriented edges of the 4-cycle

(x, x + i,u3, . . . ,un), (x + 1, x + i + 1,v3, . . . ,vn),

(x, x + i + 2,u3, . . . ,un), (x − 1, x + i + 1,v3, . . . ,vn).

Note that e ∈ Se , and also [(x, x + i + 2,u3, . . . ,un), (x − 1, x + i + 1,v3, . . . ,vn)] ∈
−P ′i+2. We claim that

∑
e ∈P ′i

Se = P ′i − P
′
i+2. In other words, all edges of the Se ’s

not contained in P ′i − P
′
i+2 cancel out. Indeed, every edge of the form d = [(x +

1, x + i + 1,v3, . . . ,vn), (x, x + i + 2,u3, . . . ,un)] that appears in Se , has its reverse
in Se+ for

e+ = [(x + 1, x + i + 1,u3, . . . ,un), (x + 2, x + i + 2,v3, . . . ,vn)].

Furthermore, the correspondence e ↔ e+ is 1-to-1, and therefore we paired each
d ∈ Se with a unique −d ∈ Se+ .

We conclude the proof in a similar way as Case 1: From Lemma 5.3(3), we have
fE(Se ) = 0 for each e , and therefore

0 = fE(
∑
e ∈P ′i

Se ) = fE(P
′
i − P

′
i+2)

which shows that fE(P
′
i ) = fE(P

′
i+2). Consequently, we have P ′i = P ′j for all i, j,

and
fE(O

n
k , {1,2}) =

∑
i<k

fe (P
′
i ) = k · fe (P

′
0) = k · дE(O

n−1
k ,1 ) = k(2k)

n−2 deg1 д ·O3.

This implies that deg1,2 f = deg1 д, as required. �

The following lemma says that δ preserves the operation of adding a dummy
variable.

Lemma 5.11. Let f : Cn
k → C3 be a polymorphism, and i ∈ {1, . . . ,n}. If the

coordinate i in f is dummy, then degi f = 0.

Proof. Loosely speaking, the degree of f at the i-th coordinate is determined by
the image ofOn

k ,i under fE. Since f does not depend on the i-th coordinate, neither
does (in the corresponding meaning) fE, and therefore, it cannot distinguish the
orientation of the edges in On

k ,i .
Formally, we use the local de�nition of degi f and prove that, for an edge e ∈

E(Cn−1
k ), we have fE(e ×i Ok ) = 0. Fix e = ((u2, . . . ,un), (v2, . . . ,vn)) and assume

without loss of generality that i = 1. As mentioned in the proof of Lemma 5.6(1),
e×1Ok is a 2k-cycle. The values of f on this cycle are all of the form f (a,u2, . . . ,un)
and f (a,v2, . . . ,vn) where a ∈ V (Ck ). Since the �rst coordinate in f is dummy,
none of this values depends on a, so f attains only two possible values on this
2k-cycle. This implies that necessarily fE(e ×1 Ok ) = 0 ·O3, and consequently, by
Lemma 5.6, deg1 f = 0. �

This concludes the proof of Lemma 5.7.

5.4. Bounding the essential arity

To �nish the analysis of polymorphisms from Ck to C3, we need to bound the
essential arity of functions in the image of δ (de�ned in Section 5.3) and show
that none of these functions is a constant function. We now prove that the image
of δ is contained in Z≤N , where N is the largest odd number such that N ≤ k/3.
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Recall that, for an odd number N , the minion Z≤N is de�ned to be the set of all
functions f : Zn → Z of the form f (x1, . . . , xn) = c1x1 + · · · + cnxn for some c1,
. . . , cn ∈ Z with

∑n
i=1 |ci | ≤ N and

∑n
i=1 ci odd. It is easy to see that the number

of non-zero coe�cients in any function from Z≤N is between 1 and N , giving us
the required result. We remark that our bound on N is tight (for a proof of this,
see Appendix A), but we will not need that.

Lemma 5.12. Let k ≥ 3 be odd, and let N be the largest odd number such that
N ≤ k/3. Then we have δ (f ) ∈ Z≤N for all f ∈ Pol(Cn

k ,C3).

Proof. We need to prove (1)
∑n

i=1 |degi f | ≤ N , and (2)
∑n

i=1 degi f is odd. Con-
sider the unary minor of f , i.e., the mapping д : Ck → C3 de�ned by д(x) =
f (x, . . . , x). Parts (1) and (2) of Lemma 5.3 imply that degд is an odd number
not greater than k/3, consequently degд ≤ N . Further, Lemma 5.7 implie sthat
degд =

∑n
i=1 degi f , and therefore we immediately get item (2). This argument

also shows item (1) if degi f is non-negative for all i . We reduce the general case
to this case. More precisely, for each f we will �nd a new polymorphism f ′ of
the same arity such that |degi f | = degi f ′ for all i .

This f ′ is constructed by a simple trick: ‘reversing’ all coordinates xi with
degi f negative. Let us do that one coordinate at a time, and for simplicity, con-
sider just the �rst coordinate. Let θ be the automorphism of Ck such that θ (0) = 0
and θ (i) = k − i for i , 0, and de�ne f ′ as

f ′(x1, . . . , xn) = f (θ (x1), x2, . . . , xn).

It is easy to see that f ′ is also a polymorphism. We claim that deg1 f
′ = − deg1 f

and degi f ′ = degi f for all i , 1. This follows from the fact that applying θ in the
�rst coordinate reverses the orientation of all edges inOn

k ,1 and it does not change
the orientation of edges in On

k , j for j , 1. (This is clear since the orientation of
edges in On

k ,i is given by the orientation in the i-th coordinate.) In other words,
we have f ′E (O

n
k ,1) = fE(−O

n
k ,1) and f ′E (O

n
k , j ) = fE(O

n
k , j ) for j , 1. This directly

implies the claim about degrees.
Repeating this trick, we eventually obtain a polymorphism whose degrees are

all positive and up to the sign same as degrees of f . This completes the proof. �

Theorem 3.3 now follows from Lemma 5.7 and Lemma 5.12.

Appendix A. A HOMOMORPHIC EQUIVALENCE OF MINIONS

In this appendix, we prove that (for k odd and N the largest odd number
smaller than or equal to k/3) the minion Z≤N is homomorphically equivalent
to Pol(Ck ,C3), i.e., that there exists minion homomorphisms between these min-
ions in both directions. A minion homomorphism δ : Pol(Ck ,C3) → Z≤N was
given in Section 5, here we provide one from Z≤N to Pol(Ck ,C3).

Lemma A.1. Let k and N be odd such that N ≤ k/3. There exists a minion homo-
morphism η : Z≤N → Pol(Ck ,C3).

Proof. For simplicity, let us assume that k = 3N . The general case is obtained by
an easy observation that Pol(Ck ,C3) → Pol(Ck ′,C3) for any odd k ′ ≤ k . As an
intermediate step, we de�ne a graph Dk with vertices V (Dk ) = V (Ck ) such that
(u,v) ∈ E(Dk ) if the distance of u andv in Ck is odd and at most N . Alternatively,
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Figure 7. The graph D9 with a 3-colouring h9.

we can say (u,v) ∈ E(Dk ) if they are connected in Ck by a walk of length exactly
N . It is easy to see that these two are equivalent. (See also Figure 7.)

We claim:
(1) there is a minion homomorphism η′ : Z≤N → Pol(Ck ,Dk ), and
(2) there is a graph homomorphism hk : Dk → C3.

To prove the �rst claim, we de�ne η′ : Z≤N → Pol(Ck ,Dk ) by

η′(f ) : (x1, . . . , xn) 7→ f (x1, . . . , xn) mod k .

That is, we apply the function f to the n-tuple of vertices of Ck as they would be
numbers in Z, and then take the residue modulo k of the result to get a number
between 0 and k − 1. From the de�nition, it is clear that η′ is minor-preserving,
therefore we only need to prove that each η′(f ) is a polymorphism from Ck to Dk .
It is enough to prove the claim for f of the form: f (x1, . . . , xN ) = ±x1 ± · · · ± xN
since all other functions in Z≤N are minors of some such f . Let f ′ = η′(f ), i.e.,

f ′(x1, . . . , xN ) = (±x1 ± · · · ± xN ) mod k

Assume that (ui ,vi ) ∈ E(Ck ) for i = 1, . . . ,N , and observe that

f ′(u1, . . . ,uN ), f
′(v1,u2, . . . ,uN ), f

′(v1,v2,u3, . . . ,uN ), . . . , f
′(v1, . . . ,vN )

is a walk in Ck from f ′(u1, . . . ,uN ) to f ′(v1, . . . ,vN ) of length exactly N , which
implies that

(f ′(u1, . . . ,uN ), f
′(v1, . . . ,vN )) ∈ E(Dk )

and f ′ ∈ Pol(Ck ,Dk ).
For the second claim, consider hk : V (Dk ) → V (C3) de�ned by

hk (x) =


0 if x < N and x is oven, or x > 2N and x is odd,
1 if x < 2N and x is odd,
2 if x > N and x is even.

It is easy to check that h is indeed a graph homomorphism. (Figure 7 shows h9.)
Finally, the minion homomorphism η is given by

η(f ) : (x1, . . . , xn) 7→ hk (η
′(f )(x1, . . . , xn)).
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It is straight-forward to check that η is minor-preserving, we also have that η(f )
is a polymorphism from Ck to C3 since it is a composition of a polymorphism
η′(f ) : Cn

k → Dk and a homomorphism Dk → C3. �

We remark, without giving a proof, that the composition of minion homo-
morphisms δ ◦ η is the identity on Z≤N , i.e., for f (x1, . . . , xn) =

∑n
i=1 cixi and

i ∈ {1, . . . ,n}, we have degi η(f ) = ci .
As a simple corollary, we can obtain polymorphisms that forbid simple reduc-

tions from some other PCSPs.

Corollary A.2. Let k ≥ 9 and n ≤ k/3 be both odd, Pol(Ck ,C3) contains functions
c, s , and o satisfying:

(1) cn(x1, . . . , xn) ≈ c(x2, . . . , xn, x1),
(2) s(x,y, x, z,y, z) ≈ s(y, x, z, x, z,y), and
(3) o(x, x,y,y,y, x) ≈ o(x,y, x,y, x,y) ≈ o(y, x, x, x,y,y).

Proof. Let N be the largest odd number smaller than or equal to k/3, note that
n ≤ N and 3 ≤ N . Since a minion homomorphism preserves satisfaction of the
above identities, it is enough to �nd such functions in Z≤N . For that, we consider

cn(x1, . . . , xn) = x1 + · · · + xn,

s(x1, . . . , x6) = x1 + x3 + x5,

o(x1, . . . , x6) = x1 + x2 + x3.

Clearly, cn, s,o ∈ Z≤N , and it is easy to check that they satisfy the required iden-
tities. The claim is then given by Lemma A.1 �

A function satisfying item (3) of the above corollary is called an Olšák func-
tion, and absence of such a polymorphism is a requirement for a reduction from
approximate hypergraph colouring using [BKO19a, Corollary 5.19]. A function
satisfying item (2) is called a Siggers function, and absence of such shows that
[BKO19a, Theorem 3.1] cannot be used for a reduction from approximate graph
colouring to PCSP(Ck ,C3) (see also [BKO19a, Theorem 5.25]).
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